• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  AMD CPU Microcode Update Driver for Linux
4  *
5  *  This driver allows to upgrade microcode on F10h AMD
6  *  CPUs and later.
7  *
8  *  Copyright (C) 2008-2011 Advanced Micro Devices Inc.
9  *	          2013-2018 Borislav Petkov <bp@alien8.de>
10  *
11  *  Author: Peter Oruba <peter.oruba@amd.com>
12  *
13  *  Based on work by:
14  *  Tigran Aivazian <aivazian.tigran@gmail.com>
15  *
16  *  early loader:
17  *  Copyright (C) 2013 Advanced Micro Devices, Inc.
18  *
19  *  Author: Jacob Shin <jacob.shin@amd.com>
20  *  Fixes: Borislav Petkov <bp@suse.de>
21  */
22 #define pr_fmt(fmt) "microcode: " fmt
23 
24 #include <linux/earlycpio.h>
25 #include <linux/firmware.h>
26 #include <linux/bsearch.h>
27 #include <linux/uaccess.h>
28 #include <linux/vmalloc.h>
29 #include <linux/initrd.h>
30 #include <linux/kernel.h>
31 #include <linux/pci.h>
32 
33 #include <crypto/sha2.h>
34 
35 #include <asm/microcode.h>
36 #include <asm/processor.h>
37 #include <asm/cmdline.h>
38 #include <asm/setup.h>
39 #include <asm/cpu.h>
40 #include <asm/msr.h>
41 #include <asm/tlb.h>
42 
43 #include "internal.h"
44 
45 struct ucode_patch {
46 	struct list_head plist;
47 	void *data;
48 	unsigned int size;
49 	u32 patch_id;
50 	u16 equiv_cpu;
51 };
52 
53 static LIST_HEAD(microcode_cache);
54 
55 #define UCODE_MAGIC			0x00414d44
56 #define UCODE_EQUIV_CPU_TABLE_TYPE	0x00000000
57 #define UCODE_UCODE_TYPE		0x00000001
58 
59 #define SECTION_HDR_SIZE		8
60 #define CONTAINER_HDR_SZ		12
61 
62 struct equiv_cpu_entry {
63 	u32	installed_cpu;
64 	u32	fixed_errata_mask;
65 	u32	fixed_errata_compare;
66 	u16	equiv_cpu;
67 	u16	res;
68 } __packed;
69 
70 struct microcode_header_amd {
71 	u32	data_code;
72 	u32	patch_id;
73 	u16	mc_patch_data_id;
74 	u8	mc_patch_data_len;
75 	u8	init_flag;
76 	u32	mc_patch_data_checksum;
77 	u32	nb_dev_id;
78 	u32	sb_dev_id;
79 	u16	processor_rev_id;
80 	u8	nb_rev_id;
81 	u8	sb_rev_id;
82 	u8	bios_api_rev;
83 	u8	reserved1[3];
84 	u32	match_reg[8];
85 } __packed;
86 
87 struct microcode_amd {
88 	struct microcode_header_amd	hdr;
89 	unsigned int			mpb[];
90 };
91 
92 static struct equiv_cpu_table {
93 	unsigned int num_entries;
94 	struct equiv_cpu_entry *entry;
95 } equiv_table;
96 
97 union cpuid_1_eax {
98 	struct {
99 		__u32 stepping    : 4,
100 		      model	  : 4,
101 		      family	  : 4,
102 		      __reserved0 : 4,
103 		      ext_model   : 4,
104 		      ext_fam     : 8,
105 		      __reserved1 : 4;
106 	};
107 	__u32 full;
108 };
109 
110 /*
111  * This points to the current valid container of microcode patches which we will
112  * save from the initrd/builtin before jettisoning its contents. @mc is the
113  * microcode patch we found to match.
114  */
115 struct cont_desc {
116 	struct microcode_amd *mc;
117 	u32		     psize;
118 	u8		     *data;
119 	size_t		     size;
120 };
121 
122 /*
123  * Microcode patch container file is prepended to the initrd in cpio
124  * format. See Documentation/arch/x86/microcode.rst
125  */
126 static const char
127 ucode_path[] __maybe_unused = "kernel/x86/microcode/AuthenticAMD.bin";
128 
129 /*
130  * This is CPUID(1).EAX on the BSP. It is used in two ways:
131  *
132  * 1. To ignore the equivalence table on Zen1 and newer.
133  *
134  * 2. To match which patches to load because the patch revision ID
135  *    already contains the f/m/s for which the microcode is destined
136  *    for.
137  */
138 static u32 bsp_cpuid_1_eax __ro_after_init;
139 
140 static bool sha_check = true;
141 
142 struct patch_digest {
143 	u32 patch_id;
144 	u8 sha256[SHA256_DIGEST_SIZE];
145 };
146 
147 #include "amd_shas.c"
148 
cmp_id(const void * key,const void * elem)149 static int cmp_id(const void *key, const void *elem)
150 {
151 	struct patch_digest *pd = (struct patch_digest *)elem;
152 	u32 patch_id = *(u32 *)key;
153 
154 	if (patch_id == pd->patch_id)
155 		return 0;
156 	else if (patch_id < pd->patch_id)
157 		return -1;
158 	else
159 		return 1;
160 }
161 
cpuid_to_ucode_rev(unsigned int val)162 static u32 cpuid_to_ucode_rev(unsigned int val)
163 {
164 	union zen_patch_rev p = {};
165 	union cpuid_1_eax c;
166 
167 	c.full = val;
168 
169 	p.stepping  = c.stepping;
170 	p.model     = c.model;
171 	p.ext_model = c.ext_model;
172 	p.ext_fam   = c.ext_fam;
173 
174 	return p.ucode_rev;
175 }
176 
need_sha_check(u32 cur_rev)177 static bool need_sha_check(u32 cur_rev)
178 {
179 	if (!cur_rev) {
180 		cur_rev = cpuid_to_ucode_rev(bsp_cpuid_1_eax);
181 		pr_info_once("No current revision, generating the lowest one: 0x%x\n", cur_rev);
182 	}
183 
184 	switch (cur_rev >> 8) {
185 	case 0x80012: return cur_rev <= 0x800126f; break;
186 	case 0x80082: return cur_rev <= 0x800820f; break;
187 	case 0x83010: return cur_rev <= 0x830107c; break;
188 	case 0x86001: return cur_rev <= 0x860010e; break;
189 	case 0x86081: return cur_rev <= 0x8608108; break;
190 	case 0x87010: return cur_rev <= 0x8701034; break;
191 	case 0x8a000: return cur_rev <= 0x8a0000a; break;
192 	case 0xa0010: return cur_rev <= 0xa00107a; break;
193 	case 0xa0011: return cur_rev <= 0xa0011da; break;
194 	case 0xa0012: return cur_rev <= 0xa001243; break;
195 	case 0xa0082: return cur_rev <= 0xa00820e; break;
196 	case 0xa1011: return cur_rev <= 0xa101153; break;
197 	case 0xa1012: return cur_rev <= 0xa10124e; break;
198 	case 0xa1081: return cur_rev <= 0xa108109; break;
199 	case 0xa2010: return cur_rev <= 0xa20102f; break;
200 	case 0xa2012: return cur_rev <= 0xa201212; break;
201 	case 0xa4041: return cur_rev <= 0xa404109; break;
202 	case 0xa5000: return cur_rev <= 0xa500013; break;
203 	case 0xa6012: return cur_rev <= 0xa60120a; break;
204 	case 0xa7041: return cur_rev <= 0xa704109; break;
205 	case 0xa7052: return cur_rev <= 0xa705208; break;
206 	case 0xa7080: return cur_rev <= 0xa708009; break;
207 	case 0xa70c0: return cur_rev <= 0xa70C009; break;
208 	case 0xaa001: return cur_rev <= 0xaa00116; break;
209 	case 0xaa002: return cur_rev <= 0xaa00218; break;
210 	case 0xb0021: return cur_rev <= 0xb002146; break;
211 	case 0xb1010: return cur_rev <= 0xb101046; break;
212 	case 0xb2040: return cur_rev <= 0xb204031; break;
213 	case 0xb4040: return cur_rev <= 0xb404031; break;
214 	case 0xb6000: return cur_rev <= 0xb600031; break;
215 	case 0xb7000: return cur_rev <= 0xb700031; break;
216 	default: break;
217 	}
218 
219 	pr_info("You should not be seeing this. Please send the following couple of lines to x86-<at>-kernel.org\n");
220 	pr_info("CPUID(1).EAX: 0x%x, current revision: 0x%x\n", bsp_cpuid_1_eax, cur_rev);
221 	return true;
222 }
223 
verify_sha256_digest(u32 patch_id,u32 cur_rev,const u8 * data,unsigned int len)224 static bool verify_sha256_digest(u32 patch_id, u32 cur_rev, const u8 *data, unsigned int len)
225 {
226 	struct patch_digest *pd = NULL;
227 	u8 digest[SHA256_DIGEST_SIZE];
228 	struct sha256_state s;
229 	int i;
230 
231 	if (x86_family(bsp_cpuid_1_eax) < 0x17)
232 		return true;
233 
234 	if (!need_sha_check(cur_rev))
235 		return true;
236 
237 	if (!sha_check)
238 		return true;
239 
240 	pd = bsearch(&patch_id, phashes, ARRAY_SIZE(phashes), sizeof(struct patch_digest), cmp_id);
241 	if (!pd) {
242 		pr_err("No sha256 digest for patch ID: 0x%x found\n", patch_id);
243 		return false;
244 	}
245 
246 	sha256_init(&s);
247 	sha256_update(&s, data, len);
248 	sha256_final(&s, digest);
249 
250 	if (memcmp(digest, pd->sha256, sizeof(digest))) {
251 		pr_err("Patch 0x%x SHA256 digest mismatch!\n", patch_id);
252 
253 		for (i = 0; i < SHA256_DIGEST_SIZE; i++)
254 			pr_cont("0x%x ", digest[i]);
255 		pr_info("\n");
256 
257 		return false;
258 	}
259 
260 	return true;
261 }
262 
get_patch_level(void)263 static u32 get_patch_level(void)
264 {
265 	u32 rev, dummy __always_unused;
266 
267 	native_rdmsr(MSR_AMD64_PATCH_LEVEL, rev, dummy);
268 
269 	return rev;
270 }
271 
ucode_rev_to_cpuid(unsigned int val)272 static union cpuid_1_eax ucode_rev_to_cpuid(unsigned int val)
273 {
274 	union zen_patch_rev p;
275 	union cpuid_1_eax c;
276 
277 	p.ucode_rev = val;
278 	c.full = 0;
279 
280 	c.stepping  = p.stepping;
281 	c.model     = p.model;
282 	c.ext_model = p.ext_model;
283 	c.family    = 0xf;
284 	c.ext_fam   = p.ext_fam;
285 
286 	return c;
287 }
288 
find_equiv_id(struct equiv_cpu_table * et,u32 sig)289 static u16 find_equiv_id(struct equiv_cpu_table *et, u32 sig)
290 {
291 	unsigned int i;
292 
293 	/* Zen and newer do not need an equivalence table. */
294 	if (x86_family(bsp_cpuid_1_eax) >= 0x17)
295 		return 0;
296 
297 	if (!et || !et->num_entries)
298 		return 0;
299 
300 	for (i = 0; i < et->num_entries; i++) {
301 		struct equiv_cpu_entry *e = &et->entry[i];
302 
303 		if (sig == e->installed_cpu)
304 			return e->equiv_cpu;
305 	}
306 	return 0;
307 }
308 
309 /*
310  * Check whether there is a valid microcode container file at the beginning
311  * of @buf of size @buf_size.
312  */
verify_container(const u8 * buf,size_t buf_size)313 static bool verify_container(const u8 *buf, size_t buf_size)
314 {
315 	u32 cont_magic;
316 
317 	if (buf_size <= CONTAINER_HDR_SZ) {
318 		pr_debug("Truncated microcode container header.\n");
319 		return false;
320 	}
321 
322 	cont_magic = *(const u32 *)buf;
323 	if (cont_magic != UCODE_MAGIC) {
324 		pr_debug("Invalid magic value (0x%08x).\n", cont_magic);
325 		return false;
326 	}
327 
328 	return true;
329 }
330 
331 /*
332  * Check whether there is a valid, non-truncated CPU equivalence table at the
333  * beginning of @buf of size @buf_size.
334  */
verify_equivalence_table(const u8 * buf,size_t buf_size)335 static bool verify_equivalence_table(const u8 *buf, size_t buf_size)
336 {
337 	const u32 *hdr = (const u32 *)buf;
338 	u32 cont_type, equiv_tbl_len;
339 
340 	if (!verify_container(buf, buf_size))
341 		return false;
342 
343 	/* Zen and newer do not need an equivalence table. */
344 	if (x86_family(bsp_cpuid_1_eax) >= 0x17)
345 		return true;
346 
347 	cont_type = hdr[1];
348 	if (cont_type != UCODE_EQUIV_CPU_TABLE_TYPE) {
349 		pr_debug("Wrong microcode container equivalence table type: %u.\n",
350 			 cont_type);
351 		return false;
352 	}
353 
354 	buf_size -= CONTAINER_HDR_SZ;
355 
356 	equiv_tbl_len = hdr[2];
357 	if (equiv_tbl_len < sizeof(struct equiv_cpu_entry) ||
358 	    buf_size < equiv_tbl_len) {
359 		pr_debug("Truncated equivalence table.\n");
360 		return false;
361 	}
362 
363 	return true;
364 }
365 
366 /*
367  * Check whether there is a valid, non-truncated microcode patch section at the
368  * beginning of @buf of size @buf_size.
369  *
370  * On success, @sh_psize returns the patch size according to the section header,
371  * to the caller.
372  */
__verify_patch_section(const u8 * buf,size_t buf_size,u32 * sh_psize)373 static bool __verify_patch_section(const u8 *buf, size_t buf_size, u32 *sh_psize)
374 {
375 	u32 p_type, p_size;
376 	const u32 *hdr;
377 
378 	if (buf_size < SECTION_HDR_SIZE) {
379 		pr_debug("Truncated patch section.\n");
380 		return false;
381 	}
382 
383 	hdr = (const u32 *)buf;
384 	p_type = hdr[0];
385 	p_size = hdr[1];
386 
387 	if (p_type != UCODE_UCODE_TYPE) {
388 		pr_debug("Invalid type field (0x%x) in container file section header.\n",
389 			 p_type);
390 		return false;
391 	}
392 
393 	if (p_size < sizeof(struct microcode_header_amd)) {
394 		pr_debug("Patch of size %u too short.\n", p_size);
395 		return false;
396 	}
397 
398 	*sh_psize = p_size;
399 
400 	return true;
401 }
402 
403 /*
404  * Check whether the passed remaining file @buf_size is large enough to contain
405  * a patch of the indicated @sh_psize (and also whether this size does not
406  * exceed the per-family maximum). @sh_psize is the size read from the section
407  * header.
408  */
__verify_patch_size(u32 sh_psize,size_t buf_size)409 static unsigned int __verify_patch_size(u32 sh_psize, size_t buf_size)
410 {
411 	u8 family = x86_family(bsp_cpuid_1_eax);
412 	u32 max_size;
413 
414 	if (family >= 0x15)
415 		return min_t(u32, sh_psize, buf_size);
416 
417 #define F1XH_MPB_MAX_SIZE 2048
418 #define F14H_MPB_MAX_SIZE 1824
419 
420 	switch (family) {
421 	case 0x10 ... 0x12:
422 		max_size = F1XH_MPB_MAX_SIZE;
423 		break;
424 	case 0x14:
425 		max_size = F14H_MPB_MAX_SIZE;
426 		break;
427 	default:
428 		WARN(1, "%s: WTF family: 0x%x\n", __func__, family);
429 		return 0;
430 	}
431 
432 	if (sh_psize > min_t(u32, buf_size, max_size))
433 		return 0;
434 
435 	return sh_psize;
436 }
437 
438 /*
439  * Verify the patch in @buf.
440  *
441  * Returns:
442  * negative: on error
443  * positive: patch is not for this family, skip it
444  * 0: success
445  */
verify_patch(const u8 * buf,size_t buf_size,u32 * patch_size)446 static int verify_patch(const u8 *buf, size_t buf_size, u32 *patch_size)
447 {
448 	u8 family = x86_family(bsp_cpuid_1_eax);
449 	struct microcode_header_amd *mc_hdr;
450 	unsigned int ret;
451 	u32 sh_psize;
452 	u16 proc_id;
453 	u8 patch_fam;
454 
455 	if (!__verify_patch_section(buf, buf_size, &sh_psize))
456 		return -1;
457 
458 	/*
459 	 * The section header length is not included in this indicated size
460 	 * but is present in the leftover file length so we need to subtract
461 	 * it before passing this value to the function below.
462 	 */
463 	buf_size -= SECTION_HDR_SIZE;
464 
465 	/*
466 	 * Check if the remaining buffer is big enough to contain a patch of
467 	 * size sh_psize, as the section claims.
468 	 */
469 	if (buf_size < sh_psize) {
470 		pr_debug("Patch of size %u truncated.\n", sh_psize);
471 		return -1;
472 	}
473 
474 	ret = __verify_patch_size(sh_psize, buf_size);
475 	if (!ret) {
476 		pr_debug("Per-family patch size mismatch.\n");
477 		return -1;
478 	}
479 
480 	*patch_size = sh_psize;
481 
482 	mc_hdr	= (struct microcode_header_amd *)(buf + SECTION_HDR_SIZE);
483 	if (mc_hdr->nb_dev_id || mc_hdr->sb_dev_id) {
484 		pr_err("Patch-ID 0x%08x: chipset-specific code unsupported.\n", mc_hdr->patch_id);
485 		return -1;
486 	}
487 
488 	proc_id	= mc_hdr->processor_rev_id;
489 	patch_fam = 0xf + (proc_id >> 12);
490 	if (patch_fam != family)
491 		return 1;
492 
493 	return 0;
494 }
495 
mc_patch_matches(struct microcode_amd * mc,u16 eq_id)496 static bool mc_patch_matches(struct microcode_amd *mc, u16 eq_id)
497 {
498 	/* Zen and newer do not need an equivalence table. */
499 	if (x86_family(bsp_cpuid_1_eax) >= 0x17)
500 		return ucode_rev_to_cpuid(mc->hdr.patch_id).full == bsp_cpuid_1_eax;
501 	else
502 		return eq_id == mc->hdr.processor_rev_id;
503 }
504 
505 /*
506  * This scans the ucode blob for the proper container as we can have multiple
507  * containers glued together. Returns the equivalence ID from the equivalence
508  * table or 0 if none found.
509  * Returns the amount of bytes consumed while scanning. @desc contains all the
510  * data we're going to use in later stages of the application.
511  */
parse_container(u8 * ucode,size_t size,struct cont_desc * desc)512 static size_t parse_container(u8 *ucode, size_t size, struct cont_desc *desc)
513 {
514 	struct equiv_cpu_table table;
515 	size_t orig_size = size;
516 	u32 *hdr = (u32 *)ucode;
517 	u16 eq_id;
518 	u8 *buf;
519 
520 	if (!verify_equivalence_table(ucode, size))
521 		return 0;
522 
523 	buf = ucode;
524 
525 	table.entry = (struct equiv_cpu_entry *)(buf + CONTAINER_HDR_SZ);
526 	table.num_entries = hdr[2] / sizeof(struct equiv_cpu_entry);
527 
528 	/*
529 	 * Find the equivalence ID of our CPU in this table. Even if this table
530 	 * doesn't contain a patch for the CPU, scan through the whole container
531 	 * so that it can be skipped in case there are other containers appended.
532 	 */
533 	eq_id = find_equiv_id(&table, bsp_cpuid_1_eax);
534 
535 	buf  += hdr[2] + CONTAINER_HDR_SZ;
536 	size -= hdr[2] + CONTAINER_HDR_SZ;
537 
538 	/*
539 	 * Scan through the rest of the container to find where it ends. We do
540 	 * some basic sanity-checking too.
541 	 */
542 	while (size > 0) {
543 		struct microcode_amd *mc;
544 		u32 patch_size;
545 		int ret;
546 
547 		ret = verify_patch(buf, size, &patch_size);
548 		if (ret < 0) {
549 			/*
550 			 * Patch verification failed, skip to the next container, if
551 			 * there is one. Before exit, check whether that container has
552 			 * found a patch already. If so, use it.
553 			 */
554 			goto out;
555 		} else if (ret > 0) {
556 			goto skip;
557 		}
558 
559 		mc = (struct microcode_amd *)(buf + SECTION_HDR_SIZE);
560 		if (mc_patch_matches(mc, eq_id)) {
561 			desc->psize = patch_size;
562 			desc->mc = mc;
563 		}
564 
565 skip:
566 		/* Skip patch section header too: */
567 		buf  += patch_size + SECTION_HDR_SIZE;
568 		size -= patch_size + SECTION_HDR_SIZE;
569 	}
570 
571 out:
572 	/*
573 	 * If we have found a patch (desc->mc), it means we're looking at the
574 	 * container which has a patch for this CPU so return 0 to mean, @ucode
575 	 * already points to the proper container. Otherwise, we return the size
576 	 * we scanned so that we can advance to the next container in the
577 	 * buffer.
578 	 */
579 	if (desc->mc) {
580 		desc->data = ucode;
581 		desc->size = orig_size - size;
582 
583 		return 0;
584 	}
585 
586 	return orig_size - size;
587 }
588 
589 /*
590  * Scan the ucode blob for the proper container as we can have multiple
591  * containers glued together.
592  */
scan_containers(u8 * ucode,size_t size,struct cont_desc * desc)593 static void scan_containers(u8 *ucode, size_t size, struct cont_desc *desc)
594 {
595 	while (size) {
596 		size_t s = parse_container(ucode, size, desc);
597 		if (!s)
598 			return;
599 
600 		/* catch wraparound */
601 		if (size >= s) {
602 			ucode += s;
603 			size  -= s;
604 		} else {
605 			return;
606 		}
607 	}
608 }
609 
__apply_microcode_amd(struct microcode_amd * mc,u32 * cur_rev,unsigned int psize)610 static bool __apply_microcode_amd(struct microcode_amd *mc, u32 *cur_rev,
611 				  unsigned int psize)
612 {
613 	unsigned long p_addr = (unsigned long)&mc->hdr.data_code;
614 
615 	if (!verify_sha256_digest(mc->hdr.patch_id, *cur_rev, (const u8 *)p_addr, psize))
616 		return false;
617 
618 	native_wrmsrl(MSR_AMD64_PATCH_LOADER, p_addr);
619 
620 	if (x86_family(bsp_cpuid_1_eax) == 0x17) {
621 		unsigned long p_addr_end = p_addr + psize - 1;
622 
623 		invlpg(p_addr);
624 
625 		/*
626 		 * Flush next page too if patch image is crossing a page
627 		 * boundary.
628 		 */
629 		if (p_addr >> PAGE_SHIFT != p_addr_end >> PAGE_SHIFT)
630 			invlpg(p_addr_end);
631 	}
632 
633 	/* verify patch application was successful */
634 	*cur_rev = get_patch_level();
635 	if (*cur_rev != mc->hdr.patch_id)
636 		return false;
637 
638 	return true;
639 }
640 
641 
get_builtin_microcode(struct cpio_data * cp)642 static bool get_builtin_microcode(struct cpio_data *cp)
643 {
644 	char fw_name[36] = "amd-ucode/microcode_amd.bin";
645 	u8 family = x86_family(bsp_cpuid_1_eax);
646 	struct firmware fw;
647 
648 	if (IS_ENABLED(CONFIG_X86_32))
649 		return false;
650 
651 	if (family >= 0x15)
652 		snprintf(fw_name, sizeof(fw_name),
653 			 "amd-ucode/microcode_amd_fam%02hhxh.bin", family);
654 
655 	if (firmware_request_builtin(&fw, fw_name)) {
656 		cp->size = fw.size;
657 		cp->data = (void *)fw.data;
658 		return true;
659 	}
660 
661 	return false;
662 }
663 
find_blobs_in_containers(struct cpio_data * ret)664 static bool __init find_blobs_in_containers(struct cpio_data *ret)
665 {
666 	struct cpio_data cp;
667 	bool found;
668 
669 	if (!get_builtin_microcode(&cp))
670 		cp = find_microcode_in_initrd(ucode_path);
671 
672 	found = cp.data && cp.size;
673 	if (found)
674 		*ret = cp;
675 
676 	return found;
677 }
678 
679 /*
680  * Early load occurs before we can vmalloc(). So we look for the microcode
681  * patch container file in initrd, traverse equivalent cpu table, look for a
682  * matching microcode patch, and update, all in initrd memory in place.
683  * When vmalloc() is available for use later -- on 64-bit during first AP load,
684  * and on 32-bit during save_microcode_in_initrd() -- we can call
685  * load_microcode_amd() to save equivalent cpu table and microcode patches in
686  * kernel heap memory.
687  */
load_ucode_amd_bsp(struct early_load_data * ed,unsigned int cpuid_1_eax)688 void __init load_ucode_amd_bsp(struct early_load_data *ed, unsigned int cpuid_1_eax)
689 {
690 	struct cont_desc desc = { };
691 	struct microcode_amd *mc;
692 	struct cpio_data cp = { };
693 	char buf[4];
694 	u32 rev;
695 
696 	if (cmdline_find_option(boot_command_line, "microcode.amd_sha_check", buf, 4)) {
697 		if (!strncmp(buf, "off", 3)) {
698 			sha_check = false;
699 			pr_warn_once("It is a very very bad idea to disable the blobs SHA check!\n");
700 			add_taint(TAINT_CPU_OUT_OF_SPEC, LOCKDEP_STILL_OK);
701 		}
702 	}
703 
704 	bsp_cpuid_1_eax = cpuid_1_eax;
705 
706 	rev = get_patch_level();
707 	ed->old_rev = rev;
708 
709 	/* Needed in load_microcode_amd() */
710 	ucode_cpu_info[0].cpu_sig.sig = cpuid_1_eax;
711 
712 	if (!find_blobs_in_containers(&cp))
713 		return;
714 
715 	scan_containers(cp.data, cp.size, &desc);
716 
717 	mc = desc.mc;
718 	if (!mc)
719 		return;
720 
721 	/*
722 	 * Allow application of the same revision to pick up SMT-specific
723 	 * changes even if the revision of the other SMT thread is already
724 	 * up-to-date.
725 	 */
726 	if (ed->old_rev > mc->hdr.patch_id)
727 		return;
728 
729 	if (__apply_microcode_amd(mc, &rev, desc.psize))
730 		ed->new_rev = rev;
731 }
732 
patch_cpus_equivalent(struct ucode_patch * p,struct ucode_patch * n,bool ignore_stepping)733 static inline bool patch_cpus_equivalent(struct ucode_patch *p,
734 					 struct ucode_patch *n,
735 					 bool ignore_stepping)
736 {
737 	/* Zen and newer hardcode the f/m/s in the patch ID */
738         if (x86_family(bsp_cpuid_1_eax) >= 0x17) {
739 		union cpuid_1_eax p_cid = ucode_rev_to_cpuid(p->patch_id);
740 		union cpuid_1_eax n_cid = ucode_rev_to_cpuid(n->patch_id);
741 
742 		if (ignore_stepping) {
743 			p_cid.stepping = 0;
744 			n_cid.stepping = 0;
745 		}
746 
747 		return p_cid.full == n_cid.full;
748 	} else {
749 		return p->equiv_cpu == n->equiv_cpu;
750 	}
751 }
752 
753 /*
754  * a small, trivial cache of per-family ucode patches
755  */
cache_find_patch(struct ucode_cpu_info * uci,u16 equiv_cpu)756 static struct ucode_patch *cache_find_patch(struct ucode_cpu_info *uci, u16 equiv_cpu)
757 {
758 	struct ucode_patch *p;
759 	struct ucode_patch n;
760 
761 	n.equiv_cpu = equiv_cpu;
762 	n.patch_id  = uci->cpu_sig.rev;
763 
764 	list_for_each_entry(p, &microcode_cache, plist)
765 		if (patch_cpus_equivalent(p, &n, false))
766 			return p;
767 
768 	return NULL;
769 }
770 
patch_newer(struct ucode_patch * p,struct ucode_patch * n)771 static inline int patch_newer(struct ucode_patch *p, struct ucode_patch *n)
772 {
773 	/* Zen and newer hardcode the f/m/s in the patch ID */
774         if (x86_family(bsp_cpuid_1_eax) >= 0x17) {
775 		union zen_patch_rev zp, zn;
776 
777 		zp.ucode_rev = p->patch_id;
778 		zn.ucode_rev = n->patch_id;
779 
780 		if (zn.stepping != zp.stepping)
781 			return -1;
782 
783 		return zn.rev > zp.rev;
784 	} else {
785 		return n->patch_id > p->patch_id;
786 	}
787 }
788 
update_cache(struct ucode_patch * new_patch)789 static void update_cache(struct ucode_patch *new_patch)
790 {
791 	struct ucode_patch *p;
792 	int ret;
793 
794 	list_for_each_entry(p, &microcode_cache, plist) {
795 		if (patch_cpus_equivalent(p, new_patch, true)) {
796 			ret = patch_newer(p, new_patch);
797 			if (ret < 0)
798 				continue;
799 			else if (!ret) {
800 				/* we already have the latest patch */
801 				kfree(new_patch->data);
802 				kfree(new_patch);
803 				return;
804 			}
805 
806 			list_replace(&p->plist, &new_patch->plist);
807 			kfree(p->data);
808 			kfree(p);
809 			return;
810 		}
811 	}
812 	/* no patch found, add it */
813 	list_add_tail(&new_patch->plist, &microcode_cache);
814 }
815 
free_cache(void)816 static void free_cache(void)
817 {
818 	struct ucode_patch *p, *tmp;
819 
820 	list_for_each_entry_safe(p, tmp, &microcode_cache, plist) {
821 		__list_del(p->plist.prev, p->plist.next);
822 		kfree(p->data);
823 		kfree(p);
824 	}
825 }
826 
find_patch(unsigned int cpu)827 static struct ucode_patch *find_patch(unsigned int cpu)
828 {
829 	struct ucode_cpu_info *uci = ucode_cpu_info + cpu;
830 	u16 equiv_id = 0;
831 
832 	uci->cpu_sig.rev = get_patch_level();
833 
834 	if (x86_family(bsp_cpuid_1_eax) < 0x17) {
835 		equiv_id = find_equiv_id(&equiv_table, uci->cpu_sig.sig);
836 		if (!equiv_id)
837 			return NULL;
838 	}
839 
840 	return cache_find_patch(uci, equiv_id);
841 }
842 
reload_ucode_amd(unsigned int cpu)843 void reload_ucode_amd(unsigned int cpu)
844 {
845 	u32 rev, dummy __always_unused;
846 	struct microcode_amd *mc;
847 	struct ucode_patch *p;
848 
849 	p = find_patch(cpu);
850 	if (!p)
851 		return;
852 
853 	mc = p->data;
854 
855 	rev = get_patch_level();
856 	if (rev < mc->hdr.patch_id) {
857 		if (__apply_microcode_amd(mc, &rev, p->size))
858 			pr_info_once("reload revision: 0x%08x\n", rev);
859 	}
860 }
861 
collect_cpu_info_amd(int cpu,struct cpu_signature * csig)862 static int collect_cpu_info_amd(int cpu, struct cpu_signature *csig)
863 {
864 	struct ucode_cpu_info *uci = ucode_cpu_info + cpu;
865 	struct ucode_patch *p;
866 
867 	csig->sig = cpuid_eax(0x00000001);
868 	csig->rev = get_patch_level();
869 
870 	/*
871 	 * a patch could have been loaded early, set uci->mc so that
872 	 * mc_bp_resume() can call apply_microcode()
873 	 */
874 	p = find_patch(cpu);
875 	if (p && (p->patch_id == csig->rev))
876 		uci->mc = p->data;
877 
878 	return 0;
879 }
880 
apply_microcode_amd(int cpu)881 static enum ucode_state apply_microcode_amd(int cpu)
882 {
883 	struct cpuinfo_x86 *c = &cpu_data(cpu);
884 	struct microcode_amd *mc_amd;
885 	struct ucode_cpu_info *uci;
886 	struct ucode_patch *p;
887 	enum ucode_state ret;
888 	u32 rev;
889 
890 	BUG_ON(raw_smp_processor_id() != cpu);
891 
892 	uci = ucode_cpu_info + cpu;
893 
894 	p = find_patch(cpu);
895 	if (!p)
896 		return UCODE_NFOUND;
897 
898 	rev = uci->cpu_sig.rev;
899 
900 	mc_amd  = p->data;
901 	uci->mc = p->data;
902 
903 	/* need to apply patch? */
904 	if (rev > mc_amd->hdr.patch_id) {
905 		ret = UCODE_OK;
906 		goto out;
907 	}
908 
909 	if (!__apply_microcode_amd(mc_amd, &rev, p->size)) {
910 		pr_err("CPU%d: update failed for patch_level=0x%08x\n",
911 			cpu, mc_amd->hdr.patch_id);
912 		return UCODE_ERROR;
913 	}
914 
915 	rev = mc_amd->hdr.patch_id;
916 	ret = UCODE_UPDATED;
917 
918 out:
919 	uci->cpu_sig.rev = rev;
920 	c->microcode	 = rev;
921 
922 	/* Update boot_cpu_data's revision too, if we're on the BSP: */
923 	if (c->cpu_index == boot_cpu_data.cpu_index)
924 		boot_cpu_data.microcode = rev;
925 
926 	return ret;
927 }
928 
load_ucode_amd_ap(unsigned int cpuid_1_eax)929 void load_ucode_amd_ap(unsigned int cpuid_1_eax)
930 {
931 	unsigned int cpu = smp_processor_id();
932 
933 	ucode_cpu_info[cpu].cpu_sig.sig = cpuid_1_eax;
934 	apply_microcode_amd(cpu);
935 }
936 
install_equiv_cpu_table(const u8 * buf,size_t buf_size)937 static size_t install_equiv_cpu_table(const u8 *buf, size_t buf_size)
938 {
939 	u32 equiv_tbl_len;
940 	const u32 *hdr;
941 
942 	if (!verify_equivalence_table(buf, buf_size))
943 		return 0;
944 
945 	hdr = (const u32 *)buf;
946 	equiv_tbl_len = hdr[2];
947 
948 	/* Zen and newer do not need an equivalence table. */
949 	if (x86_family(bsp_cpuid_1_eax) >= 0x17)
950 		goto out;
951 
952 	equiv_table.entry = vmalloc(equiv_tbl_len);
953 	if (!equiv_table.entry) {
954 		pr_err("failed to allocate equivalent CPU table\n");
955 		return 0;
956 	}
957 
958 	memcpy(equiv_table.entry, buf + CONTAINER_HDR_SZ, equiv_tbl_len);
959 	equiv_table.num_entries = equiv_tbl_len / sizeof(struct equiv_cpu_entry);
960 
961 out:
962 	/* add header length */
963 	return equiv_tbl_len + CONTAINER_HDR_SZ;
964 }
965 
free_equiv_cpu_table(void)966 static void free_equiv_cpu_table(void)
967 {
968 	if (x86_family(bsp_cpuid_1_eax) >= 0x17)
969 		return;
970 
971 	vfree(equiv_table.entry);
972 	memset(&equiv_table, 0, sizeof(equiv_table));
973 }
974 
cleanup(void)975 static void cleanup(void)
976 {
977 	free_equiv_cpu_table();
978 	free_cache();
979 }
980 
981 /*
982  * Return a non-negative value even if some of the checks failed so that
983  * we can skip over the next patch. If we return a negative value, we
984  * signal a grave error like a memory allocation has failed and the
985  * driver cannot continue functioning normally. In such cases, we tear
986  * down everything we've used up so far and exit.
987  */
verify_and_add_patch(u8 family,u8 * fw,unsigned int leftover,unsigned int * patch_size)988 static int verify_and_add_patch(u8 family, u8 *fw, unsigned int leftover,
989 				unsigned int *patch_size)
990 {
991 	struct microcode_header_amd *mc_hdr;
992 	struct ucode_patch *patch;
993 	u16 proc_id;
994 	int ret;
995 
996 	ret = verify_patch(fw, leftover, patch_size);
997 	if (ret)
998 		return ret;
999 
1000 	patch = kzalloc(sizeof(*patch), GFP_KERNEL);
1001 	if (!patch) {
1002 		pr_err("Patch allocation failure.\n");
1003 		return -EINVAL;
1004 	}
1005 
1006 	patch->data = kmemdup(fw + SECTION_HDR_SIZE, *patch_size, GFP_KERNEL);
1007 	if (!patch->data) {
1008 		pr_err("Patch data allocation failure.\n");
1009 		kfree(patch);
1010 		return -EINVAL;
1011 	}
1012 	patch->size = *patch_size;
1013 
1014 	mc_hdr      = (struct microcode_header_amd *)(fw + SECTION_HDR_SIZE);
1015 	proc_id     = mc_hdr->processor_rev_id;
1016 
1017 	INIT_LIST_HEAD(&patch->plist);
1018 	patch->patch_id  = mc_hdr->patch_id;
1019 	patch->equiv_cpu = proc_id;
1020 
1021 	pr_debug("%s: Adding patch_id: 0x%08x, proc_id: 0x%04x\n",
1022 		 __func__, patch->patch_id, proc_id);
1023 
1024 	/* ... and add to cache. */
1025 	update_cache(patch);
1026 
1027 	return 0;
1028 }
1029 
1030 /* Scan the blob in @data and add microcode patches to the cache. */
__load_microcode_amd(u8 family,const u8 * data,size_t size)1031 static enum ucode_state __load_microcode_amd(u8 family, const u8 *data, size_t size)
1032 {
1033 	u8 *fw = (u8 *)data;
1034 	size_t offset;
1035 
1036 	offset = install_equiv_cpu_table(data, size);
1037 	if (!offset)
1038 		return UCODE_ERROR;
1039 
1040 	fw   += offset;
1041 	size -= offset;
1042 
1043 	if (*(u32 *)fw != UCODE_UCODE_TYPE) {
1044 		pr_err("invalid type field in container file section header\n");
1045 		free_equiv_cpu_table();
1046 		return UCODE_ERROR;
1047 	}
1048 
1049 	while (size > 0) {
1050 		unsigned int crnt_size = 0;
1051 		int ret;
1052 
1053 		ret = verify_and_add_patch(family, fw, size, &crnt_size);
1054 		if (ret < 0)
1055 			return UCODE_ERROR;
1056 
1057 		fw   +=  crnt_size + SECTION_HDR_SIZE;
1058 		size -= (crnt_size + SECTION_HDR_SIZE);
1059 	}
1060 
1061 	return UCODE_OK;
1062 }
1063 
_load_microcode_amd(u8 family,const u8 * data,size_t size)1064 static enum ucode_state _load_microcode_amd(u8 family, const u8 *data, size_t size)
1065 {
1066 	enum ucode_state ret;
1067 
1068 	/* free old equiv table */
1069 	free_equiv_cpu_table();
1070 
1071 	ret = __load_microcode_amd(family, data, size);
1072 	if (ret != UCODE_OK)
1073 		cleanup();
1074 
1075 	return ret;
1076 }
1077 
load_microcode_amd(u8 family,const u8 * data,size_t size)1078 static enum ucode_state load_microcode_amd(u8 family, const u8 *data, size_t size)
1079 {
1080 	struct cpuinfo_x86 *c;
1081 	unsigned int nid, cpu;
1082 	struct ucode_patch *p;
1083 	enum ucode_state ret;
1084 
1085 	ret = _load_microcode_amd(family, data, size);
1086 	if (ret != UCODE_OK)
1087 		return ret;
1088 
1089 	for_each_node_with_cpus(nid) {
1090 		cpu = cpumask_first(cpumask_of_node(nid));
1091 		c = &cpu_data(cpu);
1092 
1093 		p = find_patch(cpu);
1094 		if (!p)
1095 			continue;
1096 
1097 		if (c->microcode >= p->patch_id)
1098 			continue;
1099 
1100 		ret = UCODE_NEW;
1101 	}
1102 
1103 	return ret;
1104 }
1105 
save_microcode_in_initrd(void)1106 static int __init save_microcode_in_initrd(void)
1107 {
1108 	struct cpuinfo_x86 *c = &boot_cpu_data;
1109 	struct cont_desc desc = { 0 };
1110 	unsigned int cpuid_1_eax;
1111 	enum ucode_state ret;
1112 	struct cpio_data cp;
1113 
1114 	if (microcode_loader_disabled() || c->x86_vendor != X86_VENDOR_AMD || c->x86 < 0x10)
1115 		return 0;
1116 
1117 	cpuid_1_eax = native_cpuid_eax(1);
1118 
1119 	if (!find_blobs_in_containers(&cp))
1120 		return -EINVAL;
1121 
1122 	scan_containers(cp.data, cp.size, &desc);
1123 	if (!desc.mc)
1124 		return -EINVAL;
1125 
1126 	ret = _load_microcode_amd(x86_family(cpuid_1_eax), desc.data, desc.size);
1127 	if (ret > UCODE_UPDATED)
1128 		return -EINVAL;
1129 
1130 	return 0;
1131 }
1132 early_initcall(save_microcode_in_initrd);
1133 
1134 /*
1135  * AMD microcode firmware naming convention, up to family 15h they are in
1136  * the legacy file:
1137  *
1138  *    amd-ucode/microcode_amd.bin
1139  *
1140  * This legacy file is always smaller than 2K in size.
1141  *
1142  * Beginning with family 15h, they are in family-specific firmware files:
1143  *
1144  *    amd-ucode/microcode_amd_fam15h.bin
1145  *    amd-ucode/microcode_amd_fam16h.bin
1146  *    ...
1147  *
1148  * These might be larger than 2K.
1149  */
request_microcode_amd(int cpu,struct device * device)1150 static enum ucode_state request_microcode_amd(int cpu, struct device *device)
1151 {
1152 	char fw_name[36] = "amd-ucode/microcode_amd.bin";
1153 	struct cpuinfo_x86 *c = &cpu_data(cpu);
1154 	enum ucode_state ret = UCODE_NFOUND;
1155 	const struct firmware *fw;
1156 
1157 	if (force_minrev)
1158 		return UCODE_NFOUND;
1159 
1160 	if (c->x86 >= 0x15)
1161 		snprintf(fw_name, sizeof(fw_name), "amd-ucode/microcode_amd_fam%.2xh.bin", c->x86);
1162 
1163 	if (request_firmware_direct(&fw, (const char *)fw_name, device)) {
1164 		pr_debug("failed to load file %s\n", fw_name);
1165 		goto out;
1166 	}
1167 
1168 	ret = UCODE_ERROR;
1169 	if (!verify_container(fw->data, fw->size))
1170 		goto fw_release;
1171 
1172 	ret = load_microcode_amd(c->x86, fw->data, fw->size);
1173 
1174  fw_release:
1175 	release_firmware(fw);
1176 
1177  out:
1178 	return ret;
1179 }
1180 
microcode_fini_cpu_amd(int cpu)1181 static void microcode_fini_cpu_amd(int cpu)
1182 {
1183 	struct ucode_cpu_info *uci = ucode_cpu_info + cpu;
1184 
1185 	uci->mc = NULL;
1186 }
1187 
1188 static struct microcode_ops microcode_amd_ops = {
1189 	.request_microcode_fw	= request_microcode_amd,
1190 	.collect_cpu_info	= collect_cpu_info_amd,
1191 	.apply_microcode	= apply_microcode_amd,
1192 	.microcode_fini_cpu	= microcode_fini_cpu_amd,
1193 	.nmi_safe		= true,
1194 };
1195 
init_amd_microcode(void)1196 struct microcode_ops * __init init_amd_microcode(void)
1197 {
1198 	struct cpuinfo_x86 *c = &boot_cpu_data;
1199 
1200 	if (c->x86_vendor != X86_VENDOR_AMD || c->x86 < 0x10) {
1201 		pr_warn("AMD CPU family 0x%x not supported\n", c->x86);
1202 		return NULL;
1203 	}
1204 	return &microcode_amd_ops;
1205 }
1206 
exit_amd_microcode(void)1207 void __exit exit_amd_microcode(void)
1208 {
1209 	cleanup();
1210 }
1211