1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Flexible mmap layout support
4  *
5  * Based on code by Ingo Molnar and Andi Kleen, copyrighted
6  * as follows:
7  *
8  * Copyright 2003-2009 Red Hat Inc.
9  * All Rights Reserved.
10  * Copyright 2005 Andi Kleen, SUSE Labs.
11  * Copyright 2007 Jiri Kosina, SUSE Labs.
12  */
13 
14 #include <linux/page_size_compat.h>
15 #include <linux/personality.h>
16 #include <linux/mm.h>
17 #include <linux/random.h>
18 #include <linux/limits.h>
19 #include <linux/sched/signal.h>
20 #include <linux/sched/mm.h>
21 #include <linux/compat.h>
22 #include <linux/elf-randomize.h>
23 #include <asm/elf.h>
24 #include <asm/io.h>
25 
26 #include "physaddr.h"
27 
28 struct va_alignment __read_mostly va_align = {
29 	.flags = -1,
30 };
31 
task_size_32bit(void)32 unsigned long task_size_32bit(void)
33 {
34 	return IA32_PAGE_OFFSET;
35 }
36 
task_size_64bit(int full_addr_space)37 unsigned long task_size_64bit(int full_addr_space)
38 {
39 	return full_addr_space ? TASK_SIZE_MAX : DEFAULT_MAP_WINDOW;
40 }
41 
stack_maxrandom_size(unsigned long task_size)42 static unsigned long stack_maxrandom_size(unsigned long task_size)
43 {
44 	unsigned long max = 0;
45 	if (current->flags & PF_RANDOMIZE) {
46 		max = (-1UL) & __STACK_RND_MASK(task_size == task_size_32bit());
47 		max <<= PAGE_SHIFT;
48 	}
49 
50 	return max;
51 }
52 
53 #ifdef CONFIG_COMPAT
54 # define mmap32_rnd_bits  mmap_rnd_compat_bits
55 # define mmap64_rnd_bits  mmap_rnd_bits
56 #else
57 # define mmap32_rnd_bits  mmap_rnd_bits
58 # define mmap64_rnd_bits  mmap_rnd_bits
59 #endif
60 
61 #define SIZE_128M    (128 * 1024 * 1024UL)
62 
mmap_is_legacy(void)63 static int mmap_is_legacy(void)
64 {
65 	if (current->personality & ADDR_COMPAT_LAYOUT)
66 		return 1;
67 
68 	return sysctl_legacy_va_layout;
69 }
70 
arch_rnd(unsigned int rndbits)71 static unsigned long arch_rnd(unsigned int rndbits)
72 {
73 	if (!(current->flags & PF_RANDOMIZE))
74 		return 0;
75 	return (get_random_long() & ((1UL << rndbits) - 1)) << __PAGE_SHIFT;
76 }
77 
arch_mmap_rnd(void)78 unsigned long arch_mmap_rnd(void)
79 {
80 	return arch_rnd(mmap_is_ia32() ? mmap32_rnd_bits : mmap64_rnd_bits);
81 }
82 
mmap_base(unsigned long rnd,unsigned long task_size,struct rlimit * rlim_stack)83 static unsigned long mmap_base(unsigned long rnd, unsigned long task_size,
84 			       struct rlimit *rlim_stack)
85 {
86 	unsigned long gap = rlim_stack->rlim_cur;
87 	unsigned long pad = stack_maxrandom_size(task_size) + stack_guard_gap;
88 	unsigned long gap_min, gap_max;
89 
90 	/* Values close to RLIM_INFINITY can overflow. */
91 	if (gap + pad > gap)
92 		gap += pad;
93 
94 	/*
95 	 * Top of mmap area (just below the process stack).
96 	 * Leave an at least ~128 MB hole with possible stack randomization.
97 	 */
98 	gap_min = SIZE_128M;
99 	gap_max = (task_size / 6) * 5;
100 
101 	if (gap < gap_min)
102 		gap = gap_min;
103 	else if (gap > gap_max)
104 		gap = gap_max;
105 
106 	return PAGE_ALIGN(task_size - gap - rnd);
107 }
108 
mmap_legacy_base(unsigned long rnd,unsigned long task_size)109 static unsigned long mmap_legacy_base(unsigned long rnd,
110 				      unsigned long task_size)
111 {
112 	return __TASK_UNMAPPED_BASE(task_size) + rnd;
113 }
114 
115 /*
116  * This function, called very early during the creation of a new
117  * process VM image, sets up which VM layout function to use:
118  */
arch_pick_mmap_base(unsigned long * base,unsigned long * legacy_base,unsigned long random_factor,unsigned long task_size,struct rlimit * rlim_stack)119 static void arch_pick_mmap_base(unsigned long *base, unsigned long *legacy_base,
120 		unsigned long random_factor, unsigned long task_size,
121 		struct rlimit *rlim_stack)
122 {
123 	*legacy_base = mmap_legacy_base(random_factor, task_size);
124 	if (mmap_is_legacy())
125 		*base = *legacy_base;
126 	else
127 		*base = mmap_base(random_factor, task_size, rlim_stack);
128 }
129 
arch_pick_mmap_layout(struct mm_struct * mm,struct rlimit * rlim_stack)130 void arch_pick_mmap_layout(struct mm_struct *mm, struct rlimit *rlim_stack)
131 {
132 	if (mmap_is_legacy())
133 		clear_bit(MMF_TOPDOWN, &mm->flags);
134 	else
135 		set_bit(MMF_TOPDOWN, &mm->flags);
136 
137 	arch_pick_mmap_base(&mm->mmap_base, &mm->mmap_legacy_base,
138 			arch_rnd(mmap64_rnd_bits), task_size_64bit(0),
139 			rlim_stack);
140 
141 #ifdef CONFIG_HAVE_ARCH_COMPAT_MMAP_BASES
142 	/*
143 	 * The mmap syscall mapping base decision depends solely on the
144 	 * syscall type (64-bit or compat). This applies for 64bit
145 	 * applications and 32bit applications. The 64bit syscall uses
146 	 * mmap_base, the compat syscall uses mmap_compat_base.
147 	 */
148 	arch_pick_mmap_base(&mm->mmap_compat_base, &mm->mmap_compat_legacy_base,
149 			arch_rnd(mmap32_rnd_bits), task_size_32bit(),
150 			rlim_stack);
151 #endif
152 }
153 
get_mmap_base(int is_legacy)154 unsigned long get_mmap_base(int is_legacy)
155 {
156 	struct mm_struct *mm = current->mm;
157 
158 #ifdef CONFIG_HAVE_ARCH_COMPAT_MMAP_BASES
159 	if (in_32bit_syscall()) {
160 		return is_legacy ? mm->mmap_compat_legacy_base
161 				 : mm->mmap_compat_base;
162 	}
163 #endif
164 	return is_legacy ? mm->mmap_legacy_base : mm->mmap_base;
165 }
166 
arch_vma_name(struct vm_area_struct * vma)167 const char *arch_vma_name(struct vm_area_struct *vma)
168 {
169 	return NULL;
170 }
171 
172 /**
173  * mmap_address_hint_valid - Validate the address hint of mmap
174  * @addr:	Address hint
175  * @len:	Mapping length
176  *
177  * Check whether @addr and @addr + @len result in a valid mapping.
178  *
179  * On 32bit this only checks whether @addr + @len is <= TASK_SIZE.
180  *
181  * On 64bit with 5-level page tables another sanity check is required
182  * because mappings requested by mmap(@addr, 0) which cross the 47-bit
183  * virtual address boundary can cause the following theoretical issue:
184  *
185  *  An application calls mmap(addr, 0), i.e. without MAP_FIXED, where @addr
186  *  is below the border of the 47-bit address space and @addr + @len is
187  *  above the border.
188  *
189  *  With 4-level paging this request succeeds, but the resulting mapping
190  *  address will always be within the 47-bit virtual address space, because
191  *  the hint address does not result in a valid mapping and is
192  *  ignored. Hence applications which are not prepared to handle virtual
193  *  addresses above 47-bit work correctly.
194  *
195  *  With 5-level paging this request would be granted and result in a
196  *  mapping which crosses the border of the 47-bit virtual address
197  *  space. If the application cannot handle addresses above 47-bit this
198  *  will lead to misbehaviour and hard to diagnose failures.
199  *
200  * Therefore ignore address hints which would result in a mapping crossing
201  * the 47-bit virtual address boundary.
202  *
203  * Note, that in the same scenario with MAP_FIXED the behaviour is
204  * different. The request with @addr < 47-bit and @addr + @len > 47-bit
205  * fails on a 4-level paging machine but succeeds on a 5-level paging
206  * machine. It is reasonable to expect that an application does not rely on
207  * the failure of such a fixed mapping request, so the restriction is not
208  * applied.
209  */
mmap_address_hint_valid(unsigned long addr,unsigned long len)210 bool mmap_address_hint_valid(unsigned long addr, unsigned long len)
211 {
212 	if (TASK_SIZE - len < addr)
213 		return false;
214 
215 	return (addr > DEFAULT_MAP_WINDOW) == (addr + len > DEFAULT_MAP_WINDOW);
216 }
217 
218 /* Can we access it for direct reading/writing? Must be RAM: */
valid_phys_addr_range(phys_addr_t addr,size_t count)219 int valid_phys_addr_range(phys_addr_t addr, size_t count)
220 {
221 	return addr + count - 1 <= __pa(high_memory - 1);
222 }
223 
224 /* Can we access it through mmap? Must be a valid physical address: */
valid_mmap_phys_addr_range(unsigned long pfn,size_t count)225 int valid_mmap_phys_addr_range(unsigned long pfn, size_t count)
226 {
227 	phys_addr_t addr = (phys_addr_t)pfn << PAGE_SHIFT;
228 
229 	return phys_addr_valid(addr + count - 1);
230 }
231 
232 /*
233  * Only allow root to set high MMIO mappings to PROT_NONE.
234  * This prevents an unpriv. user to set them to PROT_NONE and invert
235  * them, then pointing to valid memory for L1TF speculation.
236  *
237  * Note: for locked down kernels may want to disable the root override.
238  */
pfn_modify_allowed(unsigned long pfn,pgprot_t prot)239 bool pfn_modify_allowed(unsigned long pfn, pgprot_t prot)
240 {
241 	if (!boot_cpu_has_bug(X86_BUG_L1TF))
242 		return true;
243 	if (!__pte_needs_invert(pgprot_val(prot)))
244 		return true;
245 	/* If it's real memory always allow */
246 	if (pfn_valid(pfn))
247 		return true;
248 	if (pfn >= l1tf_pfn_limit() && !capable(CAP_SYS_ADMIN))
249 		return false;
250 	return true;
251 }
252