• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/arch/x86_64/mm/init.c
4  *
5  *  Copyright (C) 1995  Linus Torvalds
6  *  Copyright (C) 2000  Pavel Machek <pavel@ucw.cz>
7  *  Copyright (C) 2002,2003 Andi Kleen <ak@suse.de>
8  */
9 
10 #include <linux/signal.h>
11 #include <linux/sched.h>
12 #include <linux/kernel.h>
13 #include <linux/errno.h>
14 #include <linux/string.h>
15 #include <linux/types.h>
16 #include <linux/ptrace.h>
17 #include <linux/mman.h>
18 #include <linux/mm.h>
19 #include <linux/swap.h>
20 #include <linux/smp.h>
21 #include <linux/init.h>
22 #include <linux/initrd.h>
23 #include <linux/pagemap.h>
24 #include <linux/memblock.h>
25 #include <linux/proc_fs.h>
26 #include <linux/pci.h>
27 #include <linux/pfn.h>
28 #include <linux/poison.h>
29 #include <linux/dma-mapping.h>
30 #include <linux/memory.h>
31 #include <linux/memory_hotplug.h>
32 #include <linux/memremap.h>
33 #include <linux/nmi.h>
34 #include <linux/gfp.h>
35 #include <linux/kcore.h>
36 #include <linux/bootmem_info.h>
37 
38 #include <asm/processor.h>
39 #include <asm/bios_ebda.h>
40 #include <linux/uaccess.h>
41 #include <asm/pgalloc.h>
42 #include <asm/dma.h>
43 #include <asm/fixmap.h>
44 #include <asm/e820/api.h>
45 #include <asm/apic.h>
46 #include <asm/tlb.h>
47 #include <asm/mmu_context.h>
48 #include <asm/proto.h>
49 #include <asm/smp.h>
50 #include <asm/sections.h>
51 #include <asm/kdebug.h>
52 #include <asm/numa.h>
53 #include <asm/set_memory.h>
54 #include <asm/init.h>
55 #include <asm/uv/uv.h>
56 #include <asm/setup.h>
57 #include <asm/ftrace.h>
58 
59 #include "mm_internal.h"
60 
61 #include "ident_map.c"
62 
63 #define DEFINE_POPULATE(fname, type1, type2, init)		\
64 static inline void fname##_init(struct mm_struct *mm,		\
65 		type1##_t *arg1, type2##_t *arg2, bool init)	\
66 {								\
67 	if (init)						\
68 		fname##_safe(mm, arg1, arg2);			\
69 	else							\
70 		fname(mm, arg1, arg2);				\
71 }
72 
DEFINE_POPULATE(p4d_populate,p4d,pud,init)73 DEFINE_POPULATE(p4d_populate, p4d, pud, init)
74 DEFINE_POPULATE(pgd_populate, pgd, p4d, init)
75 DEFINE_POPULATE(pud_populate, pud, pmd, init)
76 DEFINE_POPULATE(pmd_populate_kernel, pmd, pte, init)
77 
78 #define DEFINE_ENTRY(type1, type2, init)			\
79 static inline void set_##type1##_init(type1##_t *arg1,		\
80 			type2##_t arg2, bool init)		\
81 {								\
82 	if (init)						\
83 		set_##type1##_safe(arg1, arg2);			\
84 	else							\
85 		set_##type1(arg1, arg2);			\
86 }
87 
88 DEFINE_ENTRY(p4d, p4d, init)
89 DEFINE_ENTRY(pud, pud, init)
90 DEFINE_ENTRY(pmd, pmd, init)
91 DEFINE_ENTRY(pte, pte, init)
92 
93 static inline pgprot_t prot_sethuge(pgprot_t prot)
94 {
95 	WARN_ON_ONCE(pgprot_val(prot) & _PAGE_PAT);
96 
97 	return __pgprot(pgprot_val(prot) | _PAGE_PSE);
98 }
99 
100 /*
101  * NOTE: pagetable_init alloc all the fixmap pagetables contiguous on the
102  * physical space so we can cache the place of the first one and move
103  * around without checking the pgd every time.
104  */
105 
106 /* Bits supported by the hardware: */
107 pteval_t __supported_pte_mask __read_mostly = ~0;
108 /* Bits allowed in normal kernel mappings: */
109 pteval_t __default_kernel_pte_mask __read_mostly = ~0;
110 EXPORT_SYMBOL_GPL(__supported_pte_mask);
111 /* Used in PAGE_KERNEL_* macros which are reasonably used out-of-tree: */
112 EXPORT_SYMBOL(__default_kernel_pte_mask);
113 
114 int force_personality32;
115 
116 /*
117  * noexec32=on|off
118  * Control non executable heap for 32bit processes.
119  *
120  * on	PROT_READ does not imply PROT_EXEC for 32-bit processes (default)
121  * off	PROT_READ implies PROT_EXEC
122  */
nonx32_setup(char * str)123 static int __init nonx32_setup(char *str)
124 {
125 	if (!strcmp(str, "on"))
126 		force_personality32 &= ~READ_IMPLIES_EXEC;
127 	else if (!strcmp(str, "off"))
128 		force_personality32 |= READ_IMPLIES_EXEC;
129 	return 1;
130 }
131 __setup("noexec32=", nonx32_setup);
132 
sync_global_pgds_l5(unsigned long start,unsigned long end)133 static void sync_global_pgds_l5(unsigned long start, unsigned long end)
134 {
135 	unsigned long addr;
136 
137 	for (addr = start; addr <= end; addr = ALIGN(addr + 1, PGDIR_SIZE)) {
138 		const pgd_t *pgd_ref = pgd_offset_k(addr);
139 		struct page *page;
140 
141 		/* Check for overflow */
142 		if (addr < start)
143 			break;
144 
145 		if (pgd_none(*pgd_ref))
146 			continue;
147 
148 		spin_lock(&pgd_lock);
149 		list_for_each_entry(page, &pgd_list, lru) {
150 			pgd_t *pgd;
151 			spinlock_t *pgt_lock;
152 
153 			pgd = (pgd_t *)page_address(page) + pgd_index(addr);
154 			/* the pgt_lock only for Xen */
155 			pgt_lock = &pgd_page_get_mm(page)->page_table_lock;
156 			spin_lock(pgt_lock);
157 
158 			if (!pgd_none(*pgd_ref) && !pgd_none(*pgd))
159 				BUG_ON(pgd_page_vaddr(*pgd) != pgd_page_vaddr(*pgd_ref));
160 
161 			if (pgd_none(*pgd))
162 				set_pgd(pgd, *pgd_ref);
163 
164 			spin_unlock(pgt_lock);
165 		}
166 		spin_unlock(&pgd_lock);
167 	}
168 }
169 
sync_global_pgds_l4(unsigned long start,unsigned long end)170 static void sync_global_pgds_l4(unsigned long start, unsigned long end)
171 {
172 	unsigned long addr;
173 
174 	for (addr = start; addr <= end; addr = ALIGN(addr + 1, PGDIR_SIZE)) {
175 		pgd_t *pgd_ref = pgd_offset_k(addr);
176 		const p4d_t *p4d_ref;
177 		struct page *page;
178 
179 		/*
180 		 * With folded p4d, pgd_none() is always false, we need to
181 		 * handle synchronization on p4d level.
182 		 */
183 		MAYBE_BUILD_BUG_ON(pgd_none(*pgd_ref));
184 		p4d_ref = p4d_offset(pgd_ref, addr);
185 
186 		if (p4d_none(*p4d_ref))
187 			continue;
188 
189 		spin_lock(&pgd_lock);
190 		list_for_each_entry(page, &pgd_list, lru) {
191 			pgd_t *pgd;
192 			p4d_t *p4d;
193 			spinlock_t *pgt_lock;
194 
195 			pgd = (pgd_t *)page_address(page) + pgd_index(addr);
196 			p4d = p4d_offset(pgd, addr);
197 			/* the pgt_lock only for Xen */
198 			pgt_lock = &pgd_page_get_mm(page)->page_table_lock;
199 			spin_lock(pgt_lock);
200 
201 			if (!p4d_none(*p4d_ref) && !p4d_none(*p4d))
202 				BUG_ON(p4d_pgtable(*p4d)
203 				       != p4d_pgtable(*p4d_ref));
204 
205 			if (p4d_none(*p4d))
206 				set_p4d(p4d, *p4d_ref);
207 
208 			spin_unlock(pgt_lock);
209 		}
210 		spin_unlock(&pgd_lock);
211 	}
212 }
213 
214 /*
215  * When memory was added make sure all the processes MM have
216  * suitable PGD entries in the local PGD level page.
217  */
sync_global_pgds(unsigned long start,unsigned long end)218 static void sync_global_pgds(unsigned long start, unsigned long end)
219 {
220 	if (pgtable_l5_enabled())
221 		sync_global_pgds_l5(start, end);
222 	else
223 		sync_global_pgds_l4(start, end);
224 }
225 
226 /*
227  * Make kernel mappings visible in all page tables in the system.
228  * This is necessary except when the init task populates kernel mappings
229  * during the boot process. In that case, all processes originating from
230  * the init task copies the kernel mappings, so there is no issue.
231  * Otherwise, missing synchronization could lead to kernel crashes due
232  * to missing page table entries for certain kernel mappings.
233  *
234  * Synchronization is performed at the top level, which is the PGD in
235  * 5-level paging systems. But in 4-level paging systems, however,
236  * pgd_populate() is a no-op, so synchronization is done at the P4D level.
237  * sync_global_pgds() handles this difference between paging levels.
238  */
arch_sync_kernel_mappings(unsigned long start,unsigned long end)239 void arch_sync_kernel_mappings(unsigned long start, unsigned long end)
240 {
241 	sync_global_pgds(start, end);
242 }
243 
244 /*
245  * NOTE: This function is marked __ref because it calls __init function
246  * (alloc_bootmem_pages). It's safe to do it ONLY when after_bootmem == 0.
247  */
spp_getpage(void)248 static __ref void *spp_getpage(void)
249 {
250 	void *ptr;
251 
252 	if (after_bootmem)
253 		ptr = (void *) get_zeroed_page(GFP_ATOMIC);
254 	else
255 		ptr = memblock_alloc(PAGE_SIZE, PAGE_SIZE);
256 
257 	if (!ptr || ((unsigned long)ptr & ~PAGE_MASK)) {
258 		panic("set_pte_phys: cannot allocate page data %s\n",
259 			after_bootmem ? "after bootmem" : "");
260 	}
261 
262 	pr_debug("spp_getpage %p\n", ptr);
263 
264 	return ptr;
265 }
266 
fill_p4d(pgd_t * pgd,unsigned long vaddr)267 static p4d_t *fill_p4d(pgd_t *pgd, unsigned long vaddr)
268 {
269 	if (pgd_none(*pgd)) {
270 		p4d_t *p4d = (p4d_t *)spp_getpage();
271 		pgd_populate(&init_mm, pgd, p4d);
272 		if (p4d != p4d_offset(pgd, 0))
273 			printk(KERN_ERR "PAGETABLE BUG #00! %p <-> %p\n",
274 			       p4d, p4d_offset(pgd, 0));
275 	}
276 	return p4d_offset(pgd, vaddr);
277 }
278 
fill_pud(p4d_t * p4d,unsigned long vaddr)279 static pud_t *fill_pud(p4d_t *p4d, unsigned long vaddr)
280 {
281 	if (p4d_none(*p4d)) {
282 		pud_t *pud = (pud_t *)spp_getpage();
283 		p4d_populate(&init_mm, p4d, pud);
284 		if (pud != pud_offset(p4d, 0))
285 			printk(KERN_ERR "PAGETABLE BUG #01! %p <-> %p\n",
286 			       pud, pud_offset(p4d, 0));
287 	}
288 	return pud_offset(p4d, vaddr);
289 }
290 
fill_pmd(pud_t * pud,unsigned long vaddr)291 static pmd_t *fill_pmd(pud_t *pud, unsigned long vaddr)
292 {
293 	if (pud_none(*pud)) {
294 		pmd_t *pmd = (pmd_t *) spp_getpage();
295 		pud_populate(&init_mm, pud, pmd);
296 		if (pmd != pmd_offset(pud, 0))
297 			printk(KERN_ERR "PAGETABLE BUG #02! %p <-> %p\n",
298 			       pmd, pmd_offset(pud, 0));
299 	}
300 	return pmd_offset(pud, vaddr);
301 }
302 
fill_pte(pmd_t * pmd,unsigned long vaddr)303 static pte_t *fill_pte(pmd_t *pmd, unsigned long vaddr)
304 {
305 	if (pmd_none(*pmd)) {
306 		pte_t *pte = (pte_t *) spp_getpage();
307 		pmd_populate_kernel(&init_mm, pmd, pte);
308 		if (pte != pte_offset_kernel(pmd, 0))
309 			printk(KERN_ERR "PAGETABLE BUG #03!\n");
310 	}
311 	return pte_offset_kernel(pmd, vaddr);
312 }
313 
__set_pte_vaddr(pud_t * pud,unsigned long vaddr,pte_t new_pte)314 static void __set_pte_vaddr(pud_t *pud, unsigned long vaddr, pte_t new_pte)
315 {
316 	pmd_t *pmd = fill_pmd(pud, vaddr);
317 	pte_t *pte = fill_pte(pmd, vaddr);
318 
319 	set_pte(pte, new_pte);
320 
321 	/*
322 	 * It's enough to flush this one mapping.
323 	 * (PGE mappings get flushed as well)
324 	 */
325 	flush_tlb_one_kernel(vaddr);
326 }
327 
set_pte_vaddr_p4d(p4d_t * p4d_page,unsigned long vaddr,pte_t new_pte)328 void set_pte_vaddr_p4d(p4d_t *p4d_page, unsigned long vaddr, pte_t new_pte)
329 {
330 	p4d_t *p4d = p4d_page + p4d_index(vaddr);
331 	pud_t *pud = fill_pud(p4d, vaddr);
332 
333 	__set_pte_vaddr(pud, vaddr, new_pte);
334 }
335 
set_pte_vaddr_pud(pud_t * pud_page,unsigned long vaddr,pte_t new_pte)336 void set_pte_vaddr_pud(pud_t *pud_page, unsigned long vaddr, pte_t new_pte)
337 {
338 	pud_t *pud = pud_page + pud_index(vaddr);
339 
340 	__set_pte_vaddr(pud, vaddr, new_pte);
341 }
342 
set_pte_vaddr(unsigned long vaddr,pte_t pteval)343 void set_pte_vaddr(unsigned long vaddr, pte_t pteval)
344 {
345 	pgd_t *pgd;
346 	p4d_t *p4d_page;
347 
348 	pr_debug("set_pte_vaddr %lx to %lx\n", vaddr, native_pte_val(pteval));
349 
350 	pgd = pgd_offset_k(vaddr);
351 	if (pgd_none(*pgd)) {
352 		printk(KERN_ERR
353 			"PGD FIXMAP MISSING, it should be setup in head.S!\n");
354 		return;
355 	}
356 
357 	p4d_page = p4d_offset(pgd, 0);
358 	set_pte_vaddr_p4d(p4d_page, vaddr, pteval);
359 }
360 
populate_extra_pmd(unsigned long vaddr)361 pmd_t * __init populate_extra_pmd(unsigned long vaddr)
362 {
363 	pgd_t *pgd;
364 	p4d_t *p4d;
365 	pud_t *pud;
366 
367 	pgd = pgd_offset_k(vaddr);
368 	p4d = fill_p4d(pgd, vaddr);
369 	pud = fill_pud(p4d, vaddr);
370 	return fill_pmd(pud, vaddr);
371 }
372 
populate_extra_pte(unsigned long vaddr)373 pte_t * __init populate_extra_pte(unsigned long vaddr)
374 {
375 	pmd_t *pmd;
376 
377 	pmd = populate_extra_pmd(vaddr);
378 	return fill_pte(pmd, vaddr);
379 }
380 
381 /*
382  * Create large page table mappings for a range of physical addresses.
383  */
__init_extra_mapping(unsigned long phys,unsigned long size,enum page_cache_mode cache)384 static void __init __init_extra_mapping(unsigned long phys, unsigned long size,
385 					enum page_cache_mode cache)
386 {
387 	pgd_t *pgd;
388 	p4d_t *p4d;
389 	pud_t *pud;
390 	pmd_t *pmd;
391 	pgprot_t prot;
392 
393 	pgprot_val(prot) = pgprot_val(PAGE_KERNEL_LARGE) |
394 		protval_4k_2_large(cachemode2protval(cache));
395 	BUG_ON((phys & ~PMD_MASK) || (size & ~PMD_MASK));
396 	for (; size; phys += PMD_SIZE, size -= PMD_SIZE) {
397 		pgd = pgd_offset_k((unsigned long)__va(phys));
398 		if (pgd_none(*pgd)) {
399 			p4d = (p4d_t *) spp_getpage();
400 			set_pgd(pgd, __pgd(__pa(p4d) | _KERNPG_TABLE |
401 						_PAGE_USER));
402 		}
403 		p4d = p4d_offset(pgd, (unsigned long)__va(phys));
404 		if (p4d_none(*p4d)) {
405 			pud = (pud_t *) spp_getpage();
406 			set_p4d(p4d, __p4d(__pa(pud) | _KERNPG_TABLE |
407 						_PAGE_USER));
408 		}
409 		pud = pud_offset(p4d, (unsigned long)__va(phys));
410 		if (pud_none(*pud)) {
411 			pmd = (pmd_t *) spp_getpage();
412 			set_pud(pud, __pud(__pa(pmd) | _KERNPG_TABLE |
413 						_PAGE_USER));
414 		}
415 		pmd = pmd_offset(pud, phys);
416 		BUG_ON(!pmd_none(*pmd));
417 		set_pmd(pmd, __pmd(phys | pgprot_val(prot)));
418 	}
419 }
420 
init_extra_mapping_wb(unsigned long phys,unsigned long size)421 void __init init_extra_mapping_wb(unsigned long phys, unsigned long size)
422 {
423 	__init_extra_mapping(phys, size, _PAGE_CACHE_MODE_WB);
424 }
425 
init_extra_mapping_uc(unsigned long phys,unsigned long size)426 void __init init_extra_mapping_uc(unsigned long phys, unsigned long size)
427 {
428 	__init_extra_mapping(phys, size, _PAGE_CACHE_MODE_UC);
429 }
430 
431 /*
432  * The head.S code sets up the kernel high mapping:
433  *
434  *   from __START_KERNEL_map to __START_KERNEL_map + size (== _end-_text)
435  *
436  * phys_base holds the negative offset to the kernel, which is added
437  * to the compile time generated pmds. This results in invalid pmds up
438  * to the point where we hit the physaddr 0 mapping.
439  *
440  * We limit the mappings to the region from _text to _brk_end.  _brk_end
441  * is rounded up to the 2MB boundary. This catches the invalid pmds as
442  * well, as they are located before _text:
443  */
cleanup_highmap(void)444 void __init cleanup_highmap(void)
445 {
446 	unsigned long vaddr = __START_KERNEL_map;
447 	unsigned long vaddr_end = __START_KERNEL_map + KERNEL_IMAGE_SIZE;
448 	unsigned long end = roundup((unsigned long)_brk_end, PMD_SIZE) - 1;
449 	pmd_t *pmd = level2_kernel_pgt;
450 
451 	/*
452 	 * Native path, max_pfn_mapped is not set yet.
453 	 * Xen has valid max_pfn_mapped set in
454 	 *	arch/x86/xen/mmu.c:xen_setup_kernel_pagetable().
455 	 */
456 	if (max_pfn_mapped)
457 		vaddr_end = __START_KERNEL_map + (max_pfn_mapped << PAGE_SHIFT);
458 
459 	for (; vaddr + PMD_SIZE - 1 < vaddr_end; pmd++, vaddr += PMD_SIZE) {
460 		if (pmd_none(*pmd))
461 			continue;
462 		if (vaddr < (unsigned long) _text || vaddr > end)
463 			set_pmd(pmd, __pmd(0));
464 	}
465 }
466 
467 /*
468  * Create PTE level page table mapping for physical addresses.
469  * It returns the last physical address mapped.
470  */
471 static unsigned long __meminit
phys_pte_init(pte_t * pte_page,unsigned long paddr,unsigned long paddr_end,pgprot_t prot,bool init)472 phys_pte_init(pte_t *pte_page, unsigned long paddr, unsigned long paddr_end,
473 	      pgprot_t prot, bool init)
474 {
475 	unsigned long pages = 0, paddr_next;
476 	unsigned long paddr_last = paddr_end;
477 	pte_t *pte;
478 	int i;
479 
480 	pte = pte_page + pte_index(paddr);
481 	i = pte_index(paddr);
482 
483 	for (; i < PTRS_PER_PTE; i++, paddr = paddr_next, pte++) {
484 		paddr_next = (paddr & PAGE_MASK) + PAGE_SIZE;
485 		if (paddr >= paddr_end) {
486 			if (!after_bootmem &&
487 			    !e820__mapped_any(paddr & PAGE_MASK, paddr_next,
488 					     E820_TYPE_RAM) &&
489 			    !e820__mapped_any(paddr & PAGE_MASK, paddr_next,
490 					     E820_TYPE_RESERVED_KERN) &&
491 			    !e820__mapped_any(paddr & PAGE_MASK, paddr_next,
492 					     E820_TYPE_ACPI))
493 				set_pte_init(pte, __pte(0), init);
494 			continue;
495 		}
496 
497 		/*
498 		 * We will re-use the existing mapping.
499 		 * Xen for example has some special requirements, like mapping
500 		 * pagetable pages as RO. So assume someone who pre-setup
501 		 * these mappings are more intelligent.
502 		 */
503 		if (!pte_none(*pte)) {
504 			if (!after_bootmem)
505 				pages++;
506 			continue;
507 		}
508 
509 		if (0)
510 			pr_info("   pte=%p addr=%lx pte=%016lx\n", pte, paddr,
511 				pfn_pte(paddr >> PAGE_SHIFT, PAGE_KERNEL).pte);
512 		pages++;
513 		set_pte_init(pte, pfn_pte(paddr >> PAGE_SHIFT, prot), init);
514 		paddr_last = (paddr & PAGE_MASK) + PAGE_SIZE;
515 	}
516 
517 	update_page_count(PG_LEVEL_4K, pages);
518 
519 	return paddr_last;
520 }
521 
522 /*
523  * Create PMD level page table mapping for physical addresses. The virtual
524  * and physical address have to be aligned at this level.
525  * It returns the last physical address mapped.
526  */
527 static unsigned long __meminit
phys_pmd_init(pmd_t * pmd_page,unsigned long paddr,unsigned long paddr_end,unsigned long page_size_mask,pgprot_t prot,bool init)528 phys_pmd_init(pmd_t *pmd_page, unsigned long paddr, unsigned long paddr_end,
529 	      unsigned long page_size_mask, pgprot_t prot, bool init)
530 {
531 	unsigned long pages = 0, paddr_next;
532 	unsigned long paddr_last = paddr_end;
533 
534 	int i = pmd_index(paddr);
535 
536 	for (; i < PTRS_PER_PMD; i++, paddr = paddr_next) {
537 		pmd_t *pmd = pmd_page + pmd_index(paddr);
538 		pte_t *pte;
539 		pgprot_t new_prot = prot;
540 
541 		paddr_next = (paddr & PMD_MASK) + PMD_SIZE;
542 		if (paddr >= paddr_end) {
543 			if (!after_bootmem &&
544 			    !e820__mapped_any(paddr & PMD_MASK, paddr_next,
545 					     E820_TYPE_RAM) &&
546 			    !e820__mapped_any(paddr & PMD_MASK, paddr_next,
547 					     E820_TYPE_RESERVED_KERN) &&
548 			    !e820__mapped_any(paddr & PMD_MASK, paddr_next,
549 					     E820_TYPE_ACPI))
550 				set_pmd_init(pmd, __pmd(0), init);
551 			continue;
552 		}
553 
554 		if (!pmd_none(*pmd)) {
555 			if (!pmd_leaf(*pmd)) {
556 				spin_lock(&init_mm.page_table_lock);
557 				pte = (pte_t *)pmd_page_vaddr(*pmd);
558 				paddr_last = phys_pte_init(pte, paddr,
559 							   paddr_end, prot,
560 							   init);
561 				spin_unlock(&init_mm.page_table_lock);
562 				continue;
563 			}
564 			/*
565 			 * If we are ok with PG_LEVEL_2M mapping, then we will
566 			 * use the existing mapping,
567 			 *
568 			 * Otherwise, we will split the large page mapping but
569 			 * use the same existing protection bits except for
570 			 * large page, so that we don't violate Intel's TLB
571 			 * Application note (317080) which says, while changing
572 			 * the page sizes, new and old translations should
573 			 * not differ with respect to page frame and
574 			 * attributes.
575 			 */
576 			if (page_size_mask & (1 << PG_LEVEL_2M)) {
577 				if (!after_bootmem)
578 					pages++;
579 				paddr_last = paddr_next;
580 				continue;
581 			}
582 			new_prot = pte_pgprot(pte_clrhuge(*(pte_t *)pmd));
583 		}
584 
585 		if (page_size_mask & (1<<PG_LEVEL_2M)) {
586 			pages++;
587 			spin_lock(&init_mm.page_table_lock);
588 			set_pmd_init(pmd,
589 				     pfn_pmd(paddr >> PAGE_SHIFT, prot_sethuge(prot)),
590 				     init);
591 			spin_unlock(&init_mm.page_table_lock);
592 			paddr_last = paddr_next;
593 			continue;
594 		}
595 
596 		pte = alloc_low_page();
597 		paddr_last = phys_pte_init(pte, paddr, paddr_end, new_prot, init);
598 
599 		spin_lock(&init_mm.page_table_lock);
600 		pmd_populate_kernel_init(&init_mm, pmd, pte, init);
601 		spin_unlock(&init_mm.page_table_lock);
602 	}
603 	update_page_count(PG_LEVEL_2M, pages);
604 	return paddr_last;
605 }
606 
607 /*
608  * Create PUD level page table mapping for physical addresses. The virtual
609  * and physical address do not have to be aligned at this level. KASLR can
610  * randomize virtual addresses up to this level.
611  * It returns the last physical address mapped.
612  */
613 static unsigned long __meminit
phys_pud_init(pud_t * pud_page,unsigned long paddr,unsigned long paddr_end,unsigned long page_size_mask,pgprot_t _prot,bool init)614 phys_pud_init(pud_t *pud_page, unsigned long paddr, unsigned long paddr_end,
615 	      unsigned long page_size_mask, pgprot_t _prot, bool init)
616 {
617 	unsigned long pages = 0, paddr_next;
618 	unsigned long paddr_last = paddr_end;
619 	unsigned long vaddr = (unsigned long)__va(paddr);
620 	int i = pud_index(vaddr);
621 
622 	for (; i < PTRS_PER_PUD; i++, paddr = paddr_next) {
623 		pud_t *pud;
624 		pmd_t *pmd;
625 		pgprot_t prot = _prot;
626 
627 		vaddr = (unsigned long)__va(paddr);
628 		pud = pud_page + pud_index(vaddr);
629 		paddr_next = (paddr & PUD_MASK) + PUD_SIZE;
630 
631 		if (paddr >= paddr_end) {
632 			if (!after_bootmem &&
633 			    !e820__mapped_any(paddr & PUD_MASK, paddr_next,
634 					     E820_TYPE_RAM) &&
635 			    !e820__mapped_any(paddr & PUD_MASK, paddr_next,
636 					     E820_TYPE_RESERVED_KERN) &&
637 			    !e820__mapped_any(paddr & PUD_MASK, paddr_next,
638 					     E820_TYPE_ACPI))
639 				set_pud_init(pud, __pud(0), init);
640 			continue;
641 		}
642 
643 		if (!pud_none(*pud)) {
644 			if (!pud_leaf(*pud)) {
645 				pmd = pmd_offset(pud, 0);
646 				paddr_last = phys_pmd_init(pmd, paddr,
647 							   paddr_end,
648 							   page_size_mask,
649 							   prot, init);
650 				continue;
651 			}
652 			/*
653 			 * If we are ok with PG_LEVEL_1G mapping, then we will
654 			 * use the existing mapping.
655 			 *
656 			 * Otherwise, we will split the gbpage mapping but use
657 			 * the same existing protection  bits except for large
658 			 * page, so that we don't violate Intel's TLB
659 			 * Application note (317080) which says, while changing
660 			 * the page sizes, new and old translations should
661 			 * not differ with respect to page frame and
662 			 * attributes.
663 			 */
664 			if (page_size_mask & (1 << PG_LEVEL_1G)) {
665 				if (!after_bootmem)
666 					pages++;
667 				paddr_last = paddr_next;
668 				continue;
669 			}
670 			prot = pte_pgprot(pte_clrhuge(*(pte_t *)pud));
671 		}
672 
673 		if (page_size_mask & (1<<PG_LEVEL_1G)) {
674 			pages++;
675 			spin_lock(&init_mm.page_table_lock);
676 			set_pud_init(pud,
677 				     pfn_pud(paddr >> PAGE_SHIFT, prot_sethuge(prot)),
678 				     init);
679 			spin_unlock(&init_mm.page_table_lock);
680 			paddr_last = paddr_next;
681 			continue;
682 		}
683 
684 		pmd = alloc_low_page();
685 		paddr_last = phys_pmd_init(pmd, paddr, paddr_end,
686 					   page_size_mask, prot, init);
687 
688 		spin_lock(&init_mm.page_table_lock);
689 		pud_populate_init(&init_mm, pud, pmd, init);
690 		spin_unlock(&init_mm.page_table_lock);
691 	}
692 
693 	update_page_count(PG_LEVEL_1G, pages);
694 
695 	return paddr_last;
696 }
697 
698 static unsigned long __meminit
phys_p4d_init(p4d_t * p4d_page,unsigned long paddr,unsigned long paddr_end,unsigned long page_size_mask,pgprot_t prot,bool init)699 phys_p4d_init(p4d_t *p4d_page, unsigned long paddr, unsigned long paddr_end,
700 	      unsigned long page_size_mask, pgprot_t prot, bool init)
701 {
702 	unsigned long vaddr, vaddr_end, vaddr_next, paddr_next, paddr_last;
703 
704 	paddr_last = paddr_end;
705 	vaddr = (unsigned long)__va(paddr);
706 	vaddr_end = (unsigned long)__va(paddr_end);
707 
708 	if (!pgtable_l5_enabled())
709 		return phys_pud_init((pud_t *) p4d_page, paddr, paddr_end,
710 				     page_size_mask, prot, init);
711 
712 	for (; vaddr < vaddr_end; vaddr = vaddr_next) {
713 		p4d_t *p4d = p4d_page + p4d_index(vaddr);
714 		pud_t *pud;
715 
716 		vaddr_next = (vaddr & P4D_MASK) + P4D_SIZE;
717 		paddr = __pa(vaddr);
718 
719 		if (paddr >= paddr_end) {
720 			paddr_next = __pa(vaddr_next);
721 			if (!after_bootmem &&
722 			    !e820__mapped_any(paddr & P4D_MASK, paddr_next,
723 					     E820_TYPE_RAM) &&
724 			    !e820__mapped_any(paddr & P4D_MASK, paddr_next,
725 					     E820_TYPE_RESERVED_KERN) &&
726 			    !e820__mapped_any(paddr & P4D_MASK, paddr_next,
727 					     E820_TYPE_ACPI))
728 				set_p4d_init(p4d, __p4d(0), init);
729 			continue;
730 		}
731 
732 		if (!p4d_none(*p4d)) {
733 			pud = pud_offset(p4d, 0);
734 			paddr_last = phys_pud_init(pud, paddr, __pa(vaddr_end),
735 					page_size_mask, prot, init);
736 			continue;
737 		}
738 
739 		pud = alloc_low_page();
740 		paddr_last = phys_pud_init(pud, paddr, __pa(vaddr_end),
741 					   page_size_mask, prot, init);
742 
743 		spin_lock(&init_mm.page_table_lock);
744 		p4d_populate_init(&init_mm, p4d, pud, init);
745 		spin_unlock(&init_mm.page_table_lock);
746 	}
747 
748 	return paddr_last;
749 }
750 
751 static unsigned long __meminit
__kernel_physical_mapping_init(unsigned long paddr_start,unsigned long paddr_end,unsigned long page_size_mask,pgprot_t prot,bool init)752 __kernel_physical_mapping_init(unsigned long paddr_start,
753 			       unsigned long paddr_end,
754 			       unsigned long page_size_mask,
755 			       pgprot_t prot, bool init)
756 {
757 	bool pgd_changed = false;
758 	unsigned long vaddr, vaddr_start, vaddr_end, vaddr_next, paddr_last;
759 
760 	paddr_last = paddr_end;
761 	vaddr = (unsigned long)__va(paddr_start);
762 	vaddr_end = (unsigned long)__va(paddr_end);
763 	vaddr_start = vaddr;
764 
765 	for (; vaddr < vaddr_end; vaddr = vaddr_next) {
766 		pgd_t *pgd = pgd_offset_k(vaddr);
767 		p4d_t *p4d;
768 
769 		vaddr_next = (vaddr & PGDIR_MASK) + PGDIR_SIZE;
770 
771 		if (pgd_val(*pgd)) {
772 			p4d = (p4d_t *)pgd_page_vaddr(*pgd);
773 			paddr_last = phys_p4d_init(p4d, __pa(vaddr),
774 						   __pa(vaddr_end),
775 						   page_size_mask,
776 						   prot, init);
777 			continue;
778 		}
779 
780 		p4d = alloc_low_page();
781 		paddr_last = phys_p4d_init(p4d, __pa(vaddr), __pa(vaddr_end),
782 					   page_size_mask, prot, init);
783 
784 		spin_lock(&init_mm.page_table_lock);
785 		if (pgtable_l5_enabled())
786 			pgd_populate_init(&init_mm, pgd, p4d, init);
787 		else
788 			p4d_populate_init(&init_mm, p4d_offset(pgd, vaddr),
789 					  (pud_t *) p4d, init);
790 
791 		spin_unlock(&init_mm.page_table_lock);
792 		pgd_changed = true;
793 	}
794 
795 	if (pgd_changed)
796 		sync_global_pgds(vaddr_start, vaddr_end - 1);
797 
798 	return paddr_last;
799 }
800 
801 
802 /*
803  * Create page table mapping for the physical memory for specific physical
804  * addresses. Note that it can only be used to populate non-present entries.
805  * The virtual and physical addresses have to be aligned on PMD level
806  * down. It returns the last physical address mapped.
807  */
808 unsigned long __meminit
kernel_physical_mapping_init(unsigned long paddr_start,unsigned long paddr_end,unsigned long page_size_mask,pgprot_t prot)809 kernel_physical_mapping_init(unsigned long paddr_start,
810 			     unsigned long paddr_end,
811 			     unsigned long page_size_mask, pgprot_t prot)
812 {
813 	return __kernel_physical_mapping_init(paddr_start, paddr_end,
814 					      page_size_mask, prot, true);
815 }
816 
817 /*
818  * This function is similar to kernel_physical_mapping_init() above with the
819  * exception that it uses set_{pud,pmd}() instead of the set_{pud,pte}_safe()
820  * when updating the mapping. The caller is responsible to flush the TLBs after
821  * the function returns.
822  */
823 unsigned long __meminit
kernel_physical_mapping_change(unsigned long paddr_start,unsigned long paddr_end,unsigned long page_size_mask)824 kernel_physical_mapping_change(unsigned long paddr_start,
825 			       unsigned long paddr_end,
826 			       unsigned long page_size_mask)
827 {
828 	return __kernel_physical_mapping_init(paddr_start, paddr_end,
829 					      page_size_mask, PAGE_KERNEL,
830 					      false);
831 }
832 
833 #ifndef CONFIG_NUMA
initmem_init(void)834 void __init initmem_init(void)
835 {
836 	memblock_set_node(0, PHYS_ADDR_MAX, &memblock.memory, 0);
837 }
838 #endif
839 
paging_init(void)840 void __init paging_init(void)
841 {
842 	sparse_init();
843 
844 	/*
845 	 * clear the default setting with node 0
846 	 * note: don't use nodes_clear here, that is really clearing when
847 	 *	 numa support is not compiled in, and later node_set_state
848 	 *	 will not set it back.
849 	 */
850 	node_clear_state(0, N_MEMORY);
851 	node_clear_state(0, N_NORMAL_MEMORY);
852 
853 	zone_sizes_init();
854 }
855 
856 #ifdef CONFIG_SPARSEMEM_VMEMMAP
857 #define PAGE_UNUSED 0xFD
858 
859 /*
860  * The unused vmemmap range, which was not yet memset(PAGE_UNUSED), ranges
861  * from unused_pmd_start to next PMD_SIZE boundary.
862  */
863 static unsigned long unused_pmd_start __meminitdata;
864 
vmemmap_flush_unused_pmd(void)865 static void __meminit vmemmap_flush_unused_pmd(void)
866 {
867 	if (!unused_pmd_start)
868 		return;
869 	/*
870 	 * Clears (unused_pmd_start, PMD_END]
871 	 */
872 	memset((void *)unused_pmd_start, PAGE_UNUSED,
873 	       ALIGN(unused_pmd_start, PMD_SIZE) - unused_pmd_start);
874 	unused_pmd_start = 0;
875 }
876 
877 #ifdef CONFIG_MEMORY_HOTPLUG
878 /* Returns true if the PMD is completely unused and thus it can be freed */
vmemmap_pmd_is_unused(unsigned long addr,unsigned long end)879 static bool __meminit vmemmap_pmd_is_unused(unsigned long addr, unsigned long end)
880 {
881 	unsigned long start = ALIGN_DOWN(addr, PMD_SIZE);
882 
883 	/*
884 	 * Flush the unused range cache to ensure that memchr_inv() will work
885 	 * for the whole range.
886 	 */
887 	vmemmap_flush_unused_pmd();
888 	memset((void *)addr, PAGE_UNUSED, end - addr);
889 
890 	return !memchr_inv((void *)start, PAGE_UNUSED, PMD_SIZE);
891 }
892 #endif
893 
__vmemmap_use_sub_pmd(unsigned long start)894 static void __meminit __vmemmap_use_sub_pmd(unsigned long start)
895 {
896 	/*
897 	 * As we expect to add in the same granularity as we remove, it's
898 	 * sufficient to mark only some piece used to block the memmap page from
899 	 * getting removed when removing some other adjacent memmap (just in
900 	 * case the first memmap never gets initialized e.g., because the memory
901 	 * block never gets onlined).
902 	 */
903 	memset((void *)start, 0, sizeof(struct page));
904 }
905 
vmemmap_use_sub_pmd(unsigned long start,unsigned long end)906 static void __meminit vmemmap_use_sub_pmd(unsigned long start, unsigned long end)
907 {
908 	/*
909 	 * We only optimize if the new used range directly follows the
910 	 * previously unused range (esp., when populating consecutive sections).
911 	 */
912 	if (unused_pmd_start == start) {
913 		if (likely(IS_ALIGNED(end, PMD_SIZE)))
914 			unused_pmd_start = 0;
915 		else
916 			unused_pmd_start = end;
917 		return;
918 	}
919 
920 	/*
921 	 * If the range does not contiguously follows previous one, make sure
922 	 * to mark the unused range of the previous one so it can be removed.
923 	 */
924 	vmemmap_flush_unused_pmd();
925 	__vmemmap_use_sub_pmd(start);
926 }
927 
928 
vmemmap_use_new_sub_pmd(unsigned long start,unsigned long end)929 static void __meminit vmemmap_use_new_sub_pmd(unsigned long start, unsigned long end)
930 {
931 	const unsigned long page = ALIGN_DOWN(start, PMD_SIZE);
932 
933 	vmemmap_flush_unused_pmd();
934 
935 	/*
936 	 * Could be our memmap page is filled with PAGE_UNUSED already from a
937 	 * previous remove. Make sure to reset it.
938 	 */
939 	__vmemmap_use_sub_pmd(start);
940 
941 	/*
942 	 * Mark with PAGE_UNUSED the unused parts of the new memmap range
943 	 */
944 	if (!IS_ALIGNED(start, PMD_SIZE))
945 		memset((void *)page, PAGE_UNUSED, start - page);
946 
947 	/*
948 	 * We want to avoid memset(PAGE_UNUSED) when populating the vmemmap of
949 	 * consecutive sections. Remember for the last added PMD where the
950 	 * unused range begins.
951 	 */
952 	if (!IS_ALIGNED(end, PMD_SIZE))
953 		unused_pmd_start = end;
954 }
955 #endif
956 
957 /*
958  * Memory hotplug specific functions
959  */
960 #ifdef CONFIG_MEMORY_HOTPLUG
961 /*
962  * After memory hotplug the variables max_pfn, max_low_pfn and high_memory need
963  * updating.
964  */
update_end_of_memory_vars(u64 start,u64 size)965 static void update_end_of_memory_vars(u64 start, u64 size)
966 {
967 	unsigned long end_pfn = PFN_UP(start + size);
968 
969 	if (end_pfn > max_pfn) {
970 		max_pfn = end_pfn;
971 		max_low_pfn = end_pfn;
972 		high_memory = (void *)__va(max_pfn * PAGE_SIZE - 1) + 1;
973 	}
974 }
975 
add_pages(int nid,unsigned long start_pfn,unsigned long nr_pages,struct mhp_params * params)976 int add_pages(int nid, unsigned long start_pfn, unsigned long nr_pages,
977 	      struct mhp_params *params)
978 {
979 	unsigned long end = ((start_pfn + nr_pages) << PAGE_SHIFT) - 1;
980 	int ret;
981 
982 	if (WARN_ON_ONCE(end > PHYSMEM_END))
983 		return -ERANGE;
984 
985 	ret = __add_pages(nid, start_pfn, nr_pages, params);
986 	WARN_ON_ONCE(ret);
987 
988 	/*
989 	 * Special case: add_pages() is called by memremap_pages() for adding device
990 	 * private pages. Do not bump up max_pfn in the device private path,
991 	 * because max_pfn changes affect dma_addressing_limited().
992 	 *
993 	 * dma_addressing_limited() returning true when max_pfn is the device's
994 	 * addressable memory can force device drivers to use bounce buffers
995 	 * and impact their performance negatively:
996 	 */
997 	if (!params->pgmap)
998 		/* update max_pfn, max_low_pfn and high_memory */
999 		update_end_of_memory_vars(start_pfn << PAGE_SHIFT, nr_pages << PAGE_SHIFT);
1000 
1001 	return ret;
1002 }
1003 
arch_add_memory(int nid,u64 start,u64 size,struct mhp_params * params)1004 int arch_add_memory(int nid, u64 start, u64 size,
1005 		    struct mhp_params *params)
1006 {
1007 	unsigned long start_pfn = start >> PAGE_SHIFT;
1008 	unsigned long nr_pages = size >> PAGE_SHIFT;
1009 
1010 	init_memory_mapping(start, start + size, params->pgprot);
1011 
1012 	return add_pages(nid, start_pfn, nr_pages, params);
1013 }
1014 
free_pagetable(struct page * page,int order)1015 static void __meminit free_pagetable(struct page *page, int order)
1016 {
1017 	unsigned long magic;
1018 	unsigned int nr_pages = 1 << order;
1019 
1020 	/* bootmem page has reserved flag */
1021 	if (PageReserved(page)) {
1022 		magic = page->index;
1023 		if (magic == SECTION_INFO || magic == MIX_SECTION_INFO) {
1024 			while (nr_pages--)
1025 				put_page_bootmem(page++);
1026 		} else
1027 			while (nr_pages--)
1028 				free_reserved_page(page++);
1029 	} else
1030 		free_pages((unsigned long)page_address(page), order);
1031 }
1032 
free_hugepage_table(struct page * page,struct vmem_altmap * altmap)1033 static void __meminit free_hugepage_table(struct page *page,
1034 		struct vmem_altmap *altmap)
1035 {
1036 	if (altmap)
1037 		vmem_altmap_free(altmap, PMD_SIZE / PAGE_SIZE);
1038 	else
1039 		free_pagetable(page, get_order(PMD_SIZE));
1040 }
1041 
free_pte_table(pte_t * pte_start,pmd_t * pmd)1042 static void __meminit free_pte_table(pte_t *pte_start, pmd_t *pmd)
1043 {
1044 	pte_t *pte;
1045 	int i;
1046 
1047 	for (i = 0; i < PTRS_PER_PTE; i++) {
1048 		pte = pte_start + i;
1049 		if (!pte_none(*pte))
1050 			return;
1051 	}
1052 
1053 	/* free a pte table */
1054 	free_pagetable(pmd_page(*pmd), 0);
1055 	spin_lock(&init_mm.page_table_lock);
1056 	pmd_clear(pmd);
1057 	spin_unlock(&init_mm.page_table_lock);
1058 }
1059 
free_pmd_table(pmd_t * pmd_start,pud_t * pud)1060 static void __meminit free_pmd_table(pmd_t *pmd_start, pud_t *pud)
1061 {
1062 	pmd_t *pmd;
1063 	int i;
1064 
1065 	for (i = 0; i < PTRS_PER_PMD; i++) {
1066 		pmd = pmd_start + i;
1067 		if (!pmd_none(*pmd))
1068 			return;
1069 	}
1070 
1071 	/* free a pmd table */
1072 	free_pagetable(pud_page(*pud), 0);
1073 	spin_lock(&init_mm.page_table_lock);
1074 	pud_clear(pud);
1075 	spin_unlock(&init_mm.page_table_lock);
1076 }
1077 
free_pud_table(pud_t * pud_start,p4d_t * p4d)1078 static void __meminit free_pud_table(pud_t *pud_start, p4d_t *p4d)
1079 {
1080 	pud_t *pud;
1081 	int i;
1082 
1083 	for (i = 0; i < PTRS_PER_PUD; i++) {
1084 		pud = pud_start + i;
1085 		if (!pud_none(*pud))
1086 			return;
1087 	}
1088 
1089 	/* free a pud table */
1090 	free_pagetable(p4d_page(*p4d), 0);
1091 	spin_lock(&init_mm.page_table_lock);
1092 	p4d_clear(p4d);
1093 	spin_unlock(&init_mm.page_table_lock);
1094 }
1095 
1096 static void __meminit
remove_pte_table(pte_t * pte_start,unsigned long addr,unsigned long end,bool direct)1097 remove_pte_table(pte_t *pte_start, unsigned long addr, unsigned long end,
1098 		 bool direct)
1099 {
1100 	unsigned long next, pages = 0;
1101 	pte_t *pte;
1102 	phys_addr_t phys_addr;
1103 
1104 	pte = pte_start + pte_index(addr);
1105 	for (; addr < end; addr = next, pte++) {
1106 		next = (addr + PAGE_SIZE) & PAGE_MASK;
1107 		if (next > end)
1108 			next = end;
1109 
1110 		if (!pte_present(*pte))
1111 			continue;
1112 
1113 		/*
1114 		 * We mapped [0,1G) memory as identity mapping when
1115 		 * initializing, in arch/x86/kernel/head_64.S. These
1116 		 * pagetables cannot be removed.
1117 		 */
1118 		phys_addr = pte_val(*pte) + (addr & PAGE_MASK);
1119 		if (phys_addr < (phys_addr_t)0x40000000)
1120 			return;
1121 
1122 		if (!direct)
1123 			free_pagetable(pte_page(*pte), 0);
1124 
1125 		spin_lock(&init_mm.page_table_lock);
1126 		pte_clear(&init_mm, addr, pte);
1127 		spin_unlock(&init_mm.page_table_lock);
1128 
1129 		/* For non-direct mapping, pages means nothing. */
1130 		pages++;
1131 	}
1132 
1133 	/* Call free_pte_table() in remove_pmd_table(). */
1134 	flush_tlb_all();
1135 	if (direct)
1136 		update_page_count(PG_LEVEL_4K, -pages);
1137 }
1138 
1139 static void __meminit
remove_pmd_table(pmd_t * pmd_start,unsigned long addr,unsigned long end,bool direct,struct vmem_altmap * altmap)1140 remove_pmd_table(pmd_t *pmd_start, unsigned long addr, unsigned long end,
1141 		 bool direct, struct vmem_altmap *altmap)
1142 {
1143 	unsigned long next, pages = 0;
1144 	pte_t *pte_base;
1145 	pmd_t *pmd;
1146 
1147 	pmd = pmd_start + pmd_index(addr);
1148 	for (; addr < end; addr = next, pmd++) {
1149 		next = pmd_addr_end(addr, end);
1150 
1151 		if (!pmd_present(*pmd))
1152 			continue;
1153 
1154 		if (pmd_leaf(*pmd)) {
1155 			if (IS_ALIGNED(addr, PMD_SIZE) &&
1156 			    IS_ALIGNED(next, PMD_SIZE)) {
1157 				if (!direct)
1158 					free_hugepage_table(pmd_page(*pmd),
1159 							    altmap);
1160 
1161 				spin_lock(&init_mm.page_table_lock);
1162 				pmd_clear(pmd);
1163 				spin_unlock(&init_mm.page_table_lock);
1164 				pages++;
1165 			}
1166 #ifdef CONFIG_SPARSEMEM_VMEMMAP
1167 			else if (vmemmap_pmd_is_unused(addr, next)) {
1168 					free_hugepage_table(pmd_page(*pmd),
1169 							    altmap);
1170 					spin_lock(&init_mm.page_table_lock);
1171 					pmd_clear(pmd);
1172 					spin_unlock(&init_mm.page_table_lock);
1173 			}
1174 #endif
1175 			continue;
1176 		}
1177 
1178 		pte_base = (pte_t *)pmd_page_vaddr(*pmd);
1179 		remove_pte_table(pte_base, addr, next, direct);
1180 		free_pte_table(pte_base, pmd);
1181 	}
1182 
1183 	/* Call free_pmd_table() in remove_pud_table(). */
1184 	if (direct)
1185 		update_page_count(PG_LEVEL_2M, -pages);
1186 }
1187 
1188 static void __meminit
remove_pud_table(pud_t * pud_start,unsigned long addr,unsigned long end,struct vmem_altmap * altmap,bool direct)1189 remove_pud_table(pud_t *pud_start, unsigned long addr, unsigned long end,
1190 		 struct vmem_altmap *altmap, bool direct)
1191 {
1192 	unsigned long next, pages = 0;
1193 	pmd_t *pmd_base;
1194 	pud_t *pud;
1195 
1196 	pud = pud_start + pud_index(addr);
1197 	for (; addr < end; addr = next, pud++) {
1198 		next = pud_addr_end(addr, end);
1199 
1200 		if (!pud_present(*pud))
1201 			continue;
1202 
1203 		if (pud_leaf(*pud) &&
1204 		    IS_ALIGNED(addr, PUD_SIZE) &&
1205 		    IS_ALIGNED(next, PUD_SIZE)) {
1206 			spin_lock(&init_mm.page_table_lock);
1207 			pud_clear(pud);
1208 			spin_unlock(&init_mm.page_table_lock);
1209 			pages++;
1210 			continue;
1211 		}
1212 
1213 		pmd_base = pmd_offset(pud, 0);
1214 		remove_pmd_table(pmd_base, addr, next, direct, altmap);
1215 		free_pmd_table(pmd_base, pud);
1216 	}
1217 
1218 	if (direct)
1219 		update_page_count(PG_LEVEL_1G, -pages);
1220 }
1221 
1222 static void __meminit
remove_p4d_table(p4d_t * p4d_start,unsigned long addr,unsigned long end,struct vmem_altmap * altmap,bool direct)1223 remove_p4d_table(p4d_t *p4d_start, unsigned long addr, unsigned long end,
1224 		 struct vmem_altmap *altmap, bool direct)
1225 {
1226 	unsigned long next, pages = 0;
1227 	pud_t *pud_base;
1228 	p4d_t *p4d;
1229 
1230 	p4d = p4d_start + p4d_index(addr);
1231 	for (; addr < end; addr = next, p4d++) {
1232 		next = p4d_addr_end(addr, end);
1233 
1234 		if (!p4d_present(*p4d))
1235 			continue;
1236 
1237 		BUILD_BUG_ON(p4d_leaf(*p4d));
1238 
1239 		pud_base = pud_offset(p4d, 0);
1240 		remove_pud_table(pud_base, addr, next, altmap, direct);
1241 		/*
1242 		 * For 4-level page tables we do not want to free PUDs, but in the
1243 		 * 5-level case we should free them. This code will have to change
1244 		 * to adapt for boot-time switching between 4 and 5 level page tables.
1245 		 */
1246 		if (pgtable_l5_enabled())
1247 			free_pud_table(pud_base, p4d);
1248 	}
1249 
1250 	if (direct)
1251 		update_page_count(PG_LEVEL_512G, -pages);
1252 }
1253 
1254 /* start and end are both virtual address. */
1255 static void __meminit
remove_pagetable(unsigned long start,unsigned long end,bool direct,struct vmem_altmap * altmap)1256 remove_pagetable(unsigned long start, unsigned long end, bool direct,
1257 		struct vmem_altmap *altmap)
1258 {
1259 	unsigned long next;
1260 	unsigned long addr;
1261 	pgd_t *pgd;
1262 	p4d_t *p4d;
1263 
1264 	for (addr = start; addr < end; addr = next) {
1265 		next = pgd_addr_end(addr, end);
1266 
1267 		pgd = pgd_offset_k(addr);
1268 		if (!pgd_present(*pgd))
1269 			continue;
1270 
1271 		p4d = p4d_offset(pgd, 0);
1272 		remove_p4d_table(p4d, addr, next, altmap, direct);
1273 	}
1274 
1275 	flush_tlb_all();
1276 }
1277 
vmemmap_free(unsigned long start,unsigned long end,struct vmem_altmap * altmap)1278 void __ref vmemmap_free(unsigned long start, unsigned long end,
1279 		struct vmem_altmap *altmap)
1280 {
1281 	VM_BUG_ON(!PAGE_ALIGNED(start));
1282 	VM_BUG_ON(!PAGE_ALIGNED(end));
1283 
1284 	remove_pagetable(start, end, false, altmap);
1285 }
1286 
1287 static void __meminit
kernel_physical_mapping_remove(unsigned long start,unsigned long end)1288 kernel_physical_mapping_remove(unsigned long start, unsigned long end)
1289 {
1290 	start = (unsigned long)__va(start);
1291 	end = (unsigned long)__va(end);
1292 
1293 	remove_pagetable(start, end, true, NULL);
1294 }
1295 
arch_remove_memory(u64 start,u64 size,struct vmem_altmap * altmap)1296 void __ref arch_remove_memory(u64 start, u64 size, struct vmem_altmap *altmap)
1297 {
1298 	unsigned long start_pfn = start >> PAGE_SHIFT;
1299 	unsigned long nr_pages = size >> PAGE_SHIFT;
1300 
1301 	__remove_pages(start_pfn, nr_pages, altmap);
1302 	kernel_physical_mapping_remove(start, start + size);
1303 }
1304 #endif /* CONFIG_MEMORY_HOTPLUG */
1305 
1306 static struct kcore_list kcore_vsyscall;
1307 
register_page_bootmem_info(void)1308 static void __init register_page_bootmem_info(void)
1309 {
1310 #if defined(CONFIG_NUMA) || defined(CONFIG_HUGETLB_PAGE_OPTIMIZE_VMEMMAP)
1311 	int i;
1312 
1313 	for_each_online_node(i)
1314 		register_page_bootmem_info_node(NODE_DATA(i));
1315 #endif
1316 }
1317 
1318 /*
1319  * Pre-allocates page-table pages for the vmalloc area in the kernel page-table.
1320  * Only the level which needs to be synchronized between all page-tables is
1321  * allocated because the synchronization can be expensive.
1322  */
preallocate_vmalloc_pages(void)1323 static void __init preallocate_vmalloc_pages(void)
1324 {
1325 	unsigned long addr;
1326 	const char *lvl;
1327 
1328 	for (addr = VMALLOC_START; addr <= VMEMORY_END; addr = ALIGN(addr + 1, PGDIR_SIZE)) {
1329 		pgd_t *pgd = pgd_offset_k(addr);
1330 		p4d_t *p4d;
1331 		pud_t *pud;
1332 
1333 		lvl = "p4d";
1334 		p4d = p4d_alloc(&init_mm, pgd, addr);
1335 		if (!p4d)
1336 			goto failed;
1337 
1338 		if (pgtable_l5_enabled())
1339 			continue;
1340 
1341 		/*
1342 		 * The goal here is to allocate all possibly required
1343 		 * hardware page tables pointed to by the top hardware
1344 		 * level.
1345 		 *
1346 		 * On 4-level systems, the P4D layer is folded away and
1347 		 * the above code does no preallocation.  Below, go down
1348 		 * to the pud _software_ level to ensure the second
1349 		 * hardware level is allocated on 4-level systems too.
1350 		 */
1351 		lvl = "pud";
1352 		pud = pud_alloc(&init_mm, p4d, addr);
1353 		if (!pud)
1354 			goto failed;
1355 	}
1356 
1357 	return;
1358 
1359 failed:
1360 
1361 	/*
1362 	 * The pages have to be there now or they will be missing in
1363 	 * process page-tables later.
1364 	 */
1365 	panic("Failed to pre-allocate %s pages for vmalloc area\n", lvl);
1366 }
1367 
mem_init(void)1368 void __init mem_init(void)
1369 {
1370 	pci_iommu_alloc();
1371 
1372 	/* clear_bss() already clear the empty_zero_page */
1373 
1374 	/* this will put all memory onto the freelists */
1375 	memblock_free_all();
1376 	after_bootmem = 1;
1377 	x86_init.hyper.init_after_bootmem();
1378 
1379 	/*
1380 	 * Must be done after boot memory is put on freelist, because here we
1381 	 * might set fields in deferred struct pages that have not yet been
1382 	 * initialized, and memblock_free_all() initializes all the reserved
1383 	 * deferred pages for us.
1384 	 */
1385 	register_page_bootmem_info();
1386 
1387 	/* Register memory areas for /proc/kcore */
1388 	if (get_gate_vma(&init_mm))
1389 		kclist_add(&kcore_vsyscall, (void *)VSYSCALL_ADDR, PAGE_SIZE, KCORE_USER);
1390 
1391 	preallocate_vmalloc_pages();
1392 }
1393 
1394 int kernel_set_to_readonly;
1395 
mark_rodata_ro(void)1396 void mark_rodata_ro(void)
1397 {
1398 	unsigned long start = PFN_ALIGN(_text);
1399 	unsigned long rodata_start = PFN_ALIGN(__start_rodata);
1400 	unsigned long end = (unsigned long)__end_rodata_hpage_align;
1401 	unsigned long text_end = PFN_ALIGN(_etext);
1402 	unsigned long rodata_end = PFN_ALIGN(__end_rodata);
1403 	unsigned long all_end;
1404 
1405 	printk(KERN_INFO "Write protecting the kernel read-only data: %luk\n",
1406 	       (end - start) >> 10);
1407 	set_memory_ro(start, (end - start) >> PAGE_SHIFT);
1408 
1409 	kernel_set_to_readonly = 1;
1410 
1411 	/*
1412 	 * The rodata/data/bss/brk section (but not the kernel text!)
1413 	 * should also be not-executable.
1414 	 *
1415 	 * We align all_end to PMD_SIZE because the existing mapping
1416 	 * is a full PMD. If we would align _brk_end to PAGE_SIZE we
1417 	 * split the PMD and the reminder between _brk_end and the end
1418 	 * of the PMD will remain mapped executable.
1419 	 *
1420 	 * Any PMD which was setup after the one which covers _brk_end
1421 	 * has been zapped already via cleanup_highmem().
1422 	 */
1423 	all_end = roundup((unsigned long)_brk_end, PMD_SIZE);
1424 	set_memory_nx(text_end, (all_end - text_end) >> PAGE_SHIFT);
1425 
1426 	set_ftrace_ops_ro();
1427 
1428 #ifdef CONFIG_CPA_DEBUG
1429 	printk(KERN_INFO "Testing CPA: undo %lx-%lx\n", start, end);
1430 	set_memory_rw(start, (end-start) >> PAGE_SHIFT);
1431 
1432 	printk(KERN_INFO "Testing CPA: again\n");
1433 	set_memory_ro(start, (end-start) >> PAGE_SHIFT);
1434 #endif
1435 
1436 	free_kernel_image_pages("unused kernel image (text/rodata gap)",
1437 				(void *)text_end, (void *)rodata_start);
1438 	free_kernel_image_pages("unused kernel image (rodata/data gap)",
1439 				(void *)rodata_end, (void *)_sdata);
1440 }
1441 
1442 /*
1443  * Block size is the minimum amount of memory which can be hotplugged or
1444  * hotremoved. It must be power of two and must be equal or larger than
1445  * MIN_MEMORY_BLOCK_SIZE.
1446  */
1447 #define MAX_BLOCK_SIZE (2UL << 30)
1448 
1449 /* Amount of ram needed to start using large blocks */
1450 #define MEM_SIZE_FOR_LARGE_BLOCK (64UL << 30)
1451 
1452 /* Adjustable memory block size */
1453 static unsigned long set_memory_block_size;
set_memory_block_size_order(unsigned int order)1454 int __init set_memory_block_size_order(unsigned int order)
1455 {
1456 	unsigned long size = 1UL << order;
1457 
1458 	if (size > MEM_SIZE_FOR_LARGE_BLOCK || size < MIN_MEMORY_BLOCK_SIZE)
1459 		return -EINVAL;
1460 
1461 	set_memory_block_size = size;
1462 	return 0;
1463 }
1464 
probe_memory_block_size(void)1465 static unsigned long probe_memory_block_size(void)
1466 {
1467 	unsigned long boot_mem_end = max_pfn << PAGE_SHIFT;
1468 	unsigned long bz;
1469 
1470 	/* If memory block size has been set, then use it */
1471 	bz = set_memory_block_size;
1472 	if (bz)
1473 		goto done;
1474 
1475 	/* Use regular block if RAM is smaller than MEM_SIZE_FOR_LARGE_BLOCK */
1476 	if (boot_mem_end < MEM_SIZE_FOR_LARGE_BLOCK) {
1477 		bz = MIN_MEMORY_BLOCK_SIZE;
1478 		goto done;
1479 	}
1480 
1481 	/*
1482 	 * Use max block size to minimize overhead on bare metal, where
1483 	 * alignment for memory hotplug isn't a concern.
1484 	 */
1485 	if (!boot_cpu_has(X86_FEATURE_HYPERVISOR)) {
1486 		bz = MAX_BLOCK_SIZE;
1487 		goto done;
1488 	}
1489 
1490 	/* Find the largest allowed block size that aligns to memory end */
1491 	for (bz = MAX_BLOCK_SIZE; bz > MIN_MEMORY_BLOCK_SIZE; bz >>= 1) {
1492 		if (IS_ALIGNED(boot_mem_end, bz))
1493 			break;
1494 	}
1495 done:
1496 	pr_info("x86/mm: Memory block size: %ldMB\n", bz >> 20);
1497 
1498 	return bz;
1499 }
1500 
1501 static unsigned long memory_block_size_probed;
memory_block_size_bytes(void)1502 unsigned long memory_block_size_bytes(void)
1503 {
1504 	if (!memory_block_size_probed)
1505 		memory_block_size_probed = probe_memory_block_size();
1506 
1507 	return memory_block_size_probed;
1508 }
1509 
1510 #ifdef CONFIG_SPARSEMEM_VMEMMAP
1511 /*
1512  * Initialise the sparsemem vmemmap using huge-pages at the PMD level.
1513  */
1514 static long __meminitdata addr_start, addr_end;
1515 static void __meminitdata *p_start, *p_end;
1516 static int __meminitdata node_start;
1517 
vmemmap_set_pmd(pmd_t * pmd,void * p,int node,unsigned long addr,unsigned long next)1518 void __meminit vmemmap_set_pmd(pmd_t *pmd, void *p, int node,
1519 			       unsigned long addr, unsigned long next)
1520 {
1521 	pte_t entry;
1522 
1523 	entry = pfn_pte(__pa(p) >> PAGE_SHIFT,
1524 			PAGE_KERNEL_LARGE);
1525 	set_pmd(pmd, __pmd(pte_val(entry)));
1526 
1527 	/* check to see if we have contiguous blocks */
1528 	if (p_end != p || node_start != node) {
1529 		if (p_start)
1530 			pr_debug(" [%lx-%lx] PMD -> [%p-%p] on node %d\n",
1531 				addr_start, addr_end-1, p_start, p_end-1, node_start);
1532 		addr_start = addr;
1533 		node_start = node;
1534 		p_start = p;
1535 	}
1536 
1537 	addr_end = addr + PMD_SIZE;
1538 	p_end = p + PMD_SIZE;
1539 
1540 	if (!IS_ALIGNED(addr, PMD_SIZE) ||
1541 		!IS_ALIGNED(next, PMD_SIZE))
1542 		vmemmap_use_new_sub_pmd(addr, next);
1543 }
1544 
vmemmap_check_pmd(pmd_t * pmd,int node,unsigned long addr,unsigned long next)1545 int __meminit vmemmap_check_pmd(pmd_t *pmd, int node,
1546 				unsigned long addr, unsigned long next)
1547 {
1548 	int large = pmd_leaf(*pmd);
1549 
1550 	if (pmd_leaf(*pmd)) {
1551 		vmemmap_verify((pte_t *)pmd, node, addr, next);
1552 		vmemmap_use_sub_pmd(addr, next);
1553 	}
1554 
1555 	return large;
1556 }
1557 
vmemmap_populate(unsigned long start,unsigned long end,int node,struct vmem_altmap * altmap)1558 int __meminit vmemmap_populate(unsigned long start, unsigned long end, int node,
1559 		struct vmem_altmap *altmap)
1560 {
1561 	int err;
1562 
1563 	VM_BUG_ON(!PAGE_ALIGNED(start));
1564 	VM_BUG_ON(!PAGE_ALIGNED(end));
1565 
1566 	if (end - start < PAGES_PER_SECTION * sizeof(struct page))
1567 		err = vmemmap_populate_basepages(start, end, node, NULL);
1568 	else if (boot_cpu_has(X86_FEATURE_PSE))
1569 		err = vmemmap_populate_hugepages(start, end, node, altmap);
1570 	else if (altmap) {
1571 		pr_err_once("%s: no cpu support for altmap allocations\n",
1572 				__func__);
1573 		err = -ENOMEM;
1574 	} else
1575 		err = vmemmap_populate_basepages(start, end, node, NULL);
1576 	if (!err)
1577 		sync_global_pgds(start, end - 1);
1578 	return err;
1579 }
1580 
1581 #ifdef CONFIG_HAVE_BOOTMEM_INFO_NODE
register_page_bootmem_memmap(unsigned long section_nr,struct page * start_page,unsigned long nr_pages)1582 void register_page_bootmem_memmap(unsigned long section_nr,
1583 				  struct page *start_page, unsigned long nr_pages)
1584 {
1585 	unsigned long addr = (unsigned long)start_page;
1586 	unsigned long end = (unsigned long)(start_page + nr_pages);
1587 	unsigned long next;
1588 	pgd_t *pgd;
1589 	p4d_t *p4d;
1590 	pud_t *pud;
1591 	pmd_t *pmd;
1592 	unsigned int nr_pmd_pages;
1593 	struct page *page;
1594 
1595 	for (; addr < end; addr = next) {
1596 		pte_t *pte = NULL;
1597 
1598 		pgd = pgd_offset_k(addr);
1599 		if (pgd_none(*pgd)) {
1600 			next = (addr + PAGE_SIZE) & PAGE_MASK;
1601 			continue;
1602 		}
1603 		get_page_bootmem(section_nr, pgd_page(*pgd), MIX_SECTION_INFO);
1604 
1605 		p4d = p4d_offset(pgd, addr);
1606 		if (p4d_none(*p4d)) {
1607 			next = (addr + PAGE_SIZE) & PAGE_MASK;
1608 			continue;
1609 		}
1610 		get_page_bootmem(section_nr, p4d_page(*p4d), MIX_SECTION_INFO);
1611 
1612 		pud = pud_offset(p4d, addr);
1613 		if (pud_none(*pud)) {
1614 			next = (addr + PAGE_SIZE) & PAGE_MASK;
1615 			continue;
1616 		}
1617 		get_page_bootmem(section_nr, pud_page(*pud), MIX_SECTION_INFO);
1618 
1619 		if (!boot_cpu_has(X86_FEATURE_PSE)) {
1620 			next = (addr + PAGE_SIZE) & PAGE_MASK;
1621 			pmd = pmd_offset(pud, addr);
1622 			if (pmd_none(*pmd))
1623 				continue;
1624 			get_page_bootmem(section_nr, pmd_page(*pmd),
1625 					 MIX_SECTION_INFO);
1626 
1627 			pte = pte_offset_kernel(pmd, addr);
1628 			if (pte_none(*pte))
1629 				continue;
1630 			get_page_bootmem(section_nr, pte_page(*pte),
1631 					 SECTION_INFO);
1632 		} else {
1633 			next = pmd_addr_end(addr, end);
1634 
1635 			pmd = pmd_offset(pud, addr);
1636 			if (pmd_none(*pmd))
1637 				continue;
1638 
1639 			nr_pmd_pages = 1 << get_order(PMD_SIZE);
1640 			page = pmd_page(*pmd);
1641 			while (nr_pmd_pages--)
1642 				get_page_bootmem(section_nr, page++,
1643 						 SECTION_INFO);
1644 		}
1645 	}
1646 }
1647 #endif
1648 
vmemmap_populate_print_last(void)1649 void __meminit vmemmap_populate_print_last(void)
1650 {
1651 	if (p_start) {
1652 		pr_debug(" [%lx-%lx] PMD -> [%p-%p] on node %d\n",
1653 			addr_start, addr_end-1, p_start, p_end-1, node_start);
1654 		p_start = NULL;
1655 		p_end = NULL;
1656 		node_start = 0;
1657 	}
1658 }
1659 #endif
1660