• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 #include <linux/gfp.h>
2 #include <linux/initrd.h>
3 #include <linux/ioport.h>
4 #include <linux/swap.h>
5 #include <linux/memblock.h>
6 #include <linux/swapfile.h>
7 #include <linux/swapops.h>
8 #include <linux/kmemleak.h>
9 #include <linux/sched/task.h>
10 #include <linux/execmem.h>
11 
12 #include <asm/set_memory.h>
13 #include <asm/cpu_device_id.h>
14 #include <asm/e820/api.h>
15 #include <asm/init.h>
16 #include <asm/page.h>
17 #include <asm/page_types.h>
18 #include <asm/sections.h>
19 #include <asm/setup.h>
20 #include <asm/tlbflush.h>
21 #include <asm/tlb.h>
22 #include <asm/proto.h>
23 #include <asm/dma.h>		/* for MAX_DMA_PFN */
24 #include <asm/kaslr.h>
25 #include <asm/hypervisor.h>
26 #include <asm/cpufeature.h>
27 #include <asm/pti.h>
28 #include <asm/text-patching.h>
29 #include <asm/memtype.h>
30 #include <asm/paravirt.h>
31 
32 /*
33  * We need to define the tracepoints somewhere, and tlb.c
34  * is only compiled when SMP=y.
35  */
36 #include <trace/events/tlb.h>
37 
38 #include "mm_internal.h"
39 
40 /*
41  * Tables translating between page_cache_type_t and pte encoding.
42  *
43  * The default values are defined statically as minimal supported mode;
44  * WC and WT fall back to UC-.  pat_init() updates these values to support
45  * more cache modes, WC and WT, when it is safe to do so.  See pat_init()
46  * for the details.  Note, __early_ioremap() used during early boot-time
47  * takes pgprot_t (pte encoding) and does not use these tables.
48  *
49  *   Index into __cachemode2pte_tbl[] is the cachemode.
50  *
51  *   Index into __pte2cachemode_tbl[] are the caching attribute bits of the pte
52  *   (_PAGE_PWT, _PAGE_PCD, _PAGE_PAT) at index bit positions 0, 1, 2.
53  */
54 static uint16_t __cachemode2pte_tbl[_PAGE_CACHE_MODE_NUM] = {
55 	[_PAGE_CACHE_MODE_WB      ]	= 0         | 0        ,
56 	[_PAGE_CACHE_MODE_WC      ]	= 0         | _PAGE_PCD,
57 	[_PAGE_CACHE_MODE_UC_MINUS]	= 0         | _PAGE_PCD,
58 	[_PAGE_CACHE_MODE_UC      ]	= _PAGE_PWT | _PAGE_PCD,
59 	[_PAGE_CACHE_MODE_WT      ]	= 0         | _PAGE_PCD,
60 	[_PAGE_CACHE_MODE_WP      ]	= 0         | _PAGE_PCD,
61 };
62 
cachemode2protval(enum page_cache_mode pcm)63 unsigned long cachemode2protval(enum page_cache_mode pcm)
64 {
65 	if (likely(pcm == 0))
66 		return 0;
67 	return __cachemode2pte_tbl[pcm];
68 }
69 EXPORT_SYMBOL(cachemode2protval);
70 
71 static uint8_t __pte2cachemode_tbl[8] = {
72 	[__pte2cm_idx( 0        | 0         | 0        )] = _PAGE_CACHE_MODE_WB,
73 	[__pte2cm_idx(_PAGE_PWT | 0         | 0        )] = _PAGE_CACHE_MODE_UC_MINUS,
74 	[__pte2cm_idx( 0        | _PAGE_PCD | 0        )] = _PAGE_CACHE_MODE_UC_MINUS,
75 	[__pte2cm_idx(_PAGE_PWT | _PAGE_PCD | 0        )] = _PAGE_CACHE_MODE_UC,
76 	[__pte2cm_idx( 0        | 0         | _PAGE_PAT)] = _PAGE_CACHE_MODE_WB,
77 	[__pte2cm_idx(_PAGE_PWT | 0         | _PAGE_PAT)] = _PAGE_CACHE_MODE_UC_MINUS,
78 	[__pte2cm_idx(0         | _PAGE_PCD | _PAGE_PAT)] = _PAGE_CACHE_MODE_UC_MINUS,
79 	[__pte2cm_idx(_PAGE_PWT | _PAGE_PCD | _PAGE_PAT)] = _PAGE_CACHE_MODE_UC,
80 };
81 
82 /*
83  * Check that the write-protect PAT entry is set for write-protect.
84  * To do this without making assumptions how PAT has been set up (Xen has
85  * another layout than the kernel), translate the _PAGE_CACHE_MODE_WP cache
86  * mode via the __cachemode2pte_tbl[] into protection bits (those protection
87  * bits will select a cache mode of WP or better), and then translate the
88  * protection bits back into the cache mode using __pte2cm_idx() and the
89  * __pte2cachemode_tbl[] array. This will return the really used cache mode.
90  */
x86_has_pat_wp(void)91 bool x86_has_pat_wp(void)
92 {
93 	uint16_t prot = __cachemode2pte_tbl[_PAGE_CACHE_MODE_WP];
94 
95 	return __pte2cachemode_tbl[__pte2cm_idx(prot)] == _PAGE_CACHE_MODE_WP;
96 }
97 
pgprot2cachemode(pgprot_t pgprot)98 enum page_cache_mode pgprot2cachemode(pgprot_t pgprot)
99 {
100 	unsigned long masked;
101 
102 	masked = pgprot_val(pgprot) & _PAGE_CACHE_MASK;
103 	if (likely(masked == 0))
104 		return 0;
105 	return __pte2cachemode_tbl[__pte2cm_idx(masked)];
106 }
107 
108 static unsigned long __initdata pgt_buf_start;
109 static unsigned long __initdata pgt_buf_end;
110 static unsigned long __initdata pgt_buf_top;
111 
112 static unsigned long min_pfn_mapped;
113 
114 static bool __initdata can_use_brk_pgt = true;
115 
116 /*
117  * Provide a run-time mean of disabling ZONE_DMA32 if it is enabled via
118  * CONFIG_ZONE_DMA32.
119  */
120 static bool disable_dma32 __ro_after_init;
121 
122 /*
123  * Pages returned are already directly mapped.
124  *
125  * Changing that is likely to break Xen, see commit:
126  *
127  *    279b706 x86,xen: introduce x86_init.mapping.pagetable_reserve
128  *
129  * for detailed information.
130  */
alloc_low_pages(unsigned int num)131 __ref void *alloc_low_pages(unsigned int num)
132 {
133 	unsigned long pfn;
134 	int i;
135 
136 	if (after_bootmem) {
137 		unsigned int order;
138 
139 		order = get_order((unsigned long)num << PAGE_SHIFT);
140 		return (void *)__get_free_pages(GFP_ATOMIC | __GFP_ZERO, order);
141 	}
142 
143 	if ((pgt_buf_end + num) > pgt_buf_top || !can_use_brk_pgt) {
144 		unsigned long ret = 0;
145 
146 		if (min_pfn_mapped < max_pfn_mapped) {
147 			ret = memblock_phys_alloc_range(
148 					PAGE_SIZE * num, PAGE_SIZE,
149 					min_pfn_mapped << PAGE_SHIFT,
150 					max_pfn_mapped << PAGE_SHIFT);
151 		}
152 		if (!ret && can_use_brk_pgt)
153 			ret = __pa(extend_brk(PAGE_SIZE * num, PAGE_SIZE));
154 
155 		if (!ret)
156 			panic("alloc_low_pages: can not alloc memory");
157 
158 		pfn = ret >> PAGE_SHIFT;
159 	} else {
160 		pfn = pgt_buf_end;
161 		pgt_buf_end += num;
162 	}
163 
164 	for (i = 0; i < num; i++) {
165 		void *adr;
166 
167 		adr = __va((pfn + i) << PAGE_SHIFT);
168 		clear_page(adr);
169 	}
170 
171 	return __va(pfn << PAGE_SHIFT);
172 }
173 
174 /*
175  * By default need to be able to allocate page tables below PGD firstly for
176  * the 0-ISA_END_ADDRESS range and secondly for the initial PMD_SIZE mapping.
177  * With KASLR memory randomization, depending on the machine e820 memory and the
178  * PUD alignment, twice that many pages may be needed when KASLR memory
179  * randomization is enabled.
180  */
181 
182 #ifndef CONFIG_X86_5LEVEL
183 #define INIT_PGD_PAGE_TABLES    3
184 #else
185 #define INIT_PGD_PAGE_TABLES    4
186 #endif
187 
188 #ifndef CONFIG_RANDOMIZE_MEMORY
189 #define INIT_PGD_PAGE_COUNT      (2 * INIT_PGD_PAGE_TABLES)
190 #else
191 #define INIT_PGD_PAGE_COUNT      (4 * INIT_PGD_PAGE_TABLES)
192 #endif
193 
194 #define INIT_PGT_BUF_SIZE	(INIT_PGD_PAGE_COUNT * PAGE_SIZE)
195 RESERVE_BRK(early_pgt_alloc, INIT_PGT_BUF_SIZE);
early_alloc_pgt_buf(void)196 void  __init early_alloc_pgt_buf(void)
197 {
198 	unsigned long tables = INIT_PGT_BUF_SIZE;
199 	phys_addr_t base;
200 
201 	base = __pa(extend_brk(tables, PAGE_SIZE));
202 
203 	pgt_buf_start = base >> PAGE_SHIFT;
204 	pgt_buf_end = pgt_buf_start;
205 	pgt_buf_top = pgt_buf_start + (tables >> PAGE_SHIFT);
206 }
207 
208 int after_bootmem;
209 
210 early_param_on_off("gbpages", "nogbpages", direct_gbpages, CONFIG_X86_DIRECT_GBPAGES);
211 
212 struct map_range {
213 	unsigned long start;
214 	unsigned long end;
215 	unsigned page_size_mask;
216 };
217 
218 static int page_size_mask;
219 
220 /*
221  * Save some of cr4 feature set we're using (e.g.  Pentium 4MB
222  * enable and PPro Global page enable), so that any CPU's that boot
223  * up after us can get the correct flags. Invoked on the boot CPU.
224  */
cr4_set_bits_and_update_boot(unsigned long mask)225 static inline void cr4_set_bits_and_update_boot(unsigned long mask)
226 {
227 	mmu_cr4_features |= mask;
228 	if (trampoline_cr4_features)
229 		*trampoline_cr4_features = mmu_cr4_features;
230 	cr4_set_bits(mask);
231 }
232 
probe_page_size_mask(void)233 static void __init probe_page_size_mask(void)
234 {
235 	/*
236 	 * For pagealloc debugging, identity mapping will use small pages.
237 	 * This will simplify cpa(), which otherwise needs to support splitting
238 	 * large pages into small in interrupt context, etc.
239 	 */
240 	if (boot_cpu_has(X86_FEATURE_PSE) && !debug_pagealloc_enabled())
241 		page_size_mask |= 1 << PG_LEVEL_2M;
242 	else
243 		direct_gbpages = 0;
244 
245 	/* Enable PSE if available */
246 	if (boot_cpu_has(X86_FEATURE_PSE))
247 		cr4_set_bits_and_update_boot(X86_CR4_PSE);
248 
249 	/* Enable PGE if available */
250 	__supported_pte_mask &= ~_PAGE_GLOBAL;
251 	if (boot_cpu_has(X86_FEATURE_PGE)) {
252 		cr4_set_bits_and_update_boot(X86_CR4_PGE);
253 		__supported_pte_mask |= _PAGE_GLOBAL;
254 	}
255 
256 	/* By the default is everything supported: */
257 	__default_kernel_pte_mask = __supported_pte_mask;
258 	/* Except when with PTI where the kernel is mostly non-Global: */
259 	if (cpu_feature_enabled(X86_FEATURE_PTI))
260 		__default_kernel_pte_mask &= ~_PAGE_GLOBAL;
261 
262 	/* Enable 1 GB linear kernel mappings if available: */
263 	if (direct_gbpages && boot_cpu_has(X86_FEATURE_GBPAGES)) {
264 		printk(KERN_INFO "Using GB pages for direct mapping\n");
265 		page_size_mask |= 1 << PG_LEVEL_1G;
266 	} else {
267 		direct_gbpages = 0;
268 	}
269 }
270 
271 /*
272  * INVLPG may not properly flush Global entries on
273  * these CPUs.  New microcode fixes the issue.
274  */
275 static const struct x86_cpu_id invlpg_miss_ids[] = {
276 	X86_MATCH_VFM(INTEL_ALDERLAKE,	    0x2e),
277 	X86_MATCH_VFM(INTEL_ALDERLAKE_L,    0x42c),
278 	X86_MATCH_VFM(INTEL_ATOM_GRACEMONT, 0x11),
279 	X86_MATCH_VFM(INTEL_RAPTORLAKE,	    0x118),
280 	X86_MATCH_VFM(INTEL_RAPTORLAKE_P,   0x4117),
281 	X86_MATCH_VFM(INTEL_RAPTORLAKE_S,   0x2e),
282 	{}
283 };
284 
setup_pcid(void)285 static void setup_pcid(void)
286 {
287 	const struct x86_cpu_id *invlpg_miss_match;
288 
289 	if (!IS_ENABLED(CONFIG_X86_64))
290 		return;
291 
292 	if (!boot_cpu_has(X86_FEATURE_PCID))
293 		return;
294 
295 	invlpg_miss_match = x86_match_cpu(invlpg_miss_ids);
296 
297 	if (invlpg_miss_match &&
298 	    boot_cpu_data.microcode < invlpg_miss_match->driver_data) {
299 		pr_info("Incomplete global flushes, disabling PCID");
300 		setup_clear_cpu_cap(X86_FEATURE_PCID);
301 		return;
302 	}
303 
304 	if (boot_cpu_has(X86_FEATURE_PGE)) {
305 		/*
306 		 * This can't be cr4_set_bits_and_update_boot() -- the
307 		 * trampoline code can't handle CR4.PCIDE and it wouldn't
308 		 * do any good anyway.  Despite the name,
309 		 * cr4_set_bits_and_update_boot() doesn't actually cause
310 		 * the bits in question to remain set all the way through
311 		 * the secondary boot asm.
312 		 *
313 		 * Instead, we brute-force it and set CR4.PCIDE manually in
314 		 * start_secondary().
315 		 */
316 		cr4_set_bits(X86_CR4_PCIDE);
317 	} else {
318 		/*
319 		 * flush_tlb_all(), as currently implemented, won't work if
320 		 * PCID is on but PGE is not.  Since that combination
321 		 * doesn't exist on real hardware, there's no reason to try
322 		 * to fully support it, but it's polite to avoid corrupting
323 		 * data if we're on an improperly configured VM.
324 		 */
325 		setup_clear_cpu_cap(X86_FEATURE_PCID);
326 	}
327 }
328 
329 #ifdef CONFIG_X86_32
330 #define NR_RANGE_MR 3
331 #else /* CONFIG_X86_64 */
332 #define NR_RANGE_MR 5
333 #endif
334 
save_mr(struct map_range * mr,int nr_range,unsigned long start_pfn,unsigned long end_pfn,unsigned long page_size_mask)335 static int __meminit save_mr(struct map_range *mr, int nr_range,
336 			     unsigned long start_pfn, unsigned long end_pfn,
337 			     unsigned long page_size_mask)
338 {
339 	if (start_pfn < end_pfn) {
340 		if (nr_range >= NR_RANGE_MR)
341 			panic("run out of range for init_memory_mapping\n");
342 		mr[nr_range].start = start_pfn<<PAGE_SHIFT;
343 		mr[nr_range].end   = end_pfn<<PAGE_SHIFT;
344 		mr[nr_range].page_size_mask = page_size_mask;
345 		nr_range++;
346 	}
347 
348 	return nr_range;
349 }
350 
351 /*
352  * adjust the page_size_mask for small range to go with
353  *	big page size instead small one if nearby are ram too.
354  */
adjust_range_page_size_mask(struct map_range * mr,int nr_range)355 static void __ref adjust_range_page_size_mask(struct map_range *mr,
356 							 int nr_range)
357 {
358 	int i;
359 
360 	for (i = 0; i < nr_range; i++) {
361 		if ((page_size_mask & (1<<PG_LEVEL_2M)) &&
362 		    !(mr[i].page_size_mask & (1<<PG_LEVEL_2M))) {
363 			unsigned long start = round_down(mr[i].start, PMD_SIZE);
364 			unsigned long end = round_up(mr[i].end, PMD_SIZE);
365 
366 #ifdef CONFIG_X86_32
367 			if ((end >> PAGE_SHIFT) > max_low_pfn)
368 				continue;
369 #endif
370 
371 			if (memblock_is_region_memory(start, end - start))
372 				mr[i].page_size_mask |= 1<<PG_LEVEL_2M;
373 		}
374 		if ((page_size_mask & (1<<PG_LEVEL_1G)) &&
375 		    !(mr[i].page_size_mask & (1<<PG_LEVEL_1G))) {
376 			unsigned long start = round_down(mr[i].start, PUD_SIZE);
377 			unsigned long end = round_up(mr[i].end, PUD_SIZE);
378 
379 			if (memblock_is_region_memory(start, end - start))
380 				mr[i].page_size_mask |= 1<<PG_LEVEL_1G;
381 		}
382 	}
383 }
384 
page_size_string(struct map_range * mr)385 static const char *page_size_string(struct map_range *mr)
386 {
387 	static const char str_1g[] = "1G";
388 	static const char str_2m[] = "2M";
389 	static const char str_4m[] = "4M";
390 	static const char str_4k[] = "4k";
391 
392 	if (mr->page_size_mask & (1<<PG_LEVEL_1G))
393 		return str_1g;
394 	/*
395 	 * 32-bit without PAE has a 4M large page size.
396 	 * PG_LEVEL_2M is misnamed, but we can at least
397 	 * print out the right size in the string.
398 	 */
399 	if (IS_ENABLED(CONFIG_X86_32) &&
400 	    !IS_ENABLED(CONFIG_X86_PAE) &&
401 	    mr->page_size_mask & (1<<PG_LEVEL_2M))
402 		return str_4m;
403 
404 	if (mr->page_size_mask & (1<<PG_LEVEL_2M))
405 		return str_2m;
406 
407 	return str_4k;
408 }
409 
split_mem_range(struct map_range * mr,int nr_range,unsigned long start,unsigned long end)410 static int __meminit split_mem_range(struct map_range *mr, int nr_range,
411 				     unsigned long start,
412 				     unsigned long end)
413 {
414 	unsigned long start_pfn, end_pfn, limit_pfn;
415 	unsigned long pfn;
416 	int i;
417 
418 	limit_pfn = PFN_DOWN(end);
419 
420 	/* head if not big page alignment ? */
421 	pfn = start_pfn = PFN_DOWN(start);
422 #ifdef CONFIG_X86_32
423 	/*
424 	 * Don't use a large page for the first 2/4MB of memory
425 	 * because there are often fixed size MTRRs in there
426 	 * and overlapping MTRRs into large pages can cause
427 	 * slowdowns.
428 	 */
429 	if (pfn == 0)
430 		end_pfn = PFN_DOWN(PMD_SIZE);
431 	else
432 		end_pfn = round_up(pfn, PFN_DOWN(PMD_SIZE));
433 #else /* CONFIG_X86_64 */
434 	end_pfn = round_up(pfn, PFN_DOWN(PMD_SIZE));
435 #endif
436 	if (end_pfn > limit_pfn)
437 		end_pfn = limit_pfn;
438 	if (start_pfn < end_pfn) {
439 		nr_range = save_mr(mr, nr_range, start_pfn, end_pfn, 0);
440 		pfn = end_pfn;
441 	}
442 
443 	/* big page (2M) range */
444 	start_pfn = round_up(pfn, PFN_DOWN(PMD_SIZE));
445 #ifdef CONFIG_X86_32
446 	end_pfn = round_down(limit_pfn, PFN_DOWN(PMD_SIZE));
447 #else /* CONFIG_X86_64 */
448 	end_pfn = round_up(pfn, PFN_DOWN(PUD_SIZE));
449 	if (end_pfn > round_down(limit_pfn, PFN_DOWN(PMD_SIZE)))
450 		end_pfn = round_down(limit_pfn, PFN_DOWN(PMD_SIZE));
451 #endif
452 
453 	if (start_pfn < end_pfn) {
454 		nr_range = save_mr(mr, nr_range, start_pfn, end_pfn,
455 				page_size_mask & (1<<PG_LEVEL_2M));
456 		pfn = end_pfn;
457 	}
458 
459 #ifdef CONFIG_X86_64
460 	/* big page (1G) range */
461 	start_pfn = round_up(pfn, PFN_DOWN(PUD_SIZE));
462 	end_pfn = round_down(limit_pfn, PFN_DOWN(PUD_SIZE));
463 	if (start_pfn < end_pfn) {
464 		nr_range = save_mr(mr, nr_range, start_pfn, end_pfn,
465 				page_size_mask &
466 				 ((1<<PG_LEVEL_2M)|(1<<PG_LEVEL_1G)));
467 		pfn = end_pfn;
468 	}
469 
470 	/* tail is not big page (1G) alignment */
471 	start_pfn = round_up(pfn, PFN_DOWN(PMD_SIZE));
472 	end_pfn = round_down(limit_pfn, PFN_DOWN(PMD_SIZE));
473 	if (start_pfn < end_pfn) {
474 		nr_range = save_mr(mr, nr_range, start_pfn, end_pfn,
475 				page_size_mask & (1<<PG_LEVEL_2M));
476 		pfn = end_pfn;
477 	}
478 #endif
479 
480 	/* tail is not big page (2M) alignment */
481 	start_pfn = pfn;
482 	end_pfn = limit_pfn;
483 	nr_range = save_mr(mr, nr_range, start_pfn, end_pfn, 0);
484 
485 	if (!after_bootmem)
486 		adjust_range_page_size_mask(mr, nr_range);
487 
488 	/* try to merge same page size and continuous */
489 	for (i = 0; nr_range > 1 && i < nr_range - 1; i++) {
490 		unsigned long old_start;
491 		if (mr[i].end != mr[i+1].start ||
492 		    mr[i].page_size_mask != mr[i+1].page_size_mask)
493 			continue;
494 		/* move it */
495 		old_start = mr[i].start;
496 		memmove(&mr[i], &mr[i+1],
497 			(nr_range - 1 - i) * sizeof(struct map_range));
498 		mr[i--].start = old_start;
499 		nr_range--;
500 	}
501 
502 	for (i = 0; i < nr_range; i++)
503 		pr_debug(" [mem %#010lx-%#010lx] page %s\n",
504 				mr[i].start, mr[i].end - 1,
505 				page_size_string(&mr[i]));
506 
507 	return nr_range;
508 }
509 
510 struct range pfn_mapped[E820_MAX_ENTRIES];
511 int nr_pfn_mapped;
512 
add_pfn_range_mapped(unsigned long start_pfn,unsigned long end_pfn)513 static void add_pfn_range_mapped(unsigned long start_pfn, unsigned long end_pfn)
514 {
515 	nr_pfn_mapped = add_range_with_merge(pfn_mapped, E820_MAX_ENTRIES,
516 					     nr_pfn_mapped, start_pfn, end_pfn);
517 	nr_pfn_mapped = clean_sort_range(pfn_mapped, E820_MAX_ENTRIES);
518 
519 	max_pfn_mapped = max(max_pfn_mapped, end_pfn);
520 
521 	if (start_pfn < (1UL<<(32-PAGE_SHIFT)))
522 		max_low_pfn_mapped = max(max_low_pfn_mapped,
523 					 min(end_pfn, 1UL<<(32-PAGE_SHIFT)));
524 }
525 
pfn_range_is_mapped(unsigned long start_pfn,unsigned long end_pfn)526 bool pfn_range_is_mapped(unsigned long start_pfn, unsigned long end_pfn)
527 {
528 	int i;
529 
530 	for (i = 0; i < nr_pfn_mapped; i++)
531 		if ((start_pfn >= pfn_mapped[i].start) &&
532 		    (end_pfn <= pfn_mapped[i].end))
533 			return true;
534 
535 	return false;
536 }
537 
538 /*
539  * Setup the direct mapping of the physical memory at PAGE_OFFSET.
540  * This runs before bootmem is initialized and gets pages directly from
541  * the physical memory. To access them they are temporarily mapped.
542  */
init_memory_mapping(unsigned long start,unsigned long end,pgprot_t prot)543 unsigned long __ref init_memory_mapping(unsigned long start,
544 					unsigned long end, pgprot_t prot)
545 {
546 	struct map_range mr[NR_RANGE_MR];
547 	unsigned long ret = 0;
548 	int nr_range, i;
549 
550 	pr_debug("init_memory_mapping: [mem %#010lx-%#010lx]\n",
551 	       start, end - 1);
552 
553 	memset(mr, 0, sizeof(mr));
554 	nr_range = split_mem_range(mr, 0, start, end);
555 
556 	for (i = 0; i < nr_range; i++)
557 		ret = kernel_physical_mapping_init(mr[i].start, mr[i].end,
558 						   mr[i].page_size_mask,
559 						   prot);
560 
561 	add_pfn_range_mapped(start >> PAGE_SHIFT, ret >> PAGE_SHIFT);
562 
563 	return ret >> PAGE_SHIFT;
564 }
565 
566 /*
567  * We need to iterate through the E820 memory map and create direct mappings
568  * for only E820_TYPE_RAM and E820_KERN_RESERVED regions. We cannot simply
569  * create direct mappings for all pfns from [0 to max_low_pfn) and
570  * [4GB to max_pfn) because of possible memory holes in high addresses
571  * that cannot be marked as UC by fixed/variable range MTRRs.
572  * Depending on the alignment of E820 ranges, this may possibly result
573  * in using smaller size (i.e. 4K instead of 2M or 1G) page tables.
574  *
575  * init_mem_mapping() calls init_range_memory_mapping() with big range.
576  * That range would have hole in the middle or ends, and only ram parts
577  * will be mapped in init_range_memory_mapping().
578  */
init_range_memory_mapping(unsigned long r_start,unsigned long r_end)579 static unsigned long __init init_range_memory_mapping(
580 					   unsigned long r_start,
581 					   unsigned long r_end)
582 {
583 	unsigned long start_pfn, end_pfn;
584 	unsigned long mapped_ram_size = 0;
585 	int i;
586 
587 	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, NULL) {
588 		u64 start = clamp_val(PFN_PHYS(start_pfn), r_start, r_end);
589 		u64 end = clamp_val(PFN_PHYS(end_pfn), r_start, r_end);
590 		if (start >= end)
591 			continue;
592 
593 		/*
594 		 * if it is overlapping with brk pgt, we need to
595 		 * alloc pgt buf from memblock instead.
596 		 */
597 		can_use_brk_pgt = max(start, (u64)pgt_buf_end<<PAGE_SHIFT) >=
598 				    min(end, (u64)pgt_buf_top<<PAGE_SHIFT);
599 		init_memory_mapping(start, end, PAGE_KERNEL);
600 		mapped_ram_size += end - start;
601 		can_use_brk_pgt = true;
602 	}
603 
604 	return mapped_ram_size;
605 }
606 
get_new_step_size(unsigned long step_size)607 static unsigned long __init get_new_step_size(unsigned long step_size)
608 {
609 	/*
610 	 * Initial mapped size is PMD_SIZE (2M).
611 	 * We can not set step_size to be PUD_SIZE (1G) yet.
612 	 * In worse case, when we cross the 1G boundary, and
613 	 * PG_LEVEL_2M is not set, we will need 1+1+512 pages (2M + 8k)
614 	 * to map 1G range with PTE. Hence we use one less than the
615 	 * difference of page table level shifts.
616 	 *
617 	 * Don't need to worry about overflow in the top-down case, on 32bit,
618 	 * when step_size is 0, round_down() returns 0 for start, and that
619 	 * turns it into 0x100000000ULL.
620 	 * In the bottom-up case, round_up(x, 0) returns 0 though too, which
621 	 * needs to be taken into consideration by the code below.
622 	 */
623 	return step_size << (PMD_SHIFT - PAGE_SHIFT - 1);
624 }
625 
626 /**
627  * memory_map_top_down - Map [map_start, map_end) top down
628  * @map_start: start address of the target memory range
629  * @map_end: end address of the target memory range
630  *
631  * This function will setup direct mapping for memory range
632  * [map_start, map_end) in top-down. That said, the page tables
633  * will be allocated at the end of the memory, and we map the
634  * memory in top-down.
635  */
memory_map_top_down(unsigned long map_start,unsigned long map_end)636 static void __init memory_map_top_down(unsigned long map_start,
637 				       unsigned long map_end)
638 {
639 	unsigned long real_end, last_start;
640 	unsigned long step_size;
641 	unsigned long addr;
642 	unsigned long mapped_ram_size = 0;
643 
644 	/*
645 	 * Systems that have many reserved areas near top of the memory,
646 	 * e.g. QEMU with less than 1G RAM and EFI enabled, or Xen, will
647 	 * require lots of 4K mappings which may exhaust pgt_buf.
648 	 * Start with top-most PMD_SIZE range aligned at PMD_SIZE to ensure
649 	 * there is enough mapped memory that can be allocated from
650 	 * memblock.
651 	 */
652 	addr = memblock_phys_alloc_range(PMD_SIZE, PMD_SIZE, map_start,
653 					 map_end);
654 	if (!addr) {
655 		pr_warn("Failed to release memory for alloc_low_pages()");
656 		real_end = max(map_start, ALIGN_DOWN(map_end, PMD_SIZE));
657 	} else {
658 		memblock_phys_free(addr, PMD_SIZE);
659 		real_end = addr + PMD_SIZE;
660 	}
661 
662 	/* step_size need to be small so pgt_buf from BRK could cover it */
663 	step_size = PMD_SIZE;
664 	max_pfn_mapped = 0; /* will get exact value next */
665 	min_pfn_mapped = real_end >> PAGE_SHIFT;
666 	last_start = real_end;
667 
668 	/*
669 	 * We start from the top (end of memory) and go to the bottom.
670 	 * The memblock_find_in_range() gets us a block of RAM from the
671 	 * end of RAM in [min_pfn_mapped, max_pfn_mapped) used as new pages
672 	 * for page table.
673 	 */
674 	while (last_start > map_start) {
675 		unsigned long start;
676 
677 		if (last_start > step_size) {
678 			start = round_down(last_start - 1, step_size);
679 			if (start < map_start)
680 				start = map_start;
681 		} else
682 			start = map_start;
683 		mapped_ram_size += init_range_memory_mapping(start,
684 							last_start);
685 		last_start = start;
686 		min_pfn_mapped = last_start >> PAGE_SHIFT;
687 		if (mapped_ram_size >= step_size)
688 			step_size = get_new_step_size(step_size);
689 	}
690 
691 	if (real_end < map_end)
692 		init_range_memory_mapping(real_end, map_end);
693 }
694 
695 /**
696  * memory_map_bottom_up - Map [map_start, map_end) bottom up
697  * @map_start: start address of the target memory range
698  * @map_end: end address of the target memory range
699  *
700  * This function will setup direct mapping for memory range
701  * [map_start, map_end) in bottom-up. Since we have limited the
702  * bottom-up allocation above the kernel, the page tables will
703  * be allocated just above the kernel and we map the memory
704  * in [map_start, map_end) in bottom-up.
705  */
memory_map_bottom_up(unsigned long map_start,unsigned long map_end)706 static void __init memory_map_bottom_up(unsigned long map_start,
707 					unsigned long map_end)
708 {
709 	unsigned long next, start;
710 	unsigned long mapped_ram_size = 0;
711 	/* step_size need to be small so pgt_buf from BRK could cover it */
712 	unsigned long step_size = PMD_SIZE;
713 
714 	start = map_start;
715 	min_pfn_mapped = start >> PAGE_SHIFT;
716 
717 	/*
718 	 * We start from the bottom (@map_start) and go to the top (@map_end).
719 	 * The memblock_find_in_range() gets us a block of RAM from the
720 	 * end of RAM in [min_pfn_mapped, max_pfn_mapped) used as new pages
721 	 * for page table.
722 	 */
723 	while (start < map_end) {
724 		if (step_size && map_end - start > step_size) {
725 			next = round_up(start + 1, step_size);
726 			if (next > map_end)
727 				next = map_end;
728 		} else {
729 			next = map_end;
730 		}
731 
732 		mapped_ram_size += init_range_memory_mapping(start, next);
733 		start = next;
734 
735 		if (mapped_ram_size >= step_size)
736 			step_size = get_new_step_size(step_size);
737 	}
738 }
739 
740 /*
741  * The real mode trampoline, which is required for bootstrapping CPUs
742  * occupies only a small area under the low 1MB.  See reserve_real_mode()
743  * for details.
744  *
745  * If KASLR is disabled the first PGD entry of the direct mapping is copied
746  * to map the real mode trampoline.
747  *
748  * If KASLR is enabled, copy only the PUD which covers the low 1MB
749  * area. This limits the randomization granularity to 1GB for both 4-level
750  * and 5-level paging.
751  */
init_trampoline(void)752 static void __init init_trampoline(void)
753 {
754 #ifdef CONFIG_X86_64
755 	/*
756 	 * The code below will alias kernel page-tables in the user-range of the
757 	 * address space, including the Global bit. So global TLB entries will
758 	 * be created when using the trampoline page-table.
759 	 */
760 	if (!kaslr_memory_enabled())
761 		trampoline_pgd_entry = init_top_pgt[pgd_index(__PAGE_OFFSET)];
762 	else
763 		init_trampoline_kaslr();
764 #endif
765 }
766 
init_mem_mapping(void)767 void __init init_mem_mapping(void)
768 {
769 	unsigned long end;
770 
771 	pti_check_boottime_disable();
772 	probe_page_size_mask();
773 	setup_pcid();
774 
775 #ifdef CONFIG_X86_64
776 	end = max_pfn << PAGE_SHIFT;
777 #else
778 	end = max_low_pfn << PAGE_SHIFT;
779 #endif
780 
781 	/* the ISA range is always mapped regardless of memory holes */
782 	init_memory_mapping(0, ISA_END_ADDRESS, PAGE_KERNEL);
783 
784 	/* Init the trampoline, possibly with KASLR memory offset */
785 	init_trampoline();
786 
787 	/*
788 	 * If the allocation is in bottom-up direction, we setup direct mapping
789 	 * in bottom-up, otherwise we setup direct mapping in top-down.
790 	 */
791 	if (memblock_bottom_up()) {
792 		unsigned long kernel_end = __pa_symbol(_end);
793 
794 		/*
795 		 * we need two separate calls here. This is because we want to
796 		 * allocate page tables above the kernel. So we first map
797 		 * [kernel_end, end) to make memory above the kernel be mapped
798 		 * as soon as possible. And then use page tables allocated above
799 		 * the kernel to map [ISA_END_ADDRESS, kernel_end).
800 		 */
801 		memory_map_bottom_up(kernel_end, end);
802 		memory_map_bottom_up(ISA_END_ADDRESS, kernel_end);
803 	} else {
804 		memory_map_top_down(ISA_END_ADDRESS, end);
805 	}
806 
807 #ifdef CONFIG_X86_64
808 	if (max_pfn > max_low_pfn) {
809 		/* can we preserve max_low_pfn ?*/
810 		max_low_pfn = max_pfn;
811 	}
812 #else
813 	early_ioremap_page_table_range_init();
814 #endif
815 
816 	load_cr3(swapper_pg_dir);
817 	__flush_tlb_all();
818 
819 	x86_init.hyper.init_mem_mapping();
820 
821 	early_memtest(0, max_pfn_mapped << PAGE_SHIFT);
822 }
823 
824 /*
825  * Initialize an mm_struct to be used during poking and a pointer to be used
826  * during patching.
827  */
poking_init(void)828 void __init poking_init(void)
829 {
830 	spinlock_t *ptl;
831 	pte_t *ptep;
832 
833 	poking_mm = mm_alloc();
834 	BUG_ON(!poking_mm);
835 
836 	/* Xen PV guests need the PGD to be pinned. */
837 	paravirt_enter_mmap(poking_mm);
838 
839 	/*
840 	 * Randomize the poking address, but make sure that the following page
841 	 * will be mapped at the same PMD. We need 2 pages, so find space for 3,
842 	 * and adjust the address if the PMD ends after the first one.
843 	 */
844 	poking_addr = TASK_UNMAPPED_BASE;
845 	if (IS_ENABLED(CONFIG_RANDOMIZE_BASE))
846 		poking_addr += (kaslr_get_random_long("Poking") & PAGE_MASK) %
847 			(TASK_SIZE - TASK_UNMAPPED_BASE - 3 * PAGE_SIZE);
848 
849 	if (((poking_addr + PAGE_SIZE) & ~PMD_MASK) == 0)
850 		poking_addr += PAGE_SIZE;
851 
852 	/*
853 	 * We need to trigger the allocation of the page-tables that will be
854 	 * needed for poking now. Later, poking may be performed in an atomic
855 	 * section, which might cause allocation to fail.
856 	 */
857 	ptep = get_locked_pte(poking_mm, poking_addr, &ptl);
858 	BUG_ON(!ptep);
859 	pte_unmap_unlock(ptep, ptl);
860 }
861 
862 /*
863  * devmem_is_allowed() checks to see if /dev/mem access to a certain address
864  * is valid. The argument is a physical page number.
865  *
866  * On x86, access has to be given to the first megabyte of RAM because that
867  * area traditionally contains BIOS code and data regions used by X, dosemu,
868  * and similar apps. Since they map the entire memory range, the whole range
869  * must be allowed (for mapping), but any areas that would otherwise be
870  * disallowed are flagged as being "zero filled" instead of rejected.
871  * Access has to be given to non-kernel-ram areas as well, these contain the
872  * PCI mmio resources as well as potential bios/acpi data regions.
873  */
devmem_is_allowed(unsigned long pagenr)874 int devmem_is_allowed(unsigned long pagenr)
875 {
876 	if (region_intersects(PFN_PHYS(pagenr), PAGE_SIZE,
877 				IORESOURCE_SYSTEM_RAM, IORES_DESC_NONE)
878 			!= REGION_DISJOINT) {
879 		/*
880 		 * For disallowed memory regions in the low 1MB range,
881 		 * request that the page be shown as all zeros.
882 		 */
883 		if (pagenr < 256)
884 			return 2;
885 
886 		return 0;
887 	}
888 
889 	/*
890 	 * This must follow RAM test, since System RAM is considered a
891 	 * restricted resource under CONFIG_STRICT_DEVMEM.
892 	 */
893 	if (iomem_is_exclusive(pagenr << PAGE_SHIFT)) {
894 		/* Low 1MB bypasses iomem restrictions. */
895 		if (pagenr < 256)
896 			return 1;
897 
898 		return 0;
899 	}
900 
901 	return 1;
902 }
903 
free_init_pages(const char * what,unsigned long begin,unsigned long end)904 void free_init_pages(const char *what, unsigned long begin, unsigned long end)
905 {
906 	unsigned long begin_aligned, end_aligned;
907 
908 	/* Make sure boundaries are page aligned */
909 	begin_aligned = PAGE_ALIGN(begin);
910 	end_aligned   = end & PAGE_MASK;
911 
912 	if (WARN_ON(begin_aligned != begin || end_aligned != end)) {
913 		begin = begin_aligned;
914 		end   = end_aligned;
915 	}
916 
917 	if (begin >= end)
918 		return;
919 
920 	/*
921 	 * If debugging page accesses then do not free this memory but
922 	 * mark them not present - any buggy init-section access will
923 	 * create a kernel page fault:
924 	 */
925 	if (debug_pagealloc_enabled()) {
926 		pr_info("debug: unmapping init [mem %#010lx-%#010lx]\n",
927 			begin, end - 1);
928 		/*
929 		 * Inform kmemleak about the hole in the memory since the
930 		 * corresponding pages will be unmapped.
931 		 */
932 		kmemleak_free_part((void *)begin, end - begin);
933 		set_memory_np(begin, (end - begin) >> PAGE_SHIFT);
934 	} else {
935 		/*
936 		 * We just marked the kernel text read only above, now that
937 		 * we are going to free part of that, we need to make that
938 		 * writeable and non-executable first.
939 		 */
940 		set_memory_nx(begin, (end - begin) >> PAGE_SHIFT);
941 		set_memory_rw(begin, (end - begin) >> PAGE_SHIFT);
942 
943 		free_reserved_area((void *)begin, (void *)end,
944 				   POISON_FREE_INITMEM, what);
945 	}
946 }
947 
948 /*
949  * begin/end can be in the direct map or the "high kernel mapping"
950  * used for the kernel image only.  free_init_pages() will do the
951  * right thing for either kind of address.
952  */
free_kernel_image_pages(const char * what,void * begin,void * end)953 void free_kernel_image_pages(const char *what, void *begin, void *end)
954 {
955 	unsigned long begin_ul = (unsigned long)begin;
956 	unsigned long end_ul = (unsigned long)end;
957 	unsigned long len_pages = (end_ul - begin_ul) >> PAGE_SHIFT;
958 
959 	free_init_pages(what, begin_ul, end_ul);
960 
961 	/*
962 	 * PTI maps some of the kernel into userspace.  For performance,
963 	 * this includes some kernel areas that do not contain secrets.
964 	 * Those areas might be adjacent to the parts of the kernel image
965 	 * being freed, which may contain secrets.  Remove the "high kernel
966 	 * image mapping" for these freed areas, ensuring they are not even
967 	 * potentially vulnerable to Meltdown regardless of the specific
968 	 * optimizations PTI is currently using.
969 	 *
970 	 * The "noalias" prevents unmapping the direct map alias which is
971 	 * needed to access the freed pages.
972 	 *
973 	 * This is only valid for 64bit kernels. 32bit has only one mapping
974 	 * which can't be treated in this way for obvious reasons.
975 	 */
976 	if (IS_ENABLED(CONFIG_X86_64) && cpu_feature_enabled(X86_FEATURE_PTI))
977 		set_memory_np_noalias(begin_ul, len_pages);
978 }
979 
free_initmem(void)980 void __ref free_initmem(void)
981 {
982 	e820__reallocate_tables();
983 
984 	mem_encrypt_free_decrypted_mem();
985 
986 	free_kernel_image_pages("unused kernel image (initmem)",
987 				&__init_begin, &__init_end);
988 }
989 
990 #ifdef CONFIG_BLK_DEV_INITRD
free_initrd_mem(unsigned long start,unsigned long end)991 void __init free_initrd_mem(unsigned long start, unsigned long end)
992 {
993 	/*
994 	 * end could be not aligned, and We can not align that,
995 	 * decompressor could be confused by aligned initrd_end
996 	 * We already reserve the end partial page before in
997 	 *   - i386_start_kernel()
998 	 *   - x86_64_start_kernel()
999 	 *   - relocate_initrd()
1000 	 * So here We can do PAGE_ALIGN() safely to get partial page to be freed
1001 	 */
1002 	free_init_pages("initrd", start, PAGE_ALIGN(end));
1003 }
1004 #endif
1005 
zone_sizes_init(void)1006 void __init zone_sizes_init(void)
1007 {
1008 	unsigned long max_zone_pfns[MAX_NR_ZONES];
1009 
1010 	memset(max_zone_pfns, 0, sizeof(max_zone_pfns));
1011 
1012 #ifdef CONFIG_ZONE_DMA
1013 	max_zone_pfns[ZONE_DMA]		= min(MAX_DMA_PFN, max_low_pfn);
1014 #endif
1015 #ifdef CONFIG_ZONE_DMA32
1016 	max_zone_pfns[ZONE_DMA32]	= disable_dma32 ? 0 : min(MAX_DMA32_PFN, max_low_pfn);
1017 #endif
1018 	max_zone_pfns[ZONE_NORMAL]	= max_low_pfn;
1019 #ifdef CONFIG_HIGHMEM
1020 	max_zone_pfns[ZONE_HIGHMEM]	= max_pfn;
1021 #endif
1022 
1023 	free_area_init(max_zone_pfns);
1024 }
1025 
early_disable_dma32(char * buf)1026 static int __init early_disable_dma32(char *buf)
1027 {
1028 	if (!buf)
1029 		return -EINVAL;
1030 
1031 	if (!strcmp(buf, "on"))
1032 		disable_dma32 = true;
1033 
1034 	return 0;
1035 }
1036 early_param("disable_dma32", early_disable_dma32);
1037 
1038 __visible DEFINE_PER_CPU_ALIGNED(struct tlb_state, cpu_tlbstate) = {
1039 	.loaded_mm = &init_mm,
1040 	.next_asid = 1,
1041 	.cr4 = ~0UL,	/* fail hard if we screw up cr4 shadow initialization */
1042 };
1043 
1044 #ifdef CONFIG_ADDRESS_MASKING
1045 DEFINE_PER_CPU(u64, tlbstate_untag_mask);
1046 EXPORT_PER_CPU_SYMBOL(tlbstate_untag_mask);
1047 #endif
1048 
update_cache_mode_entry(unsigned entry,enum page_cache_mode cache)1049 void update_cache_mode_entry(unsigned entry, enum page_cache_mode cache)
1050 {
1051 	/* entry 0 MUST be WB (hardwired to speed up translations) */
1052 	BUG_ON(!entry && cache != _PAGE_CACHE_MODE_WB);
1053 
1054 	__cachemode2pte_tbl[cache] = __cm_idx2pte(entry);
1055 	__pte2cachemode_tbl[entry] = cache;
1056 }
1057 
1058 #ifdef CONFIG_SWAP
arch_max_swapfile_size(void)1059 unsigned long arch_max_swapfile_size(void)
1060 {
1061 	unsigned long pages;
1062 
1063 	pages = generic_max_swapfile_size();
1064 
1065 	if (boot_cpu_has_bug(X86_BUG_L1TF) && l1tf_mitigation != L1TF_MITIGATION_OFF) {
1066 		/* Limit the swap file size to MAX_PA/2 for L1TF workaround */
1067 		unsigned long long l1tf_limit = l1tf_pfn_limit();
1068 		/*
1069 		 * We encode swap offsets also with 3 bits below those for pfn
1070 		 * which makes the usable limit higher.
1071 		 */
1072 #if CONFIG_PGTABLE_LEVELS > 2
1073 		l1tf_limit <<= PAGE_SHIFT - SWP_OFFSET_FIRST_BIT;
1074 #endif
1075 		pages = min_t(unsigned long long, l1tf_limit, pages);
1076 	}
1077 	return pages;
1078 }
1079 #endif
1080 
1081 #ifdef CONFIG_EXECMEM
1082 static struct execmem_info execmem_info __ro_after_init;
1083 
execmem_arch_setup(void)1084 struct execmem_info __init *execmem_arch_setup(void)
1085 {
1086 	unsigned long start, offset = 0;
1087 
1088 	if (kaslr_enabled())
1089 		offset = get_random_u32_inclusive(1, 1024) * PAGE_SIZE;
1090 
1091 	start = MODULES_VADDR + offset;
1092 
1093 	execmem_info = (struct execmem_info){
1094 		.ranges = {
1095 			[EXECMEM_DEFAULT] = {
1096 				.flags	= EXECMEM_KASAN_SHADOW,
1097 				.start	= start,
1098 				.end	= MODULES_END,
1099 				.pgprot	= PAGE_KERNEL,
1100 				.alignment = MODULE_ALIGN,
1101 			},
1102 		},
1103 	};
1104 
1105 	return &execmem_info;
1106 }
1107 #endif /* CONFIG_EXECMEM */
1108