1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * The Kyber I/O scheduler. Controls latency by throttling queue depths using
4  * scalable techniques.
5  *
6  * Copyright (C) 2017 Facebook
7  */
8 
9 #include <linux/kernel.h>
10 #include <linux/blkdev.h>
11 #include <linux/module.h>
12 #include <linux/sbitmap.h>
13 
14 #include <trace/events/block.h>
15 
16 #include "elevator.h"
17 #include "blk.h"
18 #include "blk-mq.h"
19 #include "blk-mq-debugfs.h"
20 #include "blk-mq-sched.h"
21 
22 #define CREATE_TRACE_POINTS
23 #include <trace/events/kyber.h>
24 
25 /*
26  * Scheduling domains: the device is divided into multiple domains based on the
27  * request type.
28  */
29 enum {
30 	KYBER_READ,
31 	KYBER_WRITE,
32 	KYBER_DISCARD,
33 	KYBER_OTHER,
34 	KYBER_NUM_DOMAINS,
35 };
36 
37 static const char *kyber_domain_names[] = {
38 	[KYBER_READ] = "READ",
39 	[KYBER_WRITE] = "WRITE",
40 	[KYBER_DISCARD] = "DISCARD",
41 	[KYBER_OTHER] = "OTHER",
42 };
43 
44 enum {
45 	/*
46 	 * In order to prevent starvation of synchronous requests by a flood of
47 	 * asynchronous requests, we reserve 25% of requests for synchronous
48 	 * operations.
49 	 */
50 	KYBER_ASYNC_PERCENT = 75,
51 };
52 
53 /*
54  * Maximum device-wide depth for each scheduling domain.
55  *
56  * Even for fast devices with lots of tags like NVMe, you can saturate the
57  * device with only a fraction of the maximum possible queue depth. So, we cap
58  * these to a reasonable value.
59  */
60 static const unsigned int kyber_depth[] = {
61 	[KYBER_READ] = 256,
62 	[KYBER_WRITE] = 128,
63 	[KYBER_DISCARD] = 64,
64 	[KYBER_OTHER] = 16,
65 };
66 
67 /*
68  * Default latency targets for each scheduling domain.
69  */
70 static const u64 kyber_latency_targets[] = {
71 	[KYBER_READ] = 2ULL * NSEC_PER_MSEC,
72 	[KYBER_WRITE] = 10ULL * NSEC_PER_MSEC,
73 	[KYBER_DISCARD] = 5ULL * NSEC_PER_SEC,
74 };
75 
76 /*
77  * Batch size (number of requests we'll dispatch in a row) for each scheduling
78  * domain.
79  */
80 static const unsigned int kyber_batch_size[] = {
81 	[KYBER_READ] = 16,
82 	[KYBER_WRITE] = 8,
83 	[KYBER_DISCARD] = 1,
84 	[KYBER_OTHER] = 1,
85 };
86 
87 /*
88  * Requests latencies are recorded in a histogram with buckets defined relative
89  * to the target latency:
90  *
91  * <= 1/4 * target latency
92  * <= 1/2 * target latency
93  * <= 3/4 * target latency
94  * <= target latency
95  * <= 1 1/4 * target latency
96  * <= 1 1/2 * target latency
97  * <= 1 3/4 * target latency
98  * > 1 3/4 * target latency
99  */
100 enum {
101 	/*
102 	 * The width of the latency histogram buckets is
103 	 * 1 / (1 << KYBER_LATENCY_SHIFT) * target latency.
104 	 */
105 	KYBER_LATENCY_SHIFT = 2,
106 	/*
107 	 * The first (1 << KYBER_LATENCY_SHIFT) buckets are <= target latency,
108 	 * thus, "good".
109 	 */
110 	KYBER_GOOD_BUCKETS = 1 << KYBER_LATENCY_SHIFT,
111 	/* There are also (1 << KYBER_LATENCY_SHIFT) "bad" buckets. */
112 	KYBER_LATENCY_BUCKETS = 2 << KYBER_LATENCY_SHIFT,
113 };
114 
115 /*
116  * We measure both the total latency and the I/O latency (i.e., latency after
117  * submitting to the device).
118  */
119 enum {
120 	KYBER_TOTAL_LATENCY,
121 	KYBER_IO_LATENCY,
122 };
123 
124 static const char *kyber_latency_type_names[] = {
125 	[KYBER_TOTAL_LATENCY] = "total",
126 	[KYBER_IO_LATENCY] = "I/O",
127 };
128 
129 /*
130  * Per-cpu latency histograms: total latency and I/O latency for each scheduling
131  * domain except for KYBER_OTHER.
132  */
133 struct kyber_cpu_latency {
134 	atomic_t buckets[KYBER_OTHER][2][KYBER_LATENCY_BUCKETS];
135 };
136 
137 /*
138  * There is a same mapping between ctx & hctx and kcq & khd,
139  * we use request->mq_ctx->index_hw to index the kcq in khd.
140  */
141 struct kyber_ctx_queue {
142 	/*
143 	 * Used to ensure operations on rq_list and kcq_map to be an atmoic one.
144 	 * Also protect the rqs on rq_list when merge.
145 	 */
146 	spinlock_t lock;
147 	struct list_head rq_list[KYBER_NUM_DOMAINS];
148 } ____cacheline_aligned_in_smp;
149 
150 struct kyber_queue_data {
151 	struct request_queue *q;
152 	dev_t dev;
153 
154 	/*
155 	 * Each scheduling domain has a limited number of in-flight requests
156 	 * device-wide, limited by these tokens.
157 	 */
158 	struct sbitmap_queue domain_tokens[KYBER_NUM_DOMAINS];
159 
160 	/* Number of allowed async requests. */
161 	unsigned int async_depth;
162 
163 	struct kyber_cpu_latency __percpu *cpu_latency;
164 
165 	/* Timer for stats aggregation and adjusting domain tokens. */
166 	struct timer_list timer;
167 
168 	unsigned int latency_buckets[KYBER_OTHER][2][KYBER_LATENCY_BUCKETS];
169 
170 	unsigned long latency_timeout[KYBER_OTHER];
171 
172 	int domain_p99[KYBER_OTHER];
173 
174 	/* Target latencies in nanoseconds. */
175 	u64 latency_targets[KYBER_OTHER];
176 };
177 
178 struct kyber_hctx_data {
179 	spinlock_t lock;
180 	struct list_head rqs[KYBER_NUM_DOMAINS];
181 	unsigned int cur_domain;
182 	unsigned int batching;
183 	struct kyber_ctx_queue *kcqs;
184 	struct sbitmap kcq_map[KYBER_NUM_DOMAINS];
185 	struct sbq_wait domain_wait[KYBER_NUM_DOMAINS];
186 	struct sbq_wait_state *domain_ws[KYBER_NUM_DOMAINS];
187 	atomic_t wait_index[KYBER_NUM_DOMAINS];
188 };
189 
190 static int kyber_domain_wake(wait_queue_entry_t *wait, unsigned mode, int flags,
191 			     void *key);
192 
kyber_sched_domain(blk_opf_t opf)193 static unsigned int kyber_sched_domain(blk_opf_t opf)
194 {
195 	switch (opf & REQ_OP_MASK) {
196 	case REQ_OP_READ:
197 		return KYBER_READ;
198 	case REQ_OP_WRITE:
199 		return KYBER_WRITE;
200 	case REQ_OP_DISCARD:
201 		return KYBER_DISCARD;
202 	default:
203 		return KYBER_OTHER;
204 	}
205 }
206 
flush_latency_buckets(struct kyber_queue_data * kqd,struct kyber_cpu_latency * cpu_latency,unsigned int sched_domain,unsigned int type)207 static void flush_latency_buckets(struct kyber_queue_data *kqd,
208 				  struct kyber_cpu_latency *cpu_latency,
209 				  unsigned int sched_domain, unsigned int type)
210 {
211 	unsigned int *buckets = kqd->latency_buckets[sched_domain][type];
212 	atomic_t *cpu_buckets = cpu_latency->buckets[sched_domain][type];
213 	unsigned int bucket;
214 
215 	for (bucket = 0; bucket < KYBER_LATENCY_BUCKETS; bucket++)
216 		buckets[bucket] += atomic_xchg(&cpu_buckets[bucket], 0);
217 }
218 
219 /*
220  * Calculate the histogram bucket with the given percentile rank, or -1 if there
221  * aren't enough samples yet.
222  */
calculate_percentile(struct kyber_queue_data * kqd,unsigned int sched_domain,unsigned int type,unsigned int percentile)223 static int calculate_percentile(struct kyber_queue_data *kqd,
224 				unsigned int sched_domain, unsigned int type,
225 				unsigned int percentile)
226 {
227 	unsigned int *buckets = kqd->latency_buckets[sched_domain][type];
228 	unsigned int bucket, samples = 0, percentile_samples;
229 
230 	for (bucket = 0; bucket < KYBER_LATENCY_BUCKETS; bucket++)
231 		samples += buckets[bucket];
232 
233 	if (!samples)
234 		return -1;
235 
236 	/*
237 	 * We do the calculation once we have 500 samples or one second passes
238 	 * since the first sample was recorded, whichever comes first.
239 	 */
240 	if (!kqd->latency_timeout[sched_domain])
241 		kqd->latency_timeout[sched_domain] = max(jiffies + HZ, 1UL);
242 	if (samples < 500 &&
243 	    time_is_after_jiffies(kqd->latency_timeout[sched_domain])) {
244 		return -1;
245 	}
246 	kqd->latency_timeout[sched_domain] = 0;
247 
248 	percentile_samples = DIV_ROUND_UP(samples * percentile, 100);
249 	for (bucket = 0; bucket < KYBER_LATENCY_BUCKETS - 1; bucket++) {
250 		if (buckets[bucket] >= percentile_samples)
251 			break;
252 		percentile_samples -= buckets[bucket];
253 	}
254 	memset(buckets, 0, sizeof(kqd->latency_buckets[sched_domain][type]));
255 
256 	trace_kyber_latency(kqd->dev, kyber_domain_names[sched_domain],
257 			    kyber_latency_type_names[type], percentile,
258 			    bucket + 1, 1 << KYBER_LATENCY_SHIFT, samples);
259 
260 	return bucket;
261 }
262 
kyber_resize_domain(struct kyber_queue_data * kqd,unsigned int sched_domain,unsigned int depth)263 static void kyber_resize_domain(struct kyber_queue_data *kqd,
264 				unsigned int sched_domain, unsigned int depth)
265 {
266 	depth = clamp(depth, 1U, kyber_depth[sched_domain]);
267 	if (depth != kqd->domain_tokens[sched_domain].sb.depth) {
268 		sbitmap_queue_resize(&kqd->domain_tokens[sched_domain], depth);
269 		trace_kyber_adjust(kqd->dev, kyber_domain_names[sched_domain],
270 				   depth);
271 	}
272 }
273 
kyber_timer_fn(struct timer_list * t)274 static void kyber_timer_fn(struct timer_list *t)
275 {
276 	struct kyber_queue_data *kqd = from_timer(kqd, t, timer);
277 	unsigned int sched_domain;
278 	int cpu;
279 	bool bad = false;
280 
281 	/* Sum all of the per-cpu latency histograms. */
282 	for_each_online_cpu(cpu) {
283 		struct kyber_cpu_latency *cpu_latency;
284 
285 		cpu_latency = per_cpu_ptr(kqd->cpu_latency, cpu);
286 		for (sched_domain = 0; sched_domain < KYBER_OTHER; sched_domain++) {
287 			flush_latency_buckets(kqd, cpu_latency, sched_domain,
288 					      KYBER_TOTAL_LATENCY);
289 			flush_latency_buckets(kqd, cpu_latency, sched_domain,
290 					      KYBER_IO_LATENCY);
291 		}
292 	}
293 
294 	/*
295 	 * Check if any domains have a high I/O latency, which might indicate
296 	 * congestion in the device. Note that we use the p90; we don't want to
297 	 * be too sensitive to outliers here.
298 	 */
299 	for (sched_domain = 0; sched_domain < KYBER_OTHER; sched_domain++) {
300 		int p90;
301 
302 		p90 = calculate_percentile(kqd, sched_domain, KYBER_IO_LATENCY,
303 					   90);
304 		if (p90 >= KYBER_GOOD_BUCKETS)
305 			bad = true;
306 	}
307 
308 	/*
309 	 * Adjust the scheduling domain depths. If we determined that there was
310 	 * congestion, we throttle all domains with good latencies. Either way,
311 	 * we ease up on throttling domains with bad latencies.
312 	 */
313 	for (sched_domain = 0; sched_domain < KYBER_OTHER; sched_domain++) {
314 		unsigned int orig_depth, depth;
315 		int p99;
316 
317 		p99 = calculate_percentile(kqd, sched_domain,
318 					   KYBER_TOTAL_LATENCY, 99);
319 		/*
320 		 * This is kind of subtle: different domains will not
321 		 * necessarily have enough samples to calculate the latency
322 		 * percentiles during the same window, so we have to remember
323 		 * the p99 for the next time we observe congestion; once we do,
324 		 * we don't want to throttle again until we get more data, so we
325 		 * reset it to -1.
326 		 */
327 		if (bad) {
328 			if (p99 < 0)
329 				p99 = kqd->domain_p99[sched_domain];
330 			kqd->domain_p99[sched_domain] = -1;
331 		} else if (p99 >= 0) {
332 			kqd->domain_p99[sched_domain] = p99;
333 		}
334 		if (p99 < 0)
335 			continue;
336 
337 		/*
338 		 * If this domain has bad latency, throttle less. Otherwise,
339 		 * throttle more iff we determined that there is congestion.
340 		 *
341 		 * The new depth is scaled linearly with the p99 latency vs the
342 		 * latency target. E.g., if the p99 is 3/4 of the target, then
343 		 * we throttle down to 3/4 of the current depth, and if the p99
344 		 * is 2x the target, then we double the depth.
345 		 */
346 		if (bad || p99 >= KYBER_GOOD_BUCKETS) {
347 			orig_depth = kqd->domain_tokens[sched_domain].sb.depth;
348 			depth = (orig_depth * (p99 + 1)) >> KYBER_LATENCY_SHIFT;
349 			kyber_resize_domain(kqd, sched_domain, depth);
350 		}
351 	}
352 }
353 
kyber_queue_data_alloc(struct request_queue * q)354 static struct kyber_queue_data *kyber_queue_data_alloc(struct request_queue *q)
355 {
356 	struct kyber_queue_data *kqd;
357 	int ret = -ENOMEM;
358 	int i;
359 
360 	kqd = kzalloc_node(sizeof(*kqd), GFP_KERNEL, q->node);
361 	if (!kqd)
362 		goto err;
363 
364 	kqd->q = q;
365 	kqd->dev = disk_devt(q->disk);
366 
367 	kqd->cpu_latency = alloc_percpu_gfp(struct kyber_cpu_latency,
368 					    GFP_KERNEL | __GFP_ZERO);
369 	if (!kqd->cpu_latency)
370 		goto err_kqd;
371 
372 	timer_setup(&kqd->timer, kyber_timer_fn, 0);
373 
374 	for (i = 0; i < KYBER_NUM_DOMAINS; i++) {
375 		WARN_ON(!kyber_depth[i]);
376 		WARN_ON(!kyber_batch_size[i]);
377 		ret = sbitmap_queue_init_node(&kqd->domain_tokens[i],
378 					      kyber_depth[i], -1, false,
379 					      GFP_KERNEL, q->node);
380 		if (ret) {
381 			while (--i >= 0)
382 				sbitmap_queue_free(&kqd->domain_tokens[i]);
383 			goto err_buckets;
384 		}
385 	}
386 
387 	for (i = 0; i < KYBER_OTHER; i++) {
388 		kqd->domain_p99[i] = -1;
389 		kqd->latency_targets[i] = kyber_latency_targets[i];
390 	}
391 
392 	return kqd;
393 
394 err_buckets:
395 	free_percpu(kqd->cpu_latency);
396 err_kqd:
397 	kfree(kqd);
398 err:
399 	return ERR_PTR(ret);
400 }
401 
kyber_init_sched(struct request_queue * q,struct elevator_type * e)402 static int kyber_init_sched(struct request_queue *q, struct elevator_type *e)
403 {
404 	struct kyber_queue_data *kqd;
405 	struct elevator_queue *eq;
406 
407 	eq = elevator_alloc(q, e);
408 	if (!eq)
409 		return -ENOMEM;
410 
411 	kqd = kyber_queue_data_alloc(q);
412 	if (IS_ERR(kqd)) {
413 		kobject_put(&eq->kobj);
414 		return PTR_ERR(kqd);
415 	}
416 
417 	blk_stat_enable_accounting(q);
418 
419 	blk_queue_flag_clear(QUEUE_FLAG_SQ_SCHED, q);
420 
421 	eq->elevator_data = kqd;
422 	q->elevator = eq;
423 
424 	return 0;
425 }
426 
kyber_exit_sched(struct elevator_queue * e)427 static void kyber_exit_sched(struct elevator_queue *e)
428 {
429 	struct kyber_queue_data *kqd = e->elevator_data;
430 	int i;
431 
432 	timer_shutdown_sync(&kqd->timer);
433 	blk_stat_disable_accounting(kqd->q);
434 
435 	for (i = 0; i < KYBER_NUM_DOMAINS; i++)
436 		sbitmap_queue_free(&kqd->domain_tokens[i]);
437 	free_percpu(kqd->cpu_latency);
438 	kfree(kqd);
439 }
440 
kyber_ctx_queue_init(struct kyber_ctx_queue * kcq)441 static void kyber_ctx_queue_init(struct kyber_ctx_queue *kcq)
442 {
443 	unsigned int i;
444 
445 	spin_lock_init(&kcq->lock);
446 	for (i = 0; i < KYBER_NUM_DOMAINS; i++)
447 		INIT_LIST_HEAD(&kcq->rq_list[i]);
448 }
449 
kyber_depth_updated(struct blk_mq_hw_ctx * hctx)450 static void kyber_depth_updated(struct blk_mq_hw_ctx *hctx)
451 {
452 	struct kyber_queue_data *kqd = hctx->queue->elevator->elevator_data;
453 	struct blk_mq_tags *tags = hctx->sched_tags;
454 
455 	kqd->async_depth = hctx->queue->nr_requests * KYBER_ASYNC_PERCENT / 100U;
456 	sbitmap_queue_min_shallow_depth(&tags->bitmap_tags, kqd->async_depth);
457 }
458 
kyber_init_hctx(struct blk_mq_hw_ctx * hctx,unsigned int hctx_idx)459 static int kyber_init_hctx(struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
460 {
461 	struct kyber_hctx_data *khd;
462 	int i;
463 
464 	khd = kmalloc_node(sizeof(*khd), GFP_KERNEL, hctx->numa_node);
465 	if (!khd)
466 		return -ENOMEM;
467 
468 	khd->kcqs = kmalloc_array_node(hctx->nr_ctx,
469 				       sizeof(struct kyber_ctx_queue),
470 				       GFP_KERNEL, hctx->numa_node);
471 	if (!khd->kcqs)
472 		goto err_khd;
473 
474 	for (i = 0; i < hctx->nr_ctx; i++)
475 		kyber_ctx_queue_init(&khd->kcqs[i]);
476 
477 	for (i = 0; i < KYBER_NUM_DOMAINS; i++) {
478 		if (sbitmap_init_node(&khd->kcq_map[i], hctx->nr_ctx,
479 				      ilog2(8), GFP_KERNEL, hctx->numa_node,
480 				      false, false)) {
481 			while (--i >= 0)
482 				sbitmap_free(&khd->kcq_map[i]);
483 			goto err_kcqs;
484 		}
485 	}
486 
487 	spin_lock_init(&khd->lock);
488 
489 	for (i = 0; i < KYBER_NUM_DOMAINS; i++) {
490 		INIT_LIST_HEAD(&khd->rqs[i]);
491 		khd->domain_wait[i].sbq = NULL;
492 		init_waitqueue_func_entry(&khd->domain_wait[i].wait,
493 					  kyber_domain_wake);
494 		khd->domain_wait[i].wait.private = hctx;
495 		INIT_LIST_HEAD(&khd->domain_wait[i].wait.entry);
496 		atomic_set(&khd->wait_index[i], 0);
497 	}
498 
499 	khd->cur_domain = 0;
500 	khd->batching = 0;
501 
502 	hctx->sched_data = khd;
503 	kyber_depth_updated(hctx);
504 
505 	return 0;
506 
507 err_kcqs:
508 	kfree(khd->kcqs);
509 err_khd:
510 	kfree(khd);
511 	return -ENOMEM;
512 }
513 
kyber_exit_hctx(struct blk_mq_hw_ctx * hctx,unsigned int hctx_idx)514 static void kyber_exit_hctx(struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
515 {
516 	struct kyber_hctx_data *khd = hctx->sched_data;
517 	int i;
518 
519 	for (i = 0; i < KYBER_NUM_DOMAINS; i++)
520 		sbitmap_free(&khd->kcq_map[i]);
521 	kfree(khd->kcqs);
522 	kfree(hctx->sched_data);
523 }
524 
rq_get_domain_token(struct request * rq)525 static int rq_get_domain_token(struct request *rq)
526 {
527 	return (long)rq->elv.priv[0];
528 }
529 
rq_set_domain_token(struct request * rq,int token)530 static void rq_set_domain_token(struct request *rq, int token)
531 {
532 	rq->elv.priv[0] = (void *)(long)token;
533 }
534 
rq_clear_domain_token(struct kyber_queue_data * kqd,struct request * rq)535 static void rq_clear_domain_token(struct kyber_queue_data *kqd,
536 				  struct request *rq)
537 {
538 	unsigned int sched_domain;
539 	int nr;
540 
541 	nr = rq_get_domain_token(rq);
542 	if (nr != -1) {
543 		sched_domain = kyber_sched_domain(rq->cmd_flags);
544 		sbitmap_queue_clear(&kqd->domain_tokens[sched_domain], nr,
545 				    rq->mq_ctx->cpu);
546 	}
547 }
548 
kyber_limit_depth(blk_opf_t opf,struct blk_mq_alloc_data * data)549 static void kyber_limit_depth(blk_opf_t opf, struct blk_mq_alloc_data *data)
550 {
551 	/*
552 	 * We use the scheduler tags as per-hardware queue queueing tokens.
553 	 * Async requests can be limited at this stage.
554 	 */
555 	if (!op_is_sync(opf)) {
556 		struct kyber_queue_data *kqd = data->q->elevator->elevator_data;
557 
558 		data->shallow_depth = kqd->async_depth;
559 	}
560 }
561 
kyber_bio_merge(struct request_queue * q,struct bio * bio,unsigned int nr_segs)562 static bool kyber_bio_merge(struct request_queue *q, struct bio *bio,
563 		unsigned int nr_segs)
564 {
565 	struct blk_mq_ctx *ctx = blk_mq_get_ctx(q);
566 	struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(q, bio->bi_opf, ctx);
567 	struct kyber_hctx_data *khd = hctx->sched_data;
568 	struct kyber_ctx_queue *kcq = &khd->kcqs[ctx->index_hw[hctx->type]];
569 	unsigned int sched_domain = kyber_sched_domain(bio->bi_opf);
570 	struct list_head *rq_list = &kcq->rq_list[sched_domain];
571 	bool merged;
572 
573 	spin_lock(&kcq->lock);
574 	merged = blk_bio_list_merge(hctx->queue, rq_list, bio, nr_segs);
575 	spin_unlock(&kcq->lock);
576 
577 	return merged;
578 }
579 
kyber_prepare_request(struct request * rq)580 static void kyber_prepare_request(struct request *rq)
581 {
582 	rq_set_domain_token(rq, -1);
583 }
584 
kyber_insert_requests(struct blk_mq_hw_ctx * hctx,struct list_head * rq_list,blk_insert_t flags)585 static void kyber_insert_requests(struct blk_mq_hw_ctx *hctx,
586 				  struct list_head *rq_list,
587 				  blk_insert_t flags)
588 {
589 	struct kyber_hctx_data *khd = hctx->sched_data;
590 	struct request *rq, *next;
591 
592 	list_for_each_entry_safe(rq, next, rq_list, queuelist) {
593 		unsigned int sched_domain = kyber_sched_domain(rq->cmd_flags);
594 		struct kyber_ctx_queue *kcq = &khd->kcqs[rq->mq_ctx->index_hw[hctx->type]];
595 		struct list_head *head = &kcq->rq_list[sched_domain];
596 
597 		spin_lock(&kcq->lock);
598 		trace_block_rq_insert(rq);
599 		if (flags & BLK_MQ_INSERT_AT_HEAD)
600 			list_move(&rq->queuelist, head);
601 		else
602 			list_move_tail(&rq->queuelist, head);
603 		sbitmap_set_bit(&khd->kcq_map[sched_domain],
604 				rq->mq_ctx->index_hw[hctx->type]);
605 		spin_unlock(&kcq->lock);
606 	}
607 }
608 
kyber_finish_request(struct request * rq)609 static void kyber_finish_request(struct request *rq)
610 {
611 	struct kyber_queue_data *kqd = rq->q->elevator->elevator_data;
612 
613 	rq_clear_domain_token(kqd, rq);
614 }
615 
add_latency_sample(struct kyber_cpu_latency * cpu_latency,unsigned int sched_domain,unsigned int type,u64 target,u64 latency)616 static void add_latency_sample(struct kyber_cpu_latency *cpu_latency,
617 			       unsigned int sched_domain, unsigned int type,
618 			       u64 target, u64 latency)
619 {
620 	unsigned int bucket;
621 	u64 divisor;
622 
623 	if (latency > 0) {
624 		divisor = max_t(u64, target >> KYBER_LATENCY_SHIFT, 1);
625 		bucket = min_t(unsigned int, div64_u64(latency - 1, divisor),
626 			       KYBER_LATENCY_BUCKETS - 1);
627 	} else {
628 		bucket = 0;
629 	}
630 
631 	atomic_inc(&cpu_latency->buckets[sched_domain][type][bucket]);
632 }
633 
kyber_completed_request(struct request * rq,u64 now)634 static void kyber_completed_request(struct request *rq, u64 now)
635 {
636 	struct kyber_queue_data *kqd = rq->q->elevator->elevator_data;
637 	struct kyber_cpu_latency *cpu_latency;
638 	unsigned int sched_domain;
639 	u64 target;
640 
641 	sched_domain = kyber_sched_domain(rq->cmd_flags);
642 	if (sched_domain == KYBER_OTHER)
643 		return;
644 
645 	cpu_latency = get_cpu_ptr(kqd->cpu_latency);
646 	target = kqd->latency_targets[sched_domain];
647 	add_latency_sample(cpu_latency, sched_domain, KYBER_TOTAL_LATENCY,
648 			   target, now - rq->start_time_ns);
649 	add_latency_sample(cpu_latency, sched_domain, KYBER_IO_LATENCY, target,
650 			   now - rq->io_start_time_ns);
651 	put_cpu_ptr(kqd->cpu_latency);
652 
653 	timer_reduce(&kqd->timer, jiffies + HZ / 10);
654 }
655 
656 struct flush_kcq_data {
657 	struct kyber_hctx_data *khd;
658 	unsigned int sched_domain;
659 	struct list_head *list;
660 };
661 
flush_busy_kcq(struct sbitmap * sb,unsigned int bitnr,void * data)662 static bool flush_busy_kcq(struct sbitmap *sb, unsigned int bitnr, void *data)
663 {
664 	struct flush_kcq_data *flush_data = data;
665 	struct kyber_ctx_queue *kcq = &flush_data->khd->kcqs[bitnr];
666 
667 	spin_lock(&kcq->lock);
668 	list_splice_tail_init(&kcq->rq_list[flush_data->sched_domain],
669 			      flush_data->list);
670 	sbitmap_clear_bit(sb, bitnr);
671 	spin_unlock(&kcq->lock);
672 
673 	return true;
674 }
675 
kyber_flush_busy_kcqs(struct kyber_hctx_data * khd,unsigned int sched_domain,struct list_head * list)676 static void kyber_flush_busy_kcqs(struct kyber_hctx_data *khd,
677 				  unsigned int sched_domain,
678 				  struct list_head *list)
679 {
680 	struct flush_kcq_data data = {
681 		.khd = khd,
682 		.sched_domain = sched_domain,
683 		.list = list,
684 	};
685 
686 	sbitmap_for_each_set(&khd->kcq_map[sched_domain],
687 			     flush_busy_kcq, &data);
688 }
689 
kyber_domain_wake(wait_queue_entry_t * wqe,unsigned mode,int flags,void * key)690 static int kyber_domain_wake(wait_queue_entry_t *wqe, unsigned mode, int flags,
691 			     void *key)
692 {
693 	struct blk_mq_hw_ctx *hctx = READ_ONCE(wqe->private);
694 	struct sbq_wait *wait = container_of(wqe, struct sbq_wait, wait);
695 
696 	sbitmap_del_wait_queue(wait);
697 	blk_mq_run_hw_queue(hctx, true);
698 	return 1;
699 }
700 
kyber_get_domain_token(struct kyber_queue_data * kqd,struct kyber_hctx_data * khd,struct blk_mq_hw_ctx * hctx)701 static int kyber_get_domain_token(struct kyber_queue_data *kqd,
702 				  struct kyber_hctx_data *khd,
703 				  struct blk_mq_hw_ctx *hctx)
704 {
705 	unsigned int sched_domain = khd->cur_domain;
706 	struct sbitmap_queue *domain_tokens = &kqd->domain_tokens[sched_domain];
707 	struct sbq_wait *wait = &khd->domain_wait[sched_domain];
708 	struct sbq_wait_state *ws;
709 	int nr;
710 
711 	nr = __sbitmap_queue_get(domain_tokens);
712 
713 	/*
714 	 * If we failed to get a domain token, make sure the hardware queue is
715 	 * run when one becomes available. Note that this is serialized on
716 	 * khd->lock, but we still need to be careful about the waker.
717 	 */
718 	if (nr < 0 && list_empty_careful(&wait->wait.entry)) {
719 		ws = sbq_wait_ptr(domain_tokens,
720 				  &khd->wait_index[sched_domain]);
721 		khd->domain_ws[sched_domain] = ws;
722 		sbitmap_add_wait_queue(domain_tokens, ws, wait);
723 
724 		/*
725 		 * Try again in case a token was freed before we got on the wait
726 		 * queue.
727 		 */
728 		nr = __sbitmap_queue_get(domain_tokens);
729 	}
730 
731 	/*
732 	 * If we got a token while we were on the wait queue, remove ourselves
733 	 * from the wait queue to ensure that all wake ups make forward
734 	 * progress. It's possible that the waker already deleted the entry
735 	 * between the !list_empty_careful() check and us grabbing the lock, but
736 	 * list_del_init() is okay with that.
737 	 */
738 	if (nr >= 0 && !list_empty_careful(&wait->wait.entry)) {
739 		ws = khd->domain_ws[sched_domain];
740 		spin_lock_irq(&ws->wait.lock);
741 		sbitmap_del_wait_queue(wait);
742 		spin_unlock_irq(&ws->wait.lock);
743 	}
744 
745 	return nr;
746 }
747 
748 static struct request *
kyber_dispatch_cur_domain(struct kyber_queue_data * kqd,struct kyber_hctx_data * khd,struct blk_mq_hw_ctx * hctx)749 kyber_dispatch_cur_domain(struct kyber_queue_data *kqd,
750 			  struct kyber_hctx_data *khd,
751 			  struct blk_mq_hw_ctx *hctx)
752 {
753 	struct list_head *rqs;
754 	struct request *rq;
755 	int nr;
756 
757 	rqs = &khd->rqs[khd->cur_domain];
758 
759 	/*
760 	 * If we already have a flushed request, then we just need to get a
761 	 * token for it. Otherwise, if there are pending requests in the kcqs,
762 	 * flush the kcqs, but only if we can get a token. If not, we should
763 	 * leave the requests in the kcqs so that they can be merged. Note that
764 	 * khd->lock serializes the flushes, so if we observed any bit set in
765 	 * the kcq_map, we will always get a request.
766 	 */
767 	rq = list_first_entry_or_null(rqs, struct request, queuelist);
768 	if (rq) {
769 		nr = kyber_get_domain_token(kqd, khd, hctx);
770 		if (nr >= 0) {
771 			khd->batching++;
772 			rq_set_domain_token(rq, nr);
773 			list_del_init(&rq->queuelist);
774 			return rq;
775 		} else {
776 			trace_kyber_throttled(kqd->dev,
777 					      kyber_domain_names[khd->cur_domain]);
778 		}
779 	} else if (sbitmap_any_bit_set(&khd->kcq_map[khd->cur_domain])) {
780 		nr = kyber_get_domain_token(kqd, khd, hctx);
781 		if (nr >= 0) {
782 			kyber_flush_busy_kcqs(khd, khd->cur_domain, rqs);
783 			rq = list_first_entry(rqs, struct request, queuelist);
784 			khd->batching++;
785 			rq_set_domain_token(rq, nr);
786 			list_del_init(&rq->queuelist);
787 			return rq;
788 		} else {
789 			trace_kyber_throttled(kqd->dev,
790 					      kyber_domain_names[khd->cur_domain]);
791 		}
792 	}
793 
794 	/* There were either no pending requests or no tokens. */
795 	return NULL;
796 }
797 
kyber_dispatch_request(struct blk_mq_hw_ctx * hctx)798 static struct request *kyber_dispatch_request(struct blk_mq_hw_ctx *hctx)
799 {
800 	struct kyber_queue_data *kqd = hctx->queue->elevator->elevator_data;
801 	struct kyber_hctx_data *khd = hctx->sched_data;
802 	struct request *rq;
803 	int i;
804 
805 	spin_lock(&khd->lock);
806 
807 	/*
808 	 * First, if we are still entitled to batch, try to dispatch a request
809 	 * from the batch.
810 	 */
811 	if (khd->batching < kyber_batch_size[khd->cur_domain]) {
812 		rq = kyber_dispatch_cur_domain(kqd, khd, hctx);
813 		if (rq)
814 			goto out;
815 	}
816 
817 	/*
818 	 * Either,
819 	 * 1. We were no longer entitled to a batch.
820 	 * 2. The domain we were batching didn't have any requests.
821 	 * 3. The domain we were batching was out of tokens.
822 	 *
823 	 * Start another batch. Note that this wraps back around to the original
824 	 * domain if no other domains have requests or tokens.
825 	 */
826 	khd->batching = 0;
827 	for (i = 0; i < KYBER_NUM_DOMAINS; i++) {
828 		if (khd->cur_domain == KYBER_NUM_DOMAINS - 1)
829 			khd->cur_domain = 0;
830 		else
831 			khd->cur_domain++;
832 
833 		rq = kyber_dispatch_cur_domain(kqd, khd, hctx);
834 		if (rq)
835 			goto out;
836 	}
837 
838 	rq = NULL;
839 out:
840 	spin_unlock(&khd->lock);
841 	return rq;
842 }
843 
kyber_has_work(struct blk_mq_hw_ctx * hctx)844 static bool kyber_has_work(struct blk_mq_hw_ctx *hctx)
845 {
846 	struct kyber_hctx_data *khd = hctx->sched_data;
847 	int i;
848 
849 	for (i = 0; i < KYBER_NUM_DOMAINS; i++) {
850 		if (!list_empty_careful(&khd->rqs[i]) ||
851 		    sbitmap_any_bit_set(&khd->kcq_map[i]))
852 			return true;
853 	}
854 
855 	return false;
856 }
857 
858 #define KYBER_LAT_SHOW_STORE(domain, name)				\
859 static ssize_t kyber_##name##_lat_show(struct elevator_queue *e,	\
860 				       char *page)			\
861 {									\
862 	struct kyber_queue_data *kqd = e->elevator_data;		\
863 									\
864 	return sprintf(page, "%llu\n", kqd->latency_targets[domain]);	\
865 }									\
866 									\
867 static ssize_t kyber_##name##_lat_store(struct elevator_queue *e,	\
868 					const char *page, size_t count)	\
869 {									\
870 	struct kyber_queue_data *kqd = e->elevator_data;		\
871 	unsigned long long nsec;					\
872 	int ret;							\
873 									\
874 	ret = kstrtoull(page, 10, &nsec);				\
875 	if (ret)							\
876 		return ret;						\
877 									\
878 	kqd->latency_targets[domain] = nsec;				\
879 									\
880 	return count;							\
881 }
882 KYBER_LAT_SHOW_STORE(KYBER_READ, read);
883 KYBER_LAT_SHOW_STORE(KYBER_WRITE, write);
884 #undef KYBER_LAT_SHOW_STORE
885 
886 #define KYBER_LAT_ATTR(op) __ATTR(op##_lat_nsec, 0644, kyber_##op##_lat_show, kyber_##op##_lat_store)
887 static struct elv_fs_entry kyber_sched_attrs[] = {
888 	KYBER_LAT_ATTR(read),
889 	KYBER_LAT_ATTR(write),
890 	__ATTR_NULL
891 };
892 #undef KYBER_LAT_ATTR
893 
894 #ifdef CONFIG_BLK_DEBUG_FS
895 #define KYBER_DEBUGFS_DOMAIN_ATTRS(domain, name)			\
896 static int kyber_##name##_tokens_show(void *data, struct seq_file *m)	\
897 {									\
898 	struct request_queue *q = data;					\
899 	struct kyber_queue_data *kqd = q->elevator->elevator_data;	\
900 									\
901 	sbitmap_queue_show(&kqd->domain_tokens[domain], m);		\
902 	return 0;							\
903 }									\
904 									\
905 static void *kyber_##name##_rqs_start(struct seq_file *m, loff_t *pos)	\
906 	__acquires(&khd->lock)						\
907 {									\
908 	struct blk_mq_hw_ctx *hctx = m->private;			\
909 	struct kyber_hctx_data *khd = hctx->sched_data;			\
910 									\
911 	spin_lock(&khd->lock);						\
912 	return seq_list_start(&khd->rqs[domain], *pos);			\
913 }									\
914 									\
915 static void *kyber_##name##_rqs_next(struct seq_file *m, void *v,	\
916 				     loff_t *pos)			\
917 {									\
918 	struct blk_mq_hw_ctx *hctx = m->private;			\
919 	struct kyber_hctx_data *khd = hctx->sched_data;			\
920 									\
921 	return seq_list_next(v, &khd->rqs[domain], pos);		\
922 }									\
923 									\
924 static void kyber_##name##_rqs_stop(struct seq_file *m, void *v)	\
925 	__releases(&khd->lock)						\
926 {									\
927 	struct blk_mq_hw_ctx *hctx = m->private;			\
928 	struct kyber_hctx_data *khd = hctx->sched_data;			\
929 									\
930 	spin_unlock(&khd->lock);					\
931 }									\
932 									\
933 static const struct seq_operations kyber_##name##_rqs_seq_ops = {	\
934 	.start	= kyber_##name##_rqs_start,				\
935 	.next	= kyber_##name##_rqs_next,				\
936 	.stop	= kyber_##name##_rqs_stop,				\
937 	.show	= blk_mq_debugfs_rq_show,				\
938 };									\
939 									\
940 static int kyber_##name##_waiting_show(void *data, struct seq_file *m)	\
941 {									\
942 	struct blk_mq_hw_ctx *hctx = data;				\
943 	struct kyber_hctx_data *khd = hctx->sched_data;			\
944 	wait_queue_entry_t *wait = &khd->domain_wait[domain].wait;	\
945 									\
946 	seq_printf(m, "%d\n", !list_empty_careful(&wait->entry));	\
947 	return 0;							\
948 }
KYBER_DEBUGFS_DOMAIN_ATTRS(KYBER_READ,read)949 KYBER_DEBUGFS_DOMAIN_ATTRS(KYBER_READ, read)
950 KYBER_DEBUGFS_DOMAIN_ATTRS(KYBER_WRITE, write)
951 KYBER_DEBUGFS_DOMAIN_ATTRS(KYBER_DISCARD, discard)
952 KYBER_DEBUGFS_DOMAIN_ATTRS(KYBER_OTHER, other)
953 #undef KYBER_DEBUGFS_DOMAIN_ATTRS
954 
955 static int kyber_async_depth_show(void *data, struct seq_file *m)
956 {
957 	struct request_queue *q = data;
958 	struct kyber_queue_data *kqd = q->elevator->elevator_data;
959 
960 	seq_printf(m, "%u\n", kqd->async_depth);
961 	return 0;
962 }
963 
kyber_cur_domain_show(void * data,struct seq_file * m)964 static int kyber_cur_domain_show(void *data, struct seq_file *m)
965 {
966 	struct blk_mq_hw_ctx *hctx = data;
967 	struct kyber_hctx_data *khd = hctx->sched_data;
968 
969 	seq_printf(m, "%s\n", kyber_domain_names[khd->cur_domain]);
970 	return 0;
971 }
972 
kyber_batching_show(void * data,struct seq_file * m)973 static int kyber_batching_show(void *data, struct seq_file *m)
974 {
975 	struct blk_mq_hw_ctx *hctx = data;
976 	struct kyber_hctx_data *khd = hctx->sched_data;
977 
978 	seq_printf(m, "%u\n", khd->batching);
979 	return 0;
980 }
981 
982 #define KYBER_QUEUE_DOMAIN_ATTRS(name)	\
983 	{#name "_tokens", 0400, kyber_##name##_tokens_show}
984 static const struct blk_mq_debugfs_attr kyber_queue_debugfs_attrs[] = {
985 	KYBER_QUEUE_DOMAIN_ATTRS(read),
986 	KYBER_QUEUE_DOMAIN_ATTRS(write),
987 	KYBER_QUEUE_DOMAIN_ATTRS(discard),
988 	KYBER_QUEUE_DOMAIN_ATTRS(other),
989 	{"async_depth", 0400, kyber_async_depth_show},
990 	{},
991 };
992 #undef KYBER_QUEUE_DOMAIN_ATTRS
993 
994 #define KYBER_HCTX_DOMAIN_ATTRS(name)					\
995 	{#name "_rqs", 0400, .seq_ops = &kyber_##name##_rqs_seq_ops},	\
996 	{#name "_waiting", 0400, kyber_##name##_waiting_show}
997 static const struct blk_mq_debugfs_attr kyber_hctx_debugfs_attrs[] = {
998 	KYBER_HCTX_DOMAIN_ATTRS(read),
999 	KYBER_HCTX_DOMAIN_ATTRS(write),
1000 	KYBER_HCTX_DOMAIN_ATTRS(discard),
1001 	KYBER_HCTX_DOMAIN_ATTRS(other),
1002 	{"cur_domain", 0400, kyber_cur_domain_show},
1003 	{"batching", 0400, kyber_batching_show},
1004 	{},
1005 };
1006 #undef KYBER_HCTX_DOMAIN_ATTRS
1007 #endif
1008 
1009 static struct elevator_type kyber_sched = {
1010 	.ops = {
1011 		.init_sched = kyber_init_sched,
1012 		.exit_sched = kyber_exit_sched,
1013 		.init_hctx = kyber_init_hctx,
1014 		.exit_hctx = kyber_exit_hctx,
1015 		.limit_depth = kyber_limit_depth,
1016 		.bio_merge = kyber_bio_merge,
1017 		.prepare_request = kyber_prepare_request,
1018 		.insert_requests = kyber_insert_requests,
1019 		.finish_request = kyber_finish_request,
1020 		.requeue_request = kyber_finish_request,
1021 		.completed_request = kyber_completed_request,
1022 		.dispatch_request = kyber_dispatch_request,
1023 		.has_work = kyber_has_work,
1024 		.depth_updated = kyber_depth_updated,
1025 	},
1026 #ifdef CONFIG_BLK_DEBUG_FS
1027 	.queue_debugfs_attrs = kyber_queue_debugfs_attrs,
1028 	.hctx_debugfs_attrs = kyber_hctx_debugfs_attrs,
1029 #endif
1030 	.elevator_attrs = kyber_sched_attrs,
1031 	.elevator_name = "kyber",
1032 	.elevator_owner = THIS_MODULE,
1033 };
1034 
kyber_init(void)1035 static int __init kyber_init(void)
1036 {
1037 	return elv_register(&kyber_sched);
1038 }
1039 
kyber_exit(void)1040 static void __exit kyber_exit(void)
1041 {
1042 	elv_unregister(&kyber_sched);
1043 }
1044 
1045 module_init(kyber_init);
1046 module_exit(kyber_exit);
1047 
1048 MODULE_AUTHOR("Omar Sandoval");
1049 MODULE_LICENSE("GPL");
1050 MODULE_DESCRIPTION("Kyber I/O scheduler");
1051