• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * User interface for Resource Allocation in Resource Director Technology(RDT)
4  *
5  * Copyright (C) 2016 Intel Corporation
6  *
7  * Author: Fenghua Yu <fenghua.yu@intel.com>
8  *
9  * More information about RDT be found in the Intel (R) x86 Architecture
10  * Software Developer Manual.
11  */
12 
13 #define pr_fmt(fmt)	KBUILD_MODNAME ": " fmt
14 
15 #include <linux/cpu.h>
16 #include <linux/debugfs.h>
17 #include <linux/fs.h>
18 #include <linux/fs_parser.h>
19 #include <linux/sysfs.h>
20 #include <linux/kernfs.h>
21 #include <linux/seq_buf.h>
22 #include <linux/seq_file.h>
23 #include <linux/sched/signal.h>
24 #include <linux/sched/task.h>
25 #include <linux/slab.h>
26 #include <linux/task_work.h>
27 #include <linux/user_namespace.h>
28 
29 #include <uapi/linux/magic.h>
30 
31 #include <asm/resctrl.h>
32 #include "internal.h"
33 
34 DEFINE_STATIC_KEY_FALSE(rdt_enable_key);
35 DEFINE_STATIC_KEY_FALSE(rdt_mon_enable_key);
36 DEFINE_STATIC_KEY_FALSE(rdt_alloc_enable_key);
37 
38 /* Mutex to protect rdtgroup access. */
39 DEFINE_MUTEX(rdtgroup_mutex);
40 
41 static struct kernfs_root *rdt_root;
42 struct rdtgroup rdtgroup_default;
43 LIST_HEAD(rdt_all_groups);
44 
45 /* list of entries for the schemata file */
46 LIST_HEAD(resctrl_schema_all);
47 
48 /* The filesystem can only be mounted once. */
49 bool resctrl_mounted;
50 
51 /* Kernel fs node for "info" directory under root */
52 static struct kernfs_node *kn_info;
53 
54 /* Kernel fs node for "mon_groups" directory under root */
55 static struct kernfs_node *kn_mongrp;
56 
57 /* Kernel fs node for "mon_data" directory under root */
58 static struct kernfs_node *kn_mondata;
59 
60 static struct seq_buf last_cmd_status;
61 static char last_cmd_status_buf[512];
62 
63 static int rdtgroup_setup_root(struct rdt_fs_context *ctx);
64 static void rdtgroup_destroy_root(void);
65 
66 struct dentry *debugfs_resctrl;
67 
68 static bool resctrl_debug;
69 
rdt_last_cmd_clear(void)70 void rdt_last_cmd_clear(void)
71 {
72 	lockdep_assert_held(&rdtgroup_mutex);
73 	seq_buf_clear(&last_cmd_status);
74 }
75 
rdt_last_cmd_puts(const char * s)76 void rdt_last_cmd_puts(const char *s)
77 {
78 	lockdep_assert_held(&rdtgroup_mutex);
79 	seq_buf_puts(&last_cmd_status, s);
80 }
81 
rdt_last_cmd_printf(const char * fmt,...)82 void rdt_last_cmd_printf(const char *fmt, ...)
83 {
84 	va_list ap;
85 
86 	va_start(ap, fmt);
87 	lockdep_assert_held(&rdtgroup_mutex);
88 	seq_buf_vprintf(&last_cmd_status, fmt, ap);
89 	va_end(ap);
90 }
91 
rdt_staged_configs_clear(void)92 void rdt_staged_configs_clear(void)
93 {
94 	struct rdt_ctrl_domain *dom;
95 	struct rdt_resource *r;
96 
97 	lockdep_assert_held(&rdtgroup_mutex);
98 
99 	for_each_alloc_capable_rdt_resource(r) {
100 		list_for_each_entry(dom, &r->ctrl_domains, hdr.list)
101 			memset(dom->staged_config, 0, sizeof(dom->staged_config));
102 	}
103 }
104 
105 /*
106  * Trivial allocator for CLOSIDs. Since h/w only supports a small number,
107  * we can keep a bitmap of free CLOSIDs in a single integer.
108  *
109  * Using a global CLOSID across all resources has some advantages and
110  * some drawbacks:
111  * + We can simply set current's closid to assign a task to a resource
112  *   group.
113  * + Context switch code can avoid extra memory references deciding which
114  *   CLOSID to load into the PQR_ASSOC MSR
115  * - We give up some options in configuring resource groups across multi-socket
116  *   systems.
117  * - Our choices on how to configure each resource become progressively more
118  *   limited as the number of resources grows.
119  */
120 static unsigned long closid_free_map;
121 static int closid_free_map_len;
122 
closids_supported(void)123 int closids_supported(void)
124 {
125 	return closid_free_map_len;
126 }
127 
closid_init(void)128 static void closid_init(void)
129 {
130 	struct resctrl_schema *s;
131 	u32 rdt_min_closid = 32;
132 
133 	/* Compute rdt_min_closid across all resources */
134 	list_for_each_entry(s, &resctrl_schema_all, list)
135 		rdt_min_closid = min(rdt_min_closid, s->num_closid);
136 
137 	closid_free_map = BIT_MASK(rdt_min_closid) - 1;
138 
139 	/* RESCTRL_RESERVED_CLOSID is always reserved for the default group */
140 	__clear_bit(RESCTRL_RESERVED_CLOSID, &closid_free_map);
141 	closid_free_map_len = rdt_min_closid;
142 }
143 
closid_alloc(void)144 static int closid_alloc(void)
145 {
146 	int cleanest_closid;
147 	u32 closid;
148 
149 	lockdep_assert_held(&rdtgroup_mutex);
150 
151 	if (IS_ENABLED(CONFIG_RESCTRL_RMID_DEPENDS_ON_CLOSID) &&
152 	    is_llc_occupancy_enabled()) {
153 		cleanest_closid = resctrl_find_cleanest_closid();
154 		if (cleanest_closid < 0)
155 			return cleanest_closid;
156 		closid = cleanest_closid;
157 	} else {
158 		closid = ffs(closid_free_map);
159 		if (closid == 0)
160 			return -ENOSPC;
161 		closid--;
162 	}
163 	__clear_bit(closid, &closid_free_map);
164 
165 	return closid;
166 }
167 
closid_free(int closid)168 void closid_free(int closid)
169 {
170 	lockdep_assert_held(&rdtgroup_mutex);
171 
172 	__set_bit(closid, &closid_free_map);
173 }
174 
175 /**
176  * closid_allocated - test if provided closid is in use
177  * @closid: closid to be tested
178  *
179  * Return: true if @closid is currently associated with a resource group,
180  * false if @closid is free
181  */
closid_allocated(unsigned int closid)182 bool closid_allocated(unsigned int closid)
183 {
184 	lockdep_assert_held(&rdtgroup_mutex);
185 
186 	return !test_bit(closid, &closid_free_map);
187 }
188 
189 /**
190  * rdtgroup_mode_by_closid - Return mode of resource group with closid
191  * @closid: closid if the resource group
192  *
193  * Each resource group is associated with a @closid. Here the mode
194  * of a resource group can be queried by searching for it using its closid.
195  *
196  * Return: mode as &enum rdtgrp_mode of resource group with closid @closid
197  */
rdtgroup_mode_by_closid(int closid)198 enum rdtgrp_mode rdtgroup_mode_by_closid(int closid)
199 {
200 	struct rdtgroup *rdtgrp;
201 
202 	list_for_each_entry(rdtgrp, &rdt_all_groups, rdtgroup_list) {
203 		if (rdtgrp->closid == closid)
204 			return rdtgrp->mode;
205 	}
206 
207 	return RDT_NUM_MODES;
208 }
209 
210 static const char * const rdt_mode_str[] = {
211 	[RDT_MODE_SHAREABLE]		= "shareable",
212 	[RDT_MODE_EXCLUSIVE]		= "exclusive",
213 	[RDT_MODE_PSEUDO_LOCKSETUP]	= "pseudo-locksetup",
214 	[RDT_MODE_PSEUDO_LOCKED]	= "pseudo-locked",
215 };
216 
217 /**
218  * rdtgroup_mode_str - Return the string representation of mode
219  * @mode: the resource group mode as &enum rdtgroup_mode
220  *
221  * Return: string representation of valid mode, "unknown" otherwise
222  */
rdtgroup_mode_str(enum rdtgrp_mode mode)223 static const char *rdtgroup_mode_str(enum rdtgrp_mode mode)
224 {
225 	if (mode < RDT_MODE_SHAREABLE || mode >= RDT_NUM_MODES)
226 		return "unknown";
227 
228 	return rdt_mode_str[mode];
229 }
230 
231 /* set uid and gid of rdtgroup dirs and files to that of the creator */
rdtgroup_kn_set_ugid(struct kernfs_node * kn)232 static int rdtgroup_kn_set_ugid(struct kernfs_node *kn)
233 {
234 	struct iattr iattr = { .ia_valid = ATTR_UID | ATTR_GID,
235 				.ia_uid = current_fsuid(),
236 				.ia_gid = current_fsgid(), };
237 
238 	if (uid_eq(iattr.ia_uid, GLOBAL_ROOT_UID) &&
239 	    gid_eq(iattr.ia_gid, GLOBAL_ROOT_GID))
240 		return 0;
241 
242 	return kernfs_setattr(kn, &iattr);
243 }
244 
rdtgroup_add_file(struct kernfs_node * parent_kn,struct rftype * rft)245 static int rdtgroup_add_file(struct kernfs_node *parent_kn, struct rftype *rft)
246 {
247 	struct kernfs_node *kn;
248 	int ret;
249 
250 	kn = __kernfs_create_file(parent_kn, rft->name, rft->mode,
251 				  GLOBAL_ROOT_UID, GLOBAL_ROOT_GID,
252 				  0, rft->kf_ops, rft, NULL, NULL);
253 	if (IS_ERR(kn))
254 		return PTR_ERR(kn);
255 
256 	ret = rdtgroup_kn_set_ugid(kn);
257 	if (ret) {
258 		kernfs_remove(kn);
259 		return ret;
260 	}
261 
262 	return 0;
263 }
264 
rdtgroup_seqfile_show(struct seq_file * m,void * arg)265 static int rdtgroup_seqfile_show(struct seq_file *m, void *arg)
266 {
267 	struct kernfs_open_file *of = m->private;
268 	struct rftype *rft = of->kn->priv;
269 
270 	if (rft->seq_show)
271 		return rft->seq_show(of, m, arg);
272 	return 0;
273 }
274 
rdtgroup_file_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)275 static ssize_t rdtgroup_file_write(struct kernfs_open_file *of, char *buf,
276 				   size_t nbytes, loff_t off)
277 {
278 	struct rftype *rft = of->kn->priv;
279 
280 	if (rft->write)
281 		return rft->write(of, buf, nbytes, off);
282 
283 	return -EINVAL;
284 }
285 
286 static const struct kernfs_ops rdtgroup_kf_single_ops = {
287 	.atomic_write_len	= PAGE_SIZE,
288 	.write			= rdtgroup_file_write,
289 	.seq_show		= rdtgroup_seqfile_show,
290 };
291 
292 static const struct kernfs_ops kf_mondata_ops = {
293 	.atomic_write_len	= PAGE_SIZE,
294 	.seq_show		= rdtgroup_mondata_show,
295 };
296 
is_cpu_list(struct kernfs_open_file * of)297 static bool is_cpu_list(struct kernfs_open_file *of)
298 {
299 	struct rftype *rft = of->kn->priv;
300 
301 	return rft->flags & RFTYPE_FLAGS_CPUS_LIST;
302 }
303 
rdtgroup_cpus_show(struct kernfs_open_file * of,struct seq_file * s,void * v)304 static int rdtgroup_cpus_show(struct kernfs_open_file *of,
305 			      struct seq_file *s, void *v)
306 {
307 	struct rdtgroup *rdtgrp;
308 	struct cpumask *mask;
309 	int ret = 0;
310 
311 	rdtgrp = rdtgroup_kn_lock_live(of->kn);
312 
313 	if (rdtgrp) {
314 		if (rdtgrp->mode == RDT_MODE_PSEUDO_LOCKED) {
315 			if (!rdtgrp->plr->d) {
316 				rdt_last_cmd_clear();
317 				rdt_last_cmd_puts("Cache domain offline\n");
318 				ret = -ENODEV;
319 			} else {
320 				mask = &rdtgrp->plr->d->hdr.cpu_mask;
321 				seq_printf(s, is_cpu_list(of) ?
322 					   "%*pbl\n" : "%*pb\n",
323 					   cpumask_pr_args(mask));
324 			}
325 		} else {
326 			seq_printf(s, is_cpu_list(of) ? "%*pbl\n" : "%*pb\n",
327 				   cpumask_pr_args(&rdtgrp->cpu_mask));
328 		}
329 	} else {
330 		ret = -ENOENT;
331 	}
332 	rdtgroup_kn_unlock(of->kn);
333 
334 	return ret;
335 }
336 
337 /*
338  * This is safe against resctrl_sched_in() called from __switch_to()
339  * because __switch_to() is executed with interrupts disabled. A local call
340  * from update_closid_rmid() is protected against __switch_to() because
341  * preemption is disabled.
342  */
update_cpu_closid_rmid(void * info)343 static void update_cpu_closid_rmid(void *info)
344 {
345 	struct rdtgroup *r = info;
346 
347 	if (r) {
348 		this_cpu_write(pqr_state.default_closid, r->closid);
349 		this_cpu_write(pqr_state.default_rmid, r->mon.rmid);
350 	}
351 
352 	/*
353 	 * We cannot unconditionally write the MSR because the current
354 	 * executing task might have its own closid selected. Just reuse
355 	 * the context switch code.
356 	 */
357 	resctrl_sched_in(current);
358 }
359 
360 /*
361  * Update the PGR_ASSOC MSR on all cpus in @cpu_mask,
362  *
363  * Per task closids/rmids must have been set up before calling this function.
364  */
365 static void
update_closid_rmid(const struct cpumask * cpu_mask,struct rdtgroup * r)366 update_closid_rmid(const struct cpumask *cpu_mask, struct rdtgroup *r)
367 {
368 	on_each_cpu_mask(cpu_mask, update_cpu_closid_rmid, r, 1);
369 }
370 
cpus_mon_write(struct rdtgroup * rdtgrp,cpumask_var_t newmask,cpumask_var_t tmpmask)371 static int cpus_mon_write(struct rdtgroup *rdtgrp, cpumask_var_t newmask,
372 			  cpumask_var_t tmpmask)
373 {
374 	struct rdtgroup *prgrp = rdtgrp->mon.parent, *crgrp;
375 	struct list_head *head;
376 
377 	/* Check whether cpus belong to parent ctrl group */
378 	cpumask_andnot(tmpmask, newmask, &prgrp->cpu_mask);
379 	if (!cpumask_empty(tmpmask)) {
380 		rdt_last_cmd_puts("Can only add CPUs to mongroup that belong to parent\n");
381 		return -EINVAL;
382 	}
383 
384 	/* Check whether cpus are dropped from this group */
385 	cpumask_andnot(tmpmask, &rdtgrp->cpu_mask, newmask);
386 	if (!cpumask_empty(tmpmask)) {
387 		/* Give any dropped cpus to parent rdtgroup */
388 		cpumask_or(&prgrp->cpu_mask, &prgrp->cpu_mask, tmpmask);
389 		update_closid_rmid(tmpmask, prgrp);
390 	}
391 
392 	/*
393 	 * If we added cpus, remove them from previous group that owned them
394 	 * and update per-cpu rmid
395 	 */
396 	cpumask_andnot(tmpmask, newmask, &rdtgrp->cpu_mask);
397 	if (!cpumask_empty(tmpmask)) {
398 		head = &prgrp->mon.crdtgrp_list;
399 		list_for_each_entry(crgrp, head, mon.crdtgrp_list) {
400 			if (crgrp == rdtgrp)
401 				continue;
402 			cpumask_andnot(&crgrp->cpu_mask, &crgrp->cpu_mask,
403 				       tmpmask);
404 		}
405 		update_closid_rmid(tmpmask, rdtgrp);
406 	}
407 
408 	/* Done pushing/pulling - update this group with new mask */
409 	cpumask_copy(&rdtgrp->cpu_mask, newmask);
410 
411 	return 0;
412 }
413 
cpumask_rdtgrp_clear(struct rdtgroup * r,struct cpumask * m)414 static void cpumask_rdtgrp_clear(struct rdtgroup *r, struct cpumask *m)
415 {
416 	struct rdtgroup *crgrp;
417 
418 	cpumask_andnot(&r->cpu_mask, &r->cpu_mask, m);
419 	/* update the child mon group masks as well*/
420 	list_for_each_entry(crgrp, &r->mon.crdtgrp_list, mon.crdtgrp_list)
421 		cpumask_and(&crgrp->cpu_mask, &r->cpu_mask, &crgrp->cpu_mask);
422 }
423 
cpus_ctrl_write(struct rdtgroup * rdtgrp,cpumask_var_t newmask,cpumask_var_t tmpmask,cpumask_var_t tmpmask1)424 static int cpus_ctrl_write(struct rdtgroup *rdtgrp, cpumask_var_t newmask,
425 			   cpumask_var_t tmpmask, cpumask_var_t tmpmask1)
426 {
427 	struct rdtgroup *r, *crgrp;
428 	struct list_head *head;
429 
430 	/* Check whether cpus are dropped from this group */
431 	cpumask_andnot(tmpmask, &rdtgrp->cpu_mask, newmask);
432 	if (!cpumask_empty(tmpmask)) {
433 		/* Can't drop from default group */
434 		if (rdtgrp == &rdtgroup_default) {
435 			rdt_last_cmd_puts("Can't drop CPUs from default group\n");
436 			return -EINVAL;
437 		}
438 
439 		/* Give any dropped cpus to rdtgroup_default */
440 		cpumask_or(&rdtgroup_default.cpu_mask,
441 			   &rdtgroup_default.cpu_mask, tmpmask);
442 		update_closid_rmid(tmpmask, &rdtgroup_default);
443 	}
444 
445 	/*
446 	 * If we added cpus, remove them from previous group and
447 	 * the prev group's child groups that owned them
448 	 * and update per-cpu closid/rmid.
449 	 */
450 	cpumask_andnot(tmpmask, newmask, &rdtgrp->cpu_mask);
451 	if (!cpumask_empty(tmpmask)) {
452 		list_for_each_entry(r, &rdt_all_groups, rdtgroup_list) {
453 			if (r == rdtgrp)
454 				continue;
455 			cpumask_and(tmpmask1, &r->cpu_mask, tmpmask);
456 			if (!cpumask_empty(tmpmask1))
457 				cpumask_rdtgrp_clear(r, tmpmask1);
458 		}
459 		update_closid_rmid(tmpmask, rdtgrp);
460 	}
461 
462 	/* Done pushing/pulling - update this group with new mask */
463 	cpumask_copy(&rdtgrp->cpu_mask, newmask);
464 
465 	/*
466 	 * Clear child mon group masks since there is a new parent mask
467 	 * now and update the rmid for the cpus the child lost.
468 	 */
469 	head = &rdtgrp->mon.crdtgrp_list;
470 	list_for_each_entry(crgrp, head, mon.crdtgrp_list) {
471 		cpumask_and(tmpmask, &rdtgrp->cpu_mask, &crgrp->cpu_mask);
472 		update_closid_rmid(tmpmask, rdtgrp);
473 		cpumask_clear(&crgrp->cpu_mask);
474 	}
475 
476 	return 0;
477 }
478 
rdtgroup_cpus_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)479 static ssize_t rdtgroup_cpus_write(struct kernfs_open_file *of,
480 				   char *buf, size_t nbytes, loff_t off)
481 {
482 	cpumask_var_t tmpmask, newmask, tmpmask1;
483 	struct rdtgroup *rdtgrp;
484 	int ret;
485 
486 	if (!buf)
487 		return -EINVAL;
488 
489 	if (!zalloc_cpumask_var(&tmpmask, GFP_KERNEL))
490 		return -ENOMEM;
491 	if (!zalloc_cpumask_var(&newmask, GFP_KERNEL)) {
492 		free_cpumask_var(tmpmask);
493 		return -ENOMEM;
494 	}
495 	if (!zalloc_cpumask_var(&tmpmask1, GFP_KERNEL)) {
496 		free_cpumask_var(tmpmask);
497 		free_cpumask_var(newmask);
498 		return -ENOMEM;
499 	}
500 
501 	rdtgrp = rdtgroup_kn_lock_live(of->kn);
502 	if (!rdtgrp) {
503 		ret = -ENOENT;
504 		goto unlock;
505 	}
506 
507 	if (rdtgrp->mode == RDT_MODE_PSEUDO_LOCKED ||
508 	    rdtgrp->mode == RDT_MODE_PSEUDO_LOCKSETUP) {
509 		ret = -EINVAL;
510 		rdt_last_cmd_puts("Pseudo-locking in progress\n");
511 		goto unlock;
512 	}
513 
514 	if (is_cpu_list(of))
515 		ret = cpulist_parse(buf, newmask);
516 	else
517 		ret = cpumask_parse(buf, newmask);
518 
519 	if (ret) {
520 		rdt_last_cmd_puts("Bad CPU list/mask\n");
521 		goto unlock;
522 	}
523 
524 	/* check that user didn't specify any offline cpus */
525 	cpumask_andnot(tmpmask, newmask, cpu_online_mask);
526 	if (!cpumask_empty(tmpmask)) {
527 		ret = -EINVAL;
528 		rdt_last_cmd_puts("Can only assign online CPUs\n");
529 		goto unlock;
530 	}
531 
532 	if (rdtgrp->type == RDTCTRL_GROUP)
533 		ret = cpus_ctrl_write(rdtgrp, newmask, tmpmask, tmpmask1);
534 	else if (rdtgrp->type == RDTMON_GROUP)
535 		ret = cpus_mon_write(rdtgrp, newmask, tmpmask);
536 	else
537 		ret = -EINVAL;
538 
539 unlock:
540 	rdtgroup_kn_unlock(of->kn);
541 	free_cpumask_var(tmpmask);
542 	free_cpumask_var(newmask);
543 	free_cpumask_var(tmpmask1);
544 
545 	return ret ?: nbytes;
546 }
547 
548 /**
549  * rdtgroup_remove - the helper to remove resource group safely
550  * @rdtgrp: resource group to remove
551  *
552  * On resource group creation via a mkdir, an extra kernfs_node reference is
553  * taken to ensure that the rdtgroup structure remains accessible for the
554  * rdtgroup_kn_unlock() calls where it is removed.
555  *
556  * Drop the extra reference here, then free the rdtgroup structure.
557  *
558  * Return: void
559  */
rdtgroup_remove(struct rdtgroup * rdtgrp)560 static void rdtgroup_remove(struct rdtgroup *rdtgrp)
561 {
562 	kernfs_put(rdtgrp->kn);
563 	kfree(rdtgrp);
564 }
565 
_update_task_closid_rmid(void * task)566 static void _update_task_closid_rmid(void *task)
567 {
568 	/*
569 	 * If the task is still current on this CPU, update PQR_ASSOC MSR.
570 	 * Otherwise, the MSR is updated when the task is scheduled in.
571 	 */
572 	if (task == current)
573 		resctrl_sched_in(task);
574 }
575 
update_task_closid_rmid(struct task_struct * t)576 static void update_task_closid_rmid(struct task_struct *t)
577 {
578 	if (IS_ENABLED(CONFIG_SMP) && task_curr(t))
579 		smp_call_function_single(task_cpu(t), _update_task_closid_rmid, t, 1);
580 	else
581 		_update_task_closid_rmid(t);
582 }
583 
task_in_rdtgroup(struct task_struct * tsk,struct rdtgroup * rdtgrp)584 static bool task_in_rdtgroup(struct task_struct *tsk, struct rdtgroup *rdtgrp)
585 {
586 	u32 closid, rmid = rdtgrp->mon.rmid;
587 
588 	if (rdtgrp->type == RDTCTRL_GROUP)
589 		closid = rdtgrp->closid;
590 	else if (rdtgrp->type == RDTMON_GROUP)
591 		closid = rdtgrp->mon.parent->closid;
592 	else
593 		return false;
594 
595 	return resctrl_arch_match_closid(tsk, closid) &&
596 	       resctrl_arch_match_rmid(tsk, closid, rmid);
597 }
598 
__rdtgroup_move_task(struct task_struct * tsk,struct rdtgroup * rdtgrp)599 static int __rdtgroup_move_task(struct task_struct *tsk,
600 				struct rdtgroup *rdtgrp)
601 {
602 	/* If the task is already in rdtgrp, no need to move the task. */
603 	if (task_in_rdtgroup(tsk, rdtgrp))
604 		return 0;
605 
606 	/*
607 	 * Set the task's closid/rmid before the PQR_ASSOC MSR can be
608 	 * updated by them.
609 	 *
610 	 * For ctrl_mon groups, move both closid and rmid.
611 	 * For monitor groups, can move the tasks only from
612 	 * their parent CTRL group.
613 	 */
614 	if (rdtgrp->type == RDTMON_GROUP &&
615 	    !resctrl_arch_match_closid(tsk, rdtgrp->mon.parent->closid)) {
616 		rdt_last_cmd_puts("Can't move task to different control group\n");
617 		return -EINVAL;
618 	}
619 
620 	if (rdtgrp->type == RDTMON_GROUP)
621 		resctrl_arch_set_closid_rmid(tsk, rdtgrp->mon.parent->closid,
622 					     rdtgrp->mon.rmid);
623 	else
624 		resctrl_arch_set_closid_rmid(tsk, rdtgrp->closid,
625 					     rdtgrp->mon.rmid);
626 
627 	/*
628 	 * Ensure the task's closid and rmid are written before determining if
629 	 * the task is current that will decide if it will be interrupted.
630 	 * This pairs with the full barrier between the rq->curr update and
631 	 * resctrl_sched_in() during context switch.
632 	 */
633 	smp_mb();
634 
635 	/*
636 	 * By now, the task's closid and rmid are set. If the task is current
637 	 * on a CPU, the PQR_ASSOC MSR needs to be updated to make the resource
638 	 * group go into effect. If the task is not current, the MSR will be
639 	 * updated when the task is scheduled in.
640 	 */
641 	update_task_closid_rmid(tsk);
642 
643 	return 0;
644 }
645 
is_closid_match(struct task_struct * t,struct rdtgroup * r)646 static bool is_closid_match(struct task_struct *t, struct rdtgroup *r)
647 {
648 	return (resctrl_arch_alloc_capable() && (r->type == RDTCTRL_GROUP) &&
649 		resctrl_arch_match_closid(t, r->closid));
650 }
651 
is_rmid_match(struct task_struct * t,struct rdtgroup * r)652 static bool is_rmid_match(struct task_struct *t, struct rdtgroup *r)
653 {
654 	return (resctrl_arch_mon_capable() && (r->type == RDTMON_GROUP) &&
655 		resctrl_arch_match_rmid(t, r->mon.parent->closid,
656 					r->mon.rmid));
657 }
658 
659 /**
660  * rdtgroup_tasks_assigned - Test if tasks have been assigned to resource group
661  * @r: Resource group
662  *
663  * Return: 1 if tasks have been assigned to @r, 0 otherwise
664  */
rdtgroup_tasks_assigned(struct rdtgroup * r)665 int rdtgroup_tasks_assigned(struct rdtgroup *r)
666 {
667 	struct task_struct *p, *t;
668 	int ret = 0;
669 
670 	lockdep_assert_held(&rdtgroup_mutex);
671 
672 	rcu_read_lock();
673 	for_each_process_thread(p, t) {
674 		if (is_closid_match(t, r) || is_rmid_match(t, r)) {
675 			ret = 1;
676 			break;
677 		}
678 	}
679 	rcu_read_unlock();
680 
681 	return ret;
682 }
683 
rdtgroup_task_write_permission(struct task_struct * task,struct kernfs_open_file * of)684 static int rdtgroup_task_write_permission(struct task_struct *task,
685 					  struct kernfs_open_file *of)
686 {
687 	const struct cred *tcred = get_task_cred(task);
688 	const struct cred *cred = current_cred();
689 	int ret = 0;
690 
691 	/*
692 	 * Even if we're attaching all tasks in the thread group, we only
693 	 * need to check permissions on one of them.
694 	 */
695 	if (!uid_eq(cred->euid, GLOBAL_ROOT_UID) &&
696 	    !uid_eq(cred->euid, tcred->uid) &&
697 	    !uid_eq(cred->euid, tcred->suid)) {
698 		rdt_last_cmd_printf("No permission to move task %d\n", task->pid);
699 		ret = -EPERM;
700 	}
701 
702 	put_cred(tcred);
703 	return ret;
704 }
705 
rdtgroup_move_task(pid_t pid,struct rdtgroup * rdtgrp,struct kernfs_open_file * of)706 static int rdtgroup_move_task(pid_t pid, struct rdtgroup *rdtgrp,
707 			      struct kernfs_open_file *of)
708 {
709 	struct task_struct *tsk;
710 	int ret;
711 
712 	rcu_read_lock();
713 	if (pid) {
714 		tsk = find_task_by_vpid(pid);
715 		if (!tsk) {
716 			rcu_read_unlock();
717 			rdt_last_cmd_printf("No task %d\n", pid);
718 			return -ESRCH;
719 		}
720 	} else {
721 		tsk = current;
722 	}
723 
724 	get_task_struct(tsk);
725 	rcu_read_unlock();
726 
727 	ret = rdtgroup_task_write_permission(tsk, of);
728 	if (!ret)
729 		ret = __rdtgroup_move_task(tsk, rdtgrp);
730 
731 	put_task_struct(tsk);
732 	return ret;
733 }
734 
rdtgroup_tasks_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)735 static ssize_t rdtgroup_tasks_write(struct kernfs_open_file *of,
736 				    char *buf, size_t nbytes, loff_t off)
737 {
738 	struct rdtgroup *rdtgrp;
739 	char *pid_str;
740 	int ret = 0;
741 	pid_t pid;
742 
743 	rdtgrp = rdtgroup_kn_lock_live(of->kn);
744 	if (!rdtgrp) {
745 		rdtgroup_kn_unlock(of->kn);
746 		return -ENOENT;
747 	}
748 	rdt_last_cmd_clear();
749 
750 	if (rdtgrp->mode == RDT_MODE_PSEUDO_LOCKED ||
751 	    rdtgrp->mode == RDT_MODE_PSEUDO_LOCKSETUP) {
752 		ret = -EINVAL;
753 		rdt_last_cmd_puts("Pseudo-locking in progress\n");
754 		goto unlock;
755 	}
756 
757 	while (buf && buf[0] != '\0' && buf[0] != '\n') {
758 		pid_str = strim(strsep(&buf, ","));
759 
760 		if (kstrtoint(pid_str, 0, &pid)) {
761 			rdt_last_cmd_printf("Task list parsing error pid %s\n", pid_str);
762 			ret = -EINVAL;
763 			break;
764 		}
765 
766 		if (pid < 0) {
767 			rdt_last_cmd_printf("Invalid pid %d\n", pid);
768 			ret = -EINVAL;
769 			break;
770 		}
771 
772 		ret = rdtgroup_move_task(pid, rdtgrp, of);
773 		if (ret) {
774 			rdt_last_cmd_printf("Error while processing task %d\n", pid);
775 			break;
776 		}
777 	}
778 
779 unlock:
780 	rdtgroup_kn_unlock(of->kn);
781 
782 	return ret ?: nbytes;
783 }
784 
show_rdt_tasks(struct rdtgroup * r,struct seq_file * s)785 static void show_rdt_tasks(struct rdtgroup *r, struct seq_file *s)
786 {
787 	struct task_struct *p, *t;
788 	pid_t pid;
789 
790 	rcu_read_lock();
791 	for_each_process_thread(p, t) {
792 		if (is_closid_match(t, r) || is_rmid_match(t, r)) {
793 			pid = task_pid_vnr(t);
794 			if (pid)
795 				seq_printf(s, "%d\n", pid);
796 		}
797 	}
798 	rcu_read_unlock();
799 }
800 
rdtgroup_tasks_show(struct kernfs_open_file * of,struct seq_file * s,void * v)801 static int rdtgroup_tasks_show(struct kernfs_open_file *of,
802 			       struct seq_file *s, void *v)
803 {
804 	struct rdtgroup *rdtgrp;
805 	int ret = 0;
806 
807 	rdtgrp = rdtgroup_kn_lock_live(of->kn);
808 	if (rdtgrp)
809 		show_rdt_tasks(rdtgrp, s);
810 	else
811 		ret = -ENOENT;
812 	rdtgroup_kn_unlock(of->kn);
813 
814 	return ret;
815 }
816 
rdtgroup_closid_show(struct kernfs_open_file * of,struct seq_file * s,void * v)817 static int rdtgroup_closid_show(struct kernfs_open_file *of,
818 				struct seq_file *s, void *v)
819 {
820 	struct rdtgroup *rdtgrp;
821 	int ret = 0;
822 
823 	rdtgrp = rdtgroup_kn_lock_live(of->kn);
824 	if (rdtgrp)
825 		seq_printf(s, "%u\n", rdtgrp->closid);
826 	else
827 		ret = -ENOENT;
828 	rdtgroup_kn_unlock(of->kn);
829 
830 	return ret;
831 }
832 
rdtgroup_rmid_show(struct kernfs_open_file * of,struct seq_file * s,void * v)833 static int rdtgroup_rmid_show(struct kernfs_open_file *of,
834 			      struct seq_file *s, void *v)
835 {
836 	struct rdtgroup *rdtgrp;
837 	int ret = 0;
838 
839 	rdtgrp = rdtgroup_kn_lock_live(of->kn);
840 	if (rdtgrp)
841 		seq_printf(s, "%u\n", rdtgrp->mon.rmid);
842 	else
843 		ret = -ENOENT;
844 	rdtgroup_kn_unlock(of->kn);
845 
846 	return ret;
847 }
848 
849 #ifdef CONFIG_PROC_CPU_RESCTRL
850 
851 /*
852  * A task can only be part of one resctrl control group and of one monitor
853  * group which is associated to that control group.
854  *
855  * 1)   res:
856  *      mon:
857  *
858  *    resctrl is not available.
859  *
860  * 2)   res:/
861  *      mon:
862  *
863  *    Task is part of the root resctrl control group, and it is not associated
864  *    to any monitor group.
865  *
866  * 3)  res:/
867  *     mon:mon0
868  *
869  *    Task is part of the root resctrl control group and monitor group mon0.
870  *
871  * 4)  res:group0
872  *     mon:
873  *
874  *    Task is part of resctrl control group group0, and it is not associated
875  *    to any monitor group.
876  *
877  * 5) res:group0
878  *    mon:mon1
879  *
880  *    Task is part of resctrl control group group0 and monitor group mon1.
881  */
proc_resctrl_show(struct seq_file * s,struct pid_namespace * ns,struct pid * pid,struct task_struct * tsk)882 int proc_resctrl_show(struct seq_file *s, struct pid_namespace *ns,
883 		      struct pid *pid, struct task_struct *tsk)
884 {
885 	struct rdtgroup *rdtg;
886 	int ret = 0;
887 
888 	mutex_lock(&rdtgroup_mutex);
889 
890 	/* Return empty if resctrl has not been mounted. */
891 	if (!resctrl_mounted) {
892 		seq_puts(s, "res:\nmon:\n");
893 		goto unlock;
894 	}
895 
896 	list_for_each_entry(rdtg, &rdt_all_groups, rdtgroup_list) {
897 		struct rdtgroup *crg;
898 
899 		/*
900 		 * Task information is only relevant for shareable
901 		 * and exclusive groups.
902 		 */
903 		if (rdtg->mode != RDT_MODE_SHAREABLE &&
904 		    rdtg->mode != RDT_MODE_EXCLUSIVE)
905 			continue;
906 
907 		if (!resctrl_arch_match_closid(tsk, rdtg->closid))
908 			continue;
909 
910 		seq_printf(s, "res:%s%s\n", (rdtg == &rdtgroup_default) ? "/" : "",
911 			   rdtg->kn->name);
912 		seq_puts(s, "mon:");
913 		list_for_each_entry(crg, &rdtg->mon.crdtgrp_list,
914 				    mon.crdtgrp_list) {
915 			if (!resctrl_arch_match_rmid(tsk, crg->mon.parent->closid,
916 						     crg->mon.rmid))
917 				continue;
918 			seq_printf(s, "%s", crg->kn->name);
919 			break;
920 		}
921 		seq_putc(s, '\n');
922 		goto unlock;
923 	}
924 	/*
925 	 * The above search should succeed. Otherwise return
926 	 * with an error.
927 	 */
928 	ret = -ENOENT;
929 unlock:
930 	mutex_unlock(&rdtgroup_mutex);
931 
932 	return ret;
933 }
934 #endif
935 
rdt_last_cmd_status_show(struct kernfs_open_file * of,struct seq_file * seq,void * v)936 static int rdt_last_cmd_status_show(struct kernfs_open_file *of,
937 				    struct seq_file *seq, void *v)
938 {
939 	int len;
940 
941 	mutex_lock(&rdtgroup_mutex);
942 	len = seq_buf_used(&last_cmd_status);
943 	if (len)
944 		seq_printf(seq, "%.*s", len, last_cmd_status_buf);
945 	else
946 		seq_puts(seq, "ok\n");
947 	mutex_unlock(&rdtgroup_mutex);
948 	return 0;
949 }
950 
rdt_num_closids_show(struct kernfs_open_file * of,struct seq_file * seq,void * v)951 static int rdt_num_closids_show(struct kernfs_open_file *of,
952 				struct seq_file *seq, void *v)
953 {
954 	struct resctrl_schema *s = of->kn->parent->priv;
955 
956 	seq_printf(seq, "%u\n", s->num_closid);
957 	return 0;
958 }
959 
rdt_default_ctrl_show(struct kernfs_open_file * of,struct seq_file * seq,void * v)960 static int rdt_default_ctrl_show(struct kernfs_open_file *of,
961 			     struct seq_file *seq, void *v)
962 {
963 	struct resctrl_schema *s = of->kn->parent->priv;
964 	struct rdt_resource *r = s->res;
965 
966 	seq_printf(seq, "%x\n", r->default_ctrl);
967 	return 0;
968 }
969 
rdt_min_cbm_bits_show(struct kernfs_open_file * of,struct seq_file * seq,void * v)970 static int rdt_min_cbm_bits_show(struct kernfs_open_file *of,
971 			     struct seq_file *seq, void *v)
972 {
973 	struct resctrl_schema *s = of->kn->parent->priv;
974 	struct rdt_resource *r = s->res;
975 
976 	seq_printf(seq, "%u\n", r->cache.min_cbm_bits);
977 	return 0;
978 }
979 
rdt_shareable_bits_show(struct kernfs_open_file * of,struct seq_file * seq,void * v)980 static int rdt_shareable_bits_show(struct kernfs_open_file *of,
981 				   struct seq_file *seq, void *v)
982 {
983 	struct resctrl_schema *s = of->kn->parent->priv;
984 	struct rdt_resource *r = s->res;
985 
986 	seq_printf(seq, "%x\n", r->cache.shareable_bits);
987 	return 0;
988 }
989 
990 /*
991  * rdt_bit_usage_show - Display current usage of resources
992  *
993  * A domain is a shared resource that can now be allocated differently. Here
994  * we display the current regions of the domain as an annotated bitmask.
995  * For each domain of this resource its allocation bitmask
996  * is annotated as below to indicate the current usage of the corresponding bit:
997  *   0 - currently unused
998  *   X - currently available for sharing and used by software and hardware
999  *   H - currently used by hardware only but available for software use
1000  *   S - currently used and shareable by software only
1001  *   E - currently used exclusively by one resource group
1002  *   P - currently pseudo-locked by one resource group
1003  */
rdt_bit_usage_show(struct kernfs_open_file * of,struct seq_file * seq,void * v)1004 static int rdt_bit_usage_show(struct kernfs_open_file *of,
1005 			      struct seq_file *seq, void *v)
1006 {
1007 	struct resctrl_schema *s = of->kn->parent->priv;
1008 	/*
1009 	 * Use unsigned long even though only 32 bits are used to ensure
1010 	 * test_bit() is used safely.
1011 	 */
1012 	unsigned long sw_shareable = 0, hw_shareable = 0;
1013 	unsigned long exclusive = 0, pseudo_locked = 0;
1014 	struct rdt_resource *r = s->res;
1015 	struct rdt_ctrl_domain *dom;
1016 	int i, hwb, swb, excl, psl;
1017 	enum rdtgrp_mode mode;
1018 	bool sep = false;
1019 	u32 ctrl_val;
1020 
1021 	cpus_read_lock();
1022 	mutex_lock(&rdtgroup_mutex);
1023 	hw_shareable = r->cache.shareable_bits;
1024 	list_for_each_entry(dom, &r->ctrl_domains, hdr.list) {
1025 		if (sep)
1026 			seq_putc(seq, ';');
1027 		sw_shareable = 0;
1028 		exclusive = 0;
1029 		seq_printf(seq, "%d=", dom->hdr.id);
1030 		for (i = 0; i < closids_supported(); i++) {
1031 			if (!closid_allocated(i))
1032 				continue;
1033 			ctrl_val = resctrl_arch_get_config(r, dom, i,
1034 							   s->conf_type);
1035 			mode = rdtgroup_mode_by_closid(i);
1036 			switch (mode) {
1037 			case RDT_MODE_SHAREABLE:
1038 				sw_shareable |= ctrl_val;
1039 				break;
1040 			case RDT_MODE_EXCLUSIVE:
1041 				exclusive |= ctrl_val;
1042 				break;
1043 			case RDT_MODE_PSEUDO_LOCKSETUP:
1044 			/*
1045 			 * RDT_MODE_PSEUDO_LOCKSETUP is possible
1046 			 * here but not included since the CBM
1047 			 * associated with this CLOSID in this mode
1048 			 * is not initialized and no task or cpu can be
1049 			 * assigned this CLOSID.
1050 			 */
1051 				break;
1052 			case RDT_MODE_PSEUDO_LOCKED:
1053 			case RDT_NUM_MODES:
1054 				WARN(1,
1055 				     "invalid mode for closid %d\n", i);
1056 				break;
1057 			}
1058 		}
1059 		for (i = r->cache.cbm_len - 1; i >= 0; i--) {
1060 			pseudo_locked = dom->plr ? dom->plr->cbm : 0;
1061 			hwb = test_bit(i, &hw_shareable);
1062 			swb = test_bit(i, &sw_shareable);
1063 			excl = test_bit(i, &exclusive);
1064 			psl = test_bit(i, &pseudo_locked);
1065 			if (hwb && swb)
1066 				seq_putc(seq, 'X');
1067 			else if (hwb && !swb)
1068 				seq_putc(seq, 'H');
1069 			else if (!hwb && swb)
1070 				seq_putc(seq, 'S');
1071 			else if (excl)
1072 				seq_putc(seq, 'E');
1073 			else if (psl)
1074 				seq_putc(seq, 'P');
1075 			else /* Unused bits remain */
1076 				seq_putc(seq, '0');
1077 		}
1078 		sep = true;
1079 	}
1080 	seq_putc(seq, '\n');
1081 	mutex_unlock(&rdtgroup_mutex);
1082 	cpus_read_unlock();
1083 	return 0;
1084 }
1085 
rdt_min_bw_show(struct kernfs_open_file * of,struct seq_file * seq,void * v)1086 static int rdt_min_bw_show(struct kernfs_open_file *of,
1087 			     struct seq_file *seq, void *v)
1088 {
1089 	struct resctrl_schema *s = of->kn->parent->priv;
1090 	struct rdt_resource *r = s->res;
1091 
1092 	seq_printf(seq, "%u\n", r->membw.min_bw);
1093 	return 0;
1094 }
1095 
rdt_num_rmids_show(struct kernfs_open_file * of,struct seq_file * seq,void * v)1096 static int rdt_num_rmids_show(struct kernfs_open_file *of,
1097 			      struct seq_file *seq, void *v)
1098 {
1099 	struct rdt_resource *r = of->kn->parent->priv;
1100 
1101 	seq_printf(seq, "%d\n", r->num_rmid);
1102 
1103 	return 0;
1104 }
1105 
rdt_mon_features_show(struct kernfs_open_file * of,struct seq_file * seq,void * v)1106 static int rdt_mon_features_show(struct kernfs_open_file *of,
1107 				 struct seq_file *seq, void *v)
1108 {
1109 	struct rdt_resource *r = of->kn->parent->priv;
1110 	struct mon_evt *mevt;
1111 
1112 	list_for_each_entry(mevt, &r->evt_list, list) {
1113 		seq_printf(seq, "%s\n", mevt->name);
1114 		if (mevt->configurable)
1115 			seq_printf(seq, "%s_config\n", mevt->name);
1116 	}
1117 
1118 	return 0;
1119 }
1120 
rdt_bw_gran_show(struct kernfs_open_file * of,struct seq_file * seq,void * v)1121 static int rdt_bw_gran_show(struct kernfs_open_file *of,
1122 			     struct seq_file *seq, void *v)
1123 {
1124 	struct resctrl_schema *s = of->kn->parent->priv;
1125 	struct rdt_resource *r = s->res;
1126 
1127 	seq_printf(seq, "%u\n", r->membw.bw_gran);
1128 	return 0;
1129 }
1130 
rdt_delay_linear_show(struct kernfs_open_file * of,struct seq_file * seq,void * v)1131 static int rdt_delay_linear_show(struct kernfs_open_file *of,
1132 			     struct seq_file *seq, void *v)
1133 {
1134 	struct resctrl_schema *s = of->kn->parent->priv;
1135 	struct rdt_resource *r = s->res;
1136 
1137 	seq_printf(seq, "%u\n", r->membw.delay_linear);
1138 	return 0;
1139 }
1140 
max_threshold_occ_show(struct kernfs_open_file * of,struct seq_file * seq,void * v)1141 static int max_threshold_occ_show(struct kernfs_open_file *of,
1142 				  struct seq_file *seq, void *v)
1143 {
1144 	seq_printf(seq, "%u\n", resctrl_rmid_realloc_threshold);
1145 
1146 	return 0;
1147 }
1148 
rdt_thread_throttle_mode_show(struct kernfs_open_file * of,struct seq_file * seq,void * v)1149 static int rdt_thread_throttle_mode_show(struct kernfs_open_file *of,
1150 					 struct seq_file *seq, void *v)
1151 {
1152 	struct resctrl_schema *s = of->kn->parent->priv;
1153 	struct rdt_resource *r = s->res;
1154 
1155 	if (r->membw.throttle_mode == THREAD_THROTTLE_PER_THREAD)
1156 		seq_puts(seq, "per-thread\n");
1157 	else
1158 		seq_puts(seq, "max\n");
1159 
1160 	return 0;
1161 }
1162 
max_threshold_occ_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)1163 static ssize_t max_threshold_occ_write(struct kernfs_open_file *of,
1164 				       char *buf, size_t nbytes, loff_t off)
1165 {
1166 	unsigned int bytes;
1167 	int ret;
1168 
1169 	ret = kstrtouint(buf, 0, &bytes);
1170 	if (ret)
1171 		return ret;
1172 
1173 	if (bytes > resctrl_rmid_realloc_limit)
1174 		return -EINVAL;
1175 
1176 	resctrl_rmid_realloc_threshold = resctrl_arch_round_mon_val(bytes);
1177 
1178 	return nbytes;
1179 }
1180 
1181 /*
1182  * rdtgroup_mode_show - Display mode of this resource group
1183  */
rdtgroup_mode_show(struct kernfs_open_file * of,struct seq_file * s,void * v)1184 static int rdtgroup_mode_show(struct kernfs_open_file *of,
1185 			      struct seq_file *s, void *v)
1186 {
1187 	struct rdtgroup *rdtgrp;
1188 
1189 	rdtgrp = rdtgroup_kn_lock_live(of->kn);
1190 	if (!rdtgrp) {
1191 		rdtgroup_kn_unlock(of->kn);
1192 		return -ENOENT;
1193 	}
1194 
1195 	seq_printf(s, "%s\n", rdtgroup_mode_str(rdtgrp->mode));
1196 
1197 	rdtgroup_kn_unlock(of->kn);
1198 	return 0;
1199 }
1200 
resctrl_peer_type(enum resctrl_conf_type my_type)1201 static enum resctrl_conf_type resctrl_peer_type(enum resctrl_conf_type my_type)
1202 {
1203 	switch (my_type) {
1204 	case CDP_CODE:
1205 		return CDP_DATA;
1206 	case CDP_DATA:
1207 		return CDP_CODE;
1208 	default:
1209 	case CDP_NONE:
1210 		return CDP_NONE;
1211 	}
1212 }
1213 
rdt_has_sparse_bitmasks_show(struct kernfs_open_file * of,struct seq_file * seq,void * v)1214 static int rdt_has_sparse_bitmasks_show(struct kernfs_open_file *of,
1215 					struct seq_file *seq, void *v)
1216 {
1217 	struct resctrl_schema *s = of->kn->parent->priv;
1218 	struct rdt_resource *r = s->res;
1219 
1220 	seq_printf(seq, "%u\n", r->cache.arch_has_sparse_bitmasks);
1221 
1222 	return 0;
1223 }
1224 
1225 /**
1226  * __rdtgroup_cbm_overlaps - Does CBM for intended closid overlap with other
1227  * @r: Resource to which domain instance @d belongs.
1228  * @d: The domain instance for which @closid is being tested.
1229  * @cbm: Capacity bitmask being tested.
1230  * @closid: Intended closid for @cbm.
1231  * @type: CDP type of @r.
1232  * @exclusive: Only check if overlaps with exclusive resource groups
1233  *
1234  * Checks if provided @cbm intended to be used for @closid on domain
1235  * @d overlaps with any other closids or other hardware usage associated
1236  * with this domain. If @exclusive is true then only overlaps with
1237  * resource groups in exclusive mode will be considered. If @exclusive
1238  * is false then overlaps with any resource group or hardware entities
1239  * will be considered.
1240  *
1241  * @cbm is unsigned long, even if only 32 bits are used, to make the
1242  * bitmap functions work correctly.
1243  *
1244  * Return: false if CBM does not overlap, true if it does.
1245  */
__rdtgroup_cbm_overlaps(struct rdt_resource * r,struct rdt_ctrl_domain * d,unsigned long cbm,int closid,enum resctrl_conf_type type,bool exclusive)1246 static bool __rdtgroup_cbm_overlaps(struct rdt_resource *r, struct rdt_ctrl_domain *d,
1247 				    unsigned long cbm, int closid,
1248 				    enum resctrl_conf_type type, bool exclusive)
1249 {
1250 	enum rdtgrp_mode mode;
1251 	unsigned long ctrl_b;
1252 	int i;
1253 
1254 	/* Check for any overlap with regions used by hardware directly */
1255 	if (!exclusive) {
1256 		ctrl_b = r->cache.shareable_bits;
1257 		if (bitmap_intersects(&cbm, &ctrl_b, r->cache.cbm_len))
1258 			return true;
1259 	}
1260 
1261 	/* Check for overlap with other resource groups */
1262 	for (i = 0; i < closids_supported(); i++) {
1263 		ctrl_b = resctrl_arch_get_config(r, d, i, type);
1264 		mode = rdtgroup_mode_by_closid(i);
1265 		if (closid_allocated(i) && i != closid &&
1266 		    mode != RDT_MODE_PSEUDO_LOCKSETUP) {
1267 			if (bitmap_intersects(&cbm, &ctrl_b, r->cache.cbm_len)) {
1268 				if (exclusive) {
1269 					if (mode == RDT_MODE_EXCLUSIVE)
1270 						return true;
1271 					continue;
1272 				}
1273 				return true;
1274 			}
1275 		}
1276 	}
1277 
1278 	return false;
1279 }
1280 
1281 /**
1282  * rdtgroup_cbm_overlaps - Does CBM overlap with other use of hardware
1283  * @s: Schema for the resource to which domain instance @d belongs.
1284  * @d: The domain instance for which @closid is being tested.
1285  * @cbm: Capacity bitmask being tested.
1286  * @closid: Intended closid for @cbm.
1287  * @exclusive: Only check if overlaps with exclusive resource groups
1288  *
1289  * Resources that can be allocated using a CBM can use the CBM to control
1290  * the overlap of these allocations. rdtgroup_cmb_overlaps() is the test
1291  * for overlap. Overlap test is not limited to the specific resource for
1292  * which the CBM is intended though - when dealing with CDP resources that
1293  * share the underlying hardware the overlap check should be performed on
1294  * the CDP resource sharing the hardware also.
1295  *
1296  * Refer to description of __rdtgroup_cbm_overlaps() for the details of the
1297  * overlap test.
1298  *
1299  * Return: true if CBM overlap detected, false if there is no overlap
1300  */
rdtgroup_cbm_overlaps(struct resctrl_schema * s,struct rdt_ctrl_domain * d,unsigned long cbm,int closid,bool exclusive)1301 bool rdtgroup_cbm_overlaps(struct resctrl_schema *s, struct rdt_ctrl_domain *d,
1302 			   unsigned long cbm, int closid, bool exclusive)
1303 {
1304 	enum resctrl_conf_type peer_type = resctrl_peer_type(s->conf_type);
1305 	struct rdt_resource *r = s->res;
1306 
1307 	if (__rdtgroup_cbm_overlaps(r, d, cbm, closid, s->conf_type,
1308 				    exclusive))
1309 		return true;
1310 
1311 	if (!resctrl_arch_get_cdp_enabled(r->rid))
1312 		return false;
1313 	return  __rdtgroup_cbm_overlaps(r, d, cbm, closid, peer_type, exclusive);
1314 }
1315 
1316 /**
1317  * rdtgroup_mode_test_exclusive - Test if this resource group can be exclusive
1318  * @rdtgrp: Resource group identified through its closid.
1319  *
1320  * An exclusive resource group implies that there should be no sharing of
1321  * its allocated resources. At the time this group is considered to be
1322  * exclusive this test can determine if its current schemata supports this
1323  * setting by testing for overlap with all other resource groups.
1324  *
1325  * Return: true if resource group can be exclusive, false if there is overlap
1326  * with allocations of other resource groups and thus this resource group
1327  * cannot be exclusive.
1328  */
rdtgroup_mode_test_exclusive(struct rdtgroup * rdtgrp)1329 static bool rdtgroup_mode_test_exclusive(struct rdtgroup *rdtgrp)
1330 {
1331 	int closid = rdtgrp->closid;
1332 	struct rdt_ctrl_domain *d;
1333 	struct resctrl_schema *s;
1334 	struct rdt_resource *r;
1335 	bool has_cache = false;
1336 	u32 ctrl;
1337 
1338 	/* Walking r->domains, ensure it can't race with cpuhp */
1339 	lockdep_assert_cpus_held();
1340 
1341 	list_for_each_entry(s, &resctrl_schema_all, list) {
1342 		r = s->res;
1343 		if (r->rid == RDT_RESOURCE_MBA || r->rid == RDT_RESOURCE_SMBA)
1344 			continue;
1345 		has_cache = true;
1346 		list_for_each_entry(d, &r->ctrl_domains, hdr.list) {
1347 			ctrl = resctrl_arch_get_config(r, d, closid,
1348 						       s->conf_type);
1349 			if (rdtgroup_cbm_overlaps(s, d, ctrl, closid, false)) {
1350 				rdt_last_cmd_puts("Schemata overlaps\n");
1351 				return false;
1352 			}
1353 		}
1354 	}
1355 
1356 	if (!has_cache) {
1357 		rdt_last_cmd_puts("Cannot be exclusive without CAT/CDP\n");
1358 		return false;
1359 	}
1360 
1361 	return true;
1362 }
1363 
1364 /*
1365  * rdtgroup_mode_write - Modify the resource group's mode
1366  */
rdtgroup_mode_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)1367 static ssize_t rdtgroup_mode_write(struct kernfs_open_file *of,
1368 				   char *buf, size_t nbytes, loff_t off)
1369 {
1370 	struct rdtgroup *rdtgrp;
1371 	enum rdtgrp_mode mode;
1372 	int ret = 0;
1373 
1374 	/* Valid input requires a trailing newline */
1375 	if (nbytes == 0 || buf[nbytes - 1] != '\n')
1376 		return -EINVAL;
1377 	buf[nbytes - 1] = '\0';
1378 
1379 	rdtgrp = rdtgroup_kn_lock_live(of->kn);
1380 	if (!rdtgrp) {
1381 		rdtgroup_kn_unlock(of->kn);
1382 		return -ENOENT;
1383 	}
1384 
1385 	rdt_last_cmd_clear();
1386 
1387 	mode = rdtgrp->mode;
1388 
1389 	if ((!strcmp(buf, "shareable") && mode == RDT_MODE_SHAREABLE) ||
1390 	    (!strcmp(buf, "exclusive") && mode == RDT_MODE_EXCLUSIVE) ||
1391 	    (!strcmp(buf, "pseudo-locksetup") &&
1392 	     mode == RDT_MODE_PSEUDO_LOCKSETUP) ||
1393 	    (!strcmp(buf, "pseudo-locked") && mode == RDT_MODE_PSEUDO_LOCKED))
1394 		goto out;
1395 
1396 	if (mode == RDT_MODE_PSEUDO_LOCKED) {
1397 		rdt_last_cmd_puts("Cannot change pseudo-locked group\n");
1398 		ret = -EINVAL;
1399 		goto out;
1400 	}
1401 
1402 	if (!strcmp(buf, "shareable")) {
1403 		if (rdtgrp->mode == RDT_MODE_PSEUDO_LOCKSETUP) {
1404 			ret = rdtgroup_locksetup_exit(rdtgrp);
1405 			if (ret)
1406 				goto out;
1407 		}
1408 		rdtgrp->mode = RDT_MODE_SHAREABLE;
1409 	} else if (!strcmp(buf, "exclusive")) {
1410 		if (!rdtgroup_mode_test_exclusive(rdtgrp)) {
1411 			ret = -EINVAL;
1412 			goto out;
1413 		}
1414 		if (rdtgrp->mode == RDT_MODE_PSEUDO_LOCKSETUP) {
1415 			ret = rdtgroup_locksetup_exit(rdtgrp);
1416 			if (ret)
1417 				goto out;
1418 		}
1419 		rdtgrp->mode = RDT_MODE_EXCLUSIVE;
1420 	} else if (!strcmp(buf, "pseudo-locksetup")) {
1421 		ret = rdtgroup_locksetup_enter(rdtgrp);
1422 		if (ret)
1423 			goto out;
1424 		rdtgrp->mode = RDT_MODE_PSEUDO_LOCKSETUP;
1425 	} else {
1426 		rdt_last_cmd_puts("Unknown or unsupported mode\n");
1427 		ret = -EINVAL;
1428 	}
1429 
1430 out:
1431 	rdtgroup_kn_unlock(of->kn);
1432 	return ret ?: nbytes;
1433 }
1434 
1435 /**
1436  * rdtgroup_cbm_to_size - Translate CBM to size in bytes
1437  * @r: RDT resource to which @d belongs.
1438  * @d: RDT domain instance.
1439  * @cbm: bitmask for which the size should be computed.
1440  *
1441  * The bitmask provided associated with the RDT domain instance @d will be
1442  * translated into how many bytes it represents. The size in bytes is
1443  * computed by first dividing the total cache size by the CBM length to
1444  * determine how many bytes each bit in the bitmask represents. The result
1445  * is multiplied with the number of bits set in the bitmask.
1446  *
1447  * @cbm is unsigned long, even if only 32 bits are used to make the
1448  * bitmap functions work correctly.
1449  */
rdtgroup_cbm_to_size(struct rdt_resource * r,struct rdt_ctrl_domain * d,unsigned long cbm)1450 unsigned int rdtgroup_cbm_to_size(struct rdt_resource *r,
1451 				  struct rdt_ctrl_domain *d, unsigned long cbm)
1452 {
1453 	unsigned int size = 0;
1454 	struct cacheinfo *ci;
1455 	int num_b;
1456 
1457 	if (WARN_ON_ONCE(r->ctrl_scope != RESCTRL_L2_CACHE && r->ctrl_scope != RESCTRL_L3_CACHE))
1458 		return size;
1459 
1460 	num_b = bitmap_weight(&cbm, r->cache.cbm_len);
1461 	ci = get_cpu_cacheinfo_level(cpumask_any(&d->hdr.cpu_mask), r->ctrl_scope);
1462 	if (ci)
1463 		size = ci->size / r->cache.cbm_len * num_b;
1464 
1465 	return size;
1466 }
1467 
1468 /*
1469  * rdtgroup_size_show - Display size in bytes of allocated regions
1470  *
1471  * The "size" file mirrors the layout of the "schemata" file, printing the
1472  * size in bytes of each region instead of the capacity bitmask.
1473  */
rdtgroup_size_show(struct kernfs_open_file * of,struct seq_file * s,void * v)1474 static int rdtgroup_size_show(struct kernfs_open_file *of,
1475 			      struct seq_file *s, void *v)
1476 {
1477 	struct resctrl_schema *schema;
1478 	enum resctrl_conf_type type;
1479 	struct rdt_ctrl_domain *d;
1480 	struct rdtgroup *rdtgrp;
1481 	struct rdt_resource *r;
1482 	unsigned int size;
1483 	int ret = 0;
1484 	u32 closid;
1485 	bool sep;
1486 	u32 ctrl;
1487 
1488 	rdtgrp = rdtgroup_kn_lock_live(of->kn);
1489 	if (!rdtgrp) {
1490 		rdtgroup_kn_unlock(of->kn);
1491 		return -ENOENT;
1492 	}
1493 
1494 	if (rdtgrp->mode == RDT_MODE_PSEUDO_LOCKED) {
1495 		if (!rdtgrp->plr->d) {
1496 			rdt_last_cmd_clear();
1497 			rdt_last_cmd_puts("Cache domain offline\n");
1498 			ret = -ENODEV;
1499 		} else {
1500 			seq_printf(s, "%*s:", max_name_width,
1501 				   rdtgrp->plr->s->name);
1502 			size = rdtgroup_cbm_to_size(rdtgrp->plr->s->res,
1503 						    rdtgrp->plr->d,
1504 						    rdtgrp->plr->cbm);
1505 			seq_printf(s, "%d=%u\n", rdtgrp->plr->d->hdr.id, size);
1506 		}
1507 		goto out;
1508 	}
1509 
1510 	closid = rdtgrp->closid;
1511 
1512 	list_for_each_entry(schema, &resctrl_schema_all, list) {
1513 		r = schema->res;
1514 		type = schema->conf_type;
1515 		sep = false;
1516 		seq_printf(s, "%*s:", max_name_width, schema->name);
1517 		list_for_each_entry(d, &r->ctrl_domains, hdr.list) {
1518 			if (sep)
1519 				seq_putc(s, ';');
1520 			if (rdtgrp->mode == RDT_MODE_PSEUDO_LOCKSETUP) {
1521 				size = 0;
1522 			} else {
1523 				if (is_mba_sc(r))
1524 					ctrl = d->mbps_val[closid];
1525 				else
1526 					ctrl = resctrl_arch_get_config(r, d,
1527 								       closid,
1528 								       type);
1529 				if (r->rid == RDT_RESOURCE_MBA ||
1530 				    r->rid == RDT_RESOURCE_SMBA)
1531 					size = ctrl;
1532 				else
1533 					size = rdtgroup_cbm_to_size(r, d, ctrl);
1534 			}
1535 			seq_printf(s, "%d=%u", d->hdr.id, size);
1536 			sep = true;
1537 		}
1538 		seq_putc(s, '\n');
1539 	}
1540 
1541 out:
1542 	rdtgroup_kn_unlock(of->kn);
1543 
1544 	return ret;
1545 }
1546 
1547 struct mon_config_info {
1548 	u32 evtid;
1549 	u32 mon_config;
1550 };
1551 
1552 #define INVALID_CONFIG_INDEX   UINT_MAX
1553 
1554 /**
1555  * mon_event_config_index_get - get the hardware index for the
1556  *                              configurable event
1557  * @evtid: event id.
1558  *
1559  * Return: 0 for evtid == QOS_L3_MBM_TOTAL_EVENT_ID
1560  *         1 for evtid == QOS_L3_MBM_LOCAL_EVENT_ID
1561  *         INVALID_CONFIG_INDEX for invalid evtid
1562  */
mon_event_config_index_get(u32 evtid)1563 static inline unsigned int mon_event_config_index_get(u32 evtid)
1564 {
1565 	switch (evtid) {
1566 	case QOS_L3_MBM_TOTAL_EVENT_ID:
1567 		return 0;
1568 	case QOS_L3_MBM_LOCAL_EVENT_ID:
1569 		return 1;
1570 	default:
1571 		/* Should never reach here */
1572 		return INVALID_CONFIG_INDEX;
1573 	}
1574 }
1575 
mon_event_config_read(void * info)1576 static void mon_event_config_read(void *info)
1577 {
1578 	struct mon_config_info *mon_info = info;
1579 	unsigned int index;
1580 	u64 msrval;
1581 
1582 	index = mon_event_config_index_get(mon_info->evtid);
1583 	if (index == INVALID_CONFIG_INDEX) {
1584 		pr_warn_once("Invalid event id %d\n", mon_info->evtid);
1585 		return;
1586 	}
1587 	rdmsrl(MSR_IA32_EVT_CFG_BASE + index, msrval);
1588 
1589 	/* Report only the valid event configuration bits */
1590 	mon_info->mon_config = msrval & MAX_EVT_CONFIG_BITS;
1591 }
1592 
mondata_config_read(struct rdt_mon_domain * d,struct mon_config_info * mon_info)1593 static void mondata_config_read(struct rdt_mon_domain *d, struct mon_config_info *mon_info)
1594 {
1595 	smp_call_function_any(&d->hdr.cpu_mask, mon_event_config_read, mon_info, 1);
1596 }
1597 
mbm_config_show(struct seq_file * s,struct rdt_resource * r,u32 evtid)1598 static int mbm_config_show(struct seq_file *s, struct rdt_resource *r, u32 evtid)
1599 {
1600 	struct mon_config_info mon_info = {0};
1601 	struct rdt_mon_domain *dom;
1602 	bool sep = false;
1603 
1604 	cpus_read_lock();
1605 	mutex_lock(&rdtgroup_mutex);
1606 
1607 	list_for_each_entry(dom, &r->mon_domains, hdr.list) {
1608 		if (sep)
1609 			seq_puts(s, ";");
1610 
1611 		memset(&mon_info, 0, sizeof(struct mon_config_info));
1612 		mon_info.evtid = evtid;
1613 		mondata_config_read(dom, &mon_info);
1614 
1615 		seq_printf(s, "%d=0x%02x", dom->hdr.id, mon_info.mon_config);
1616 		sep = true;
1617 	}
1618 	seq_puts(s, "\n");
1619 
1620 	mutex_unlock(&rdtgroup_mutex);
1621 	cpus_read_unlock();
1622 
1623 	return 0;
1624 }
1625 
mbm_total_bytes_config_show(struct kernfs_open_file * of,struct seq_file * seq,void * v)1626 static int mbm_total_bytes_config_show(struct kernfs_open_file *of,
1627 				       struct seq_file *seq, void *v)
1628 {
1629 	struct rdt_resource *r = of->kn->parent->priv;
1630 
1631 	mbm_config_show(seq, r, QOS_L3_MBM_TOTAL_EVENT_ID);
1632 
1633 	return 0;
1634 }
1635 
mbm_local_bytes_config_show(struct kernfs_open_file * of,struct seq_file * seq,void * v)1636 static int mbm_local_bytes_config_show(struct kernfs_open_file *of,
1637 				       struct seq_file *seq, void *v)
1638 {
1639 	struct rdt_resource *r = of->kn->parent->priv;
1640 
1641 	mbm_config_show(seq, r, QOS_L3_MBM_LOCAL_EVENT_ID);
1642 
1643 	return 0;
1644 }
1645 
mon_event_config_write(void * info)1646 static void mon_event_config_write(void *info)
1647 {
1648 	struct mon_config_info *mon_info = info;
1649 	unsigned int index;
1650 
1651 	index = mon_event_config_index_get(mon_info->evtid);
1652 	if (index == INVALID_CONFIG_INDEX) {
1653 		pr_warn_once("Invalid event id %d\n", mon_info->evtid);
1654 		return;
1655 	}
1656 	wrmsr(MSR_IA32_EVT_CFG_BASE + index, mon_info->mon_config, 0);
1657 }
1658 
mbm_config_write_domain(struct rdt_resource * r,struct rdt_mon_domain * d,u32 evtid,u32 val)1659 static void mbm_config_write_domain(struct rdt_resource *r,
1660 				    struct rdt_mon_domain *d, u32 evtid, u32 val)
1661 {
1662 	struct mon_config_info mon_info = {0};
1663 
1664 	/*
1665 	 * Read the current config value first. If both are the same then
1666 	 * no need to write it again.
1667 	 */
1668 	mon_info.evtid = evtid;
1669 	mondata_config_read(d, &mon_info);
1670 	if (mon_info.mon_config == val)
1671 		return;
1672 
1673 	mon_info.mon_config = val;
1674 
1675 	/*
1676 	 * Update MSR_IA32_EVT_CFG_BASE MSR on one of the CPUs in the
1677 	 * domain. The MSRs offset from MSR MSR_IA32_EVT_CFG_BASE
1678 	 * are scoped at the domain level. Writing any of these MSRs
1679 	 * on one CPU is observed by all the CPUs in the domain.
1680 	 */
1681 	smp_call_function_any(&d->hdr.cpu_mask, mon_event_config_write,
1682 			      &mon_info, 1);
1683 
1684 	/*
1685 	 * When an Event Configuration is changed, the bandwidth counters
1686 	 * for all RMIDs and Events will be cleared by the hardware. The
1687 	 * hardware also sets MSR_IA32_QM_CTR.Unavailable (bit 62) for
1688 	 * every RMID on the next read to any event for every RMID.
1689 	 * Subsequent reads will have MSR_IA32_QM_CTR.Unavailable (bit 62)
1690 	 * cleared while it is tracked by the hardware. Clear the
1691 	 * mbm_local and mbm_total counts for all the RMIDs.
1692 	 */
1693 	resctrl_arch_reset_rmid_all(r, d);
1694 }
1695 
mon_config_write(struct rdt_resource * r,char * tok,u32 evtid)1696 static int mon_config_write(struct rdt_resource *r, char *tok, u32 evtid)
1697 {
1698 	struct rdt_hw_resource *hw_res = resctrl_to_arch_res(r);
1699 	char *dom_str = NULL, *id_str;
1700 	unsigned long dom_id, val;
1701 	struct rdt_mon_domain *d;
1702 
1703 	/* Walking r->domains, ensure it can't race with cpuhp */
1704 	lockdep_assert_cpus_held();
1705 
1706 next:
1707 	if (!tok || tok[0] == '\0')
1708 		return 0;
1709 
1710 	/* Start processing the strings for each domain */
1711 	dom_str = strim(strsep(&tok, ";"));
1712 	id_str = strsep(&dom_str, "=");
1713 
1714 	if (!id_str || kstrtoul(id_str, 10, &dom_id)) {
1715 		rdt_last_cmd_puts("Missing '=' or non-numeric domain id\n");
1716 		return -EINVAL;
1717 	}
1718 
1719 	if (!dom_str || kstrtoul(dom_str, 16, &val)) {
1720 		rdt_last_cmd_puts("Non-numeric event configuration value\n");
1721 		return -EINVAL;
1722 	}
1723 
1724 	/* Value from user cannot be more than the supported set of events */
1725 	if ((val & hw_res->mbm_cfg_mask) != val) {
1726 		rdt_last_cmd_printf("Invalid event configuration: max valid mask is 0x%02x\n",
1727 				    hw_res->mbm_cfg_mask);
1728 		return -EINVAL;
1729 	}
1730 
1731 	list_for_each_entry(d, &r->mon_domains, hdr.list) {
1732 		if (d->hdr.id == dom_id) {
1733 			mbm_config_write_domain(r, d, evtid, val);
1734 			goto next;
1735 		}
1736 	}
1737 
1738 	return -EINVAL;
1739 }
1740 
mbm_total_bytes_config_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)1741 static ssize_t mbm_total_bytes_config_write(struct kernfs_open_file *of,
1742 					    char *buf, size_t nbytes,
1743 					    loff_t off)
1744 {
1745 	struct rdt_resource *r = of->kn->parent->priv;
1746 	int ret;
1747 
1748 	/* Valid input requires a trailing newline */
1749 	if (nbytes == 0 || buf[nbytes - 1] != '\n')
1750 		return -EINVAL;
1751 
1752 	cpus_read_lock();
1753 	mutex_lock(&rdtgroup_mutex);
1754 
1755 	rdt_last_cmd_clear();
1756 
1757 	buf[nbytes - 1] = '\0';
1758 
1759 	ret = mon_config_write(r, buf, QOS_L3_MBM_TOTAL_EVENT_ID);
1760 
1761 	mutex_unlock(&rdtgroup_mutex);
1762 	cpus_read_unlock();
1763 
1764 	return ret ?: nbytes;
1765 }
1766 
mbm_local_bytes_config_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)1767 static ssize_t mbm_local_bytes_config_write(struct kernfs_open_file *of,
1768 					    char *buf, size_t nbytes,
1769 					    loff_t off)
1770 {
1771 	struct rdt_resource *r = of->kn->parent->priv;
1772 	int ret;
1773 
1774 	/* Valid input requires a trailing newline */
1775 	if (nbytes == 0 || buf[nbytes - 1] != '\n')
1776 		return -EINVAL;
1777 
1778 	cpus_read_lock();
1779 	mutex_lock(&rdtgroup_mutex);
1780 
1781 	rdt_last_cmd_clear();
1782 
1783 	buf[nbytes - 1] = '\0';
1784 
1785 	ret = mon_config_write(r, buf, QOS_L3_MBM_LOCAL_EVENT_ID);
1786 
1787 	mutex_unlock(&rdtgroup_mutex);
1788 	cpus_read_unlock();
1789 
1790 	return ret ?: nbytes;
1791 }
1792 
1793 /* rdtgroup information files for one cache resource. */
1794 static struct rftype res_common_files[] = {
1795 	{
1796 		.name		= "last_cmd_status",
1797 		.mode		= 0444,
1798 		.kf_ops		= &rdtgroup_kf_single_ops,
1799 		.seq_show	= rdt_last_cmd_status_show,
1800 		.fflags		= RFTYPE_TOP_INFO,
1801 	},
1802 	{
1803 		.name		= "num_closids",
1804 		.mode		= 0444,
1805 		.kf_ops		= &rdtgroup_kf_single_ops,
1806 		.seq_show	= rdt_num_closids_show,
1807 		.fflags		= RFTYPE_CTRL_INFO,
1808 	},
1809 	{
1810 		.name		= "mon_features",
1811 		.mode		= 0444,
1812 		.kf_ops		= &rdtgroup_kf_single_ops,
1813 		.seq_show	= rdt_mon_features_show,
1814 		.fflags		= RFTYPE_MON_INFO,
1815 	},
1816 	{
1817 		.name		= "num_rmids",
1818 		.mode		= 0444,
1819 		.kf_ops		= &rdtgroup_kf_single_ops,
1820 		.seq_show	= rdt_num_rmids_show,
1821 		.fflags		= RFTYPE_MON_INFO,
1822 	},
1823 	{
1824 		.name		= "cbm_mask",
1825 		.mode		= 0444,
1826 		.kf_ops		= &rdtgroup_kf_single_ops,
1827 		.seq_show	= rdt_default_ctrl_show,
1828 		.fflags		= RFTYPE_CTRL_INFO | RFTYPE_RES_CACHE,
1829 	},
1830 	{
1831 		.name		= "min_cbm_bits",
1832 		.mode		= 0444,
1833 		.kf_ops		= &rdtgroup_kf_single_ops,
1834 		.seq_show	= rdt_min_cbm_bits_show,
1835 		.fflags		= RFTYPE_CTRL_INFO | RFTYPE_RES_CACHE,
1836 	},
1837 	{
1838 		.name		= "shareable_bits",
1839 		.mode		= 0444,
1840 		.kf_ops		= &rdtgroup_kf_single_ops,
1841 		.seq_show	= rdt_shareable_bits_show,
1842 		.fflags		= RFTYPE_CTRL_INFO | RFTYPE_RES_CACHE,
1843 	},
1844 	{
1845 		.name		= "bit_usage",
1846 		.mode		= 0444,
1847 		.kf_ops		= &rdtgroup_kf_single_ops,
1848 		.seq_show	= rdt_bit_usage_show,
1849 		.fflags		= RFTYPE_CTRL_INFO | RFTYPE_RES_CACHE,
1850 	},
1851 	{
1852 		.name		= "min_bandwidth",
1853 		.mode		= 0444,
1854 		.kf_ops		= &rdtgroup_kf_single_ops,
1855 		.seq_show	= rdt_min_bw_show,
1856 		.fflags		= RFTYPE_CTRL_INFO | RFTYPE_RES_MB,
1857 	},
1858 	{
1859 		.name		= "bandwidth_gran",
1860 		.mode		= 0444,
1861 		.kf_ops		= &rdtgroup_kf_single_ops,
1862 		.seq_show	= rdt_bw_gran_show,
1863 		.fflags		= RFTYPE_CTRL_INFO | RFTYPE_RES_MB,
1864 	},
1865 	{
1866 		.name		= "delay_linear",
1867 		.mode		= 0444,
1868 		.kf_ops		= &rdtgroup_kf_single_ops,
1869 		.seq_show	= rdt_delay_linear_show,
1870 		.fflags		= RFTYPE_CTRL_INFO | RFTYPE_RES_MB,
1871 	},
1872 	/*
1873 	 * Platform specific which (if any) capabilities are provided by
1874 	 * thread_throttle_mode. Defer "fflags" initialization to platform
1875 	 * discovery.
1876 	 */
1877 	{
1878 		.name		= "thread_throttle_mode",
1879 		.mode		= 0444,
1880 		.kf_ops		= &rdtgroup_kf_single_ops,
1881 		.seq_show	= rdt_thread_throttle_mode_show,
1882 	},
1883 	{
1884 		.name		= "max_threshold_occupancy",
1885 		.mode		= 0644,
1886 		.kf_ops		= &rdtgroup_kf_single_ops,
1887 		.write		= max_threshold_occ_write,
1888 		.seq_show	= max_threshold_occ_show,
1889 		.fflags		= RFTYPE_MON_INFO | RFTYPE_RES_CACHE,
1890 	},
1891 	{
1892 		.name		= "mbm_total_bytes_config",
1893 		.mode		= 0644,
1894 		.kf_ops		= &rdtgroup_kf_single_ops,
1895 		.seq_show	= mbm_total_bytes_config_show,
1896 		.write		= mbm_total_bytes_config_write,
1897 	},
1898 	{
1899 		.name		= "mbm_local_bytes_config",
1900 		.mode		= 0644,
1901 		.kf_ops		= &rdtgroup_kf_single_ops,
1902 		.seq_show	= mbm_local_bytes_config_show,
1903 		.write		= mbm_local_bytes_config_write,
1904 	},
1905 	{
1906 		.name		= "cpus",
1907 		.mode		= 0644,
1908 		.kf_ops		= &rdtgroup_kf_single_ops,
1909 		.write		= rdtgroup_cpus_write,
1910 		.seq_show	= rdtgroup_cpus_show,
1911 		.fflags		= RFTYPE_BASE,
1912 	},
1913 	{
1914 		.name		= "cpus_list",
1915 		.mode		= 0644,
1916 		.kf_ops		= &rdtgroup_kf_single_ops,
1917 		.write		= rdtgroup_cpus_write,
1918 		.seq_show	= rdtgroup_cpus_show,
1919 		.flags		= RFTYPE_FLAGS_CPUS_LIST,
1920 		.fflags		= RFTYPE_BASE,
1921 	},
1922 	{
1923 		.name		= "tasks",
1924 		.mode		= 0644,
1925 		.kf_ops		= &rdtgroup_kf_single_ops,
1926 		.write		= rdtgroup_tasks_write,
1927 		.seq_show	= rdtgroup_tasks_show,
1928 		.fflags		= RFTYPE_BASE,
1929 	},
1930 	{
1931 		.name		= "mon_hw_id",
1932 		.mode		= 0444,
1933 		.kf_ops		= &rdtgroup_kf_single_ops,
1934 		.seq_show	= rdtgroup_rmid_show,
1935 		.fflags		= RFTYPE_MON_BASE | RFTYPE_DEBUG,
1936 	},
1937 	{
1938 		.name		= "schemata",
1939 		.mode		= 0644,
1940 		.kf_ops		= &rdtgroup_kf_single_ops,
1941 		.write		= rdtgroup_schemata_write,
1942 		.seq_show	= rdtgroup_schemata_show,
1943 		.fflags		= RFTYPE_CTRL_BASE,
1944 	},
1945 	{
1946 		.name		= "mode",
1947 		.mode		= 0644,
1948 		.kf_ops		= &rdtgroup_kf_single_ops,
1949 		.write		= rdtgroup_mode_write,
1950 		.seq_show	= rdtgroup_mode_show,
1951 		.fflags		= RFTYPE_CTRL_BASE,
1952 	},
1953 	{
1954 		.name		= "size",
1955 		.mode		= 0444,
1956 		.kf_ops		= &rdtgroup_kf_single_ops,
1957 		.seq_show	= rdtgroup_size_show,
1958 		.fflags		= RFTYPE_CTRL_BASE,
1959 	},
1960 	{
1961 		.name		= "sparse_masks",
1962 		.mode		= 0444,
1963 		.kf_ops		= &rdtgroup_kf_single_ops,
1964 		.seq_show	= rdt_has_sparse_bitmasks_show,
1965 		.fflags		= RFTYPE_CTRL_INFO | RFTYPE_RES_CACHE,
1966 	},
1967 	{
1968 		.name		= "ctrl_hw_id",
1969 		.mode		= 0444,
1970 		.kf_ops		= &rdtgroup_kf_single_ops,
1971 		.seq_show	= rdtgroup_closid_show,
1972 		.fflags		= RFTYPE_CTRL_BASE | RFTYPE_DEBUG,
1973 	},
1974 
1975 };
1976 
rdtgroup_add_files(struct kernfs_node * kn,unsigned long fflags)1977 static int rdtgroup_add_files(struct kernfs_node *kn, unsigned long fflags)
1978 {
1979 	struct rftype *rfts, *rft;
1980 	int ret, len;
1981 
1982 	rfts = res_common_files;
1983 	len = ARRAY_SIZE(res_common_files);
1984 
1985 	lockdep_assert_held(&rdtgroup_mutex);
1986 
1987 	if (resctrl_debug)
1988 		fflags |= RFTYPE_DEBUG;
1989 
1990 	for (rft = rfts; rft < rfts + len; rft++) {
1991 		if (rft->fflags && ((fflags & rft->fflags) == rft->fflags)) {
1992 			ret = rdtgroup_add_file(kn, rft);
1993 			if (ret)
1994 				goto error;
1995 		}
1996 	}
1997 
1998 	return 0;
1999 error:
2000 	pr_warn("Failed to add %s, err=%d\n", rft->name, ret);
2001 	while (--rft >= rfts) {
2002 		if ((fflags & rft->fflags) == rft->fflags)
2003 			kernfs_remove_by_name(kn, rft->name);
2004 	}
2005 	return ret;
2006 }
2007 
rdtgroup_get_rftype_by_name(const char * name)2008 static struct rftype *rdtgroup_get_rftype_by_name(const char *name)
2009 {
2010 	struct rftype *rfts, *rft;
2011 	int len;
2012 
2013 	rfts = res_common_files;
2014 	len = ARRAY_SIZE(res_common_files);
2015 
2016 	for (rft = rfts; rft < rfts + len; rft++) {
2017 		if (!strcmp(rft->name, name))
2018 			return rft;
2019 	}
2020 
2021 	return NULL;
2022 }
2023 
thread_throttle_mode_init(void)2024 void __init thread_throttle_mode_init(void)
2025 {
2026 	struct rftype *rft;
2027 
2028 	rft = rdtgroup_get_rftype_by_name("thread_throttle_mode");
2029 	if (!rft)
2030 		return;
2031 
2032 	rft->fflags = RFTYPE_CTRL_INFO | RFTYPE_RES_MB;
2033 }
2034 
mbm_config_rftype_init(const char * config)2035 void __init mbm_config_rftype_init(const char *config)
2036 {
2037 	struct rftype *rft;
2038 
2039 	rft = rdtgroup_get_rftype_by_name(config);
2040 	if (rft)
2041 		rft->fflags = RFTYPE_MON_INFO | RFTYPE_RES_CACHE;
2042 }
2043 
2044 /**
2045  * rdtgroup_kn_mode_restrict - Restrict user access to named resctrl file
2046  * @r: The resource group with which the file is associated.
2047  * @name: Name of the file
2048  *
2049  * The permissions of named resctrl file, directory, or link are modified
2050  * to not allow read, write, or execute by any user.
2051  *
2052  * WARNING: This function is intended to communicate to the user that the
2053  * resctrl file has been locked down - that it is not relevant to the
2054  * particular state the system finds itself in. It should not be relied
2055  * on to protect from user access because after the file's permissions
2056  * are restricted the user can still change the permissions using chmod
2057  * from the command line.
2058  *
2059  * Return: 0 on success, <0 on failure.
2060  */
rdtgroup_kn_mode_restrict(struct rdtgroup * r,const char * name)2061 int rdtgroup_kn_mode_restrict(struct rdtgroup *r, const char *name)
2062 {
2063 	struct iattr iattr = {.ia_valid = ATTR_MODE,};
2064 	struct kernfs_node *kn;
2065 	int ret = 0;
2066 
2067 	kn = kernfs_find_and_get_ns(r->kn, name, NULL);
2068 	if (!kn)
2069 		return -ENOENT;
2070 
2071 	switch (kernfs_type(kn)) {
2072 	case KERNFS_DIR:
2073 		iattr.ia_mode = S_IFDIR;
2074 		break;
2075 	case KERNFS_FILE:
2076 		iattr.ia_mode = S_IFREG;
2077 		break;
2078 	case KERNFS_LINK:
2079 		iattr.ia_mode = S_IFLNK;
2080 		break;
2081 	}
2082 
2083 	ret = kernfs_setattr(kn, &iattr);
2084 	kernfs_put(kn);
2085 	return ret;
2086 }
2087 
2088 /**
2089  * rdtgroup_kn_mode_restore - Restore user access to named resctrl file
2090  * @r: The resource group with which the file is associated.
2091  * @name: Name of the file
2092  * @mask: Mask of permissions that should be restored
2093  *
2094  * Restore the permissions of the named file. If @name is a directory the
2095  * permissions of its parent will be used.
2096  *
2097  * Return: 0 on success, <0 on failure.
2098  */
rdtgroup_kn_mode_restore(struct rdtgroup * r,const char * name,umode_t mask)2099 int rdtgroup_kn_mode_restore(struct rdtgroup *r, const char *name,
2100 			     umode_t mask)
2101 {
2102 	struct iattr iattr = {.ia_valid = ATTR_MODE,};
2103 	struct kernfs_node *kn, *parent;
2104 	struct rftype *rfts, *rft;
2105 	int ret, len;
2106 
2107 	rfts = res_common_files;
2108 	len = ARRAY_SIZE(res_common_files);
2109 
2110 	for (rft = rfts; rft < rfts + len; rft++) {
2111 		if (!strcmp(rft->name, name))
2112 			iattr.ia_mode = rft->mode & mask;
2113 	}
2114 
2115 	kn = kernfs_find_and_get_ns(r->kn, name, NULL);
2116 	if (!kn)
2117 		return -ENOENT;
2118 
2119 	switch (kernfs_type(kn)) {
2120 	case KERNFS_DIR:
2121 		parent = kernfs_get_parent(kn);
2122 		if (parent) {
2123 			iattr.ia_mode |= parent->mode;
2124 			kernfs_put(parent);
2125 		}
2126 		iattr.ia_mode |= S_IFDIR;
2127 		break;
2128 	case KERNFS_FILE:
2129 		iattr.ia_mode |= S_IFREG;
2130 		break;
2131 	case KERNFS_LINK:
2132 		iattr.ia_mode |= S_IFLNK;
2133 		break;
2134 	}
2135 
2136 	ret = kernfs_setattr(kn, &iattr);
2137 	kernfs_put(kn);
2138 	return ret;
2139 }
2140 
rdtgroup_mkdir_info_resdir(void * priv,char * name,unsigned long fflags)2141 static int rdtgroup_mkdir_info_resdir(void *priv, char *name,
2142 				      unsigned long fflags)
2143 {
2144 	struct kernfs_node *kn_subdir;
2145 	int ret;
2146 
2147 	kn_subdir = kernfs_create_dir(kn_info, name,
2148 				      kn_info->mode, priv);
2149 	if (IS_ERR(kn_subdir))
2150 		return PTR_ERR(kn_subdir);
2151 
2152 	ret = rdtgroup_kn_set_ugid(kn_subdir);
2153 	if (ret)
2154 		return ret;
2155 
2156 	ret = rdtgroup_add_files(kn_subdir, fflags);
2157 	if (!ret)
2158 		kernfs_activate(kn_subdir);
2159 
2160 	return ret;
2161 }
2162 
rdtgroup_create_info_dir(struct kernfs_node * parent_kn)2163 static int rdtgroup_create_info_dir(struct kernfs_node *parent_kn)
2164 {
2165 	struct resctrl_schema *s;
2166 	struct rdt_resource *r;
2167 	unsigned long fflags;
2168 	char name[32];
2169 	int ret;
2170 
2171 	/* create the directory */
2172 	kn_info = kernfs_create_dir(parent_kn, "info", parent_kn->mode, NULL);
2173 	if (IS_ERR(kn_info))
2174 		return PTR_ERR(kn_info);
2175 
2176 	ret = rdtgroup_add_files(kn_info, RFTYPE_TOP_INFO);
2177 	if (ret)
2178 		goto out_destroy;
2179 
2180 	/* loop over enabled controls, these are all alloc_capable */
2181 	list_for_each_entry(s, &resctrl_schema_all, list) {
2182 		r = s->res;
2183 		fflags = r->fflags | RFTYPE_CTRL_INFO;
2184 		ret = rdtgroup_mkdir_info_resdir(s, s->name, fflags);
2185 		if (ret)
2186 			goto out_destroy;
2187 	}
2188 
2189 	for_each_mon_capable_rdt_resource(r) {
2190 		fflags = r->fflags | RFTYPE_MON_INFO;
2191 		sprintf(name, "%s_MON", r->name);
2192 		ret = rdtgroup_mkdir_info_resdir(r, name, fflags);
2193 		if (ret)
2194 			goto out_destroy;
2195 	}
2196 
2197 	ret = rdtgroup_kn_set_ugid(kn_info);
2198 	if (ret)
2199 		goto out_destroy;
2200 
2201 	kernfs_activate(kn_info);
2202 
2203 	return 0;
2204 
2205 out_destroy:
2206 	kernfs_remove(kn_info);
2207 	return ret;
2208 }
2209 
2210 static int
mongroup_create_dir(struct kernfs_node * parent_kn,struct rdtgroup * prgrp,char * name,struct kernfs_node ** dest_kn)2211 mongroup_create_dir(struct kernfs_node *parent_kn, struct rdtgroup *prgrp,
2212 		    char *name, struct kernfs_node **dest_kn)
2213 {
2214 	struct kernfs_node *kn;
2215 	int ret;
2216 
2217 	/* create the directory */
2218 	kn = kernfs_create_dir(parent_kn, name, parent_kn->mode, prgrp);
2219 	if (IS_ERR(kn))
2220 		return PTR_ERR(kn);
2221 
2222 	if (dest_kn)
2223 		*dest_kn = kn;
2224 
2225 	ret = rdtgroup_kn_set_ugid(kn);
2226 	if (ret)
2227 		goto out_destroy;
2228 
2229 	kernfs_activate(kn);
2230 
2231 	return 0;
2232 
2233 out_destroy:
2234 	kernfs_remove(kn);
2235 	return ret;
2236 }
2237 
l3_qos_cfg_update(void * arg)2238 static void l3_qos_cfg_update(void *arg)
2239 {
2240 	bool *enable = arg;
2241 
2242 	wrmsrl(MSR_IA32_L3_QOS_CFG, *enable ? L3_QOS_CDP_ENABLE : 0ULL);
2243 }
2244 
l2_qos_cfg_update(void * arg)2245 static void l2_qos_cfg_update(void *arg)
2246 {
2247 	bool *enable = arg;
2248 
2249 	wrmsrl(MSR_IA32_L2_QOS_CFG, *enable ? L2_QOS_CDP_ENABLE : 0ULL);
2250 }
2251 
is_mba_linear(void)2252 static inline bool is_mba_linear(void)
2253 {
2254 	return rdt_resources_all[RDT_RESOURCE_MBA].r_resctrl.membw.delay_linear;
2255 }
2256 
set_cache_qos_cfg(int level,bool enable)2257 static int set_cache_qos_cfg(int level, bool enable)
2258 {
2259 	void (*update)(void *arg);
2260 	struct rdt_ctrl_domain *d;
2261 	struct rdt_resource *r_l;
2262 	cpumask_var_t cpu_mask;
2263 	int cpu;
2264 
2265 	/* Walking r->domains, ensure it can't race with cpuhp */
2266 	lockdep_assert_cpus_held();
2267 
2268 	if (level == RDT_RESOURCE_L3)
2269 		update = l3_qos_cfg_update;
2270 	else if (level == RDT_RESOURCE_L2)
2271 		update = l2_qos_cfg_update;
2272 	else
2273 		return -EINVAL;
2274 
2275 	if (!zalloc_cpumask_var(&cpu_mask, GFP_KERNEL))
2276 		return -ENOMEM;
2277 
2278 	r_l = &rdt_resources_all[level].r_resctrl;
2279 	list_for_each_entry(d, &r_l->ctrl_domains, hdr.list) {
2280 		if (r_l->cache.arch_has_per_cpu_cfg)
2281 			/* Pick all the CPUs in the domain instance */
2282 			for_each_cpu(cpu, &d->hdr.cpu_mask)
2283 				cpumask_set_cpu(cpu, cpu_mask);
2284 		else
2285 			/* Pick one CPU from each domain instance to update MSR */
2286 			cpumask_set_cpu(cpumask_any(&d->hdr.cpu_mask), cpu_mask);
2287 	}
2288 
2289 	/* Update QOS_CFG MSR on all the CPUs in cpu_mask */
2290 	on_each_cpu_mask(cpu_mask, update, &enable, 1);
2291 
2292 	free_cpumask_var(cpu_mask);
2293 
2294 	return 0;
2295 }
2296 
2297 /* Restore the qos cfg state when a domain comes online */
rdt_domain_reconfigure_cdp(struct rdt_resource * r)2298 void rdt_domain_reconfigure_cdp(struct rdt_resource *r)
2299 {
2300 	struct rdt_hw_resource *hw_res = resctrl_to_arch_res(r);
2301 
2302 	if (!r->cdp_capable)
2303 		return;
2304 
2305 	if (r->rid == RDT_RESOURCE_L2)
2306 		l2_qos_cfg_update(&hw_res->cdp_enabled);
2307 
2308 	if (r->rid == RDT_RESOURCE_L3)
2309 		l3_qos_cfg_update(&hw_res->cdp_enabled);
2310 }
2311 
mba_sc_domain_allocate(struct rdt_resource * r,struct rdt_ctrl_domain * d)2312 static int mba_sc_domain_allocate(struct rdt_resource *r, struct rdt_ctrl_domain *d)
2313 {
2314 	u32 num_closid = resctrl_arch_get_num_closid(r);
2315 	int cpu = cpumask_any(&d->hdr.cpu_mask);
2316 	int i;
2317 
2318 	d->mbps_val = kcalloc_node(num_closid, sizeof(*d->mbps_val),
2319 				   GFP_KERNEL, cpu_to_node(cpu));
2320 	if (!d->mbps_val)
2321 		return -ENOMEM;
2322 
2323 	for (i = 0; i < num_closid; i++)
2324 		d->mbps_val[i] = MBA_MAX_MBPS;
2325 
2326 	return 0;
2327 }
2328 
mba_sc_domain_destroy(struct rdt_resource * r,struct rdt_ctrl_domain * d)2329 static void mba_sc_domain_destroy(struct rdt_resource *r,
2330 				  struct rdt_ctrl_domain *d)
2331 {
2332 	kfree(d->mbps_val);
2333 	d->mbps_val = NULL;
2334 }
2335 
2336 /*
2337  * MBA software controller is supported only if
2338  * MBM is supported and MBA is in linear scale,
2339  * and the MBM monitor scope is the same as MBA
2340  * control scope.
2341  */
supports_mba_mbps(void)2342 static bool supports_mba_mbps(void)
2343 {
2344 	struct rdt_resource *rmbm = &rdt_resources_all[RDT_RESOURCE_L3].r_resctrl;
2345 	struct rdt_resource *r = &rdt_resources_all[RDT_RESOURCE_MBA].r_resctrl;
2346 
2347 	return (is_mbm_local_enabled() &&
2348 		r->alloc_capable && is_mba_linear() &&
2349 		r->ctrl_scope == rmbm->mon_scope);
2350 }
2351 
2352 /*
2353  * Enable or disable the MBA software controller
2354  * which helps user specify bandwidth in MBps.
2355  */
set_mba_sc(bool mba_sc)2356 static int set_mba_sc(bool mba_sc)
2357 {
2358 	struct rdt_resource *r = &rdt_resources_all[RDT_RESOURCE_MBA].r_resctrl;
2359 	u32 num_closid = resctrl_arch_get_num_closid(r);
2360 	struct rdt_ctrl_domain *d;
2361 	int i;
2362 
2363 	if (!supports_mba_mbps() || mba_sc == is_mba_sc(r))
2364 		return -EINVAL;
2365 
2366 	r->membw.mba_sc = mba_sc;
2367 
2368 	list_for_each_entry(d, &r->ctrl_domains, hdr.list) {
2369 		for (i = 0; i < num_closid; i++)
2370 			d->mbps_val[i] = MBA_MAX_MBPS;
2371 	}
2372 
2373 	return 0;
2374 }
2375 
cdp_enable(int level)2376 static int cdp_enable(int level)
2377 {
2378 	struct rdt_resource *r_l = &rdt_resources_all[level].r_resctrl;
2379 	int ret;
2380 
2381 	if (!r_l->alloc_capable)
2382 		return -EINVAL;
2383 
2384 	ret = set_cache_qos_cfg(level, true);
2385 	if (!ret)
2386 		rdt_resources_all[level].cdp_enabled = true;
2387 
2388 	return ret;
2389 }
2390 
cdp_disable(int level)2391 static void cdp_disable(int level)
2392 {
2393 	struct rdt_hw_resource *r_hw = &rdt_resources_all[level];
2394 
2395 	if (r_hw->cdp_enabled) {
2396 		set_cache_qos_cfg(level, false);
2397 		r_hw->cdp_enabled = false;
2398 	}
2399 }
2400 
resctrl_arch_set_cdp_enabled(enum resctrl_res_level l,bool enable)2401 int resctrl_arch_set_cdp_enabled(enum resctrl_res_level l, bool enable)
2402 {
2403 	struct rdt_hw_resource *hw_res = &rdt_resources_all[l];
2404 
2405 	if (!hw_res->r_resctrl.cdp_capable)
2406 		return -EINVAL;
2407 
2408 	if (enable)
2409 		return cdp_enable(l);
2410 
2411 	cdp_disable(l);
2412 
2413 	return 0;
2414 }
2415 
2416 /*
2417  * We don't allow rdtgroup directories to be created anywhere
2418  * except the root directory. Thus when looking for the rdtgroup
2419  * structure for a kernfs node we are either looking at a directory,
2420  * in which case the rdtgroup structure is pointed at by the "priv"
2421  * field, otherwise we have a file, and need only look to the parent
2422  * to find the rdtgroup.
2423  */
kernfs_to_rdtgroup(struct kernfs_node * kn)2424 static struct rdtgroup *kernfs_to_rdtgroup(struct kernfs_node *kn)
2425 {
2426 	if (kernfs_type(kn) == KERNFS_DIR) {
2427 		/*
2428 		 * All the resource directories use "kn->priv"
2429 		 * to point to the "struct rdtgroup" for the
2430 		 * resource. "info" and its subdirectories don't
2431 		 * have rdtgroup structures, so return NULL here.
2432 		 */
2433 		if (kn == kn_info || kn->parent == kn_info)
2434 			return NULL;
2435 		else
2436 			return kn->priv;
2437 	} else {
2438 		return kn->parent->priv;
2439 	}
2440 }
2441 
rdtgroup_kn_get(struct rdtgroup * rdtgrp,struct kernfs_node * kn)2442 static void rdtgroup_kn_get(struct rdtgroup *rdtgrp, struct kernfs_node *kn)
2443 {
2444 	atomic_inc(&rdtgrp->waitcount);
2445 	kernfs_break_active_protection(kn);
2446 }
2447 
rdtgroup_kn_put(struct rdtgroup * rdtgrp,struct kernfs_node * kn)2448 static void rdtgroup_kn_put(struct rdtgroup *rdtgrp, struct kernfs_node *kn)
2449 {
2450 	if (atomic_dec_and_test(&rdtgrp->waitcount) &&
2451 	    (rdtgrp->flags & RDT_DELETED)) {
2452 		if (rdtgrp->mode == RDT_MODE_PSEUDO_LOCKSETUP ||
2453 		    rdtgrp->mode == RDT_MODE_PSEUDO_LOCKED)
2454 			rdtgroup_pseudo_lock_remove(rdtgrp);
2455 		kernfs_unbreak_active_protection(kn);
2456 		rdtgroup_remove(rdtgrp);
2457 	} else {
2458 		kernfs_unbreak_active_protection(kn);
2459 	}
2460 }
2461 
rdtgroup_kn_lock_live(struct kernfs_node * kn)2462 struct rdtgroup *rdtgroup_kn_lock_live(struct kernfs_node *kn)
2463 {
2464 	struct rdtgroup *rdtgrp = kernfs_to_rdtgroup(kn);
2465 
2466 	if (!rdtgrp)
2467 		return NULL;
2468 
2469 	rdtgroup_kn_get(rdtgrp, kn);
2470 
2471 	cpus_read_lock();
2472 	mutex_lock(&rdtgroup_mutex);
2473 
2474 	/* Was this group deleted while we waited? */
2475 	if (rdtgrp->flags & RDT_DELETED)
2476 		return NULL;
2477 
2478 	return rdtgrp;
2479 }
2480 
rdtgroup_kn_unlock(struct kernfs_node * kn)2481 void rdtgroup_kn_unlock(struct kernfs_node *kn)
2482 {
2483 	struct rdtgroup *rdtgrp = kernfs_to_rdtgroup(kn);
2484 
2485 	if (!rdtgrp)
2486 		return;
2487 
2488 	mutex_unlock(&rdtgroup_mutex);
2489 	cpus_read_unlock();
2490 
2491 	rdtgroup_kn_put(rdtgrp, kn);
2492 }
2493 
2494 static int mkdir_mondata_all(struct kernfs_node *parent_kn,
2495 			     struct rdtgroup *prgrp,
2496 			     struct kernfs_node **mon_data_kn);
2497 
rdt_disable_ctx(void)2498 static void rdt_disable_ctx(void)
2499 {
2500 	resctrl_arch_set_cdp_enabled(RDT_RESOURCE_L3, false);
2501 	resctrl_arch_set_cdp_enabled(RDT_RESOURCE_L2, false);
2502 	set_mba_sc(false);
2503 
2504 	resctrl_debug = false;
2505 }
2506 
rdt_enable_ctx(struct rdt_fs_context * ctx)2507 static int rdt_enable_ctx(struct rdt_fs_context *ctx)
2508 {
2509 	int ret = 0;
2510 
2511 	if (ctx->enable_cdpl2) {
2512 		ret = resctrl_arch_set_cdp_enabled(RDT_RESOURCE_L2, true);
2513 		if (ret)
2514 			goto out_done;
2515 	}
2516 
2517 	if (ctx->enable_cdpl3) {
2518 		ret = resctrl_arch_set_cdp_enabled(RDT_RESOURCE_L3, true);
2519 		if (ret)
2520 			goto out_cdpl2;
2521 	}
2522 
2523 	if (ctx->enable_mba_mbps) {
2524 		ret = set_mba_sc(true);
2525 		if (ret)
2526 			goto out_cdpl3;
2527 	}
2528 
2529 	if (ctx->enable_debug)
2530 		resctrl_debug = true;
2531 
2532 	return 0;
2533 
2534 out_cdpl3:
2535 	resctrl_arch_set_cdp_enabled(RDT_RESOURCE_L3, false);
2536 out_cdpl2:
2537 	resctrl_arch_set_cdp_enabled(RDT_RESOURCE_L2, false);
2538 out_done:
2539 	return ret;
2540 }
2541 
schemata_list_add(struct rdt_resource * r,enum resctrl_conf_type type)2542 static int schemata_list_add(struct rdt_resource *r, enum resctrl_conf_type type)
2543 {
2544 	struct resctrl_schema *s;
2545 	const char *suffix = "";
2546 	int ret, cl;
2547 
2548 	s = kzalloc(sizeof(*s), GFP_KERNEL);
2549 	if (!s)
2550 		return -ENOMEM;
2551 
2552 	s->res = r;
2553 	s->num_closid = resctrl_arch_get_num_closid(r);
2554 	if (resctrl_arch_get_cdp_enabled(r->rid))
2555 		s->num_closid /= 2;
2556 
2557 	s->conf_type = type;
2558 	switch (type) {
2559 	case CDP_CODE:
2560 		suffix = "CODE";
2561 		break;
2562 	case CDP_DATA:
2563 		suffix = "DATA";
2564 		break;
2565 	case CDP_NONE:
2566 		suffix = "";
2567 		break;
2568 	}
2569 
2570 	ret = snprintf(s->name, sizeof(s->name), "%s%s", r->name, suffix);
2571 	if (ret >= sizeof(s->name)) {
2572 		kfree(s);
2573 		return -EINVAL;
2574 	}
2575 
2576 	cl = strlen(s->name);
2577 
2578 	/*
2579 	 * If CDP is supported by this resource, but not enabled,
2580 	 * include the suffix. This ensures the tabular format of the
2581 	 * schemata file does not change between mounts of the filesystem.
2582 	 */
2583 	if (r->cdp_capable && !resctrl_arch_get_cdp_enabled(r->rid))
2584 		cl += 4;
2585 
2586 	if (cl > max_name_width)
2587 		max_name_width = cl;
2588 
2589 	INIT_LIST_HEAD(&s->list);
2590 	list_add(&s->list, &resctrl_schema_all);
2591 
2592 	return 0;
2593 }
2594 
schemata_list_create(void)2595 static int schemata_list_create(void)
2596 {
2597 	struct rdt_resource *r;
2598 	int ret = 0;
2599 
2600 	for_each_alloc_capable_rdt_resource(r) {
2601 		if (resctrl_arch_get_cdp_enabled(r->rid)) {
2602 			ret = schemata_list_add(r, CDP_CODE);
2603 			if (ret)
2604 				break;
2605 
2606 			ret = schemata_list_add(r, CDP_DATA);
2607 		} else {
2608 			ret = schemata_list_add(r, CDP_NONE);
2609 		}
2610 
2611 		if (ret)
2612 			break;
2613 	}
2614 
2615 	return ret;
2616 }
2617 
schemata_list_destroy(void)2618 static void schemata_list_destroy(void)
2619 {
2620 	struct resctrl_schema *s, *tmp;
2621 
2622 	list_for_each_entry_safe(s, tmp, &resctrl_schema_all, list) {
2623 		list_del(&s->list);
2624 		kfree(s);
2625 	}
2626 }
2627 
rdt_get_tree(struct fs_context * fc)2628 static int rdt_get_tree(struct fs_context *fc)
2629 {
2630 	struct rdt_fs_context *ctx = rdt_fc2context(fc);
2631 	unsigned long flags = RFTYPE_CTRL_BASE;
2632 	struct rdt_mon_domain *dom;
2633 	struct rdt_resource *r;
2634 	int ret;
2635 
2636 	cpus_read_lock();
2637 	mutex_lock(&rdtgroup_mutex);
2638 	/*
2639 	 * resctrl file system can only be mounted once.
2640 	 */
2641 	if (resctrl_mounted) {
2642 		ret = -EBUSY;
2643 		goto out;
2644 	}
2645 
2646 	ret = rdtgroup_setup_root(ctx);
2647 	if (ret)
2648 		goto out;
2649 
2650 	ret = rdt_enable_ctx(ctx);
2651 	if (ret)
2652 		goto out_root;
2653 
2654 	ret = schemata_list_create();
2655 	if (ret) {
2656 		schemata_list_destroy();
2657 		goto out_ctx;
2658 	}
2659 
2660 	closid_init();
2661 
2662 	if (resctrl_arch_mon_capable())
2663 		flags |= RFTYPE_MON;
2664 
2665 	ret = rdtgroup_add_files(rdtgroup_default.kn, flags);
2666 	if (ret)
2667 		goto out_schemata_free;
2668 
2669 	kernfs_activate(rdtgroup_default.kn);
2670 
2671 	ret = rdtgroup_create_info_dir(rdtgroup_default.kn);
2672 	if (ret < 0)
2673 		goto out_schemata_free;
2674 
2675 	if (resctrl_arch_mon_capable()) {
2676 		ret = mongroup_create_dir(rdtgroup_default.kn,
2677 					  &rdtgroup_default, "mon_groups",
2678 					  &kn_mongrp);
2679 		if (ret < 0)
2680 			goto out_info;
2681 
2682 		ret = mkdir_mondata_all(rdtgroup_default.kn,
2683 					&rdtgroup_default, &kn_mondata);
2684 		if (ret < 0)
2685 			goto out_mongrp;
2686 		rdtgroup_default.mon.mon_data_kn = kn_mondata;
2687 	}
2688 
2689 	ret = rdt_pseudo_lock_init();
2690 	if (ret)
2691 		goto out_mondata;
2692 
2693 	ret = kernfs_get_tree(fc);
2694 	if (ret < 0)
2695 		goto out_psl;
2696 
2697 	if (resctrl_arch_alloc_capable())
2698 		resctrl_arch_enable_alloc();
2699 	if (resctrl_arch_mon_capable())
2700 		resctrl_arch_enable_mon();
2701 
2702 	if (resctrl_arch_alloc_capable() || resctrl_arch_mon_capable())
2703 		resctrl_mounted = true;
2704 
2705 	if (is_mbm_enabled()) {
2706 		r = &rdt_resources_all[RDT_RESOURCE_L3].r_resctrl;
2707 		list_for_each_entry(dom, &r->mon_domains, hdr.list)
2708 			mbm_setup_overflow_handler(dom, MBM_OVERFLOW_INTERVAL,
2709 						   RESCTRL_PICK_ANY_CPU);
2710 	}
2711 
2712 	goto out;
2713 
2714 out_psl:
2715 	rdt_pseudo_lock_release();
2716 out_mondata:
2717 	if (resctrl_arch_mon_capable())
2718 		kernfs_remove(kn_mondata);
2719 out_mongrp:
2720 	if (resctrl_arch_mon_capable())
2721 		kernfs_remove(kn_mongrp);
2722 out_info:
2723 	kernfs_remove(kn_info);
2724 out_schemata_free:
2725 	schemata_list_destroy();
2726 out_ctx:
2727 	rdt_disable_ctx();
2728 out_root:
2729 	rdtgroup_destroy_root();
2730 out:
2731 	rdt_last_cmd_clear();
2732 	mutex_unlock(&rdtgroup_mutex);
2733 	cpus_read_unlock();
2734 	return ret;
2735 }
2736 
2737 enum rdt_param {
2738 	Opt_cdp,
2739 	Opt_cdpl2,
2740 	Opt_mba_mbps,
2741 	Opt_debug,
2742 	nr__rdt_params
2743 };
2744 
2745 static const struct fs_parameter_spec rdt_fs_parameters[] = {
2746 	fsparam_flag("cdp",		Opt_cdp),
2747 	fsparam_flag("cdpl2",		Opt_cdpl2),
2748 	fsparam_flag("mba_MBps",	Opt_mba_mbps),
2749 	fsparam_flag("debug",		Opt_debug),
2750 	{}
2751 };
2752 
rdt_parse_param(struct fs_context * fc,struct fs_parameter * param)2753 static int rdt_parse_param(struct fs_context *fc, struct fs_parameter *param)
2754 {
2755 	struct rdt_fs_context *ctx = rdt_fc2context(fc);
2756 	struct fs_parse_result result;
2757 	const char *msg;
2758 	int opt;
2759 
2760 	opt = fs_parse(fc, rdt_fs_parameters, param, &result);
2761 	if (opt < 0)
2762 		return opt;
2763 
2764 	switch (opt) {
2765 	case Opt_cdp:
2766 		ctx->enable_cdpl3 = true;
2767 		return 0;
2768 	case Opt_cdpl2:
2769 		ctx->enable_cdpl2 = true;
2770 		return 0;
2771 	case Opt_mba_mbps:
2772 		msg = "mba_MBps requires local MBM and linear scale MBA at L3 scope";
2773 		if (!supports_mba_mbps())
2774 			return invalfc(fc, msg);
2775 		ctx->enable_mba_mbps = true;
2776 		return 0;
2777 	case Opt_debug:
2778 		ctx->enable_debug = true;
2779 		return 0;
2780 	}
2781 
2782 	return -EINVAL;
2783 }
2784 
rdt_fs_context_free(struct fs_context * fc)2785 static void rdt_fs_context_free(struct fs_context *fc)
2786 {
2787 	struct rdt_fs_context *ctx = rdt_fc2context(fc);
2788 
2789 	kernfs_free_fs_context(fc);
2790 	kfree(ctx);
2791 }
2792 
2793 static const struct fs_context_operations rdt_fs_context_ops = {
2794 	.free		= rdt_fs_context_free,
2795 	.parse_param	= rdt_parse_param,
2796 	.get_tree	= rdt_get_tree,
2797 };
2798 
rdt_init_fs_context(struct fs_context * fc)2799 static int rdt_init_fs_context(struct fs_context *fc)
2800 {
2801 	struct rdt_fs_context *ctx;
2802 
2803 	ctx = kzalloc(sizeof(struct rdt_fs_context), GFP_KERNEL);
2804 	if (!ctx)
2805 		return -ENOMEM;
2806 
2807 	ctx->kfc.magic = RDTGROUP_SUPER_MAGIC;
2808 	fc->fs_private = &ctx->kfc;
2809 	fc->ops = &rdt_fs_context_ops;
2810 	put_user_ns(fc->user_ns);
2811 	fc->user_ns = get_user_ns(&init_user_ns);
2812 	fc->global = true;
2813 	return 0;
2814 }
2815 
reset_all_ctrls(struct rdt_resource * r)2816 static int reset_all_ctrls(struct rdt_resource *r)
2817 {
2818 	struct rdt_hw_resource *hw_res = resctrl_to_arch_res(r);
2819 	struct rdt_hw_ctrl_domain *hw_dom;
2820 	struct msr_param msr_param;
2821 	struct rdt_ctrl_domain *d;
2822 	int i;
2823 
2824 	/* Walking r->domains, ensure it can't race with cpuhp */
2825 	lockdep_assert_cpus_held();
2826 
2827 	msr_param.res = r;
2828 	msr_param.low = 0;
2829 	msr_param.high = hw_res->num_closid;
2830 
2831 	/*
2832 	 * Disable resource control for this resource by setting all
2833 	 * CBMs in all ctrl_domains to the maximum mask value. Pick one CPU
2834 	 * from each domain to update the MSRs below.
2835 	 */
2836 	list_for_each_entry(d, &r->ctrl_domains, hdr.list) {
2837 		hw_dom = resctrl_to_arch_ctrl_dom(d);
2838 
2839 		for (i = 0; i < hw_res->num_closid; i++)
2840 			hw_dom->ctrl_val[i] = r->default_ctrl;
2841 		msr_param.dom = d;
2842 		smp_call_function_any(&d->hdr.cpu_mask, rdt_ctrl_update, &msr_param, 1);
2843 	}
2844 
2845 	return 0;
2846 }
2847 
2848 /*
2849  * Move tasks from one to the other group. If @from is NULL, then all tasks
2850  * in the systems are moved unconditionally (used for teardown).
2851  *
2852  * If @mask is not NULL the cpus on which moved tasks are running are set
2853  * in that mask so the update smp function call is restricted to affected
2854  * cpus.
2855  */
rdt_move_group_tasks(struct rdtgroup * from,struct rdtgroup * to,struct cpumask * mask)2856 static void rdt_move_group_tasks(struct rdtgroup *from, struct rdtgroup *to,
2857 				 struct cpumask *mask)
2858 {
2859 	struct task_struct *p, *t;
2860 
2861 	read_lock(&tasklist_lock);
2862 	for_each_process_thread(p, t) {
2863 		if (!from || is_closid_match(t, from) ||
2864 		    is_rmid_match(t, from)) {
2865 			resctrl_arch_set_closid_rmid(t, to->closid,
2866 						     to->mon.rmid);
2867 
2868 			/*
2869 			 * Order the closid/rmid stores above before the loads
2870 			 * in task_curr(). This pairs with the full barrier
2871 			 * between the rq->curr update and resctrl_sched_in()
2872 			 * during context switch.
2873 			 */
2874 			smp_mb();
2875 
2876 			/*
2877 			 * If the task is on a CPU, set the CPU in the mask.
2878 			 * The detection is inaccurate as tasks might move or
2879 			 * schedule before the smp function call takes place.
2880 			 * In such a case the function call is pointless, but
2881 			 * there is no other side effect.
2882 			 */
2883 			if (IS_ENABLED(CONFIG_SMP) && mask && task_curr(t))
2884 				cpumask_set_cpu(task_cpu(t), mask);
2885 		}
2886 	}
2887 	read_unlock(&tasklist_lock);
2888 }
2889 
free_all_child_rdtgrp(struct rdtgroup * rdtgrp)2890 static void free_all_child_rdtgrp(struct rdtgroup *rdtgrp)
2891 {
2892 	struct rdtgroup *sentry, *stmp;
2893 	struct list_head *head;
2894 
2895 	head = &rdtgrp->mon.crdtgrp_list;
2896 	list_for_each_entry_safe(sentry, stmp, head, mon.crdtgrp_list) {
2897 		free_rmid(sentry->closid, sentry->mon.rmid);
2898 		list_del(&sentry->mon.crdtgrp_list);
2899 
2900 		if (atomic_read(&sentry->waitcount) != 0)
2901 			sentry->flags = RDT_DELETED;
2902 		else
2903 			rdtgroup_remove(sentry);
2904 	}
2905 }
2906 
2907 /*
2908  * Forcibly remove all of subdirectories under root.
2909  */
rmdir_all_sub(void)2910 static void rmdir_all_sub(void)
2911 {
2912 	struct rdtgroup *rdtgrp, *tmp;
2913 
2914 	/* Move all tasks to the default resource group */
2915 	rdt_move_group_tasks(NULL, &rdtgroup_default, NULL);
2916 
2917 	list_for_each_entry_safe(rdtgrp, tmp, &rdt_all_groups, rdtgroup_list) {
2918 		/* Free any child rmids */
2919 		free_all_child_rdtgrp(rdtgrp);
2920 
2921 		/* Remove each rdtgroup other than root */
2922 		if (rdtgrp == &rdtgroup_default)
2923 			continue;
2924 
2925 		if (rdtgrp->mode == RDT_MODE_PSEUDO_LOCKSETUP ||
2926 		    rdtgrp->mode == RDT_MODE_PSEUDO_LOCKED)
2927 			rdtgroup_pseudo_lock_remove(rdtgrp);
2928 
2929 		/*
2930 		 * Give any CPUs back to the default group. We cannot copy
2931 		 * cpu_online_mask because a CPU might have executed the
2932 		 * offline callback already, but is still marked online.
2933 		 */
2934 		cpumask_or(&rdtgroup_default.cpu_mask,
2935 			   &rdtgroup_default.cpu_mask, &rdtgrp->cpu_mask);
2936 
2937 		free_rmid(rdtgrp->closid, rdtgrp->mon.rmid);
2938 
2939 		kernfs_remove(rdtgrp->kn);
2940 		list_del(&rdtgrp->rdtgroup_list);
2941 
2942 		if (atomic_read(&rdtgrp->waitcount) != 0)
2943 			rdtgrp->flags = RDT_DELETED;
2944 		else
2945 			rdtgroup_remove(rdtgrp);
2946 	}
2947 	/* Notify online CPUs to update per cpu storage and PQR_ASSOC MSR */
2948 	update_closid_rmid(cpu_online_mask, &rdtgroup_default);
2949 
2950 	kernfs_remove(kn_info);
2951 	kernfs_remove(kn_mongrp);
2952 	kernfs_remove(kn_mondata);
2953 }
2954 
rdt_kill_sb(struct super_block * sb)2955 static void rdt_kill_sb(struct super_block *sb)
2956 {
2957 	struct rdt_resource *r;
2958 
2959 	cpus_read_lock();
2960 	mutex_lock(&rdtgroup_mutex);
2961 
2962 	rdt_disable_ctx();
2963 
2964 	/*Put everything back to default values. */
2965 	for_each_alloc_capable_rdt_resource(r)
2966 		reset_all_ctrls(r);
2967 	rmdir_all_sub();
2968 	rdt_pseudo_lock_release();
2969 	rdtgroup_default.mode = RDT_MODE_SHAREABLE;
2970 	schemata_list_destroy();
2971 	rdtgroup_destroy_root();
2972 	if (resctrl_arch_alloc_capable())
2973 		resctrl_arch_disable_alloc();
2974 	if (resctrl_arch_mon_capable())
2975 		resctrl_arch_disable_mon();
2976 	resctrl_mounted = false;
2977 	kernfs_kill_sb(sb);
2978 	mutex_unlock(&rdtgroup_mutex);
2979 	cpus_read_unlock();
2980 }
2981 
2982 static struct file_system_type rdt_fs_type = {
2983 	.name			= "resctrl",
2984 	.init_fs_context	= rdt_init_fs_context,
2985 	.parameters		= rdt_fs_parameters,
2986 	.kill_sb		= rdt_kill_sb,
2987 };
2988 
mon_addfile(struct kernfs_node * parent_kn,const char * name,void * priv)2989 static int mon_addfile(struct kernfs_node *parent_kn, const char *name,
2990 		       void *priv)
2991 {
2992 	struct kernfs_node *kn;
2993 	int ret = 0;
2994 
2995 	kn = __kernfs_create_file(parent_kn, name, 0444,
2996 				  GLOBAL_ROOT_UID, GLOBAL_ROOT_GID, 0,
2997 				  &kf_mondata_ops, priv, NULL, NULL);
2998 	if (IS_ERR(kn))
2999 		return PTR_ERR(kn);
3000 
3001 	ret = rdtgroup_kn_set_ugid(kn);
3002 	if (ret) {
3003 		kernfs_remove(kn);
3004 		return ret;
3005 	}
3006 
3007 	return ret;
3008 }
3009 
mon_rmdir_one_subdir(struct kernfs_node * pkn,char * name,char * subname)3010 static void mon_rmdir_one_subdir(struct kernfs_node *pkn, char *name, char *subname)
3011 {
3012 	struct kernfs_node *kn;
3013 
3014 	kn = kernfs_find_and_get(pkn, name);
3015 	if (!kn)
3016 		return;
3017 	kernfs_put(kn);
3018 
3019 	if (kn->dir.subdirs <= 1)
3020 		kernfs_remove(kn);
3021 	else
3022 		kernfs_remove_by_name(kn, subname);
3023 }
3024 
3025 /*
3026  * Remove all subdirectories of mon_data of ctrl_mon groups
3027  * and monitor groups for the given domain.
3028  * Remove files and directories containing "sum" of domain data
3029  * when last domain being summed is removed.
3030  */
rmdir_mondata_subdir_allrdtgrp(struct rdt_resource * r,struct rdt_mon_domain * d)3031 static void rmdir_mondata_subdir_allrdtgrp(struct rdt_resource *r,
3032 					   struct rdt_mon_domain *d)
3033 {
3034 	struct rdtgroup *prgrp, *crgrp;
3035 	char subname[32];
3036 	bool snc_mode;
3037 	char name[32];
3038 
3039 	snc_mode = r->mon_scope == RESCTRL_L3_NODE;
3040 	sprintf(name, "mon_%s_%02d", r->name, snc_mode ? d->ci->id : d->hdr.id);
3041 	if (snc_mode)
3042 		sprintf(subname, "mon_sub_%s_%02d", r->name, d->hdr.id);
3043 
3044 	list_for_each_entry(prgrp, &rdt_all_groups, rdtgroup_list) {
3045 		mon_rmdir_one_subdir(prgrp->mon.mon_data_kn, name, subname);
3046 
3047 		list_for_each_entry(crgrp, &prgrp->mon.crdtgrp_list, mon.crdtgrp_list)
3048 			mon_rmdir_one_subdir(crgrp->mon.mon_data_kn, name, subname);
3049 	}
3050 }
3051 
mon_add_all_files(struct kernfs_node * kn,struct rdt_mon_domain * d,struct rdt_resource * r,struct rdtgroup * prgrp,bool do_sum)3052 static int mon_add_all_files(struct kernfs_node *kn, struct rdt_mon_domain *d,
3053 			     struct rdt_resource *r, struct rdtgroup *prgrp,
3054 			     bool do_sum)
3055 {
3056 	struct rmid_read rr = {0};
3057 	union mon_data_bits priv;
3058 	struct mon_evt *mevt;
3059 	int ret;
3060 
3061 	if (WARN_ON(list_empty(&r->evt_list)))
3062 		return -EPERM;
3063 
3064 	priv.u.rid = r->rid;
3065 	priv.u.domid = do_sum ? d->ci->id : d->hdr.id;
3066 	priv.u.sum = do_sum;
3067 	list_for_each_entry(mevt, &r->evt_list, list) {
3068 		priv.u.evtid = mevt->evtid;
3069 		ret = mon_addfile(kn, mevt->name, priv.priv);
3070 		if (ret)
3071 			return ret;
3072 
3073 		if (!do_sum && is_mbm_event(mevt->evtid))
3074 			mon_event_read(&rr, r, d, prgrp, &d->hdr.cpu_mask, mevt->evtid, true);
3075 	}
3076 
3077 	return 0;
3078 }
3079 
mkdir_mondata_subdir(struct kernfs_node * parent_kn,struct rdt_mon_domain * d,struct rdt_resource * r,struct rdtgroup * prgrp)3080 static int mkdir_mondata_subdir(struct kernfs_node *parent_kn,
3081 				struct rdt_mon_domain *d,
3082 				struct rdt_resource *r, struct rdtgroup *prgrp)
3083 {
3084 	struct kernfs_node *kn, *ckn;
3085 	char name[32];
3086 	bool snc_mode;
3087 	int ret = 0;
3088 
3089 	lockdep_assert_held(&rdtgroup_mutex);
3090 
3091 	snc_mode = r->mon_scope == RESCTRL_L3_NODE;
3092 	sprintf(name, "mon_%s_%02d", r->name, snc_mode ? d->ci->id : d->hdr.id);
3093 	kn = kernfs_find_and_get(parent_kn, name);
3094 	if (kn) {
3095 		/*
3096 		 * rdtgroup_mutex will prevent this directory from being
3097 		 * removed. No need to keep this hold.
3098 		 */
3099 		kernfs_put(kn);
3100 	} else {
3101 		kn = kernfs_create_dir(parent_kn, name, parent_kn->mode, prgrp);
3102 		if (IS_ERR(kn))
3103 			return PTR_ERR(kn);
3104 
3105 		ret = rdtgroup_kn_set_ugid(kn);
3106 		if (ret)
3107 			goto out_destroy;
3108 		ret = mon_add_all_files(kn, d, r, prgrp, snc_mode);
3109 		if (ret)
3110 			goto out_destroy;
3111 	}
3112 
3113 	if (snc_mode) {
3114 		sprintf(name, "mon_sub_%s_%02d", r->name, d->hdr.id);
3115 		ckn = kernfs_create_dir(kn, name, parent_kn->mode, prgrp);
3116 		if (IS_ERR(ckn)) {
3117 			ret = -EINVAL;
3118 			goto out_destroy;
3119 		}
3120 
3121 		ret = rdtgroup_kn_set_ugid(ckn);
3122 		if (ret)
3123 			goto out_destroy;
3124 
3125 		ret = mon_add_all_files(ckn, d, r, prgrp, false);
3126 		if (ret)
3127 			goto out_destroy;
3128 	}
3129 
3130 	kernfs_activate(kn);
3131 	return 0;
3132 
3133 out_destroy:
3134 	kernfs_remove(kn);
3135 	return ret;
3136 }
3137 
3138 /*
3139  * Add all subdirectories of mon_data for "ctrl_mon" groups
3140  * and "monitor" groups with given domain id.
3141  */
mkdir_mondata_subdir_allrdtgrp(struct rdt_resource * r,struct rdt_mon_domain * d)3142 static void mkdir_mondata_subdir_allrdtgrp(struct rdt_resource *r,
3143 					   struct rdt_mon_domain *d)
3144 {
3145 	struct kernfs_node *parent_kn;
3146 	struct rdtgroup *prgrp, *crgrp;
3147 	struct list_head *head;
3148 
3149 	list_for_each_entry(prgrp, &rdt_all_groups, rdtgroup_list) {
3150 		parent_kn = prgrp->mon.mon_data_kn;
3151 		mkdir_mondata_subdir(parent_kn, d, r, prgrp);
3152 
3153 		head = &prgrp->mon.crdtgrp_list;
3154 		list_for_each_entry(crgrp, head, mon.crdtgrp_list) {
3155 			parent_kn = crgrp->mon.mon_data_kn;
3156 			mkdir_mondata_subdir(parent_kn, d, r, crgrp);
3157 		}
3158 	}
3159 }
3160 
mkdir_mondata_subdir_alldom(struct kernfs_node * parent_kn,struct rdt_resource * r,struct rdtgroup * prgrp)3161 static int mkdir_mondata_subdir_alldom(struct kernfs_node *parent_kn,
3162 				       struct rdt_resource *r,
3163 				       struct rdtgroup *prgrp)
3164 {
3165 	struct rdt_mon_domain *dom;
3166 	int ret;
3167 
3168 	/* Walking r->domains, ensure it can't race with cpuhp */
3169 	lockdep_assert_cpus_held();
3170 
3171 	list_for_each_entry(dom, &r->mon_domains, hdr.list) {
3172 		ret = mkdir_mondata_subdir(parent_kn, dom, r, prgrp);
3173 		if (ret)
3174 			return ret;
3175 	}
3176 
3177 	return 0;
3178 }
3179 
3180 /*
3181  * This creates a directory mon_data which contains the monitored data.
3182  *
3183  * mon_data has one directory for each domain which are named
3184  * in the format mon_<domain_name>_<domain_id>. For ex: A mon_data
3185  * with L3 domain looks as below:
3186  * ./mon_data:
3187  * mon_L3_00
3188  * mon_L3_01
3189  * mon_L3_02
3190  * ...
3191  *
3192  * Each domain directory has one file per event:
3193  * ./mon_L3_00/:
3194  * llc_occupancy
3195  *
3196  */
mkdir_mondata_all(struct kernfs_node * parent_kn,struct rdtgroup * prgrp,struct kernfs_node ** dest_kn)3197 static int mkdir_mondata_all(struct kernfs_node *parent_kn,
3198 			     struct rdtgroup *prgrp,
3199 			     struct kernfs_node **dest_kn)
3200 {
3201 	struct rdt_resource *r;
3202 	struct kernfs_node *kn;
3203 	int ret;
3204 
3205 	/*
3206 	 * Create the mon_data directory first.
3207 	 */
3208 	ret = mongroup_create_dir(parent_kn, prgrp, "mon_data", &kn);
3209 	if (ret)
3210 		return ret;
3211 
3212 	if (dest_kn)
3213 		*dest_kn = kn;
3214 
3215 	/*
3216 	 * Create the subdirectories for each domain. Note that all events
3217 	 * in a domain like L3 are grouped into a resource whose domain is L3
3218 	 */
3219 	for_each_mon_capable_rdt_resource(r) {
3220 		ret = mkdir_mondata_subdir_alldom(kn, r, prgrp);
3221 		if (ret)
3222 			goto out_destroy;
3223 	}
3224 
3225 	return 0;
3226 
3227 out_destroy:
3228 	kernfs_remove(kn);
3229 	return ret;
3230 }
3231 
3232 /**
3233  * cbm_ensure_valid - Enforce validity on provided CBM
3234  * @_val:	Candidate CBM
3235  * @r:		RDT resource to which the CBM belongs
3236  *
3237  * The provided CBM represents all cache portions available for use. This
3238  * may be represented by a bitmap that does not consist of contiguous ones
3239  * and thus be an invalid CBM.
3240  * Here the provided CBM is forced to be a valid CBM by only considering
3241  * the first set of contiguous bits as valid and clearing all bits.
3242  * The intention here is to provide a valid default CBM with which a new
3243  * resource group is initialized. The user can follow this with a
3244  * modification to the CBM if the default does not satisfy the
3245  * requirements.
3246  */
cbm_ensure_valid(u32 _val,struct rdt_resource * r)3247 static u32 cbm_ensure_valid(u32 _val, struct rdt_resource *r)
3248 {
3249 	unsigned int cbm_len = r->cache.cbm_len;
3250 	unsigned long first_bit, zero_bit;
3251 	unsigned long val = _val;
3252 
3253 	if (!val)
3254 		return 0;
3255 
3256 	first_bit = find_first_bit(&val, cbm_len);
3257 	zero_bit = find_next_zero_bit(&val, cbm_len, first_bit);
3258 
3259 	/* Clear any remaining bits to ensure contiguous region */
3260 	bitmap_clear(&val, zero_bit, cbm_len - zero_bit);
3261 	return (u32)val;
3262 }
3263 
3264 /*
3265  * Initialize cache resources per RDT domain
3266  *
3267  * Set the RDT domain up to start off with all usable allocations. That is,
3268  * all shareable and unused bits. All-zero CBM is invalid.
3269  */
__init_one_rdt_domain(struct rdt_ctrl_domain * d,struct resctrl_schema * s,u32 closid)3270 static int __init_one_rdt_domain(struct rdt_ctrl_domain *d, struct resctrl_schema *s,
3271 				 u32 closid)
3272 {
3273 	enum resctrl_conf_type peer_type = resctrl_peer_type(s->conf_type);
3274 	enum resctrl_conf_type t = s->conf_type;
3275 	struct resctrl_staged_config *cfg;
3276 	struct rdt_resource *r = s->res;
3277 	u32 used_b = 0, unused_b = 0;
3278 	unsigned long tmp_cbm;
3279 	enum rdtgrp_mode mode;
3280 	u32 peer_ctl, ctrl_val;
3281 	int i;
3282 
3283 	cfg = &d->staged_config[t];
3284 	cfg->have_new_ctrl = false;
3285 	cfg->new_ctrl = r->cache.shareable_bits;
3286 	used_b = r->cache.shareable_bits;
3287 	for (i = 0; i < closids_supported(); i++) {
3288 		if (closid_allocated(i) && i != closid) {
3289 			mode = rdtgroup_mode_by_closid(i);
3290 			if (mode == RDT_MODE_PSEUDO_LOCKSETUP)
3291 				/*
3292 				 * ctrl values for locksetup aren't relevant
3293 				 * until the schemata is written, and the mode
3294 				 * becomes RDT_MODE_PSEUDO_LOCKED.
3295 				 */
3296 				continue;
3297 			/*
3298 			 * If CDP is active include peer domain's
3299 			 * usage to ensure there is no overlap
3300 			 * with an exclusive group.
3301 			 */
3302 			if (resctrl_arch_get_cdp_enabled(r->rid))
3303 				peer_ctl = resctrl_arch_get_config(r, d, i,
3304 								   peer_type);
3305 			else
3306 				peer_ctl = 0;
3307 			ctrl_val = resctrl_arch_get_config(r, d, i,
3308 							   s->conf_type);
3309 			used_b |= ctrl_val | peer_ctl;
3310 			if (mode == RDT_MODE_SHAREABLE)
3311 				cfg->new_ctrl |= ctrl_val | peer_ctl;
3312 		}
3313 	}
3314 	if (d->plr && d->plr->cbm > 0)
3315 		used_b |= d->plr->cbm;
3316 	unused_b = used_b ^ (BIT_MASK(r->cache.cbm_len) - 1);
3317 	unused_b &= BIT_MASK(r->cache.cbm_len) - 1;
3318 	cfg->new_ctrl |= unused_b;
3319 	/*
3320 	 * Force the initial CBM to be valid, user can
3321 	 * modify the CBM based on system availability.
3322 	 */
3323 	cfg->new_ctrl = cbm_ensure_valid(cfg->new_ctrl, r);
3324 	/*
3325 	 * Assign the u32 CBM to an unsigned long to ensure that
3326 	 * bitmap_weight() does not access out-of-bound memory.
3327 	 */
3328 	tmp_cbm = cfg->new_ctrl;
3329 	if (bitmap_weight(&tmp_cbm, r->cache.cbm_len) < r->cache.min_cbm_bits) {
3330 		rdt_last_cmd_printf("No space on %s:%d\n", s->name, d->hdr.id);
3331 		return -ENOSPC;
3332 	}
3333 	cfg->have_new_ctrl = true;
3334 
3335 	return 0;
3336 }
3337 
3338 /*
3339  * Initialize cache resources with default values.
3340  *
3341  * A new RDT group is being created on an allocation capable (CAT)
3342  * supporting system. Set this group up to start off with all usable
3343  * allocations.
3344  *
3345  * If there are no more shareable bits available on any domain then
3346  * the entire allocation will fail.
3347  */
rdtgroup_init_cat(struct resctrl_schema * s,u32 closid)3348 static int rdtgroup_init_cat(struct resctrl_schema *s, u32 closid)
3349 {
3350 	struct rdt_ctrl_domain *d;
3351 	int ret;
3352 
3353 	list_for_each_entry(d, &s->res->ctrl_domains, hdr.list) {
3354 		ret = __init_one_rdt_domain(d, s, closid);
3355 		if (ret < 0)
3356 			return ret;
3357 	}
3358 
3359 	return 0;
3360 }
3361 
3362 /* Initialize MBA resource with default values. */
rdtgroup_init_mba(struct rdt_resource * r,u32 closid)3363 static void rdtgroup_init_mba(struct rdt_resource *r, u32 closid)
3364 {
3365 	struct resctrl_staged_config *cfg;
3366 	struct rdt_ctrl_domain *d;
3367 
3368 	list_for_each_entry(d, &r->ctrl_domains, hdr.list) {
3369 		if (is_mba_sc(r)) {
3370 			d->mbps_val[closid] = MBA_MAX_MBPS;
3371 			continue;
3372 		}
3373 
3374 		cfg = &d->staged_config[CDP_NONE];
3375 		cfg->new_ctrl = r->default_ctrl;
3376 		cfg->have_new_ctrl = true;
3377 	}
3378 }
3379 
3380 /* Initialize the RDT group's allocations. */
rdtgroup_init_alloc(struct rdtgroup * rdtgrp)3381 static int rdtgroup_init_alloc(struct rdtgroup *rdtgrp)
3382 {
3383 	struct resctrl_schema *s;
3384 	struct rdt_resource *r;
3385 	int ret = 0;
3386 
3387 	rdt_staged_configs_clear();
3388 
3389 	list_for_each_entry(s, &resctrl_schema_all, list) {
3390 		r = s->res;
3391 		if (r->rid == RDT_RESOURCE_MBA ||
3392 		    r->rid == RDT_RESOURCE_SMBA) {
3393 			rdtgroup_init_mba(r, rdtgrp->closid);
3394 			if (is_mba_sc(r))
3395 				continue;
3396 		} else {
3397 			ret = rdtgroup_init_cat(s, rdtgrp->closid);
3398 			if (ret < 0)
3399 				goto out;
3400 		}
3401 
3402 		ret = resctrl_arch_update_domains(r, rdtgrp->closid);
3403 		if (ret < 0) {
3404 			rdt_last_cmd_puts("Failed to initialize allocations\n");
3405 			goto out;
3406 		}
3407 
3408 	}
3409 
3410 	rdtgrp->mode = RDT_MODE_SHAREABLE;
3411 
3412 out:
3413 	rdt_staged_configs_clear();
3414 	return ret;
3415 }
3416 
mkdir_rdt_prepare_rmid_alloc(struct rdtgroup * rdtgrp)3417 static int mkdir_rdt_prepare_rmid_alloc(struct rdtgroup *rdtgrp)
3418 {
3419 	int ret;
3420 
3421 	if (!resctrl_arch_mon_capable())
3422 		return 0;
3423 
3424 	ret = alloc_rmid(rdtgrp->closid);
3425 	if (ret < 0) {
3426 		rdt_last_cmd_puts("Out of RMIDs\n");
3427 		return ret;
3428 	}
3429 	rdtgrp->mon.rmid = ret;
3430 
3431 	ret = mkdir_mondata_all(rdtgrp->kn, rdtgrp, &rdtgrp->mon.mon_data_kn);
3432 	if (ret) {
3433 		rdt_last_cmd_puts("kernfs subdir error\n");
3434 		free_rmid(rdtgrp->closid, rdtgrp->mon.rmid);
3435 		return ret;
3436 	}
3437 
3438 	return 0;
3439 }
3440 
mkdir_rdt_prepare_rmid_free(struct rdtgroup * rgrp)3441 static void mkdir_rdt_prepare_rmid_free(struct rdtgroup *rgrp)
3442 {
3443 	if (resctrl_arch_mon_capable())
3444 		free_rmid(rgrp->closid, rgrp->mon.rmid);
3445 }
3446 
mkdir_rdt_prepare(struct kernfs_node * parent_kn,const char * name,umode_t mode,enum rdt_group_type rtype,struct rdtgroup ** r)3447 static int mkdir_rdt_prepare(struct kernfs_node *parent_kn,
3448 			     const char *name, umode_t mode,
3449 			     enum rdt_group_type rtype, struct rdtgroup **r)
3450 {
3451 	struct rdtgroup *prdtgrp, *rdtgrp;
3452 	unsigned long files = 0;
3453 	struct kernfs_node *kn;
3454 	int ret;
3455 
3456 	prdtgrp = rdtgroup_kn_lock_live(parent_kn);
3457 	if (!prdtgrp) {
3458 		ret = -ENODEV;
3459 		goto out_unlock;
3460 	}
3461 
3462 	if (rtype == RDTMON_GROUP &&
3463 	    (prdtgrp->mode == RDT_MODE_PSEUDO_LOCKSETUP ||
3464 	     prdtgrp->mode == RDT_MODE_PSEUDO_LOCKED)) {
3465 		ret = -EINVAL;
3466 		rdt_last_cmd_puts("Pseudo-locking in progress\n");
3467 		goto out_unlock;
3468 	}
3469 
3470 	/* allocate the rdtgroup. */
3471 	rdtgrp = kzalloc(sizeof(*rdtgrp), GFP_KERNEL);
3472 	if (!rdtgrp) {
3473 		ret = -ENOSPC;
3474 		rdt_last_cmd_puts("Kernel out of memory\n");
3475 		goto out_unlock;
3476 	}
3477 	*r = rdtgrp;
3478 	rdtgrp->mon.parent = prdtgrp;
3479 	rdtgrp->type = rtype;
3480 	INIT_LIST_HEAD(&rdtgrp->mon.crdtgrp_list);
3481 
3482 	/* kernfs creates the directory for rdtgrp */
3483 	kn = kernfs_create_dir(parent_kn, name, mode, rdtgrp);
3484 	if (IS_ERR(kn)) {
3485 		ret = PTR_ERR(kn);
3486 		rdt_last_cmd_puts("kernfs create error\n");
3487 		goto out_free_rgrp;
3488 	}
3489 	rdtgrp->kn = kn;
3490 
3491 	/*
3492 	 * kernfs_remove() will drop the reference count on "kn" which
3493 	 * will free it. But we still need it to stick around for the
3494 	 * rdtgroup_kn_unlock(kn) call. Take one extra reference here,
3495 	 * which will be dropped by kernfs_put() in rdtgroup_remove().
3496 	 */
3497 	kernfs_get(kn);
3498 
3499 	ret = rdtgroup_kn_set_ugid(kn);
3500 	if (ret) {
3501 		rdt_last_cmd_puts("kernfs perm error\n");
3502 		goto out_destroy;
3503 	}
3504 
3505 	if (rtype == RDTCTRL_GROUP) {
3506 		files = RFTYPE_BASE | RFTYPE_CTRL;
3507 		if (resctrl_arch_mon_capable())
3508 			files |= RFTYPE_MON;
3509 	} else {
3510 		files = RFTYPE_BASE | RFTYPE_MON;
3511 	}
3512 
3513 	ret = rdtgroup_add_files(kn, files);
3514 	if (ret) {
3515 		rdt_last_cmd_puts("kernfs fill error\n");
3516 		goto out_destroy;
3517 	}
3518 
3519 	/*
3520 	 * The caller unlocks the parent_kn upon success.
3521 	 */
3522 	return 0;
3523 
3524 out_destroy:
3525 	kernfs_put(rdtgrp->kn);
3526 	kernfs_remove(rdtgrp->kn);
3527 out_free_rgrp:
3528 	kfree(rdtgrp);
3529 out_unlock:
3530 	rdtgroup_kn_unlock(parent_kn);
3531 	return ret;
3532 }
3533 
mkdir_rdt_prepare_clean(struct rdtgroup * rgrp)3534 static void mkdir_rdt_prepare_clean(struct rdtgroup *rgrp)
3535 {
3536 	kernfs_remove(rgrp->kn);
3537 	rdtgroup_remove(rgrp);
3538 }
3539 
3540 /*
3541  * Create a monitor group under "mon_groups" directory of a control
3542  * and monitor group(ctrl_mon). This is a resource group
3543  * to monitor a subset of tasks and cpus in its parent ctrl_mon group.
3544  */
rdtgroup_mkdir_mon(struct kernfs_node * parent_kn,const char * name,umode_t mode)3545 static int rdtgroup_mkdir_mon(struct kernfs_node *parent_kn,
3546 			      const char *name, umode_t mode)
3547 {
3548 	struct rdtgroup *rdtgrp, *prgrp;
3549 	int ret;
3550 
3551 	ret = mkdir_rdt_prepare(parent_kn, name, mode, RDTMON_GROUP, &rdtgrp);
3552 	if (ret)
3553 		return ret;
3554 
3555 	prgrp = rdtgrp->mon.parent;
3556 	rdtgrp->closid = prgrp->closid;
3557 
3558 	ret = mkdir_rdt_prepare_rmid_alloc(rdtgrp);
3559 	if (ret) {
3560 		mkdir_rdt_prepare_clean(rdtgrp);
3561 		goto out_unlock;
3562 	}
3563 
3564 	kernfs_activate(rdtgrp->kn);
3565 
3566 	/*
3567 	 * Add the rdtgrp to the list of rdtgrps the parent
3568 	 * ctrl_mon group has to track.
3569 	 */
3570 	list_add_tail(&rdtgrp->mon.crdtgrp_list, &prgrp->mon.crdtgrp_list);
3571 
3572 out_unlock:
3573 	rdtgroup_kn_unlock(parent_kn);
3574 	return ret;
3575 }
3576 
3577 /*
3578  * These are rdtgroups created under the root directory. Can be used
3579  * to allocate and monitor resources.
3580  */
rdtgroup_mkdir_ctrl_mon(struct kernfs_node * parent_kn,const char * name,umode_t mode)3581 static int rdtgroup_mkdir_ctrl_mon(struct kernfs_node *parent_kn,
3582 				   const char *name, umode_t mode)
3583 {
3584 	struct rdtgroup *rdtgrp;
3585 	struct kernfs_node *kn;
3586 	u32 closid;
3587 	int ret;
3588 
3589 	ret = mkdir_rdt_prepare(parent_kn, name, mode, RDTCTRL_GROUP, &rdtgrp);
3590 	if (ret)
3591 		return ret;
3592 
3593 	kn = rdtgrp->kn;
3594 	ret = closid_alloc();
3595 	if (ret < 0) {
3596 		rdt_last_cmd_puts("Out of CLOSIDs\n");
3597 		goto out_common_fail;
3598 	}
3599 	closid = ret;
3600 	ret = 0;
3601 
3602 	rdtgrp->closid = closid;
3603 
3604 	ret = mkdir_rdt_prepare_rmid_alloc(rdtgrp);
3605 	if (ret)
3606 		goto out_closid_free;
3607 
3608 	kernfs_activate(rdtgrp->kn);
3609 
3610 	ret = rdtgroup_init_alloc(rdtgrp);
3611 	if (ret < 0)
3612 		goto out_rmid_free;
3613 
3614 	list_add(&rdtgrp->rdtgroup_list, &rdt_all_groups);
3615 
3616 	if (resctrl_arch_mon_capable()) {
3617 		/*
3618 		 * Create an empty mon_groups directory to hold the subset
3619 		 * of tasks and cpus to monitor.
3620 		 */
3621 		ret = mongroup_create_dir(kn, rdtgrp, "mon_groups", NULL);
3622 		if (ret) {
3623 			rdt_last_cmd_puts("kernfs subdir error\n");
3624 			goto out_del_list;
3625 		}
3626 	}
3627 
3628 	goto out_unlock;
3629 
3630 out_del_list:
3631 	list_del(&rdtgrp->rdtgroup_list);
3632 out_rmid_free:
3633 	mkdir_rdt_prepare_rmid_free(rdtgrp);
3634 out_closid_free:
3635 	closid_free(closid);
3636 out_common_fail:
3637 	mkdir_rdt_prepare_clean(rdtgrp);
3638 out_unlock:
3639 	rdtgroup_kn_unlock(parent_kn);
3640 	return ret;
3641 }
3642 
3643 /*
3644  * We allow creating mon groups only with in a directory called "mon_groups"
3645  * which is present in every ctrl_mon group. Check if this is a valid
3646  * "mon_groups" directory.
3647  *
3648  * 1. The directory should be named "mon_groups".
3649  * 2. The mon group itself should "not" be named "mon_groups".
3650  *   This makes sure "mon_groups" directory always has a ctrl_mon group
3651  *   as parent.
3652  */
is_mon_groups(struct kernfs_node * kn,const char * name)3653 static bool is_mon_groups(struct kernfs_node *kn, const char *name)
3654 {
3655 	return (!strcmp(kn->name, "mon_groups") &&
3656 		strcmp(name, "mon_groups"));
3657 }
3658 
rdtgroup_mkdir(struct kernfs_node * parent_kn,const char * name,umode_t mode)3659 static int rdtgroup_mkdir(struct kernfs_node *parent_kn, const char *name,
3660 			  umode_t mode)
3661 {
3662 	/* Do not accept '\n' to avoid unparsable situation. */
3663 	if (strchr(name, '\n'))
3664 		return -EINVAL;
3665 
3666 	/*
3667 	 * If the parent directory is the root directory and RDT
3668 	 * allocation is supported, add a control and monitoring
3669 	 * subdirectory
3670 	 */
3671 	if (resctrl_arch_alloc_capable() && parent_kn == rdtgroup_default.kn)
3672 		return rdtgroup_mkdir_ctrl_mon(parent_kn, name, mode);
3673 
3674 	/*
3675 	 * If RDT monitoring is supported and the parent directory is a valid
3676 	 * "mon_groups" directory, add a monitoring subdirectory.
3677 	 */
3678 	if (resctrl_arch_mon_capable() && is_mon_groups(parent_kn, name))
3679 		return rdtgroup_mkdir_mon(parent_kn, name, mode);
3680 
3681 	return -EPERM;
3682 }
3683 
rdtgroup_rmdir_mon(struct rdtgroup * rdtgrp,cpumask_var_t tmpmask)3684 static int rdtgroup_rmdir_mon(struct rdtgroup *rdtgrp, cpumask_var_t tmpmask)
3685 {
3686 	struct rdtgroup *prdtgrp = rdtgrp->mon.parent;
3687 	int cpu;
3688 
3689 	/* Give any tasks back to the parent group */
3690 	rdt_move_group_tasks(rdtgrp, prdtgrp, tmpmask);
3691 
3692 	/* Update per cpu rmid of the moved CPUs first */
3693 	for_each_cpu(cpu, &rdtgrp->cpu_mask)
3694 		per_cpu(pqr_state.default_rmid, cpu) = prdtgrp->mon.rmid;
3695 	/*
3696 	 * Update the MSR on moved CPUs and CPUs which have moved
3697 	 * task running on them.
3698 	 */
3699 	cpumask_or(tmpmask, tmpmask, &rdtgrp->cpu_mask);
3700 	update_closid_rmid(tmpmask, NULL);
3701 
3702 	rdtgrp->flags = RDT_DELETED;
3703 	free_rmid(rdtgrp->closid, rdtgrp->mon.rmid);
3704 
3705 	/*
3706 	 * Remove the rdtgrp from the parent ctrl_mon group's list
3707 	 */
3708 	WARN_ON(list_empty(&prdtgrp->mon.crdtgrp_list));
3709 	list_del(&rdtgrp->mon.crdtgrp_list);
3710 
3711 	kernfs_remove(rdtgrp->kn);
3712 
3713 	return 0;
3714 }
3715 
rdtgroup_ctrl_remove(struct rdtgroup * rdtgrp)3716 static int rdtgroup_ctrl_remove(struct rdtgroup *rdtgrp)
3717 {
3718 	rdtgrp->flags = RDT_DELETED;
3719 	list_del(&rdtgrp->rdtgroup_list);
3720 
3721 	kernfs_remove(rdtgrp->kn);
3722 	return 0;
3723 }
3724 
rdtgroup_rmdir_ctrl(struct rdtgroup * rdtgrp,cpumask_var_t tmpmask)3725 static int rdtgroup_rmdir_ctrl(struct rdtgroup *rdtgrp, cpumask_var_t tmpmask)
3726 {
3727 	int cpu;
3728 
3729 	/* Give any tasks back to the default group */
3730 	rdt_move_group_tasks(rdtgrp, &rdtgroup_default, tmpmask);
3731 
3732 	/* Give any CPUs back to the default group */
3733 	cpumask_or(&rdtgroup_default.cpu_mask,
3734 		   &rdtgroup_default.cpu_mask, &rdtgrp->cpu_mask);
3735 
3736 	/* Update per cpu closid and rmid of the moved CPUs first */
3737 	for_each_cpu(cpu, &rdtgrp->cpu_mask) {
3738 		per_cpu(pqr_state.default_closid, cpu) = rdtgroup_default.closid;
3739 		per_cpu(pqr_state.default_rmid, cpu) = rdtgroup_default.mon.rmid;
3740 	}
3741 
3742 	/*
3743 	 * Update the MSR on moved CPUs and CPUs which have moved
3744 	 * task running on them.
3745 	 */
3746 	cpumask_or(tmpmask, tmpmask, &rdtgrp->cpu_mask);
3747 	update_closid_rmid(tmpmask, NULL);
3748 
3749 	free_rmid(rdtgrp->closid, rdtgrp->mon.rmid);
3750 	closid_free(rdtgrp->closid);
3751 
3752 	rdtgroup_ctrl_remove(rdtgrp);
3753 
3754 	/*
3755 	 * Free all the child monitor group rmids.
3756 	 */
3757 	free_all_child_rdtgrp(rdtgrp);
3758 
3759 	return 0;
3760 }
3761 
rdtgroup_rmdir(struct kernfs_node * kn)3762 static int rdtgroup_rmdir(struct kernfs_node *kn)
3763 {
3764 	struct kernfs_node *parent_kn = kn->parent;
3765 	struct rdtgroup *rdtgrp;
3766 	cpumask_var_t tmpmask;
3767 	int ret = 0;
3768 
3769 	if (!zalloc_cpumask_var(&tmpmask, GFP_KERNEL))
3770 		return -ENOMEM;
3771 
3772 	rdtgrp = rdtgroup_kn_lock_live(kn);
3773 	if (!rdtgrp) {
3774 		ret = -EPERM;
3775 		goto out;
3776 	}
3777 
3778 	/*
3779 	 * If the rdtgroup is a ctrl_mon group and parent directory
3780 	 * is the root directory, remove the ctrl_mon group.
3781 	 *
3782 	 * If the rdtgroup is a mon group and parent directory
3783 	 * is a valid "mon_groups" directory, remove the mon group.
3784 	 */
3785 	if (rdtgrp->type == RDTCTRL_GROUP && parent_kn == rdtgroup_default.kn &&
3786 	    rdtgrp != &rdtgroup_default) {
3787 		if (rdtgrp->mode == RDT_MODE_PSEUDO_LOCKSETUP ||
3788 		    rdtgrp->mode == RDT_MODE_PSEUDO_LOCKED) {
3789 			ret = rdtgroup_ctrl_remove(rdtgrp);
3790 		} else {
3791 			ret = rdtgroup_rmdir_ctrl(rdtgrp, tmpmask);
3792 		}
3793 	} else if (rdtgrp->type == RDTMON_GROUP &&
3794 		 is_mon_groups(parent_kn, kn->name)) {
3795 		ret = rdtgroup_rmdir_mon(rdtgrp, tmpmask);
3796 	} else {
3797 		ret = -EPERM;
3798 	}
3799 
3800 out:
3801 	rdtgroup_kn_unlock(kn);
3802 	free_cpumask_var(tmpmask);
3803 	return ret;
3804 }
3805 
3806 /**
3807  * mongrp_reparent() - replace parent CTRL_MON group of a MON group
3808  * @rdtgrp:		the MON group whose parent should be replaced
3809  * @new_prdtgrp:	replacement parent CTRL_MON group for @rdtgrp
3810  * @cpus:		cpumask provided by the caller for use during this call
3811  *
3812  * Replaces the parent CTRL_MON group for a MON group, resulting in all member
3813  * tasks' CLOSID immediately changing to that of the new parent group.
3814  * Monitoring data for the group is unaffected by this operation.
3815  */
mongrp_reparent(struct rdtgroup * rdtgrp,struct rdtgroup * new_prdtgrp,cpumask_var_t cpus)3816 static void mongrp_reparent(struct rdtgroup *rdtgrp,
3817 			    struct rdtgroup *new_prdtgrp,
3818 			    cpumask_var_t cpus)
3819 {
3820 	struct rdtgroup *prdtgrp = rdtgrp->mon.parent;
3821 
3822 	WARN_ON(rdtgrp->type != RDTMON_GROUP);
3823 	WARN_ON(new_prdtgrp->type != RDTCTRL_GROUP);
3824 
3825 	/* Nothing to do when simply renaming a MON group. */
3826 	if (prdtgrp == new_prdtgrp)
3827 		return;
3828 
3829 	WARN_ON(list_empty(&prdtgrp->mon.crdtgrp_list));
3830 	list_move_tail(&rdtgrp->mon.crdtgrp_list,
3831 		       &new_prdtgrp->mon.crdtgrp_list);
3832 
3833 	rdtgrp->mon.parent = new_prdtgrp;
3834 	rdtgrp->closid = new_prdtgrp->closid;
3835 
3836 	/* Propagate updated closid to all tasks in this group. */
3837 	rdt_move_group_tasks(rdtgrp, rdtgrp, cpus);
3838 
3839 	update_closid_rmid(cpus, NULL);
3840 }
3841 
rdtgroup_rename(struct kernfs_node * kn,struct kernfs_node * new_parent,const char * new_name)3842 static int rdtgroup_rename(struct kernfs_node *kn,
3843 			   struct kernfs_node *new_parent, const char *new_name)
3844 {
3845 	struct rdtgroup *new_prdtgrp;
3846 	struct rdtgroup *rdtgrp;
3847 	cpumask_var_t tmpmask;
3848 	int ret;
3849 
3850 	rdtgrp = kernfs_to_rdtgroup(kn);
3851 	new_prdtgrp = kernfs_to_rdtgroup(new_parent);
3852 	if (!rdtgrp || !new_prdtgrp)
3853 		return -ENOENT;
3854 
3855 	/* Release both kernfs active_refs before obtaining rdtgroup mutex. */
3856 	rdtgroup_kn_get(rdtgrp, kn);
3857 	rdtgroup_kn_get(new_prdtgrp, new_parent);
3858 
3859 	mutex_lock(&rdtgroup_mutex);
3860 
3861 	rdt_last_cmd_clear();
3862 
3863 	/*
3864 	 * Don't allow kernfs_to_rdtgroup() to return a parent rdtgroup if
3865 	 * either kernfs_node is a file.
3866 	 */
3867 	if (kernfs_type(kn) != KERNFS_DIR ||
3868 	    kernfs_type(new_parent) != KERNFS_DIR) {
3869 		rdt_last_cmd_puts("Source and destination must be directories");
3870 		ret = -EPERM;
3871 		goto out;
3872 	}
3873 
3874 	if ((rdtgrp->flags & RDT_DELETED) || (new_prdtgrp->flags & RDT_DELETED)) {
3875 		ret = -ENOENT;
3876 		goto out;
3877 	}
3878 
3879 	if (rdtgrp->type != RDTMON_GROUP || !kn->parent ||
3880 	    !is_mon_groups(kn->parent, kn->name)) {
3881 		rdt_last_cmd_puts("Source must be a MON group\n");
3882 		ret = -EPERM;
3883 		goto out;
3884 	}
3885 
3886 	if (!is_mon_groups(new_parent, new_name)) {
3887 		rdt_last_cmd_puts("Destination must be a mon_groups subdirectory\n");
3888 		ret = -EPERM;
3889 		goto out;
3890 	}
3891 
3892 	/*
3893 	 * If the MON group is monitoring CPUs, the CPUs must be assigned to the
3894 	 * current parent CTRL_MON group and therefore cannot be assigned to
3895 	 * the new parent, making the move illegal.
3896 	 */
3897 	if (!cpumask_empty(&rdtgrp->cpu_mask) &&
3898 	    rdtgrp->mon.parent != new_prdtgrp) {
3899 		rdt_last_cmd_puts("Cannot move a MON group that monitors CPUs\n");
3900 		ret = -EPERM;
3901 		goto out;
3902 	}
3903 
3904 	/*
3905 	 * Allocate the cpumask for use in mongrp_reparent() to avoid the
3906 	 * possibility of failing to allocate it after kernfs_rename() has
3907 	 * succeeded.
3908 	 */
3909 	if (!zalloc_cpumask_var(&tmpmask, GFP_KERNEL)) {
3910 		ret = -ENOMEM;
3911 		goto out;
3912 	}
3913 
3914 	/*
3915 	 * Perform all input validation and allocations needed to ensure
3916 	 * mongrp_reparent() will succeed before calling kernfs_rename(),
3917 	 * otherwise it would be necessary to revert this call if
3918 	 * mongrp_reparent() failed.
3919 	 */
3920 	ret = kernfs_rename(kn, new_parent, new_name);
3921 	if (!ret)
3922 		mongrp_reparent(rdtgrp, new_prdtgrp, tmpmask);
3923 
3924 	free_cpumask_var(tmpmask);
3925 
3926 out:
3927 	mutex_unlock(&rdtgroup_mutex);
3928 	rdtgroup_kn_put(rdtgrp, kn);
3929 	rdtgroup_kn_put(new_prdtgrp, new_parent);
3930 	return ret;
3931 }
3932 
rdtgroup_show_options(struct seq_file * seq,struct kernfs_root * kf)3933 static int rdtgroup_show_options(struct seq_file *seq, struct kernfs_root *kf)
3934 {
3935 	if (resctrl_arch_get_cdp_enabled(RDT_RESOURCE_L3))
3936 		seq_puts(seq, ",cdp");
3937 
3938 	if (resctrl_arch_get_cdp_enabled(RDT_RESOURCE_L2))
3939 		seq_puts(seq, ",cdpl2");
3940 
3941 	if (is_mba_sc(&rdt_resources_all[RDT_RESOURCE_MBA].r_resctrl))
3942 		seq_puts(seq, ",mba_MBps");
3943 
3944 	if (resctrl_debug)
3945 		seq_puts(seq, ",debug");
3946 
3947 	return 0;
3948 }
3949 
3950 static struct kernfs_syscall_ops rdtgroup_kf_syscall_ops = {
3951 	.mkdir		= rdtgroup_mkdir,
3952 	.rmdir		= rdtgroup_rmdir,
3953 	.rename		= rdtgroup_rename,
3954 	.show_options	= rdtgroup_show_options,
3955 };
3956 
rdtgroup_setup_root(struct rdt_fs_context * ctx)3957 static int rdtgroup_setup_root(struct rdt_fs_context *ctx)
3958 {
3959 	rdt_root = kernfs_create_root(&rdtgroup_kf_syscall_ops,
3960 				      KERNFS_ROOT_CREATE_DEACTIVATED |
3961 				      KERNFS_ROOT_EXTRA_OPEN_PERM_CHECK,
3962 				      &rdtgroup_default);
3963 	if (IS_ERR(rdt_root))
3964 		return PTR_ERR(rdt_root);
3965 
3966 	ctx->kfc.root = rdt_root;
3967 	rdtgroup_default.kn = kernfs_root_to_node(rdt_root);
3968 
3969 	return 0;
3970 }
3971 
rdtgroup_destroy_root(void)3972 static void rdtgroup_destroy_root(void)
3973 {
3974 	kernfs_destroy_root(rdt_root);
3975 	rdtgroup_default.kn = NULL;
3976 }
3977 
rdtgroup_setup_default(void)3978 static void __init rdtgroup_setup_default(void)
3979 {
3980 	mutex_lock(&rdtgroup_mutex);
3981 
3982 	rdtgroup_default.closid = RESCTRL_RESERVED_CLOSID;
3983 	rdtgroup_default.mon.rmid = RESCTRL_RESERVED_RMID;
3984 	rdtgroup_default.type = RDTCTRL_GROUP;
3985 	INIT_LIST_HEAD(&rdtgroup_default.mon.crdtgrp_list);
3986 
3987 	list_add(&rdtgroup_default.rdtgroup_list, &rdt_all_groups);
3988 
3989 	mutex_unlock(&rdtgroup_mutex);
3990 }
3991 
domain_destroy_mon_state(struct rdt_mon_domain * d)3992 static void domain_destroy_mon_state(struct rdt_mon_domain *d)
3993 {
3994 	bitmap_free(d->rmid_busy_llc);
3995 	kfree(d->mbm_total);
3996 	kfree(d->mbm_local);
3997 }
3998 
resctrl_offline_ctrl_domain(struct rdt_resource * r,struct rdt_ctrl_domain * d)3999 void resctrl_offline_ctrl_domain(struct rdt_resource *r, struct rdt_ctrl_domain *d)
4000 {
4001 	mutex_lock(&rdtgroup_mutex);
4002 
4003 	if (supports_mba_mbps() && r->rid == RDT_RESOURCE_MBA)
4004 		mba_sc_domain_destroy(r, d);
4005 
4006 	mutex_unlock(&rdtgroup_mutex);
4007 }
4008 
resctrl_offline_mon_domain(struct rdt_resource * r,struct rdt_mon_domain * d)4009 void resctrl_offline_mon_domain(struct rdt_resource *r, struct rdt_mon_domain *d)
4010 {
4011 	mutex_lock(&rdtgroup_mutex);
4012 
4013 	/*
4014 	 * If resctrl is mounted, remove all the
4015 	 * per domain monitor data directories.
4016 	 */
4017 	if (resctrl_mounted && resctrl_arch_mon_capable())
4018 		rmdir_mondata_subdir_allrdtgrp(r, d);
4019 
4020 	if (is_mbm_enabled())
4021 		cancel_delayed_work(&d->mbm_over);
4022 	if (is_llc_occupancy_enabled() && has_busy_rmid(d)) {
4023 		/*
4024 		 * When a package is going down, forcefully
4025 		 * decrement rmid->ebusy. There is no way to know
4026 		 * that the L3 was flushed and hence may lead to
4027 		 * incorrect counts in rare scenarios, but leaving
4028 		 * the RMID as busy creates RMID leaks if the
4029 		 * package never comes back.
4030 		 */
4031 		__check_limbo(d, true);
4032 		cancel_delayed_work(&d->cqm_limbo);
4033 	}
4034 
4035 	domain_destroy_mon_state(d);
4036 
4037 	mutex_unlock(&rdtgroup_mutex);
4038 }
4039 
domain_setup_mon_state(struct rdt_resource * r,struct rdt_mon_domain * d)4040 static int domain_setup_mon_state(struct rdt_resource *r, struct rdt_mon_domain *d)
4041 {
4042 	u32 idx_limit = resctrl_arch_system_num_rmid_idx();
4043 	size_t tsize;
4044 
4045 	if (is_llc_occupancy_enabled()) {
4046 		d->rmid_busy_llc = bitmap_zalloc(idx_limit, GFP_KERNEL);
4047 		if (!d->rmid_busy_llc)
4048 			return -ENOMEM;
4049 	}
4050 	if (is_mbm_total_enabled()) {
4051 		tsize = sizeof(*d->mbm_total);
4052 		d->mbm_total = kcalloc(idx_limit, tsize, GFP_KERNEL);
4053 		if (!d->mbm_total) {
4054 			bitmap_free(d->rmid_busy_llc);
4055 			return -ENOMEM;
4056 		}
4057 	}
4058 	if (is_mbm_local_enabled()) {
4059 		tsize = sizeof(*d->mbm_local);
4060 		d->mbm_local = kcalloc(idx_limit, tsize, GFP_KERNEL);
4061 		if (!d->mbm_local) {
4062 			bitmap_free(d->rmid_busy_llc);
4063 			kfree(d->mbm_total);
4064 			return -ENOMEM;
4065 		}
4066 	}
4067 
4068 	return 0;
4069 }
4070 
resctrl_online_ctrl_domain(struct rdt_resource * r,struct rdt_ctrl_domain * d)4071 int resctrl_online_ctrl_domain(struct rdt_resource *r, struct rdt_ctrl_domain *d)
4072 {
4073 	int err = 0;
4074 
4075 	mutex_lock(&rdtgroup_mutex);
4076 
4077 	if (supports_mba_mbps() && r->rid == RDT_RESOURCE_MBA) {
4078 		/* RDT_RESOURCE_MBA is never mon_capable */
4079 		err = mba_sc_domain_allocate(r, d);
4080 	}
4081 
4082 	mutex_unlock(&rdtgroup_mutex);
4083 
4084 	return err;
4085 }
4086 
resctrl_online_mon_domain(struct rdt_resource * r,struct rdt_mon_domain * d)4087 int resctrl_online_mon_domain(struct rdt_resource *r, struct rdt_mon_domain *d)
4088 {
4089 	int err;
4090 
4091 	mutex_lock(&rdtgroup_mutex);
4092 
4093 	err = domain_setup_mon_state(r, d);
4094 	if (err)
4095 		goto out_unlock;
4096 
4097 	if (is_mbm_enabled()) {
4098 		INIT_DELAYED_WORK(&d->mbm_over, mbm_handle_overflow);
4099 		mbm_setup_overflow_handler(d, MBM_OVERFLOW_INTERVAL,
4100 					   RESCTRL_PICK_ANY_CPU);
4101 	}
4102 
4103 	if (is_llc_occupancy_enabled())
4104 		INIT_DELAYED_WORK(&d->cqm_limbo, cqm_handle_limbo);
4105 
4106 	/*
4107 	 * If the filesystem is not mounted then only the default resource group
4108 	 * exists. Creation of its directories is deferred until mount time
4109 	 * by rdt_get_tree() calling mkdir_mondata_all().
4110 	 * If resctrl is mounted, add per domain monitor data directories.
4111 	 */
4112 	if (resctrl_mounted && resctrl_arch_mon_capable())
4113 		mkdir_mondata_subdir_allrdtgrp(r, d);
4114 
4115 out_unlock:
4116 	mutex_unlock(&rdtgroup_mutex);
4117 
4118 	return err;
4119 }
4120 
resctrl_online_cpu(unsigned int cpu)4121 void resctrl_online_cpu(unsigned int cpu)
4122 {
4123 	mutex_lock(&rdtgroup_mutex);
4124 	/* The CPU is set in default rdtgroup after online. */
4125 	cpumask_set_cpu(cpu, &rdtgroup_default.cpu_mask);
4126 	mutex_unlock(&rdtgroup_mutex);
4127 }
4128 
clear_childcpus(struct rdtgroup * r,unsigned int cpu)4129 static void clear_childcpus(struct rdtgroup *r, unsigned int cpu)
4130 {
4131 	struct rdtgroup *cr;
4132 
4133 	list_for_each_entry(cr, &r->mon.crdtgrp_list, mon.crdtgrp_list) {
4134 		if (cpumask_test_and_clear_cpu(cpu, &cr->cpu_mask))
4135 			break;
4136 	}
4137 }
4138 
resctrl_offline_cpu(unsigned int cpu)4139 void resctrl_offline_cpu(unsigned int cpu)
4140 {
4141 	struct rdt_resource *l3 = &rdt_resources_all[RDT_RESOURCE_L3].r_resctrl;
4142 	struct rdt_mon_domain *d;
4143 	struct rdtgroup *rdtgrp;
4144 
4145 	mutex_lock(&rdtgroup_mutex);
4146 	list_for_each_entry(rdtgrp, &rdt_all_groups, rdtgroup_list) {
4147 		if (cpumask_test_and_clear_cpu(cpu, &rdtgrp->cpu_mask)) {
4148 			clear_childcpus(rdtgrp, cpu);
4149 			break;
4150 		}
4151 	}
4152 
4153 	if (!l3->mon_capable)
4154 		goto out_unlock;
4155 
4156 	d = get_mon_domain_from_cpu(cpu, l3);
4157 	if (d) {
4158 		if (is_mbm_enabled() && cpu == d->mbm_work_cpu) {
4159 			cancel_delayed_work(&d->mbm_over);
4160 			mbm_setup_overflow_handler(d, 0, cpu);
4161 		}
4162 		if (is_llc_occupancy_enabled() && cpu == d->cqm_work_cpu &&
4163 		    has_busy_rmid(d)) {
4164 			cancel_delayed_work(&d->cqm_limbo);
4165 			cqm_setup_limbo_handler(d, 0, cpu);
4166 		}
4167 	}
4168 
4169 out_unlock:
4170 	mutex_unlock(&rdtgroup_mutex);
4171 }
4172 
4173 /*
4174  * rdtgroup_init - rdtgroup initialization
4175  *
4176  * Setup resctrl file system including set up root, create mount point,
4177  * register rdtgroup filesystem, and initialize files under root directory.
4178  *
4179  * Return: 0 on success or -errno
4180  */
rdtgroup_init(void)4181 int __init rdtgroup_init(void)
4182 {
4183 	int ret = 0;
4184 
4185 	seq_buf_init(&last_cmd_status, last_cmd_status_buf,
4186 		     sizeof(last_cmd_status_buf));
4187 
4188 	rdtgroup_setup_default();
4189 
4190 	ret = sysfs_create_mount_point(fs_kobj, "resctrl");
4191 	if (ret)
4192 		return ret;
4193 
4194 	ret = register_filesystem(&rdt_fs_type);
4195 	if (ret)
4196 		goto cleanup_mountpoint;
4197 
4198 	/*
4199 	 * Adding the resctrl debugfs directory here may not be ideal since
4200 	 * it would let the resctrl debugfs directory appear on the debugfs
4201 	 * filesystem before the resctrl filesystem is mounted.
4202 	 * It may also be ok since that would enable debugging of RDT before
4203 	 * resctrl is mounted.
4204 	 * The reason why the debugfs directory is created here and not in
4205 	 * rdt_get_tree() is because rdt_get_tree() takes rdtgroup_mutex and
4206 	 * during the debugfs directory creation also &sb->s_type->i_mutex_key
4207 	 * (the lockdep class of inode->i_rwsem). Other filesystem
4208 	 * interactions (eg. SyS_getdents) have the lock ordering:
4209 	 * &sb->s_type->i_mutex_key --> &mm->mmap_lock
4210 	 * During mmap(), called with &mm->mmap_lock, the rdtgroup_mutex
4211 	 * is taken, thus creating dependency:
4212 	 * &mm->mmap_lock --> rdtgroup_mutex for the latter that can cause
4213 	 * issues considering the other two lock dependencies.
4214 	 * By creating the debugfs directory here we avoid a dependency
4215 	 * that may cause deadlock (even though file operations cannot
4216 	 * occur until the filesystem is mounted, but I do not know how to
4217 	 * tell lockdep that).
4218 	 */
4219 	debugfs_resctrl = debugfs_create_dir("resctrl", NULL);
4220 
4221 	return 0;
4222 
4223 cleanup_mountpoint:
4224 	sysfs_remove_mount_point(fs_kobj, "resctrl");
4225 
4226 	return ret;
4227 }
4228 
rdtgroup_exit(void)4229 void __exit rdtgroup_exit(void)
4230 {
4231 	debugfs_remove_recursive(debugfs_resctrl);
4232 	unregister_filesystem(&rdt_fs_type);
4233 	sysfs_remove_mount_point(fs_kobj, "resctrl");
4234 }
4235