1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * cacheinfo support - processor cache information via sysfs
4 *
5 * Based on arch/x86/kernel/cpu/intel_cacheinfo.c
6 * Author: Sudeep Holla <sudeep.holla@arm.com>
7 */
8 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
9
10 #include <linux/acpi.h>
11 #include <linux/bitops.h>
12 #include <linux/cacheinfo.h>
13 #include <linux/compiler.h>
14 #include <linux/cpu.h>
15 #include <linux/device.h>
16 #include <linux/init.h>
17 #include <linux/of.h>
18 #include <linux/sched.h>
19 #include <linux/slab.h>
20 #include <linux/smp.h>
21 #include <linux/sysfs.h>
22
23 /* pointer to per cpu cacheinfo */
24 static DEFINE_PER_CPU(struct cpu_cacheinfo, ci_cpu_cacheinfo);
25 #define ci_cacheinfo(cpu) (&per_cpu(ci_cpu_cacheinfo, cpu))
26 #define cache_leaves(cpu) (ci_cacheinfo(cpu)->num_leaves)
27 #define per_cpu_cacheinfo(cpu) (ci_cacheinfo(cpu)->info_list)
28 #define per_cpu_cacheinfo_idx(cpu, idx) \
29 (per_cpu_cacheinfo(cpu) + (idx))
30
31 /* Set if no cache information is found in DT/ACPI. */
32 static bool use_arch_info;
33
get_cpu_cacheinfo(unsigned int cpu)34 struct cpu_cacheinfo *get_cpu_cacheinfo(unsigned int cpu)
35 {
36 return ci_cacheinfo(cpu);
37 }
38
cache_leaves_are_shared(struct cacheinfo * this_leaf,struct cacheinfo * sib_leaf)39 static inline bool cache_leaves_are_shared(struct cacheinfo *this_leaf,
40 struct cacheinfo *sib_leaf)
41 {
42 /*
43 * For non DT/ACPI systems, assume unique level 1 caches,
44 * system-wide shared caches for all other levels.
45 */
46 if (!(IS_ENABLED(CONFIG_OF) || IS_ENABLED(CONFIG_ACPI)) ||
47 use_arch_info)
48 return (this_leaf->level != 1) && (sib_leaf->level != 1);
49
50 if ((sib_leaf->attributes & CACHE_ID) &&
51 (this_leaf->attributes & CACHE_ID))
52 return sib_leaf->id == this_leaf->id;
53
54 return sib_leaf->fw_token == this_leaf->fw_token;
55 }
56
last_level_cache_is_valid(unsigned int cpu)57 bool last_level_cache_is_valid(unsigned int cpu)
58 {
59 struct cacheinfo *llc;
60
61 if (!cache_leaves(cpu) || !per_cpu_cacheinfo(cpu))
62 return false;
63
64 llc = per_cpu_cacheinfo_idx(cpu, cache_leaves(cpu) - 1);
65
66 return (llc->attributes & CACHE_ID) || !!llc->fw_token;
67
68 }
69
last_level_cache_is_shared(unsigned int cpu_x,unsigned int cpu_y)70 bool last_level_cache_is_shared(unsigned int cpu_x, unsigned int cpu_y)
71 {
72 struct cacheinfo *llc_x, *llc_y;
73
74 if (!last_level_cache_is_valid(cpu_x) ||
75 !last_level_cache_is_valid(cpu_y))
76 return false;
77
78 llc_x = per_cpu_cacheinfo_idx(cpu_x, cache_leaves(cpu_x) - 1);
79 llc_y = per_cpu_cacheinfo_idx(cpu_y, cache_leaves(cpu_y) - 1);
80
81 return cache_leaves_are_shared(llc_x, llc_y);
82 }
83
84 #ifdef CONFIG_OF
85
86 static bool of_check_cache_nodes(struct device_node *np);
87
88 /* OF properties to query for a given cache type */
89 struct cache_type_info {
90 const char *size_prop;
91 const char *line_size_props[2];
92 const char *nr_sets_prop;
93 };
94
95 static const struct cache_type_info cache_type_info[] = {
96 {
97 .size_prop = "cache-size",
98 .line_size_props = { "cache-line-size",
99 "cache-block-size", },
100 .nr_sets_prop = "cache-sets",
101 }, {
102 .size_prop = "i-cache-size",
103 .line_size_props = { "i-cache-line-size",
104 "i-cache-block-size", },
105 .nr_sets_prop = "i-cache-sets",
106 }, {
107 .size_prop = "d-cache-size",
108 .line_size_props = { "d-cache-line-size",
109 "d-cache-block-size", },
110 .nr_sets_prop = "d-cache-sets",
111 },
112 };
113
get_cacheinfo_idx(enum cache_type type)114 static inline int get_cacheinfo_idx(enum cache_type type)
115 {
116 if (type == CACHE_TYPE_UNIFIED)
117 return 0;
118 return type;
119 }
120
cache_size(struct cacheinfo * this_leaf,struct device_node * np)121 static void cache_size(struct cacheinfo *this_leaf, struct device_node *np)
122 {
123 const char *propname;
124 int ct_idx;
125
126 ct_idx = get_cacheinfo_idx(this_leaf->type);
127 propname = cache_type_info[ct_idx].size_prop;
128
129 of_property_read_u32(np, propname, &this_leaf->size);
130 }
131
132 /* not cache_line_size() because that's a macro in include/linux/cache.h */
cache_get_line_size(struct cacheinfo * this_leaf,struct device_node * np)133 static void cache_get_line_size(struct cacheinfo *this_leaf,
134 struct device_node *np)
135 {
136 int i, lim, ct_idx;
137
138 ct_idx = get_cacheinfo_idx(this_leaf->type);
139 lim = ARRAY_SIZE(cache_type_info[ct_idx].line_size_props);
140
141 for (i = 0; i < lim; i++) {
142 int ret;
143 u32 line_size;
144 const char *propname;
145
146 propname = cache_type_info[ct_idx].line_size_props[i];
147 ret = of_property_read_u32(np, propname, &line_size);
148 if (!ret) {
149 this_leaf->coherency_line_size = line_size;
150 break;
151 }
152 }
153 }
154
cache_nr_sets(struct cacheinfo * this_leaf,struct device_node * np)155 static void cache_nr_sets(struct cacheinfo *this_leaf, struct device_node *np)
156 {
157 const char *propname;
158 int ct_idx;
159
160 ct_idx = get_cacheinfo_idx(this_leaf->type);
161 propname = cache_type_info[ct_idx].nr_sets_prop;
162
163 of_property_read_u32(np, propname, &this_leaf->number_of_sets);
164 }
165
cache_associativity(struct cacheinfo * this_leaf)166 static void cache_associativity(struct cacheinfo *this_leaf)
167 {
168 unsigned int line_size = this_leaf->coherency_line_size;
169 unsigned int nr_sets = this_leaf->number_of_sets;
170 unsigned int size = this_leaf->size;
171
172 /*
173 * If the cache is fully associative, there is no need to
174 * check the other properties.
175 */
176 if (!(nr_sets == 1) && (nr_sets > 0 && size > 0 && line_size > 0))
177 this_leaf->ways_of_associativity = (size / nr_sets) / line_size;
178 }
179
cache_node_is_unified(struct cacheinfo * this_leaf,struct device_node * np)180 static bool cache_node_is_unified(struct cacheinfo *this_leaf,
181 struct device_node *np)
182 {
183 return of_property_read_bool(np, "cache-unified");
184 }
185
cache_of_set_props(struct cacheinfo * this_leaf,struct device_node * np)186 static void cache_of_set_props(struct cacheinfo *this_leaf,
187 struct device_node *np)
188 {
189 /*
190 * init_cache_level must setup the cache level correctly
191 * overriding the architecturally specified levels, so
192 * if type is NONE at this stage, it should be unified
193 */
194 if (this_leaf->type == CACHE_TYPE_NOCACHE &&
195 cache_node_is_unified(this_leaf, np))
196 this_leaf->type = CACHE_TYPE_UNIFIED;
197 cache_size(this_leaf, np);
198 cache_get_line_size(this_leaf, np);
199 cache_nr_sets(this_leaf, np);
200 cache_associativity(this_leaf);
201 }
202
cache_setup_of_node(unsigned int cpu)203 static int cache_setup_of_node(unsigned int cpu)
204 {
205 struct cacheinfo *this_leaf;
206 unsigned int index = 0;
207
208 struct device_node *np __free(device_node) = of_cpu_device_node_get(cpu);
209 if (!np) {
210 pr_err("Failed to find cpu%d device node\n", cpu);
211 return -ENOENT;
212 }
213
214 if (!of_check_cache_nodes(np)) {
215 return -ENOENT;
216 }
217
218 while (index < cache_leaves(cpu)) {
219 this_leaf = per_cpu_cacheinfo_idx(cpu, index);
220 if (this_leaf->level != 1) {
221 struct device_node *prev __free(device_node) = np;
222 np = of_find_next_cache_node(np);
223 if (!np)
224 break;
225 }
226 cache_of_set_props(this_leaf, np);
227 this_leaf->fw_token = np;
228 index++;
229 }
230
231 if (index != cache_leaves(cpu)) /* not all OF nodes populated */
232 return -ENOENT;
233
234 return 0;
235 }
236
of_check_cache_nodes(struct device_node * np)237 static bool of_check_cache_nodes(struct device_node *np)
238 {
239 if (of_property_present(np, "cache-size") ||
240 of_property_present(np, "i-cache-size") ||
241 of_property_present(np, "d-cache-size") ||
242 of_property_present(np, "cache-unified"))
243 return true;
244
245 struct device_node *next __free(device_node) = of_find_next_cache_node(np);
246 if (next) {
247 return true;
248 }
249
250 return false;
251 }
252
of_count_cache_leaves(struct device_node * np)253 static int of_count_cache_leaves(struct device_node *np)
254 {
255 unsigned int leaves = 0;
256
257 if (of_property_read_bool(np, "cache-size"))
258 ++leaves;
259 if (of_property_read_bool(np, "i-cache-size"))
260 ++leaves;
261 if (of_property_read_bool(np, "d-cache-size"))
262 ++leaves;
263
264 if (!leaves) {
265 /* The '[i-|d-|]cache-size' property is required, but
266 * if absent, fallback on the 'cache-unified' property.
267 */
268 if (of_property_read_bool(np, "cache-unified"))
269 return 1;
270 else
271 return 2;
272 }
273
274 return leaves;
275 }
276
init_of_cache_level(unsigned int cpu)277 int init_of_cache_level(unsigned int cpu)
278 {
279 struct cpu_cacheinfo *this_cpu_ci = get_cpu_cacheinfo(cpu);
280 struct device_node *np __free(device_node) = of_cpu_device_node_get(cpu);
281 unsigned int levels = 0, leaves, level;
282
283 if (!of_check_cache_nodes(np)) {
284 return -ENOENT;
285 }
286
287 leaves = of_count_cache_leaves(np);
288 if (leaves > 0)
289 levels = 1;
290
291 while (1) {
292 struct device_node *prev __free(device_node) = np;
293 np = of_find_next_cache_node(np);
294 if (!np)
295 break;
296
297 if (!of_device_is_compatible(np, "cache"))
298 return -EINVAL;
299 if (of_property_read_u32(np, "cache-level", &level))
300 return -EINVAL;
301 if (level <= levels)
302 return -EINVAL;
303
304 leaves += of_count_cache_leaves(np);
305 levels = level;
306 }
307
308 this_cpu_ci->num_levels = levels;
309 this_cpu_ci->num_leaves = leaves;
310
311 return 0;
312 }
313
314 #else
cache_setup_of_node(unsigned int cpu)315 static inline int cache_setup_of_node(unsigned int cpu) { return 0; }
init_of_cache_level(unsigned int cpu)316 int init_of_cache_level(unsigned int cpu) { return 0; }
317 #endif
318
cache_setup_acpi(unsigned int cpu)319 int __weak cache_setup_acpi(unsigned int cpu)
320 {
321 return -ENOTSUPP;
322 }
323
324 unsigned int coherency_max_size;
325
cache_setup_properties(unsigned int cpu)326 static int cache_setup_properties(unsigned int cpu)
327 {
328 int ret = 0;
329
330 if (of_have_populated_dt())
331 ret = cache_setup_of_node(cpu);
332 else if (!acpi_disabled)
333 ret = cache_setup_acpi(cpu);
334
335 // Assume there is no cache information available in DT/ACPI from now.
336 if (ret && use_arch_cache_info())
337 use_arch_info = true;
338
339 return ret;
340 }
341
cache_shared_cpu_map_setup(unsigned int cpu)342 static int cache_shared_cpu_map_setup(unsigned int cpu)
343 {
344 struct cpu_cacheinfo *this_cpu_ci = get_cpu_cacheinfo(cpu);
345 struct cacheinfo *this_leaf, *sib_leaf;
346 unsigned int index, sib_index;
347 int ret = 0;
348
349 if (this_cpu_ci->cpu_map_populated)
350 return 0;
351
352 /*
353 * skip setting up cache properties if LLC is valid, just need
354 * to update the shared cpu_map if the cache attributes were
355 * populated early before all the cpus are brought online
356 */
357 if (!last_level_cache_is_valid(cpu) && !use_arch_info) {
358 ret = cache_setup_properties(cpu);
359 if (ret)
360 return ret;
361 }
362
363 for (index = 0; index < cache_leaves(cpu); index++) {
364 unsigned int i;
365
366 this_leaf = per_cpu_cacheinfo_idx(cpu, index);
367
368 cpumask_set_cpu(cpu, &this_leaf->shared_cpu_map);
369 for_each_online_cpu(i) {
370 struct cpu_cacheinfo *sib_cpu_ci = get_cpu_cacheinfo(i);
371
372 if (i == cpu || !sib_cpu_ci->info_list)
373 continue;/* skip if itself or no cacheinfo */
374 for (sib_index = 0; sib_index < cache_leaves(i); sib_index++) {
375 sib_leaf = per_cpu_cacheinfo_idx(i, sib_index);
376
377 /*
378 * Comparing cache IDs only makes sense if the leaves
379 * belong to the same cache level of same type. Skip
380 * the check if level and type do not match.
381 */
382 if (sib_leaf->level != this_leaf->level ||
383 sib_leaf->type != this_leaf->type)
384 continue;
385
386 if (cache_leaves_are_shared(this_leaf, sib_leaf)) {
387 cpumask_set_cpu(cpu, &sib_leaf->shared_cpu_map);
388 cpumask_set_cpu(i, &this_leaf->shared_cpu_map);
389 break;
390 }
391 }
392 }
393 /* record the maximum cache line size */
394 if (this_leaf->coherency_line_size > coherency_max_size)
395 coherency_max_size = this_leaf->coherency_line_size;
396 }
397
398 /* shared_cpu_map is now populated for the cpu */
399 this_cpu_ci->cpu_map_populated = true;
400 return 0;
401 }
402
cache_shared_cpu_map_remove(unsigned int cpu)403 static void cache_shared_cpu_map_remove(unsigned int cpu)
404 {
405 struct cpu_cacheinfo *this_cpu_ci = get_cpu_cacheinfo(cpu);
406 struct cacheinfo *this_leaf, *sib_leaf;
407 unsigned int sibling, index, sib_index;
408
409 for (index = 0; index < cache_leaves(cpu); index++) {
410 this_leaf = per_cpu_cacheinfo_idx(cpu, index);
411 for_each_cpu(sibling, &this_leaf->shared_cpu_map) {
412 struct cpu_cacheinfo *sib_cpu_ci =
413 get_cpu_cacheinfo(sibling);
414
415 if (sibling == cpu || !sib_cpu_ci->info_list)
416 continue;/* skip if itself or no cacheinfo */
417
418 for (sib_index = 0; sib_index < cache_leaves(sibling); sib_index++) {
419 sib_leaf = per_cpu_cacheinfo_idx(sibling, sib_index);
420
421 /*
422 * Comparing cache IDs only makes sense if the leaves
423 * belong to the same cache level of same type. Skip
424 * the check if level and type do not match.
425 */
426 if (sib_leaf->level != this_leaf->level ||
427 sib_leaf->type != this_leaf->type)
428 continue;
429
430 if (cache_leaves_are_shared(this_leaf, sib_leaf)) {
431 cpumask_clear_cpu(cpu, &sib_leaf->shared_cpu_map);
432 cpumask_clear_cpu(sibling, &this_leaf->shared_cpu_map);
433 break;
434 }
435 }
436 }
437 }
438
439 /* cpu is no longer populated in the shared map */
440 this_cpu_ci->cpu_map_populated = false;
441 }
442
free_cache_attributes(unsigned int cpu)443 static void free_cache_attributes(unsigned int cpu)
444 {
445 if (!per_cpu_cacheinfo(cpu))
446 return;
447
448 cache_shared_cpu_map_remove(cpu);
449 }
450
early_cache_level(unsigned int cpu)451 int __weak early_cache_level(unsigned int cpu)
452 {
453 return -ENOENT;
454 }
455
init_cache_level(unsigned int cpu)456 int __weak init_cache_level(unsigned int cpu)
457 {
458 return -ENOENT;
459 }
460
populate_cache_leaves(unsigned int cpu)461 int __weak populate_cache_leaves(unsigned int cpu)
462 {
463 return -ENOENT;
464 }
465
allocate_cache_info(int cpu)466 static inline int allocate_cache_info(int cpu)
467 {
468 per_cpu_cacheinfo(cpu) = kcalloc(cache_leaves(cpu), sizeof(struct cacheinfo), GFP_ATOMIC);
469 if (!per_cpu_cacheinfo(cpu)) {
470 cache_leaves(cpu) = 0;
471 return -ENOMEM;
472 }
473
474 return 0;
475 }
476
fetch_cache_info(unsigned int cpu)477 int fetch_cache_info(unsigned int cpu)
478 {
479 struct cpu_cacheinfo *this_cpu_ci = get_cpu_cacheinfo(cpu);
480 unsigned int levels = 0, split_levels = 0;
481 int ret;
482
483 if (acpi_disabled) {
484 ret = init_of_cache_level(cpu);
485 } else {
486 ret = acpi_get_cache_info(cpu, &levels, &split_levels);
487 if (!ret) {
488 this_cpu_ci->num_levels = levels;
489 /*
490 * This assumes that:
491 * - there cannot be any split caches (data/instruction)
492 * above a unified cache
493 * - data/instruction caches come by pair
494 */
495 this_cpu_ci->num_leaves = levels + split_levels;
496 }
497 }
498
499 if (ret || !cache_leaves(cpu)) {
500 ret = early_cache_level(cpu);
501 if (ret)
502 return ret;
503
504 if (!cache_leaves(cpu))
505 return -ENOENT;
506
507 this_cpu_ci->early_ci_levels = true;
508 }
509
510 return allocate_cache_info(cpu);
511 }
512
init_level_allocate_ci(unsigned int cpu)513 static inline int init_level_allocate_ci(unsigned int cpu)
514 {
515 unsigned int early_leaves = cache_leaves(cpu);
516
517 /* Since early initialization/allocation of the cacheinfo is allowed
518 * via fetch_cache_info() and this also gets called as CPU hotplug
519 * callbacks via cacheinfo_cpu_online, the init/alloc can be skipped
520 * as it will happen only once (the cacheinfo memory is never freed).
521 * Just populate the cacheinfo. However, if the cacheinfo has been
522 * allocated early through the arch-specific early_cache_level() call,
523 * there is a chance the info is wrong (this can happen on arm64). In
524 * that case, call init_cache_level() anyway to give the arch-specific
525 * code a chance to make things right.
526 */
527 if (per_cpu_cacheinfo(cpu) && !ci_cacheinfo(cpu)->early_ci_levels)
528 return 0;
529
530 if (init_cache_level(cpu) || !cache_leaves(cpu))
531 return -ENOENT;
532
533 /*
534 * Now that we have properly initialized the cache level info, make
535 * sure we don't try to do that again the next time we are called
536 * (e.g. as CPU hotplug callbacks).
537 */
538 ci_cacheinfo(cpu)->early_ci_levels = false;
539
540 /*
541 * Some architectures (e.g., x86) do not use early initialization.
542 * Allocate memory now in such case.
543 */
544 if (cache_leaves(cpu) <= early_leaves && per_cpu_cacheinfo(cpu))
545 return 0;
546
547 kfree(per_cpu_cacheinfo(cpu));
548 return allocate_cache_info(cpu);
549 }
550
detect_cache_attributes(unsigned int cpu)551 int detect_cache_attributes(unsigned int cpu)
552 {
553 int ret;
554
555 ret = init_level_allocate_ci(cpu);
556 if (ret)
557 return ret;
558
559 /*
560 * If LLC is valid the cache leaves were already populated so just go to
561 * update the cpu map.
562 */
563 if (!last_level_cache_is_valid(cpu)) {
564 /*
565 * populate_cache_leaves() may completely setup the cache leaves and
566 * shared_cpu_map or it may leave it partially setup.
567 */
568 ret = populate_cache_leaves(cpu);
569 if (ret)
570 goto free_ci;
571 }
572
573 /*
574 * For systems using DT for cache hierarchy, fw_token
575 * and shared_cpu_map will be set up here only if they are
576 * not populated already
577 */
578 ret = cache_shared_cpu_map_setup(cpu);
579 if (ret) {
580 pr_warn("Unable to detect cache hierarchy for CPU %d\n", cpu);
581 goto free_ci;
582 }
583
584 return 0;
585
586 free_ci:
587 free_cache_attributes(cpu);
588 return ret;
589 }
590
591 /* pointer to cpuX/cache device */
592 static DEFINE_PER_CPU(struct device *, ci_cache_dev);
593 #define per_cpu_cache_dev(cpu) (per_cpu(ci_cache_dev, cpu))
594
595 static cpumask_t cache_dev_map;
596
597 /* pointer to array of devices for cpuX/cache/indexY */
598 static DEFINE_PER_CPU(struct device **, ci_index_dev);
599 #define per_cpu_index_dev(cpu) (per_cpu(ci_index_dev, cpu))
600 #define per_cache_index_dev(cpu, idx) ((per_cpu_index_dev(cpu))[idx])
601
602 #define show_one(file_name, object) \
603 static ssize_t file_name##_show(struct device *dev, \
604 struct device_attribute *attr, char *buf) \
605 { \
606 struct cacheinfo *this_leaf = dev_get_drvdata(dev); \
607 return sysfs_emit(buf, "%u\n", this_leaf->object); \
608 }
609
610 show_one(id, id);
611 show_one(level, level);
612 show_one(coherency_line_size, coherency_line_size);
613 show_one(number_of_sets, number_of_sets);
614 show_one(physical_line_partition, physical_line_partition);
615 show_one(ways_of_associativity, ways_of_associativity);
616
size_show(struct device * dev,struct device_attribute * attr,char * buf)617 static ssize_t size_show(struct device *dev,
618 struct device_attribute *attr, char *buf)
619 {
620 struct cacheinfo *this_leaf = dev_get_drvdata(dev);
621
622 return sysfs_emit(buf, "%uK\n", this_leaf->size >> 10);
623 }
624
shared_cpu_map_show(struct device * dev,struct device_attribute * attr,char * buf)625 static ssize_t shared_cpu_map_show(struct device *dev,
626 struct device_attribute *attr, char *buf)
627 {
628 struct cacheinfo *this_leaf = dev_get_drvdata(dev);
629 const struct cpumask *mask = &this_leaf->shared_cpu_map;
630
631 return sysfs_emit(buf, "%*pb\n", nr_cpu_ids, mask);
632 }
633
shared_cpu_list_show(struct device * dev,struct device_attribute * attr,char * buf)634 static ssize_t shared_cpu_list_show(struct device *dev,
635 struct device_attribute *attr, char *buf)
636 {
637 struct cacheinfo *this_leaf = dev_get_drvdata(dev);
638 const struct cpumask *mask = &this_leaf->shared_cpu_map;
639
640 return sysfs_emit(buf, "%*pbl\n", nr_cpu_ids, mask);
641 }
642
type_show(struct device * dev,struct device_attribute * attr,char * buf)643 static ssize_t type_show(struct device *dev,
644 struct device_attribute *attr, char *buf)
645 {
646 struct cacheinfo *this_leaf = dev_get_drvdata(dev);
647 const char *output;
648
649 switch (this_leaf->type) {
650 case CACHE_TYPE_DATA:
651 output = "Data";
652 break;
653 case CACHE_TYPE_INST:
654 output = "Instruction";
655 break;
656 case CACHE_TYPE_UNIFIED:
657 output = "Unified";
658 break;
659 default:
660 return -EINVAL;
661 }
662
663 return sysfs_emit(buf, "%s\n", output);
664 }
665
allocation_policy_show(struct device * dev,struct device_attribute * attr,char * buf)666 static ssize_t allocation_policy_show(struct device *dev,
667 struct device_attribute *attr, char *buf)
668 {
669 struct cacheinfo *this_leaf = dev_get_drvdata(dev);
670 unsigned int ci_attr = this_leaf->attributes;
671 const char *output;
672
673 if ((ci_attr & CACHE_READ_ALLOCATE) && (ci_attr & CACHE_WRITE_ALLOCATE))
674 output = "ReadWriteAllocate";
675 else if (ci_attr & CACHE_READ_ALLOCATE)
676 output = "ReadAllocate";
677 else if (ci_attr & CACHE_WRITE_ALLOCATE)
678 output = "WriteAllocate";
679 else
680 return 0;
681
682 return sysfs_emit(buf, "%s\n", output);
683 }
684
write_policy_show(struct device * dev,struct device_attribute * attr,char * buf)685 static ssize_t write_policy_show(struct device *dev,
686 struct device_attribute *attr, char *buf)
687 {
688 struct cacheinfo *this_leaf = dev_get_drvdata(dev);
689 unsigned int ci_attr = this_leaf->attributes;
690 int n = 0;
691
692 if (ci_attr & CACHE_WRITE_THROUGH)
693 n = sysfs_emit(buf, "WriteThrough\n");
694 else if (ci_attr & CACHE_WRITE_BACK)
695 n = sysfs_emit(buf, "WriteBack\n");
696 return n;
697 }
698
699 static DEVICE_ATTR_RO(id);
700 static DEVICE_ATTR_RO(level);
701 static DEVICE_ATTR_RO(type);
702 static DEVICE_ATTR_RO(coherency_line_size);
703 static DEVICE_ATTR_RO(ways_of_associativity);
704 static DEVICE_ATTR_RO(number_of_sets);
705 static DEVICE_ATTR_RO(size);
706 static DEVICE_ATTR_RO(allocation_policy);
707 static DEVICE_ATTR_RO(write_policy);
708 static DEVICE_ATTR_RO(shared_cpu_map);
709 static DEVICE_ATTR_RO(shared_cpu_list);
710 static DEVICE_ATTR_RO(physical_line_partition);
711
712 static struct attribute *cache_default_attrs[] = {
713 &dev_attr_id.attr,
714 &dev_attr_type.attr,
715 &dev_attr_level.attr,
716 &dev_attr_shared_cpu_map.attr,
717 &dev_attr_shared_cpu_list.attr,
718 &dev_attr_coherency_line_size.attr,
719 &dev_attr_ways_of_associativity.attr,
720 &dev_attr_number_of_sets.attr,
721 &dev_attr_size.attr,
722 &dev_attr_allocation_policy.attr,
723 &dev_attr_write_policy.attr,
724 &dev_attr_physical_line_partition.attr,
725 NULL
726 };
727
728 static umode_t
cache_default_attrs_is_visible(struct kobject * kobj,struct attribute * attr,int unused)729 cache_default_attrs_is_visible(struct kobject *kobj,
730 struct attribute *attr, int unused)
731 {
732 struct device *dev = kobj_to_dev(kobj);
733 struct cacheinfo *this_leaf = dev_get_drvdata(dev);
734 const struct cpumask *mask = &this_leaf->shared_cpu_map;
735 umode_t mode = attr->mode;
736
737 if ((attr == &dev_attr_id.attr) && (this_leaf->attributes & CACHE_ID))
738 return mode;
739 if ((attr == &dev_attr_type.attr) && this_leaf->type)
740 return mode;
741 if ((attr == &dev_attr_level.attr) && this_leaf->level)
742 return mode;
743 if ((attr == &dev_attr_shared_cpu_map.attr) && !cpumask_empty(mask))
744 return mode;
745 if ((attr == &dev_attr_shared_cpu_list.attr) && !cpumask_empty(mask))
746 return mode;
747 if ((attr == &dev_attr_coherency_line_size.attr) &&
748 this_leaf->coherency_line_size)
749 return mode;
750 if ((attr == &dev_attr_ways_of_associativity.attr) &&
751 this_leaf->size) /* allow 0 = full associativity */
752 return mode;
753 if ((attr == &dev_attr_number_of_sets.attr) &&
754 this_leaf->number_of_sets)
755 return mode;
756 if ((attr == &dev_attr_size.attr) && this_leaf->size)
757 return mode;
758 if ((attr == &dev_attr_write_policy.attr) &&
759 (this_leaf->attributes & CACHE_WRITE_POLICY_MASK))
760 return mode;
761 if ((attr == &dev_attr_allocation_policy.attr) &&
762 (this_leaf->attributes & CACHE_ALLOCATE_POLICY_MASK))
763 return mode;
764 if ((attr == &dev_attr_physical_line_partition.attr) &&
765 this_leaf->physical_line_partition)
766 return mode;
767
768 return 0;
769 }
770
771 static const struct attribute_group cache_default_group = {
772 .attrs = cache_default_attrs,
773 .is_visible = cache_default_attrs_is_visible,
774 };
775
776 static const struct attribute_group *cache_default_groups[] = {
777 &cache_default_group,
778 NULL,
779 };
780
781 static const struct attribute_group *cache_private_groups[] = {
782 &cache_default_group,
783 NULL, /* Place holder for private group */
784 NULL,
785 };
786
787 const struct attribute_group *
cache_get_priv_group(struct cacheinfo * this_leaf)788 __weak cache_get_priv_group(struct cacheinfo *this_leaf)
789 {
790 return NULL;
791 }
792
793 static const struct attribute_group **
cache_get_attribute_groups(struct cacheinfo * this_leaf)794 cache_get_attribute_groups(struct cacheinfo *this_leaf)
795 {
796 const struct attribute_group *priv_group =
797 cache_get_priv_group(this_leaf);
798
799 if (!priv_group)
800 return cache_default_groups;
801
802 if (!cache_private_groups[1])
803 cache_private_groups[1] = priv_group;
804
805 return cache_private_groups;
806 }
807
808 /* Add/Remove cache interface for CPU device */
cpu_cache_sysfs_exit(unsigned int cpu)809 static void cpu_cache_sysfs_exit(unsigned int cpu)
810 {
811 int i;
812 struct device *ci_dev;
813
814 if (per_cpu_index_dev(cpu)) {
815 for (i = 0; i < cache_leaves(cpu); i++) {
816 ci_dev = per_cache_index_dev(cpu, i);
817 if (!ci_dev)
818 continue;
819 device_unregister(ci_dev);
820 }
821 kfree(per_cpu_index_dev(cpu));
822 per_cpu_index_dev(cpu) = NULL;
823 }
824 device_unregister(per_cpu_cache_dev(cpu));
825 per_cpu_cache_dev(cpu) = NULL;
826 }
827
cpu_cache_sysfs_init(unsigned int cpu)828 static int cpu_cache_sysfs_init(unsigned int cpu)
829 {
830 struct device *dev = get_cpu_device(cpu);
831
832 if (per_cpu_cacheinfo(cpu) == NULL)
833 return -ENOENT;
834
835 per_cpu_cache_dev(cpu) = cpu_device_create(dev, NULL, NULL, "cache");
836 if (IS_ERR(per_cpu_cache_dev(cpu)))
837 return PTR_ERR(per_cpu_cache_dev(cpu));
838
839 /* Allocate all required memory */
840 per_cpu_index_dev(cpu) = kcalloc(cache_leaves(cpu),
841 sizeof(struct device *), GFP_KERNEL);
842 if (unlikely(per_cpu_index_dev(cpu) == NULL))
843 goto err_out;
844
845 return 0;
846
847 err_out:
848 cpu_cache_sysfs_exit(cpu);
849 return -ENOMEM;
850 }
851
cache_add_dev(unsigned int cpu)852 static int cache_add_dev(unsigned int cpu)
853 {
854 unsigned int i;
855 int rc;
856 struct device *ci_dev, *parent;
857 struct cacheinfo *this_leaf;
858 const struct attribute_group **cache_groups;
859
860 rc = cpu_cache_sysfs_init(cpu);
861 if (unlikely(rc < 0))
862 return rc;
863
864 parent = per_cpu_cache_dev(cpu);
865 for (i = 0; i < cache_leaves(cpu); i++) {
866 this_leaf = per_cpu_cacheinfo_idx(cpu, i);
867 if (this_leaf->disable_sysfs)
868 continue;
869 if (this_leaf->type == CACHE_TYPE_NOCACHE)
870 break;
871 cache_groups = cache_get_attribute_groups(this_leaf);
872 ci_dev = cpu_device_create(parent, this_leaf, cache_groups,
873 "index%1u", i);
874 if (IS_ERR(ci_dev)) {
875 rc = PTR_ERR(ci_dev);
876 goto err;
877 }
878 per_cache_index_dev(cpu, i) = ci_dev;
879 }
880 cpumask_set_cpu(cpu, &cache_dev_map);
881
882 return 0;
883 err:
884 cpu_cache_sysfs_exit(cpu);
885 return rc;
886 }
887
cpu_map_shared_cache(bool online,unsigned int cpu,cpumask_t ** map)888 static unsigned int cpu_map_shared_cache(bool online, unsigned int cpu,
889 cpumask_t **map)
890 {
891 struct cacheinfo *llc, *sib_llc;
892 unsigned int sibling;
893
894 if (!last_level_cache_is_valid(cpu))
895 return 0;
896
897 llc = per_cpu_cacheinfo_idx(cpu, cache_leaves(cpu) - 1);
898
899 if (llc->type != CACHE_TYPE_DATA && llc->type != CACHE_TYPE_UNIFIED)
900 return 0;
901
902 if (online) {
903 *map = &llc->shared_cpu_map;
904 return cpumask_weight(*map);
905 }
906
907 /* shared_cpu_map of offlined CPU will be cleared, so use sibling map */
908 for_each_cpu(sibling, &llc->shared_cpu_map) {
909 if (sibling == cpu || !last_level_cache_is_valid(sibling))
910 continue;
911 sib_llc = per_cpu_cacheinfo_idx(sibling, cache_leaves(sibling) - 1);
912 *map = &sib_llc->shared_cpu_map;
913 return cpumask_weight(*map);
914 }
915
916 return 0;
917 }
918
919 /*
920 * Calculate the size of the per-CPU data cache slice. This can be
921 * used to estimate the size of the data cache slice that can be used
922 * by one CPU under ideal circumstances. UNIFIED caches are counted
923 * in addition to DATA caches. So, please consider code cache usage
924 * when use the result.
925 *
926 * Because the cache inclusive/non-inclusive information isn't
927 * available, we just use the size of the per-CPU slice of LLC to make
928 * the result more predictable across architectures.
929 */
update_per_cpu_data_slice_size_cpu(unsigned int cpu)930 static void update_per_cpu_data_slice_size_cpu(unsigned int cpu)
931 {
932 struct cpu_cacheinfo *ci;
933 struct cacheinfo *llc;
934 unsigned int nr_shared;
935
936 if (!last_level_cache_is_valid(cpu))
937 return;
938
939 ci = ci_cacheinfo(cpu);
940 llc = per_cpu_cacheinfo_idx(cpu, cache_leaves(cpu) - 1);
941
942 if (llc->type != CACHE_TYPE_DATA && llc->type != CACHE_TYPE_UNIFIED)
943 return;
944
945 nr_shared = cpumask_weight(&llc->shared_cpu_map);
946 if (nr_shared)
947 ci->per_cpu_data_slice_size = llc->size / nr_shared;
948 }
949
update_per_cpu_data_slice_size(bool cpu_online,unsigned int cpu,cpumask_t * cpu_map)950 static void update_per_cpu_data_slice_size(bool cpu_online, unsigned int cpu,
951 cpumask_t *cpu_map)
952 {
953 unsigned int icpu;
954
955 for_each_cpu(icpu, cpu_map) {
956 if (!cpu_online && icpu == cpu)
957 continue;
958 update_per_cpu_data_slice_size_cpu(icpu);
959 setup_pcp_cacheinfo(icpu);
960 }
961 }
962
cacheinfo_cpu_online(unsigned int cpu)963 static int cacheinfo_cpu_online(unsigned int cpu)
964 {
965 int rc = detect_cache_attributes(cpu);
966 cpumask_t *cpu_map;
967
968 if (rc)
969 return rc;
970 rc = cache_add_dev(cpu);
971 if (rc)
972 goto err;
973 if (cpu_map_shared_cache(true, cpu, &cpu_map))
974 update_per_cpu_data_slice_size(true, cpu, cpu_map);
975 return 0;
976 err:
977 free_cache_attributes(cpu);
978 return rc;
979 }
980
cacheinfo_cpu_pre_down(unsigned int cpu)981 static int cacheinfo_cpu_pre_down(unsigned int cpu)
982 {
983 cpumask_t *cpu_map;
984 unsigned int nr_shared;
985
986 nr_shared = cpu_map_shared_cache(false, cpu, &cpu_map);
987 if (cpumask_test_and_clear_cpu(cpu, &cache_dev_map))
988 cpu_cache_sysfs_exit(cpu);
989
990 free_cache_attributes(cpu);
991 if (nr_shared > 1)
992 update_per_cpu_data_slice_size(false, cpu, cpu_map);
993 return 0;
994 }
995
cacheinfo_sysfs_init(void)996 static int __init cacheinfo_sysfs_init(void)
997 {
998 return cpuhp_setup_state(CPUHP_AP_BASE_CACHEINFO_ONLINE,
999 "base/cacheinfo:online",
1000 cacheinfo_cpu_online, cacheinfo_cpu_pre_down);
1001 }
1002 device_initcall(cacheinfo_sysfs_init);
1003