• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  *  Copyright (C) 1991, 1992  Linus Torvalds
3  *  Copyright (C) 2000, 2001, 2002 Andi Kleen, SuSE Labs
4  *
5  *  Pentium III FXSR, SSE support
6  *	Gareth Hughes <gareth@valinux.com>, May 2000
7  */
8 
9 /*
10  * Handle hardware traps and faults.
11  */
12 
13 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
14 
15 #include <linux/context_tracking.h>
16 #include <linux/interrupt.h>
17 #include <linux/kallsyms.h>
18 #include <linux/kmsan.h>
19 #include <linux/spinlock.h>
20 #include <linux/kprobes.h>
21 #include <linux/uaccess.h>
22 #include <linux/kdebug.h>
23 #include <linux/kgdb.h>
24 #include <linux/kernel.h>
25 #include <linux/export.h>
26 #include <linux/ptrace.h>
27 #include <linux/uprobes.h>
28 #include <linux/string.h>
29 #include <linux/delay.h>
30 #include <linux/errno.h>
31 #include <linux/kexec.h>
32 #include <linux/sched.h>
33 #include <linux/sched/task_stack.h>
34 #include <linux/timer.h>
35 #include <linux/init.h>
36 #include <linux/bug.h>
37 #include <linux/nmi.h>
38 #include <linux/mm.h>
39 #include <linux/smp.h>
40 #include <linux/cpu.h>
41 #include <linux/io.h>
42 #include <linux/hardirq.h>
43 #include <linux/atomic.h>
44 #include <linux/iommu.h>
45 #include <linux/ubsan.h>
46 
47 #include <asm/stacktrace.h>
48 #include <asm/processor.h>
49 #include <asm/debugreg.h>
50 #include <asm/realmode.h>
51 #include <asm/text-patching.h>
52 #include <asm/ftrace.h>
53 #include <asm/traps.h>
54 #include <asm/desc.h>
55 #include <asm/fred.h>
56 #include <asm/fpu/api.h>
57 #include <asm/cpu.h>
58 #include <asm/cpu_entry_area.h>
59 #include <asm/mce.h>
60 #include <asm/fixmap.h>
61 #include <asm/mach_traps.h>
62 #include <asm/alternative.h>
63 #include <asm/fpu/xstate.h>
64 #include <asm/vm86.h>
65 #include <asm/umip.h>
66 #include <asm/insn.h>
67 #include <asm/insn-eval.h>
68 #include <asm/vdso.h>
69 #include <asm/tdx.h>
70 #include <asm/cfi.h>
71 
72 #ifdef CONFIG_X86_64
73 #include <asm/x86_init.h>
74 #else
75 #include <asm/processor-flags.h>
76 #include <asm/setup.h>
77 #endif
78 
79 #include <asm/proto.h>
80 
81 DECLARE_BITMAP(system_vectors, NR_VECTORS);
82 
is_valid_bugaddr(unsigned long addr)83 __always_inline int is_valid_bugaddr(unsigned long addr)
84 {
85 	if (addr < TASK_SIZE_MAX)
86 		return 0;
87 
88 	/*
89 	 * We got #UD, if the text isn't readable we'd have gotten
90 	 * a different exception.
91 	 */
92 	return *(unsigned short *)addr == INSN_UD2;
93 }
94 
95 /*
96  * Check for UD1 or UD2, accounting for Address Size Override Prefixes.
97  * If it's a UD1, further decode to determine its use:
98  *
99  * UBSan{0}:     67 0f b9 00             ud1    (%eax),%eax
100  * UBSan{10}:    67 0f b9 40 10          ud1    0x10(%eax),%eax
101  * static_call:  0f b9 cc                ud1    %esp,%ecx
102  *
103  * Notably UBSAN uses EAX, static_call uses ECX.
104  */
decode_bug(unsigned long addr,s32 * imm,int * len)105 __always_inline int decode_bug(unsigned long addr, s32 *imm, int *len)
106 {
107 	unsigned long start = addr;
108 	u8 v;
109 
110 	if (addr < TASK_SIZE_MAX)
111 		return BUG_NONE;
112 
113 	v = *(u8 *)(addr++);
114 	if (v == INSN_ASOP)
115 		v = *(u8 *)(addr++);
116 	if (v != OPCODE_ESCAPE)
117 		return BUG_NONE;
118 
119 	v = *(u8 *)(addr++);
120 	if (v == SECOND_BYTE_OPCODE_UD2) {
121 		*len = addr - start;
122 		return BUG_UD2;
123 	}
124 
125 	if (v != SECOND_BYTE_OPCODE_UD1)
126 		return BUG_NONE;
127 
128 	*imm = 0;
129 	v = *(u8 *)(addr++);		/* ModRM */
130 
131 	if (X86_MODRM_MOD(v) != 3 && X86_MODRM_RM(v) == 4)
132 		addr++;			/* SIB */
133 
134 	/* Decode immediate, if present */
135 	switch (X86_MODRM_MOD(v)) {
136 	case 0: if (X86_MODRM_RM(v) == 5)
137 			addr += 4; /* RIP + disp32 */
138 		break;
139 
140 	case 1: *imm = *(s8 *)addr;
141 		addr += 1;
142 		break;
143 
144 	case 2: *imm = *(s32 *)addr;
145 		addr += 4;
146 		break;
147 
148 	case 3: break;
149 	}
150 
151 	/* record instruction length */
152 	*len = addr - start;
153 
154 	if (X86_MODRM_REG(v) == 0)	/* EAX */
155 		return BUG_UD1_UBSAN;
156 
157 	return BUG_UD1;
158 }
159 
160 
161 static nokprobe_inline int
do_trap_no_signal(struct task_struct * tsk,int trapnr,const char * str,struct pt_regs * regs,long error_code)162 do_trap_no_signal(struct task_struct *tsk, int trapnr, const char *str,
163 		  struct pt_regs *regs,	long error_code)
164 {
165 	if (v8086_mode(regs)) {
166 		/*
167 		 * Traps 0, 1, 3, 4, and 5 should be forwarded to vm86.
168 		 * On nmi (interrupt 2), do_trap should not be called.
169 		 */
170 		if (trapnr < X86_TRAP_UD) {
171 			if (!handle_vm86_trap((struct kernel_vm86_regs *) regs,
172 						error_code, trapnr))
173 				return 0;
174 		}
175 	} else if (!user_mode(regs)) {
176 		if (fixup_exception(regs, trapnr, error_code, 0))
177 			return 0;
178 
179 		tsk->thread.error_code = error_code;
180 		tsk->thread.trap_nr = trapnr;
181 		die(str, regs, error_code);
182 	} else {
183 		if (fixup_vdso_exception(regs, trapnr, error_code, 0))
184 			return 0;
185 	}
186 
187 	/*
188 	 * We want error_code and trap_nr set for userspace faults and
189 	 * kernelspace faults which result in die(), but not
190 	 * kernelspace faults which are fixed up.  die() gives the
191 	 * process no chance to handle the signal and notice the
192 	 * kernel fault information, so that won't result in polluting
193 	 * the information about previously queued, but not yet
194 	 * delivered, faults.  See also exc_general_protection below.
195 	 */
196 	tsk->thread.error_code = error_code;
197 	tsk->thread.trap_nr = trapnr;
198 
199 	return -1;
200 }
201 
show_signal(struct task_struct * tsk,int signr,const char * type,const char * desc,struct pt_regs * regs,long error_code)202 static void show_signal(struct task_struct *tsk, int signr,
203 			const char *type, const char *desc,
204 			struct pt_regs *regs, long error_code)
205 {
206 	if (show_unhandled_signals && unhandled_signal(tsk, signr) &&
207 	    printk_ratelimit()) {
208 		pr_info("%s[%d] %s%s ip:%lx sp:%lx error:%lx",
209 			tsk->comm, task_pid_nr(tsk), type, desc,
210 			regs->ip, regs->sp, error_code);
211 		print_vma_addr(KERN_CONT " in ", regs->ip);
212 		pr_cont("\n");
213 	}
214 }
215 
216 static void
do_trap(int trapnr,int signr,char * str,struct pt_regs * regs,long error_code,int sicode,void __user * addr)217 do_trap(int trapnr, int signr, char *str, struct pt_regs *regs,
218 	long error_code, int sicode, void __user *addr)
219 {
220 	struct task_struct *tsk = current;
221 
222 	if (!do_trap_no_signal(tsk, trapnr, str, regs, error_code))
223 		return;
224 
225 	show_signal(tsk, signr, "trap ", str, regs, error_code);
226 
227 	if (!sicode)
228 		force_sig(signr);
229 	else
230 		force_sig_fault(signr, sicode, addr);
231 }
232 NOKPROBE_SYMBOL(do_trap);
233 
do_error_trap(struct pt_regs * regs,long error_code,char * str,unsigned long trapnr,int signr,int sicode,void __user * addr)234 static void do_error_trap(struct pt_regs *regs, long error_code, char *str,
235 	unsigned long trapnr, int signr, int sicode, void __user *addr)
236 {
237 	RCU_LOCKDEP_WARN(!rcu_is_watching(), "entry code didn't wake RCU");
238 
239 	if (notify_die(DIE_TRAP, str, regs, error_code, trapnr, signr) !=
240 			NOTIFY_STOP) {
241 		cond_local_irq_enable(regs);
242 		do_trap(trapnr, signr, str, regs, error_code, sicode, addr);
243 		cond_local_irq_disable(regs);
244 	}
245 }
246 
247 /*
248  * Posix requires to provide the address of the faulting instruction for
249  * SIGILL (#UD) and SIGFPE (#DE) in the si_addr member of siginfo_t.
250  *
251  * This address is usually regs->ip, but when an uprobe moved the code out
252  * of line then regs->ip points to the XOL code which would confuse
253  * anything which analyzes the fault address vs. the unmodified binary. If
254  * a trap happened in XOL code then uprobe maps regs->ip back to the
255  * original instruction address.
256  */
error_get_trap_addr(struct pt_regs * regs)257 static __always_inline void __user *error_get_trap_addr(struct pt_regs *regs)
258 {
259 	return (void __user *)uprobe_get_trap_addr(regs);
260 }
261 
DEFINE_IDTENTRY(exc_divide_error)262 DEFINE_IDTENTRY(exc_divide_error)
263 {
264 	do_error_trap(regs, 0, "divide error", X86_TRAP_DE, SIGFPE,
265 		      FPE_INTDIV, error_get_trap_addr(regs));
266 }
267 
DEFINE_IDTENTRY(exc_overflow)268 DEFINE_IDTENTRY(exc_overflow)
269 {
270 	do_error_trap(regs, 0, "overflow", X86_TRAP_OF, SIGSEGV, 0, NULL);
271 }
272 
273 #ifdef CONFIG_X86_F00F_BUG
handle_invalid_op(struct pt_regs * regs)274 void handle_invalid_op(struct pt_regs *regs)
275 #else
276 static inline void handle_invalid_op(struct pt_regs *regs)
277 #endif
278 {
279 	do_error_trap(regs, 0, "invalid opcode", X86_TRAP_UD, SIGILL,
280 		      ILL_ILLOPN, error_get_trap_addr(regs));
281 }
282 
handle_bug(struct pt_regs * regs)283 static noinstr bool handle_bug(struct pt_regs *regs)
284 {
285 	bool handled = false;
286 	int ud_type, ud_len;
287 	s32 ud_imm;
288 
289 	ud_type = decode_bug(regs->ip, &ud_imm, &ud_len);
290 	if (ud_type == BUG_NONE)
291 		return handled;
292 
293 	/*
294 	 * All lies, just get the WARN/BUG out.
295 	 */
296 	instrumentation_begin();
297 	/*
298 	 * Normally @regs are unpoisoned by irqentry_enter(), but handle_bug()
299 	 * is a rare case that uses @regs without passing them to
300 	 * irqentry_enter().
301 	 */
302 	kmsan_unpoison_entry_regs(regs);
303 	/*
304 	 * Since we're emulating a CALL with exceptions, restore the interrupt
305 	 * state to what it was at the exception site.
306 	 */
307 	if (regs->flags & X86_EFLAGS_IF)
308 		raw_local_irq_enable();
309 
310 	switch (ud_type) {
311 	case BUG_UD2:
312 		if (report_bug(regs->ip, regs) == BUG_TRAP_TYPE_WARN ||
313 		    handle_cfi_failure(regs) == BUG_TRAP_TYPE_WARN) {
314 			regs->ip += ud_len;
315 			handled = true;
316 		}
317 		break;
318 
319 	case BUG_UD1_UBSAN:
320 		if (IS_ENABLED(CONFIG_UBSAN_TRAP)) {
321 			pr_crit("%s at %pS\n",
322 				report_ubsan_failure(regs, ud_imm),
323 				(void *)regs->ip);
324 		}
325 		break;
326 
327 	default:
328 		break;
329 	}
330 
331 	if (regs->flags & X86_EFLAGS_IF)
332 		raw_local_irq_disable();
333 	instrumentation_end();
334 
335 	return handled;
336 }
337 
DEFINE_IDTENTRY_RAW(exc_invalid_op)338 DEFINE_IDTENTRY_RAW(exc_invalid_op)
339 {
340 	irqentry_state_t state;
341 
342 	/*
343 	 * We use UD2 as a short encoding for 'CALL __WARN', as such
344 	 * handle it before exception entry to avoid recursive WARN
345 	 * in case exception entry is the one triggering WARNs.
346 	 */
347 	if (!user_mode(regs) && handle_bug(regs))
348 		return;
349 
350 	state = irqentry_enter(regs);
351 	instrumentation_begin();
352 	handle_invalid_op(regs);
353 	instrumentation_end();
354 	irqentry_exit(regs, state);
355 }
356 
DEFINE_IDTENTRY(exc_coproc_segment_overrun)357 DEFINE_IDTENTRY(exc_coproc_segment_overrun)
358 {
359 	do_error_trap(regs, 0, "coprocessor segment overrun",
360 		      X86_TRAP_OLD_MF, SIGFPE, 0, NULL);
361 }
362 
DEFINE_IDTENTRY_ERRORCODE(exc_invalid_tss)363 DEFINE_IDTENTRY_ERRORCODE(exc_invalid_tss)
364 {
365 	do_error_trap(regs, error_code, "invalid TSS", X86_TRAP_TS, SIGSEGV,
366 		      0, NULL);
367 }
368 
DEFINE_IDTENTRY_ERRORCODE(exc_segment_not_present)369 DEFINE_IDTENTRY_ERRORCODE(exc_segment_not_present)
370 {
371 	do_error_trap(regs, error_code, "segment not present", X86_TRAP_NP,
372 		      SIGBUS, 0, NULL);
373 }
374 
DEFINE_IDTENTRY_ERRORCODE(exc_stack_segment)375 DEFINE_IDTENTRY_ERRORCODE(exc_stack_segment)
376 {
377 	do_error_trap(regs, error_code, "stack segment", X86_TRAP_SS, SIGBUS,
378 		      0, NULL);
379 }
380 
DEFINE_IDTENTRY_ERRORCODE(exc_alignment_check)381 DEFINE_IDTENTRY_ERRORCODE(exc_alignment_check)
382 {
383 	char *str = "alignment check";
384 
385 	if (notify_die(DIE_TRAP, str, regs, error_code, X86_TRAP_AC, SIGBUS) == NOTIFY_STOP)
386 		return;
387 
388 	if (!user_mode(regs))
389 		die("Split lock detected\n", regs, error_code);
390 
391 	local_irq_enable();
392 
393 	if (handle_user_split_lock(regs, error_code))
394 		goto out;
395 
396 	do_trap(X86_TRAP_AC, SIGBUS, "alignment check", regs,
397 		error_code, BUS_ADRALN, NULL);
398 
399 out:
400 	local_irq_disable();
401 }
402 
403 #ifdef CONFIG_VMAP_STACK
handle_stack_overflow(struct pt_regs * regs,unsigned long fault_address,struct stack_info * info)404 __visible void __noreturn handle_stack_overflow(struct pt_regs *regs,
405 						unsigned long fault_address,
406 						struct stack_info *info)
407 {
408 	const char *name = stack_type_name(info->type);
409 
410 	printk(KERN_EMERG "BUG: %s stack guard page was hit at %p (stack is %p..%p)\n",
411 	       name, (void *)fault_address, info->begin, info->end);
412 
413 	die("stack guard page", regs, 0);
414 
415 	/* Be absolutely certain we don't return. */
416 	panic("%s stack guard hit", name);
417 }
418 #endif
419 
420 /*
421  * Prevent the compiler and/or objtool from marking the !CONFIG_X86_ESPFIX64
422  * version of exc_double_fault() as noreturn.  Otherwise the noreturn mismatch
423  * between configs triggers objtool warnings.
424  *
425  * This is a temporary hack until we have compiler or plugin support for
426  * annotating noreturns.
427  */
428 #ifdef CONFIG_X86_ESPFIX64
429 #define always_true() true
430 #else
431 bool always_true(void);
always_true(void)432 bool __weak always_true(void) { return true; }
433 #endif
434 
435 /*
436  * Runs on an IST stack for x86_64 and on a special task stack for x86_32.
437  *
438  * On x86_64, this is more or less a normal kernel entry.  Notwithstanding the
439  * SDM's warnings about double faults being unrecoverable, returning works as
440  * expected.  Presumably what the SDM actually means is that the CPU may get
441  * the register state wrong on entry, so returning could be a bad idea.
442  *
443  * Various CPU engineers have promised that double faults due to an IRET fault
444  * while the stack is read-only are, in fact, recoverable.
445  *
446  * On x86_32, this is entered through a task gate, and regs are synthesized
447  * from the TSS.  Returning is, in principle, okay, but changes to regs will
448  * be lost.  If, for some reason, we need to return to a context with modified
449  * regs, the shim code could be adjusted to synchronize the registers.
450  *
451  * The 32bit #DF shim provides CR2 already as an argument. On 64bit it needs
452  * to be read before doing anything else.
453  */
DEFINE_IDTENTRY_DF(exc_double_fault)454 DEFINE_IDTENTRY_DF(exc_double_fault)
455 {
456 	static const char str[] = "double fault";
457 	struct task_struct *tsk = current;
458 
459 #ifdef CONFIG_VMAP_STACK
460 	unsigned long address = read_cr2();
461 	struct stack_info info;
462 #endif
463 
464 #ifdef CONFIG_X86_ESPFIX64
465 	extern unsigned char native_irq_return_iret[];
466 
467 	/*
468 	 * If IRET takes a non-IST fault on the espfix64 stack, then we
469 	 * end up promoting it to a doublefault.  In that case, take
470 	 * advantage of the fact that we're not using the normal (TSS.sp0)
471 	 * stack right now.  We can write a fake #GP(0) frame at TSS.sp0
472 	 * and then modify our own IRET frame so that, when we return,
473 	 * we land directly at the #GP(0) vector with the stack already
474 	 * set up according to its expectations.
475 	 *
476 	 * The net result is that our #GP handler will think that we
477 	 * entered from usermode with the bad user context.
478 	 *
479 	 * No need for nmi_enter() here because we don't use RCU.
480 	 */
481 	if (((long)regs->sp >> P4D_SHIFT) == ESPFIX_PGD_ENTRY &&
482 		regs->cs == __KERNEL_CS &&
483 		regs->ip == (unsigned long)native_irq_return_iret)
484 	{
485 		struct pt_regs *gpregs = (struct pt_regs *)this_cpu_read(cpu_tss_rw.x86_tss.sp0) - 1;
486 		unsigned long *p = (unsigned long *)regs->sp;
487 
488 		/*
489 		 * regs->sp points to the failing IRET frame on the
490 		 * ESPFIX64 stack.  Copy it to the entry stack.  This fills
491 		 * in gpregs->ss through gpregs->ip.
492 		 *
493 		 */
494 		gpregs->ip	= p[0];
495 		gpregs->cs	= p[1];
496 		gpregs->flags	= p[2];
497 		gpregs->sp	= p[3];
498 		gpregs->ss	= p[4];
499 		gpregs->orig_ax = 0;  /* Missing (lost) #GP error code */
500 
501 		/*
502 		 * Adjust our frame so that we return straight to the #GP
503 		 * vector with the expected RSP value.  This is safe because
504 		 * we won't enable interrupts or schedule before we invoke
505 		 * general_protection, so nothing will clobber the stack
506 		 * frame we just set up.
507 		 *
508 		 * We will enter general_protection with kernel GSBASE,
509 		 * which is what the stub expects, given that the faulting
510 		 * RIP will be the IRET instruction.
511 		 */
512 		regs->ip = (unsigned long)asm_exc_general_protection;
513 		regs->sp = (unsigned long)&gpregs->orig_ax;
514 
515 		return;
516 	}
517 #endif
518 
519 	irqentry_nmi_enter(regs);
520 	instrumentation_begin();
521 	notify_die(DIE_TRAP, str, regs, error_code, X86_TRAP_DF, SIGSEGV);
522 
523 	tsk->thread.error_code = error_code;
524 	tsk->thread.trap_nr = X86_TRAP_DF;
525 
526 #ifdef CONFIG_VMAP_STACK
527 	/*
528 	 * If we overflow the stack into a guard page, the CPU will fail
529 	 * to deliver #PF and will send #DF instead.  Similarly, if we
530 	 * take any non-IST exception while too close to the bottom of
531 	 * the stack, the processor will get a page fault while
532 	 * delivering the exception and will generate a double fault.
533 	 *
534 	 * According to the SDM (footnote in 6.15 under "Interrupt 14 -
535 	 * Page-Fault Exception (#PF):
536 	 *
537 	 *   Processors update CR2 whenever a page fault is detected. If a
538 	 *   second page fault occurs while an earlier page fault is being
539 	 *   delivered, the faulting linear address of the second fault will
540 	 *   overwrite the contents of CR2 (replacing the previous
541 	 *   address). These updates to CR2 occur even if the page fault
542 	 *   results in a double fault or occurs during the delivery of a
543 	 *   double fault.
544 	 *
545 	 * The logic below has a small possibility of incorrectly diagnosing
546 	 * some errors as stack overflows.  For example, if the IDT or GDT
547 	 * gets corrupted such that #GP delivery fails due to a bad descriptor
548 	 * causing #GP and we hit this condition while CR2 coincidentally
549 	 * points to the stack guard page, we'll think we overflowed the
550 	 * stack.  Given that we're going to panic one way or another
551 	 * if this happens, this isn't necessarily worth fixing.
552 	 *
553 	 * If necessary, we could improve the test by only diagnosing
554 	 * a stack overflow if the saved RSP points within 47 bytes of
555 	 * the bottom of the stack: if RSP == tsk_stack + 48 and we
556 	 * take an exception, the stack is already aligned and there
557 	 * will be enough room SS, RSP, RFLAGS, CS, RIP, and a
558 	 * possible error code, so a stack overflow would *not* double
559 	 * fault.  With any less space left, exception delivery could
560 	 * fail, and, as a practical matter, we've overflowed the
561 	 * stack even if the actual trigger for the double fault was
562 	 * something else.
563 	 */
564 	if (get_stack_guard_info((void *)address, &info))
565 		handle_stack_overflow(regs, address, &info);
566 #endif
567 
568 	pr_emerg("PANIC: double fault, error_code: 0x%lx\n", error_code);
569 	die("double fault", regs, error_code);
570 	if (always_true())
571 		panic("Machine halted.");
572 	instrumentation_end();
573 }
574 
DEFINE_IDTENTRY(exc_bounds)575 DEFINE_IDTENTRY(exc_bounds)
576 {
577 	if (notify_die(DIE_TRAP, "bounds", regs, 0,
578 			X86_TRAP_BR, SIGSEGV) == NOTIFY_STOP)
579 		return;
580 	cond_local_irq_enable(regs);
581 
582 	if (!user_mode(regs))
583 		die("bounds", regs, 0);
584 
585 	do_trap(X86_TRAP_BR, SIGSEGV, "bounds", regs, 0, 0, NULL);
586 
587 	cond_local_irq_disable(regs);
588 }
589 
590 enum kernel_gp_hint {
591 	GP_NO_HINT,
592 	GP_NON_CANONICAL,
593 	GP_CANONICAL
594 };
595 
596 /*
597  * When an uncaught #GP occurs, try to determine the memory address accessed by
598  * the instruction and return that address to the caller. Also, try to figure
599  * out whether any part of the access to that address was non-canonical.
600  */
get_kernel_gp_address(struct pt_regs * regs,unsigned long * addr)601 static enum kernel_gp_hint get_kernel_gp_address(struct pt_regs *regs,
602 						 unsigned long *addr)
603 {
604 	u8 insn_buf[MAX_INSN_SIZE];
605 	struct insn insn;
606 	int ret;
607 
608 	if (copy_from_kernel_nofault(insn_buf, (void *)regs->ip,
609 			MAX_INSN_SIZE))
610 		return GP_NO_HINT;
611 
612 	ret = insn_decode_kernel(&insn, insn_buf);
613 	if (ret < 0)
614 		return GP_NO_HINT;
615 
616 	*addr = (unsigned long)insn_get_addr_ref(&insn, regs);
617 	if (*addr == -1UL)
618 		return GP_NO_HINT;
619 
620 #ifdef CONFIG_X86_64
621 	/*
622 	 * Check that:
623 	 *  - the operand is not in the kernel half
624 	 *  - the last byte of the operand is not in the user canonical half
625 	 */
626 	if (*addr < ~__VIRTUAL_MASK &&
627 	    *addr + insn.opnd_bytes - 1 > __VIRTUAL_MASK)
628 		return GP_NON_CANONICAL;
629 #endif
630 
631 	return GP_CANONICAL;
632 }
633 
634 #define GPFSTR "general protection fault"
635 
fixup_iopl_exception(struct pt_regs * regs)636 static bool fixup_iopl_exception(struct pt_regs *regs)
637 {
638 	struct thread_struct *t = &current->thread;
639 	unsigned char byte;
640 	unsigned long ip;
641 
642 	if (!IS_ENABLED(CONFIG_X86_IOPL_IOPERM) || t->iopl_emul != 3)
643 		return false;
644 
645 	if (insn_get_effective_ip(regs, &ip))
646 		return false;
647 
648 	if (get_user(byte, (const char __user *)ip))
649 		return false;
650 
651 	if (byte != 0xfa && byte != 0xfb)
652 		return false;
653 
654 	if (!t->iopl_warn && printk_ratelimit()) {
655 		pr_err("%s[%d] attempts to use CLI/STI, pretending it's a NOP, ip:%lx",
656 		       current->comm, task_pid_nr(current), ip);
657 		print_vma_addr(KERN_CONT " in ", ip);
658 		pr_cont("\n");
659 		t->iopl_warn = 1;
660 	}
661 
662 	regs->ip += 1;
663 	return true;
664 }
665 
666 /*
667  * The unprivileged ENQCMD instruction generates #GPs if the
668  * IA32_PASID MSR has not been populated.  If possible, populate
669  * the MSR from a PASID previously allocated to the mm.
670  */
try_fixup_enqcmd_gp(void)671 static bool try_fixup_enqcmd_gp(void)
672 {
673 #ifdef CONFIG_ARCH_HAS_CPU_PASID
674 	u32 pasid;
675 
676 	/*
677 	 * MSR_IA32_PASID is managed using XSAVE.  Directly
678 	 * writing to the MSR is only possible when fpregs
679 	 * are valid and the fpstate is not.  This is
680 	 * guaranteed when handling a userspace exception
681 	 * in *before* interrupts are re-enabled.
682 	 */
683 	lockdep_assert_irqs_disabled();
684 
685 	/*
686 	 * Hardware without ENQCMD will not generate
687 	 * #GPs that can be fixed up here.
688 	 */
689 	if (!cpu_feature_enabled(X86_FEATURE_ENQCMD))
690 		return false;
691 
692 	/*
693 	 * If the mm has not been allocated a
694 	 * PASID, the #GP can not be fixed up.
695 	 */
696 	if (!mm_valid_pasid(current->mm))
697 		return false;
698 
699 	pasid = mm_get_enqcmd_pasid(current->mm);
700 
701 	/*
702 	 * Did this thread already have its PASID activated?
703 	 * If so, the #GP must be from something else.
704 	 */
705 	if (current->pasid_activated)
706 		return false;
707 
708 	wrmsrl(MSR_IA32_PASID, pasid | MSR_IA32_PASID_VALID);
709 	current->pasid_activated = 1;
710 
711 	return true;
712 #else
713 	return false;
714 #endif
715 }
716 
gp_try_fixup_and_notify(struct pt_regs * regs,int trapnr,unsigned long error_code,const char * str,unsigned long address)717 static bool gp_try_fixup_and_notify(struct pt_regs *regs, int trapnr,
718 				    unsigned long error_code, const char *str,
719 				    unsigned long address)
720 {
721 	if (fixup_exception(regs, trapnr, error_code, address))
722 		return true;
723 
724 	current->thread.error_code = error_code;
725 	current->thread.trap_nr = trapnr;
726 
727 	/*
728 	 * To be potentially processing a kprobe fault and to trust the result
729 	 * from kprobe_running(), we have to be non-preemptible.
730 	 */
731 	if (!preemptible() && kprobe_running() &&
732 	    kprobe_fault_handler(regs, trapnr))
733 		return true;
734 
735 	return notify_die(DIE_GPF, str, regs, error_code, trapnr, SIGSEGV) == NOTIFY_STOP;
736 }
737 
gp_user_force_sig_segv(struct pt_regs * regs,int trapnr,unsigned long error_code,const char * str)738 static void gp_user_force_sig_segv(struct pt_regs *regs, int trapnr,
739 				   unsigned long error_code, const char *str)
740 {
741 	current->thread.error_code = error_code;
742 	current->thread.trap_nr = trapnr;
743 	show_signal(current, SIGSEGV, "", str, regs, error_code);
744 	force_sig(SIGSEGV);
745 }
746 
DEFINE_IDTENTRY_ERRORCODE(exc_general_protection)747 DEFINE_IDTENTRY_ERRORCODE(exc_general_protection)
748 {
749 	char desc[sizeof(GPFSTR) + 50 + 2*sizeof(unsigned long) + 1] = GPFSTR;
750 	enum kernel_gp_hint hint = GP_NO_HINT;
751 	unsigned long gp_addr;
752 
753 	if (user_mode(regs) && try_fixup_enqcmd_gp())
754 		return;
755 
756 	cond_local_irq_enable(regs);
757 
758 	if (static_cpu_has(X86_FEATURE_UMIP)) {
759 		if (user_mode(regs) && fixup_umip_exception(regs))
760 			goto exit;
761 	}
762 
763 	if (v8086_mode(regs)) {
764 		local_irq_enable();
765 		handle_vm86_fault((struct kernel_vm86_regs *) regs, error_code);
766 		local_irq_disable();
767 		return;
768 	}
769 
770 	if (user_mode(regs)) {
771 		if (fixup_iopl_exception(regs))
772 			goto exit;
773 
774 		if (fixup_vdso_exception(regs, X86_TRAP_GP, error_code, 0))
775 			goto exit;
776 
777 		gp_user_force_sig_segv(regs, X86_TRAP_GP, error_code, desc);
778 		goto exit;
779 	}
780 
781 	if (gp_try_fixup_and_notify(regs, X86_TRAP_GP, error_code, desc, 0))
782 		goto exit;
783 
784 	if (error_code)
785 		snprintf(desc, sizeof(desc), "segment-related " GPFSTR);
786 	else
787 		hint = get_kernel_gp_address(regs, &gp_addr);
788 
789 	if (hint != GP_NO_HINT)
790 		snprintf(desc, sizeof(desc), GPFSTR ", %s 0x%lx",
791 			 (hint == GP_NON_CANONICAL) ? "probably for non-canonical address"
792 						    : "maybe for address",
793 			 gp_addr);
794 
795 	/*
796 	 * KASAN is interested only in the non-canonical case, clear it
797 	 * otherwise.
798 	 */
799 	if (hint != GP_NON_CANONICAL)
800 		gp_addr = 0;
801 
802 	die_addr(desc, regs, error_code, gp_addr);
803 
804 exit:
805 	cond_local_irq_disable(regs);
806 }
807 
do_int3(struct pt_regs * regs)808 static bool do_int3(struct pt_regs *regs)
809 {
810 	int res;
811 
812 #ifdef CONFIG_KGDB_LOW_LEVEL_TRAP
813 	if (kgdb_ll_trap(DIE_INT3, "int3", regs, 0, X86_TRAP_BP,
814 			 SIGTRAP) == NOTIFY_STOP)
815 		return true;
816 #endif /* CONFIG_KGDB_LOW_LEVEL_TRAP */
817 
818 #ifdef CONFIG_KPROBES
819 	if (kprobe_int3_handler(regs))
820 		return true;
821 #endif
822 	res = notify_die(DIE_INT3, "int3", regs, 0, X86_TRAP_BP, SIGTRAP);
823 
824 	return res == NOTIFY_STOP;
825 }
826 NOKPROBE_SYMBOL(do_int3);
827 
do_int3_user(struct pt_regs * regs)828 static void do_int3_user(struct pt_regs *regs)
829 {
830 	if (do_int3(regs))
831 		return;
832 
833 	cond_local_irq_enable(regs);
834 	do_trap(X86_TRAP_BP, SIGTRAP, "int3", regs, 0, 0, NULL);
835 	cond_local_irq_disable(regs);
836 }
837 
DEFINE_IDTENTRY_RAW(exc_int3)838 DEFINE_IDTENTRY_RAW(exc_int3)
839 {
840 	/*
841 	 * poke_int3_handler() is completely self contained code; it does (and
842 	 * must) *NOT* call out to anything, lest it hits upon yet another
843 	 * INT3.
844 	 */
845 	if (poke_int3_handler(regs))
846 		return;
847 
848 	/*
849 	 * irqentry_enter_from_user_mode() uses static_branch_{,un}likely()
850 	 * and therefore can trigger INT3, hence poke_int3_handler() must
851 	 * be done before. If the entry came from kernel mode, then use
852 	 * nmi_enter() because the INT3 could have been hit in any context
853 	 * including NMI.
854 	 */
855 	if (user_mode(regs)) {
856 		irqentry_enter_from_user_mode(regs);
857 		instrumentation_begin();
858 		do_int3_user(regs);
859 		instrumentation_end();
860 		irqentry_exit_to_user_mode(regs);
861 	} else {
862 		irqentry_state_t irq_state = irqentry_nmi_enter(regs);
863 
864 		instrumentation_begin();
865 		if (!do_int3(regs))
866 			die("int3", regs, 0);
867 		instrumentation_end();
868 		irqentry_nmi_exit(regs, irq_state);
869 	}
870 }
871 
872 #ifdef CONFIG_X86_64
873 /*
874  * Help handler running on a per-cpu (IST or entry trampoline) stack
875  * to switch to the normal thread stack if the interrupted code was in
876  * user mode. The actual stack switch is done in entry_64.S
877  */
sync_regs(struct pt_regs * eregs)878 asmlinkage __visible noinstr struct pt_regs *sync_regs(struct pt_regs *eregs)
879 {
880 	struct pt_regs *regs = (struct pt_regs *)current_top_of_stack() - 1;
881 	if (regs != eregs)
882 		*regs = *eregs;
883 	return regs;
884 }
885 
886 #ifdef CONFIG_AMD_MEM_ENCRYPT
vc_switch_off_ist(struct pt_regs * regs)887 asmlinkage __visible noinstr struct pt_regs *vc_switch_off_ist(struct pt_regs *regs)
888 {
889 	unsigned long sp, *stack;
890 	struct stack_info info;
891 	struct pt_regs *regs_ret;
892 
893 	/*
894 	 * In the SYSCALL entry path the RSP value comes from user-space - don't
895 	 * trust it and switch to the current kernel stack
896 	 */
897 	if (ip_within_syscall_gap(regs)) {
898 		sp = current_top_of_stack();
899 		goto sync;
900 	}
901 
902 	/*
903 	 * From here on the RSP value is trusted. Now check whether entry
904 	 * happened from a safe stack. Not safe are the entry or unknown stacks,
905 	 * use the fall-back stack instead in this case.
906 	 */
907 	sp    = regs->sp;
908 	stack = (unsigned long *)sp;
909 
910 	if (!get_stack_info_noinstr(stack, current, &info) || info.type == STACK_TYPE_ENTRY ||
911 	    info.type > STACK_TYPE_EXCEPTION_LAST)
912 		sp = __this_cpu_ist_top_va(VC2);
913 
914 sync:
915 	/*
916 	 * Found a safe stack - switch to it as if the entry didn't happen via
917 	 * IST stack. The code below only copies pt_regs, the real switch happens
918 	 * in assembly code.
919 	 */
920 	sp = ALIGN_DOWN(sp, 8) - sizeof(*regs_ret);
921 
922 	regs_ret = (struct pt_regs *)sp;
923 	*regs_ret = *regs;
924 
925 	return regs_ret;
926 }
927 #endif
928 
fixup_bad_iret(struct pt_regs * bad_regs)929 asmlinkage __visible noinstr struct pt_regs *fixup_bad_iret(struct pt_regs *bad_regs)
930 {
931 	struct pt_regs tmp, *new_stack;
932 
933 	/*
934 	 * This is called from entry_64.S early in handling a fault
935 	 * caused by a bad iret to user mode.  To handle the fault
936 	 * correctly, we want to move our stack frame to where it would
937 	 * be had we entered directly on the entry stack (rather than
938 	 * just below the IRET frame) and we want to pretend that the
939 	 * exception came from the IRET target.
940 	 */
941 	new_stack = (struct pt_regs *)__this_cpu_read(cpu_tss_rw.x86_tss.sp0) - 1;
942 
943 	/* Copy the IRET target to the temporary storage. */
944 	__memcpy(&tmp.ip, (void *)bad_regs->sp, 5*8);
945 
946 	/* Copy the remainder of the stack from the current stack. */
947 	__memcpy(&tmp, bad_regs, offsetof(struct pt_regs, ip));
948 
949 	/* Update the entry stack */
950 	__memcpy(new_stack, &tmp, sizeof(tmp));
951 
952 	BUG_ON(!user_mode(new_stack));
953 	return new_stack;
954 }
955 #endif
956 
is_sysenter_singlestep(struct pt_regs * regs)957 static bool is_sysenter_singlestep(struct pt_regs *regs)
958 {
959 	/*
960 	 * We don't try for precision here.  If we're anywhere in the region of
961 	 * code that can be single-stepped in the SYSENTER entry path, then
962 	 * assume that this is a useless single-step trap due to SYSENTER
963 	 * being invoked with TF set.  (We don't know in advance exactly
964 	 * which instructions will be hit because BTF could plausibly
965 	 * be set.)
966 	 */
967 #ifdef CONFIG_X86_32
968 	return (regs->ip - (unsigned long)__begin_SYSENTER_singlestep_region) <
969 		(unsigned long)__end_SYSENTER_singlestep_region -
970 		(unsigned long)__begin_SYSENTER_singlestep_region;
971 #elif defined(CONFIG_IA32_EMULATION)
972 	return (regs->ip - (unsigned long)entry_SYSENTER_compat) <
973 		(unsigned long)__end_entry_SYSENTER_compat -
974 		(unsigned long)entry_SYSENTER_compat;
975 #else
976 	return false;
977 #endif
978 }
979 
debug_read_reset_dr6(void)980 static __always_inline unsigned long debug_read_reset_dr6(void)
981 {
982 	unsigned long dr6;
983 
984 	get_debugreg(dr6, 6);
985 	dr6 ^= DR6_RESERVED; /* Flip to positive polarity */
986 
987 	/*
988 	 * The Intel SDM says:
989 	 *
990 	 *   Certain debug exceptions may clear bits 0-3 of DR6.
991 	 *
992 	 *   BLD induced #DB clears DR6.BLD and any other debug
993 	 *   exception doesn't modify DR6.BLD.
994 	 *
995 	 *   RTM induced #DB clears DR6.RTM and any other debug
996 	 *   exception sets DR6.RTM.
997 	 *
998 	 *   To avoid confusion in identifying debug exceptions,
999 	 *   debug handlers should set DR6.BLD and DR6.RTM, and
1000 	 *   clear other DR6 bits before returning.
1001 	 *
1002 	 * Keep it simple: write DR6 with its architectural reset
1003 	 * value 0xFFFF0FF0, defined as DR6_RESERVED, immediately.
1004 	 */
1005 	set_debugreg(DR6_RESERVED, 6);
1006 
1007 	return dr6;
1008 }
1009 
1010 /*
1011  * Our handling of the processor debug registers is non-trivial.
1012  * We do not clear them on entry and exit from the kernel. Therefore
1013  * it is possible to get a watchpoint trap here from inside the kernel.
1014  * However, the code in ./ptrace.c has ensured that the user can
1015  * only set watchpoints on userspace addresses. Therefore the in-kernel
1016  * watchpoint trap can only occur in code which is reading/writing
1017  * from user space. Such code must not hold kernel locks (since it
1018  * can equally take a page fault), therefore it is safe to call
1019  * force_sig_info even though that claims and releases locks.
1020  *
1021  * Code in ./signal.c ensures that the debug control register
1022  * is restored before we deliver any signal, and therefore that
1023  * user code runs with the correct debug control register even though
1024  * we clear it here.
1025  *
1026  * Being careful here means that we don't have to be as careful in a
1027  * lot of more complicated places (task switching can be a bit lazy
1028  * about restoring all the debug state, and ptrace doesn't have to
1029  * find every occurrence of the TF bit that could be saved away even
1030  * by user code)
1031  *
1032  * May run on IST stack.
1033  */
1034 
notify_debug(struct pt_regs * regs,unsigned long * dr6)1035 static bool notify_debug(struct pt_regs *regs, unsigned long *dr6)
1036 {
1037 	/*
1038 	 * Notifiers will clear bits in @dr6 to indicate the event has been
1039 	 * consumed - hw_breakpoint_handler(), single_stop_cont().
1040 	 *
1041 	 * Notifiers will set bits in @virtual_dr6 to indicate the desire
1042 	 * for signals - ptrace_triggered(), kgdb_hw_overflow_handler().
1043 	 */
1044 	if (notify_die(DIE_DEBUG, "debug", regs, (long)dr6, 0, SIGTRAP) == NOTIFY_STOP)
1045 		return true;
1046 
1047 	return false;
1048 }
1049 
exc_debug_kernel(struct pt_regs * regs,unsigned long dr6)1050 static noinstr void exc_debug_kernel(struct pt_regs *regs, unsigned long dr6)
1051 {
1052 	/*
1053 	 * Disable breakpoints during exception handling; recursive exceptions
1054 	 * are exceedingly 'fun'.
1055 	 *
1056 	 * Since this function is NOKPROBE, and that also applies to
1057 	 * HW_BREAKPOINT_X, we can't hit a breakpoint before this (XXX except a
1058 	 * HW_BREAKPOINT_W on our stack)
1059 	 *
1060 	 * Entry text is excluded for HW_BP_X and cpu_entry_area, which
1061 	 * includes the entry stack is excluded for everything.
1062 	 *
1063 	 * For FRED, nested #DB should just work fine. But when a watchpoint or
1064 	 * breakpoint is set in the code path which is executed by #DB handler,
1065 	 * it results in an endless recursion and stack overflow. Thus we stay
1066 	 * with the IDT approach, i.e., save DR7 and disable #DB.
1067 	 */
1068 	unsigned long dr7 = local_db_save();
1069 	irqentry_state_t irq_state = irqentry_nmi_enter(regs);
1070 	instrumentation_begin();
1071 
1072 	/*
1073 	 * If something gets miswired and we end up here for a user mode
1074 	 * #DB, we will malfunction.
1075 	 */
1076 	WARN_ON_ONCE(user_mode(regs));
1077 
1078 	if (test_thread_flag(TIF_BLOCKSTEP)) {
1079 		/*
1080 		 * The SDM says "The processor clears the BTF flag when it
1081 		 * generates a debug exception." but PTRACE_BLOCKSTEP requested
1082 		 * it for userspace, but we just took a kernel #DB, so re-set
1083 		 * BTF.
1084 		 */
1085 		unsigned long debugctl;
1086 
1087 		rdmsrl(MSR_IA32_DEBUGCTLMSR, debugctl);
1088 		debugctl |= DEBUGCTLMSR_BTF;
1089 		wrmsrl(MSR_IA32_DEBUGCTLMSR, debugctl);
1090 	}
1091 
1092 	/*
1093 	 * Catch SYSENTER with TF set and clear DR_STEP. If this hit a
1094 	 * watchpoint at the same time then that will still be handled.
1095 	 */
1096 	if (!cpu_feature_enabled(X86_FEATURE_FRED) &&
1097 	    (dr6 & DR_STEP) && is_sysenter_singlestep(regs))
1098 		dr6 &= ~DR_STEP;
1099 
1100 	/*
1101 	 * The kernel doesn't use INT1
1102 	 */
1103 	if (!dr6)
1104 		goto out;
1105 
1106 	if (notify_debug(regs, &dr6))
1107 		goto out;
1108 
1109 	/*
1110 	 * The kernel doesn't use TF single-step outside of:
1111 	 *
1112 	 *  - Kprobes, consumed through kprobe_debug_handler()
1113 	 *  - KGDB, consumed through notify_debug()
1114 	 *
1115 	 * So if we get here with DR_STEP set, something is wonky.
1116 	 *
1117 	 * A known way to trigger this is through QEMU's GDB stub,
1118 	 * which leaks #DB into the guest and causes IST recursion.
1119 	 */
1120 	if (WARN_ON_ONCE(dr6 & DR_STEP))
1121 		regs->flags &= ~X86_EFLAGS_TF;
1122 out:
1123 	instrumentation_end();
1124 	irqentry_nmi_exit(regs, irq_state);
1125 
1126 	local_db_restore(dr7);
1127 }
1128 
exc_debug_user(struct pt_regs * regs,unsigned long dr6)1129 static noinstr void exc_debug_user(struct pt_regs *regs, unsigned long dr6)
1130 {
1131 	bool icebp;
1132 
1133 	/*
1134 	 * If something gets miswired and we end up here for a kernel mode
1135 	 * #DB, we will malfunction.
1136 	 */
1137 	WARN_ON_ONCE(!user_mode(regs));
1138 
1139 	/*
1140 	 * NB: We can't easily clear DR7 here because
1141 	 * irqentry_exit_to_usermode() can invoke ptrace, schedule, access
1142 	 * user memory, etc.  This means that a recursive #DB is possible.  If
1143 	 * this happens, that #DB will hit exc_debug_kernel() and clear DR7.
1144 	 * Since we're not on the IST stack right now, everything will be
1145 	 * fine.
1146 	 */
1147 
1148 	irqentry_enter_from_user_mode(regs);
1149 	instrumentation_begin();
1150 
1151 	/*
1152 	 * Start the virtual/ptrace DR6 value with just the DR_STEP mask
1153 	 * of the real DR6. ptrace_triggered() will set the DR_TRAPn bits.
1154 	 *
1155 	 * Userspace expects DR_STEP to be visible in ptrace_get_debugreg(6)
1156 	 * even if it is not the result of PTRACE_SINGLESTEP.
1157 	 */
1158 	current->thread.virtual_dr6 = (dr6 & DR_STEP);
1159 
1160 	/*
1161 	 * The SDM says "The processor clears the BTF flag when it
1162 	 * generates a debug exception."  Clear TIF_BLOCKSTEP to keep
1163 	 * TIF_BLOCKSTEP in sync with the hardware BTF flag.
1164 	 */
1165 	clear_thread_flag(TIF_BLOCKSTEP);
1166 
1167 	/*
1168 	 * If dr6 has no reason to give us about the origin of this trap,
1169 	 * then it's very likely the result of an icebp/int01 trap.
1170 	 * User wants a sigtrap for that.
1171 	 */
1172 	icebp = !dr6;
1173 
1174 	if (notify_debug(regs, &dr6))
1175 		goto out;
1176 
1177 	/* It's safe to allow irq's after DR6 has been saved */
1178 	local_irq_enable();
1179 
1180 	if (v8086_mode(regs)) {
1181 		handle_vm86_trap((struct kernel_vm86_regs *)regs, 0, X86_TRAP_DB);
1182 		goto out_irq;
1183 	}
1184 
1185 	/* #DB for bus lock can only be triggered from userspace. */
1186 	if (dr6 & DR_BUS_LOCK)
1187 		handle_bus_lock(regs);
1188 
1189 	/* Add the virtual_dr6 bits for signals. */
1190 	dr6 |= current->thread.virtual_dr6;
1191 	if (dr6 & (DR_STEP | DR_TRAP_BITS) || icebp)
1192 		send_sigtrap(regs, 0, get_si_code(dr6));
1193 
1194 out_irq:
1195 	local_irq_disable();
1196 out:
1197 	instrumentation_end();
1198 	irqentry_exit_to_user_mode(regs);
1199 }
1200 
1201 #ifdef CONFIG_X86_64
1202 /* IST stack entry */
DEFINE_IDTENTRY_DEBUG(exc_debug)1203 DEFINE_IDTENTRY_DEBUG(exc_debug)
1204 {
1205 	exc_debug_kernel(regs, debug_read_reset_dr6());
1206 }
1207 
1208 /* User entry, runs on regular task stack */
DEFINE_IDTENTRY_DEBUG_USER(exc_debug)1209 DEFINE_IDTENTRY_DEBUG_USER(exc_debug)
1210 {
1211 	exc_debug_user(regs, debug_read_reset_dr6());
1212 }
1213 
1214 #ifdef CONFIG_X86_FRED
1215 /*
1216  * When occurred on different ring level, i.e., from user or kernel
1217  * context, #DB needs to be handled on different stack: User #DB on
1218  * current task stack, while kernel #DB on a dedicated stack.
1219  *
1220  * This is exactly how FRED event delivery invokes an exception
1221  * handler: ring 3 event on level 0 stack, i.e., current task stack;
1222  * ring 0 event on the #DB dedicated stack specified in the
1223  * IA32_FRED_STKLVLS MSR. So unlike IDT, the FRED debug exception
1224  * entry stub doesn't do stack switch.
1225  */
DEFINE_FREDENTRY_DEBUG(exc_debug)1226 DEFINE_FREDENTRY_DEBUG(exc_debug)
1227 {
1228 	/*
1229 	 * FRED #DB stores DR6 on the stack in the format which
1230 	 * debug_read_reset_dr6() returns for the IDT entry points.
1231 	 */
1232 	unsigned long dr6 = fred_event_data(regs);
1233 
1234 	if (user_mode(regs))
1235 		exc_debug_user(regs, dr6);
1236 	else
1237 		exc_debug_kernel(regs, dr6);
1238 }
1239 #endif /* CONFIG_X86_FRED */
1240 
1241 #else
1242 /* 32 bit does not have separate entry points. */
DEFINE_IDTENTRY_RAW(exc_debug)1243 DEFINE_IDTENTRY_RAW(exc_debug)
1244 {
1245 	unsigned long dr6 = debug_read_reset_dr6();
1246 
1247 	if (user_mode(regs))
1248 		exc_debug_user(regs, dr6);
1249 	else
1250 		exc_debug_kernel(regs, dr6);
1251 }
1252 #endif
1253 
1254 /*
1255  * Note that we play around with the 'TS' bit in an attempt to get
1256  * the correct behaviour even in the presence of the asynchronous
1257  * IRQ13 behaviour
1258  */
math_error(struct pt_regs * regs,int trapnr)1259 static void math_error(struct pt_regs *regs, int trapnr)
1260 {
1261 	struct task_struct *task = current;
1262 	struct fpu *fpu = &task->thread.fpu;
1263 	int si_code;
1264 	char *str = (trapnr == X86_TRAP_MF) ? "fpu exception" :
1265 						"simd exception";
1266 
1267 	cond_local_irq_enable(regs);
1268 
1269 	if (!user_mode(regs)) {
1270 		if (fixup_exception(regs, trapnr, 0, 0))
1271 			goto exit;
1272 
1273 		task->thread.error_code = 0;
1274 		task->thread.trap_nr = trapnr;
1275 
1276 		if (notify_die(DIE_TRAP, str, regs, 0, trapnr,
1277 			       SIGFPE) != NOTIFY_STOP)
1278 			die(str, regs, 0);
1279 		goto exit;
1280 	}
1281 
1282 	/*
1283 	 * Synchronize the FPU register state to the memory register state
1284 	 * if necessary. This allows the exception handler to inspect it.
1285 	 */
1286 	fpu_sync_fpstate(fpu);
1287 
1288 	task->thread.trap_nr	= trapnr;
1289 	task->thread.error_code = 0;
1290 
1291 	si_code = fpu__exception_code(fpu, trapnr);
1292 	/* Retry when we get spurious exceptions: */
1293 	if (!si_code)
1294 		goto exit;
1295 
1296 	if (fixup_vdso_exception(regs, trapnr, 0, 0))
1297 		goto exit;
1298 
1299 	force_sig_fault(SIGFPE, si_code,
1300 			(void __user *)uprobe_get_trap_addr(regs));
1301 exit:
1302 	cond_local_irq_disable(regs);
1303 }
1304 
DEFINE_IDTENTRY(exc_coprocessor_error)1305 DEFINE_IDTENTRY(exc_coprocessor_error)
1306 {
1307 	math_error(regs, X86_TRAP_MF);
1308 }
1309 
DEFINE_IDTENTRY(exc_simd_coprocessor_error)1310 DEFINE_IDTENTRY(exc_simd_coprocessor_error)
1311 {
1312 	if (IS_ENABLED(CONFIG_X86_INVD_BUG)) {
1313 		/* AMD 486 bug: INVD in CPL 0 raises #XF instead of #GP */
1314 		if (!static_cpu_has(X86_FEATURE_XMM)) {
1315 			__exc_general_protection(regs, 0);
1316 			return;
1317 		}
1318 	}
1319 	math_error(regs, X86_TRAP_XF);
1320 }
1321 
DEFINE_IDTENTRY(exc_spurious_interrupt_bug)1322 DEFINE_IDTENTRY(exc_spurious_interrupt_bug)
1323 {
1324 	/*
1325 	 * This addresses a Pentium Pro Erratum:
1326 	 *
1327 	 * PROBLEM: If the APIC subsystem is configured in mixed mode with
1328 	 * Virtual Wire mode implemented through the local APIC, an
1329 	 * interrupt vector of 0Fh (Intel reserved encoding) may be
1330 	 * generated by the local APIC (Int 15).  This vector may be
1331 	 * generated upon receipt of a spurious interrupt (an interrupt
1332 	 * which is removed before the system receives the INTA sequence)
1333 	 * instead of the programmed 8259 spurious interrupt vector.
1334 	 *
1335 	 * IMPLICATION: The spurious interrupt vector programmed in the
1336 	 * 8259 is normally handled by an operating system's spurious
1337 	 * interrupt handler. However, a vector of 0Fh is unknown to some
1338 	 * operating systems, which would crash if this erratum occurred.
1339 	 *
1340 	 * In theory this could be limited to 32bit, but the handler is not
1341 	 * hurting and who knows which other CPUs suffer from this.
1342 	 */
1343 }
1344 
handle_xfd_event(struct pt_regs * regs)1345 static bool handle_xfd_event(struct pt_regs *regs)
1346 {
1347 	u64 xfd_err;
1348 	int err;
1349 
1350 	if (!IS_ENABLED(CONFIG_X86_64) || !cpu_feature_enabled(X86_FEATURE_XFD))
1351 		return false;
1352 
1353 	rdmsrl(MSR_IA32_XFD_ERR, xfd_err);
1354 	if (!xfd_err)
1355 		return false;
1356 
1357 	wrmsrl(MSR_IA32_XFD_ERR, 0);
1358 
1359 	/* Die if that happens in kernel space */
1360 	if (WARN_ON(!user_mode(regs)))
1361 		return false;
1362 
1363 	local_irq_enable();
1364 
1365 	err = xfd_enable_feature(xfd_err);
1366 
1367 	switch (err) {
1368 	case -EPERM:
1369 		force_sig_fault(SIGILL, ILL_ILLOPC, error_get_trap_addr(regs));
1370 		break;
1371 	case -EFAULT:
1372 		force_sig(SIGSEGV);
1373 		break;
1374 	}
1375 
1376 	local_irq_disable();
1377 	return true;
1378 }
1379 
DEFINE_IDTENTRY(exc_device_not_available)1380 DEFINE_IDTENTRY(exc_device_not_available)
1381 {
1382 	unsigned long cr0 = read_cr0();
1383 
1384 	if (handle_xfd_event(regs))
1385 		return;
1386 
1387 #ifdef CONFIG_MATH_EMULATION
1388 	if (!boot_cpu_has(X86_FEATURE_FPU) && (cr0 & X86_CR0_EM)) {
1389 		struct math_emu_info info = { };
1390 
1391 		cond_local_irq_enable(regs);
1392 
1393 		info.regs = regs;
1394 		math_emulate(&info);
1395 
1396 		cond_local_irq_disable(regs);
1397 		return;
1398 	}
1399 #endif
1400 
1401 	/* This should not happen. */
1402 	if (WARN(cr0 & X86_CR0_TS, "CR0.TS was set")) {
1403 		/* Try to fix it up and carry on. */
1404 		write_cr0(cr0 & ~X86_CR0_TS);
1405 	} else {
1406 		/*
1407 		 * Something terrible happened, and we're better off trying
1408 		 * to kill the task than getting stuck in a never-ending
1409 		 * loop of #NM faults.
1410 		 */
1411 		die("unexpected #NM exception", regs, 0);
1412 	}
1413 }
1414 
1415 #ifdef CONFIG_INTEL_TDX_GUEST
1416 
1417 #define VE_FAULT_STR "VE fault"
1418 
ve_raise_fault(struct pt_regs * regs,long error_code,unsigned long address)1419 static void ve_raise_fault(struct pt_regs *regs, long error_code,
1420 			   unsigned long address)
1421 {
1422 	if (user_mode(regs)) {
1423 		gp_user_force_sig_segv(regs, X86_TRAP_VE, error_code, VE_FAULT_STR);
1424 		return;
1425 	}
1426 
1427 	if (gp_try_fixup_and_notify(regs, X86_TRAP_VE, error_code,
1428 				    VE_FAULT_STR, address)) {
1429 		return;
1430 	}
1431 
1432 	die_addr(VE_FAULT_STR, regs, error_code, address);
1433 }
1434 
1435 /*
1436  * Virtualization Exceptions (#VE) are delivered to TDX guests due to
1437  * specific guest actions which may happen in either user space or the
1438  * kernel:
1439  *
1440  *  * Specific instructions (WBINVD, for example)
1441  *  * Specific MSR accesses
1442  *  * Specific CPUID leaf accesses
1443  *  * Access to specific guest physical addresses
1444  *
1445  * In the settings that Linux will run in, virtualization exceptions are
1446  * never generated on accesses to normal, TD-private memory that has been
1447  * accepted (by BIOS or with tdx_enc_status_changed()).
1448  *
1449  * Syscall entry code has a critical window where the kernel stack is not
1450  * yet set up. Any exception in this window leads to hard to debug issues
1451  * and can be exploited for privilege escalation. Exceptions in the NMI
1452  * entry code also cause issues. Returning from the exception handler with
1453  * IRET will re-enable NMIs and nested NMI will corrupt the NMI stack.
1454  *
1455  * For these reasons, the kernel avoids #VEs during the syscall gap and
1456  * the NMI entry code. Entry code paths do not access TD-shared memory,
1457  * MMIO regions, use #VE triggering MSRs, instructions, or CPUID leaves
1458  * that might generate #VE. VMM can remove memory from TD at any point,
1459  * but access to unaccepted (or missing) private memory leads to VM
1460  * termination, not to #VE.
1461  *
1462  * Similarly to page faults and breakpoints, #VEs are allowed in NMI
1463  * handlers once the kernel is ready to deal with nested NMIs.
1464  *
1465  * During #VE delivery, all interrupts, including NMIs, are blocked until
1466  * TDGETVEINFO is called. It prevents #VE nesting until the kernel reads
1467  * the VE info.
1468  *
1469  * If a guest kernel action which would normally cause a #VE occurs in
1470  * the interrupt-disabled region before TDGETVEINFO, a #DF (fault
1471  * exception) is delivered to the guest which will result in an oops.
1472  *
1473  * The entry code has been audited carefully for following these expectations.
1474  * Changes in the entry code have to be audited for correctness vs. this
1475  * aspect. Similarly to #PF, #VE in these places will expose kernel to
1476  * privilege escalation or may lead to random crashes.
1477  */
DEFINE_IDTENTRY(exc_virtualization_exception)1478 DEFINE_IDTENTRY(exc_virtualization_exception)
1479 {
1480 	struct ve_info ve;
1481 
1482 	/*
1483 	 * NMIs/Machine-checks/Interrupts will be in a disabled state
1484 	 * till TDGETVEINFO TDCALL is executed. This ensures that VE
1485 	 * info cannot be overwritten by a nested #VE.
1486 	 */
1487 	tdx_get_ve_info(&ve);
1488 
1489 	cond_local_irq_enable(regs);
1490 
1491 	/*
1492 	 * If tdx_handle_virt_exception() could not process
1493 	 * it successfully, treat it as #GP(0) and handle it.
1494 	 */
1495 	if (!tdx_handle_virt_exception(regs, &ve))
1496 		ve_raise_fault(regs, 0, ve.gla);
1497 
1498 	cond_local_irq_disable(regs);
1499 }
1500 
1501 #endif
1502 
1503 #ifdef CONFIG_X86_32
DEFINE_IDTENTRY_SW(iret_error)1504 DEFINE_IDTENTRY_SW(iret_error)
1505 {
1506 	local_irq_enable();
1507 	if (notify_die(DIE_TRAP, "iret exception", regs, 0,
1508 			X86_TRAP_IRET, SIGILL) != NOTIFY_STOP) {
1509 		do_trap(X86_TRAP_IRET, SIGILL, "iret exception", regs, 0,
1510 			ILL_BADSTK, (void __user *)NULL);
1511 	}
1512 	local_irq_disable();
1513 }
1514 #endif
1515 
trap_init(void)1516 void __init trap_init(void)
1517 {
1518 	/* Init cpu_entry_area before IST entries are set up */
1519 	setup_cpu_entry_areas();
1520 
1521 	/* Init GHCB memory pages when running as an SEV-ES guest */
1522 	sev_es_init_vc_handling();
1523 
1524 	/* Initialize TSS before setting up traps so ISTs work */
1525 	cpu_init_exception_handling(true);
1526 
1527 	/* Setup traps as cpu_init() might #GP */
1528 	if (!cpu_feature_enabled(X86_FEATURE_FRED))
1529 		idt_setup_traps();
1530 
1531 	cpu_init();
1532 }
1533