• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * handle transition of Linux booting another kernel
4  * Copyright (C) 2002-2005 Eric Biederman  <ebiederm@xmission.com>
5  */
6 
7 #define pr_fmt(fmt)	"kexec: " fmt
8 
9 #include <linux/mm.h>
10 #include <linux/kexec.h>
11 #include <linux/string.h>
12 #include <linux/gfp.h>
13 #include <linux/reboot.h>
14 #include <linux/numa.h>
15 #include <linux/ftrace.h>
16 #include <linux/io.h>
17 #include <linux/suspend.h>
18 #include <linux/vmalloc.h>
19 #include <linux/efi.h>
20 #include <linux/cc_platform.h>
21 
22 #include <asm/init.h>
23 #include <asm/tlbflush.h>
24 #include <asm/mmu_context.h>
25 #include <asm/io_apic.h>
26 #include <asm/debugreg.h>
27 #include <asm/kexec-bzimage64.h>
28 #include <asm/setup.h>
29 #include <asm/set_memory.h>
30 #include <asm/cpu.h>
31 #include <asm/efi.h>
32 
33 #ifdef CONFIG_ACPI
34 /*
35  * Used while adding mapping for ACPI tables.
36  * Can be reused when other iomem regions need be mapped
37  */
38 struct init_pgtable_data {
39 	struct x86_mapping_info *info;
40 	pgd_t *level4p;
41 };
42 
mem_region_callback(struct resource * res,void * arg)43 static int mem_region_callback(struct resource *res, void *arg)
44 {
45 	struct init_pgtable_data *data = arg;
46 
47 	return kernel_ident_mapping_init(data->info, data->level4p,
48 					 res->start, res->end + 1);
49 }
50 
51 static int
map_acpi_tables(struct x86_mapping_info * info,pgd_t * level4p)52 map_acpi_tables(struct x86_mapping_info *info, pgd_t *level4p)
53 {
54 	struct init_pgtable_data data;
55 	unsigned long flags;
56 	int ret;
57 
58 	data.info = info;
59 	data.level4p = level4p;
60 	flags = IORESOURCE_MEM | IORESOURCE_BUSY;
61 
62 	ret = walk_iomem_res_desc(IORES_DESC_ACPI_TABLES, flags, 0, -1,
63 				  &data, mem_region_callback);
64 	if (ret && ret != -EINVAL)
65 		return ret;
66 
67 	/* ACPI tables could be located in ACPI Non-volatile Storage region */
68 	ret = walk_iomem_res_desc(IORES_DESC_ACPI_NV_STORAGE, flags, 0, -1,
69 				  &data, mem_region_callback);
70 	if (ret && ret != -EINVAL)
71 		return ret;
72 
73 	return 0;
74 }
75 #else
map_acpi_tables(struct x86_mapping_info * info,pgd_t * level4p)76 static int map_acpi_tables(struct x86_mapping_info *info, pgd_t *level4p) { return 0; }
77 #endif
78 
79 #ifdef CONFIG_KEXEC_FILE
80 const struct kexec_file_ops * const kexec_file_loaders[] = {
81 		&kexec_bzImage64_ops,
82 		NULL
83 };
84 #endif
85 
86 static int
map_efi_systab(struct x86_mapping_info * info,pgd_t * level4p)87 map_efi_systab(struct x86_mapping_info *info, pgd_t *level4p)
88 {
89 #ifdef CONFIG_EFI
90 	unsigned long mstart, mend;
91 	void *kaddr;
92 	int ret;
93 
94 	if (!efi_enabled(EFI_BOOT))
95 		return 0;
96 
97 	mstart = (boot_params.efi_info.efi_systab |
98 			((u64)boot_params.efi_info.efi_systab_hi<<32));
99 
100 	if (efi_enabled(EFI_64BIT))
101 		mend = mstart + sizeof(efi_system_table_64_t);
102 	else
103 		mend = mstart + sizeof(efi_system_table_32_t);
104 
105 	if (!mstart)
106 		return 0;
107 
108 	ret = kernel_ident_mapping_init(info, level4p, mstart, mend);
109 	if (ret)
110 		return ret;
111 
112 	kaddr = memremap(mstart, mend - mstart, MEMREMAP_WB);
113 	if (!kaddr) {
114 		pr_err("Could not map UEFI system table\n");
115 		return -ENOMEM;
116 	}
117 
118 	mstart = efi_config_table;
119 
120 	if (efi_enabled(EFI_64BIT)) {
121 		efi_system_table_64_t *stbl = (efi_system_table_64_t *)kaddr;
122 
123 		mend = mstart + sizeof(efi_config_table_64_t) * stbl->nr_tables;
124 	} else {
125 		efi_system_table_32_t *stbl = (efi_system_table_32_t *)kaddr;
126 
127 		mend = mstart + sizeof(efi_config_table_32_t) * stbl->nr_tables;
128 	}
129 
130 	memunmap(kaddr);
131 
132 	return kernel_ident_mapping_init(info, level4p, mstart, mend);
133 #endif
134 	return 0;
135 }
136 
free_transition_pgtable(struct kimage * image)137 static void free_transition_pgtable(struct kimage *image)
138 {
139 	free_page((unsigned long)image->arch.p4d);
140 	image->arch.p4d = NULL;
141 	free_page((unsigned long)image->arch.pud);
142 	image->arch.pud = NULL;
143 	free_page((unsigned long)image->arch.pmd);
144 	image->arch.pmd = NULL;
145 	free_page((unsigned long)image->arch.pte);
146 	image->arch.pte = NULL;
147 }
148 
init_transition_pgtable(struct kimage * image,pgd_t * pgd,unsigned long control_page)149 static int init_transition_pgtable(struct kimage *image, pgd_t *pgd,
150 				   unsigned long control_page)
151 {
152 	pgprot_t prot = PAGE_KERNEL_EXEC_NOENC;
153 	unsigned long vaddr, paddr;
154 	int result = -ENOMEM;
155 	p4d_t *p4d;
156 	pud_t *pud;
157 	pmd_t *pmd;
158 	pte_t *pte;
159 
160 	vaddr = (unsigned long)relocate_kernel;
161 	paddr = control_page;
162 	pgd += pgd_index(vaddr);
163 	if (!pgd_present(*pgd)) {
164 		p4d = (p4d_t *)get_zeroed_page(GFP_KERNEL);
165 		if (!p4d)
166 			goto err;
167 		image->arch.p4d = p4d;
168 		set_pgd(pgd, __pgd(__pa(p4d) | _KERNPG_TABLE));
169 	}
170 	p4d = p4d_offset(pgd, vaddr);
171 	if (!p4d_present(*p4d)) {
172 		pud = (pud_t *)get_zeroed_page(GFP_KERNEL);
173 		if (!pud)
174 			goto err;
175 		image->arch.pud = pud;
176 		set_p4d(p4d, __p4d(__pa(pud) | _KERNPG_TABLE));
177 	}
178 	pud = pud_offset(p4d, vaddr);
179 	if (!pud_present(*pud)) {
180 		pmd = (pmd_t *)get_zeroed_page(GFP_KERNEL);
181 		if (!pmd)
182 			goto err;
183 		image->arch.pmd = pmd;
184 		set_pud(pud, __pud(__pa(pmd) | _KERNPG_TABLE));
185 	}
186 	pmd = pmd_offset(pud, vaddr);
187 	if (!pmd_present(*pmd)) {
188 		pte = (pte_t *)get_zeroed_page(GFP_KERNEL);
189 		if (!pte)
190 			goto err;
191 		image->arch.pte = pte;
192 		set_pmd(pmd, __pmd(__pa(pte) | _KERNPG_TABLE));
193 	}
194 	pte = pte_offset_kernel(pmd, vaddr);
195 
196 	if (cc_platform_has(CC_ATTR_GUEST_MEM_ENCRYPT))
197 		prot = PAGE_KERNEL_EXEC;
198 
199 	set_pte(pte, pfn_pte(paddr >> PAGE_SHIFT, prot));
200 	return 0;
201 err:
202 	return result;
203 }
204 
alloc_pgt_page(void * data)205 static void *alloc_pgt_page(void *data)
206 {
207 	struct kimage *image = (struct kimage *)data;
208 	struct page *page;
209 	void *p = NULL;
210 
211 	page = kimage_alloc_control_pages(image, 0);
212 	if (page) {
213 		p = page_address(page);
214 		clear_page(p);
215 	}
216 
217 	return p;
218 }
219 
init_pgtable(struct kimage * image,unsigned long control_page)220 static int init_pgtable(struct kimage *image, unsigned long control_page)
221 {
222 	struct x86_mapping_info info = {
223 		.alloc_pgt_page	= alloc_pgt_page,
224 		.context	= image,
225 		.page_flag	= __PAGE_KERNEL_LARGE_EXEC,
226 		.kernpg_flag	= _KERNPG_TABLE_NOENC,
227 	};
228 	unsigned long mstart, mend;
229 	int result;
230 	int i;
231 
232 	image->arch.pgd = alloc_pgt_page(image);
233 	if (!image->arch.pgd)
234 		return -ENOMEM;
235 
236 	if (cc_platform_has(CC_ATTR_GUEST_MEM_ENCRYPT)) {
237 		info.page_flag   |= _PAGE_ENC;
238 		info.kernpg_flag |= _PAGE_ENC;
239 	}
240 
241 	if (direct_gbpages)
242 		info.direct_gbpages = true;
243 
244 	for (i = 0; i < nr_pfn_mapped; i++) {
245 		mstart = pfn_mapped[i].start << PAGE_SHIFT;
246 		mend   = pfn_mapped[i].end << PAGE_SHIFT;
247 
248 		result = kernel_ident_mapping_init(&info, image->arch.pgd,
249 						   mstart, mend);
250 		if (result)
251 			return result;
252 	}
253 
254 	/*
255 	 * segments's mem ranges could be outside 0 ~ max_pfn,
256 	 * for example when jump back to original kernel from kexeced kernel.
257 	 * or first kernel is booted with user mem map, and second kernel
258 	 * could be loaded out of that range.
259 	 */
260 	for (i = 0; i < image->nr_segments; i++) {
261 		mstart = image->segment[i].mem;
262 		mend   = mstart + image->segment[i].memsz;
263 
264 		result = kernel_ident_mapping_init(&info, image->arch.pgd,
265 						   mstart, mend);
266 
267 		if (result)
268 			return result;
269 	}
270 
271 	/*
272 	 * Prepare EFI systab and ACPI tables for kexec kernel since they are
273 	 * not covered by pfn_mapped.
274 	 */
275 	result = map_efi_systab(&info, image->arch.pgd);
276 	if (result)
277 		return result;
278 
279 	result = map_acpi_tables(&info, image->arch.pgd);
280 	if (result)
281 		return result;
282 
283 	/*
284 	 * This must be last because the intermediate page table pages it
285 	 * allocates will not be control pages and may overlap the image.
286 	 */
287 	return init_transition_pgtable(image, image->arch.pgd, control_page);
288 }
289 
load_segments(void)290 static void load_segments(void)
291 {
292 	__asm__ __volatile__ (
293 		"\tmovl %0,%%ds\n"
294 		"\tmovl %0,%%es\n"
295 		"\tmovl %0,%%ss\n"
296 		"\tmovl %0,%%fs\n"
297 		"\tmovl %0,%%gs\n"
298 		: : "a" (__KERNEL_DS) : "memory"
299 		);
300 }
301 
machine_kexec_prepare(struct kimage * image)302 int machine_kexec_prepare(struct kimage *image)
303 {
304 	unsigned long control_page;
305 	int result;
306 
307 	/* Calculate the offsets */
308 	control_page = page_to_pfn(image->control_code_page) << PAGE_SHIFT;
309 
310 	/* Setup the identity mapped 64bit page table */
311 	result = init_pgtable(image, control_page);
312 	if (result)
313 		return result;
314 
315 	return 0;
316 }
317 
machine_kexec_cleanup(struct kimage * image)318 void machine_kexec_cleanup(struct kimage *image)
319 {
320 	free_transition_pgtable(image);
321 }
322 
323 /*
324  * Do not allocate memory (or fail in any way) in machine_kexec().
325  * We are past the point of no return, committed to rebooting now.
326  */
machine_kexec(struct kimage * image)327 void machine_kexec(struct kimage *image)
328 {
329 	unsigned long page_list[PAGES_NR];
330 	unsigned int host_mem_enc_active;
331 	int save_ftrace_enabled;
332 	void *control_page;
333 
334 	/*
335 	 * This must be done before load_segments() since if call depth tracking
336 	 * is used then GS must be valid to make any function calls.
337 	 */
338 	host_mem_enc_active = cc_platform_has(CC_ATTR_HOST_MEM_ENCRYPT);
339 
340 #ifdef CONFIG_KEXEC_JUMP
341 	if (image->preserve_context)
342 		save_processor_state();
343 #endif
344 
345 	save_ftrace_enabled = __ftrace_enabled_save();
346 
347 	/* Interrupts aren't acceptable while we reboot */
348 	local_irq_disable();
349 	hw_breakpoint_disable();
350 	cet_disable();
351 
352 	if (image->preserve_context) {
353 #ifdef CONFIG_X86_IO_APIC
354 		/*
355 		 * We need to put APICs in legacy mode so that we can
356 		 * get timer interrupts in second kernel. kexec/kdump
357 		 * paths already have calls to restore_boot_irq_mode()
358 		 * in one form or other. kexec jump path also need one.
359 		 */
360 		clear_IO_APIC();
361 		restore_boot_irq_mode();
362 #endif
363 	}
364 
365 	control_page = page_address(image->control_code_page);
366 	__memcpy(control_page, relocate_kernel, KEXEC_CONTROL_CODE_MAX_SIZE);
367 
368 	page_list[PA_CONTROL_PAGE] = virt_to_phys(control_page);
369 	page_list[VA_CONTROL_PAGE] = (unsigned long)control_page;
370 	page_list[PA_TABLE_PAGE] = (unsigned long)__pa(image->arch.pgd);
371 
372 	if (image->type == KEXEC_TYPE_DEFAULT)
373 		page_list[PA_SWAP_PAGE] = (page_to_pfn(image->swap_page)
374 						<< PAGE_SHIFT);
375 
376 	/*
377 	 * The segment registers are funny things, they have both a
378 	 * visible and an invisible part.  Whenever the visible part is
379 	 * set to a specific selector, the invisible part is loaded
380 	 * with from a table in memory.  At no other time is the
381 	 * descriptor table in memory accessed.
382 	 *
383 	 * I take advantage of this here by force loading the
384 	 * segments, before I zap the gdt with an invalid value.
385 	 */
386 	load_segments();
387 	/*
388 	 * The gdt & idt are now invalid.
389 	 * If you want to load them you must set up your own idt & gdt.
390 	 */
391 	native_idt_invalidate();
392 	native_gdt_invalidate();
393 
394 	/* now call it */
395 	image->start = relocate_kernel((unsigned long)image->head,
396 				       (unsigned long)page_list,
397 				       image->start,
398 				       image->preserve_context,
399 				       host_mem_enc_active);
400 
401 #ifdef CONFIG_KEXEC_JUMP
402 	if (image->preserve_context)
403 		restore_processor_state();
404 #endif
405 
406 	__ftrace_enabled_restore(save_ftrace_enabled);
407 }
408 
409 /* arch-dependent functionality related to kexec file-based syscall */
410 
411 #ifdef CONFIG_KEXEC_FILE
412 /*
413  * Apply purgatory relocations.
414  *
415  * @pi:		Purgatory to be relocated.
416  * @section:	Section relocations applying to.
417  * @relsec:	Section containing RELAs.
418  * @symtabsec:	Corresponding symtab.
419  *
420  * TODO: Some of the code belongs to generic code. Move that in kexec.c.
421  */
arch_kexec_apply_relocations_add(struct purgatory_info * pi,Elf_Shdr * section,const Elf_Shdr * relsec,const Elf_Shdr * symtabsec)422 int arch_kexec_apply_relocations_add(struct purgatory_info *pi,
423 				     Elf_Shdr *section, const Elf_Shdr *relsec,
424 				     const Elf_Shdr *symtabsec)
425 {
426 	unsigned int i;
427 	Elf64_Rela *rel;
428 	Elf64_Sym *sym;
429 	void *location;
430 	unsigned long address, sec_base, value;
431 	const char *strtab, *name, *shstrtab;
432 	const Elf_Shdr *sechdrs;
433 
434 	/* String & section header string table */
435 	sechdrs = (void *)pi->ehdr + pi->ehdr->e_shoff;
436 	strtab = (char *)pi->ehdr + sechdrs[symtabsec->sh_link].sh_offset;
437 	shstrtab = (char *)pi->ehdr + sechdrs[pi->ehdr->e_shstrndx].sh_offset;
438 
439 	rel = (void *)pi->ehdr + relsec->sh_offset;
440 
441 	pr_debug("Applying relocate section %s to %u\n",
442 		 shstrtab + relsec->sh_name, relsec->sh_info);
443 
444 	for (i = 0; i < relsec->sh_size / sizeof(*rel); i++) {
445 
446 		/*
447 		 * rel[i].r_offset contains byte offset from beginning
448 		 * of section to the storage unit affected.
449 		 *
450 		 * This is location to update. This is temporary buffer
451 		 * where section is currently loaded. This will finally be
452 		 * loaded to a different address later, pointed to by
453 		 * ->sh_addr. kexec takes care of moving it
454 		 *  (kexec_load_segment()).
455 		 */
456 		location = pi->purgatory_buf;
457 		location += section->sh_offset;
458 		location += rel[i].r_offset;
459 
460 		/* Final address of the location */
461 		address = section->sh_addr + rel[i].r_offset;
462 
463 		/*
464 		 * rel[i].r_info contains information about symbol table index
465 		 * w.r.t which relocation must be made and type of relocation
466 		 * to apply. ELF64_R_SYM() and ELF64_R_TYPE() macros get
467 		 * these respectively.
468 		 */
469 		sym = (void *)pi->ehdr + symtabsec->sh_offset;
470 		sym += ELF64_R_SYM(rel[i].r_info);
471 
472 		if (sym->st_name)
473 			name = strtab + sym->st_name;
474 		else
475 			name = shstrtab + sechdrs[sym->st_shndx].sh_name;
476 
477 		pr_debug("Symbol: %s info: %02x shndx: %02x value=%llx size: %llx\n",
478 			 name, sym->st_info, sym->st_shndx, sym->st_value,
479 			 sym->st_size);
480 
481 		if (sym->st_shndx == SHN_UNDEF) {
482 			pr_err("Undefined symbol: %s\n", name);
483 			return -ENOEXEC;
484 		}
485 
486 		if (sym->st_shndx == SHN_COMMON) {
487 			pr_err("symbol '%s' in common section\n", name);
488 			return -ENOEXEC;
489 		}
490 
491 		if (sym->st_shndx == SHN_ABS)
492 			sec_base = 0;
493 		else if (sym->st_shndx >= pi->ehdr->e_shnum) {
494 			pr_err("Invalid section %d for symbol %s\n",
495 			       sym->st_shndx, name);
496 			return -ENOEXEC;
497 		} else
498 			sec_base = pi->sechdrs[sym->st_shndx].sh_addr;
499 
500 		value = sym->st_value;
501 		value += sec_base;
502 		value += rel[i].r_addend;
503 
504 		switch (ELF64_R_TYPE(rel[i].r_info)) {
505 		case R_X86_64_NONE:
506 			break;
507 		case R_X86_64_64:
508 			*(u64 *)location = value;
509 			break;
510 		case R_X86_64_32:
511 			*(u32 *)location = value;
512 			if (value != *(u32 *)location)
513 				goto overflow;
514 			break;
515 		case R_X86_64_32S:
516 			*(s32 *)location = value;
517 			if ((s64)value != *(s32 *)location)
518 				goto overflow;
519 			break;
520 		case R_X86_64_PC32:
521 		case R_X86_64_PLT32:
522 			value -= (u64)address;
523 			*(u32 *)location = value;
524 			break;
525 		default:
526 			pr_err("Unknown rela relocation: %llu\n",
527 			       ELF64_R_TYPE(rel[i].r_info));
528 			return -ENOEXEC;
529 		}
530 	}
531 	return 0;
532 
533 overflow:
534 	pr_err("Overflow in relocation type %d value 0x%lx\n",
535 	       (int)ELF64_R_TYPE(rel[i].r_info), value);
536 	return -ENOEXEC;
537 }
538 
arch_kimage_file_post_load_cleanup(struct kimage * image)539 int arch_kimage_file_post_load_cleanup(struct kimage *image)
540 {
541 	vfree(image->elf_headers);
542 	image->elf_headers = NULL;
543 	image->elf_headers_sz = 0;
544 
545 	return kexec_image_post_load_cleanup_default(image);
546 }
547 #endif /* CONFIG_KEXEC_FILE */
548 
549 #ifdef CONFIG_CRASH_DUMP
550 
551 static int
kexec_mark_range(unsigned long start,unsigned long end,bool protect)552 kexec_mark_range(unsigned long start, unsigned long end, bool protect)
553 {
554 	struct page *page;
555 	unsigned int nr_pages;
556 
557 	/*
558 	 * For physical range: [start, end]. We must skip the unassigned
559 	 * crashk resource with zero-valued "end" member.
560 	 */
561 	if (!end || start > end)
562 		return 0;
563 
564 	page = pfn_to_page(start >> PAGE_SHIFT);
565 	nr_pages = (end >> PAGE_SHIFT) - (start >> PAGE_SHIFT) + 1;
566 	if (protect)
567 		return set_pages_ro(page, nr_pages);
568 	else
569 		return set_pages_rw(page, nr_pages);
570 }
571 
kexec_mark_crashkres(bool protect)572 static void kexec_mark_crashkres(bool protect)
573 {
574 	unsigned long control;
575 
576 	kexec_mark_range(crashk_low_res.start, crashk_low_res.end, protect);
577 
578 	/* Don't touch the control code page used in crash_kexec().*/
579 	control = PFN_PHYS(page_to_pfn(kexec_crash_image->control_code_page));
580 	kexec_mark_range(crashk_res.start, control - 1, protect);
581 	control += KEXEC_CONTROL_PAGE_SIZE;
582 	kexec_mark_range(control, crashk_res.end, protect);
583 }
584 
arch_kexec_protect_crashkres(void)585 void arch_kexec_protect_crashkres(void)
586 {
587 	kexec_mark_crashkres(true);
588 }
589 
arch_kexec_unprotect_crashkres(void)590 void arch_kexec_unprotect_crashkres(void)
591 {
592 	kexec_mark_crashkres(false);
593 }
594 #endif
595 
596 /*
597  * During a traditional boot under SME, SME will encrypt the kernel,
598  * so the SME kexec kernel also needs to be un-encrypted in order to
599  * replicate a normal SME boot.
600  *
601  * During a traditional boot under SEV, the kernel has already been
602  * loaded encrypted, so the SEV kexec kernel needs to be encrypted in
603  * order to replicate a normal SEV boot.
604  */
arch_kexec_post_alloc_pages(void * vaddr,unsigned int pages,gfp_t gfp)605 int arch_kexec_post_alloc_pages(void *vaddr, unsigned int pages, gfp_t gfp)
606 {
607 	if (!cc_platform_has(CC_ATTR_HOST_MEM_ENCRYPT))
608 		return 0;
609 
610 	/*
611 	 * If host memory encryption is active we need to be sure that kexec
612 	 * pages are not encrypted because when we boot to the new kernel the
613 	 * pages won't be accessed encrypted (initially).
614 	 */
615 	return set_memory_decrypted((unsigned long)vaddr, pages);
616 }
617 
arch_kexec_pre_free_pages(void * vaddr,unsigned int pages)618 void arch_kexec_pre_free_pages(void *vaddr, unsigned int pages)
619 {
620 	if (!cc_platform_has(CC_ATTR_HOST_MEM_ENCRYPT))
621 		return;
622 
623 	/*
624 	 * If host memory encryption is active we need to reset the pages back
625 	 * to being an encrypted mapping before freeing them.
626 	 */
627 	set_memory_encrypted((unsigned long)vaddr, pages);
628 }
629