1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Copyright (C) 2020-2025 Intel Corporation
4 */
5
6 #include <linux/units.h>
7
8 #include "ivpu_drv.h"
9 #include "ivpu_hw.h"
10 #include "ivpu_hw_btrs.h"
11 #include "ivpu_hw_btrs_lnl_reg.h"
12 #include "ivpu_hw_btrs_mtl_reg.h"
13 #include "ivpu_hw_reg_io.h"
14 #include "ivpu_pm.h"
15
16 #define BTRS_MTL_IRQ_MASK ((REG_FLD(VPU_HW_BTRS_MTL_INTERRUPT_STAT, ATS_ERR)) | \
17 (REG_FLD(VPU_HW_BTRS_MTL_INTERRUPT_STAT, UFI_ERR)))
18
19 #define BTRS_LNL_IRQ_MASK ((REG_FLD(VPU_HW_BTRS_LNL_INTERRUPT_STAT, ATS_ERR)) | \
20 (REG_FLD(VPU_HW_BTRS_LNL_INTERRUPT_STAT, CFI0_ERR)) | \
21 (REG_FLD(VPU_HW_BTRS_LNL_INTERRUPT_STAT, CFI1_ERR)) | \
22 (REG_FLD(VPU_HW_BTRS_LNL_INTERRUPT_STAT, IMR0_ERR)) | \
23 (REG_FLD(VPU_HW_BTRS_LNL_INTERRUPT_STAT, IMR1_ERR)) | \
24 (REG_FLD(VPU_HW_BTRS_LNL_INTERRUPT_STAT, SURV_ERR)))
25
26 #define BTRS_MTL_ALL_IRQ_MASK (BTRS_MTL_IRQ_MASK | (REG_FLD(VPU_HW_BTRS_MTL_INTERRUPT_STAT, \
27 FREQ_CHANGE)))
28
29 #define BTRS_IRQ_DISABLE_MASK ((u32)-1)
30
31 #define BTRS_LNL_ALL_IRQ_MASK ((u32)-1)
32
33
34 #define PLL_CDYN_DEFAULT 0x80
35 #define PLL_EPP_DEFAULT 0x80
36 #define PLL_CONFIG_DEFAULT 0x0
37 #define PLL_REF_CLK_FREQ 50000000ull
38 #define PLL_RATIO_TO_FREQ(x) ((x) * PLL_REF_CLK_FREQ)
39
40 #define PLL_TIMEOUT_US (1500 * USEC_PER_MSEC)
41 #define IDLE_TIMEOUT_US (5 * USEC_PER_MSEC)
42 #define TIMEOUT_US (150 * USEC_PER_MSEC)
43
44 /* Work point configuration values */
45 #define WP_CONFIG(tile, ratio) (((tile) << 8) | (ratio))
46 #define MTL_CONFIG_1_TILE 0x01
47 #define MTL_CONFIG_2_TILE 0x02
48 #define MTL_PLL_RATIO_5_3 0x01
49 #define MTL_PLL_RATIO_4_3 0x02
50 #define BTRS_MTL_TILE_FUSE_ENABLE_BOTH 0x0
51 #define BTRS_MTL_TILE_SKU_BOTH 0x3630
52
53 #define BTRS_LNL_TILE_MAX_NUM 6
54 #define BTRS_LNL_TILE_MAX_MASK 0x3f
55
56 #define WEIGHTS_DEFAULT 0xf711f711u
57 #define WEIGHTS_ATS_DEFAULT 0x0000f711u
58
59 #define DCT_REQ 0x2
60 #define DCT_ENABLE 0x1
61 #define DCT_DISABLE 0x0
62
63 static u32 pll_ratio_to_dpu_freq(struct ivpu_device *vdev, u32 ratio);
64
ivpu_hw_btrs_irqs_clear_with_0_mtl(struct ivpu_device * vdev)65 int ivpu_hw_btrs_irqs_clear_with_0_mtl(struct ivpu_device *vdev)
66 {
67 REGB_WR32(VPU_HW_BTRS_MTL_INTERRUPT_STAT, BTRS_MTL_ALL_IRQ_MASK);
68 if (REGB_RD32(VPU_HW_BTRS_MTL_INTERRUPT_STAT) == BTRS_MTL_ALL_IRQ_MASK) {
69 /* Writing 1s does not clear the interrupt status register */
70 REGB_WR32(VPU_HW_BTRS_MTL_INTERRUPT_STAT, 0x0);
71 return true;
72 }
73
74 return false;
75 }
76
freq_ratios_init_mtl(struct ivpu_device * vdev)77 static void freq_ratios_init_mtl(struct ivpu_device *vdev)
78 {
79 struct ivpu_hw_info *hw = vdev->hw;
80 u32 fmin_fuse, fmax_fuse;
81
82 fmin_fuse = REGB_RD32(VPU_HW_BTRS_MTL_FMIN_FUSE);
83 hw->pll.min_ratio = REG_GET_FLD(VPU_HW_BTRS_MTL_FMIN_FUSE, MIN_RATIO, fmin_fuse);
84 hw->pll.pn_ratio = REG_GET_FLD(VPU_HW_BTRS_MTL_FMIN_FUSE, PN_RATIO, fmin_fuse);
85
86 fmax_fuse = REGB_RD32(VPU_HW_BTRS_MTL_FMAX_FUSE);
87 hw->pll.max_ratio = REG_GET_FLD(VPU_HW_BTRS_MTL_FMAX_FUSE, MAX_RATIO, fmax_fuse);
88 }
89
freq_ratios_init_lnl(struct ivpu_device * vdev)90 static void freq_ratios_init_lnl(struct ivpu_device *vdev)
91 {
92 struct ivpu_hw_info *hw = vdev->hw;
93 u32 fmin_fuse, fmax_fuse;
94
95 fmin_fuse = REGB_RD32(VPU_HW_BTRS_LNL_FMIN_FUSE);
96 hw->pll.min_ratio = REG_GET_FLD(VPU_HW_BTRS_LNL_FMIN_FUSE, MIN_RATIO, fmin_fuse);
97 hw->pll.pn_ratio = REG_GET_FLD(VPU_HW_BTRS_LNL_FMIN_FUSE, PN_RATIO, fmin_fuse);
98
99 fmax_fuse = REGB_RD32(VPU_HW_BTRS_LNL_FMAX_FUSE);
100 hw->pll.max_ratio = REG_GET_FLD(VPU_HW_BTRS_LNL_FMAX_FUSE, MAX_RATIO, fmax_fuse);
101 }
102
ivpu_hw_btrs_freq_ratios_init(struct ivpu_device * vdev)103 void ivpu_hw_btrs_freq_ratios_init(struct ivpu_device *vdev)
104 {
105 struct ivpu_hw_info *hw = vdev->hw;
106
107 if (ivpu_hw_btrs_gen(vdev) == IVPU_HW_BTRS_MTL)
108 freq_ratios_init_mtl(vdev);
109 else
110 freq_ratios_init_lnl(vdev);
111
112 hw->pll.min_ratio = clamp_t(u8, ivpu_pll_min_ratio, hw->pll.min_ratio, hw->pll.max_ratio);
113 hw->pll.max_ratio = clamp_t(u8, ivpu_pll_max_ratio, hw->pll.min_ratio, hw->pll.max_ratio);
114 hw->pll.pn_ratio = clamp_t(u8, hw->pll.pn_ratio, hw->pll.min_ratio, hw->pll.max_ratio);
115 }
116
tile_disable_check(u32 config)117 static bool tile_disable_check(u32 config)
118 {
119 /* Allowed values: 0 or one bit from range 0-5 (6 tiles) */
120 if (config == 0)
121 return true;
122
123 if (config > BIT(BTRS_LNL_TILE_MAX_NUM - 1))
124 return false;
125
126 if ((config & (config - 1)) == 0)
127 return true;
128
129 return false;
130 }
131
read_tile_config_fuse(struct ivpu_device * vdev,u32 * tile_fuse_config)132 static int read_tile_config_fuse(struct ivpu_device *vdev, u32 *tile_fuse_config)
133 {
134 u32 fuse;
135 u32 config;
136
137 fuse = REGB_RD32(VPU_HW_BTRS_LNL_TILE_FUSE);
138 if (!REG_TEST_FLD(VPU_HW_BTRS_LNL_TILE_FUSE, VALID, fuse)) {
139 ivpu_err(vdev, "Fuse: invalid (0x%x)\n", fuse);
140 return -EIO;
141 }
142
143 config = REG_GET_FLD(VPU_HW_BTRS_LNL_TILE_FUSE, CONFIG, fuse);
144 if (!tile_disable_check(config)) {
145 ivpu_err(vdev, "Fuse: Invalid tile disable config (0x%x)\n", config);
146 return -EIO;
147 }
148
149 if (config)
150 ivpu_dbg(vdev, MISC, "Fuse: %d tiles enabled. Tile number %d disabled\n",
151 BTRS_LNL_TILE_MAX_NUM - 1, ffs(config) - 1);
152 else
153 ivpu_dbg(vdev, MISC, "Fuse: All %d tiles enabled\n", BTRS_LNL_TILE_MAX_NUM);
154
155 *tile_fuse_config = config;
156 return 0;
157 }
158
info_init_mtl(struct ivpu_device * vdev)159 static int info_init_mtl(struct ivpu_device *vdev)
160 {
161 struct ivpu_hw_info *hw = vdev->hw;
162
163 hw->tile_fuse = BTRS_MTL_TILE_FUSE_ENABLE_BOTH;
164 hw->sku = BTRS_MTL_TILE_SKU_BOTH;
165 hw->config = WP_CONFIG(MTL_CONFIG_2_TILE, MTL_PLL_RATIO_4_3);
166
167 return 0;
168 }
169
info_init_lnl(struct ivpu_device * vdev)170 static int info_init_lnl(struct ivpu_device *vdev)
171 {
172 struct ivpu_hw_info *hw = vdev->hw;
173 u32 tile_fuse_config;
174 int ret;
175
176 ret = read_tile_config_fuse(vdev, &tile_fuse_config);
177 if (ret)
178 return ret;
179
180 hw->tile_fuse = tile_fuse_config;
181 hw->pll.profiling_freq = PLL_PROFILING_FREQ_DEFAULT;
182
183 return 0;
184 }
185
ivpu_hw_btrs_info_init(struct ivpu_device * vdev)186 int ivpu_hw_btrs_info_init(struct ivpu_device *vdev)
187 {
188 if (ivpu_hw_btrs_gen(vdev) == IVPU_HW_BTRS_MTL)
189 return info_init_mtl(vdev);
190 else
191 return info_init_lnl(vdev);
192 }
193
wp_request_sync(struct ivpu_device * vdev)194 static int wp_request_sync(struct ivpu_device *vdev)
195 {
196 if (ivpu_hw_btrs_gen(vdev) == IVPU_HW_BTRS_MTL)
197 return REGB_POLL_FLD(VPU_HW_BTRS_MTL_WP_REQ_CMD, SEND, 0, PLL_TIMEOUT_US);
198 else
199 return REGB_POLL_FLD(VPU_HW_BTRS_LNL_WP_REQ_CMD, SEND, 0, PLL_TIMEOUT_US);
200 }
201
wait_for_status_ready(struct ivpu_device * vdev,bool enable)202 static int wait_for_status_ready(struct ivpu_device *vdev, bool enable)
203 {
204 u32 exp_val = enable ? 0x1 : 0x0;
205
206 if (IVPU_WA(punit_disabled))
207 return 0;
208
209 if (ivpu_hw_btrs_gen(vdev) == IVPU_HW_BTRS_MTL)
210 return REGB_POLL_FLD(VPU_HW_BTRS_MTL_VPU_STATUS, READY, exp_val, PLL_TIMEOUT_US);
211 else
212 return REGB_POLL_FLD(VPU_HW_BTRS_LNL_VPU_STATUS, READY, exp_val, PLL_TIMEOUT_US);
213 }
214
215 struct wp_request {
216 u16 min;
217 u16 max;
218 u16 target;
219 u16 cfg;
220 u16 epp;
221 u16 cdyn;
222 };
223
wp_request_mtl(struct ivpu_device * vdev,struct wp_request * wp)224 static void wp_request_mtl(struct ivpu_device *vdev, struct wp_request *wp)
225 {
226 u32 val;
227
228 val = REGB_RD32(VPU_HW_BTRS_MTL_WP_REQ_PAYLOAD0);
229 val = REG_SET_FLD_NUM(VPU_HW_BTRS_MTL_WP_REQ_PAYLOAD0, MIN_RATIO, wp->min, val);
230 val = REG_SET_FLD_NUM(VPU_HW_BTRS_MTL_WP_REQ_PAYLOAD0, MAX_RATIO, wp->max, val);
231 REGB_WR32(VPU_HW_BTRS_MTL_WP_REQ_PAYLOAD0, val);
232
233 val = REGB_RD32(VPU_HW_BTRS_MTL_WP_REQ_PAYLOAD1);
234 val = REG_SET_FLD_NUM(VPU_HW_BTRS_MTL_WP_REQ_PAYLOAD1, TARGET_RATIO, wp->target, val);
235 val = REG_SET_FLD_NUM(VPU_HW_BTRS_MTL_WP_REQ_PAYLOAD1, EPP, PLL_EPP_DEFAULT, val);
236 REGB_WR32(VPU_HW_BTRS_MTL_WP_REQ_PAYLOAD1, val);
237
238 val = REGB_RD32(VPU_HW_BTRS_MTL_WP_REQ_PAYLOAD2);
239 val = REG_SET_FLD_NUM(VPU_HW_BTRS_MTL_WP_REQ_PAYLOAD2, CONFIG, wp->cfg, val);
240 REGB_WR32(VPU_HW_BTRS_MTL_WP_REQ_PAYLOAD2, val);
241
242 val = REGB_RD32(VPU_HW_BTRS_MTL_WP_REQ_CMD);
243 val = REG_SET_FLD(VPU_HW_BTRS_MTL_WP_REQ_CMD, SEND, val);
244 REGB_WR32(VPU_HW_BTRS_MTL_WP_REQ_CMD, val);
245 }
246
wp_request_lnl(struct ivpu_device * vdev,struct wp_request * wp)247 static void wp_request_lnl(struct ivpu_device *vdev, struct wp_request *wp)
248 {
249 u32 val;
250
251 val = REGB_RD32(VPU_HW_BTRS_LNL_WP_REQ_PAYLOAD0);
252 val = REG_SET_FLD_NUM(VPU_HW_BTRS_LNL_WP_REQ_PAYLOAD0, MIN_RATIO, wp->min, val);
253 val = REG_SET_FLD_NUM(VPU_HW_BTRS_LNL_WP_REQ_PAYLOAD0, MAX_RATIO, wp->max, val);
254 REGB_WR32(VPU_HW_BTRS_LNL_WP_REQ_PAYLOAD0, val);
255
256 val = REGB_RD32(VPU_HW_BTRS_LNL_WP_REQ_PAYLOAD1);
257 val = REG_SET_FLD_NUM(VPU_HW_BTRS_LNL_WP_REQ_PAYLOAD1, TARGET_RATIO, wp->target, val);
258 val = REG_SET_FLD_NUM(VPU_HW_BTRS_LNL_WP_REQ_PAYLOAD1, EPP, wp->epp, val);
259 REGB_WR32(VPU_HW_BTRS_LNL_WP_REQ_PAYLOAD1, val);
260
261 val = REGB_RD32(VPU_HW_BTRS_LNL_WP_REQ_PAYLOAD2);
262 val = REG_SET_FLD_NUM(VPU_HW_BTRS_LNL_WP_REQ_PAYLOAD2, CONFIG, wp->cfg, val);
263 val = REG_SET_FLD_NUM(VPU_HW_BTRS_LNL_WP_REQ_PAYLOAD2, CDYN, wp->cdyn, val);
264 REGB_WR32(VPU_HW_BTRS_LNL_WP_REQ_PAYLOAD2, val);
265
266 val = REGB_RD32(VPU_HW_BTRS_LNL_WP_REQ_CMD);
267 val = REG_SET_FLD(VPU_HW_BTRS_LNL_WP_REQ_CMD, SEND, val);
268 REGB_WR32(VPU_HW_BTRS_LNL_WP_REQ_CMD, val);
269 }
270
wp_request(struct ivpu_device * vdev,struct wp_request * wp)271 static void wp_request(struct ivpu_device *vdev, struct wp_request *wp)
272 {
273 if (ivpu_hw_btrs_gen(vdev) == IVPU_HW_BTRS_MTL)
274 wp_request_mtl(vdev, wp);
275 else
276 wp_request_lnl(vdev, wp);
277 }
278
wp_request_send(struct ivpu_device * vdev,struct wp_request * wp)279 static int wp_request_send(struct ivpu_device *vdev, struct wp_request *wp)
280 {
281 int ret;
282
283 ret = wp_request_sync(vdev);
284 if (ret) {
285 ivpu_err(vdev, "Failed to sync before workpoint request: %d\n", ret);
286 return ret;
287 }
288
289 wp_request(vdev, wp);
290
291 ret = wp_request_sync(vdev);
292 if (ret)
293 ivpu_err(vdev, "Failed to sync after workpoint request: %d\n", ret);
294
295 return ret;
296 }
297
prepare_wp_request(struct ivpu_device * vdev,struct wp_request * wp,bool enable)298 static void prepare_wp_request(struct ivpu_device *vdev, struct wp_request *wp, bool enable)
299 {
300 struct ivpu_hw_info *hw = vdev->hw;
301
302 wp->min = hw->pll.min_ratio;
303 wp->max = hw->pll.max_ratio;
304
305 if (ivpu_hw_btrs_gen(vdev) == IVPU_HW_BTRS_MTL) {
306 wp->target = enable ? hw->pll.pn_ratio : 0;
307 wp->cfg = enable ? hw->config : 0;
308 wp->cdyn = 0;
309 wp->epp = 0;
310 } else {
311 wp->target = hw->pll.pn_ratio;
312 wp->cfg = enable ? PLL_CONFIG_DEFAULT : 0;
313 wp->cdyn = enable ? PLL_CDYN_DEFAULT : 0;
314 wp->epp = enable ? PLL_EPP_DEFAULT : 0;
315 }
316
317 /* Simics cannot start without at least one tile */
318 if (enable && ivpu_is_simics(vdev))
319 wp->cfg = 1;
320 }
321
wait_for_pll_lock(struct ivpu_device * vdev,bool enable)322 static int wait_for_pll_lock(struct ivpu_device *vdev, bool enable)
323 {
324 u32 exp_val = enable ? 0x1 : 0x0;
325
326 if (ivpu_hw_btrs_gen(vdev) != IVPU_HW_BTRS_MTL)
327 return 0;
328
329 if (IVPU_WA(punit_disabled))
330 return 0;
331
332 return REGB_POLL_FLD(VPU_HW_BTRS_MTL_PLL_STATUS, LOCK, exp_val, PLL_TIMEOUT_US);
333 }
334
ivpu_hw_btrs_wp_drive(struct ivpu_device * vdev,bool enable)335 int ivpu_hw_btrs_wp_drive(struct ivpu_device *vdev, bool enable)
336 {
337 struct wp_request wp;
338 int ret;
339
340 if (IVPU_WA(punit_disabled)) {
341 ivpu_dbg(vdev, PM, "Skipping workpoint request\n");
342 return 0;
343 }
344
345 prepare_wp_request(vdev, &wp, enable);
346
347 ivpu_dbg(vdev, PM, "PLL workpoint request: %lu MHz, config: 0x%x, epp: 0x%x, cdyn: 0x%x\n",
348 pll_ratio_to_dpu_freq(vdev, wp.target) / HZ_PER_MHZ, wp.cfg, wp.epp, wp.cdyn);
349
350 ret = wp_request_send(vdev, &wp);
351 if (ret) {
352 ivpu_err(vdev, "Failed to send workpoint request: %d\n", ret);
353 return ret;
354 }
355
356 ret = wait_for_pll_lock(vdev, enable);
357 if (ret) {
358 ivpu_err(vdev, "Timed out waiting for PLL lock\n");
359 return ret;
360 }
361
362 ret = wait_for_status_ready(vdev, enable);
363 if (ret) {
364 ivpu_err(vdev, "Timed out waiting for NPU ready status\n");
365 return ret;
366 }
367
368 return 0;
369 }
370
d0i3_drive_mtl(struct ivpu_device * vdev,bool enable)371 static int d0i3_drive_mtl(struct ivpu_device *vdev, bool enable)
372 {
373 int ret;
374 u32 val;
375
376 ret = REGB_POLL_FLD(VPU_HW_BTRS_MTL_VPU_D0I3_CONTROL, INPROGRESS, 0, TIMEOUT_US);
377 if (ret) {
378 ivpu_err(vdev, "Failed to sync before D0i3 transition: %d\n", ret);
379 return ret;
380 }
381
382 val = REGB_RD32(VPU_HW_BTRS_MTL_VPU_D0I3_CONTROL);
383 if (enable)
384 val = REG_SET_FLD(VPU_HW_BTRS_MTL_VPU_D0I3_CONTROL, I3, val);
385 else
386 val = REG_CLR_FLD(VPU_HW_BTRS_MTL_VPU_D0I3_CONTROL, I3, val);
387 REGB_WR32(VPU_HW_BTRS_MTL_VPU_D0I3_CONTROL, val);
388
389 ret = REGB_POLL_FLD(VPU_HW_BTRS_MTL_VPU_D0I3_CONTROL, INPROGRESS, 0, TIMEOUT_US);
390 if (ret)
391 ivpu_err(vdev, "Failed to sync after D0i3 transition: %d\n", ret);
392
393 return ret;
394 }
395
d0i3_drive_lnl(struct ivpu_device * vdev,bool enable)396 static int d0i3_drive_lnl(struct ivpu_device *vdev, bool enable)
397 {
398 int ret;
399 u32 val;
400
401 ret = REGB_POLL_FLD(VPU_HW_BTRS_LNL_D0I3_CONTROL, INPROGRESS, 0, TIMEOUT_US);
402 if (ret) {
403 ivpu_err(vdev, "Failed to sync before D0i3 transition: %d\n", ret);
404 return ret;
405 }
406
407 val = REGB_RD32(VPU_HW_BTRS_LNL_D0I3_CONTROL);
408 if (enable)
409 val = REG_SET_FLD(VPU_HW_BTRS_LNL_D0I3_CONTROL, I3, val);
410 else
411 val = REG_CLR_FLD(VPU_HW_BTRS_LNL_D0I3_CONTROL, I3, val);
412 REGB_WR32(VPU_HW_BTRS_LNL_D0I3_CONTROL, val);
413
414 ret = REGB_POLL_FLD(VPU_HW_BTRS_LNL_D0I3_CONTROL, INPROGRESS, 0, TIMEOUT_US);
415 if (ret) {
416 ivpu_err(vdev, "Failed to sync after D0i3 transition: %d\n", ret);
417 return ret;
418 }
419
420 return 0;
421 }
422
d0i3_drive(struct ivpu_device * vdev,bool enable)423 static int d0i3_drive(struct ivpu_device *vdev, bool enable)
424 {
425 if (ivpu_hw_btrs_gen(vdev) == IVPU_HW_BTRS_MTL)
426 return d0i3_drive_mtl(vdev, enable);
427 else
428 return d0i3_drive_lnl(vdev, enable);
429 }
430
ivpu_hw_btrs_d0i3_enable(struct ivpu_device * vdev)431 int ivpu_hw_btrs_d0i3_enable(struct ivpu_device *vdev)
432 {
433 int ret;
434
435 if (IVPU_WA(punit_disabled))
436 return 0;
437
438 ret = d0i3_drive(vdev, true);
439 if (ret)
440 ivpu_err(vdev, "Failed to enable D0i3: %d\n", ret);
441
442 udelay(5); /* VPU requires 5 us to complete the transition */
443
444 return ret;
445 }
446
ivpu_hw_btrs_d0i3_disable(struct ivpu_device * vdev)447 int ivpu_hw_btrs_d0i3_disable(struct ivpu_device *vdev)
448 {
449 int ret;
450
451 if (IVPU_WA(punit_disabled))
452 return 0;
453
454 ret = d0i3_drive(vdev, false);
455 if (ret)
456 ivpu_err(vdev, "Failed to disable D0i3: %d\n", ret);
457
458 return ret;
459 }
460
ivpu_hw_btrs_wait_for_clock_res_own_ack(struct ivpu_device * vdev)461 int ivpu_hw_btrs_wait_for_clock_res_own_ack(struct ivpu_device *vdev)
462 {
463 if (ivpu_hw_btrs_gen(vdev) == IVPU_HW_BTRS_MTL)
464 return 0;
465
466 if (ivpu_is_simics(vdev))
467 return 0;
468
469 return REGB_POLL_FLD(VPU_HW_BTRS_LNL_VPU_STATUS, CLOCK_RESOURCE_OWN_ACK, 1, TIMEOUT_US);
470 }
471
ivpu_hw_btrs_set_port_arbitration_weights_lnl(struct ivpu_device * vdev)472 void ivpu_hw_btrs_set_port_arbitration_weights_lnl(struct ivpu_device *vdev)
473 {
474 REGB_WR32(VPU_HW_BTRS_LNL_PORT_ARBITRATION_WEIGHTS, WEIGHTS_DEFAULT);
475 REGB_WR32(VPU_HW_BTRS_LNL_PORT_ARBITRATION_WEIGHTS_ATS, WEIGHTS_ATS_DEFAULT);
476 }
477
ip_reset_mtl(struct ivpu_device * vdev)478 static int ip_reset_mtl(struct ivpu_device *vdev)
479 {
480 int ret;
481 u32 val;
482
483 ret = REGB_POLL_FLD(VPU_HW_BTRS_MTL_VPU_IP_RESET, TRIGGER, 0, TIMEOUT_US);
484 if (ret) {
485 ivpu_err(vdev, "Timed out waiting for TRIGGER bit\n");
486 return ret;
487 }
488
489 val = REGB_RD32(VPU_HW_BTRS_MTL_VPU_IP_RESET);
490 val = REG_SET_FLD(VPU_HW_BTRS_MTL_VPU_IP_RESET, TRIGGER, val);
491 REGB_WR32(VPU_HW_BTRS_MTL_VPU_IP_RESET, val);
492
493 ret = REGB_POLL_FLD(VPU_HW_BTRS_MTL_VPU_IP_RESET, TRIGGER, 0, TIMEOUT_US);
494 if (ret)
495 ivpu_err(vdev, "Timed out waiting for RESET completion\n");
496
497 return ret;
498 }
499
ip_reset_lnl(struct ivpu_device * vdev)500 static int ip_reset_lnl(struct ivpu_device *vdev)
501 {
502 int ret;
503 u32 val;
504
505 ivpu_hw_btrs_clock_relinquish_disable_lnl(vdev);
506
507 ret = REGB_POLL_FLD(VPU_HW_BTRS_LNL_IP_RESET, TRIGGER, 0, TIMEOUT_US);
508 if (ret) {
509 ivpu_err(vdev, "Wait for *_TRIGGER timed out\n");
510 return ret;
511 }
512
513 val = REGB_RD32(VPU_HW_BTRS_LNL_IP_RESET);
514 val = REG_SET_FLD(VPU_HW_BTRS_LNL_IP_RESET, TRIGGER, val);
515 REGB_WR32(VPU_HW_BTRS_LNL_IP_RESET, val);
516
517 ret = REGB_POLL_FLD(VPU_HW_BTRS_LNL_IP_RESET, TRIGGER, 0, TIMEOUT_US);
518 if (ret)
519 ivpu_err(vdev, "Timed out waiting for RESET completion\n");
520
521 return ret;
522 }
523
ivpu_hw_btrs_ip_reset(struct ivpu_device * vdev)524 int ivpu_hw_btrs_ip_reset(struct ivpu_device *vdev)
525 {
526 if (IVPU_WA(punit_disabled))
527 return 0;
528
529 if (ivpu_hw_btrs_gen(vdev) == IVPU_HW_BTRS_MTL)
530 return ip_reset_mtl(vdev);
531 else
532 return ip_reset_lnl(vdev);
533 }
534
ivpu_hw_btrs_profiling_freq_reg_set_lnl(struct ivpu_device * vdev)535 void ivpu_hw_btrs_profiling_freq_reg_set_lnl(struct ivpu_device *vdev)
536 {
537 u32 val = REGB_RD32(VPU_HW_BTRS_LNL_VPU_STATUS);
538
539 if (vdev->hw->pll.profiling_freq == PLL_PROFILING_FREQ_DEFAULT)
540 val = REG_CLR_FLD(VPU_HW_BTRS_LNL_VPU_STATUS, PERF_CLK, val);
541 else
542 val = REG_SET_FLD(VPU_HW_BTRS_LNL_VPU_STATUS, PERF_CLK, val);
543
544 REGB_WR32(VPU_HW_BTRS_LNL_VPU_STATUS, val);
545 }
546
ivpu_hw_btrs_ats_print_lnl(struct ivpu_device * vdev)547 void ivpu_hw_btrs_ats_print_lnl(struct ivpu_device *vdev)
548 {
549 ivpu_dbg(vdev, MISC, "Buttress ATS: %s\n",
550 REGB_RD32(VPU_HW_BTRS_LNL_HM_ATS) ? "Enable" : "Disable");
551 }
552
ivpu_hw_btrs_clock_relinquish_disable_lnl(struct ivpu_device * vdev)553 void ivpu_hw_btrs_clock_relinquish_disable_lnl(struct ivpu_device *vdev)
554 {
555 u32 val = REGB_RD32(VPU_HW_BTRS_LNL_VPU_STATUS);
556
557 val = REG_SET_FLD(VPU_HW_BTRS_LNL_VPU_STATUS, DISABLE_CLK_RELINQUISH, val);
558 REGB_WR32(VPU_HW_BTRS_LNL_VPU_STATUS, val);
559 }
560
ivpu_hw_btrs_is_idle(struct ivpu_device * vdev)561 bool ivpu_hw_btrs_is_idle(struct ivpu_device *vdev)
562 {
563 u32 val;
564
565 if (IVPU_WA(punit_disabled))
566 return true;
567
568 if (ivpu_hw_btrs_gen(vdev) == IVPU_HW_BTRS_MTL) {
569 val = REGB_RD32(VPU_HW_BTRS_MTL_VPU_STATUS);
570
571 return REG_TEST_FLD(VPU_HW_BTRS_MTL_VPU_STATUS, READY, val) &&
572 REG_TEST_FLD(VPU_HW_BTRS_MTL_VPU_STATUS, IDLE, val);
573 } else {
574 val = REGB_RD32(VPU_HW_BTRS_LNL_VPU_STATUS);
575
576 return REG_TEST_FLD(VPU_HW_BTRS_LNL_VPU_STATUS, READY, val) &&
577 REG_TEST_FLD(VPU_HW_BTRS_LNL_VPU_STATUS, IDLE, val);
578 }
579 }
580
ivpu_hw_btrs_wait_for_idle(struct ivpu_device * vdev)581 int ivpu_hw_btrs_wait_for_idle(struct ivpu_device *vdev)
582 {
583 if (ivpu_hw_btrs_gen(vdev) == IVPU_HW_BTRS_MTL)
584 return REGB_POLL_FLD(VPU_HW_BTRS_MTL_VPU_STATUS, IDLE, 0x1, IDLE_TIMEOUT_US);
585 else
586 return REGB_POLL_FLD(VPU_HW_BTRS_LNL_VPU_STATUS, IDLE, 0x1, IDLE_TIMEOUT_US);
587 }
588
pll_config_get_mtl(struct ivpu_device * vdev)589 static u32 pll_config_get_mtl(struct ivpu_device *vdev)
590 {
591 return REGB_RD32(VPU_HW_BTRS_MTL_CURRENT_PLL);
592 }
593
pll_config_get_lnl(struct ivpu_device * vdev)594 static u32 pll_config_get_lnl(struct ivpu_device *vdev)
595 {
596 return REGB_RD32(VPU_HW_BTRS_LNL_PLL_FREQ);
597 }
598
pll_ratio_to_dpu_freq_mtl(u16 ratio)599 static u32 pll_ratio_to_dpu_freq_mtl(u16 ratio)
600 {
601 return (PLL_RATIO_TO_FREQ(ratio) * 2) / 3;
602 }
603
pll_ratio_to_dpu_freq_lnl(u16 ratio)604 static u32 pll_ratio_to_dpu_freq_lnl(u16 ratio)
605 {
606 return PLL_RATIO_TO_FREQ(ratio) / 2;
607 }
608
pll_ratio_to_dpu_freq(struct ivpu_device * vdev,u32 ratio)609 static u32 pll_ratio_to_dpu_freq(struct ivpu_device *vdev, u32 ratio)
610 {
611 if (ivpu_hw_btrs_gen(vdev) == IVPU_HW_BTRS_MTL)
612 return pll_ratio_to_dpu_freq_mtl(ratio);
613 else
614 return pll_ratio_to_dpu_freq_lnl(ratio);
615 }
616
ivpu_hw_btrs_dpu_max_freq_get(struct ivpu_device * vdev)617 u32 ivpu_hw_btrs_dpu_max_freq_get(struct ivpu_device *vdev)
618 {
619 return pll_ratio_to_dpu_freq(vdev, vdev->hw->pll.max_ratio);
620 }
621
622 /* Handler for IRQs from Buttress core (irqB) */
ivpu_hw_btrs_irq_handler_mtl(struct ivpu_device * vdev,int irq)623 bool ivpu_hw_btrs_irq_handler_mtl(struct ivpu_device *vdev, int irq)
624 {
625 u32 status = REGB_RD32(VPU_HW_BTRS_MTL_INTERRUPT_STAT) & BTRS_MTL_IRQ_MASK;
626 bool schedule_recovery = false;
627
628 if (!status)
629 return false;
630
631 if (REG_TEST_FLD(VPU_HW_BTRS_MTL_INTERRUPT_STAT, FREQ_CHANGE, status)) {
632 u32 pll = pll_config_get_mtl(vdev);
633
634 ivpu_dbg(vdev, IRQ, "FREQ_CHANGE irq, wp %08x, %lu MHz",
635 pll, pll_ratio_to_dpu_freq_mtl(pll) / HZ_PER_MHZ);
636 }
637
638 if (REG_TEST_FLD(VPU_HW_BTRS_MTL_INTERRUPT_STAT, ATS_ERR, status)) {
639 ivpu_err(vdev, "ATS_ERR irq 0x%016llx", REGB_RD64(VPU_HW_BTRS_MTL_ATS_ERR_LOG_0));
640 REGB_WR32(VPU_HW_BTRS_MTL_ATS_ERR_CLEAR, 0x1);
641 schedule_recovery = true;
642 }
643
644 if (REG_TEST_FLD(VPU_HW_BTRS_MTL_INTERRUPT_STAT, UFI_ERR, status)) {
645 u32 ufi_log = REGB_RD32(VPU_HW_BTRS_MTL_UFI_ERR_LOG);
646
647 ivpu_err(vdev, "UFI_ERR irq (0x%08x) opcode: 0x%02lx axi_id: 0x%02lx cq_id: 0x%03lx",
648 ufi_log, REG_GET_FLD(VPU_HW_BTRS_MTL_UFI_ERR_LOG, OPCODE, ufi_log),
649 REG_GET_FLD(VPU_HW_BTRS_MTL_UFI_ERR_LOG, AXI_ID, ufi_log),
650 REG_GET_FLD(VPU_HW_BTRS_MTL_UFI_ERR_LOG, CQ_ID, ufi_log));
651 REGB_WR32(VPU_HW_BTRS_MTL_UFI_ERR_CLEAR, 0x1);
652 schedule_recovery = true;
653 }
654
655 /* This must be done after interrupts are cleared at the source. */
656 if (IVPU_WA(interrupt_clear_with_0))
657 /*
658 * Writing 1 triggers an interrupt, so we can't perform read update write.
659 * Clear local interrupt status by writing 0 to all bits.
660 */
661 REGB_WR32(VPU_HW_BTRS_MTL_INTERRUPT_STAT, 0x0);
662 else
663 REGB_WR32(VPU_HW_BTRS_MTL_INTERRUPT_STAT, status);
664
665 if (schedule_recovery)
666 ivpu_pm_trigger_recovery(vdev, "Buttress IRQ");
667
668 return true;
669 }
670
671 /* Handler for IRQs from Buttress core (irqB) */
ivpu_hw_btrs_irq_handler_lnl(struct ivpu_device * vdev,int irq)672 bool ivpu_hw_btrs_irq_handler_lnl(struct ivpu_device *vdev, int irq)
673 {
674 u32 status = REGB_RD32(VPU_HW_BTRS_LNL_INTERRUPT_STAT) & BTRS_LNL_IRQ_MASK;
675 bool schedule_recovery = false;
676
677 if (!status)
678 return false;
679
680 if (REG_TEST_FLD(VPU_HW_BTRS_LNL_INTERRUPT_STAT, SURV_ERR, status)) {
681 ivpu_dbg(vdev, IRQ, "Survivability IRQ\n");
682 if (!kfifo_put(&vdev->hw->irq.fifo, IVPU_HW_IRQ_SRC_DCT))
683 ivpu_err_ratelimited(vdev, "IRQ FIFO full\n");
684 }
685
686 if (REG_TEST_FLD(VPU_HW_BTRS_LNL_INTERRUPT_STAT, FREQ_CHANGE, status)) {
687 u32 pll = pll_config_get_lnl(vdev);
688
689 ivpu_dbg(vdev, IRQ, "FREQ_CHANGE irq, wp %08x, %lu MHz",
690 pll, pll_ratio_to_dpu_freq_lnl(pll) / HZ_PER_MHZ);
691 }
692
693 if (REG_TEST_FLD(VPU_HW_BTRS_LNL_INTERRUPT_STAT, ATS_ERR, status)) {
694 ivpu_err(vdev, "ATS_ERR LOG1 0x%08x ATS_ERR_LOG2 0x%08x\n",
695 REGB_RD32(VPU_HW_BTRS_LNL_ATS_ERR_LOG1),
696 REGB_RD32(VPU_HW_BTRS_LNL_ATS_ERR_LOG2));
697 REGB_WR32(VPU_HW_BTRS_LNL_ATS_ERR_CLEAR, 0x1);
698 schedule_recovery = true;
699 }
700
701 if (REG_TEST_FLD(VPU_HW_BTRS_LNL_INTERRUPT_STAT, CFI0_ERR, status)) {
702 ivpu_err(vdev, "CFI0_ERR 0x%08x", REGB_RD32(VPU_HW_BTRS_LNL_CFI0_ERR_LOG));
703 REGB_WR32(VPU_HW_BTRS_LNL_CFI0_ERR_CLEAR, 0x1);
704 schedule_recovery = true;
705 }
706
707 if (REG_TEST_FLD(VPU_HW_BTRS_LNL_INTERRUPT_STAT, CFI1_ERR, status)) {
708 ivpu_err(vdev, "CFI1_ERR 0x%08x", REGB_RD32(VPU_HW_BTRS_LNL_CFI1_ERR_LOG));
709 REGB_WR32(VPU_HW_BTRS_LNL_CFI1_ERR_CLEAR, 0x1);
710 schedule_recovery = true;
711 }
712
713 if (REG_TEST_FLD(VPU_HW_BTRS_LNL_INTERRUPT_STAT, IMR0_ERR, status)) {
714 ivpu_err(vdev, "IMR_ERR_CFI0 LOW: 0x%08x HIGH: 0x%08x",
715 REGB_RD32(VPU_HW_BTRS_LNL_IMR_ERR_CFI0_LOW),
716 REGB_RD32(VPU_HW_BTRS_LNL_IMR_ERR_CFI0_HIGH));
717 REGB_WR32(VPU_HW_BTRS_LNL_IMR_ERR_CFI0_CLEAR, 0x1);
718 schedule_recovery = true;
719 }
720
721 if (REG_TEST_FLD(VPU_HW_BTRS_LNL_INTERRUPT_STAT, IMR1_ERR, status)) {
722 ivpu_err(vdev, "IMR_ERR_CFI1 LOW: 0x%08x HIGH: 0x%08x",
723 REGB_RD32(VPU_HW_BTRS_LNL_IMR_ERR_CFI1_LOW),
724 REGB_RD32(VPU_HW_BTRS_LNL_IMR_ERR_CFI1_HIGH));
725 REGB_WR32(VPU_HW_BTRS_LNL_IMR_ERR_CFI1_CLEAR, 0x1);
726 schedule_recovery = true;
727 }
728
729 /* This must be done after interrupts are cleared at the source. */
730 REGB_WR32(VPU_HW_BTRS_LNL_INTERRUPT_STAT, status);
731
732 if (schedule_recovery)
733 ivpu_pm_trigger_recovery(vdev, "Buttress IRQ");
734
735 return true;
736 }
737
ivpu_hw_btrs_dct_get_request(struct ivpu_device * vdev,bool * enable)738 int ivpu_hw_btrs_dct_get_request(struct ivpu_device *vdev, bool *enable)
739 {
740 u32 val = REGB_RD32(VPU_HW_BTRS_LNL_PCODE_MAILBOX_SHADOW);
741 u32 cmd = REG_GET_FLD(VPU_HW_BTRS_LNL_PCODE_MAILBOX_SHADOW, CMD, val);
742 u32 param1 = REG_GET_FLD(VPU_HW_BTRS_LNL_PCODE_MAILBOX_SHADOW, PARAM1, val);
743
744 if (cmd != DCT_REQ) {
745 ivpu_err_ratelimited(vdev, "Unsupported PCODE command: 0x%x\n", cmd);
746 return -EBADR;
747 }
748
749 switch (param1) {
750 case DCT_ENABLE:
751 *enable = true;
752 return 0;
753 case DCT_DISABLE:
754 *enable = false;
755 return 0;
756 default:
757 ivpu_err_ratelimited(vdev, "Invalid PARAM1 value: %u\n", param1);
758 return -EINVAL;
759 }
760 }
761
ivpu_hw_btrs_dct_set_status(struct ivpu_device * vdev,bool enable,u32 active_percent)762 void ivpu_hw_btrs_dct_set_status(struct ivpu_device *vdev, bool enable, u32 active_percent)
763 {
764 u32 val = 0;
765 u32 cmd = enable ? DCT_ENABLE : DCT_DISABLE;
766
767 val = REG_SET_FLD_NUM(VPU_HW_BTRS_LNL_PCODE_MAILBOX_STATUS, CMD, DCT_REQ, val);
768 val = REG_SET_FLD_NUM(VPU_HW_BTRS_LNL_PCODE_MAILBOX_STATUS, PARAM1, cmd, val);
769 val = REG_SET_FLD_NUM(VPU_HW_BTRS_LNL_PCODE_MAILBOX_STATUS, PARAM2, active_percent, val);
770
771 REGB_WR32(VPU_HW_BTRS_LNL_PCODE_MAILBOX_STATUS, val);
772 }
773
ivpu_hw_btrs_telemetry_offset_get(struct ivpu_device * vdev)774 u32 ivpu_hw_btrs_telemetry_offset_get(struct ivpu_device *vdev)
775 {
776 if (ivpu_hw_btrs_gen(vdev) == IVPU_HW_BTRS_MTL)
777 return REGB_RD32(VPU_HW_BTRS_MTL_VPU_TELEMETRY_OFFSET);
778 else
779 return REGB_RD32(VPU_HW_BTRS_LNL_VPU_TELEMETRY_OFFSET);
780 }
781
ivpu_hw_btrs_telemetry_size_get(struct ivpu_device * vdev)782 u32 ivpu_hw_btrs_telemetry_size_get(struct ivpu_device *vdev)
783 {
784 if (ivpu_hw_btrs_gen(vdev) == IVPU_HW_BTRS_MTL)
785 return REGB_RD32(VPU_HW_BTRS_MTL_VPU_TELEMETRY_SIZE);
786 else
787 return REGB_RD32(VPU_HW_BTRS_LNL_VPU_TELEMETRY_SIZE);
788 }
789
ivpu_hw_btrs_telemetry_enable_get(struct ivpu_device * vdev)790 u32 ivpu_hw_btrs_telemetry_enable_get(struct ivpu_device *vdev)
791 {
792 if (ivpu_hw_btrs_gen(vdev) == IVPU_HW_BTRS_MTL)
793 return REGB_RD32(VPU_HW_BTRS_MTL_VPU_TELEMETRY_ENABLE);
794 else
795 return REGB_RD32(VPU_HW_BTRS_LNL_VPU_TELEMETRY_ENABLE);
796 }
797
ivpu_hw_btrs_global_int_disable(struct ivpu_device * vdev)798 void ivpu_hw_btrs_global_int_disable(struct ivpu_device *vdev)
799 {
800 if (ivpu_hw_btrs_gen(vdev) == IVPU_HW_BTRS_MTL)
801 REGB_WR32(VPU_HW_BTRS_MTL_GLOBAL_INT_MASK, 0x1);
802 else
803 REGB_WR32(VPU_HW_BTRS_LNL_GLOBAL_INT_MASK, 0x1);
804 }
805
ivpu_hw_btrs_global_int_enable(struct ivpu_device * vdev)806 void ivpu_hw_btrs_global_int_enable(struct ivpu_device *vdev)
807 {
808 if (ivpu_hw_btrs_gen(vdev) == IVPU_HW_BTRS_MTL)
809 REGB_WR32(VPU_HW_BTRS_MTL_GLOBAL_INT_MASK, 0x0);
810 else
811 REGB_WR32(VPU_HW_BTRS_LNL_GLOBAL_INT_MASK, 0x0);
812 }
813
ivpu_hw_btrs_irq_enable(struct ivpu_device * vdev)814 void ivpu_hw_btrs_irq_enable(struct ivpu_device *vdev)
815 {
816 if (ivpu_hw_btrs_gen(vdev) == IVPU_HW_BTRS_MTL) {
817 REGB_WR32(VPU_HW_BTRS_MTL_LOCAL_INT_MASK, (u32)(~BTRS_MTL_IRQ_MASK));
818 REGB_WR32(VPU_HW_BTRS_MTL_GLOBAL_INT_MASK, 0x0);
819 } else {
820 REGB_WR32(VPU_HW_BTRS_LNL_LOCAL_INT_MASK, (u32)(~BTRS_LNL_IRQ_MASK));
821 REGB_WR32(VPU_HW_BTRS_LNL_GLOBAL_INT_MASK, 0x0);
822 }
823 }
824
ivpu_hw_btrs_irq_disable(struct ivpu_device * vdev)825 void ivpu_hw_btrs_irq_disable(struct ivpu_device *vdev)
826 {
827 if (ivpu_hw_btrs_gen(vdev) == IVPU_HW_BTRS_MTL) {
828 REGB_WR32(VPU_HW_BTRS_MTL_GLOBAL_INT_MASK, 0x1);
829 REGB_WR32(VPU_HW_BTRS_MTL_LOCAL_INT_MASK, BTRS_IRQ_DISABLE_MASK);
830 } else {
831 REGB_WR32(VPU_HW_BTRS_LNL_GLOBAL_INT_MASK, 0x1);
832 REGB_WR32(VPU_HW_BTRS_LNL_LOCAL_INT_MASK, BTRS_IRQ_DISABLE_MASK);
833 }
834 }
835
diagnose_failure_mtl(struct ivpu_device * vdev)836 static void diagnose_failure_mtl(struct ivpu_device *vdev)
837 {
838 u32 reg = REGB_RD32(VPU_HW_BTRS_MTL_INTERRUPT_STAT) & BTRS_MTL_IRQ_MASK;
839
840 if (REG_TEST_FLD(VPU_HW_BTRS_MTL_INTERRUPT_STAT, ATS_ERR, reg))
841 ivpu_err(vdev, "ATS_ERR irq 0x%016llx", REGB_RD64(VPU_HW_BTRS_MTL_ATS_ERR_LOG_0));
842
843 if (REG_TEST_FLD(VPU_HW_BTRS_MTL_INTERRUPT_STAT, UFI_ERR, reg)) {
844 u32 log = REGB_RD32(VPU_HW_BTRS_MTL_UFI_ERR_LOG);
845
846 ivpu_err(vdev, "UFI_ERR irq (0x%08x) opcode: 0x%02lx axi_id: 0x%02lx cq_id: 0x%03lx",
847 log, REG_GET_FLD(VPU_HW_BTRS_MTL_UFI_ERR_LOG, OPCODE, log),
848 REG_GET_FLD(VPU_HW_BTRS_MTL_UFI_ERR_LOG, AXI_ID, log),
849 REG_GET_FLD(VPU_HW_BTRS_MTL_UFI_ERR_LOG, CQ_ID, log));
850 }
851 }
852
diagnose_failure_lnl(struct ivpu_device * vdev)853 static void diagnose_failure_lnl(struct ivpu_device *vdev)
854 {
855 u32 reg = REGB_RD32(VPU_HW_BTRS_MTL_INTERRUPT_STAT) & BTRS_LNL_IRQ_MASK;
856
857 if (REG_TEST_FLD(VPU_HW_BTRS_LNL_INTERRUPT_STAT, ATS_ERR, reg)) {
858 ivpu_err(vdev, "ATS_ERR_LOG1 0x%08x ATS_ERR_LOG2 0x%08x\n",
859 REGB_RD32(VPU_HW_BTRS_LNL_ATS_ERR_LOG1),
860 REGB_RD32(VPU_HW_BTRS_LNL_ATS_ERR_LOG2));
861 }
862
863 if (REG_TEST_FLD(VPU_HW_BTRS_LNL_INTERRUPT_STAT, CFI0_ERR, reg))
864 ivpu_err(vdev, "CFI0_ERR_LOG 0x%08x\n", REGB_RD32(VPU_HW_BTRS_LNL_CFI0_ERR_LOG));
865
866 if (REG_TEST_FLD(VPU_HW_BTRS_LNL_INTERRUPT_STAT, CFI1_ERR, reg))
867 ivpu_err(vdev, "CFI1_ERR_LOG 0x%08x\n", REGB_RD32(VPU_HW_BTRS_LNL_CFI1_ERR_LOG));
868
869 if (REG_TEST_FLD(VPU_HW_BTRS_LNL_INTERRUPT_STAT, IMR0_ERR, reg))
870 ivpu_err(vdev, "IMR_ERR_CFI0 LOW: 0x%08x HIGH: 0x%08x\n",
871 REGB_RD32(VPU_HW_BTRS_LNL_IMR_ERR_CFI0_LOW),
872 REGB_RD32(VPU_HW_BTRS_LNL_IMR_ERR_CFI0_HIGH));
873
874 if (REG_TEST_FLD(VPU_HW_BTRS_LNL_INTERRUPT_STAT, IMR1_ERR, reg))
875 ivpu_err(vdev, "IMR_ERR_CFI1 LOW: 0x%08x HIGH: 0x%08x\n",
876 REGB_RD32(VPU_HW_BTRS_LNL_IMR_ERR_CFI1_LOW),
877 REGB_RD32(VPU_HW_BTRS_LNL_IMR_ERR_CFI1_HIGH));
878
879 if (REG_TEST_FLD(VPU_HW_BTRS_LNL_INTERRUPT_STAT, SURV_ERR, reg))
880 ivpu_err(vdev, "Survivability IRQ\n");
881 }
882
ivpu_hw_btrs_diagnose_failure(struct ivpu_device * vdev)883 void ivpu_hw_btrs_diagnose_failure(struct ivpu_device *vdev)
884 {
885 if (ivpu_hw_btrs_gen(vdev) == IVPU_HW_BTRS_MTL)
886 return diagnose_failure_mtl(vdev);
887 else
888 return diagnose_failure_lnl(vdev);
889 }
890