1 #include <linux/gfp.h>
2 #include <linux/initrd.h>
3 #include <linux/ioport.h>
4 #include <linux/swap.h>
5 #include <linux/memblock.h>
6 #include <linux/swapfile.h>
7 #include <linux/swapops.h>
8 #include <linux/kmemleak.h>
9 #include <linux/sched/task.h>
10 #include <linux/execmem.h>
11
12 #include <asm/set_memory.h>
13 #include <asm/cpu_device_id.h>
14 #include <asm/e820/api.h>
15 #include <asm/init.h>
16 #include <asm/page.h>
17 #include <asm/page_types.h>
18 #include <asm/sections.h>
19 #include <asm/setup.h>
20 #include <asm/tlbflush.h>
21 #include <asm/tlb.h>
22 #include <asm/proto.h>
23 #include <asm/dma.h> /* for MAX_DMA_PFN */
24 #include <asm/kaslr.h>
25 #include <asm/hypervisor.h>
26 #include <asm/cpufeature.h>
27 #include <asm/pti.h>
28 #include <asm/text-patching.h>
29 #include <asm/memtype.h>
30 #include <asm/paravirt.h>
31
32 /*
33 * We need to define the tracepoints somewhere, and tlb.c
34 * is only compiled when SMP=y.
35 */
36 #include <trace/events/tlb.h>
37
38 #include "mm_internal.h"
39
40 /*
41 * Tables translating between page_cache_type_t and pte encoding.
42 *
43 * The default values are defined statically as minimal supported mode;
44 * WC and WT fall back to UC-. pat_init() updates these values to support
45 * more cache modes, WC and WT, when it is safe to do so. See pat_init()
46 * for the details. Note, __early_ioremap() used during early boot-time
47 * takes pgprot_t (pte encoding) and does not use these tables.
48 *
49 * Index into __cachemode2pte_tbl[] is the cachemode.
50 *
51 * Index into __pte2cachemode_tbl[] are the caching attribute bits of the pte
52 * (_PAGE_PWT, _PAGE_PCD, _PAGE_PAT) at index bit positions 0, 1, 2.
53 */
54 static uint16_t __cachemode2pte_tbl[_PAGE_CACHE_MODE_NUM] = {
55 [_PAGE_CACHE_MODE_WB ] = 0 | 0 ,
56 [_PAGE_CACHE_MODE_WC ] = 0 | _PAGE_PCD,
57 [_PAGE_CACHE_MODE_UC_MINUS] = 0 | _PAGE_PCD,
58 [_PAGE_CACHE_MODE_UC ] = _PAGE_PWT | _PAGE_PCD,
59 [_PAGE_CACHE_MODE_WT ] = 0 | _PAGE_PCD,
60 [_PAGE_CACHE_MODE_WP ] = 0 | _PAGE_PCD,
61 };
62
cachemode2protval(enum page_cache_mode pcm)63 unsigned long cachemode2protval(enum page_cache_mode pcm)
64 {
65 if (likely(pcm == 0))
66 return 0;
67 return __cachemode2pte_tbl[pcm];
68 }
69 EXPORT_SYMBOL(cachemode2protval);
70
71 static uint8_t __pte2cachemode_tbl[8] = {
72 [__pte2cm_idx( 0 | 0 | 0 )] = _PAGE_CACHE_MODE_WB,
73 [__pte2cm_idx(_PAGE_PWT | 0 | 0 )] = _PAGE_CACHE_MODE_UC_MINUS,
74 [__pte2cm_idx( 0 | _PAGE_PCD | 0 )] = _PAGE_CACHE_MODE_UC_MINUS,
75 [__pte2cm_idx(_PAGE_PWT | _PAGE_PCD | 0 )] = _PAGE_CACHE_MODE_UC,
76 [__pte2cm_idx( 0 | 0 | _PAGE_PAT)] = _PAGE_CACHE_MODE_WB,
77 [__pte2cm_idx(_PAGE_PWT | 0 | _PAGE_PAT)] = _PAGE_CACHE_MODE_UC_MINUS,
78 [__pte2cm_idx(0 | _PAGE_PCD | _PAGE_PAT)] = _PAGE_CACHE_MODE_UC_MINUS,
79 [__pte2cm_idx(_PAGE_PWT | _PAGE_PCD | _PAGE_PAT)] = _PAGE_CACHE_MODE_UC,
80 };
81
82 /*
83 * Check that the write-protect PAT entry is set for write-protect.
84 * To do this without making assumptions how PAT has been set up (Xen has
85 * another layout than the kernel), translate the _PAGE_CACHE_MODE_WP cache
86 * mode via the __cachemode2pte_tbl[] into protection bits (those protection
87 * bits will select a cache mode of WP or better), and then translate the
88 * protection bits back into the cache mode using __pte2cm_idx() and the
89 * __pte2cachemode_tbl[] array. This will return the really used cache mode.
90 */
x86_has_pat_wp(void)91 bool x86_has_pat_wp(void)
92 {
93 uint16_t prot = __cachemode2pte_tbl[_PAGE_CACHE_MODE_WP];
94
95 return __pte2cachemode_tbl[__pte2cm_idx(prot)] == _PAGE_CACHE_MODE_WP;
96 }
97
pgprot2cachemode(pgprot_t pgprot)98 enum page_cache_mode pgprot2cachemode(pgprot_t pgprot)
99 {
100 unsigned long masked;
101
102 masked = pgprot_val(pgprot) & _PAGE_CACHE_MASK;
103 if (likely(masked == 0))
104 return 0;
105 return __pte2cachemode_tbl[__pte2cm_idx(masked)];
106 }
107
108 static unsigned long __initdata pgt_buf_start;
109 static unsigned long __initdata pgt_buf_end;
110 static unsigned long __initdata pgt_buf_top;
111
112 static unsigned long min_pfn_mapped;
113
114 static bool __initdata can_use_brk_pgt = true;
115
116 /*
117 * Provide a run-time mean of disabling ZONE_DMA32 if it is enabled via
118 * CONFIG_ZONE_DMA32.
119 */
120 static bool disable_dma32 __ro_after_init;
121
122 /*
123 * Pages returned are already directly mapped.
124 *
125 * Changing that is likely to break Xen, see commit:
126 *
127 * 279b706 x86,xen: introduce x86_init.mapping.pagetable_reserve
128 *
129 * for detailed information.
130 */
alloc_low_pages(unsigned int num)131 __ref void *alloc_low_pages(unsigned int num)
132 {
133 unsigned long pfn;
134 int i;
135
136 if (after_bootmem) {
137 unsigned int order;
138
139 order = get_order((unsigned long)num << PAGE_SHIFT);
140 return (void *)__get_free_pages(GFP_ATOMIC | __GFP_ZERO, order);
141 }
142
143 if ((pgt_buf_end + num) > pgt_buf_top || !can_use_brk_pgt) {
144 unsigned long ret = 0;
145
146 if (min_pfn_mapped < max_pfn_mapped) {
147 ret = memblock_phys_alloc_range(
148 PAGE_SIZE * num, PAGE_SIZE,
149 min_pfn_mapped << PAGE_SHIFT,
150 max_pfn_mapped << PAGE_SHIFT);
151 }
152 if (!ret && can_use_brk_pgt)
153 ret = __pa(extend_brk(PAGE_SIZE * num, PAGE_SIZE));
154
155 if (!ret)
156 panic("alloc_low_pages: can not alloc memory");
157
158 pfn = ret >> PAGE_SHIFT;
159 } else {
160 pfn = pgt_buf_end;
161 pgt_buf_end += num;
162 }
163
164 for (i = 0; i < num; i++) {
165 void *adr;
166
167 adr = __va((pfn + i) << PAGE_SHIFT);
168 clear_page(adr);
169 }
170
171 return __va(pfn << PAGE_SHIFT);
172 }
173
174 /*
175 * By default need to be able to allocate page tables below PGD firstly for
176 * the 0-ISA_END_ADDRESS range and secondly for the initial PMD_SIZE mapping.
177 * With KASLR memory randomization, depending on the machine e820 memory and the
178 * PUD alignment, twice that many pages may be needed when KASLR memory
179 * randomization is enabled.
180 */
181
182 #ifndef CONFIG_X86_5LEVEL
183 #define INIT_PGD_PAGE_TABLES 3
184 #else
185 #define INIT_PGD_PAGE_TABLES 4
186 #endif
187
188 #ifndef CONFIG_RANDOMIZE_MEMORY
189 #define INIT_PGD_PAGE_COUNT (2 * INIT_PGD_PAGE_TABLES)
190 #else
191 #define INIT_PGD_PAGE_COUNT (4 * INIT_PGD_PAGE_TABLES)
192 #endif
193
194 #define INIT_PGT_BUF_SIZE (INIT_PGD_PAGE_COUNT * PAGE_SIZE)
195 RESERVE_BRK(early_pgt_alloc, INIT_PGT_BUF_SIZE);
early_alloc_pgt_buf(void)196 void __init early_alloc_pgt_buf(void)
197 {
198 unsigned long tables = INIT_PGT_BUF_SIZE;
199 phys_addr_t base;
200
201 base = __pa(extend_brk(tables, PAGE_SIZE));
202
203 pgt_buf_start = base >> PAGE_SHIFT;
204 pgt_buf_end = pgt_buf_start;
205 pgt_buf_top = pgt_buf_start + (tables >> PAGE_SHIFT);
206 }
207
208 int after_bootmem;
209
210 early_param_on_off("gbpages", "nogbpages", direct_gbpages, CONFIG_X86_DIRECT_GBPAGES);
211
212 struct map_range {
213 unsigned long start;
214 unsigned long end;
215 unsigned page_size_mask;
216 };
217
218 static int page_size_mask;
219
220 /*
221 * Save some of cr4 feature set we're using (e.g. Pentium 4MB
222 * enable and PPro Global page enable), so that any CPU's that boot
223 * up after us can get the correct flags. Invoked on the boot CPU.
224 */
cr4_set_bits_and_update_boot(unsigned long mask)225 static inline void cr4_set_bits_and_update_boot(unsigned long mask)
226 {
227 mmu_cr4_features |= mask;
228 if (trampoline_cr4_features)
229 *trampoline_cr4_features = mmu_cr4_features;
230 cr4_set_bits(mask);
231 }
232
probe_page_size_mask(void)233 static void __init probe_page_size_mask(void)
234 {
235 /*
236 * For pagealloc debugging, identity mapping will use small pages.
237 * This will simplify cpa(), which otherwise needs to support splitting
238 * large pages into small in interrupt context, etc.
239 */
240 if (boot_cpu_has(X86_FEATURE_PSE) && !debug_pagealloc_enabled())
241 page_size_mask |= 1 << PG_LEVEL_2M;
242 else
243 direct_gbpages = 0;
244
245 /* Enable PSE if available */
246 if (boot_cpu_has(X86_FEATURE_PSE))
247 cr4_set_bits_and_update_boot(X86_CR4_PSE);
248
249 /* Enable PGE if available */
250 __supported_pte_mask &= ~_PAGE_GLOBAL;
251 if (boot_cpu_has(X86_FEATURE_PGE)) {
252 cr4_set_bits_and_update_boot(X86_CR4_PGE);
253 __supported_pte_mask |= _PAGE_GLOBAL;
254 }
255
256 /* By the default is everything supported: */
257 __default_kernel_pte_mask = __supported_pte_mask;
258 /* Except when with PTI where the kernel is mostly non-Global: */
259 if (cpu_feature_enabled(X86_FEATURE_PTI))
260 __default_kernel_pte_mask &= ~_PAGE_GLOBAL;
261
262 /* Enable 1 GB linear kernel mappings if available: */
263 if (direct_gbpages && boot_cpu_has(X86_FEATURE_GBPAGES)) {
264 printk(KERN_INFO "Using GB pages for direct mapping\n");
265 page_size_mask |= 1 << PG_LEVEL_1G;
266 } else {
267 direct_gbpages = 0;
268 }
269 }
270
271 /*
272 * INVLPG may not properly flush Global entries on
273 * these CPUs. New microcode fixes the issue.
274 */
275 static const struct x86_cpu_id invlpg_miss_ids[] = {
276 X86_MATCH_VFM(INTEL_ALDERLAKE, 0x2e),
277 X86_MATCH_VFM(INTEL_ALDERLAKE_L, 0x42c),
278 X86_MATCH_VFM(INTEL_ATOM_GRACEMONT, 0x11),
279 X86_MATCH_VFM(INTEL_RAPTORLAKE, 0x118),
280 X86_MATCH_VFM(INTEL_RAPTORLAKE_P, 0x4117),
281 X86_MATCH_VFM(INTEL_RAPTORLAKE_S, 0x2e),
282 {}
283 };
284
setup_pcid(void)285 static void setup_pcid(void)
286 {
287 const struct x86_cpu_id *invlpg_miss_match;
288
289 if (!IS_ENABLED(CONFIG_X86_64))
290 return;
291
292 if (!boot_cpu_has(X86_FEATURE_PCID))
293 return;
294
295 invlpg_miss_match = x86_match_cpu(invlpg_miss_ids);
296
297 if (invlpg_miss_match &&
298 boot_cpu_data.microcode < invlpg_miss_match->driver_data) {
299 pr_info("Incomplete global flushes, disabling PCID");
300 setup_clear_cpu_cap(X86_FEATURE_PCID);
301 return;
302 }
303
304 if (boot_cpu_has(X86_FEATURE_PGE)) {
305 /*
306 * This can't be cr4_set_bits_and_update_boot() -- the
307 * trampoline code can't handle CR4.PCIDE and it wouldn't
308 * do any good anyway. Despite the name,
309 * cr4_set_bits_and_update_boot() doesn't actually cause
310 * the bits in question to remain set all the way through
311 * the secondary boot asm.
312 *
313 * Instead, we brute-force it and set CR4.PCIDE manually in
314 * start_secondary().
315 */
316 cr4_set_bits(X86_CR4_PCIDE);
317 } else {
318 /*
319 * flush_tlb_all(), as currently implemented, won't work if
320 * PCID is on but PGE is not. Since that combination
321 * doesn't exist on real hardware, there's no reason to try
322 * to fully support it, but it's polite to avoid corrupting
323 * data if we're on an improperly configured VM.
324 */
325 setup_clear_cpu_cap(X86_FEATURE_PCID);
326 }
327 }
328
329 #ifdef CONFIG_X86_32
330 #define NR_RANGE_MR 3
331 #else /* CONFIG_X86_64 */
332 #define NR_RANGE_MR 5
333 #endif
334
save_mr(struct map_range * mr,int nr_range,unsigned long start_pfn,unsigned long end_pfn,unsigned long page_size_mask)335 static int __meminit save_mr(struct map_range *mr, int nr_range,
336 unsigned long start_pfn, unsigned long end_pfn,
337 unsigned long page_size_mask)
338 {
339 if (start_pfn < end_pfn) {
340 if (nr_range >= NR_RANGE_MR)
341 panic("run out of range for init_memory_mapping\n");
342 mr[nr_range].start = start_pfn<<PAGE_SHIFT;
343 mr[nr_range].end = end_pfn<<PAGE_SHIFT;
344 mr[nr_range].page_size_mask = page_size_mask;
345 nr_range++;
346 }
347
348 return nr_range;
349 }
350
351 /*
352 * adjust the page_size_mask for small range to go with
353 * big page size instead small one if nearby are ram too.
354 */
adjust_range_page_size_mask(struct map_range * mr,int nr_range)355 static void __ref adjust_range_page_size_mask(struct map_range *mr,
356 int nr_range)
357 {
358 int i;
359
360 for (i = 0; i < nr_range; i++) {
361 if ((page_size_mask & (1<<PG_LEVEL_2M)) &&
362 !(mr[i].page_size_mask & (1<<PG_LEVEL_2M))) {
363 unsigned long start = round_down(mr[i].start, PMD_SIZE);
364 unsigned long end = round_up(mr[i].end, PMD_SIZE);
365
366 #ifdef CONFIG_X86_32
367 if ((end >> PAGE_SHIFT) > max_low_pfn)
368 continue;
369 #endif
370
371 if (memblock_is_region_memory(start, end - start))
372 mr[i].page_size_mask |= 1<<PG_LEVEL_2M;
373 }
374 if ((page_size_mask & (1<<PG_LEVEL_1G)) &&
375 !(mr[i].page_size_mask & (1<<PG_LEVEL_1G))) {
376 unsigned long start = round_down(mr[i].start, PUD_SIZE);
377 unsigned long end = round_up(mr[i].end, PUD_SIZE);
378
379 if (memblock_is_region_memory(start, end - start))
380 mr[i].page_size_mask |= 1<<PG_LEVEL_1G;
381 }
382 }
383 }
384
page_size_string(struct map_range * mr)385 static const char *page_size_string(struct map_range *mr)
386 {
387 static const char str_1g[] = "1G";
388 static const char str_2m[] = "2M";
389 static const char str_4m[] = "4M";
390 static const char str_4k[] = "4k";
391
392 if (mr->page_size_mask & (1<<PG_LEVEL_1G))
393 return str_1g;
394 /*
395 * 32-bit without PAE has a 4M large page size.
396 * PG_LEVEL_2M is misnamed, but we can at least
397 * print out the right size in the string.
398 */
399 if (IS_ENABLED(CONFIG_X86_32) &&
400 !IS_ENABLED(CONFIG_X86_PAE) &&
401 mr->page_size_mask & (1<<PG_LEVEL_2M))
402 return str_4m;
403
404 if (mr->page_size_mask & (1<<PG_LEVEL_2M))
405 return str_2m;
406
407 return str_4k;
408 }
409
split_mem_range(struct map_range * mr,int nr_range,unsigned long start,unsigned long end)410 static int __meminit split_mem_range(struct map_range *mr, int nr_range,
411 unsigned long start,
412 unsigned long end)
413 {
414 unsigned long start_pfn, end_pfn, limit_pfn;
415 unsigned long pfn;
416 int i;
417
418 limit_pfn = PFN_DOWN(end);
419
420 /* head if not big page alignment ? */
421 pfn = start_pfn = PFN_DOWN(start);
422 #ifdef CONFIG_X86_32
423 /*
424 * Don't use a large page for the first 2/4MB of memory
425 * because there are often fixed size MTRRs in there
426 * and overlapping MTRRs into large pages can cause
427 * slowdowns.
428 */
429 if (pfn == 0)
430 end_pfn = PFN_DOWN(PMD_SIZE);
431 else
432 end_pfn = round_up(pfn, PFN_DOWN(PMD_SIZE));
433 #else /* CONFIG_X86_64 */
434 end_pfn = round_up(pfn, PFN_DOWN(PMD_SIZE));
435 #endif
436 if (end_pfn > limit_pfn)
437 end_pfn = limit_pfn;
438 if (start_pfn < end_pfn) {
439 nr_range = save_mr(mr, nr_range, start_pfn, end_pfn, 0);
440 pfn = end_pfn;
441 }
442
443 /* big page (2M) range */
444 start_pfn = round_up(pfn, PFN_DOWN(PMD_SIZE));
445 #ifdef CONFIG_X86_32
446 end_pfn = round_down(limit_pfn, PFN_DOWN(PMD_SIZE));
447 #else /* CONFIG_X86_64 */
448 end_pfn = round_up(pfn, PFN_DOWN(PUD_SIZE));
449 if (end_pfn > round_down(limit_pfn, PFN_DOWN(PMD_SIZE)))
450 end_pfn = round_down(limit_pfn, PFN_DOWN(PMD_SIZE));
451 #endif
452
453 if (start_pfn < end_pfn) {
454 nr_range = save_mr(mr, nr_range, start_pfn, end_pfn,
455 page_size_mask & (1<<PG_LEVEL_2M));
456 pfn = end_pfn;
457 }
458
459 #ifdef CONFIG_X86_64
460 /* big page (1G) range */
461 start_pfn = round_up(pfn, PFN_DOWN(PUD_SIZE));
462 end_pfn = round_down(limit_pfn, PFN_DOWN(PUD_SIZE));
463 if (start_pfn < end_pfn) {
464 nr_range = save_mr(mr, nr_range, start_pfn, end_pfn,
465 page_size_mask &
466 ((1<<PG_LEVEL_2M)|(1<<PG_LEVEL_1G)));
467 pfn = end_pfn;
468 }
469
470 /* tail is not big page (1G) alignment */
471 start_pfn = round_up(pfn, PFN_DOWN(PMD_SIZE));
472 end_pfn = round_down(limit_pfn, PFN_DOWN(PMD_SIZE));
473 if (start_pfn < end_pfn) {
474 nr_range = save_mr(mr, nr_range, start_pfn, end_pfn,
475 page_size_mask & (1<<PG_LEVEL_2M));
476 pfn = end_pfn;
477 }
478 #endif
479
480 /* tail is not big page (2M) alignment */
481 start_pfn = pfn;
482 end_pfn = limit_pfn;
483 nr_range = save_mr(mr, nr_range, start_pfn, end_pfn, 0);
484
485 if (!after_bootmem)
486 adjust_range_page_size_mask(mr, nr_range);
487
488 /* try to merge same page size and continuous */
489 for (i = 0; nr_range > 1 && i < nr_range - 1; i++) {
490 unsigned long old_start;
491 if (mr[i].end != mr[i+1].start ||
492 mr[i].page_size_mask != mr[i+1].page_size_mask)
493 continue;
494 /* move it */
495 old_start = mr[i].start;
496 memmove(&mr[i], &mr[i+1],
497 (nr_range - 1 - i) * sizeof(struct map_range));
498 mr[i--].start = old_start;
499 nr_range--;
500 }
501
502 for (i = 0; i < nr_range; i++)
503 pr_debug(" [mem %#010lx-%#010lx] page %s\n",
504 mr[i].start, mr[i].end - 1,
505 page_size_string(&mr[i]));
506
507 return nr_range;
508 }
509
510 struct range pfn_mapped[E820_MAX_ENTRIES];
511 int nr_pfn_mapped;
512
add_pfn_range_mapped(unsigned long start_pfn,unsigned long end_pfn)513 static void add_pfn_range_mapped(unsigned long start_pfn, unsigned long end_pfn)
514 {
515 nr_pfn_mapped = add_range_with_merge(pfn_mapped, E820_MAX_ENTRIES,
516 nr_pfn_mapped, start_pfn, end_pfn);
517 nr_pfn_mapped = clean_sort_range(pfn_mapped, E820_MAX_ENTRIES);
518
519 max_pfn_mapped = max(max_pfn_mapped, end_pfn);
520
521 if (start_pfn < (1UL<<(32-PAGE_SHIFT)))
522 max_low_pfn_mapped = max(max_low_pfn_mapped,
523 min(end_pfn, 1UL<<(32-PAGE_SHIFT)));
524 }
525
pfn_range_is_mapped(unsigned long start_pfn,unsigned long end_pfn)526 bool pfn_range_is_mapped(unsigned long start_pfn, unsigned long end_pfn)
527 {
528 int i;
529
530 for (i = 0; i < nr_pfn_mapped; i++)
531 if ((start_pfn >= pfn_mapped[i].start) &&
532 (end_pfn <= pfn_mapped[i].end))
533 return true;
534
535 return false;
536 }
537
538 /*
539 * Setup the direct mapping of the physical memory at PAGE_OFFSET.
540 * This runs before bootmem is initialized and gets pages directly from
541 * the physical memory. To access them they are temporarily mapped.
542 */
init_memory_mapping(unsigned long start,unsigned long end,pgprot_t prot)543 unsigned long __ref init_memory_mapping(unsigned long start,
544 unsigned long end, pgprot_t prot)
545 {
546 struct map_range mr[NR_RANGE_MR];
547 unsigned long ret = 0;
548 int nr_range, i;
549
550 pr_debug("init_memory_mapping: [mem %#010lx-%#010lx]\n",
551 start, end - 1);
552
553 memset(mr, 0, sizeof(mr));
554 nr_range = split_mem_range(mr, 0, start, end);
555
556 for (i = 0; i < nr_range; i++)
557 ret = kernel_physical_mapping_init(mr[i].start, mr[i].end,
558 mr[i].page_size_mask,
559 prot);
560
561 add_pfn_range_mapped(start >> PAGE_SHIFT, ret >> PAGE_SHIFT);
562
563 return ret >> PAGE_SHIFT;
564 }
565
566 /*
567 * We need to iterate through the E820 memory map and create direct mappings
568 * for only E820_TYPE_RAM and E820_KERN_RESERVED regions. We cannot simply
569 * create direct mappings for all pfns from [0 to max_low_pfn) and
570 * [4GB to max_pfn) because of possible memory holes in high addresses
571 * that cannot be marked as UC by fixed/variable range MTRRs.
572 * Depending on the alignment of E820 ranges, this may possibly result
573 * in using smaller size (i.e. 4K instead of 2M or 1G) page tables.
574 *
575 * init_mem_mapping() calls init_range_memory_mapping() with big range.
576 * That range would have hole in the middle or ends, and only ram parts
577 * will be mapped in init_range_memory_mapping().
578 */
init_range_memory_mapping(unsigned long r_start,unsigned long r_end)579 static unsigned long __init init_range_memory_mapping(
580 unsigned long r_start,
581 unsigned long r_end)
582 {
583 unsigned long start_pfn, end_pfn;
584 unsigned long mapped_ram_size = 0;
585 int i;
586
587 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, NULL) {
588 u64 start = clamp_val(PFN_PHYS(start_pfn), r_start, r_end);
589 u64 end = clamp_val(PFN_PHYS(end_pfn), r_start, r_end);
590 if (start >= end)
591 continue;
592
593 /*
594 * if it is overlapping with brk pgt, we need to
595 * alloc pgt buf from memblock instead.
596 */
597 can_use_brk_pgt = max(start, (u64)pgt_buf_end<<PAGE_SHIFT) >=
598 min(end, (u64)pgt_buf_top<<PAGE_SHIFT);
599 init_memory_mapping(start, end, PAGE_KERNEL);
600 mapped_ram_size += end - start;
601 can_use_brk_pgt = true;
602 }
603
604 return mapped_ram_size;
605 }
606
get_new_step_size(unsigned long step_size)607 static unsigned long __init get_new_step_size(unsigned long step_size)
608 {
609 /*
610 * Initial mapped size is PMD_SIZE (2M).
611 * We can not set step_size to be PUD_SIZE (1G) yet.
612 * In worse case, when we cross the 1G boundary, and
613 * PG_LEVEL_2M is not set, we will need 1+1+512 pages (2M + 8k)
614 * to map 1G range with PTE. Hence we use one less than the
615 * difference of page table level shifts.
616 *
617 * Don't need to worry about overflow in the top-down case, on 32bit,
618 * when step_size is 0, round_down() returns 0 for start, and that
619 * turns it into 0x100000000ULL.
620 * In the bottom-up case, round_up(x, 0) returns 0 though too, which
621 * needs to be taken into consideration by the code below.
622 */
623 return step_size << (PMD_SHIFT - PAGE_SHIFT - 1);
624 }
625
626 /**
627 * memory_map_top_down - Map [map_start, map_end) top down
628 * @map_start: start address of the target memory range
629 * @map_end: end address of the target memory range
630 *
631 * This function will setup direct mapping for memory range
632 * [map_start, map_end) in top-down. That said, the page tables
633 * will be allocated at the end of the memory, and we map the
634 * memory in top-down.
635 */
memory_map_top_down(unsigned long map_start,unsigned long map_end)636 static void __init memory_map_top_down(unsigned long map_start,
637 unsigned long map_end)
638 {
639 unsigned long real_end, last_start;
640 unsigned long step_size;
641 unsigned long addr;
642 unsigned long mapped_ram_size = 0;
643
644 /*
645 * Systems that have many reserved areas near top of the memory,
646 * e.g. QEMU with less than 1G RAM and EFI enabled, or Xen, will
647 * require lots of 4K mappings which may exhaust pgt_buf.
648 * Start with top-most PMD_SIZE range aligned at PMD_SIZE to ensure
649 * there is enough mapped memory that can be allocated from
650 * memblock.
651 */
652 addr = memblock_phys_alloc_range(PMD_SIZE, PMD_SIZE, map_start,
653 map_end);
654 if (!addr) {
655 pr_warn("Failed to release memory for alloc_low_pages()");
656 real_end = max(map_start, ALIGN_DOWN(map_end, PMD_SIZE));
657 } else {
658 memblock_phys_free(addr, PMD_SIZE);
659 real_end = addr + PMD_SIZE;
660 }
661
662 /* step_size need to be small so pgt_buf from BRK could cover it */
663 step_size = PMD_SIZE;
664 max_pfn_mapped = 0; /* will get exact value next */
665 min_pfn_mapped = real_end >> PAGE_SHIFT;
666 last_start = real_end;
667
668 /*
669 * We start from the top (end of memory) and go to the bottom.
670 * The memblock_find_in_range() gets us a block of RAM from the
671 * end of RAM in [min_pfn_mapped, max_pfn_mapped) used as new pages
672 * for page table.
673 */
674 while (last_start > map_start) {
675 unsigned long start;
676
677 if (last_start > step_size) {
678 start = round_down(last_start - 1, step_size);
679 if (start < map_start)
680 start = map_start;
681 } else
682 start = map_start;
683 mapped_ram_size += init_range_memory_mapping(start,
684 last_start);
685 last_start = start;
686 min_pfn_mapped = last_start >> PAGE_SHIFT;
687 if (mapped_ram_size >= step_size)
688 step_size = get_new_step_size(step_size);
689 }
690
691 if (real_end < map_end)
692 init_range_memory_mapping(real_end, map_end);
693 }
694
695 /**
696 * memory_map_bottom_up - Map [map_start, map_end) bottom up
697 * @map_start: start address of the target memory range
698 * @map_end: end address of the target memory range
699 *
700 * This function will setup direct mapping for memory range
701 * [map_start, map_end) in bottom-up. Since we have limited the
702 * bottom-up allocation above the kernel, the page tables will
703 * be allocated just above the kernel and we map the memory
704 * in [map_start, map_end) in bottom-up.
705 */
memory_map_bottom_up(unsigned long map_start,unsigned long map_end)706 static void __init memory_map_bottom_up(unsigned long map_start,
707 unsigned long map_end)
708 {
709 unsigned long next, start;
710 unsigned long mapped_ram_size = 0;
711 /* step_size need to be small so pgt_buf from BRK could cover it */
712 unsigned long step_size = PMD_SIZE;
713
714 start = map_start;
715 min_pfn_mapped = start >> PAGE_SHIFT;
716
717 /*
718 * We start from the bottom (@map_start) and go to the top (@map_end).
719 * The memblock_find_in_range() gets us a block of RAM from the
720 * end of RAM in [min_pfn_mapped, max_pfn_mapped) used as new pages
721 * for page table.
722 */
723 while (start < map_end) {
724 if (step_size && map_end - start > step_size) {
725 next = round_up(start + 1, step_size);
726 if (next > map_end)
727 next = map_end;
728 } else {
729 next = map_end;
730 }
731
732 mapped_ram_size += init_range_memory_mapping(start, next);
733 start = next;
734
735 if (mapped_ram_size >= step_size)
736 step_size = get_new_step_size(step_size);
737 }
738 }
739
740 /*
741 * The real mode trampoline, which is required for bootstrapping CPUs
742 * occupies only a small area under the low 1MB. See reserve_real_mode()
743 * for details.
744 *
745 * If KASLR is disabled the first PGD entry of the direct mapping is copied
746 * to map the real mode trampoline.
747 *
748 * If KASLR is enabled, copy only the PUD which covers the low 1MB
749 * area. This limits the randomization granularity to 1GB for both 4-level
750 * and 5-level paging.
751 */
init_trampoline(void)752 static void __init init_trampoline(void)
753 {
754 #ifdef CONFIG_X86_64
755 /*
756 * The code below will alias kernel page-tables in the user-range of the
757 * address space, including the Global bit. So global TLB entries will
758 * be created when using the trampoline page-table.
759 */
760 if (!kaslr_memory_enabled())
761 trampoline_pgd_entry = init_top_pgt[pgd_index(__PAGE_OFFSET)];
762 else
763 init_trampoline_kaslr();
764 #endif
765 }
766
init_mem_mapping(void)767 void __init init_mem_mapping(void)
768 {
769 unsigned long end;
770
771 pti_check_boottime_disable();
772 probe_page_size_mask();
773 setup_pcid();
774
775 #ifdef CONFIG_X86_64
776 end = max_pfn << PAGE_SHIFT;
777 #else
778 end = max_low_pfn << PAGE_SHIFT;
779 #endif
780
781 /* the ISA range is always mapped regardless of memory holes */
782 init_memory_mapping(0, ISA_END_ADDRESS, PAGE_KERNEL);
783
784 /* Init the trampoline, possibly with KASLR memory offset */
785 init_trampoline();
786
787 /*
788 * If the allocation is in bottom-up direction, we setup direct mapping
789 * in bottom-up, otherwise we setup direct mapping in top-down.
790 */
791 if (memblock_bottom_up()) {
792 unsigned long kernel_end = __pa_symbol(_end);
793
794 /*
795 * we need two separate calls here. This is because we want to
796 * allocate page tables above the kernel. So we first map
797 * [kernel_end, end) to make memory above the kernel be mapped
798 * as soon as possible. And then use page tables allocated above
799 * the kernel to map [ISA_END_ADDRESS, kernel_end).
800 */
801 memory_map_bottom_up(kernel_end, end);
802 memory_map_bottom_up(ISA_END_ADDRESS, kernel_end);
803 } else {
804 memory_map_top_down(ISA_END_ADDRESS, end);
805 }
806
807 #ifdef CONFIG_X86_64
808 if (max_pfn > max_low_pfn) {
809 /* can we preserve max_low_pfn ?*/
810 max_low_pfn = max_pfn;
811 }
812 #else
813 early_ioremap_page_table_range_init();
814 #endif
815
816 load_cr3(swapper_pg_dir);
817 __flush_tlb_all();
818
819 x86_init.hyper.init_mem_mapping();
820
821 early_memtest(0, max_pfn_mapped << PAGE_SHIFT);
822 }
823
824 /*
825 * Initialize an mm_struct to be used during poking and a pointer to be used
826 * during patching.
827 */
poking_init(void)828 void __init poking_init(void)
829 {
830 spinlock_t *ptl;
831 pte_t *ptep;
832
833 poking_mm = mm_alloc();
834 BUG_ON(!poking_mm);
835
836 /* Xen PV guests need the PGD to be pinned. */
837 paravirt_enter_mmap(poking_mm);
838
839 /*
840 * Randomize the poking address, but make sure that the following page
841 * will be mapped at the same PMD. We need 2 pages, so find space for 3,
842 * and adjust the address if the PMD ends after the first one.
843 */
844 poking_addr = TASK_UNMAPPED_BASE;
845 if (IS_ENABLED(CONFIG_RANDOMIZE_BASE))
846 poking_addr += (kaslr_get_random_long("Poking") & PAGE_MASK) %
847 (TASK_SIZE - TASK_UNMAPPED_BASE - 3 * PAGE_SIZE);
848
849 if (((poking_addr + PAGE_SIZE) & ~PMD_MASK) == 0)
850 poking_addr += PAGE_SIZE;
851
852 /*
853 * We need to trigger the allocation of the page-tables that will be
854 * needed for poking now. Later, poking may be performed in an atomic
855 * section, which might cause allocation to fail.
856 */
857 ptep = get_locked_pte(poking_mm, poking_addr, &ptl);
858 BUG_ON(!ptep);
859 pte_unmap_unlock(ptep, ptl);
860 }
861
862 /*
863 * devmem_is_allowed() checks to see if /dev/mem access to a certain address
864 * is valid. The argument is a physical page number.
865 *
866 * On x86, access has to be given to the first megabyte of RAM because that
867 * area traditionally contains BIOS code and data regions used by X, dosemu,
868 * and similar apps. Since they map the entire memory range, the whole range
869 * must be allowed (for mapping), but any areas that would otherwise be
870 * disallowed are flagged as being "zero filled" instead of rejected.
871 * Access has to be given to non-kernel-ram areas as well, these contain the
872 * PCI mmio resources as well as potential bios/acpi data regions.
873 */
devmem_is_allowed(unsigned long pagenr)874 int devmem_is_allowed(unsigned long pagenr)
875 {
876 if (region_intersects(PFN_PHYS(pagenr), PAGE_SIZE,
877 IORESOURCE_SYSTEM_RAM, IORES_DESC_NONE)
878 != REGION_DISJOINT) {
879 /*
880 * For disallowed memory regions in the low 1MB range,
881 * request that the page be shown as all zeros.
882 */
883 if (pagenr < 256)
884 return 2;
885
886 return 0;
887 }
888
889 /*
890 * This must follow RAM test, since System RAM is considered a
891 * restricted resource under CONFIG_STRICT_DEVMEM.
892 */
893 if (iomem_is_exclusive(pagenr << PAGE_SHIFT)) {
894 /* Low 1MB bypasses iomem restrictions. */
895 if (pagenr < 256)
896 return 1;
897
898 return 0;
899 }
900
901 return 1;
902 }
903
free_init_pages(const char * what,unsigned long begin,unsigned long end)904 void free_init_pages(const char *what, unsigned long begin, unsigned long end)
905 {
906 unsigned long begin_aligned, end_aligned;
907
908 /* Make sure boundaries are page aligned */
909 begin_aligned = PAGE_ALIGN(begin);
910 end_aligned = end & PAGE_MASK;
911
912 if (WARN_ON(begin_aligned != begin || end_aligned != end)) {
913 begin = begin_aligned;
914 end = end_aligned;
915 }
916
917 if (begin >= end)
918 return;
919
920 /*
921 * If debugging page accesses then do not free this memory but
922 * mark them not present - any buggy init-section access will
923 * create a kernel page fault:
924 */
925 if (debug_pagealloc_enabled()) {
926 pr_info("debug: unmapping init [mem %#010lx-%#010lx]\n",
927 begin, end - 1);
928 /*
929 * Inform kmemleak about the hole in the memory since the
930 * corresponding pages will be unmapped.
931 */
932 kmemleak_free_part((void *)begin, end - begin);
933 set_memory_np(begin, (end - begin) >> PAGE_SHIFT);
934 } else {
935 /*
936 * We just marked the kernel text read only above, now that
937 * we are going to free part of that, we need to make that
938 * writeable and non-executable first.
939 */
940 set_memory_nx(begin, (end - begin) >> PAGE_SHIFT);
941 set_memory_rw(begin, (end - begin) >> PAGE_SHIFT);
942
943 free_reserved_area((void *)begin, (void *)end,
944 POISON_FREE_INITMEM, what);
945 }
946 }
947
948 /*
949 * begin/end can be in the direct map or the "high kernel mapping"
950 * used for the kernel image only. free_init_pages() will do the
951 * right thing for either kind of address.
952 */
free_kernel_image_pages(const char * what,void * begin,void * end)953 void free_kernel_image_pages(const char *what, void *begin, void *end)
954 {
955 unsigned long begin_ul = (unsigned long)begin;
956 unsigned long end_ul = (unsigned long)end;
957 unsigned long len_pages = (end_ul - begin_ul) >> PAGE_SHIFT;
958
959 free_init_pages(what, begin_ul, end_ul);
960
961 /*
962 * PTI maps some of the kernel into userspace. For performance,
963 * this includes some kernel areas that do not contain secrets.
964 * Those areas might be adjacent to the parts of the kernel image
965 * being freed, which may contain secrets. Remove the "high kernel
966 * image mapping" for these freed areas, ensuring they are not even
967 * potentially vulnerable to Meltdown regardless of the specific
968 * optimizations PTI is currently using.
969 *
970 * The "noalias" prevents unmapping the direct map alias which is
971 * needed to access the freed pages.
972 *
973 * This is only valid for 64bit kernels. 32bit has only one mapping
974 * which can't be treated in this way for obvious reasons.
975 */
976 if (IS_ENABLED(CONFIG_X86_64) && cpu_feature_enabled(X86_FEATURE_PTI))
977 set_memory_np_noalias(begin_ul, len_pages);
978 }
979
free_initmem(void)980 void __ref free_initmem(void)
981 {
982 e820__reallocate_tables();
983
984 mem_encrypt_free_decrypted_mem();
985
986 free_kernel_image_pages("unused kernel image (initmem)",
987 &__init_begin, &__init_end);
988 }
989
990 #ifdef CONFIG_BLK_DEV_INITRD
free_initrd_mem(unsigned long start,unsigned long end)991 void __init free_initrd_mem(unsigned long start, unsigned long end)
992 {
993 /*
994 * end could be not aligned, and We can not align that,
995 * decompressor could be confused by aligned initrd_end
996 * We already reserve the end partial page before in
997 * - i386_start_kernel()
998 * - x86_64_start_kernel()
999 * - relocate_initrd()
1000 * So here We can do PAGE_ALIGN() safely to get partial page to be freed
1001 */
1002 free_init_pages("initrd", start, PAGE_ALIGN(end));
1003 }
1004 #endif
1005
zone_sizes_init(void)1006 void __init zone_sizes_init(void)
1007 {
1008 unsigned long max_zone_pfns[MAX_NR_ZONES];
1009
1010 memset(max_zone_pfns, 0, sizeof(max_zone_pfns));
1011
1012 #ifdef CONFIG_ZONE_DMA
1013 max_zone_pfns[ZONE_DMA] = min(MAX_DMA_PFN, max_low_pfn);
1014 #endif
1015 #ifdef CONFIG_ZONE_DMA32
1016 max_zone_pfns[ZONE_DMA32] = disable_dma32 ? 0 : min(MAX_DMA32_PFN, max_low_pfn);
1017 #endif
1018 max_zone_pfns[ZONE_NORMAL] = max_low_pfn;
1019 #ifdef CONFIG_HIGHMEM
1020 max_zone_pfns[ZONE_HIGHMEM] = max_pfn;
1021 #endif
1022
1023 free_area_init(max_zone_pfns);
1024 }
1025
early_disable_dma32(char * buf)1026 static int __init early_disable_dma32(char *buf)
1027 {
1028 if (!buf)
1029 return -EINVAL;
1030
1031 if (!strcmp(buf, "on"))
1032 disable_dma32 = true;
1033
1034 return 0;
1035 }
1036 early_param("disable_dma32", early_disable_dma32);
1037
1038 __visible DEFINE_PER_CPU_ALIGNED(struct tlb_state, cpu_tlbstate) = {
1039 .loaded_mm = &init_mm,
1040 .next_asid = 1,
1041 .cr4 = ~0UL, /* fail hard if we screw up cr4 shadow initialization */
1042 };
1043
1044 #ifdef CONFIG_ADDRESS_MASKING
1045 DEFINE_PER_CPU(u64, tlbstate_untag_mask);
1046 EXPORT_PER_CPU_SYMBOL(tlbstate_untag_mask);
1047 #endif
1048
update_cache_mode_entry(unsigned entry,enum page_cache_mode cache)1049 void update_cache_mode_entry(unsigned entry, enum page_cache_mode cache)
1050 {
1051 /* entry 0 MUST be WB (hardwired to speed up translations) */
1052 BUG_ON(!entry && cache != _PAGE_CACHE_MODE_WB);
1053
1054 __cachemode2pte_tbl[cache] = __cm_idx2pte(entry);
1055 __pte2cachemode_tbl[entry] = cache;
1056 }
1057
1058 #ifdef CONFIG_SWAP
arch_max_swapfile_size(void)1059 unsigned long arch_max_swapfile_size(void)
1060 {
1061 unsigned long pages;
1062
1063 pages = generic_max_swapfile_size();
1064
1065 if (boot_cpu_has_bug(X86_BUG_L1TF) && l1tf_mitigation != L1TF_MITIGATION_OFF) {
1066 /* Limit the swap file size to MAX_PA/2 for L1TF workaround */
1067 unsigned long long l1tf_limit = l1tf_pfn_limit();
1068 /*
1069 * We encode swap offsets also with 3 bits below those for pfn
1070 * which makes the usable limit higher.
1071 */
1072 #if CONFIG_PGTABLE_LEVELS > 2
1073 l1tf_limit <<= PAGE_SHIFT - SWP_OFFSET_FIRST_BIT;
1074 #endif
1075 pages = min_t(unsigned long long, l1tf_limit, pages);
1076 }
1077 return pages;
1078 }
1079 #endif
1080
1081 #ifdef CONFIG_EXECMEM
1082 static struct execmem_info execmem_info __ro_after_init;
1083
execmem_arch_setup(void)1084 struct execmem_info __init *execmem_arch_setup(void)
1085 {
1086 unsigned long start, offset = 0;
1087
1088 if (kaslr_enabled())
1089 offset = get_random_u32_inclusive(1, 1024) * PAGE_SIZE;
1090
1091 start = MODULES_VADDR + offset;
1092
1093 execmem_info = (struct execmem_info){
1094 .ranges = {
1095 [EXECMEM_DEFAULT] = {
1096 .flags = EXECMEM_KASAN_SHADOW,
1097 .start = start,
1098 .end = MODULES_END,
1099 .pgprot = PAGE_KERNEL,
1100 .alignment = MODULE_ALIGN,
1101 },
1102 },
1103 };
1104
1105 return &execmem_info;
1106 }
1107 #endif /* CONFIG_EXECMEM */
1108