1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * User interface for Resource Allocation in Resource Director Technology(RDT)
4 *
5 * Copyright (C) 2016 Intel Corporation
6 *
7 * Author: Fenghua Yu <fenghua.yu@intel.com>
8 *
9 * More information about RDT be found in the Intel (R) x86 Architecture
10 * Software Developer Manual.
11 */
12
13 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
14
15 #include <linux/cpu.h>
16 #include <linux/debugfs.h>
17 #include <linux/fs.h>
18 #include <linux/fs_parser.h>
19 #include <linux/sysfs.h>
20 #include <linux/kernfs.h>
21 #include <linux/seq_buf.h>
22 #include <linux/seq_file.h>
23 #include <linux/sched/signal.h>
24 #include <linux/sched/task.h>
25 #include <linux/slab.h>
26 #include <linux/task_work.h>
27 #include <linux/user_namespace.h>
28
29 #include <uapi/linux/magic.h>
30
31 #include <asm/resctrl.h>
32 #include "internal.h"
33
34 DEFINE_STATIC_KEY_FALSE(rdt_enable_key);
35 DEFINE_STATIC_KEY_FALSE(rdt_mon_enable_key);
36 DEFINE_STATIC_KEY_FALSE(rdt_alloc_enable_key);
37
38 /* Mutex to protect rdtgroup access. */
39 DEFINE_MUTEX(rdtgroup_mutex);
40
41 static struct kernfs_root *rdt_root;
42 struct rdtgroup rdtgroup_default;
43 LIST_HEAD(rdt_all_groups);
44
45 /* list of entries for the schemata file */
46 LIST_HEAD(resctrl_schema_all);
47
48 /* The filesystem can only be mounted once. */
49 bool resctrl_mounted;
50
51 /* Kernel fs node for "info" directory under root */
52 static struct kernfs_node *kn_info;
53
54 /* Kernel fs node for "mon_groups" directory under root */
55 static struct kernfs_node *kn_mongrp;
56
57 /* Kernel fs node for "mon_data" directory under root */
58 static struct kernfs_node *kn_mondata;
59
60 static struct seq_buf last_cmd_status;
61 static char last_cmd_status_buf[512];
62
63 static int rdtgroup_setup_root(struct rdt_fs_context *ctx);
64 static void rdtgroup_destroy_root(void);
65
66 struct dentry *debugfs_resctrl;
67
68 static bool resctrl_debug;
69
rdt_last_cmd_clear(void)70 void rdt_last_cmd_clear(void)
71 {
72 lockdep_assert_held(&rdtgroup_mutex);
73 seq_buf_clear(&last_cmd_status);
74 }
75
rdt_last_cmd_puts(const char * s)76 void rdt_last_cmd_puts(const char *s)
77 {
78 lockdep_assert_held(&rdtgroup_mutex);
79 seq_buf_puts(&last_cmd_status, s);
80 }
81
rdt_last_cmd_printf(const char * fmt,...)82 void rdt_last_cmd_printf(const char *fmt, ...)
83 {
84 va_list ap;
85
86 va_start(ap, fmt);
87 lockdep_assert_held(&rdtgroup_mutex);
88 seq_buf_vprintf(&last_cmd_status, fmt, ap);
89 va_end(ap);
90 }
91
rdt_staged_configs_clear(void)92 void rdt_staged_configs_clear(void)
93 {
94 struct rdt_ctrl_domain *dom;
95 struct rdt_resource *r;
96
97 lockdep_assert_held(&rdtgroup_mutex);
98
99 for_each_alloc_capable_rdt_resource(r) {
100 list_for_each_entry(dom, &r->ctrl_domains, hdr.list)
101 memset(dom->staged_config, 0, sizeof(dom->staged_config));
102 }
103 }
104
105 /*
106 * Trivial allocator for CLOSIDs. Since h/w only supports a small number,
107 * we can keep a bitmap of free CLOSIDs in a single integer.
108 *
109 * Using a global CLOSID across all resources has some advantages and
110 * some drawbacks:
111 * + We can simply set current's closid to assign a task to a resource
112 * group.
113 * + Context switch code can avoid extra memory references deciding which
114 * CLOSID to load into the PQR_ASSOC MSR
115 * - We give up some options in configuring resource groups across multi-socket
116 * systems.
117 * - Our choices on how to configure each resource become progressively more
118 * limited as the number of resources grows.
119 */
120 static unsigned long closid_free_map;
121 static int closid_free_map_len;
122
closids_supported(void)123 int closids_supported(void)
124 {
125 return closid_free_map_len;
126 }
127
closid_init(void)128 static void closid_init(void)
129 {
130 struct resctrl_schema *s;
131 u32 rdt_min_closid = 32;
132
133 /* Compute rdt_min_closid across all resources */
134 list_for_each_entry(s, &resctrl_schema_all, list)
135 rdt_min_closid = min(rdt_min_closid, s->num_closid);
136
137 closid_free_map = BIT_MASK(rdt_min_closid) - 1;
138
139 /* RESCTRL_RESERVED_CLOSID is always reserved for the default group */
140 __clear_bit(RESCTRL_RESERVED_CLOSID, &closid_free_map);
141 closid_free_map_len = rdt_min_closid;
142 }
143
closid_alloc(void)144 static int closid_alloc(void)
145 {
146 int cleanest_closid;
147 u32 closid;
148
149 lockdep_assert_held(&rdtgroup_mutex);
150
151 if (IS_ENABLED(CONFIG_RESCTRL_RMID_DEPENDS_ON_CLOSID) &&
152 is_llc_occupancy_enabled()) {
153 cleanest_closid = resctrl_find_cleanest_closid();
154 if (cleanest_closid < 0)
155 return cleanest_closid;
156 closid = cleanest_closid;
157 } else {
158 closid = ffs(closid_free_map);
159 if (closid == 0)
160 return -ENOSPC;
161 closid--;
162 }
163 __clear_bit(closid, &closid_free_map);
164
165 return closid;
166 }
167
closid_free(int closid)168 void closid_free(int closid)
169 {
170 lockdep_assert_held(&rdtgroup_mutex);
171
172 __set_bit(closid, &closid_free_map);
173 }
174
175 /**
176 * closid_allocated - test if provided closid is in use
177 * @closid: closid to be tested
178 *
179 * Return: true if @closid is currently associated with a resource group,
180 * false if @closid is free
181 */
closid_allocated(unsigned int closid)182 bool closid_allocated(unsigned int closid)
183 {
184 lockdep_assert_held(&rdtgroup_mutex);
185
186 return !test_bit(closid, &closid_free_map);
187 }
188
189 /**
190 * rdtgroup_mode_by_closid - Return mode of resource group with closid
191 * @closid: closid if the resource group
192 *
193 * Each resource group is associated with a @closid. Here the mode
194 * of a resource group can be queried by searching for it using its closid.
195 *
196 * Return: mode as &enum rdtgrp_mode of resource group with closid @closid
197 */
rdtgroup_mode_by_closid(int closid)198 enum rdtgrp_mode rdtgroup_mode_by_closid(int closid)
199 {
200 struct rdtgroup *rdtgrp;
201
202 list_for_each_entry(rdtgrp, &rdt_all_groups, rdtgroup_list) {
203 if (rdtgrp->closid == closid)
204 return rdtgrp->mode;
205 }
206
207 return RDT_NUM_MODES;
208 }
209
210 static const char * const rdt_mode_str[] = {
211 [RDT_MODE_SHAREABLE] = "shareable",
212 [RDT_MODE_EXCLUSIVE] = "exclusive",
213 [RDT_MODE_PSEUDO_LOCKSETUP] = "pseudo-locksetup",
214 [RDT_MODE_PSEUDO_LOCKED] = "pseudo-locked",
215 };
216
217 /**
218 * rdtgroup_mode_str - Return the string representation of mode
219 * @mode: the resource group mode as &enum rdtgroup_mode
220 *
221 * Return: string representation of valid mode, "unknown" otherwise
222 */
rdtgroup_mode_str(enum rdtgrp_mode mode)223 static const char *rdtgroup_mode_str(enum rdtgrp_mode mode)
224 {
225 if (mode < RDT_MODE_SHAREABLE || mode >= RDT_NUM_MODES)
226 return "unknown";
227
228 return rdt_mode_str[mode];
229 }
230
231 /* set uid and gid of rdtgroup dirs and files to that of the creator */
rdtgroup_kn_set_ugid(struct kernfs_node * kn)232 static int rdtgroup_kn_set_ugid(struct kernfs_node *kn)
233 {
234 struct iattr iattr = { .ia_valid = ATTR_UID | ATTR_GID,
235 .ia_uid = current_fsuid(),
236 .ia_gid = current_fsgid(), };
237
238 if (uid_eq(iattr.ia_uid, GLOBAL_ROOT_UID) &&
239 gid_eq(iattr.ia_gid, GLOBAL_ROOT_GID))
240 return 0;
241
242 return kernfs_setattr(kn, &iattr);
243 }
244
rdtgroup_add_file(struct kernfs_node * parent_kn,struct rftype * rft)245 static int rdtgroup_add_file(struct kernfs_node *parent_kn, struct rftype *rft)
246 {
247 struct kernfs_node *kn;
248 int ret;
249
250 kn = __kernfs_create_file(parent_kn, rft->name, rft->mode,
251 GLOBAL_ROOT_UID, GLOBAL_ROOT_GID,
252 0, rft->kf_ops, rft, NULL, NULL);
253 if (IS_ERR(kn))
254 return PTR_ERR(kn);
255
256 ret = rdtgroup_kn_set_ugid(kn);
257 if (ret) {
258 kernfs_remove(kn);
259 return ret;
260 }
261
262 return 0;
263 }
264
rdtgroup_seqfile_show(struct seq_file * m,void * arg)265 static int rdtgroup_seqfile_show(struct seq_file *m, void *arg)
266 {
267 struct kernfs_open_file *of = m->private;
268 struct rftype *rft = of->kn->priv;
269
270 if (rft->seq_show)
271 return rft->seq_show(of, m, arg);
272 return 0;
273 }
274
rdtgroup_file_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)275 static ssize_t rdtgroup_file_write(struct kernfs_open_file *of, char *buf,
276 size_t nbytes, loff_t off)
277 {
278 struct rftype *rft = of->kn->priv;
279
280 if (rft->write)
281 return rft->write(of, buf, nbytes, off);
282
283 return -EINVAL;
284 }
285
286 static const struct kernfs_ops rdtgroup_kf_single_ops = {
287 .atomic_write_len = PAGE_SIZE,
288 .write = rdtgroup_file_write,
289 .seq_show = rdtgroup_seqfile_show,
290 };
291
292 static const struct kernfs_ops kf_mondata_ops = {
293 .atomic_write_len = PAGE_SIZE,
294 .seq_show = rdtgroup_mondata_show,
295 };
296
is_cpu_list(struct kernfs_open_file * of)297 static bool is_cpu_list(struct kernfs_open_file *of)
298 {
299 struct rftype *rft = of->kn->priv;
300
301 return rft->flags & RFTYPE_FLAGS_CPUS_LIST;
302 }
303
rdtgroup_cpus_show(struct kernfs_open_file * of,struct seq_file * s,void * v)304 static int rdtgroup_cpus_show(struct kernfs_open_file *of,
305 struct seq_file *s, void *v)
306 {
307 struct rdtgroup *rdtgrp;
308 struct cpumask *mask;
309 int ret = 0;
310
311 rdtgrp = rdtgroup_kn_lock_live(of->kn);
312
313 if (rdtgrp) {
314 if (rdtgrp->mode == RDT_MODE_PSEUDO_LOCKED) {
315 if (!rdtgrp->plr->d) {
316 rdt_last_cmd_clear();
317 rdt_last_cmd_puts("Cache domain offline\n");
318 ret = -ENODEV;
319 } else {
320 mask = &rdtgrp->plr->d->hdr.cpu_mask;
321 seq_printf(s, is_cpu_list(of) ?
322 "%*pbl\n" : "%*pb\n",
323 cpumask_pr_args(mask));
324 }
325 } else {
326 seq_printf(s, is_cpu_list(of) ? "%*pbl\n" : "%*pb\n",
327 cpumask_pr_args(&rdtgrp->cpu_mask));
328 }
329 } else {
330 ret = -ENOENT;
331 }
332 rdtgroup_kn_unlock(of->kn);
333
334 return ret;
335 }
336
337 /*
338 * This is safe against resctrl_sched_in() called from __switch_to()
339 * because __switch_to() is executed with interrupts disabled. A local call
340 * from update_closid_rmid() is protected against __switch_to() because
341 * preemption is disabled.
342 */
update_cpu_closid_rmid(void * info)343 static void update_cpu_closid_rmid(void *info)
344 {
345 struct rdtgroup *r = info;
346
347 if (r) {
348 this_cpu_write(pqr_state.default_closid, r->closid);
349 this_cpu_write(pqr_state.default_rmid, r->mon.rmid);
350 }
351
352 /*
353 * We cannot unconditionally write the MSR because the current
354 * executing task might have its own closid selected. Just reuse
355 * the context switch code.
356 */
357 resctrl_sched_in(current);
358 }
359
360 /*
361 * Update the PGR_ASSOC MSR on all cpus in @cpu_mask,
362 *
363 * Per task closids/rmids must have been set up before calling this function.
364 */
365 static void
update_closid_rmid(const struct cpumask * cpu_mask,struct rdtgroup * r)366 update_closid_rmid(const struct cpumask *cpu_mask, struct rdtgroup *r)
367 {
368 on_each_cpu_mask(cpu_mask, update_cpu_closid_rmid, r, 1);
369 }
370
cpus_mon_write(struct rdtgroup * rdtgrp,cpumask_var_t newmask,cpumask_var_t tmpmask)371 static int cpus_mon_write(struct rdtgroup *rdtgrp, cpumask_var_t newmask,
372 cpumask_var_t tmpmask)
373 {
374 struct rdtgroup *prgrp = rdtgrp->mon.parent, *crgrp;
375 struct list_head *head;
376
377 /* Check whether cpus belong to parent ctrl group */
378 cpumask_andnot(tmpmask, newmask, &prgrp->cpu_mask);
379 if (!cpumask_empty(tmpmask)) {
380 rdt_last_cmd_puts("Can only add CPUs to mongroup that belong to parent\n");
381 return -EINVAL;
382 }
383
384 /* Check whether cpus are dropped from this group */
385 cpumask_andnot(tmpmask, &rdtgrp->cpu_mask, newmask);
386 if (!cpumask_empty(tmpmask)) {
387 /* Give any dropped cpus to parent rdtgroup */
388 cpumask_or(&prgrp->cpu_mask, &prgrp->cpu_mask, tmpmask);
389 update_closid_rmid(tmpmask, prgrp);
390 }
391
392 /*
393 * If we added cpus, remove them from previous group that owned them
394 * and update per-cpu rmid
395 */
396 cpumask_andnot(tmpmask, newmask, &rdtgrp->cpu_mask);
397 if (!cpumask_empty(tmpmask)) {
398 head = &prgrp->mon.crdtgrp_list;
399 list_for_each_entry(crgrp, head, mon.crdtgrp_list) {
400 if (crgrp == rdtgrp)
401 continue;
402 cpumask_andnot(&crgrp->cpu_mask, &crgrp->cpu_mask,
403 tmpmask);
404 }
405 update_closid_rmid(tmpmask, rdtgrp);
406 }
407
408 /* Done pushing/pulling - update this group with new mask */
409 cpumask_copy(&rdtgrp->cpu_mask, newmask);
410
411 return 0;
412 }
413
cpumask_rdtgrp_clear(struct rdtgroup * r,struct cpumask * m)414 static void cpumask_rdtgrp_clear(struct rdtgroup *r, struct cpumask *m)
415 {
416 struct rdtgroup *crgrp;
417
418 cpumask_andnot(&r->cpu_mask, &r->cpu_mask, m);
419 /* update the child mon group masks as well*/
420 list_for_each_entry(crgrp, &r->mon.crdtgrp_list, mon.crdtgrp_list)
421 cpumask_and(&crgrp->cpu_mask, &r->cpu_mask, &crgrp->cpu_mask);
422 }
423
cpus_ctrl_write(struct rdtgroup * rdtgrp,cpumask_var_t newmask,cpumask_var_t tmpmask,cpumask_var_t tmpmask1)424 static int cpus_ctrl_write(struct rdtgroup *rdtgrp, cpumask_var_t newmask,
425 cpumask_var_t tmpmask, cpumask_var_t tmpmask1)
426 {
427 struct rdtgroup *r, *crgrp;
428 struct list_head *head;
429
430 /* Check whether cpus are dropped from this group */
431 cpumask_andnot(tmpmask, &rdtgrp->cpu_mask, newmask);
432 if (!cpumask_empty(tmpmask)) {
433 /* Can't drop from default group */
434 if (rdtgrp == &rdtgroup_default) {
435 rdt_last_cmd_puts("Can't drop CPUs from default group\n");
436 return -EINVAL;
437 }
438
439 /* Give any dropped cpus to rdtgroup_default */
440 cpumask_or(&rdtgroup_default.cpu_mask,
441 &rdtgroup_default.cpu_mask, tmpmask);
442 update_closid_rmid(tmpmask, &rdtgroup_default);
443 }
444
445 /*
446 * If we added cpus, remove them from previous group and
447 * the prev group's child groups that owned them
448 * and update per-cpu closid/rmid.
449 */
450 cpumask_andnot(tmpmask, newmask, &rdtgrp->cpu_mask);
451 if (!cpumask_empty(tmpmask)) {
452 list_for_each_entry(r, &rdt_all_groups, rdtgroup_list) {
453 if (r == rdtgrp)
454 continue;
455 cpumask_and(tmpmask1, &r->cpu_mask, tmpmask);
456 if (!cpumask_empty(tmpmask1))
457 cpumask_rdtgrp_clear(r, tmpmask1);
458 }
459 update_closid_rmid(tmpmask, rdtgrp);
460 }
461
462 /* Done pushing/pulling - update this group with new mask */
463 cpumask_copy(&rdtgrp->cpu_mask, newmask);
464
465 /*
466 * Clear child mon group masks since there is a new parent mask
467 * now and update the rmid for the cpus the child lost.
468 */
469 head = &rdtgrp->mon.crdtgrp_list;
470 list_for_each_entry(crgrp, head, mon.crdtgrp_list) {
471 cpumask_and(tmpmask, &rdtgrp->cpu_mask, &crgrp->cpu_mask);
472 update_closid_rmid(tmpmask, rdtgrp);
473 cpumask_clear(&crgrp->cpu_mask);
474 }
475
476 return 0;
477 }
478
rdtgroup_cpus_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)479 static ssize_t rdtgroup_cpus_write(struct kernfs_open_file *of,
480 char *buf, size_t nbytes, loff_t off)
481 {
482 cpumask_var_t tmpmask, newmask, tmpmask1;
483 struct rdtgroup *rdtgrp;
484 int ret;
485
486 if (!buf)
487 return -EINVAL;
488
489 if (!zalloc_cpumask_var(&tmpmask, GFP_KERNEL))
490 return -ENOMEM;
491 if (!zalloc_cpumask_var(&newmask, GFP_KERNEL)) {
492 free_cpumask_var(tmpmask);
493 return -ENOMEM;
494 }
495 if (!zalloc_cpumask_var(&tmpmask1, GFP_KERNEL)) {
496 free_cpumask_var(tmpmask);
497 free_cpumask_var(newmask);
498 return -ENOMEM;
499 }
500
501 rdtgrp = rdtgroup_kn_lock_live(of->kn);
502 if (!rdtgrp) {
503 ret = -ENOENT;
504 goto unlock;
505 }
506
507 if (rdtgrp->mode == RDT_MODE_PSEUDO_LOCKED ||
508 rdtgrp->mode == RDT_MODE_PSEUDO_LOCKSETUP) {
509 ret = -EINVAL;
510 rdt_last_cmd_puts("Pseudo-locking in progress\n");
511 goto unlock;
512 }
513
514 if (is_cpu_list(of))
515 ret = cpulist_parse(buf, newmask);
516 else
517 ret = cpumask_parse(buf, newmask);
518
519 if (ret) {
520 rdt_last_cmd_puts("Bad CPU list/mask\n");
521 goto unlock;
522 }
523
524 /* check that user didn't specify any offline cpus */
525 cpumask_andnot(tmpmask, newmask, cpu_online_mask);
526 if (!cpumask_empty(tmpmask)) {
527 ret = -EINVAL;
528 rdt_last_cmd_puts("Can only assign online CPUs\n");
529 goto unlock;
530 }
531
532 if (rdtgrp->type == RDTCTRL_GROUP)
533 ret = cpus_ctrl_write(rdtgrp, newmask, tmpmask, tmpmask1);
534 else if (rdtgrp->type == RDTMON_GROUP)
535 ret = cpus_mon_write(rdtgrp, newmask, tmpmask);
536 else
537 ret = -EINVAL;
538
539 unlock:
540 rdtgroup_kn_unlock(of->kn);
541 free_cpumask_var(tmpmask);
542 free_cpumask_var(newmask);
543 free_cpumask_var(tmpmask1);
544
545 return ret ?: nbytes;
546 }
547
548 /**
549 * rdtgroup_remove - the helper to remove resource group safely
550 * @rdtgrp: resource group to remove
551 *
552 * On resource group creation via a mkdir, an extra kernfs_node reference is
553 * taken to ensure that the rdtgroup structure remains accessible for the
554 * rdtgroup_kn_unlock() calls where it is removed.
555 *
556 * Drop the extra reference here, then free the rdtgroup structure.
557 *
558 * Return: void
559 */
rdtgroup_remove(struct rdtgroup * rdtgrp)560 static void rdtgroup_remove(struct rdtgroup *rdtgrp)
561 {
562 kernfs_put(rdtgrp->kn);
563 kfree(rdtgrp);
564 }
565
_update_task_closid_rmid(void * task)566 static void _update_task_closid_rmid(void *task)
567 {
568 /*
569 * If the task is still current on this CPU, update PQR_ASSOC MSR.
570 * Otherwise, the MSR is updated when the task is scheduled in.
571 */
572 if (task == current)
573 resctrl_sched_in(task);
574 }
575
update_task_closid_rmid(struct task_struct * t)576 static void update_task_closid_rmid(struct task_struct *t)
577 {
578 if (IS_ENABLED(CONFIG_SMP) && task_curr(t))
579 smp_call_function_single(task_cpu(t), _update_task_closid_rmid, t, 1);
580 else
581 _update_task_closid_rmid(t);
582 }
583
task_in_rdtgroup(struct task_struct * tsk,struct rdtgroup * rdtgrp)584 static bool task_in_rdtgroup(struct task_struct *tsk, struct rdtgroup *rdtgrp)
585 {
586 u32 closid, rmid = rdtgrp->mon.rmid;
587
588 if (rdtgrp->type == RDTCTRL_GROUP)
589 closid = rdtgrp->closid;
590 else if (rdtgrp->type == RDTMON_GROUP)
591 closid = rdtgrp->mon.parent->closid;
592 else
593 return false;
594
595 return resctrl_arch_match_closid(tsk, closid) &&
596 resctrl_arch_match_rmid(tsk, closid, rmid);
597 }
598
__rdtgroup_move_task(struct task_struct * tsk,struct rdtgroup * rdtgrp)599 static int __rdtgroup_move_task(struct task_struct *tsk,
600 struct rdtgroup *rdtgrp)
601 {
602 /* If the task is already in rdtgrp, no need to move the task. */
603 if (task_in_rdtgroup(tsk, rdtgrp))
604 return 0;
605
606 /*
607 * Set the task's closid/rmid before the PQR_ASSOC MSR can be
608 * updated by them.
609 *
610 * For ctrl_mon groups, move both closid and rmid.
611 * For monitor groups, can move the tasks only from
612 * their parent CTRL group.
613 */
614 if (rdtgrp->type == RDTMON_GROUP &&
615 !resctrl_arch_match_closid(tsk, rdtgrp->mon.parent->closid)) {
616 rdt_last_cmd_puts("Can't move task to different control group\n");
617 return -EINVAL;
618 }
619
620 if (rdtgrp->type == RDTMON_GROUP)
621 resctrl_arch_set_closid_rmid(tsk, rdtgrp->mon.parent->closid,
622 rdtgrp->mon.rmid);
623 else
624 resctrl_arch_set_closid_rmid(tsk, rdtgrp->closid,
625 rdtgrp->mon.rmid);
626
627 /*
628 * Ensure the task's closid and rmid are written before determining if
629 * the task is current that will decide if it will be interrupted.
630 * This pairs with the full barrier between the rq->curr update and
631 * resctrl_sched_in() during context switch.
632 */
633 smp_mb();
634
635 /*
636 * By now, the task's closid and rmid are set. If the task is current
637 * on a CPU, the PQR_ASSOC MSR needs to be updated to make the resource
638 * group go into effect. If the task is not current, the MSR will be
639 * updated when the task is scheduled in.
640 */
641 update_task_closid_rmid(tsk);
642
643 return 0;
644 }
645
is_closid_match(struct task_struct * t,struct rdtgroup * r)646 static bool is_closid_match(struct task_struct *t, struct rdtgroup *r)
647 {
648 return (resctrl_arch_alloc_capable() && (r->type == RDTCTRL_GROUP) &&
649 resctrl_arch_match_closid(t, r->closid));
650 }
651
is_rmid_match(struct task_struct * t,struct rdtgroup * r)652 static bool is_rmid_match(struct task_struct *t, struct rdtgroup *r)
653 {
654 return (resctrl_arch_mon_capable() && (r->type == RDTMON_GROUP) &&
655 resctrl_arch_match_rmid(t, r->mon.parent->closid,
656 r->mon.rmid));
657 }
658
659 /**
660 * rdtgroup_tasks_assigned - Test if tasks have been assigned to resource group
661 * @r: Resource group
662 *
663 * Return: 1 if tasks have been assigned to @r, 0 otherwise
664 */
rdtgroup_tasks_assigned(struct rdtgroup * r)665 int rdtgroup_tasks_assigned(struct rdtgroup *r)
666 {
667 struct task_struct *p, *t;
668 int ret = 0;
669
670 lockdep_assert_held(&rdtgroup_mutex);
671
672 rcu_read_lock();
673 for_each_process_thread(p, t) {
674 if (is_closid_match(t, r) || is_rmid_match(t, r)) {
675 ret = 1;
676 break;
677 }
678 }
679 rcu_read_unlock();
680
681 return ret;
682 }
683
rdtgroup_task_write_permission(struct task_struct * task,struct kernfs_open_file * of)684 static int rdtgroup_task_write_permission(struct task_struct *task,
685 struct kernfs_open_file *of)
686 {
687 const struct cred *tcred = get_task_cred(task);
688 const struct cred *cred = current_cred();
689 int ret = 0;
690
691 /*
692 * Even if we're attaching all tasks in the thread group, we only
693 * need to check permissions on one of them.
694 */
695 if (!uid_eq(cred->euid, GLOBAL_ROOT_UID) &&
696 !uid_eq(cred->euid, tcred->uid) &&
697 !uid_eq(cred->euid, tcred->suid)) {
698 rdt_last_cmd_printf("No permission to move task %d\n", task->pid);
699 ret = -EPERM;
700 }
701
702 put_cred(tcred);
703 return ret;
704 }
705
rdtgroup_move_task(pid_t pid,struct rdtgroup * rdtgrp,struct kernfs_open_file * of)706 static int rdtgroup_move_task(pid_t pid, struct rdtgroup *rdtgrp,
707 struct kernfs_open_file *of)
708 {
709 struct task_struct *tsk;
710 int ret;
711
712 rcu_read_lock();
713 if (pid) {
714 tsk = find_task_by_vpid(pid);
715 if (!tsk) {
716 rcu_read_unlock();
717 rdt_last_cmd_printf("No task %d\n", pid);
718 return -ESRCH;
719 }
720 } else {
721 tsk = current;
722 }
723
724 get_task_struct(tsk);
725 rcu_read_unlock();
726
727 ret = rdtgroup_task_write_permission(tsk, of);
728 if (!ret)
729 ret = __rdtgroup_move_task(tsk, rdtgrp);
730
731 put_task_struct(tsk);
732 return ret;
733 }
734
rdtgroup_tasks_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)735 static ssize_t rdtgroup_tasks_write(struct kernfs_open_file *of,
736 char *buf, size_t nbytes, loff_t off)
737 {
738 struct rdtgroup *rdtgrp;
739 char *pid_str;
740 int ret = 0;
741 pid_t pid;
742
743 rdtgrp = rdtgroup_kn_lock_live(of->kn);
744 if (!rdtgrp) {
745 rdtgroup_kn_unlock(of->kn);
746 return -ENOENT;
747 }
748 rdt_last_cmd_clear();
749
750 if (rdtgrp->mode == RDT_MODE_PSEUDO_LOCKED ||
751 rdtgrp->mode == RDT_MODE_PSEUDO_LOCKSETUP) {
752 ret = -EINVAL;
753 rdt_last_cmd_puts("Pseudo-locking in progress\n");
754 goto unlock;
755 }
756
757 while (buf && buf[0] != '\0' && buf[0] != '\n') {
758 pid_str = strim(strsep(&buf, ","));
759
760 if (kstrtoint(pid_str, 0, &pid)) {
761 rdt_last_cmd_printf("Task list parsing error pid %s\n", pid_str);
762 ret = -EINVAL;
763 break;
764 }
765
766 if (pid < 0) {
767 rdt_last_cmd_printf("Invalid pid %d\n", pid);
768 ret = -EINVAL;
769 break;
770 }
771
772 ret = rdtgroup_move_task(pid, rdtgrp, of);
773 if (ret) {
774 rdt_last_cmd_printf("Error while processing task %d\n", pid);
775 break;
776 }
777 }
778
779 unlock:
780 rdtgroup_kn_unlock(of->kn);
781
782 return ret ?: nbytes;
783 }
784
show_rdt_tasks(struct rdtgroup * r,struct seq_file * s)785 static void show_rdt_tasks(struct rdtgroup *r, struct seq_file *s)
786 {
787 struct task_struct *p, *t;
788 pid_t pid;
789
790 rcu_read_lock();
791 for_each_process_thread(p, t) {
792 if (is_closid_match(t, r) || is_rmid_match(t, r)) {
793 pid = task_pid_vnr(t);
794 if (pid)
795 seq_printf(s, "%d\n", pid);
796 }
797 }
798 rcu_read_unlock();
799 }
800
rdtgroup_tasks_show(struct kernfs_open_file * of,struct seq_file * s,void * v)801 static int rdtgroup_tasks_show(struct kernfs_open_file *of,
802 struct seq_file *s, void *v)
803 {
804 struct rdtgroup *rdtgrp;
805 int ret = 0;
806
807 rdtgrp = rdtgroup_kn_lock_live(of->kn);
808 if (rdtgrp)
809 show_rdt_tasks(rdtgrp, s);
810 else
811 ret = -ENOENT;
812 rdtgroup_kn_unlock(of->kn);
813
814 return ret;
815 }
816
rdtgroup_closid_show(struct kernfs_open_file * of,struct seq_file * s,void * v)817 static int rdtgroup_closid_show(struct kernfs_open_file *of,
818 struct seq_file *s, void *v)
819 {
820 struct rdtgroup *rdtgrp;
821 int ret = 0;
822
823 rdtgrp = rdtgroup_kn_lock_live(of->kn);
824 if (rdtgrp)
825 seq_printf(s, "%u\n", rdtgrp->closid);
826 else
827 ret = -ENOENT;
828 rdtgroup_kn_unlock(of->kn);
829
830 return ret;
831 }
832
rdtgroup_rmid_show(struct kernfs_open_file * of,struct seq_file * s,void * v)833 static int rdtgroup_rmid_show(struct kernfs_open_file *of,
834 struct seq_file *s, void *v)
835 {
836 struct rdtgroup *rdtgrp;
837 int ret = 0;
838
839 rdtgrp = rdtgroup_kn_lock_live(of->kn);
840 if (rdtgrp)
841 seq_printf(s, "%u\n", rdtgrp->mon.rmid);
842 else
843 ret = -ENOENT;
844 rdtgroup_kn_unlock(of->kn);
845
846 return ret;
847 }
848
849 #ifdef CONFIG_PROC_CPU_RESCTRL
850
851 /*
852 * A task can only be part of one resctrl control group and of one monitor
853 * group which is associated to that control group.
854 *
855 * 1) res:
856 * mon:
857 *
858 * resctrl is not available.
859 *
860 * 2) res:/
861 * mon:
862 *
863 * Task is part of the root resctrl control group, and it is not associated
864 * to any monitor group.
865 *
866 * 3) res:/
867 * mon:mon0
868 *
869 * Task is part of the root resctrl control group and monitor group mon0.
870 *
871 * 4) res:group0
872 * mon:
873 *
874 * Task is part of resctrl control group group0, and it is not associated
875 * to any monitor group.
876 *
877 * 5) res:group0
878 * mon:mon1
879 *
880 * Task is part of resctrl control group group0 and monitor group mon1.
881 */
proc_resctrl_show(struct seq_file * s,struct pid_namespace * ns,struct pid * pid,struct task_struct * tsk)882 int proc_resctrl_show(struct seq_file *s, struct pid_namespace *ns,
883 struct pid *pid, struct task_struct *tsk)
884 {
885 struct rdtgroup *rdtg;
886 int ret = 0;
887
888 mutex_lock(&rdtgroup_mutex);
889
890 /* Return empty if resctrl has not been mounted. */
891 if (!resctrl_mounted) {
892 seq_puts(s, "res:\nmon:\n");
893 goto unlock;
894 }
895
896 list_for_each_entry(rdtg, &rdt_all_groups, rdtgroup_list) {
897 struct rdtgroup *crg;
898
899 /*
900 * Task information is only relevant for shareable
901 * and exclusive groups.
902 */
903 if (rdtg->mode != RDT_MODE_SHAREABLE &&
904 rdtg->mode != RDT_MODE_EXCLUSIVE)
905 continue;
906
907 if (!resctrl_arch_match_closid(tsk, rdtg->closid))
908 continue;
909
910 seq_printf(s, "res:%s%s\n", (rdtg == &rdtgroup_default) ? "/" : "",
911 rdtg->kn->name);
912 seq_puts(s, "mon:");
913 list_for_each_entry(crg, &rdtg->mon.crdtgrp_list,
914 mon.crdtgrp_list) {
915 if (!resctrl_arch_match_rmid(tsk, crg->mon.parent->closid,
916 crg->mon.rmid))
917 continue;
918 seq_printf(s, "%s", crg->kn->name);
919 break;
920 }
921 seq_putc(s, '\n');
922 goto unlock;
923 }
924 /*
925 * The above search should succeed. Otherwise return
926 * with an error.
927 */
928 ret = -ENOENT;
929 unlock:
930 mutex_unlock(&rdtgroup_mutex);
931
932 return ret;
933 }
934 #endif
935
rdt_last_cmd_status_show(struct kernfs_open_file * of,struct seq_file * seq,void * v)936 static int rdt_last_cmd_status_show(struct kernfs_open_file *of,
937 struct seq_file *seq, void *v)
938 {
939 int len;
940
941 mutex_lock(&rdtgroup_mutex);
942 len = seq_buf_used(&last_cmd_status);
943 if (len)
944 seq_printf(seq, "%.*s", len, last_cmd_status_buf);
945 else
946 seq_puts(seq, "ok\n");
947 mutex_unlock(&rdtgroup_mutex);
948 return 0;
949 }
950
rdt_num_closids_show(struct kernfs_open_file * of,struct seq_file * seq,void * v)951 static int rdt_num_closids_show(struct kernfs_open_file *of,
952 struct seq_file *seq, void *v)
953 {
954 struct resctrl_schema *s = of->kn->parent->priv;
955
956 seq_printf(seq, "%u\n", s->num_closid);
957 return 0;
958 }
959
rdt_default_ctrl_show(struct kernfs_open_file * of,struct seq_file * seq,void * v)960 static int rdt_default_ctrl_show(struct kernfs_open_file *of,
961 struct seq_file *seq, void *v)
962 {
963 struct resctrl_schema *s = of->kn->parent->priv;
964 struct rdt_resource *r = s->res;
965
966 seq_printf(seq, "%x\n", r->default_ctrl);
967 return 0;
968 }
969
rdt_min_cbm_bits_show(struct kernfs_open_file * of,struct seq_file * seq,void * v)970 static int rdt_min_cbm_bits_show(struct kernfs_open_file *of,
971 struct seq_file *seq, void *v)
972 {
973 struct resctrl_schema *s = of->kn->parent->priv;
974 struct rdt_resource *r = s->res;
975
976 seq_printf(seq, "%u\n", r->cache.min_cbm_bits);
977 return 0;
978 }
979
rdt_shareable_bits_show(struct kernfs_open_file * of,struct seq_file * seq,void * v)980 static int rdt_shareable_bits_show(struct kernfs_open_file *of,
981 struct seq_file *seq, void *v)
982 {
983 struct resctrl_schema *s = of->kn->parent->priv;
984 struct rdt_resource *r = s->res;
985
986 seq_printf(seq, "%x\n", r->cache.shareable_bits);
987 return 0;
988 }
989
990 /*
991 * rdt_bit_usage_show - Display current usage of resources
992 *
993 * A domain is a shared resource that can now be allocated differently. Here
994 * we display the current regions of the domain as an annotated bitmask.
995 * For each domain of this resource its allocation bitmask
996 * is annotated as below to indicate the current usage of the corresponding bit:
997 * 0 - currently unused
998 * X - currently available for sharing and used by software and hardware
999 * H - currently used by hardware only but available for software use
1000 * S - currently used and shareable by software only
1001 * E - currently used exclusively by one resource group
1002 * P - currently pseudo-locked by one resource group
1003 */
rdt_bit_usage_show(struct kernfs_open_file * of,struct seq_file * seq,void * v)1004 static int rdt_bit_usage_show(struct kernfs_open_file *of,
1005 struct seq_file *seq, void *v)
1006 {
1007 struct resctrl_schema *s = of->kn->parent->priv;
1008 /*
1009 * Use unsigned long even though only 32 bits are used to ensure
1010 * test_bit() is used safely.
1011 */
1012 unsigned long sw_shareable = 0, hw_shareable = 0;
1013 unsigned long exclusive = 0, pseudo_locked = 0;
1014 struct rdt_resource *r = s->res;
1015 struct rdt_ctrl_domain *dom;
1016 int i, hwb, swb, excl, psl;
1017 enum rdtgrp_mode mode;
1018 bool sep = false;
1019 u32 ctrl_val;
1020
1021 cpus_read_lock();
1022 mutex_lock(&rdtgroup_mutex);
1023 hw_shareable = r->cache.shareable_bits;
1024 list_for_each_entry(dom, &r->ctrl_domains, hdr.list) {
1025 if (sep)
1026 seq_putc(seq, ';');
1027 sw_shareable = 0;
1028 exclusive = 0;
1029 seq_printf(seq, "%d=", dom->hdr.id);
1030 for (i = 0; i < closids_supported(); i++) {
1031 if (!closid_allocated(i))
1032 continue;
1033 ctrl_val = resctrl_arch_get_config(r, dom, i,
1034 s->conf_type);
1035 mode = rdtgroup_mode_by_closid(i);
1036 switch (mode) {
1037 case RDT_MODE_SHAREABLE:
1038 sw_shareable |= ctrl_val;
1039 break;
1040 case RDT_MODE_EXCLUSIVE:
1041 exclusive |= ctrl_val;
1042 break;
1043 case RDT_MODE_PSEUDO_LOCKSETUP:
1044 /*
1045 * RDT_MODE_PSEUDO_LOCKSETUP is possible
1046 * here but not included since the CBM
1047 * associated with this CLOSID in this mode
1048 * is not initialized and no task or cpu can be
1049 * assigned this CLOSID.
1050 */
1051 break;
1052 case RDT_MODE_PSEUDO_LOCKED:
1053 case RDT_NUM_MODES:
1054 WARN(1,
1055 "invalid mode for closid %d\n", i);
1056 break;
1057 }
1058 }
1059 for (i = r->cache.cbm_len - 1; i >= 0; i--) {
1060 pseudo_locked = dom->plr ? dom->plr->cbm : 0;
1061 hwb = test_bit(i, &hw_shareable);
1062 swb = test_bit(i, &sw_shareable);
1063 excl = test_bit(i, &exclusive);
1064 psl = test_bit(i, &pseudo_locked);
1065 if (hwb && swb)
1066 seq_putc(seq, 'X');
1067 else if (hwb && !swb)
1068 seq_putc(seq, 'H');
1069 else if (!hwb && swb)
1070 seq_putc(seq, 'S');
1071 else if (excl)
1072 seq_putc(seq, 'E');
1073 else if (psl)
1074 seq_putc(seq, 'P');
1075 else /* Unused bits remain */
1076 seq_putc(seq, '0');
1077 }
1078 sep = true;
1079 }
1080 seq_putc(seq, '\n');
1081 mutex_unlock(&rdtgroup_mutex);
1082 cpus_read_unlock();
1083 return 0;
1084 }
1085
rdt_min_bw_show(struct kernfs_open_file * of,struct seq_file * seq,void * v)1086 static int rdt_min_bw_show(struct kernfs_open_file *of,
1087 struct seq_file *seq, void *v)
1088 {
1089 struct resctrl_schema *s = of->kn->parent->priv;
1090 struct rdt_resource *r = s->res;
1091
1092 seq_printf(seq, "%u\n", r->membw.min_bw);
1093 return 0;
1094 }
1095
rdt_num_rmids_show(struct kernfs_open_file * of,struct seq_file * seq,void * v)1096 static int rdt_num_rmids_show(struct kernfs_open_file *of,
1097 struct seq_file *seq, void *v)
1098 {
1099 struct rdt_resource *r = of->kn->parent->priv;
1100
1101 seq_printf(seq, "%d\n", r->num_rmid);
1102
1103 return 0;
1104 }
1105
rdt_mon_features_show(struct kernfs_open_file * of,struct seq_file * seq,void * v)1106 static int rdt_mon_features_show(struct kernfs_open_file *of,
1107 struct seq_file *seq, void *v)
1108 {
1109 struct rdt_resource *r = of->kn->parent->priv;
1110 struct mon_evt *mevt;
1111
1112 list_for_each_entry(mevt, &r->evt_list, list) {
1113 seq_printf(seq, "%s\n", mevt->name);
1114 if (mevt->configurable)
1115 seq_printf(seq, "%s_config\n", mevt->name);
1116 }
1117
1118 return 0;
1119 }
1120
rdt_bw_gran_show(struct kernfs_open_file * of,struct seq_file * seq,void * v)1121 static int rdt_bw_gran_show(struct kernfs_open_file *of,
1122 struct seq_file *seq, void *v)
1123 {
1124 struct resctrl_schema *s = of->kn->parent->priv;
1125 struct rdt_resource *r = s->res;
1126
1127 seq_printf(seq, "%u\n", r->membw.bw_gran);
1128 return 0;
1129 }
1130
rdt_delay_linear_show(struct kernfs_open_file * of,struct seq_file * seq,void * v)1131 static int rdt_delay_linear_show(struct kernfs_open_file *of,
1132 struct seq_file *seq, void *v)
1133 {
1134 struct resctrl_schema *s = of->kn->parent->priv;
1135 struct rdt_resource *r = s->res;
1136
1137 seq_printf(seq, "%u\n", r->membw.delay_linear);
1138 return 0;
1139 }
1140
max_threshold_occ_show(struct kernfs_open_file * of,struct seq_file * seq,void * v)1141 static int max_threshold_occ_show(struct kernfs_open_file *of,
1142 struct seq_file *seq, void *v)
1143 {
1144 seq_printf(seq, "%u\n", resctrl_rmid_realloc_threshold);
1145
1146 return 0;
1147 }
1148
rdt_thread_throttle_mode_show(struct kernfs_open_file * of,struct seq_file * seq,void * v)1149 static int rdt_thread_throttle_mode_show(struct kernfs_open_file *of,
1150 struct seq_file *seq, void *v)
1151 {
1152 struct resctrl_schema *s = of->kn->parent->priv;
1153 struct rdt_resource *r = s->res;
1154
1155 if (r->membw.throttle_mode == THREAD_THROTTLE_PER_THREAD)
1156 seq_puts(seq, "per-thread\n");
1157 else
1158 seq_puts(seq, "max\n");
1159
1160 return 0;
1161 }
1162
max_threshold_occ_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)1163 static ssize_t max_threshold_occ_write(struct kernfs_open_file *of,
1164 char *buf, size_t nbytes, loff_t off)
1165 {
1166 unsigned int bytes;
1167 int ret;
1168
1169 ret = kstrtouint(buf, 0, &bytes);
1170 if (ret)
1171 return ret;
1172
1173 if (bytes > resctrl_rmid_realloc_limit)
1174 return -EINVAL;
1175
1176 resctrl_rmid_realloc_threshold = resctrl_arch_round_mon_val(bytes);
1177
1178 return nbytes;
1179 }
1180
1181 /*
1182 * rdtgroup_mode_show - Display mode of this resource group
1183 */
rdtgroup_mode_show(struct kernfs_open_file * of,struct seq_file * s,void * v)1184 static int rdtgroup_mode_show(struct kernfs_open_file *of,
1185 struct seq_file *s, void *v)
1186 {
1187 struct rdtgroup *rdtgrp;
1188
1189 rdtgrp = rdtgroup_kn_lock_live(of->kn);
1190 if (!rdtgrp) {
1191 rdtgroup_kn_unlock(of->kn);
1192 return -ENOENT;
1193 }
1194
1195 seq_printf(s, "%s\n", rdtgroup_mode_str(rdtgrp->mode));
1196
1197 rdtgroup_kn_unlock(of->kn);
1198 return 0;
1199 }
1200
resctrl_peer_type(enum resctrl_conf_type my_type)1201 static enum resctrl_conf_type resctrl_peer_type(enum resctrl_conf_type my_type)
1202 {
1203 switch (my_type) {
1204 case CDP_CODE:
1205 return CDP_DATA;
1206 case CDP_DATA:
1207 return CDP_CODE;
1208 default:
1209 case CDP_NONE:
1210 return CDP_NONE;
1211 }
1212 }
1213
rdt_has_sparse_bitmasks_show(struct kernfs_open_file * of,struct seq_file * seq,void * v)1214 static int rdt_has_sparse_bitmasks_show(struct kernfs_open_file *of,
1215 struct seq_file *seq, void *v)
1216 {
1217 struct resctrl_schema *s = of->kn->parent->priv;
1218 struct rdt_resource *r = s->res;
1219
1220 seq_printf(seq, "%u\n", r->cache.arch_has_sparse_bitmasks);
1221
1222 return 0;
1223 }
1224
1225 /**
1226 * __rdtgroup_cbm_overlaps - Does CBM for intended closid overlap with other
1227 * @r: Resource to which domain instance @d belongs.
1228 * @d: The domain instance for which @closid is being tested.
1229 * @cbm: Capacity bitmask being tested.
1230 * @closid: Intended closid for @cbm.
1231 * @type: CDP type of @r.
1232 * @exclusive: Only check if overlaps with exclusive resource groups
1233 *
1234 * Checks if provided @cbm intended to be used for @closid on domain
1235 * @d overlaps with any other closids or other hardware usage associated
1236 * with this domain. If @exclusive is true then only overlaps with
1237 * resource groups in exclusive mode will be considered. If @exclusive
1238 * is false then overlaps with any resource group or hardware entities
1239 * will be considered.
1240 *
1241 * @cbm is unsigned long, even if only 32 bits are used, to make the
1242 * bitmap functions work correctly.
1243 *
1244 * Return: false if CBM does not overlap, true if it does.
1245 */
__rdtgroup_cbm_overlaps(struct rdt_resource * r,struct rdt_ctrl_domain * d,unsigned long cbm,int closid,enum resctrl_conf_type type,bool exclusive)1246 static bool __rdtgroup_cbm_overlaps(struct rdt_resource *r, struct rdt_ctrl_domain *d,
1247 unsigned long cbm, int closid,
1248 enum resctrl_conf_type type, bool exclusive)
1249 {
1250 enum rdtgrp_mode mode;
1251 unsigned long ctrl_b;
1252 int i;
1253
1254 /* Check for any overlap with regions used by hardware directly */
1255 if (!exclusive) {
1256 ctrl_b = r->cache.shareable_bits;
1257 if (bitmap_intersects(&cbm, &ctrl_b, r->cache.cbm_len))
1258 return true;
1259 }
1260
1261 /* Check for overlap with other resource groups */
1262 for (i = 0; i < closids_supported(); i++) {
1263 ctrl_b = resctrl_arch_get_config(r, d, i, type);
1264 mode = rdtgroup_mode_by_closid(i);
1265 if (closid_allocated(i) && i != closid &&
1266 mode != RDT_MODE_PSEUDO_LOCKSETUP) {
1267 if (bitmap_intersects(&cbm, &ctrl_b, r->cache.cbm_len)) {
1268 if (exclusive) {
1269 if (mode == RDT_MODE_EXCLUSIVE)
1270 return true;
1271 continue;
1272 }
1273 return true;
1274 }
1275 }
1276 }
1277
1278 return false;
1279 }
1280
1281 /**
1282 * rdtgroup_cbm_overlaps - Does CBM overlap with other use of hardware
1283 * @s: Schema for the resource to which domain instance @d belongs.
1284 * @d: The domain instance for which @closid is being tested.
1285 * @cbm: Capacity bitmask being tested.
1286 * @closid: Intended closid for @cbm.
1287 * @exclusive: Only check if overlaps with exclusive resource groups
1288 *
1289 * Resources that can be allocated using a CBM can use the CBM to control
1290 * the overlap of these allocations. rdtgroup_cmb_overlaps() is the test
1291 * for overlap. Overlap test is not limited to the specific resource for
1292 * which the CBM is intended though - when dealing with CDP resources that
1293 * share the underlying hardware the overlap check should be performed on
1294 * the CDP resource sharing the hardware also.
1295 *
1296 * Refer to description of __rdtgroup_cbm_overlaps() for the details of the
1297 * overlap test.
1298 *
1299 * Return: true if CBM overlap detected, false if there is no overlap
1300 */
rdtgroup_cbm_overlaps(struct resctrl_schema * s,struct rdt_ctrl_domain * d,unsigned long cbm,int closid,bool exclusive)1301 bool rdtgroup_cbm_overlaps(struct resctrl_schema *s, struct rdt_ctrl_domain *d,
1302 unsigned long cbm, int closid, bool exclusive)
1303 {
1304 enum resctrl_conf_type peer_type = resctrl_peer_type(s->conf_type);
1305 struct rdt_resource *r = s->res;
1306
1307 if (__rdtgroup_cbm_overlaps(r, d, cbm, closid, s->conf_type,
1308 exclusive))
1309 return true;
1310
1311 if (!resctrl_arch_get_cdp_enabled(r->rid))
1312 return false;
1313 return __rdtgroup_cbm_overlaps(r, d, cbm, closid, peer_type, exclusive);
1314 }
1315
1316 /**
1317 * rdtgroup_mode_test_exclusive - Test if this resource group can be exclusive
1318 * @rdtgrp: Resource group identified through its closid.
1319 *
1320 * An exclusive resource group implies that there should be no sharing of
1321 * its allocated resources. At the time this group is considered to be
1322 * exclusive this test can determine if its current schemata supports this
1323 * setting by testing for overlap with all other resource groups.
1324 *
1325 * Return: true if resource group can be exclusive, false if there is overlap
1326 * with allocations of other resource groups and thus this resource group
1327 * cannot be exclusive.
1328 */
rdtgroup_mode_test_exclusive(struct rdtgroup * rdtgrp)1329 static bool rdtgroup_mode_test_exclusive(struct rdtgroup *rdtgrp)
1330 {
1331 int closid = rdtgrp->closid;
1332 struct rdt_ctrl_domain *d;
1333 struct resctrl_schema *s;
1334 struct rdt_resource *r;
1335 bool has_cache = false;
1336 u32 ctrl;
1337
1338 /* Walking r->domains, ensure it can't race with cpuhp */
1339 lockdep_assert_cpus_held();
1340
1341 list_for_each_entry(s, &resctrl_schema_all, list) {
1342 r = s->res;
1343 if (r->rid == RDT_RESOURCE_MBA || r->rid == RDT_RESOURCE_SMBA)
1344 continue;
1345 has_cache = true;
1346 list_for_each_entry(d, &r->ctrl_domains, hdr.list) {
1347 ctrl = resctrl_arch_get_config(r, d, closid,
1348 s->conf_type);
1349 if (rdtgroup_cbm_overlaps(s, d, ctrl, closid, false)) {
1350 rdt_last_cmd_puts("Schemata overlaps\n");
1351 return false;
1352 }
1353 }
1354 }
1355
1356 if (!has_cache) {
1357 rdt_last_cmd_puts("Cannot be exclusive without CAT/CDP\n");
1358 return false;
1359 }
1360
1361 return true;
1362 }
1363
1364 /*
1365 * rdtgroup_mode_write - Modify the resource group's mode
1366 */
rdtgroup_mode_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)1367 static ssize_t rdtgroup_mode_write(struct kernfs_open_file *of,
1368 char *buf, size_t nbytes, loff_t off)
1369 {
1370 struct rdtgroup *rdtgrp;
1371 enum rdtgrp_mode mode;
1372 int ret = 0;
1373
1374 /* Valid input requires a trailing newline */
1375 if (nbytes == 0 || buf[nbytes - 1] != '\n')
1376 return -EINVAL;
1377 buf[nbytes - 1] = '\0';
1378
1379 rdtgrp = rdtgroup_kn_lock_live(of->kn);
1380 if (!rdtgrp) {
1381 rdtgroup_kn_unlock(of->kn);
1382 return -ENOENT;
1383 }
1384
1385 rdt_last_cmd_clear();
1386
1387 mode = rdtgrp->mode;
1388
1389 if ((!strcmp(buf, "shareable") && mode == RDT_MODE_SHAREABLE) ||
1390 (!strcmp(buf, "exclusive") && mode == RDT_MODE_EXCLUSIVE) ||
1391 (!strcmp(buf, "pseudo-locksetup") &&
1392 mode == RDT_MODE_PSEUDO_LOCKSETUP) ||
1393 (!strcmp(buf, "pseudo-locked") && mode == RDT_MODE_PSEUDO_LOCKED))
1394 goto out;
1395
1396 if (mode == RDT_MODE_PSEUDO_LOCKED) {
1397 rdt_last_cmd_puts("Cannot change pseudo-locked group\n");
1398 ret = -EINVAL;
1399 goto out;
1400 }
1401
1402 if (!strcmp(buf, "shareable")) {
1403 if (rdtgrp->mode == RDT_MODE_PSEUDO_LOCKSETUP) {
1404 ret = rdtgroup_locksetup_exit(rdtgrp);
1405 if (ret)
1406 goto out;
1407 }
1408 rdtgrp->mode = RDT_MODE_SHAREABLE;
1409 } else if (!strcmp(buf, "exclusive")) {
1410 if (!rdtgroup_mode_test_exclusive(rdtgrp)) {
1411 ret = -EINVAL;
1412 goto out;
1413 }
1414 if (rdtgrp->mode == RDT_MODE_PSEUDO_LOCKSETUP) {
1415 ret = rdtgroup_locksetup_exit(rdtgrp);
1416 if (ret)
1417 goto out;
1418 }
1419 rdtgrp->mode = RDT_MODE_EXCLUSIVE;
1420 } else if (!strcmp(buf, "pseudo-locksetup")) {
1421 ret = rdtgroup_locksetup_enter(rdtgrp);
1422 if (ret)
1423 goto out;
1424 rdtgrp->mode = RDT_MODE_PSEUDO_LOCKSETUP;
1425 } else {
1426 rdt_last_cmd_puts("Unknown or unsupported mode\n");
1427 ret = -EINVAL;
1428 }
1429
1430 out:
1431 rdtgroup_kn_unlock(of->kn);
1432 return ret ?: nbytes;
1433 }
1434
1435 /**
1436 * rdtgroup_cbm_to_size - Translate CBM to size in bytes
1437 * @r: RDT resource to which @d belongs.
1438 * @d: RDT domain instance.
1439 * @cbm: bitmask for which the size should be computed.
1440 *
1441 * The bitmask provided associated with the RDT domain instance @d will be
1442 * translated into how many bytes it represents. The size in bytes is
1443 * computed by first dividing the total cache size by the CBM length to
1444 * determine how many bytes each bit in the bitmask represents. The result
1445 * is multiplied with the number of bits set in the bitmask.
1446 *
1447 * @cbm is unsigned long, even if only 32 bits are used to make the
1448 * bitmap functions work correctly.
1449 */
rdtgroup_cbm_to_size(struct rdt_resource * r,struct rdt_ctrl_domain * d,unsigned long cbm)1450 unsigned int rdtgroup_cbm_to_size(struct rdt_resource *r,
1451 struct rdt_ctrl_domain *d, unsigned long cbm)
1452 {
1453 unsigned int size = 0;
1454 struct cacheinfo *ci;
1455 int num_b;
1456
1457 if (WARN_ON_ONCE(r->ctrl_scope != RESCTRL_L2_CACHE && r->ctrl_scope != RESCTRL_L3_CACHE))
1458 return size;
1459
1460 num_b = bitmap_weight(&cbm, r->cache.cbm_len);
1461 ci = get_cpu_cacheinfo_level(cpumask_any(&d->hdr.cpu_mask), r->ctrl_scope);
1462 if (ci)
1463 size = ci->size / r->cache.cbm_len * num_b;
1464
1465 return size;
1466 }
1467
1468 /*
1469 * rdtgroup_size_show - Display size in bytes of allocated regions
1470 *
1471 * The "size" file mirrors the layout of the "schemata" file, printing the
1472 * size in bytes of each region instead of the capacity bitmask.
1473 */
rdtgroup_size_show(struct kernfs_open_file * of,struct seq_file * s,void * v)1474 static int rdtgroup_size_show(struct kernfs_open_file *of,
1475 struct seq_file *s, void *v)
1476 {
1477 struct resctrl_schema *schema;
1478 enum resctrl_conf_type type;
1479 struct rdt_ctrl_domain *d;
1480 struct rdtgroup *rdtgrp;
1481 struct rdt_resource *r;
1482 unsigned int size;
1483 int ret = 0;
1484 u32 closid;
1485 bool sep;
1486 u32 ctrl;
1487
1488 rdtgrp = rdtgroup_kn_lock_live(of->kn);
1489 if (!rdtgrp) {
1490 rdtgroup_kn_unlock(of->kn);
1491 return -ENOENT;
1492 }
1493
1494 if (rdtgrp->mode == RDT_MODE_PSEUDO_LOCKED) {
1495 if (!rdtgrp->plr->d) {
1496 rdt_last_cmd_clear();
1497 rdt_last_cmd_puts("Cache domain offline\n");
1498 ret = -ENODEV;
1499 } else {
1500 seq_printf(s, "%*s:", max_name_width,
1501 rdtgrp->plr->s->name);
1502 size = rdtgroup_cbm_to_size(rdtgrp->plr->s->res,
1503 rdtgrp->plr->d,
1504 rdtgrp->plr->cbm);
1505 seq_printf(s, "%d=%u\n", rdtgrp->plr->d->hdr.id, size);
1506 }
1507 goto out;
1508 }
1509
1510 closid = rdtgrp->closid;
1511
1512 list_for_each_entry(schema, &resctrl_schema_all, list) {
1513 r = schema->res;
1514 type = schema->conf_type;
1515 sep = false;
1516 seq_printf(s, "%*s:", max_name_width, schema->name);
1517 list_for_each_entry(d, &r->ctrl_domains, hdr.list) {
1518 if (sep)
1519 seq_putc(s, ';');
1520 if (rdtgrp->mode == RDT_MODE_PSEUDO_LOCKSETUP) {
1521 size = 0;
1522 } else {
1523 if (is_mba_sc(r))
1524 ctrl = d->mbps_val[closid];
1525 else
1526 ctrl = resctrl_arch_get_config(r, d,
1527 closid,
1528 type);
1529 if (r->rid == RDT_RESOURCE_MBA ||
1530 r->rid == RDT_RESOURCE_SMBA)
1531 size = ctrl;
1532 else
1533 size = rdtgroup_cbm_to_size(r, d, ctrl);
1534 }
1535 seq_printf(s, "%d=%u", d->hdr.id, size);
1536 sep = true;
1537 }
1538 seq_putc(s, '\n');
1539 }
1540
1541 out:
1542 rdtgroup_kn_unlock(of->kn);
1543
1544 return ret;
1545 }
1546
1547 struct mon_config_info {
1548 u32 evtid;
1549 u32 mon_config;
1550 };
1551
1552 #define INVALID_CONFIG_INDEX UINT_MAX
1553
1554 /**
1555 * mon_event_config_index_get - get the hardware index for the
1556 * configurable event
1557 * @evtid: event id.
1558 *
1559 * Return: 0 for evtid == QOS_L3_MBM_TOTAL_EVENT_ID
1560 * 1 for evtid == QOS_L3_MBM_LOCAL_EVENT_ID
1561 * INVALID_CONFIG_INDEX for invalid evtid
1562 */
mon_event_config_index_get(u32 evtid)1563 static inline unsigned int mon_event_config_index_get(u32 evtid)
1564 {
1565 switch (evtid) {
1566 case QOS_L3_MBM_TOTAL_EVENT_ID:
1567 return 0;
1568 case QOS_L3_MBM_LOCAL_EVENT_ID:
1569 return 1;
1570 default:
1571 /* Should never reach here */
1572 return INVALID_CONFIG_INDEX;
1573 }
1574 }
1575
mon_event_config_read(void * info)1576 static void mon_event_config_read(void *info)
1577 {
1578 struct mon_config_info *mon_info = info;
1579 unsigned int index;
1580 u64 msrval;
1581
1582 index = mon_event_config_index_get(mon_info->evtid);
1583 if (index == INVALID_CONFIG_INDEX) {
1584 pr_warn_once("Invalid event id %d\n", mon_info->evtid);
1585 return;
1586 }
1587 rdmsrl(MSR_IA32_EVT_CFG_BASE + index, msrval);
1588
1589 /* Report only the valid event configuration bits */
1590 mon_info->mon_config = msrval & MAX_EVT_CONFIG_BITS;
1591 }
1592
mondata_config_read(struct rdt_mon_domain * d,struct mon_config_info * mon_info)1593 static void mondata_config_read(struct rdt_mon_domain *d, struct mon_config_info *mon_info)
1594 {
1595 smp_call_function_any(&d->hdr.cpu_mask, mon_event_config_read, mon_info, 1);
1596 }
1597
mbm_config_show(struct seq_file * s,struct rdt_resource * r,u32 evtid)1598 static int mbm_config_show(struct seq_file *s, struct rdt_resource *r, u32 evtid)
1599 {
1600 struct mon_config_info mon_info = {0};
1601 struct rdt_mon_domain *dom;
1602 bool sep = false;
1603
1604 cpus_read_lock();
1605 mutex_lock(&rdtgroup_mutex);
1606
1607 list_for_each_entry(dom, &r->mon_domains, hdr.list) {
1608 if (sep)
1609 seq_puts(s, ";");
1610
1611 memset(&mon_info, 0, sizeof(struct mon_config_info));
1612 mon_info.evtid = evtid;
1613 mondata_config_read(dom, &mon_info);
1614
1615 seq_printf(s, "%d=0x%02x", dom->hdr.id, mon_info.mon_config);
1616 sep = true;
1617 }
1618 seq_puts(s, "\n");
1619
1620 mutex_unlock(&rdtgroup_mutex);
1621 cpus_read_unlock();
1622
1623 return 0;
1624 }
1625
mbm_total_bytes_config_show(struct kernfs_open_file * of,struct seq_file * seq,void * v)1626 static int mbm_total_bytes_config_show(struct kernfs_open_file *of,
1627 struct seq_file *seq, void *v)
1628 {
1629 struct rdt_resource *r = of->kn->parent->priv;
1630
1631 mbm_config_show(seq, r, QOS_L3_MBM_TOTAL_EVENT_ID);
1632
1633 return 0;
1634 }
1635
mbm_local_bytes_config_show(struct kernfs_open_file * of,struct seq_file * seq,void * v)1636 static int mbm_local_bytes_config_show(struct kernfs_open_file *of,
1637 struct seq_file *seq, void *v)
1638 {
1639 struct rdt_resource *r = of->kn->parent->priv;
1640
1641 mbm_config_show(seq, r, QOS_L3_MBM_LOCAL_EVENT_ID);
1642
1643 return 0;
1644 }
1645
mon_event_config_write(void * info)1646 static void mon_event_config_write(void *info)
1647 {
1648 struct mon_config_info *mon_info = info;
1649 unsigned int index;
1650
1651 index = mon_event_config_index_get(mon_info->evtid);
1652 if (index == INVALID_CONFIG_INDEX) {
1653 pr_warn_once("Invalid event id %d\n", mon_info->evtid);
1654 return;
1655 }
1656 wrmsr(MSR_IA32_EVT_CFG_BASE + index, mon_info->mon_config, 0);
1657 }
1658
mbm_config_write_domain(struct rdt_resource * r,struct rdt_mon_domain * d,u32 evtid,u32 val)1659 static void mbm_config_write_domain(struct rdt_resource *r,
1660 struct rdt_mon_domain *d, u32 evtid, u32 val)
1661 {
1662 struct mon_config_info mon_info = {0};
1663
1664 /*
1665 * Read the current config value first. If both are the same then
1666 * no need to write it again.
1667 */
1668 mon_info.evtid = evtid;
1669 mondata_config_read(d, &mon_info);
1670 if (mon_info.mon_config == val)
1671 return;
1672
1673 mon_info.mon_config = val;
1674
1675 /*
1676 * Update MSR_IA32_EVT_CFG_BASE MSR on one of the CPUs in the
1677 * domain. The MSRs offset from MSR MSR_IA32_EVT_CFG_BASE
1678 * are scoped at the domain level. Writing any of these MSRs
1679 * on one CPU is observed by all the CPUs in the domain.
1680 */
1681 smp_call_function_any(&d->hdr.cpu_mask, mon_event_config_write,
1682 &mon_info, 1);
1683
1684 /*
1685 * When an Event Configuration is changed, the bandwidth counters
1686 * for all RMIDs and Events will be cleared by the hardware. The
1687 * hardware also sets MSR_IA32_QM_CTR.Unavailable (bit 62) for
1688 * every RMID on the next read to any event for every RMID.
1689 * Subsequent reads will have MSR_IA32_QM_CTR.Unavailable (bit 62)
1690 * cleared while it is tracked by the hardware. Clear the
1691 * mbm_local and mbm_total counts for all the RMIDs.
1692 */
1693 resctrl_arch_reset_rmid_all(r, d);
1694 }
1695
mon_config_write(struct rdt_resource * r,char * tok,u32 evtid)1696 static int mon_config_write(struct rdt_resource *r, char *tok, u32 evtid)
1697 {
1698 struct rdt_hw_resource *hw_res = resctrl_to_arch_res(r);
1699 char *dom_str = NULL, *id_str;
1700 unsigned long dom_id, val;
1701 struct rdt_mon_domain *d;
1702
1703 /* Walking r->domains, ensure it can't race with cpuhp */
1704 lockdep_assert_cpus_held();
1705
1706 next:
1707 if (!tok || tok[0] == '\0')
1708 return 0;
1709
1710 /* Start processing the strings for each domain */
1711 dom_str = strim(strsep(&tok, ";"));
1712 id_str = strsep(&dom_str, "=");
1713
1714 if (!id_str || kstrtoul(id_str, 10, &dom_id)) {
1715 rdt_last_cmd_puts("Missing '=' or non-numeric domain id\n");
1716 return -EINVAL;
1717 }
1718
1719 if (!dom_str || kstrtoul(dom_str, 16, &val)) {
1720 rdt_last_cmd_puts("Non-numeric event configuration value\n");
1721 return -EINVAL;
1722 }
1723
1724 /* Value from user cannot be more than the supported set of events */
1725 if ((val & hw_res->mbm_cfg_mask) != val) {
1726 rdt_last_cmd_printf("Invalid event configuration: max valid mask is 0x%02x\n",
1727 hw_res->mbm_cfg_mask);
1728 return -EINVAL;
1729 }
1730
1731 list_for_each_entry(d, &r->mon_domains, hdr.list) {
1732 if (d->hdr.id == dom_id) {
1733 mbm_config_write_domain(r, d, evtid, val);
1734 goto next;
1735 }
1736 }
1737
1738 return -EINVAL;
1739 }
1740
mbm_total_bytes_config_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)1741 static ssize_t mbm_total_bytes_config_write(struct kernfs_open_file *of,
1742 char *buf, size_t nbytes,
1743 loff_t off)
1744 {
1745 struct rdt_resource *r = of->kn->parent->priv;
1746 int ret;
1747
1748 /* Valid input requires a trailing newline */
1749 if (nbytes == 0 || buf[nbytes - 1] != '\n')
1750 return -EINVAL;
1751
1752 cpus_read_lock();
1753 mutex_lock(&rdtgroup_mutex);
1754
1755 rdt_last_cmd_clear();
1756
1757 buf[nbytes - 1] = '\0';
1758
1759 ret = mon_config_write(r, buf, QOS_L3_MBM_TOTAL_EVENT_ID);
1760
1761 mutex_unlock(&rdtgroup_mutex);
1762 cpus_read_unlock();
1763
1764 return ret ?: nbytes;
1765 }
1766
mbm_local_bytes_config_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)1767 static ssize_t mbm_local_bytes_config_write(struct kernfs_open_file *of,
1768 char *buf, size_t nbytes,
1769 loff_t off)
1770 {
1771 struct rdt_resource *r = of->kn->parent->priv;
1772 int ret;
1773
1774 /* Valid input requires a trailing newline */
1775 if (nbytes == 0 || buf[nbytes - 1] != '\n')
1776 return -EINVAL;
1777
1778 cpus_read_lock();
1779 mutex_lock(&rdtgroup_mutex);
1780
1781 rdt_last_cmd_clear();
1782
1783 buf[nbytes - 1] = '\0';
1784
1785 ret = mon_config_write(r, buf, QOS_L3_MBM_LOCAL_EVENT_ID);
1786
1787 mutex_unlock(&rdtgroup_mutex);
1788 cpus_read_unlock();
1789
1790 return ret ?: nbytes;
1791 }
1792
1793 /* rdtgroup information files for one cache resource. */
1794 static struct rftype res_common_files[] = {
1795 {
1796 .name = "last_cmd_status",
1797 .mode = 0444,
1798 .kf_ops = &rdtgroup_kf_single_ops,
1799 .seq_show = rdt_last_cmd_status_show,
1800 .fflags = RFTYPE_TOP_INFO,
1801 },
1802 {
1803 .name = "num_closids",
1804 .mode = 0444,
1805 .kf_ops = &rdtgroup_kf_single_ops,
1806 .seq_show = rdt_num_closids_show,
1807 .fflags = RFTYPE_CTRL_INFO,
1808 },
1809 {
1810 .name = "mon_features",
1811 .mode = 0444,
1812 .kf_ops = &rdtgroup_kf_single_ops,
1813 .seq_show = rdt_mon_features_show,
1814 .fflags = RFTYPE_MON_INFO,
1815 },
1816 {
1817 .name = "num_rmids",
1818 .mode = 0444,
1819 .kf_ops = &rdtgroup_kf_single_ops,
1820 .seq_show = rdt_num_rmids_show,
1821 .fflags = RFTYPE_MON_INFO,
1822 },
1823 {
1824 .name = "cbm_mask",
1825 .mode = 0444,
1826 .kf_ops = &rdtgroup_kf_single_ops,
1827 .seq_show = rdt_default_ctrl_show,
1828 .fflags = RFTYPE_CTRL_INFO | RFTYPE_RES_CACHE,
1829 },
1830 {
1831 .name = "min_cbm_bits",
1832 .mode = 0444,
1833 .kf_ops = &rdtgroup_kf_single_ops,
1834 .seq_show = rdt_min_cbm_bits_show,
1835 .fflags = RFTYPE_CTRL_INFO | RFTYPE_RES_CACHE,
1836 },
1837 {
1838 .name = "shareable_bits",
1839 .mode = 0444,
1840 .kf_ops = &rdtgroup_kf_single_ops,
1841 .seq_show = rdt_shareable_bits_show,
1842 .fflags = RFTYPE_CTRL_INFO | RFTYPE_RES_CACHE,
1843 },
1844 {
1845 .name = "bit_usage",
1846 .mode = 0444,
1847 .kf_ops = &rdtgroup_kf_single_ops,
1848 .seq_show = rdt_bit_usage_show,
1849 .fflags = RFTYPE_CTRL_INFO | RFTYPE_RES_CACHE,
1850 },
1851 {
1852 .name = "min_bandwidth",
1853 .mode = 0444,
1854 .kf_ops = &rdtgroup_kf_single_ops,
1855 .seq_show = rdt_min_bw_show,
1856 .fflags = RFTYPE_CTRL_INFO | RFTYPE_RES_MB,
1857 },
1858 {
1859 .name = "bandwidth_gran",
1860 .mode = 0444,
1861 .kf_ops = &rdtgroup_kf_single_ops,
1862 .seq_show = rdt_bw_gran_show,
1863 .fflags = RFTYPE_CTRL_INFO | RFTYPE_RES_MB,
1864 },
1865 {
1866 .name = "delay_linear",
1867 .mode = 0444,
1868 .kf_ops = &rdtgroup_kf_single_ops,
1869 .seq_show = rdt_delay_linear_show,
1870 .fflags = RFTYPE_CTRL_INFO | RFTYPE_RES_MB,
1871 },
1872 /*
1873 * Platform specific which (if any) capabilities are provided by
1874 * thread_throttle_mode. Defer "fflags" initialization to platform
1875 * discovery.
1876 */
1877 {
1878 .name = "thread_throttle_mode",
1879 .mode = 0444,
1880 .kf_ops = &rdtgroup_kf_single_ops,
1881 .seq_show = rdt_thread_throttle_mode_show,
1882 },
1883 {
1884 .name = "max_threshold_occupancy",
1885 .mode = 0644,
1886 .kf_ops = &rdtgroup_kf_single_ops,
1887 .write = max_threshold_occ_write,
1888 .seq_show = max_threshold_occ_show,
1889 .fflags = RFTYPE_MON_INFO | RFTYPE_RES_CACHE,
1890 },
1891 {
1892 .name = "mbm_total_bytes_config",
1893 .mode = 0644,
1894 .kf_ops = &rdtgroup_kf_single_ops,
1895 .seq_show = mbm_total_bytes_config_show,
1896 .write = mbm_total_bytes_config_write,
1897 },
1898 {
1899 .name = "mbm_local_bytes_config",
1900 .mode = 0644,
1901 .kf_ops = &rdtgroup_kf_single_ops,
1902 .seq_show = mbm_local_bytes_config_show,
1903 .write = mbm_local_bytes_config_write,
1904 },
1905 {
1906 .name = "cpus",
1907 .mode = 0644,
1908 .kf_ops = &rdtgroup_kf_single_ops,
1909 .write = rdtgroup_cpus_write,
1910 .seq_show = rdtgroup_cpus_show,
1911 .fflags = RFTYPE_BASE,
1912 },
1913 {
1914 .name = "cpus_list",
1915 .mode = 0644,
1916 .kf_ops = &rdtgroup_kf_single_ops,
1917 .write = rdtgroup_cpus_write,
1918 .seq_show = rdtgroup_cpus_show,
1919 .flags = RFTYPE_FLAGS_CPUS_LIST,
1920 .fflags = RFTYPE_BASE,
1921 },
1922 {
1923 .name = "tasks",
1924 .mode = 0644,
1925 .kf_ops = &rdtgroup_kf_single_ops,
1926 .write = rdtgroup_tasks_write,
1927 .seq_show = rdtgroup_tasks_show,
1928 .fflags = RFTYPE_BASE,
1929 },
1930 {
1931 .name = "mon_hw_id",
1932 .mode = 0444,
1933 .kf_ops = &rdtgroup_kf_single_ops,
1934 .seq_show = rdtgroup_rmid_show,
1935 .fflags = RFTYPE_MON_BASE | RFTYPE_DEBUG,
1936 },
1937 {
1938 .name = "schemata",
1939 .mode = 0644,
1940 .kf_ops = &rdtgroup_kf_single_ops,
1941 .write = rdtgroup_schemata_write,
1942 .seq_show = rdtgroup_schemata_show,
1943 .fflags = RFTYPE_CTRL_BASE,
1944 },
1945 {
1946 .name = "mode",
1947 .mode = 0644,
1948 .kf_ops = &rdtgroup_kf_single_ops,
1949 .write = rdtgroup_mode_write,
1950 .seq_show = rdtgroup_mode_show,
1951 .fflags = RFTYPE_CTRL_BASE,
1952 },
1953 {
1954 .name = "size",
1955 .mode = 0444,
1956 .kf_ops = &rdtgroup_kf_single_ops,
1957 .seq_show = rdtgroup_size_show,
1958 .fflags = RFTYPE_CTRL_BASE,
1959 },
1960 {
1961 .name = "sparse_masks",
1962 .mode = 0444,
1963 .kf_ops = &rdtgroup_kf_single_ops,
1964 .seq_show = rdt_has_sparse_bitmasks_show,
1965 .fflags = RFTYPE_CTRL_INFO | RFTYPE_RES_CACHE,
1966 },
1967 {
1968 .name = "ctrl_hw_id",
1969 .mode = 0444,
1970 .kf_ops = &rdtgroup_kf_single_ops,
1971 .seq_show = rdtgroup_closid_show,
1972 .fflags = RFTYPE_CTRL_BASE | RFTYPE_DEBUG,
1973 },
1974
1975 };
1976
rdtgroup_add_files(struct kernfs_node * kn,unsigned long fflags)1977 static int rdtgroup_add_files(struct kernfs_node *kn, unsigned long fflags)
1978 {
1979 struct rftype *rfts, *rft;
1980 int ret, len;
1981
1982 rfts = res_common_files;
1983 len = ARRAY_SIZE(res_common_files);
1984
1985 lockdep_assert_held(&rdtgroup_mutex);
1986
1987 if (resctrl_debug)
1988 fflags |= RFTYPE_DEBUG;
1989
1990 for (rft = rfts; rft < rfts + len; rft++) {
1991 if (rft->fflags && ((fflags & rft->fflags) == rft->fflags)) {
1992 ret = rdtgroup_add_file(kn, rft);
1993 if (ret)
1994 goto error;
1995 }
1996 }
1997
1998 return 0;
1999 error:
2000 pr_warn("Failed to add %s, err=%d\n", rft->name, ret);
2001 while (--rft >= rfts) {
2002 if ((fflags & rft->fflags) == rft->fflags)
2003 kernfs_remove_by_name(kn, rft->name);
2004 }
2005 return ret;
2006 }
2007
rdtgroup_get_rftype_by_name(const char * name)2008 static struct rftype *rdtgroup_get_rftype_by_name(const char *name)
2009 {
2010 struct rftype *rfts, *rft;
2011 int len;
2012
2013 rfts = res_common_files;
2014 len = ARRAY_SIZE(res_common_files);
2015
2016 for (rft = rfts; rft < rfts + len; rft++) {
2017 if (!strcmp(rft->name, name))
2018 return rft;
2019 }
2020
2021 return NULL;
2022 }
2023
thread_throttle_mode_init(void)2024 void __init thread_throttle_mode_init(void)
2025 {
2026 struct rftype *rft;
2027
2028 rft = rdtgroup_get_rftype_by_name("thread_throttle_mode");
2029 if (!rft)
2030 return;
2031
2032 rft->fflags = RFTYPE_CTRL_INFO | RFTYPE_RES_MB;
2033 }
2034
mbm_config_rftype_init(const char * config)2035 void __init mbm_config_rftype_init(const char *config)
2036 {
2037 struct rftype *rft;
2038
2039 rft = rdtgroup_get_rftype_by_name(config);
2040 if (rft)
2041 rft->fflags = RFTYPE_MON_INFO | RFTYPE_RES_CACHE;
2042 }
2043
2044 /**
2045 * rdtgroup_kn_mode_restrict - Restrict user access to named resctrl file
2046 * @r: The resource group with which the file is associated.
2047 * @name: Name of the file
2048 *
2049 * The permissions of named resctrl file, directory, or link are modified
2050 * to not allow read, write, or execute by any user.
2051 *
2052 * WARNING: This function is intended to communicate to the user that the
2053 * resctrl file has been locked down - that it is not relevant to the
2054 * particular state the system finds itself in. It should not be relied
2055 * on to protect from user access because after the file's permissions
2056 * are restricted the user can still change the permissions using chmod
2057 * from the command line.
2058 *
2059 * Return: 0 on success, <0 on failure.
2060 */
rdtgroup_kn_mode_restrict(struct rdtgroup * r,const char * name)2061 int rdtgroup_kn_mode_restrict(struct rdtgroup *r, const char *name)
2062 {
2063 struct iattr iattr = {.ia_valid = ATTR_MODE,};
2064 struct kernfs_node *kn;
2065 int ret = 0;
2066
2067 kn = kernfs_find_and_get_ns(r->kn, name, NULL);
2068 if (!kn)
2069 return -ENOENT;
2070
2071 switch (kernfs_type(kn)) {
2072 case KERNFS_DIR:
2073 iattr.ia_mode = S_IFDIR;
2074 break;
2075 case KERNFS_FILE:
2076 iattr.ia_mode = S_IFREG;
2077 break;
2078 case KERNFS_LINK:
2079 iattr.ia_mode = S_IFLNK;
2080 break;
2081 }
2082
2083 ret = kernfs_setattr(kn, &iattr);
2084 kernfs_put(kn);
2085 return ret;
2086 }
2087
2088 /**
2089 * rdtgroup_kn_mode_restore - Restore user access to named resctrl file
2090 * @r: The resource group with which the file is associated.
2091 * @name: Name of the file
2092 * @mask: Mask of permissions that should be restored
2093 *
2094 * Restore the permissions of the named file. If @name is a directory the
2095 * permissions of its parent will be used.
2096 *
2097 * Return: 0 on success, <0 on failure.
2098 */
rdtgroup_kn_mode_restore(struct rdtgroup * r,const char * name,umode_t mask)2099 int rdtgroup_kn_mode_restore(struct rdtgroup *r, const char *name,
2100 umode_t mask)
2101 {
2102 struct iattr iattr = {.ia_valid = ATTR_MODE,};
2103 struct kernfs_node *kn, *parent;
2104 struct rftype *rfts, *rft;
2105 int ret, len;
2106
2107 rfts = res_common_files;
2108 len = ARRAY_SIZE(res_common_files);
2109
2110 for (rft = rfts; rft < rfts + len; rft++) {
2111 if (!strcmp(rft->name, name))
2112 iattr.ia_mode = rft->mode & mask;
2113 }
2114
2115 kn = kernfs_find_and_get_ns(r->kn, name, NULL);
2116 if (!kn)
2117 return -ENOENT;
2118
2119 switch (kernfs_type(kn)) {
2120 case KERNFS_DIR:
2121 parent = kernfs_get_parent(kn);
2122 if (parent) {
2123 iattr.ia_mode |= parent->mode;
2124 kernfs_put(parent);
2125 }
2126 iattr.ia_mode |= S_IFDIR;
2127 break;
2128 case KERNFS_FILE:
2129 iattr.ia_mode |= S_IFREG;
2130 break;
2131 case KERNFS_LINK:
2132 iattr.ia_mode |= S_IFLNK;
2133 break;
2134 }
2135
2136 ret = kernfs_setattr(kn, &iattr);
2137 kernfs_put(kn);
2138 return ret;
2139 }
2140
rdtgroup_mkdir_info_resdir(void * priv,char * name,unsigned long fflags)2141 static int rdtgroup_mkdir_info_resdir(void *priv, char *name,
2142 unsigned long fflags)
2143 {
2144 struct kernfs_node *kn_subdir;
2145 int ret;
2146
2147 kn_subdir = kernfs_create_dir(kn_info, name,
2148 kn_info->mode, priv);
2149 if (IS_ERR(kn_subdir))
2150 return PTR_ERR(kn_subdir);
2151
2152 ret = rdtgroup_kn_set_ugid(kn_subdir);
2153 if (ret)
2154 return ret;
2155
2156 ret = rdtgroup_add_files(kn_subdir, fflags);
2157 if (!ret)
2158 kernfs_activate(kn_subdir);
2159
2160 return ret;
2161 }
2162
rdtgroup_create_info_dir(struct kernfs_node * parent_kn)2163 static int rdtgroup_create_info_dir(struct kernfs_node *parent_kn)
2164 {
2165 struct resctrl_schema *s;
2166 struct rdt_resource *r;
2167 unsigned long fflags;
2168 char name[32];
2169 int ret;
2170
2171 /* create the directory */
2172 kn_info = kernfs_create_dir(parent_kn, "info", parent_kn->mode, NULL);
2173 if (IS_ERR(kn_info))
2174 return PTR_ERR(kn_info);
2175
2176 ret = rdtgroup_add_files(kn_info, RFTYPE_TOP_INFO);
2177 if (ret)
2178 goto out_destroy;
2179
2180 /* loop over enabled controls, these are all alloc_capable */
2181 list_for_each_entry(s, &resctrl_schema_all, list) {
2182 r = s->res;
2183 fflags = r->fflags | RFTYPE_CTRL_INFO;
2184 ret = rdtgroup_mkdir_info_resdir(s, s->name, fflags);
2185 if (ret)
2186 goto out_destroy;
2187 }
2188
2189 for_each_mon_capable_rdt_resource(r) {
2190 fflags = r->fflags | RFTYPE_MON_INFO;
2191 sprintf(name, "%s_MON", r->name);
2192 ret = rdtgroup_mkdir_info_resdir(r, name, fflags);
2193 if (ret)
2194 goto out_destroy;
2195 }
2196
2197 ret = rdtgroup_kn_set_ugid(kn_info);
2198 if (ret)
2199 goto out_destroy;
2200
2201 kernfs_activate(kn_info);
2202
2203 return 0;
2204
2205 out_destroy:
2206 kernfs_remove(kn_info);
2207 return ret;
2208 }
2209
2210 static int
mongroup_create_dir(struct kernfs_node * parent_kn,struct rdtgroup * prgrp,char * name,struct kernfs_node ** dest_kn)2211 mongroup_create_dir(struct kernfs_node *parent_kn, struct rdtgroup *prgrp,
2212 char *name, struct kernfs_node **dest_kn)
2213 {
2214 struct kernfs_node *kn;
2215 int ret;
2216
2217 /* create the directory */
2218 kn = kernfs_create_dir(parent_kn, name, parent_kn->mode, prgrp);
2219 if (IS_ERR(kn))
2220 return PTR_ERR(kn);
2221
2222 if (dest_kn)
2223 *dest_kn = kn;
2224
2225 ret = rdtgroup_kn_set_ugid(kn);
2226 if (ret)
2227 goto out_destroy;
2228
2229 kernfs_activate(kn);
2230
2231 return 0;
2232
2233 out_destroy:
2234 kernfs_remove(kn);
2235 return ret;
2236 }
2237
l3_qos_cfg_update(void * arg)2238 static void l3_qos_cfg_update(void *arg)
2239 {
2240 bool *enable = arg;
2241
2242 wrmsrl(MSR_IA32_L3_QOS_CFG, *enable ? L3_QOS_CDP_ENABLE : 0ULL);
2243 }
2244
l2_qos_cfg_update(void * arg)2245 static void l2_qos_cfg_update(void *arg)
2246 {
2247 bool *enable = arg;
2248
2249 wrmsrl(MSR_IA32_L2_QOS_CFG, *enable ? L2_QOS_CDP_ENABLE : 0ULL);
2250 }
2251
is_mba_linear(void)2252 static inline bool is_mba_linear(void)
2253 {
2254 return rdt_resources_all[RDT_RESOURCE_MBA].r_resctrl.membw.delay_linear;
2255 }
2256
set_cache_qos_cfg(int level,bool enable)2257 static int set_cache_qos_cfg(int level, bool enable)
2258 {
2259 void (*update)(void *arg);
2260 struct rdt_ctrl_domain *d;
2261 struct rdt_resource *r_l;
2262 cpumask_var_t cpu_mask;
2263 int cpu;
2264
2265 /* Walking r->domains, ensure it can't race with cpuhp */
2266 lockdep_assert_cpus_held();
2267
2268 if (level == RDT_RESOURCE_L3)
2269 update = l3_qos_cfg_update;
2270 else if (level == RDT_RESOURCE_L2)
2271 update = l2_qos_cfg_update;
2272 else
2273 return -EINVAL;
2274
2275 if (!zalloc_cpumask_var(&cpu_mask, GFP_KERNEL))
2276 return -ENOMEM;
2277
2278 r_l = &rdt_resources_all[level].r_resctrl;
2279 list_for_each_entry(d, &r_l->ctrl_domains, hdr.list) {
2280 if (r_l->cache.arch_has_per_cpu_cfg)
2281 /* Pick all the CPUs in the domain instance */
2282 for_each_cpu(cpu, &d->hdr.cpu_mask)
2283 cpumask_set_cpu(cpu, cpu_mask);
2284 else
2285 /* Pick one CPU from each domain instance to update MSR */
2286 cpumask_set_cpu(cpumask_any(&d->hdr.cpu_mask), cpu_mask);
2287 }
2288
2289 /* Update QOS_CFG MSR on all the CPUs in cpu_mask */
2290 on_each_cpu_mask(cpu_mask, update, &enable, 1);
2291
2292 free_cpumask_var(cpu_mask);
2293
2294 return 0;
2295 }
2296
2297 /* Restore the qos cfg state when a domain comes online */
rdt_domain_reconfigure_cdp(struct rdt_resource * r)2298 void rdt_domain_reconfigure_cdp(struct rdt_resource *r)
2299 {
2300 struct rdt_hw_resource *hw_res = resctrl_to_arch_res(r);
2301
2302 if (!r->cdp_capable)
2303 return;
2304
2305 if (r->rid == RDT_RESOURCE_L2)
2306 l2_qos_cfg_update(&hw_res->cdp_enabled);
2307
2308 if (r->rid == RDT_RESOURCE_L3)
2309 l3_qos_cfg_update(&hw_res->cdp_enabled);
2310 }
2311
mba_sc_domain_allocate(struct rdt_resource * r,struct rdt_ctrl_domain * d)2312 static int mba_sc_domain_allocate(struct rdt_resource *r, struct rdt_ctrl_domain *d)
2313 {
2314 u32 num_closid = resctrl_arch_get_num_closid(r);
2315 int cpu = cpumask_any(&d->hdr.cpu_mask);
2316 int i;
2317
2318 d->mbps_val = kcalloc_node(num_closid, sizeof(*d->mbps_val),
2319 GFP_KERNEL, cpu_to_node(cpu));
2320 if (!d->mbps_val)
2321 return -ENOMEM;
2322
2323 for (i = 0; i < num_closid; i++)
2324 d->mbps_val[i] = MBA_MAX_MBPS;
2325
2326 return 0;
2327 }
2328
mba_sc_domain_destroy(struct rdt_resource * r,struct rdt_ctrl_domain * d)2329 static void mba_sc_domain_destroy(struct rdt_resource *r,
2330 struct rdt_ctrl_domain *d)
2331 {
2332 kfree(d->mbps_val);
2333 d->mbps_val = NULL;
2334 }
2335
2336 /*
2337 * MBA software controller is supported only if
2338 * MBM is supported and MBA is in linear scale,
2339 * and the MBM monitor scope is the same as MBA
2340 * control scope.
2341 */
supports_mba_mbps(void)2342 static bool supports_mba_mbps(void)
2343 {
2344 struct rdt_resource *rmbm = &rdt_resources_all[RDT_RESOURCE_L3].r_resctrl;
2345 struct rdt_resource *r = &rdt_resources_all[RDT_RESOURCE_MBA].r_resctrl;
2346
2347 return (is_mbm_local_enabled() &&
2348 r->alloc_capable && is_mba_linear() &&
2349 r->ctrl_scope == rmbm->mon_scope);
2350 }
2351
2352 /*
2353 * Enable or disable the MBA software controller
2354 * which helps user specify bandwidth in MBps.
2355 */
set_mba_sc(bool mba_sc)2356 static int set_mba_sc(bool mba_sc)
2357 {
2358 struct rdt_resource *r = &rdt_resources_all[RDT_RESOURCE_MBA].r_resctrl;
2359 u32 num_closid = resctrl_arch_get_num_closid(r);
2360 struct rdt_ctrl_domain *d;
2361 int i;
2362
2363 if (!supports_mba_mbps() || mba_sc == is_mba_sc(r))
2364 return -EINVAL;
2365
2366 r->membw.mba_sc = mba_sc;
2367
2368 list_for_each_entry(d, &r->ctrl_domains, hdr.list) {
2369 for (i = 0; i < num_closid; i++)
2370 d->mbps_val[i] = MBA_MAX_MBPS;
2371 }
2372
2373 return 0;
2374 }
2375
cdp_enable(int level)2376 static int cdp_enable(int level)
2377 {
2378 struct rdt_resource *r_l = &rdt_resources_all[level].r_resctrl;
2379 int ret;
2380
2381 if (!r_l->alloc_capable)
2382 return -EINVAL;
2383
2384 ret = set_cache_qos_cfg(level, true);
2385 if (!ret)
2386 rdt_resources_all[level].cdp_enabled = true;
2387
2388 return ret;
2389 }
2390
cdp_disable(int level)2391 static void cdp_disable(int level)
2392 {
2393 struct rdt_hw_resource *r_hw = &rdt_resources_all[level];
2394
2395 if (r_hw->cdp_enabled) {
2396 set_cache_qos_cfg(level, false);
2397 r_hw->cdp_enabled = false;
2398 }
2399 }
2400
resctrl_arch_set_cdp_enabled(enum resctrl_res_level l,bool enable)2401 int resctrl_arch_set_cdp_enabled(enum resctrl_res_level l, bool enable)
2402 {
2403 struct rdt_hw_resource *hw_res = &rdt_resources_all[l];
2404
2405 if (!hw_res->r_resctrl.cdp_capable)
2406 return -EINVAL;
2407
2408 if (enable)
2409 return cdp_enable(l);
2410
2411 cdp_disable(l);
2412
2413 return 0;
2414 }
2415
2416 /*
2417 * We don't allow rdtgroup directories to be created anywhere
2418 * except the root directory. Thus when looking for the rdtgroup
2419 * structure for a kernfs node we are either looking at a directory,
2420 * in which case the rdtgroup structure is pointed at by the "priv"
2421 * field, otherwise we have a file, and need only look to the parent
2422 * to find the rdtgroup.
2423 */
kernfs_to_rdtgroup(struct kernfs_node * kn)2424 static struct rdtgroup *kernfs_to_rdtgroup(struct kernfs_node *kn)
2425 {
2426 if (kernfs_type(kn) == KERNFS_DIR) {
2427 /*
2428 * All the resource directories use "kn->priv"
2429 * to point to the "struct rdtgroup" for the
2430 * resource. "info" and its subdirectories don't
2431 * have rdtgroup structures, so return NULL here.
2432 */
2433 if (kn == kn_info || kn->parent == kn_info)
2434 return NULL;
2435 else
2436 return kn->priv;
2437 } else {
2438 return kn->parent->priv;
2439 }
2440 }
2441
rdtgroup_kn_get(struct rdtgroup * rdtgrp,struct kernfs_node * kn)2442 static void rdtgroup_kn_get(struct rdtgroup *rdtgrp, struct kernfs_node *kn)
2443 {
2444 atomic_inc(&rdtgrp->waitcount);
2445 kernfs_break_active_protection(kn);
2446 }
2447
rdtgroup_kn_put(struct rdtgroup * rdtgrp,struct kernfs_node * kn)2448 static void rdtgroup_kn_put(struct rdtgroup *rdtgrp, struct kernfs_node *kn)
2449 {
2450 if (atomic_dec_and_test(&rdtgrp->waitcount) &&
2451 (rdtgrp->flags & RDT_DELETED)) {
2452 if (rdtgrp->mode == RDT_MODE_PSEUDO_LOCKSETUP ||
2453 rdtgrp->mode == RDT_MODE_PSEUDO_LOCKED)
2454 rdtgroup_pseudo_lock_remove(rdtgrp);
2455 kernfs_unbreak_active_protection(kn);
2456 rdtgroup_remove(rdtgrp);
2457 } else {
2458 kernfs_unbreak_active_protection(kn);
2459 }
2460 }
2461
rdtgroup_kn_lock_live(struct kernfs_node * kn)2462 struct rdtgroup *rdtgroup_kn_lock_live(struct kernfs_node *kn)
2463 {
2464 struct rdtgroup *rdtgrp = kernfs_to_rdtgroup(kn);
2465
2466 if (!rdtgrp)
2467 return NULL;
2468
2469 rdtgroup_kn_get(rdtgrp, kn);
2470
2471 cpus_read_lock();
2472 mutex_lock(&rdtgroup_mutex);
2473
2474 /* Was this group deleted while we waited? */
2475 if (rdtgrp->flags & RDT_DELETED)
2476 return NULL;
2477
2478 return rdtgrp;
2479 }
2480
rdtgroup_kn_unlock(struct kernfs_node * kn)2481 void rdtgroup_kn_unlock(struct kernfs_node *kn)
2482 {
2483 struct rdtgroup *rdtgrp = kernfs_to_rdtgroup(kn);
2484
2485 if (!rdtgrp)
2486 return;
2487
2488 mutex_unlock(&rdtgroup_mutex);
2489 cpus_read_unlock();
2490
2491 rdtgroup_kn_put(rdtgrp, kn);
2492 }
2493
2494 static int mkdir_mondata_all(struct kernfs_node *parent_kn,
2495 struct rdtgroup *prgrp,
2496 struct kernfs_node **mon_data_kn);
2497
rdt_disable_ctx(void)2498 static void rdt_disable_ctx(void)
2499 {
2500 resctrl_arch_set_cdp_enabled(RDT_RESOURCE_L3, false);
2501 resctrl_arch_set_cdp_enabled(RDT_RESOURCE_L2, false);
2502 set_mba_sc(false);
2503
2504 resctrl_debug = false;
2505 }
2506
rdt_enable_ctx(struct rdt_fs_context * ctx)2507 static int rdt_enable_ctx(struct rdt_fs_context *ctx)
2508 {
2509 int ret = 0;
2510
2511 if (ctx->enable_cdpl2) {
2512 ret = resctrl_arch_set_cdp_enabled(RDT_RESOURCE_L2, true);
2513 if (ret)
2514 goto out_done;
2515 }
2516
2517 if (ctx->enable_cdpl3) {
2518 ret = resctrl_arch_set_cdp_enabled(RDT_RESOURCE_L3, true);
2519 if (ret)
2520 goto out_cdpl2;
2521 }
2522
2523 if (ctx->enable_mba_mbps) {
2524 ret = set_mba_sc(true);
2525 if (ret)
2526 goto out_cdpl3;
2527 }
2528
2529 if (ctx->enable_debug)
2530 resctrl_debug = true;
2531
2532 return 0;
2533
2534 out_cdpl3:
2535 resctrl_arch_set_cdp_enabled(RDT_RESOURCE_L3, false);
2536 out_cdpl2:
2537 resctrl_arch_set_cdp_enabled(RDT_RESOURCE_L2, false);
2538 out_done:
2539 return ret;
2540 }
2541
schemata_list_add(struct rdt_resource * r,enum resctrl_conf_type type)2542 static int schemata_list_add(struct rdt_resource *r, enum resctrl_conf_type type)
2543 {
2544 struct resctrl_schema *s;
2545 const char *suffix = "";
2546 int ret, cl;
2547
2548 s = kzalloc(sizeof(*s), GFP_KERNEL);
2549 if (!s)
2550 return -ENOMEM;
2551
2552 s->res = r;
2553 s->num_closid = resctrl_arch_get_num_closid(r);
2554 if (resctrl_arch_get_cdp_enabled(r->rid))
2555 s->num_closid /= 2;
2556
2557 s->conf_type = type;
2558 switch (type) {
2559 case CDP_CODE:
2560 suffix = "CODE";
2561 break;
2562 case CDP_DATA:
2563 suffix = "DATA";
2564 break;
2565 case CDP_NONE:
2566 suffix = "";
2567 break;
2568 }
2569
2570 ret = snprintf(s->name, sizeof(s->name), "%s%s", r->name, suffix);
2571 if (ret >= sizeof(s->name)) {
2572 kfree(s);
2573 return -EINVAL;
2574 }
2575
2576 cl = strlen(s->name);
2577
2578 /*
2579 * If CDP is supported by this resource, but not enabled,
2580 * include the suffix. This ensures the tabular format of the
2581 * schemata file does not change between mounts of the filesystem.
2582 */
2583 if (r->cdp_capable && !resctrl_arch_get_cdp_enabled(r->rid))
2584 cl += 4;
2585
2586 if (cl > max_name_width)
2587 max_name_width = cl;
2588
2589 INIT_LIST_HEAD(&s->list);
2590 list_add(&s->list, &resctrl_schema_all);
2591
2592 return 0;
2593 }
2594
schemata_list_create(void)2595 static int schemata_list_create(void)
2596 {
2597 struct rdt_resource *r;
2598 int ret = 0;
2599
2600 for_each_alloc_capable_rdt_resource(r) {
2601 if (resctrl_arch_get_cdp_enabled(r->rid)) {
2602 ret = schemata_list_add(r, CDP_CODE);
2603 if (ret)
2604 break;
2605
2606 ret = schemata_list_add(r, CDP_DATA);
2607 } else {
2608 ret = schemata_list_add(r, CDP_NONE);
2609 }
2610
2611 if (ret)
2612 break;
2613 }
2614
2615 return ret;
2616 }
2617
schemata_list_destroy(void)2618 static void schemata_list_destroy(void)
2619 {
2620 struct resctrl_schema *s, *tmp;
2621
2622 list_for_each_entry_safe(s, tmp, &resctrl_schema_all, list) {
2623 list_del(&s->list);
2624 kfree(s);
2625 }
2626 }
2627
rdt_get_tree(struct fs_context * fc)2628 static int rdt_get_tree(struct fs_context *fc)
2629 {
2630 struct rdt_fs_context *ctx = rdt_fc2context(fc);
2631 unsigned long flags = RFTYPE_CTRL_BASE;
2632 struct rdt_mon_domain *dom;
2633 struct rdt_resource *r;
2634 int ret;
2635
2636 cpus_read_lock();
2637 mutex_lock(&rdtgroup_mutex);
2638 /*
2639 * resctrl file system can only be mounted once.
2640 */
2641 if (resctrl_mounted) {
2642 ret = -EBUSY;
2643 goto out;
2644 }
2645
2646 ret = rdtgroup_setup_root(ctx);
2647 if (ret)
2648 goto out;
2649
2650 ret = rdt_enable_ctx(ctx);
2651 if (ret)
2652 goto out_root;
2653
2654 ret = schemata_list_create();
2655 if (ret) {
2656 schemata_list_destroy();
2657 goto out_ctx;
2658 }
2659
2660 closid_init();
2661
2662 if (resctrl_arch_mon_capable())
2663 flags |= RFTYPE_MON;
2664
2665 ret = rdtgroup_add_files(rdtgroup_default.kn, flags);
2666 if (ret)
2667 goto out_schemata_free;
2668
2669 kernfs_activate(rdtgroup_default.kn);
2670
2671 ret = rdtgroup_create_info_dir(rdtgroup_default.kn);
2672 if (ret < 0)
2673 goto out_schemata_free;
2674
2675 if (resctrl_arch_mon_capable()) {
2676 ret = mongroup_create_dir(rdtgroup_default.kn,
2677 &rdtgroup_default, "mon_groups",
2678 &kn_mongrp);
2679 if (ret < 0)
2680 goto out_info;
2681
2682 ret = mkdir_mondata_all(rdtgroup_default.kn,
2683 &rdtgroup_default, &kn_mondata);
2684 if (ret < 0)
2685 goto out_mongrp;
2686 rdtgroup_default.mon.mon_data_kn = kn_mondata;
2687 }
2688
2689 ret = rdt_pseudo_lock_init();
2690 if (ret)
2691 goto out_mondata;
2692
2693 ret = kernfs_get_tree(fc);
2694 if (ret < 0)
2695 goto out_psl;
2696
2697 if (resctrl_arch_alloc_capable())
2698 resctrl_arch_enable_alloc();
2699 if (resctrl_arch_mon_capable())
2700 resctrl_arch_enable_mon();
2701
2702 if (resctrl_arch_alloc_capable() || resctrl_arch_mon_capable())
2703 resctrl_mounted = true;
2704
2705 if (is_mbm_enabled()) {
2706 r = &rdt_resources_all[RDT_RESOURCE_L3].r_resctrl;
2707 list_for_each_entry(dom, &r->mon_domains, hdr.list)
2708 mbm_setup_overflow_handler(dom, MBM_OVERFLOW_INTERVAL,
2709 RESCTRL_PICK_ANY_CPU);
2710 }
2711
2712 goto out;
2713
2714 out_psl:
2715 rdt_pseudo_lock_release();
2716 out_mondata:
2717 if (resctrl_arch_mon_capable())
2718 kernfs_remove(kn_mondata);
2719 out_mongrp:
2720 if (resctrl_arch_mon_capable())
2721 kernfs_remove(kn_mongrp);
2722 out_info:
2723 kernfs_remove(kn_info);
2724 out_schemata_free:
2725 schemata_list_destroy();
2726 out_ctx:
2727 rdt_disable_ctx();
2728 out_root:
2729 rdtgroup_destroy_root();
2730 out:
2731 rdt_last_cmd_clear();
2732 mutex_unlock(&rdtgroup_mutex);
2733 cpus_read_unlock();
2734 return ret;
2735 }
2736
2737 enum rdt_param {
2738 Opt_cdp,
2739 Opt_cdpl2,
2740 Opt_mba_mbps,
2741 Opt_debug,
2742 nr__rdt_params
2743 };
2744
2745 static const struct fs_parameter_spec rdt_fs_parameters[] = {
2746 fsparam_flag("cdp", Opt_cdp),
2747 fsparam_flag("cdpl2", Opt_cdpl2),
2748 fsparam_flag("mba_MBps", Opt_mba_mbps),
2749 fsparam_flag("debug", Opt_debug),
2750 {}
2751 };
2752
rdt_parse_param(struct fs_context * fc,struct fs_parameter * param)2753 static int rdt_parse_param(struct fs_context *fc, struct fs_parameter *param)
2754 {
2755 struct rdt_fs_context *ctx = rdt_fc2context(fc);
2756 struct fs_parse_result result;
2757 const char *msg;
2758 int opt;
2759
2760 opt = fs_parse(fc, rdt_fs_parameters, param, &result);
2761 if (opt < 0)
2762 return opt;
2763
2764 switch (opt) {
2765 case Opt_cdp:
2766 ctx->enable_cdpl3 = true;
2767 return 0;
2768 case Opt_cdpl2:
2769 ctx->enable_cdpl2 = true;
2770 return 0;
2771 case Opt_mba_mbps:
2772 msg = "mba_MBps requires local MBM and linear scale MBA at L3 scope";
2773 if (!supports_mba_mbps())
2774 return invalfc(fc, msg);
2775 ctx->enable_mba_mbps = true;
2776 return 0;
2777 case Opt_debug:
2778 ctx->enable_debug = true;
2779 return 0;
2780 }
2781
2782 return -EINVAL;
2783 }
2784
rdt_fs_context_free(struct fs_context * fc)2785 static void rdt_fs_context_free(struct fs_context *fc)
2786 {
2787 struct rdt_fs_context *ctx = rdt_fc2context(fc);
2788
2789 kernfs_free_fs_context(fc);
2790 kfree(ctx);
2791 }
2792
2793 static const struct fs_context_operations rdt_fs_context_ops = {
2794 .free = rdt_fs_context_free,
2795 .parse_param = rdt_parse_param,
2796 .get_tree = rdt_get_tree,
2797 };
2798
rdt_init_fs_context(struct fs_context * fc)2799 static int rdt_init_fs_context(struct fs_context *fc)
2800 {
2801 struct rdt_fs_context *ctx;
2802
2803 ctx = kzalloc(sizeof(struct rdt_fs_context), GFP_KERNEL);
2804 if (!ctx)
2805 return -ENOMEM;
2806
2807 ctx->kfc.magic = RDTGROUP_SUPER_MAGIC;
2808 fc->fs_private = &ctx->kfc;
2809 fc->ops = &rdt_fs_context_ops;
2810 put_user_ns(fc->user_ns);
2811 fc->user_ns = get_user_ns(&init_user_ns);
2812 fc->global = true;
2813 return 0;
2814 }
2815
reset_all_ctrls(struct rdt_resource * r)2816 static int reset_all_ctrls(struct rdt_resource *r)
2817 {
2818 struct rdt_hw_resource *hw_res = resctrl_to_arch_res(r);
2819 struct rdt_hw_ctrl_domain *hw_dom;
2820 struct msr_param msr_param;
2821 struct rdt_ctrl_domain *d;
2822 int i;
2823
2824 /* Walking r->domains, ensure it can't race with cpuhp */
2825 lockdep_assert_cpus_held();
2826
2827 msr_param.res = r;
2828 msr_param.low = 0;
2829 msr_param.high = hw_res->num_closid;
2830
2831 /*
2832 * Disable resource control for this resource by setting all
2833 * CBMs in all ctrl_domains to the maximum mask value. Pick one CPU
2834 * from each domain to update the MSRs below.
2835 */
2836 list_for_each_entry(d, &r->ctrl_domains, hdr.list) {
2837 hw_dom = resctrl_to_arch_ctrl_dom(d);
2838
2839 for (i = 0; i < hw_res->num_closid; i++)
2840 hw_dom->ctrl_val[i] = r->default_ctrl;
2841 msr_param.dom = d;
2842 smp_call_function_any(&d->hdr.cpu_mask, rdt_ctrl_update, &msr_param, 1);
2843 }
2844
2845 return 0;
2846 }
2847
2848 /*
2849 * Move tasks from one to the other group. If @from is NULL, then all tasks
2850 * in the systems are moved unconditionally (used for teardown).
2851 *
2852 * If @mask is not NULL the cpus on which moved tasks are running are set
2853 * in that mask so the update smp function call is restricted to affected
2854 * cpus.
2855 */
rdt_move_group_tasks(struct rdtgroup * from,struct rdtgroup * to,struct cpumask * mask)2856 static void rdt_move_group_tasks(struct rdtgroup *from, struct rdtgroup *to,
2857 struct cpumask *mask)
2858 {
2859 struct task_struct *p, *t;
2860
2861 read_lock(&tasklist_lock);
2862 for_each_process_thread(p, t) {
2863 if (!from || is_closid_match(t, from) ||
2864 is_rmid_match(t, from)) {
2865 resctrl_arch_set_closid_rmid(t, to->closid,
2866 to->mon.rmid);
2867
2868 /*
2869 * Order the closid/rmid stores above before the loads
2870 * in task_curr(). This pairs with the full barrier
2871 * between the rq->curr update and resctrl_sched_in()
2872 * during context switch.
2873 */
2874 smp_mb();
2875
2876 /*
2877 * If the task is on a CPU, set the CPU in the mask.
2878 * The detection is inaccurate as tasks might move or
2879 * schedule before the smp function call takes place.
2880 * In such a case the function call is pointless, but
2881 * there is no other side effect.
2882 */
2883 if (IS_ENABLED(CONFIG_SMP) && mask && task_curr(t))
2884 cpumask_set_cpu(task_cpu(t), mask);
2885 }
2886 }
2887 read_unlock(&tasklist_lock);
2888 }
2889
free_all_child_rdtgrp(struct rdtgroup * rdtgrp)2890 static void free_all_child_rdtgrp(struct rdtgroup *rdtgrp)
2891 {
2892 struct rdtgroup *sentry, *stmp;
2893 struct list_head *head;
2894
2895 head = &rdtgrp->mon.crdtgrp_list;
2896 list_for_each_entry_safe(sentry, stmp, head, mon.crdtgrp_list) {
2897 free_rmid(sentry->closid, sentry->mon.rmid);
2898 list_del(&sentry->mon.crdtgrp_list);
2899
2900 if (atomic_read(&sentry->waitcount) != 0)
2901 sentry->flags = RDT_DELETED;
2902 else
2903 rdtgroup_remove(sentry);
2904 }
2905 }
2906
2907 /*
2908 * Forcibly remove all of subdirectories under root.
2909 */
rmdir_all_sub(void)2910 static void rmdir_all_sub(void)
2911 {
2912 struct rdtgroup *rdtgrp, *tmp;
2913
2914 /* Move all tasks to the default resource group */
2915 rdt_move_group_tasks(NULL, &rdtgroup_default, NULL);
2916
2917 list_for_each_entry_safe(rdtgrp, tmp, &rdt_all_groups, rdtgroup_list) {
2918 /* Free any child rmids */
2919 free_all_child_rdtgrp(rdtgrp);
2920
2921 /* Remove each rdtgroup other than root */
2922 if (rdtgrp == &rdtgroup_default)
2923 continue;
2924
2925 if (rdtgrp->mode == RDT_MODE_PSEUDO_LOCKSETUP ||
2926 rdtgrp->mode == RDT_MODE_PSEUDO_LOCKED)
2927 rdtgroup_pseudo_lock_remove(rdtgrp);
2928
2929 /*
2930 * Give any CPUs back to the default group. We cannot copy
2931 * cpu_online_mask because a CPU might have executed the
2932 * offline callback already, but is still marked online.
2933 */
2934 cpumask_or(&rdtgroup_default.cpu_mask,
2935 &rdtgroup_default.cpu_mask, &rdtgrp->cpu_mask);
2936
2937 free_rmid(rdtgrp->closid, rdtgrp->mon.rmid);
2938
2939 kernfs_remove(rdtgrp->kn);
2940 list_del(&rdtgrp->rdtgroup_list);
2941
2942 if (atomic_read(&rdtgrp->waitcount) != 0)
2943 rdtgrp->flags = RDT_DELETED;
2944 else
2945 rdtgroup_remove(rdtgrp);
2946 }
2947 /* Notify online CPUs to update per cpu storage and PQR_ASSOC MSR */
2948 update_closid_rmid(cpu_online_mask, &rdtgroup_default);
2949
2950 kernfs_remove(kn_info);
2951 kernfs_remove(kn_mongrp);
2952 kernfs_remove(kn_mondata);
2953 }
2954
rdt_kill_sb(struct super_block * sb)2955 static void rdt_kill_sb(struct super_block *sb)
2956 {
2957 struct rdt_resource *r;
2958
2959 cpus_read_lock();
2960 mutex_lock(&rdtgroup_mutex);
2961
2962 rdt_disable_ctx();
2963
2964 /*Put everything back to default values. */
2965 for_each_alloc_capable_rdt_resource(r)
2966 reset_all_ctrls(r);
2967 rmdir_all_sub();
2968 rdt_pseudo_lock_release();
2969 rdtgroup_default.mode = RDT_MODE_SHAREABLE;
2970 schemata_list_destroy();
2971 rdtgroup_destroy_root();
2972 if (resctrl_arch_alloc_capable())
2973 resctrl_arch_disable_alloc();
2974 if (resctrl_arch_mon_capable())
2975 resctrl_arch_disable_mon();
2976 resctrl_mounted = false;
2977 kernfs_kill_sb(sb);
2978 mutex_unlock(&rdtgroup_mutex);
2979 cpus_read_unlock();
2980 }
2981
2982 static struct file_system_type rdt_fs_type = {
2983 .name = "resctrl",
2984 .init_fs_context = rdt_init_fs_context,
2985 .parameters = rdt_fs_parameters,
2986 .kill_sb = rdt_kill_sb,
2987 };
2988
mon_addfile(struct kernfs_node * parent_kn,const char * name,void * priv)2989 static int mon_addfile(struct kernfs_node *parent_kn, const char *name,
2990 void *priv)
2991 {
2992 struct kernfs_node *kn;
2993 int ret = 0;
2994
2995 kn = __kernfs_create_file(parent_kn, name, 0444,
2996 GLOBAL_ROOT_UID, GLOBAL_ROOT_GID, 0,
2997 &kf_mondata_ops, priv, NULL, NULL);
2998 if (IS_ERR(kn))
2999 return PTR_ERR(kn);
3000
3001 ret = rdtgroup_kn_set_ugid(kn);
3002 if (ret) {
3003 kernfs_remove(kn);
3004 return ret;
3005 }
3006
3007 return ret;
3008 }
3009
mon_rmdir_one_subdir(struct kernfs_node * pkn,char * name,char * subname)3010 static void mon_rmdir_one_subdir(struct kernfs_node *pkn, char *name, char *subname)
3011 {
3012 struct kernfs_node *kn;
3013
3014 kn = kernfs_find_and_get(pkn, name);
3015 if (!kn)
3016 return;
3017 kernfs_put(kn);
3018
3019 if (kn->dir.subdirs <= 1)
3020 kernfs_remove(kn);
3021 else
3022 kernfs_remove_by_name(kn, subname);
3023 }
3024
3025 /*
3026 * Remove all subdirectories of mon_data of ctrl_mon groups
3027 * and monitor groups for the given domain.
3028 * Remove files and directories containing "sum" of domain data
3029 * when last domain being summed is removed.
3030 */
rmdir_mondata_subdir_allrdtgrp(struct rdt_resource * r,struct rdt_mon_domain * d)3031 static void rmdir_mondata_subdir_allrdtgrp(struct rdt_resource *r,
3032 struct rdt_mon_domain *d)
3033 {
3034 struct rdtgroup *prgrp, *crgrp;
3035 char subname[32];
3036 bool snc_mode;
3037 char name[32];
3038
3039 snc_mode = r->mon_scope == RESCTRL_L3_NODE;
3040 sprintf(name, "mon_%s_%02d", r->name, snc_mode ? d->ci->id : d->hdr.id);
3041 if (snc_mode)
3042 sprintf(subname, "mon_sub_%s_%02d", r->name, d->hdr.id);
3043
3044 list_for_each_entry(prgrp, &rdt_all_groups, rdtgroup_list) {
3045 mon_rmdir_one_subdir(prgrp->mon.mon_data_kn, name, subname);
3046
3047 list_for_each_entry(crgrp, &prgrp->mon.crdtgrp_list, mon.crdtgrp_list)
3048 mon_rmdir_one_subdir(crgrp->mon.mon_data_kn, name, subname);
3049 }
3050 }
3051
mon_add_all_files(struct kernfs_node * kn,struct rdt_mon_domain * d,struct rdt_resource * r,struct rdtgroup * prgrp,bool do_sum)3052 static int mon_add_all_files(struct kernfs_node *kn, struct rdt_mon_domain *d,
3053 struct rdt_resource *r, struct rdtgroup *prgrp,
3054 bool do_sum)
3055 {
3056 struct rmid_read rr = {0};
3057 union mon_data_bits priv;
3058 struct mon_evt *mevt;
3059 int ret;
3060
3061 if (WARN_ON(list_empty(&r->evt_list)))
3062 return -EPERM;
3063
3064 priv.u.rid = r->rid;
3065 priv.u.domid = do_sum ? d->ci->id : d->hdr.id;
3066 priv.u.sum = do_sum;
3067 list_for_each_entry(mevt, &r->evt_list, list) {
3068 priv.u.evtid = mevt->evtid;
3069 ret = mon_addfile(kn, mevt->name, priv.priv);
3070 if (ret)
3071 return ret;
3072
3073 if (!do_sum && is_mbm_event(mevt->evtid))
3074 mon_event_read(&rr, r, d, prgrp, &d->hdr.cpu_mask, mevt->evtid, true);
3075 }
3076
3077 return 0;
3078 }
3079
mkdir_mondata_subdir(struct kernfs_node * parent_kn,struct rdt_mon_domain * d,struct rdt_resource * r,struct rdtgroup * prgrp)3080 static int mkdir_mondata_subdir(struct kernfs_node *parent_kn,
3081 struct rdt_mon_domain *d,
3082 struct rdt_resource *r, struct rdtgroup *prgrp)
3083 {
3084 struct kernfs_node *kn, *ckn;
3085 char name[32];
3086 bool snc_mode;
3087 int ret = 0;
3088
3089 lockdep_assert_held(&rdtgroup_mutex);
3090
3091 snc_mode = r->mon_scope == RESCTRL_L3_NODE;
3092 sprintf(name, "mon_%s_%02d", r->name, snc_mode ? d->ci->id : d->hdr.id);
3093 kn = kernfs_find_and_get(parent_kn, name);
3094 if (kn) {
3095 /*
3096 * rdtgroup_mutex will prevent this directory from being
3097 * removed. No need to keep this hold.
3098 */
3099 kernfs_put(kn);
3100 } else {
3101 kn = kernfs_create_dir(parent_kn, name, parent_kn->mode, prgrp);
3102 if (IS_ERR(kn))
3103 return PTR_ERR(kn);
3104
3105 ret = rdtgroup_kn_set_ugid(kn);
3106 if (ret)
3107 goto out_destroy;
3108 ret = mon_add_all_files(kn, d, r, prgrp, snc_mode);
3109 if (ret)
3110 goto out_destroy;
3111 }
3112
3113 if (snc_mode) {
3114 sprintf(name, "mon_sub_%s_%02d", r->name, d->hdr.id);
3115 ckn = kernfs_create_dir(kn, name, parent_kn->mode, prgrp);
3116 if (IS_ERR(ckn)) {
3117 ret = -EINVAL;
3118 goto out_destroy;
3119 }
3120
3121 ret = rdtgroup_kn_set_ugid(ckn);
3122 if (ret)
3123 goto out_destroy;
3124
3125 ret = mon_add_all_files(ckn, d, r, prgrp, false);
3126 if (ret)
3127 goto out_destroy;
3128 }
3129
3130 kernfs_activate(kn);
3131 return 0;
3132
3133 out_destroy:
3134 kernfs_remove(kn);
3135 return ret;
3136 }
3137
3138 /*
3139 * Add all subdirectories of mon_data for "ctrl_mon" groups
3140 * and "monitor" groups with given domain id.
3141 */
mkdir_mondata_subdir_allrdtgrp(struct rdt_resource * r,struct rdt_mon_domain * d)3142 static void mkdir_mondata_subdir_allrdtgrp(struct rdt_resource *r,
3143 struct rdt_mon_domain *d)
3144 {
3145 struct kernfs_node *parent_kn;
3146 struct rdtgroup *prgrp, *crgrp;
3147 struct list_head *head;
3148
3149 list_for_each_entry(prgrp, &rdt_all_groups, rdtgroup_list) {
3150 parent_kn = prgrp->mon.mon_data_kn;
3151 mkdir_mondata_subdir(parent_kn, d, r, prgrp);
3152
3153 head = &prgrp->mon.crdtgrp_list;
3154 list_for_each_entry(crgrp, head, mon.crdtgrp_list) {
3155 parent_kn = crgrp->mon.mon_data_kn;
3156 mkdir_mondata_subdir(parent_kn, d, r, crgrp);
3157 }
3158 }
3159 }
3160
mkdir_mondata_subdir_alldom(struct kernfs_node * parent_kn,struct rdt_resource * r,struct rdtgroup * prgrp)3161 static int mkdir_mondata_subdir_alldom(struct kernfs_node *parent_kn,
3162 struct rdt_resource *r,
3163 struct rdtgroup *prgrp)
3164 {
3165 struct rdt_mon_domain *dom;
3166 int ret;
3167
3168 /* Walking r->domains, ensure it can't race with cpuhp */
3169 lockdep_assert_cpus_held();
3170
3171 list_for_each_entry(dom, &r->mon_domains, hdr.list) {
3172 ret = mkdir_mondata_subdir(parent_kn, dom, r, prgrp);
3173 if (ret)
3174 return ret;
3175 }
3176
3177 return 0;
3178 }
3179
3180 /*
3181 * This creates a directory mon_data which contains the monitored data.
3182 *
3183 * mon_data has one directory for each domain which are named
3184 * in the format mon_<domain_name>_<domain_id>. For ex: A mon_data
3185 * with L3 domain looks as below:
3186 * ./mon_data:
3187 * mon_L3_00
3188 * mon_L3_01
3189 * mon_L3_02
3190 * ...
3191 *
3192 * Each domain directory has one file per event:
3193 * ./mon_L3_00/:
3194 * llc_occupancy
3195 *
3196 */
mkdir_mondata_all(struct kernfs_node * parent_kn,struct rdtgroup * prgrp,struct kernfs_node ** dest_kn)3197 static int mkdir_mondata_all(struct kernfs_node *parent_kn,
3198 struct rdtgroup *prgrp,
3199 struct kernfs_node **dest_kn)
3200 {
3201 struct rdt_resource *r;
3202 struct kernfs_node *kn;
3203 int ret;
3204
3205 /*
3206 * Create the mon_data directory first.
3207 */
3208 ret = mongroup_create_dir(parent_kn, prgrp, "mon_data", &kn);
3209 if (ret)
3210 return ret;
3211
3212 if (dest_kn)
3213 *dest_kn = kn;
3214
3215 /*
3216 * Create the subdirectories for each domain. Note that all events
3217 * in a domain like L3 are grouped into a resource whose domain is L3
3218 */
3219 for_each_mon_capable_rdt_resource(r) {
3220 ret = mkdir_mondata_subdir_alldom(kn, r, prgrp);
3221 if (ret)
3222 goto out_destroy;
3223 }
3224
3225 return 0;
3226
3227 out_destroy:
3228 kernfs_remove(kn);
3229 return ret;
3230 }
3231
3232 /**
3233 * cbm_ensure_valid - Enforce validity on provided CBM
3234 * @_val: Candidate CBM
3235 * @r: RDT resource to which the CBM belongs
3236 *
3237 * The provided CBM represents all cache portions available for use. This
3238 * may be represented by a bitmap that does not consist of contiguous ones
3239 * and thus be an invalid CBM.
3240 * Here the provided CBM is forced to be a valid CBM by only considering
3241 * the first set of contiguous bits as valid and clearing all bits.
3242 * The intention here is to provide a valid default CBM with which a new
3243 * resource group is initialized. The user can follow this with a
3244 * modification to the CBM if the default does not satisfy the
3245 * requirements.
3246 */
cbm_ensure_valid(u32 _val,struct rdt_resource * r)3247 static u32 cbm_ensure_valid(u32 _val, struct rdt_resource *r)
3248 {
3249 unsigned int cbm_len = r->cache.cbm_len;
3250 unsigned long first_bit, zero_bit;
3251 unsigned long val = _val;
3252
3253 if (!val)
3254 return 0;
3255
3256 first_bit = find_first_bit(&val, cbm_len);
3257 zero_bit = find_next_zero_bit(&val, cbm_len, first_bit);
3258
3259 /* Clear any remaining bits to ensure contiguous region */
3260 bitmap_clear(&val, zero_bit, cbm_len - zero_bit);
3261 return (u32)val;
3262 }
3263
3264 /*
3265 * Initialize cache resources per RDT domain
3266 *
3267 * Set the RDT domain up to start off with all usable allocations. That is,
3268 * all shareable and unused bits. All-zero CBM is invalid.
3269 */
__init_one_rdt_domain(struct rdt_ctrl_domain * d,struct resctrl_schema * s,u32 closid)3270 static int __init_one_rdt_domain(struct rdt_ctrl_domain *d, struct resctrl_schema *s,
3271 u32 closid)
3272 {
3273 enum resctrl_conf_type peer_type = resctrl_peer_type(s->conf_type);
3274 enum resctrl_conf_type t = s->conf_type;
3275 struct resctrl_staged_config *cfg;
3276 struct rdt_resource *r = s->res;
3277 u32 used_b = 0, unused_b = 0;
3278 unsigned long tmp_cbm;
3279 enum rdtgrp_mode mode;
3280 u32 peer_ctl, ctrl_val;
3281 int i;
3282
3283 cfg = &d->staged_config[t];
3284 cfg->have_new_ctrl = false;
3285 cfg->new_ctrl = r->cache.shareable_bits;
3286 used_b = r->cache.shareable_bits;
3287 for (i = 0; i < closids_supported(); i++) {
3288 if (closid_allocated(i) && i != closid) {
3289 mode = rdtgroup_mode_by_closid(i);
3290 if (mode == RDT_MODE_PSEUDO_LOCKSETUP)
3291 /*
3292 * ctrl values for locksetup aren't relevant
3293 * until the schemata is written, and the mode
3294 * becomes RDT_MODE_PSEUDO_LOCKED.
3295 */
3296 continue;
3297 /*
3298 * If CDP is active include peer domain's
3299 * usage to ensure there is no overlap
3300 * with an exclusive group.
3301 */
3302 if (resctrl_arch_get_cdp_enabled(r->rid))
3303 peer_ctl = resctrl_arch_get_config(r, d, i,
3304 peer_type);
3305 else
3306 peer_ctl = 0;
3307 ctrl_val = resctrl_arch_get_config(r, d, i,
3308 s->conf_type);
3309 used_b |= ctrl_val | peer_ctl;
3310 if (mode == RDT_MODE_SHAREABLE)
3311 cfg->new_ctrl |= ctrl_val | peer_ctl;
3312 }
3313 }
3314 if (d->plr && d->plr->cbm > 0)
3315 used_b |= d->plr->cbm;
3316 unused_b = used_b ^ (BIT_MASK(r->cache.cbm_len) - 1);
3317 unused_b &= BIT_MASK(r->cache.cbm_len) - 1;
3318 cfg->new_ctrl |= unused_b;
3319 /*
3320 * Force the initial CBM to be valid, user can
3321 * modify the CBM based on system availability.
3322 */
3323 cfg->new_ctrl = cbm_ensure_valid(cfg->new_ctrl, r);
3324 /*
3325 * Assign the u32 CBM to an unsigned long to ensure that
3326 * bitmap_weight() does not access out-of-bound memory.
3327 */
3328 tmp_cbm = cfg->new_ctrl;
3329 if (bitmap_weight(&tmp_cbm, r->cache.cbm_len) < r->cache.min_cbm_bits) {
3330 rdt_last_cmd_printf("No space on %s:%d\n", s->name, d->hdr.id);
3331 return -ENOSPC;
3332 }
3333 cfg->have_new_ctrl = true;
3334
3335 return 0;
3336 }
3337
3338 /*
3339 * Initialize cache resources with default values.
3340 *
3341 * A new RDT group is being created on an allocation capable (CAT)
3342 * supporting system. Set this group up to start off with all usable
3343 * allocations.
3344 *
3345 * If there are no more shareable bits available on any domain then
3346 * the entire allocation will fail.
3347 */
rdtgroup_init_cat(struct resctrl_schema * s,u32 closid)3348 static int rdtgroup_init_cat(struct resctrl_schema *s, u32 closid)
3349 {
3350 struct rdt_ctrl_domain *d;
3351 int ret;
3352
3353 list_for_each_entry(d, &s->res->ctrl_domains, hdr.list) {
3354 ret = __init_one_rdt_domain(d, s, closid);
3355 if (ret < 0)
3356 return ret;
3357 }
3358
3359 return 0;
3360 }
3361
3362 /* Initialize MBA resource with default values. */
rdtgroup_init_mba(struct rdt_resource * r,u32 closid)3363 static void rdtgroup_init_mba(struct rdt_resource *r, u32 closid)
3364 {
3365 struct resctrl_staged_config *cfg;
3366 struct rdt_ctrl_domain *d;
3367
3368 list_for_each_entry(d, &r->ctrl_domains, hdr.list) {
3369 if (is_mba_sc(r)) {
3370 d->mbps_val[closid] = MBA_MAX_MBPS;
3371 continue;
3372 }
3373
3374 cfg = &d->staged_config[CDP_NONE];
3375 cfg->new_ctrl = r->default_ctrl;
3376 cfg->have_new_ctrl = true;
3377 }
3378 }
3379
3380 /* Initialize the RDT group's allocations. */
rdtgroup_init_alloc(struct rdtgroup * rdtgrp)3381 static int rdtgroup_init_alloc(struct rdtgroup *rdtgrp)
3382 {
3383 struct resctrl_schema *s;
3384 struct rdt_resource *r;
3385 int ret = 0;
3386
3387 rdt_staged_configs_clear();
3388
3389 list_for_each_entry(s, &resctrl_schema_all, list) {
3390 r = s->res;
3391 if (r->rid == RDT_RESOURCE_MBA ||
3392 r->rid == RDT_RESOURCE_SMBA) {
3393 rdtgroup_init_mba(r, rdtgrp->closid);
3394 if (is_mba_sc(r))
3395 continue;
3396 } else {
3397 ret = rdtgroup_init_cat(s, rdtgrp->closid);
3398 if (ret < 0)
3399 goto out;
3400 }
3401
3402 ret = resctrl_arch_update_domains(r, rdtgrp->closid);
3403 if (ret < 0) {
3404 rdt_last_cmd_puts("Failed to initialize allocations\n");
3405 goto out;
3406 }
3407
3408 }
3409
3410 rdtgrp->mode = RDT_MODE_SHAREABLE;
3411
3412 out:
3413 rdt_staged_configs_clear();
3414 return ret;
3415 }
3416
mkdir_rdt_prepare_rmid_alloc(struct rdtgroup * rdtgrp)3417 static int mkdir_rdt_prepare_rmid_alloc(struct rdtgroup *rdtgrp)
3418 {
3419 int ret;
3420
3421 if (!resctrl_arch_mon_capable())
3422 return 0;
3423
3424 ret = alloc_rmid(rdtgrp->closid);
3425 if (ret < 0) {
3426 rdt_last_cmd_puts("Out of RMIDs\n");
3427 return ret;
3428 }
3429 rdtgrp->mon.rmid = ret;
3430
3431 ret = mkdir_mondata_all(rdtgrp->kn, rdtgrp, &rdtgrp->mon.mon_data_kn);
3432 if (ret) {
3433 rdt_last_cmd_puts("kernfs subdir error\n");
3434 free_rmid(rdtgrp->closid, rdtgrp->mon.rmid);
3435 return ret;
3436 }
3437
3438 return 0;
3439 }
3440
mkdir_rdt_prepare_rmid_free(struct rdtgroup * rgrp)3441 static void mkdir_rdt_prepare_rmid_free(struct rdtgroup *rgrp)
3442 {
3443 if (resctrl_arch_mon_capable())
3444 free_rmid(rgrp->closid, rgrp->mon.rmid);
3445 }
3446
mkdir_rdt_prepare(struct kernfs_node * parent_kn,const char * name,umode_t mode,enum rdt_group_type rtype,struct rdtgroup ** r)3447 static int mkdir_rdt_prepare(struct kernfs_node *parent_kn,
3448 const char *name, umode_t mode,
3449 enum rdt_group_type rtype, struct rdtgroup **r)
3450 {
3451 struct rdtgroup *prdtgrp, *rdtgrp;
3452 unsigned long files = 0;
3453 struct kernfs_node *kn;
3454 int ret;
3455
3456 prdtgrp = rdtgroup_kn_lock_live(parent_kn);
3457 if (!prdtgrp) {
3458 ret = -ENODEV;
3459 goto out_unlock;
3460 }
3461
3462 if (rtype == RDTMON_GROUP &&
3463 (prdtgrp->mode == RDT_MODE_PSEUDO_LOCKSETUP ||
3464 prdtgrp->mode == RDT_MODE_PSEUDO_LOCKED)) {
3465 ret = -EINVAL;
3466 rdt_last_cmd_puts("Pseudo-locking in progress\n");
3467 goto out_unlock;
3468 }
3469
3470 /* allocate the rdtgroup. */
3471 rdtgrp = kzalloc(sizeof(*rdtgrp), GFP_KERNEL);
3472 if (!rdtgrp) {
3473 ret = -ENOSPC;
3474 rdt_last_cmd_puts("Kernel out of memory\n");
3475 goto out_unlock;
3476 }
3477 *r = rdtgrp;
3478 rdtgrp->mon.parent = prdtgrp;
3479 rdtgrp->type = rtype;
3480 INIT_LIST_HEAD(&rdtgrp->mon.crdtgrp_list);
3481
3482 /* kernfs creates the directory for rdtgrp */
3483 kn = kernfs_create_dir(parent_kn, name, mode, rdtgrp);
3484 if (IS_ERR(kn)) {
3485 ret = PTR_ERR(kn);
3486 rdt_last_cmd_puts("kernfs create error\n");
3487 goto out_free_rgrp;
3488 }
3489 rdtgrp->kn = kn;
3490
3491 /*
3492 * kernfs_remove() will drop the reference count on "kn" which
3493 * will free it. But we still need it to stick around for the
3494 * rdtgroup_kn_unlock(kn) call. Take one extra reference here,
3495 * which will be dropped by kernfs_put() in rdtgroup_remove().
3496 */
3497 kernfs_get(kn);
3498
3499 ret = rdtgroup_kn_set_ugid(kn);
3500 if (ret) {
3501 rdt_last_cmd_puts("kernfs perm error\n");
3502 goto out_destroy;
3503 }
3504
3505 if (rtype == RDTCTRL_GROUP) {
3506 files = RFTYPE_BASE | RFTYPE_CTRL;
3507 if (resctrl_arch_mon_capable())
3508 files |= RFTYPE_MON;
3509 } else {
3510 files = RFTYPE_BASE | RFTYPE_MON;
3511 }
3512
3513 ret = rdtgroup_add_files(kn, files);
3514 if (ret) {
3515 rdt_last_cmd_puts("kernfs fill error\n");
3516 goto out_destroy;
3517 }
3518
3519 /*
3520 * The caller unlocks the parent_kn upon success.
3521 */
3522 return 0;
3523
3524 out_destroy:
3525 kernfs_put(rdtgrp->kn);
3526 kernfs_remove(rdtgrp->kn);
3527 out_free_rgrp:
3528 kfree(rdtgrp);
3529 out_unlock:
3530 rdtgroup_kn_unlock(parent_kn);
3531 return ret;
3532 }
3533
mkdir_rdt_prepare_clean(struct rdtgroup * rgrp)3534 static void mkdir_rdt_prepare_clean(struct rdtgroup *rgrp)
3535 {
3536 kernfs_remove(rgrp->kn);
3537 rdtgroup_remove(rgrp);
3538 }
3539
3540 /*
3541 * Create a monitor group under "mon_groups" directory of a control
3542 * and monitor group(ctrl_mon). This is a resource group
3543 * to monitor a subset of tasks and cpus in its parent ctrl_mon group.
3544 */
rdtgroup_mkdir_mon(struct kernfs_node * parent_kn,const char * name,umode_t mode)3545 static int rdtgroup_mkdir_mon(struct kernfs_node *parent_kn,
3546 const char *name, umode_t mode)
3547 {
3548 struct rdtgroup *rdtgrp, *prgrp;
3549 int ret;
3550
3551 ret = mkdir_rdt_prepare(parent_kn, name, mode, RDTMON_GROUP, &rdtgrp);
3552 if (ret)
3553 return ret;
3554
3555 prgrp = rdtgrp->mon.parent;
3556 rdtgrp->closid = prgrp->closid;
3557
3558 ret = mkdir_rdt_prepare_rmid_alloc(rdtgrp);
3559 if (ret) {
3560 mkdir_rdt_prepare_clean(rdtgrp);
3561 goto out_unlock;
3562 }
3563
3564 kernfs_activate(rdtgrp->kn);
3565
3566 /*
3567 * Add the rdtgrp to the list of rdtgrps the parent
3568 * ctrl_mon group has to track.
3569 */
3570 list_add_tail(&rdtgrp->mon.crdtgrp_list, &prgrp->mon.crdtgrp_list);
3571
3572 out_unlock:
3573 rdtgroup_kn_unlock(parent_kn);
3574 return ret;
3575 }
3576
3577 /*
3578 * These are rdtgroups created under the root directory. Can be used
3579 * to allocate and monitor resources.
3580 */
rdtgroup_mkdir_ctrl_mon(struct kernfs_node * parent_kn,const char * name,umode_t mode)3581 static int rdtgroup_mkdir_ctrl_mon(struct kernfs_node *parent_kn,
3582 const char *name, umode_t mode)
3583 {
3584 struct rdtgroup *rdtgrp;
3585 struct kernfs_node *kn;
3586 u32 closid;
3587 int ret;
3588
3589 ret = mkdir_rdt_prepare(parent_kn, name, mode, RDTCTRL_GROUP, &rdtgrp);
3590 if (ret)
3591 return ret;
3592
3593 kn = rdtgrp->kn;
3594 ret = closid_alloc();
3595 if (ret < 0) {
3596 rdt_last_cmd_puts("Out of CLOSIDs\n");
3597 goto out_common_fail;
3598 }
3599 closid = ret;
3600 ret = 0;
3601
3602 rdtgrp->closid = closid;
3603
3604 ret = mkdir_rdt_prepare_rmid_alloc(rdtgrp);
3605 if (ret)
3606 goto out_closid_free;
3607
3608 kernfs_activate(rdtgrp->kn);
3609
3610 ret = rdtgroup_init_alloc(rdtgrp);
3611 if (ret < 0)
3612 goto out_rmid_free;
3613
3614 list_add(&rdtgrp->rdtgroup_list, &rdt_all_groups);
3615
3616 if (resctrl_arch_mon_capable()) {
3617 /*
3618 * Create an empty mon_groups directory to hold the subset
3619 * of tasks and cpus to monitor.
3620 */
3621 ret = mongroup_create_dir(kn, rdtgrp, "mon_groups", NULL);
3622 if (ret) {
3623 rdt_last_cmd_puts("kernfs subdir error\n");
3624 goto out_del_list;
3625 }
3626 }
3627
3628 goto out_unlock;
3629
3630 out_del_list:
3631 list_del(&rdtgrp->rdtgroup_list);
3632 out_rmid_free:
3633 mkdir_rdt_prepare_rmid_free(rdtgrp);
3634 out_closid_free:
3635 closid_free(closid);
3636 out_common_fail:
3637 mkdir_rdt_prepare_clean(rdtgrp);
3638 out_unlock:
3639 rdtgroup_kn_unlock(parent_kn);
3640 return ret;
3641 }
3642
3643 /*
3644 * We allow creating mon groups only with in a directory called "mon_groups"
3645 * which is present in every ctrl_mon group. Check if this is a valid
3646 * "mon_groups" directory.
3647 *
3648 * 1. The directory should be named "mon_groups".
3649 * 2. The mon group itself should "not" be named "mon_groups".
3650 * This makes sure "mon_groups" directory always has a ctrl_mon group
3651 * as parent.
3652 */
is_mon_groups(struct kernfs_node * kn,const char * name)3653 static bool is_mon_groups(struct kernfs_node *kn, const char *name)
3654 {
3655 return (!strcmp(kn->name, "mon_groups") &&
3656 strcmp(name, "mon_groups"));
3657 }
3658
rdtgroup_mkdir(struct kernfs_node * parent_kn,const char * name,umode_t mode)3659 static int rdtgroup_mkdir(struct kernfs_node *parent_kn, const char *name,
3660 umode_t mode)
3661 {
3662 /* Do not accept '\n' to avoid unparsable situation. */
3663 if (strchr(name, '\n'))
3664 return -EINVAL;
3665
3666 /*
3667 * If the parent directory is the root directory and RDT
3668 * allocation is supported, add a control and monitoring
3669 * subdirectory
3670 */
3671 if (resctrl_arch_alloc_capable() && parent_kn == rdtgroup_default.kn)
3672 return rdtgroup_mkdir_ctrl_mon(parent_kn, name, mode);
3673
3674 /*
3675 * If RDT monitoring is supported and the parent directory is a valid
3676 * "mon_groups" directory, add a monitoring subdirectory.
3677 */
3678 if (resctrl_arch_mon_capable() && is_mon_groups(parent_kn, name))
3679 return rdtgroup_mkdir_mon(parent_kn, name, mode);
3680
3681 return -EPERM;
3682 }
3683
rdtgroup_rmdir_mon(struct rdtgroup * rdtgrp,cpumask_var_t tmpmask)3684 static int rdtgroup_rmdir_mon(struct rdtgroup *rdtgrp, cpumask_var_t tmpmask)
3685 {
3686 struct rdtgroup *prdtgrp = rdtgrp->mon.parent;
3687 int cpu;
3688
3689 /* Give any tasks back to the parent group */
3690 rdt_move_group_tasks(rdtgrp, prdtgrp, tmpmask);
3691
3692 /* Update per cpu rmid of the moved CPUs first */
3693 for_each_cpu(cpu, &rdtgrp->cpu_mask)
3694 per_cpu(pqr_state.default_rmid, cpu) = prdtgrp->mon.rmid;
3695 /*
3696 * Update the MSR on moved CPUs and CPUs which have moved
3697 * task running on them.
3698 */
3699 cpumask_or(tmpmask, tmpmask, &rdtgrp->cpu_mask);
3700 update_closid_rmid(tmpmask, NULL);
3701
3702 rdtgrp->flags = RDT_DELETED;
3703 free_rmid(rdtgrp->closid, rdtgrp->mon.rmid);
3704
3705 /*
3706 * Remove the rdtgrp from the parent ctrl_mon group's list
3707 */
3708 WARN_ON(list_empty(&prdtgrp->mon.crdtgrp_list));
3709 list_del(&rdtgrp->mon.crdtgrp_list);
3710
3711 kernfs_remove(rdtgrp->kn);
3712
3713 return 0;
3714 }
3715
rdtgroup_ctrl_remove(struct rdtgroup * rdtgrp)3716 static int rdtgroup_ctrl_remove(struct rdtgroup *rdtgrp)
3717 {
3718 rdtgrp->flags = RDT_DELETED;
3719 list_del(&rdtgrp->rdtgroup_list);
3720
3721 kernfs_remove(rdtgrp->kn);
3722 return 0;
3723 }
3724
rdtgroup_rmdir_ctrl(struct rdtgroup * rdtgrp,cpumask_var_t tmpmask)3725 static int rdtgroup_rmdir_ctrl(struct rdtgroup *rdtgrp, cpumask_var_t tmpmask)
3726 {
3727 int cpu;
3728
3729 /* Give any tasks back to the default group */
3730 rdt_move_group_tasks(rdtgrp, &rdtgroup_default, tmpmask);
3731
3732 /* Give any CPUs back to the default group */
3733 cpumask_or(&rdtgroup_default.cpu_mask,
3734 &rdtgroup_default.cpu_mask, &rdtgrp->cpu_mask);
3735
3736 /* Update per cpu closid and rmid of the moved CPUs first */
3737 for_each_cpu(cpu, &rdtgrp->cpu_mask) {
3738 per_cpu(pqr_state.default_closid, cpu) = rdtgroup_default.closid;
3739 per_cpu(pqr_state.default_rmid, cpu) = rdtgroup_default.mon.rmid;
3740 }
3741
3742 /*
3743 * Update the MSR on moved CPUs and CPUs which have moved
3744 * task running on them.
3745 */
3746 cpumask_or(tmpmask, tmpmask, &rdtgrp->cpu_mask);
3747 update_closid_rmid(tmpmask, NULL);
3748
3749 free_rmid(rdtgrp->closid, rdtgrp->mon.rmid);
3750 closid_free(rdtgrp->closid);
3751
3752 rdtgroup_ctrl_remove(rdtgrp);
3753
3754 /*
3755 * Free all the child monitor group rmids.
3756 */
3757 free_all_child_rdtgrp(rdtgrp);
3758
3759 return 0;
3760 }
3761
rdtgroup_rmdir(struct kernfs_node * kn)3762 static int rdtgroup_rmdir(struct kernfs_node *kn)
3763 {
3764 struct kernfs_node *parent_kn = kn->parent;
3765 struct rdtgroup *rdtgrp;
3766 cpumask_var_t tmpmask;
3767 int ret = 0;
3768
3769 if (!zalloc_cpumask_var(&tmpmask, GFP_KERNEL))
3770 return -ENOMEM;
3771
3772 rdtgrp = rdtgroup_kn_lock_live(kn);
3773 if (!rdtgrp) {
3774 ret = -EPERM;
3775 goto out;
3776 }
3777
3778 /*
3779 * If the rdtgroup is a ctrl_mon group and parent directory
3780 * is the root directory, remove the ctrl_mon group.
3781 *
3782 * If the rdtgroup is a mon group and parent directory
3783 * is a valid "mon_groups" directory, remove the mon group.
3784 */
3785 if (rdtgrp->type == RDTCTRL_GROUP && parent_kn == rdtgroup_default.kn &&
3786 rdtgrp != &rdtgroup_default) {
3787 if (rdtgrp->mode == RDT_MODE_PSEUDO_LOCKSETUP ||
3788 rdtgrp->mode == RDT_MODE_PSEUDO_LOCKED) {
3789 ret = rdtgroup_ctrl_remove(rdtgrp);
3790 } else {
3791 ret = rdtgroup_rmdir_ctrl(rdtgrp, tmpmask);
3792 }
3793 } else if (rdtgrp->type == RDTMON_GROUP &&
3794 is_mon_groups(parent_kn, kn->name)) {
3795 ret = rdtgroup_rmdir_mon(rdtgrp, tmpmask);
3796 } else {
3797 ret = -EPERM;
3798 }
3799
3800 out:
3801 rdtgroup_kn_unlock(kn);
3802 free_cpumask_var(tmpmask);
3803 return ret;
3804 }
3805
3806 /**
3807 * mongrp_reparent() - replace parent CTRL_MON group of a MON group
3808 * @rdtgrp: the MON group whose parent should be replaced
3809 * @new_prdtgrp: replacement parent CTRL_MON group for @rdtgrp
3810 * @cpus: cpumask provided by the caller for use during this call
3811 *
3812 * Replaces the parent CTRL_MON group for a MON group, resulting in all member
3813 * tasks' CLOSID immediately changing to that of the new parent group.
3814 * Monitoring data for the group is unaffected by this operation.
3815 */
mongrp_reparent(struct rdtgroup * rdtgrp,struct rdtgroup * new_prdtgrp,cpumask_var_t cpus)3816 static void mongrp_reparent(struct rdtgroup *rdtgrp,
3817 struct rdtgroup *new_prdtgrp,
3818 cpumask_var_t cpus)
3819 {
3820 struct rdtgroup *prdtgrp = rdtgrp->mon.parent;
3821
3822 WARN_ON(rdtgrp->type != RDTMON_GROUP);
3823 WARN_ON(new_prdtgrp->type != RDTCTRL_GROUP);
3824
3825 /* Nothing to do when simply renaming a MON group. */
3826 if (prdtgrp == new_prdtgrp)
3827 return;
3828
3829 WARN_ON(list_empty(&prdtgrp->mon.crdtgrp_list));
3830 list_move_tail(&rdtgrp->mon.crdtgrp_list,
3831 &new_prdtgrp->mon.crdtgrp_list);
3832
3833 rdtgrp->mon.parent = new_prdtgrp;
3834 rdtgrp->closid = new_prdtgrp->closid;
3835
3836 /* Propagate updated closid to all tasks in this group. */
3837 rdt_move_group_tasks(rdtgrp, rdtgrp, cpus);
3838
3839 update_closid_rmid(cpus, NULL);
3840 }
3841
rdtgroup_rename(struct kernfs_node * kn,struct kernfs_node * new_parent,const char * new_name)3842 static int rdtgroup_rename(struct kernfs_node *kn,
3843 struct kernfs_node *new_parent, const char *new_name)
3844 {
3845 struct rdtgroup *new_prdtgrp;
3846 struct rdtgroup *rdtgrp;
3847 cpumask_var_t tmpmask;
3848 int ret;
3849
3850 rdtgrp = kernfs_to_rdtgroup(kn);
3851 new_prdtgrp = kernfs_to_rdtgroup(new_parent);
3852 if (!rdtgrp || !new_prdtgrp)
3853 return -ENOENT;
3854
3855 /* Release both kernfs active_refs before obtaining rdtgroup mutex. */
3856 rdtgroup_kn_get(rdtgrp, kn);
3857 rdtgroup_kn_get(new_prdtgrp, new_parent);
3858
3859 mutex_lock(&rdtgroup_mutex);
3860
3861 rdt_last_cmd_clear();
3862
3863 /*
3864 * Don't allow kernfs_to_rdtgroup() to return a parent rdtgroup if
3865 * either kernfs_node is a file.
3866 */
3867 if (kernfs_type(kn) != KERNFS_DIR ||
3868 kernfs_type(new_parent) != KERNFS_DIR) {
3869 rdt_last_cmd_puts("Source and destination must be directories");
3870 ret = -EPERM;
3871 goto out;
3872 }
3873
3874 if ((rdtgrp->flags & RDT_DELETED) || (new_prdtgrp->flags & RDT_DELETED)) {
3875 ret = -ENOENT;
3876 goto out;
3877 }
3878
3879 if (rdtgrp->type != RDTMON_GROUP || !kn->parent ||
3880 !is_mon_groups(kn->parent, kn->name)) {
3881 rdt_last_cmd_puts("Source must be a MON group\n");
3882 ret = -EPERM;
3883 goto out;
3884 }
3885
3886 if (!is_mon_groups(new_parent, new_name)) {
3887 rdt_last_cmd_puts("Destination must be a mon_groups subdirectory\n");
3888 ret = -EPERM;
3889 goto out;
3890 }
3891
3892 /*
3893 * If the MON group is monitoring CPUs, the CPUs must be assigned to the
3894 * current parent CTRL_MON group and therefore cannot be assigned to
3895 * the new parent, making the move illegal.
3896 */
3897 if (!cpumask_empty(&rdtgrp->cpu_mask) &&
3898 rdtgrp->mon.parent != new_prdtgrp) {
3899 rdt_last_cmd_puts("Cannot move a MON group that monitors CPUs\n");
3900 ret = -EPERM;
3901 goto out;
3902 }
3903
3904 /*
3905 * Allocate the cpumask for use in mongrp_reparent() to avoid the
3906 * possibility of failing to allocate it after kernfs_rename() has
3907 * succeeded.
3908 */
3909 if (!zalloc_cpumask_var(&tmpmask, GFP_KERNEL)) {
3910 ret = -ENOMEM;
3911 goto out;
3912 }
3913
3914 /*
3915 * Perform all input validation and allocations needed to ensure
3916 * mongrp_reparent() will succeed before calling kernfs_rename(),
3917 * otherwise it would be necessary to revert this call if
3918 * mongrp_reparent() failed.
3919 */
3920 ret = kernfs_rename(kn, new_parent, new_name);
3921 if (!ret)
3922 mongrp_reparent(rdtgrp, new_prdtgrp, tmpmask);
3923
3924 free_cpumask_var(tmpmask);
3925
3926 out:
3927 mutex_unlock(&rdtgroup_mutex);
3928 rdtgroup_kn_put(rdtgrp, kn);
3929 rdtgroup_kn_put(new_prdtgrp, new_parent);
3930 return ret;
3931 }
3932
rdtgroup_show_options(struct seq_file * seq,struct kernfs_root * kf)3933 static int rdtgroup_show_options(struct seq_file *seq, struct kernfs_root *kf)
3934 {
3935 if (resctrl_arch_get_cdp_enabled(RDT_RESOURCE_L3))
3936 seq_puts(seq, ",cdp");
3937
3938 if (resctrl_arch_get_cdp_enabled(RDT_RESOURCE_L2))
3939 seq_puts(seq, ",cdpl2");
3940
3941 if (is_mba_sc(&rdt_resources_all[RDT_RESOURCE_MBA].r_resctrl))
3942 seq_puts(seq, ",mba_MBps");
3943
3944 if (resctrl_debug)
3945 seq_puts(seq, ",debug");
3946
3947 return 0;
3948 }
3949
3950 static struct kernfs_syscall_ops rdtgroup_kf_syscall_ops = {
3951 .mkdir = rdtgroup_mkdir,
3952 .rmdir = rdtgroup_rmdir,
3953 .rename = rdtgroup_rename,
3954 .show_options = rdtgroup_show_options,
3955 };
3956
rdtgroup_setup_root(struct rdt_fs_context * ctx)3957 static int rdtgroup_setup_root(struct rdt_fs_context *ctx)
3958 {
3959 rdt_root = kernfs_create_root(&rdtgroup_kf_syscall_ops,
3960 KERNFS_ROOT_CREATE_DEACTIVATED |
3961 KERNFS_ROOT_EXTRA_OPEN_PERM_CHECK,
3962 &rdtgroup_default);
3963 if (IS_ERR(rdt_root))
3964 return PTR_ERR(rdt_root);
3965
3966 ctx->kfc.root = rdt_root;
3967 rdtgroup_default.kn = kernfs_root_to_node(rdt_root);
3968
3969 return 0;
3970 }
3971
rdtgroup_destroy_root(void)3972 static void rdtgroup_destroy_root(void)
3973 {
3974 kernfs_destroy_root(rdt_root);
3975 rdtgroup_default.kn = NULL;
3976 }
3977
rdtgroup_setup_default(void)3978 static void __init rdtgroup_setup_default(void)
3979 {
3980 mutex_lock(&rdtgroup_mutex);
3981
3982 rdtgroup_default.closid = RESCTRL_RESERVED_CLOSID;
3983 rdtgroup_default.mon.rmid = RESCTRL_RESERVED_RMID;
3984 rdtgroup_default.type = RDTCTRL_GROUP;
3985 INIT_LIST_HEAD(&rdtgroup_default.mon.crdtgrp_list);
3986
3987 list_add(&rdtgroup_default.rdtgroup_list, &rdt_all_groups);
3988
3989 mutex_unlock(&rdtgroup_mutex);
3990 }
3991
domain_destroy_mon_state(struct rdt_mon_domain * d)3992 static void domain_destroy_mon_state(struct rdt_mon_domain *d)
3993 {
3994 bitmap_free(d->rmid_busy_llc);
3995 kfree(d->mbm_total);
3996 kfree(d->mbm_local);
3997 }
3998
resctrl_offline_ctrl_domain(struct rdt_resource * r,struct rdt_ctrl_domain * d)3999 void resctrl_offline_ctrl_domain(struct rdt_resource *r, struct rdt_ctrl_domain *d)
4000 {
4001 mutex_lock(&rdtgroup_mutex);
4002
4003 if (supports_mba_mbps() && r->rid == RDT_RESOURCE_MBA)
4004 mba_sc_domain_destroy(r, d);
4005
4006 mutex_unlock(&rdtgroup_mutex);
4007 }
4008
resctrl_offline_mon_domain(struct rdt_resource * r,struct rdt_mon_domain * d)4009 void resctrl_offline_mon_domain(struct rdt_resource *r, struct rdt_mon_domain *d)
4010 {
4011 mutex_lock(&rdtgroup_mutex);
4012
4013 /*
4014 * If resctrl is mounted, remove all the
4015 * per domain monitor data directories.
4016 */
4017 if (resctrl_mounted && resctrl_arch_mon_capable())
4018 rmdir_mondata_subdir_allrdtgrp(r, d);
4019
4020 if (is_mbm_enabled())
4021 cancel_delayed_work(&d->mbm_over);
4022 if (is_llc_occupancy_enabled() && has_busy_rmid(d)) {
4023 /*
4024 * When a package is going down, forcefully
4025 * decrement rmid->ebusy. There is no way to know
4026 * that the L3 was flushed and hence may lead to
4027 * incorrect counts in rare scenarios, but leaving
4028 * the RMID as busy creates RMID leaks if the
4029 * package never comes back.
4030 */
4031 __check_limbo(d, true);
4032 cancel_delayed_work(&d->cqm_limbo);
4033 }
4034
4035 domain_destroy_mon_state(d);
4036
4037 mutex_unlock(&rdtgroup_mutex);
4038 }
4039
domain_setup_mon_state(struct rdt_resource * r,struct rdt_mon_domain * d)4040 static int domain_setup_mon_state(struct rdt_resource *r, struct rdt_mon_domain *d)
4041 {
4042 u32 idx_limit = resctrl_arch_system_num_rmid_idx();
4043 size_t tsize;
4044
4045 if (is_llc_occupancy_enabled()) {
4046 d->rmid_busy_llc = bitmap_zalloc(idx_limit, GFP_KERNEL);
4047 if (!d->rmid_busy_llc)
4048 return -ENOMEM;
4049 }
4050 if (is_mbm_total_enabled()) {
4051 tsize = sizeof(*d->mbm_total);
4052 d->mbm_total = kcalloc(idx_limit, tsize, GFP_KERNEL);
4053 if (!d->mbm_total) {
4054 bitmap_free(d->rmid_busy_llc);
4055 return -ENOMEM;
4056 }
4057 }
4058 if (is_mbm_local_enabled()) {
4059 tsize = sizeof(*d->mbm_local);
4060 d->mbm_local = kcalloc(idx_limit, tsize, GFP_KERNEL);
4061 if (!d->mbm_local) {
4062 bitmap_free(d->rmid_busy_llc);
4063 kfree(d->mbm_total);
4064 return -ENOMEM;
4065 }
4066 }
4067
4068 return 0;
4069 }
4070
resctrl_online_ctrl_domain(struct rdt_resource * r,struct rdt_ctrl_domain * d)4071 int resctrl_online_ctrl_domain(struct rdt_resource *r, struct rdt_ctrl_domain *d)
4072 {
4073 int err = 0;
4074
4075 mutex_lock(&rdtgroup_mutex);
4076
4077 if (supports_mba_mbps() && r->rid == RDT_RESOURCE_MBA) {
4078 /* RDT_RESOURCE_MBA is never mon_capable */
4079 err = mba_sc_domain_allocate(r, d);
4080 }
4081
4082 mutex_unlock(&rdtgroup_mutex);
4083
4084 return err;
4085 }
4086
resctrl_online_mon_domain(struct rdt_resource * r,struct rdt_mon_domain * d)4087 int resctrl_online_mon_domain(struct rdt_resource *r, struct rdt_mon_domain *d)
4088 {
4089 int err;
4090
4091 mutex_lock(&rdtgroup_mutex);
4092
4093 err = domain_setup_mon_state(r, d);
4094 if (err)
4095 goto out_unlock;
4096
4097 if (is_mbm_enabled()) {
4098 INIT_DELAYED_WORK(&d->mbm_over, mbm_handle_overflow);
4099 mbm_setup_overflow_handler(d, MBM_OVERFLOW_INTERVAL,
4100 RESCTRL_PICK_ANY_CPU);
4101 }
4102
4103 if (is_llc_occupancy_enabled())
4104 INIT_DELAYED_WORK(&d->cqm_limbo, cqm_handle_limbo);
4105
4106 /*
4107 * If the filesystem is not mounted then only the default resource group
4108 * exists. Creation of its directories is deferred until mount time
4109 * by rdt_get_tree() calling mkdir_mondata_all().
4110 * If resctrl is mounted, add per domain monitor data directories.
4111 */
4112 if (resctrl_mounted && resctrl_arch_mon_capable())
4113 mkdir_mondata_subdir_allrdtgrp(r, d);
4114
4115 out_unlock:
4116 mutex_unlock(&rdtgroup_mutex);
4117
4118 return err;
4119 }
4120
resctrl_online_cpu(unsigned int cpu)4121 void resctrl_online_cpu(unsigned int cpu)
4122 {
4123 mutex_lock(&rdtgroup_mutex);
4124 /* The CPU is set in default rdtgroup after online. */
4125 cpumask_set_cpu(cpu, &rdtgroup_default.cpu_mask);
4126 mutex_unlock(&rdtgroup_mutex);
4127 }
4128
clear_childcpus(struct rdtgroup * r,unsigned int cpu)4129 static void clear_childcpus(struct rdtgroup *r, unsigned int cpu)
4130 {
4131 struct rdtgroup *cr;
4132
4133 list_for_each_entry(cr, &r->mon.crdtgrp_list, mon.crdtgrp_list) {
4134 if (cpumask_test_and_clear_cpu(cpu, &cr->cpu_mask))
4135 break;
4136 }
4137 }
4138
resctrl_offline_cpu(unsigned int cpu)4139 void resctrl_offline_cpu(unsigned int cpu)
4140 {
4141 struct rdt_resource *l3 = &rdt_resources_all[RDT_RESOURCE_L3].r_resctrl;
4142 struct rdt_mon_domain *d;
4143 struct rdtgroup *rdtgrp;
4144
4145 mutex_lock(&rdtgroup_mutex);
4146 list_for_each_entry(rdtgrp, &rdt_all_groups, rdtgroup_list) {
4147 if (cpumask_test_and_clear_cpu(cpu, &rdtgrp->cpu_mask)) {
4148 clear_childcpus(rdtgrp, cpu);
4149 break;
4150 }
4151 }
4152
4153 if (!l3->mon_capable)
4154 goto out_unlock;
4155
4156 d = get_mon_domain_from_cpu(cpu, l3);
4157 if (d) {
4158 if (is_mbm_enabled() && cpu == d->mbm_work_cpu) {
4159 cancel_delayed_work(&d->mbm_over);
4160 mbm_setup_overflow_handler(d, 0, cpu);
4161 }
4162 if (is_llc_occupancy_enabled() && cpu == d->cqm_work_cpu &&
4163 has_busy_rmid(d)) {
4164 cancel_delayed_work(&d->cqm_limbo);
4165 cqm_setup_limbo_handler(d, 0, cpu);
4166 }
4167 }
4168
4169 out_unlock:
4170 mutex_unlock(&rdtgroup_mutex);
4171 }
4172
4173 /*
4174 * rdtgroup_init - rdtgroup initialization
4175 *
4176 * Setup resctrl file system including set up root, create mount point,
4177 * register rdtgroup filesystem, and initialize files under root directory.
4178 *
4179 * Return: 0 on success or -errno
4180 */
rdtgroup_init(void)4181 int __init rdtgroup_init(void)
4182 {
4183 int ret = 0;
4184
4185 seq_buf_init(&last_cmd_status, last_cmd_status_buf,
4186 sizeof(last_cmd_status_buf));
4187
4188 rdtgroup_setup_default();
4189
4190 ret = sysfs_create_mount_point(fs_kobj, "resctrl");
4191 if (ret)
4192 return ret;
4193
4194 ret = register_filesystem(&rdt_fs_type);
4195 if (ret)
4196 goto cleanup_mountpoint;
4197
4198 /*
4199 * Adding the resctrl debugfs directory here may not be ideal since
4200 * it would let the resctrl debugfs directory appear on the debugfs
4201 * filesystem before the resctrl filesystem is mounted.
4202 * It may also be ok since that would enable debugging of RDT before
4203 * resctrl is mounted.
4204 * The reason why the debugfs directory is created here and not in
4205 * rdt_get_tree() is because rdt_get_tree() takes rdtgroup_mutex and
4206 * during the debugfs directory creation also &sb->s_type->i_mutex_key
4207 * (the lockdep class of inode->i_rwsem). Other filesystem
4208 * interactions (eg. SyS_getdents) have the lock ordering:
4209 * &sb->s_type->i_mutex_key --> &mm->mmap_lock
4210 * During mmap(), called with &mm->mmap_lock, the rdtgroup_mutex
4211 * is taken, thus creating dependency:
4212 * &mm->mmap_lock --> rdtgroup_mutex for the latter that can cause
4213 * issues considering the other two lock dependencies.
4214 * By creating the debugfs directory here we avoid a dependency
4215 * that may cause deadlock (even though file operations cannot
4216 * occur until the filesystem is mounted, but I do not know how to
4217 * tell lockdep that).
4218 */
4219 debugfs_resctrl = debugfs_create_dir("resctrl", NULL);
4220
4221 return 0;
4222
4223 cleanup_mountpoint:
4224 sysfs_remove_mount_point(fs_kobj, "resctrl");
4225
4226 return ret;
4227 }
4228
rdtgroup_exit(void)4229 void __exit rdtgroup_exit(void)
4230 {
4231 debugfs_remove_recursive(debugfs_resctrl);
4232 unregister_filesystem(&rdt_fs_type);
4233 sysfs_remove_mount_point(fs_kobj, "resctrl");
4234 }
4235