• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *
4  *  Bluetooth support for Intel devices
5  *
6  *  Copyright (C) 2015  Intel Corporation
7  */
8 
9 #include <linux/module.h>
10 #include <linux/firmware.h>
11 #include <linux/regmap.h>
12 #include <linux/acpi.h>
13 #include <acpi/acpi_bus.h>
14 #include <linux/unaligned.h>
15 #include <linux/efi.h>
16 
17 #include <net/bluetooth/bluetooth.h>
18 #include <net/bluetooth/hci_core.h>
19 
20 #include "btintel.h"
21 
22 #define VERSION "0.1"
23 
24 #define BDADDR_INTEL		(&(bdaddr_t){{0x00, 0x8b, 0x9e, 0x19, 0x03, 0x00}})
25 #define RSA_HEADER_LEN		644
26 #define CSS_HEADER_OFFSET	8
27 #define ECDSA_OFFSET		644
28 #define ECDSA_HEADER_LEN	320
29 
30 #define BTINTEL_EFI_DSBR	L"UefiCnvCommonDSBR"
31 
32 enum {
33 	DSM_SET_WDISABLE2_DELAY = 1,
34 	DSM_SET_RESET_METHOD = 3,
35 };
36 
37 #define CMD_WRITE_BOOT_PARAMS	0xfc0e
38 struct cmd_write_boot_params {
39 	__le32 boot_addr;
40 	u8  fw_build_num;
41 	u8  fw_build_ww;
42 	u8  fw_build_yy;
43 } __packed;
44 
45 static struct {
46 	const char *driver_name;
47 	u8         hw_variant;
48 	u32        fw_build_num;
49 } coredump_info;
50 
51 static const guid_t btintel_guid_dsm =
52 	GUID_INIT(0xaa10f4e0, 0x81ac, 0x4233,
53 		  0xab, 0xf6, 0x3b, 0x2a, 0xc5, 0x0e, 0x28, 0xd9);
54 
btintel_check_bdaddr(struct hci_dev * hdev)55 int btintel_check_bdaddr(struct hci_dev *hdev)
56 {
57 	struct hci_rp_read_bd_addr *bda;
58 	struct sk_buff *skb;
59 
60 	skb = __hci_cmd_sync(hdev, HCI_OP_READ_BD_ADDR, 0, NULL,
61 			     HCI_INIT_TIMEOUT);
62 	if (IS_ERR(skb)) {
63 		int err = PTR_ERR(skb);
64 		bt_dev_err(hdev, "Reading Intel device address failed (%d)",
65 			   err);
66 		return err;
67 	}
68 
69 	if (skb->len != sizeof(*bda)) {
70 		bt_dev_err(hdev, "Intel device address length mismatch");
71 		kfree_skb(skb);
72 		return -EIO;
73 	}
74 
75 	bda = (struct hci_rp_read_bd_addr *)skb->data;
76 
77 	/* For some Intel based controllers, the default Bluetooth device
78 	 * address 00:03:19:9E:8B:00 can be found. These controllers are
79 	 * fully operational, but have the danger of duplicate addresses
80 	 * and that in turn can cause problems with Bluetooth operation.
81 	 */
82 	if (!bacmp(&bda->bdaddr, BDADDR_INTEL)) {
83 		bt_dev_err(hdev, "Found Intel default device address (%pMR)",
84 			   &bda->bdaddr);
85 		set_bit(HCI_QUIRK_INVALID_BDADDR, &hdev->quirks);
86 	}
87 
88 	kfree_skb(skb);
89 
90 	return 0;
91 }
92 EXPORT_SYMBOL_GPL(btintel_check_bdaddr);
93 
btintel_enter_mfg(struct hci_dev * hdev)94 int btintel_enter_mfg(struct hci_dev *hdev)
95 {
96 	static const u8 param[] = { 0x01, 0x00 };
97 	struct sk_buff *skb;
98 
99 	skb = __hci_cmd_sync(hdev, 0xfc11, 2, param, HCI_CMD_TIMEOUT);
100 	if (IS_ERR(skb)) {
101 		bt_dev_err(hdev, "Entering manufacturer mode failed (%ld)",
102 			   PTR_ERR(skb));
103 		return PTR_ERR(skb);
104 	}
105 	kfree_skb(skb);
106 
107 	return 0;
108 }
109 EXPORT_SYMBOL_GPL(btintel_enter_mfg);
110 
btintel_exit_mfg(struct hci_dev * hdev,bool reset,bool patched)111 int btintel_exit_mfg(struct hci_dev *hdev, bool reset, bool patched)
112 {
113 	u8 param[] = { 0x00, 0x00 };
114 	struct sk_buff *skb;
115 
116 	/* The 2nd command parameter specifies the manufacturing exit method:
117 	 * 0x00: Just disable the manufacturing mode (0x00).
118 	 * 0x01: Disable manufacturing mode and reset with patches deactivated.
119 	 * 0x02: Disable manufacturing mode and reset with patches activated.
120 	 */
121 	if (reset)
122 		param[1] |= patched ? 0x02 : 0x01;
123 
124 	skb = __hci_cmd_sync(hdev, 0xfc11, 2, param, HCI_CMD_TIMEOUT);
125 	if (IS_ERR(skb)) {
126 		bt_dev_err(hdev, "Exiting manufacturer mode failed (%ld)",
127 			   PTR_ERR(skb));
128 		return PTR_ERR(skb);
129 	}
130 	kfree_skb(skb);
131 
132 	return 0;
133 }
134 EXPORT_SYMBOL_GPL(btintel_exit_mfg);
135 
btintel_set_bdaddr(struct hci_dev * hdev,const bdaddr_t * bdaddr)136 int btintel_set_bdaddr(struct hci_dev *hdev, const bdaddr_t *bdaddr)
137 {
138 	struct sk_buff *skb;
139 	int err;
140 
141 	skb = __hci_cmd_sync(hdev, 0xfc31, 6, bdaddr, HCI_INIT_TIMEOUT);
142 	if (IS_ERR(skb)) {
143 		err = PTR_ERR(skb);
144 		bt_dev_err(hdev, "Changing Intel device address failed (%d)",
145 			   err);
146 		return err;
147 	}
148 	kfree_skb(skb);
149 
150 	return 0;
151 }
152 EXPORT_SYMBOL_GPL(btintel_set_bdaddr);
153 
btintel_set_event_mask(struct hci_dev * hdev,bool debug)154 static int btintel_set_event_mask(struct hci_dev *hdev, bool debug)
155 {
156 	u8 mask[8] = { 0x87, 0x0c, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 };
157 	struct sk_buff *skb;
158 	int err;
159 
160 	if (debug)
161 		mask[1] |= 0x62;
162 
163 	skb = __hci_cmd_sync(hdev, 0xfc52, 8, mask, HCI_INIT_TIMEOUT);
164 	if (IS_ERR(skb)) {
165 		err = PTR_ERR(skb);
166 		bt_dev_err(hdev, "Setting Intel event mask failed (%d)", err);
167 		return err;
168 	}
169 	kfree_skb(skb);
170 
171 	return 0;
172 }
173 
btintel_set_diag(struct hci_dev * hdev,bool enable)174 int btintel_set_diag(struct hci_dev *hdev, bool enable)
175 {
176 	struct sk_buff *skb;
177 	u8 param[3];
178 	int err;
179 
180 	if (enable) {
181 		param[0] = 0x03;
182 		param[1] = 0x03;
183 		param[2] = 0x03;
184 	} else {
185 		param[0] = 0x00;
186 		param[1] = 0x00;
187 		param[2] = 0x00;
188 	}
189 
190 	skb = __hci_cmd_sync(hdev, 0xfc43, 3, param, HCI_INIT_TIMEOUT);
191 	if (IS_ERR(skb)) {
192 		err = PTR_ERR(skb);
193 		if (err == -ENODATA)
194 			goto done;
195 		bt_dev_err(hdev, "Changing Intel diagnostic mode failed (%d)",
196 			   err);
197 		return err;
198 	}
199 	kfree_skb(skb);
200 
201 done:
202 	btintel_set_event_mask(hdev, enable);
203 	return 0;
204 }
205 EXPORT_SYMBOL_GPL(btintel_set_diag);
206 
btintel_set_diag_mfg(struct hci_dev * hdev,bool enable)207 static int btintel_set_diag_mfg(struct hci_dev *hdev, bool enable)
208 {
209 	int err, ret;
210 
211 	err = btintel_enter_mfg(hdev);
212 	if (err)
213 		return err;
214 
215 	ret = btintel_set_diag(hdev, enable);
216 
217 	err = btintel_exit_mfg(hdev, false, false);
218 	if (err)
219 		return err;
220 
221 	return ret;
222 }
223 
btintel_set_diag_combined(struct hci_dev * hdev,bool enable)224 static int btintel_set_diag_combined(struct hci_dev *hdev, bool enable)
225 {
226 	int ret;
227 
228 	/* Legacy ROM device needs to be in the manufacturer mode to apply
229 	 * diagnostic setting
230 	 *
231 	 * This flag is set after reading the Intel version.
232 	 */
233 	if (btintel_test_flag(hdev, INTEL_ROM_LEGACY))
234 		ret = btintel_set_diag_mfg(hdev, enable);
235 	else
236 		ret = btintel_set_diag(hdev, enable);
237 
238 	return ret;
239 }
240 
btintel_hw_error(struct hci_dev * hdev,u8 code)241 void btintel_hw_error(struct hci_dev *hdev, u8 code)
242 {
243 	struct sk_buff *skb;
244 	u8 type = 0x00;
245 
246 	bt_dev_err(hdev, "Hardware error 0x%2.2x", code);
247 
248 	skb = __hci_cmd_sync(hdev, HCI_OP_RESET, 0, NULL, HCI_INIT_TIMEOUT);
249 	if (IS_ERR(skb)) {
250 		bt_dev_err(hdev, "Reset after hardware error failed (%ld)",
251 			   PTR_ERR(skb));
252 		return;
253 	}
254 	kfree_skb(skb);
255 
256 	skb = __hci_cmd_sync(hdev, 0xfc22, 1, &type, HCI_INIT_TIMEOUT);
257 	if (IS_ERR(skb)) {
258 		bt_dev_err(hdev, "Retrieving Intel exception info failed (%ld)",
259 			   PTR_ERR(skb));
260 		return;
261 	}
262 
263 	if (skb->len != 13) {
264 		bt_dev_err(hdev, "Exception info size mismatch");
265 		kfree_skb(skb);
266 		return;
267 	}
268 
269 	bt_dev_err(hdev, "Exception info %s", (char *)(skb->data + 1));
270 
271 	kfree_skb(skb);
272 }
273 EXPORT_SYMBOL_GPL(btintel_hw_error);
274 
btintel_version_info(struct hci_dev * hdev,struct intel_version * ver)275 int btintel_version_info(struct hci_dev *hdev, struct intel_version *ver)
276 {
277 	const char *variant;
278 
279 	/* The hardware platform number has a fixed value of 0x37 and
280 	 * for now only accept this single value.
281 	 */
282 	if (ver->hw_platform != 0x37) {
283 		bt_dev_err(hdev, "Unsupported Intel hardware platform (%u)",
284 			   ver->hw_platform);
285 		return -EINVAL;
286 	}
287 
288 	/* Check for supported iBT hardware variants of this firmware
289 	 * loading method.
290 	 *
291 	 * This check has been put in place to ensure correct forward
292 	 * compatibility options when newer hardware variants come along.
293 	 */
294 	switch (ver->hw_variant) {
295 	case 0x07:	/* WP - Legacy ROM */
296 	case 0x08:	/* StP - Legacy ROM */
297 	case 0x0b:      /* SfP */
298 	case 0x0c:      /* WsP */
299 	case 0x11:      /* JfP */
300 	case 0x12:      /* ThP */
301 	case 0x13:      /* HrP */
302 	case 0x14:      /* CcP */
303 		break;
304 	default:
305 		bt_dev_err(hdev, "Unsupported Intel hardware variant (%u)",
306 			   ver->hw_variant);
307 		return -EINVAL;
308 	}
309 
310 	switch (ver->fw_variant) {
311 	case 0x01:
312 		variant = "Legacy ROM 2.5";
313 		break;
314 	case 0x06:
315 		variant = "Bootloader";
316 		break;
317 	case 0x22:
318 		variant = "Legacy ROM 2.x";
319 		break;
320 	case 0x23:
321 		variant = "Firmware";
322 		break;
323 	default:
324 		bt_dev_err(hdev, "Unsupported firmware variant(%02x)", ver->fw_variant);
325 		return -EINVAL;
326 	}
327 
328 	coredump_info.hw_variant = ver->hw_variant;
329 	coredump_info.fw_build_num = ver->fw_build_num;
330 
331 	bt_dev_info(hdev, "%s revision %u.%u build %u week %u %u",
332 		    variant, ver->fw_revision >> 4, ver->fw_revision & 0x0f,
333 		    ver->fw_build_num, ver->fw_build_ww,
334 		    2000 + ver->fw_build_yy);
335 
336 	return 0;
337 }
338 EXPORT_SYMBOL_GPL(btintel_version_info);
339 
btintel_secure_send(struct hci_dev * hdev,u8 fragment_type,u32 plen,const void * param)340 static int btintel_secure_send(struct hci_dev *hdev, u8 fragment_type, u32 plen,
341 			       const void *param)
342 {
343 	while (plen > 0) {
344 		struct sk_buff *skb;
345 		u8 cmd_param[253], fragment_len = (plen > 252) ? 252 : plen;
346 
347 		cmd_param[0] = fragment_type;
348 		memcpy(cmd_param + 1, param, fragment_len);
349 
350 		skb = __hci_cmd_sync(hdev, 0xfc09, fragment_len + 1,
351 				     cmd_param, HCI_INIT_TIMEOUT);
352 		if (IS_ERR(skb))
353 			return PTR_ERR(skb);
354 
355 		kfree_skb(skb);
356 
357 		plen -= fragment_len;
358 		param += fragment_len;
359 	}
360 
361 	return 0;
362 }
363 
btintel_load_ddc_config(struct hci_dev * hdev,const char * ddc_name)364 int btintel_load_ddc_config(struct hci_dev *hdev, const char *ddc_name)
365 {
366 	const struct firmware *fw;
367 	struct sk_buff *skb;
368 	const u8 *fw_ptr;
369 	int err;
370 
371 	err = request_firmware_direct(&fw, ddc_name, &hdev->dev);
372 	if (err < 0) {
373 		bt_dev_err(hdev, "Failed to load Intel DDC file %s (%d)",
374 			   ddc_name, err);
375 		return err;
376 	}
377 
378 	bt_dev_info(hdev, "Found Intel DDC parameters: %s", ddc_name);
379 
380 	fw_ptr = fw->data;
381 
382 	/* DDC file contains one or more DDC structure which has
383 	 * Length (1 byte), DDC ID (2 bytes), and DDC value (Length - 2).
384 	 */
385 	while (fw->size > fw_ptr - fw->data) {
386 		u8 cmd_plen = fw_ptr[0] + sizeof(u8);
387 
388 		skb = __hci_cmd_sync(hdev, 0xfc8b, cmd_plen, fw_ptr,
389 				     HCI_INIT_TIMEOUT);
390 		if (IS_ERR(skb)) {
391 			bt_dev_err(hdev, "Failed to send Intel_Write_DDC (%ld)",
392 				   PTR_ERR(skb));
393 			release_firmware(fw);
394 			return PTR_ERR(skb);
395 		}
396 
397 		fw_ptr += cmd_plen;
398 		kfree_skb(skb);
399 	}
400 
401 	release_firmware(fw);
402 
403 	bt_dev_info(hdev, "Applying Intel DDC parameters completed");
404 
405 	return 0;
406 }
407 EXPORT_SYMBOL_GPL(btintel_load_ddc_config);
408 
btintel_set_event_mask_mfg(struct hci_dev * hdev,bool debug)409 int btintel_set_event_mask_mfg(struct hci_dev *hdev, bool debug)
410 {
411 	int err, ret;
412 
413 	err = btintel_enter_mfg(hdev);
414 	if (err)
415 		return err;
416 
417 	ret = btintel_set_event_mask(hdev, debug);
418 
419 	err = btintel_exit_mfg(hdev, false, false);
420 	if (err)
421 		return err;
422 
423 	return ret;
424 }
425 EXPORT_SYMBOL_GPL(btintel_set_event_mask_mfg);
426 
btintel_read_version(struct hci_dev * hdev,struct intel_version * ver)427 int btintel_read_version(struct hci_dev *hdev, struct intel_version *ver)
428 {
429 	struct sk_buff *skb;
430 
431 	skb = __hci_cmd_sync(hdev, 0xfc05, 0, NULL, HCI_CMD_TIMEOUT);
432 	if (IS_ERR(skb)) {
433 		bt_dev_err(hdev, "Reading Intel version information failed (%ld)",
434 			   PTR_ERR(skb));
435 		return PTR_ERR(skb);
436 	}
437 
438 	if (!skb || skb->len != sizeof(*ver)) {
439 		bt_dev_err(hdev, "Intel version event size mismatch");
440 		kfree_skb(skb);
441 		return -EILSEQ;
442 	}
443 
444 	memcpy(ver, skb->data, sizeof(*ver));
445 
446 	kfree_skb(skb);
447 
448 	return 0;
449 }
450 EXPORT_SYMBOL_GPL(btintel_read_version);
451 
btintel_version_info_tlv(struct hci_dev * hdev,struct intel_version_tlv * version)452 int btintel_version_info_tlv(struct hci_dev *hdev,
453 			     struct intel_version_tlv *version)
454 {
455 	const char *variant;
456 
457 	/* The hardware platform number has a fixed value of 0x37 and
458 	 * for now only accept this single value.
459 	 */
460 	if (INTEL_HW_PLATFORM(version->cnvi_bt) != 0x37) {
461 		bt_dev_err(hdev, "Unsupported Intel hardware platform (0x%2x)",
462 			   INTEL_HW_PLATFORM(version->cnvi_bt));
463 		return -EINVAL;
464 	}
465 
466 	/* Check for supported iBT hardware variants of this firmware
467 	 * loading method.
468 	 *
469 	 * This check has been put in place to ensure correct forward
470 	 * compatibility options when newer hardware variants come along.
471 	 */
472 	switch (INTEL_HW_VARIANT(version->cnvi_bt)) {
473 	case 0x17:	/* TyP */
474 	case 0x18:	/* Slr */
475 	case 0x19:	/* Slr-F */
476 	case 0x1b:      /* Mgr */
477 	case 0x1c:	/* Gale Peak (GaP) */
478 	case 0x1d:	/* BlazarU (BzrU) */
479 	case 0x1e:	/* BlazarI (Bzr) */
480 		break;
481 	default:
482 		bt_dev_err(hdev, "Unsupported Intel hardware variant (0x%x)",
483 			   INTEL_HW_VARIANT(version->cnvi_bt));
484 		return -EINVAL;
485 	}
486 
487 	switch (version->img_type) {
488 	case BTINTEL_IMG_BOOTLOADER:
489 		variant = "Bootloader";
490 		/* It is required that every single firmware fragment is acknowledged
491 		 * with a command complete event. If the boot parameters indicate
492 		 * that this bootloader does not send them, then abort the setup.
493 		 */
494 		if (version->limited_cce != 0x00) {
495 			bt_dev_err(hdev, "Unsupported Intel firmware loading method (0x%x)",
496 				   version->limited_cce);
497 			return -EINVAL;
498 		}
499 
500 		/* Secure boot engine type should be either 1 (ECDSA) or 0 (RSA) */
501 		if (version->sbe_type > 0x01) {
502 			bt_dev_err(hdev, "Unsupported Intel secure boot engine type (0x%x)",
503 				   version->sbe_type);
504 			return -EINVAL;
505 		}
506 
507 		bt_dev_info(hdev, "Device revision is %u", version->dev_rev_id);
508 		bt_dev_info(hdev, "Secure boot is %s",
509 			    version->secure_boot ? "enabled" : "disabled");
510 		bt_dev_info(hdev, "OTP lock is %s",
511 			    version->otp_lock ? "enabled" : "disabled");
512 		bt_dev_info(hdev, "API lock is %s",
513 			    version->api_lock ? "enabled" : "disabled");
514 		bt_dev_info(hdev, "Debug lock is %s",
515 			    version->debug_lock ? "enabled" : "disabled");
516 		bt_dev_info(hdev, "Minimum firmware build %u week %u %u",
517 			    version->min_fw_build_nn, version->min_fw_build_cw,
518 			    2000 + version->min_fw_build_yy);
519 		break;
520 	case BTINTEL_IMG_IML:
521 		variant = "Intermediate loader";
522 		break;
523 	case BTINTEL_IMG_OP:
524 		variant = "Firmware";
525 		break;
526 	default:
527 		bt_dev_err(hdev, "Unsupported image type(%02x)", version->img_type);
528 		return -EINVAL;
529 	}
530 
531 	coredump_info.hw_variant = INTEL_HW_VARIANT(version->cnvi_bt);
532 	coredump_info.fw_build_num = version->build_num;
533 
534 	bt_dev_info(hdev, "%s timestamp %u.%u buildtype %u build %u", variant,
535 		    2000 + (version->timestamp >> 8), version->timestamp & 0xff,
536 		    version->build_type, version->build_num);
537 	if (version->img_type == BTINTEL_IMG_OP)
538 		bt_dev_info(hdev, "Firmware SHA1: 0x%8.8x", version->git_sha1);
539 
540 	return 0;
541 }
542 EXPORT_SYMBOL_GPL(btintel_version_info_tlv);
543 
btintel_parse_version_tlv(struct hci_dev * hdev,struct intel_version_tlv * version,struct sk_buff * skb)544 int btintel_parse_version_tlv(struct hci_dev *hdev,
545 			      struct intel_version_tlv *version,
546 			      struct sk_buff *skb)
547 {
548 	/* Consume Command Complete Status field */
549 	skb_pull(skb, 1);
550 
551 	/* Event parameters contatin multiple TLVs. Read each of them
552 	 * and only keep the required data. Also, it use existing legacy
553 	 * version field like hw_platform, hw_variant, and fw_variant
554 	 * to keep the existing setup flow
555 	 */
556 	while (skb->len) {
557 		struct intel_tlv *tlv;
558 
559 		/* Make sure skb has a minimum length of the header */
560 		if (skb->len < sizeof(*tlv))
561 			return -EINVAL;
562 
563 		tlv = (struct intel_tlv *)skb->data;
564 
565 		/* Make sure skb has a enough data */
566 		if (skb->len < tlv->len + sizeof(*tlv))
567 			return -EINVAL;
568 
569 		switch (tlv->type) {
570 		case INTEL_TLV_CNVI_TOP:
571 			version->cnvi_top = get_unaligned_le32(tlv->val);
572 			break;
573 		case INTEL_TLV_CNVR_TOP:
574 			version->cnvr_top = get_unaligned_le32(tlv->val);
575 			break;
576 		case INTEL_TLV_CNVI_BT:
577 			version->cnvi_bt = get_unaligned_le32(tlv->val);
578 			break;
579 		case INTEL_TLV_CNVR_BT:
580 			version->cnvr_bt = get_unaligned_le32(tlv->val);
581 			break;
582 		case INTEL_TLV_DEV_REV_ID:
583 			version->dev_rev_id = get_unaligned_le16(tlv->val);
584 			break;
585 		case INTEL_TLV_IMAGE_TYPE:
586 			version->img_type = tlv->val[0];
587 			break;
588 		case INTEL_TLV_TIME_STAMP:
589 			/* If image type is Operational firmware (0x03), then
590 			 * running FW Calendar Week and Year information can
591 			 * be extracted from Timestamp information
592 			 */
593 			version->min_fw_build_cw = tlv->val[0];
594 			version->min_fw_build_yy = tlv->val[1];
595 			version->timestamp = get_unaligned_le16(tlv->val);
596 			break;
597 		case INTEL_TLV_BUILD_TYPE:
598 			version->build_type = tlv->val[0];
599 			break;
600 		case INTEL_TLV_BUILD_NUM:
601 			/* If image type is Operational firmware (0x03), then
602 			 * running FW build number can be extracted from the
603 			 * Build information
604 			 */
605 			version->min_fw_build_nn = tlv->val[0];
606 			version->build_num = get_unaligned_le32(tlv->val);
607 			break;
608 		case INTEL_TLV_SECURE_BOOT:
609 			version->secure_boot = tlv->val[0];
610 			break;
611 		case INTEL_TLV_OTP_LOCK:
612 			version->otp_lock = tlv->val[0];
613 			break;
614 		case INTEL_TLV_API_LOCK:
615 			version->api_lock = tlv->val[0];
616 			break;
617 		case INTEL_TLV_DEBUG_LOCK:
618 			version->debug_lock = tlv->val[0];
619 			break;
620 		case INTEL_TLV_MIN_FW:
621 			version->min_fw_build_nn = tlv->val[0];
622 			version->min_fw_build_cw = tlv->val[1];
623 			version->min_fw_build_yy = tlv->val[2];
624 			break;
625 		case INTEL_TLV_LIMITED_CCE:
626 			version->limited_cce = tlv->val[0];
627 			break;
628 		case INTEL_TLV_SBE_TYPE:
629 			version->sbe_type = tlv->val[0];
630 			break;
631 		case INTEL_TLV_OTP_BDADDR:
632 			memcpy(&version->otp_bd_addr, tlv->val,
633 							sizeof(bdaddr_t));
634 			break;
635 		case INTEL_TLV_GIT_SHA1:
636 			version->git_sha1 = get_unaligned_le32(tlv->val);
637 			break;
638 		case INTEL_TLV_FW_ID:
639 			snprintf(version->fw_id, sizeof(version->fw_id),
640 				 "%s", tlv->val);
641 			break;
642 		default:
643 			/* Ignore rest of information */
644 			break;
645 		}
646 		/* consume the current tlv and move to next*/
647 		skb_pull(skb, tlv->len + sizeof(*tlv));
648 	}
649 
650 	return 0;
651 }
652 EXPORT_SYMBOL_GPL(btintel_parse_version_tlv);
653 
btintel_read_version_tlv(struct hci_dev * hdev,struct intel_version_tlv * version)654 static int btintel_read_version_tlv(struct hci_dev *hdev,
655 				    struct intel_version_tlv *version)
656 {
657 	struct sk_buff *skb;
658 	const u8 param[1] = { 0xFF };
659 
660 	if (!version)
661 		return -EINVAL;
662 
663 	skb = __hci_cmd_sync(hdev, 0xfc05, 1, param, HCI_CMD_TIMEOUT);
664 	if (IS_ERR(skb)) {
665 		bt_dev_err(hdev, "Reading Intel version information failed (%ld)",
666 			   PTR_ERR(skb));
667 		return PTR_ERR(skb);
668 	}
669 
670 	if (skb->data[0]) {
671 		bt_dev_err(hdev, "Intel Read Version command failed (%02x)",
672 			   skb->data[0]);
673 		kfree_skb(skb);
674 		return -EIO;
675 	}
676 
677 	btintel_parse_version_tlv(hdev, version, skb);
678 
679 	kfree_skb(skb);
680 	return 0;
681 }
682 
683 /* ------- REGMAP IBT SUPPORT ------- */
684 
685 #define IBT_REG_MODE_8BIT  0x00
686 #define IBT_REG_MODE_16BIT 0x01
687 #define IBT_REG_MODE_32BIT 0x02
688 
689 struct regmap_ibt_context {
690 	struct hci_dev *hdev;
691 	__u16 op_write;
692 	__u16 op_read;
693 };
694 
695 struct ibt_cp_reg_access {
696 	__le32  addr;
697 	__u8    mode;
698 	__u8    len;
699 	__u8    data[];
700 } __packed;
701 
702 struct ibt_rp_reg_access {
703 	__u8    status;
704 	__le32  addr;
705 	__u8    data[];
706 } __packed;
707 
regmap_ibt_read(void * context,const void * addr,size_t reg_size,void * val,size_t val_size)708 static int regmap_ibt_read(void *context, const void *addr, size_t reg_size,
709 			   void *val, size_t val_size)
710 {
711 	struct regmap_ibt_context *ctx = context;
712 	struct ibt_cp_reg_access cp;
713 	struct ibt_rp_reg_access *rp;
714 	struct sk_buff *skb;
715 	int err = 0;
716 
717 	if (reg_size != sizeof(__le32))
718 		return -EINVAL;
719 
720 	switch (val_size) {
721 	case 1:
722 		cp.mode = IBT_REG_MODE_8BIT;
723 		break;
724 	case 2:
725 		cp.mode = IBT_REG_MODE_16BIT;
726 		break;
727 	case 4:
728 		cp.mode = IBT_REG_MODE_32BIT;
729 		break;
730 	default:
731 		return -EINVAL;
732 	}
733 
734 	/* regmap provides a little-endian formatted addr */
735 	cp.addr = *(__le32 *)addr;
736 	cp.len = val_size;
737 
738 	bt_dev_dbg(ctx->hdev, "Register (0x%x) read", le32_to_cpu(cp.addr));
739 
740 	skb = hci_cmd_sync(ctx->hdev, ctx->op_read, sizeof(cp), &cp,
741 			   HCI_CMD_TIMEOUT);
742 	if (IS_ERR(skb)) {
743 		err = PTR_ERR(skb);
744 		bt_dev_err(ctx->hdev, "regmap: Register (0x%x) read error (%d)",
745 			   le32_to_cpu(cp.addr), err);
746 		return err;
747 	}
748 
749 	if (skb->len != sizeof(*rp) + val_size) {
750 		bt_dev_err(ctx->hdev, "regmap: Register (0x%x) read error, bad len",
751 			   le32_to_cpu(cp.addr));
752 		err = -EINVAL;
753 		goto done;
754 	}
755 
756 	rp = (struct ibt_rp_reg_access *)skb->data;
757 
758 	if (rp->addr != cp.addr) {
759 		bt_dev_err(ctx->hdev, "regmap: Register (0x%x) read error, bad addr",
760 			   le32_to_cpu(rp->addr));
761 		err = -EINVAL;
762 		goto done;
763 	}
764 
765 	memcpy(val, rp->data, val_size);
766 
767 done:
768 	kfree_skb(skb);
769 	return err;
770 }
771 
regmap_ibt_gather_write(void * context,const void * addr,size_t reg_size,const void * val,size_t val_size)772 static int regmap_ibt_gather_write(void *context,
773 				   const void *addr, size_t reg_size,
774 				   const void *val, size_t val_size)
775 {
776 	struct regmap_ibt_context *ctx = context;
777 	struct ibt_cp_reg_access *cp;
778 	struct sk_buff *skb;
779 	int plen = sizeof(*cp) + val_size;
780 	u8 mode;
781 	int err = 0;
782 
783 	if (reg_size != sizeof(__le32))
784 		return -EINVAL;
785 
786 	switch (val_size) {
787 	case 1:
788 		mode = IBT_REG_MODE_8BIT;
789 		break;
790 	case 2:
791 		mode = IBT_REG_MODE_16BIT;
792 		break;
793 	case 4:
794 		mode = IBT_REG_MODE_32BIT;
795 		break;
796 	default:
797 		return -EINVAL;
798 	}
799 
800 	cp = kmalloc(plen, GFP_KERNEL);
801 	if (!cp)
802 		return -ENOMEM;
803 
804 	/* regmap provides a little-endian formatted addr/value */
805 	cp->addr = *(__le32 *)addr;
806 	cp->mode = mode;
807 	cp->len = val_size;
808 	memcpy(&cp->data, val, val_size);
809 
810 	bt_dev_dbg(ctx->hdev, "Register (0x%x) write", le32_to_cpu(cp->addr));
811 
812 	skb = hci_cmd_sync(ctx->hdev, ctx->op_write, plen, cp, HCI_CMD_TIMEOUT);
813 	if (IS_ERR(skb)) {
814 		err = PTR_ERR(skb);
815 		bt_dev_err(ctx->hdev, "regmap: Register (0x%x) write error (%d)",
816 			   le32_to_cpu(cp->addr), err);
817 		goto done;
818 	}
819 	kfree_skb(skb);
820 
821 done:
822 	kfree(cp);
823 	return err;
824 }
825 
regmap_ibt_write(void * context,const void * data,size_t count)826 static int regmap_ibt_write(void *context, const void *data, size_t count)
827 {
828 	/* data contains register+value, since we only support 32bit addr,
829 	 * minimum data size is 4 bytes.
830 	 */
831 	if (WARN_ONCE(count < 4, "Invalid register access"))
832 		return -EINVAL;
833 
834 	return regmap_ibt_gather_write(context, data, 4, data + 4, count - 4);
835 }
836 
regmap_ibt_free_context(void * context)837 static void regmap_ibt_free_context(void *context)
838 {
839 	kfree(context);
840 }
841 
842 static const struct regmap_bus regmap_ibt = {
843 	.read = regmap_ibt_read,
844 	.write = regmap_ibt_write,
845 	.gather_write = regmap_ibt_gather_write,
846 	.free_context = regmap_ibt_free_context,
847 	.reg_format_endian_default = REGMAP_ENDIAN_LITTLE,
848 	.val_format_endian_default = REGMAP_ENDIAN_LITTLE,
849 };
850 
851 /* Config is the same for all register regions */
852 static const struct regmap_config regmap_ibt_cfg = {
853 	.name      = "btintel_regmap",
854 	.reg_bits  = 32,
855 	.val_bits  = 32,
856 };
857 
btintel_regmap_init(struct hci_dev * hdev,u16 opcode_read,u16 opcode_write)858 struct regmap *btintel_regmap_init(struct hci_dev *hdev, u16 opcode_read,
859 				   u16 opcode_write)
860 {
861 	struct regmap_ibt_context *ctx;
862 
863 	bt_dev_info(hdev, "regmap: Init R%x-W%x region", opcode_read,
864 		    opcode_write);
865 
866 	ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
867 	if (!ctx)
868 		return ERR_PTR(-ENOMEM);
869 
870 	ctx->op_read = opcode_read;
871 	ctx->op_write = opcode_write;
872 	ctx->hdev = hdev;
873 
874 	return regmap_init(&hdev->dev, &regmap_ibt, ctx, &regmap_ibt_cfg);
875 }
876 EXPORT_SYMBOL_GPL(btintel_regmap_init);
877 
btintel_send_intel_reset(struct hci_dev * hdev,u32 boot_param)878 int btintel_send_intel_reset(struct hci_dev *hdev, u32 boot_param)
879 {
880 	struct intel_reset params = { 0x00, 0x01, 0x00, 0x01, 0x00000000 };
881 	struct sk_buff *skb;
882 
883 	params.boot_param = cpu_to_le32(boot_param);
884 
885 	skb = __hci_cmd_sync(hdev, 0xfc01, sizeof(params), &params,
886 			     HCI_INIT_TIMEOUT);
887 	if (IS_ERR(skb)) {
888 		bt_dev_err(hdev, "Failed to send Intel Reset command");
889 		return PTR_ERR(skb);
890 	}
891 
892 	kfree_skb(skb);
893 
894 	return 0;
895 }
896 EXPORT_SYMBOL_GPL(btintel_send_intel_reset);
897 
btintel_read_boot_params(struct hci_dev * hdev,struct intel_boot_params * params)898 int btintel_read_boot_params(struct hci_dev *hdev,
899 			     struct intel_boot_params *params)
900 {
901 	struct sk_buff *skb;
902 
903 	skb = __hci_cmd_sync(hdev, 0xfc0d, 0, NULL, HCI_INIT_TIMEOUT);
904 	if (IS_ERR(skb)) {
905 		bt_dev_err(hdev, "Reading Intel boot parameters failed (%ld)",
906 			   PTR_ERR(skb));
907 		return PTR_ERR(skb);
908 	}
909 
910 	if (skb->len != sizeof(*params)) {
911 		bt_dev_err(hdev, "Intel boot parameters size mismatch");
912 		kfree_skb(skb);
913 		return -EILSEQ;
914 	}
915 
916 	memcpy(params, skb->data, sizeof(*params));
917 
918 	kfree_skb(skb);
919 
920 	if (params->status) {
921 		bt_dev_err(hdev, "Intel boot parameters command failed (%02x)",
922 			   params->status);
923 		return -bt_to_errno(params->status);
924 	}
925 
926 	bt_dev_info(hdev, "Device revision is %u",
927 		    le16_to_cpu(params->dev_revid));
928 
929 	bt_dev_info(hdev, "Secure boot is %s",
930 		    params->secure_boot ? "enabled" : "disabled");
931 
932 	bt_dev_info(hdev, "OTP lock is %s",
933 		    params->otp_lock ? "enabled" : "disabled");
934 
935 	bt_dev_info(hdev, "API lock is %s",
936 		    params->api_lock ? "enabled" : "disabled");
937 
938 	bt_dev_info(hdev, "Debug lock is %s",
939 		    params->debug_lock ? "enabled" : "disabled");
940 
941 	bt_dev_info(hdev, "Minimum firmware build %u week %u %u",
942 		    params->min_fw_build_nn, params->min_fw_build_cw,
943 		    2000 + params->min_fw_build_yy);
944 
945 	return 0;
946 }
947 EXPORT_SYMBOL_GPL(btintel_read_boot_params);
948 
btintel_sfi_rsa_header_secure_send(struct hci_dev * hdev,const struct firmware * fw)949 static int btintel_sfi_rsa_header_secure_send(struct hci_dev *hdev,
950 					      const struct firmware *fw)
951 {
952 	int err;
953 
954 	/* Start the firmware download transaction with the Init fragment
955 	 * represented by the 128 bytes of CSS header.
956 	 */
957 	err = btintel_secure_send(hdev, 0x00, 128, fw->data);
958 	if (err < 0) {
959 		bt_dev_err(hdev, "Failed to send firmware header (%d)", err);
960 		goto done;
961 	}
962 
963 	/* Send the 256 bytes of public key information from the firmware
964 	 * as the PKey fragment.
965 	 */
966 	err = btintel_secure_send(hdev, 0x03, 256, fw->data + 128);
967 	if (err < 0) {
968 		bt_dev_err(hdev, "Failed to send firmware pkey (%d)", err);
969 		goto done;
970 	}
971 
972 	/* Send the 256 bytes of signature information from the firmware
973 	 * as the Sign fragment.
974 	 */
975 	err = btintel_secure_send(hdev, 0x02, 256, fw->data + 388);
976 	if (err < 0) {
977 		bt_dev_err(hdev, "Failed to send firmware signature (%d)", err);
978 		goto done;
979 	}
980 
981 done:
982 	return err;
983 }
984 
btintel_sfi_ecdsa_header_secure_send(struct hci_dev * hdev,const struct firmware * fw)985 static int btintel_sfi_ecdsa_header_secure_send(struct hci_dev *hdev,
986 						const struct firmware *fw)
987 {
988 	int err;
989 
990 	/* Start the firmware download transaction with the Init fragment
991 	 * represented by the 128 bytes of CSS header.
992 	 */
993 	err = btintel_secure_send(hdev, 0x00, 128, fw->data + 644);
994 	if (err < 0) {
995 		bt_dev_err(hdev, "Failed to send firmware header (%d)", err);
996 		return err;
997 	}
998 
999 	/* Send the 96 bytes of public key information from the firmware
1000 	 * as the PKey fragment.
1001 	 */
1002 	err = btintel_secure_send(hdev, 0x03, 96, fw->data + 644 + 128);
1003 	if (err < 0) {
1004 		bt_dev_err(hdev, "Failed to send firmware pkey (%d)", err);
1005 		return err;
1006 	}
1007 
1008 	/* Send the 96 bytes of signature information from the firmware
1009 	 * as the Sign fragment
1010 	 */
1011 	err = btintel_secure_send(hdev, 0x02, 96, fw->data + 644 + 224);
1012 	if (err < 0) {
1013 		bt_dev_err(hdev, "Failed to send firmware signature (%d)",
1014 			   err);
1015 		return err;
1016 	}
1017 	return 0;
1018 }
1019 
btintel_download_firmware_payload(struct hci_dev * hdev,const struct firmware * fw,size_t offset)1020 static int btintel_download_firmware_payload(struct hci_dev *hdev,
1021 					     const struct firmware *fw,
1022 					     size_t offset)
1023 {
1024 	int err;
1025 	const u8 *fw_ptr;
1026 	u32 frag_len;
1027 
1028 	fw_ptr = fw->data + offset;
1029 	frag_len = 0;
1030 	err = -EINVAL;
1031 
1032 	while (fw_ptr - fw->data < fw->size) {
1033 		struct hci_command_hdr *cmd = (void *)(fw_ptr + frag_len);
1034 
1035 		frag_len += sizeof(*cmd) + cmd->plen;
1036 
1037 		/* The parameter length of the secure send command requires
1038 		 * a 4 byte alignment. It happens so that the firmware file
1039 		 * contains proper Intel_NOP commands to align the fragments
1040 		 * as needed.
1041 		 *
1042 		 * Send set of commands with 4 byte alignment from the
1043 		 * firmware data buffer as a single Data fragement.
1044 		 */
1045 		if (!(frag_len % 4)) {
1046 			err = btintel_secure_send(hdev, 0x01, frag_len, fw_ptr);
1047 			if (err < 0) {
1048 				bt_dev_err(hdev,
1049 					   "Failed to send firmware data (%d)",
1050 					   err);
1051 				goto done;
1052 			}
1053 
1054 			fw_ptr += frag_len;
1055 			frag_len = 0;
1056 		}
1057 	}
1058 
1059 done:
1060 	return err;
1061 }
1062 
btintel_firmware_version(struct hci_dev * hdev,u8 num,u8 ww,u8 yy,const struct firmware * fw,u32 * boot_addr)1063 static bool btintel_firmware_version(struct hci_dev *hdev,
1064 				     u8 num, u8 ww, u8 yy,
1065 				     const struct firmware *fw,
1066 				     u32 *boot_addr)
1067 {
1068 	const u8 *fw_ptr;
1069 
1070 	fw_ptr = fw->data;
1071 
1072 	while (fw_ptr - fw->data < fw->size) {
1073 		struct hci_command_hdr *cmd = (void *)(fw_ptr);
1074 
1075 		/* Each SKU has a different reset parameter to use in the
1076 		 * HCI_Intel_Reset command and it is embedded in the firmware
1077 		 * data. So, instead of using static value per SKU, check
1078 		 * the firmware data and save it for later use.
1079 		 */
1080 		if (le16_to_cpu(cmd->opcode) == CMD_WRITE_BOOT_PARAMS) {
1081 			struct cmd_write_boot_params *params;
1082 
1083 			params = (void *)(fw_ptr + sizeof(*cmd));
1084 
1085 			*boot_addr = le32_to_cpu(params->boot_addr);
1086 
1087 			bt_dev_info(hdev, "Boot Address: 0x%x", *boot_addr);
1088 
1089 			bt_dev_info(hdev, "Firmware Version: %u-%u.%u",
1090 				    params->fw_build_num, params->fw_build_ww,
1091 				    params->fw_build_yy);
1092 
1093 			return (num == params->fw_build_num &&
1094 				ww == params->fw_build_ww &&
1095 				yy == params->fw_build_yy);
1096 		}
1097 
1098 		fw_ptr += sizeof(*cmd) + cmd->plen;
1099 	}
1100 
1101 	return false;
1102 }
1103 
btintel_download_firmware(struct hci_dev * hdev,struct intel_version * ver,const struct firmware * fw,u32 * boot_param)1104 int btintel_download_firmware(struct hci_dev *hdev,
1105 			      struct intel_version *ver,
1106 			      const struct firmware *fw,
1107 			      u32 *boot_param)
1108 {
1109 	int err;
1110 
1111 	/* SfP and WsP don't seem to update the firmware version on file
1112 	 * so version checking is currently not possible.
1113 	 */
1114 	switch (ver->hw_variant) {
1115 	case 0x0b:	/* SfP */
1116 	case 0x0c:	/* WsP */
1117 		/* Skip version checking */
1118 		break;
1119 	default:
1120 
1121 		/* Skip download if firmware has the same version */
1122 		if (btintel_firmware_version(hdev, ver->fw_build_num,
1123 					     ver->fw_build_ww, ver->fw_build_yy,
1124 					     fw, boot_param)) {
1125 			bt_dev_info(hdev, "Firmware already loaded");
1126 			/* Return -EALREADY to indicate that the firmware has
1127 			 * already been loaded.
1128 			 */
1129 			return -EALREADY;
1130 		}
1131 	}
1132 
1133 	/* The firmware variant determines if the device is in bootloader
1134 	 * mode or is running operational firmware. The value 0x06 identifies
1135 	 * the bootloader and the value 0x23 identifies the operational
1136 	 * firmware.
1137 	 *
1138 	 * If the firmware version has changed that means it needs to be reset
1139 	 * to bootloader when operational so the new firmware can be loaded.
1140 	 */
1141 	if (ver->fw_variant == 0x23)
1142 		return -EINVAL;
1143 
1144 	err = btintel_sfi_rsa_header_secure_send(hdev, fw);
1145 	if (err)
1146 		return err;
1147 
1148 	return btintel_download_firmware_payload(hdev, fw, RSA_HEADER_LEN);
1149 }
1150 EXPORT_SYMBOL_GPL(btintel_download_firmware);
1151 
btintel_download_fw_tlv(struct hci_dev * hdev,struct intel_version_tlv * ver,const struct firmware * fw,u32 * boot_param,u8 hw_variant,u8 sbe_type)1152 static int btintel_download_fw_tlv(struct hci_dev *hdev,
1153 				   struct intel_version_tlv *ver,
1154 				   const struct firmware *fw, u32 *boot_param,
1155 				   u8 hw_variant, u8 sbe_type)
1156 {
1157 	int err;
1158 	u32 css_header_ver;
1159 
1160 	/* Skip download if firmware has the same version */
1161 	if (btintel_firmware_version(hdev, ver->min_fw_build_nn,
1162 				     ver->min_fw_build_cw,
1163 				     ver->min_fw_build_yy,
1164 				     fw, boot_param)) {
1165 		bt_dev_info(hdev, "Firmware already loaded");
1166 		/* Return -EALREADY to indicate that firmware has
1167 		 * already been loaded.
1168 		 */
1169 		return -EALREADY;
1170 	}
1171 
1172 	/* The firmware variant determines if the device is in bootloader
1173 	 * mode or is running operational firmware. The value 0x01 identifies
1174 	 * the bootloader and the value 0x03 identifies the operational
1175 	 * firmware.
1176 	 *
1177 	 * If the firmware version has changed that means it needs to be reset
1178 	 * to bootloader when operational so the new firmware can be loaded.
1179 	 */
1180 	if (ver->img_type == BTINTEL_IMG_OP)
1181 		return -EINVAL;
1182 
1183 	/* iBT hardware variants 0x0b, 0x0c, 0x11, 0x12, 0x13, 0x14 support
1184 	 * only RSA secure boot engine. Hence, the corresponding sfi file will
1185 	 * have RSA header of 644 bytes followed by Command Buffer.
1186 	 *
1187 	 * iBT hardware variants 0x17, 0x18 onwards support both RSA and ECDSA
1188 	 * secure boot engine. As a result, the corresponding sfi file will
1189 	 * have RSA header of 644, ECDSA header of 320 bytes followed by
1190 	 * Command Buffer.
1191 	 *
1192 	 * CSS Header byte positions 0x08 to 0x0B represent the CSS Header
1193 	 * version: RSA(0x00010000) , ECDSA (0x00020000)
1194 	 */
1195 	css_header_ver = get_unaligned_le32(fw->data + CSS_HEADER_OFFSET);
1196 	if (css_header_ver != 0x00010000) {
1197 		bt_dev_err(hdev, "Invalid CSS Header version");
1198 		return -EINVAL;
1199 	}
1200 
1201 	if (hw_variant <= 0x14) {
1202 		if (sbe_type != 0x00) {
1203 			bt_dev_err(hdev, "Invalid SBE type for hardware variant (%d)",
1204 				   hw_variant);
1205 			return -EINVAL;
1206 		}
1207 
1208 		err = btintel_sfi_rsa_header_secure_send(hdev, fw);
1209 		if (err)
1210 			return err;
1211 
1212 		err = btintel_download_firmware_payload(hdev, fw, RSA_HEADER_LEN);
1213 		if (err)
1214 			return err;
1215 	} else if (hw_variant >= 0x17) {
1216 		/* Check if CSS header for ECDSA follows the RSA header */
1217 		if (fw->data[ECDSA_OFFSET] != 0x06)
1218 			return -EINVAL;
1219 
1220 		/* Check if the CSS Header version is ECDSA(0x00020000) */
1221 		css_header_ver = get_unaligned_le32(fw->data + ECDSA_OFFSET + CSS_HEADER_OFFSET);
1222 		if (css_header_ver != 0x00020000) {
1223 			bt_dev_err(hdev, "Invalid CSS Header version");
1224 			return -EINVAL;
1225 		}
1226 
1227 		if (sbe_type == 0x00) {
1228 			err = btintel_sfi_rsa_header_secure_send(hdev, fw);
1229 			if (err)
1230 				return err;
1231 
1232 			err = btintel_download_firmware_payload(hdev, fw,
1233 								RSA_HEADER_LEN + ECDSA_HEADER_LEN);
1234 			if (err)
1235 				return err;
1236 		} else if (sbe_type == 0x01) {
1237 			err = btintel_sfi_ecdsa_header_secure_send(hdev, fw);
1238 			if (err)
1239 				return err;
1240 
1241 			err = btintel_download_firmware_payload(hdev, fw,
1242 								RSA_HEADER_LEN + ECDSA_HEADER_LEN);
1243 			if (err)
1244 				return err;
1245 		}
1246 	}
1247 	return 0;
1248 }
1249 
btintel_reset_to_bootloader(struct hci_dev * hdev)1250 static void btintel_reset_to_bootloader(struct hci_dev *hdev)
1251 {
1252 	struct intel_reset params;
1253 	struct sk_buff *skb;
1254 
1255 	/* Send Intel Reset command. This will result in
1256 	 * re-enumeration of BT controller.
1257 	 *
1258 	 * Intel Reset parameter description:
1259 	 * reset_type :   0x00 (Soft reset),
1260 	 *		  0x01 (Hard reset)
1261 	 * patch_enable : 0x00 (Do not enable),
1262 	 *		  0x01 (Enable)
1263 	 * ddc_reload :   0x00 (Do not reload),
1264 	 *		  0x01 (Reload)
1265 	 * boot_option:   0x00 (Current image),
1266 	 *                0x01 (Specified boot address)
1267 	 * boot_param:    Boot address
1268 	 *
1269 	 */
1270 	params.reset_type = 0x01;
1271 	params.patch_enable = 0x01;
1272 	params.ddc_reload = 0x01;
1273 	params.boot_option = 0x00;
1274 	params.boot_param = cpu_to_le32(0x00000000);
1275 
1276 	skb = __hci_cmd_sync(hdev, 0xfc01, sizeof(params),
1277 			     &params, HCI_INIT_TIMEOUT);
1278 	if (IS_ERR(skb)) {
1279 		bt_dev_err(hdev, "FW download error recovery failed (%ld)",
1280 			   PTR_ERR(skb));
1281 		return;
1282 	}
1283 	bt_dev_info(hdev, "Intel reset sent to retry FW download");
1284 	kfree_skb(skb);
1285 
1286 	/* Current Intel BT controllers(ThP/JfP) hold the USB reset
1287 	 * lines for 2ms when it receives Intel Reset in bootloader mode.
1288 	 * Whereas, the upcoming Intel BT controllers will hold USB reset
1289 	 * for 150ms. To keep the delay generic, 150ms is chosen here.
1290 	 */
1291 	msleep(150);
1292 }
1293 
btintel_read_debug_features(struct hci_dev * hdev,struct intel_debug_features * features)1294 static int btintel_read_debug_features(struct hci_dev *hdev,
1295 				       struct intel_debug_features *features)
1296 {
1297 	struct sk_buff *skb;
1298 	u8 page_no = 1;
1299 
1300 	/* Intel controller supports two pages, each page is of 128-bit
1301 	 * feature bit mask. And each bit defines specific feature support
1302 	 */
1303 	skb = __hci_cmd_sync(hdev, 0xfca6, sizeof(page_no), &page_no,
1304 			     HCI_INIT_TIMEOUT);
1305 	if (IS_ERR(skb)) {
1306 		bt_dev_err(hdev, "Reading supported features failed (%ld)",
1307 			   PTR_ERR(skb));
1308 		return PTR_ERR(skb);
1309 	}
1310 
1311 	if (skb->len != (sizeof(features->page1) + 3)) {
1312 		bt_dev_err(hdev, "Supported features event size mismatch");
1313 		kfree_skb(skb);
1314 		return -EILSEQ;
1315 	}
1316 
1317 	memcpy(features->page1, skb->data + 3, sizeof(features->page1));
1318 
1319 	/* Read the supported features page2 if required in future.
1320 	 */
1321 	kfree_skb(skb);
1322 	return 0;
1323 }
1324 
btintel_set_debug_features(struct hci_dev * hdev,const struct intel_debug_features * features)1325 static int btintel_set_debug_features(struct hci_dev *hdev,
1326 			       const struct intel_debug_features *features)
1327 {
1328 	u8 mask[11] = { 0x0a, 0x92, 0x02, 0x7f, 0x00, 0x00, 0x00, 0x00,
1329 			0x00, 0x00, 0x00 };
1330 	u8 period[5] = { 0x04, 0x91, 0x02, 0x05, 0x00 };
1331 	u8 trace_enable = 0x02;
1332 	struct sk_buff *skb;
1333 
1334 	if (!features) {
1335 		bt_dev_warn(hdev, "Debug features not read");
1336 		return -EINVAL;
1337 	}
1338 
1339 	if (!(features->page1[0] & 0x3f)) {
1340 		bt_dev_info(hdev, "Telemetry exception format not supported");
1341 		return 0;
1342 	}
1343 
1344 	skb = __hci_cmd_sync(hdev, 0xfc8b, 11, mask, HCI_INIT_TIMEOUT);
1345 	if (IS_ERR(skb)) {
1346 		bt_dev_err(hdev, "Setting Intel telemetry ddc write event mask failed (%ld)",
1347 			   PTR_ERR(skb));
1348 		return PTR_ERR(skb);
1349 	}
1350 	kfree_skb(skb);
1351 
1352 	skb = __hci_cmd_sync(hdev, 0xfc8b, 5, period, HCI_INIT_TIMEOUT);
1353 	if (IS_ERR(skb)) {
1354 		bt_dev_err(hdev, "Setting periodicity for link statistics traces failed (%ld)",
1355 			   PTR_ERR(skb));
1356 		return PTR_ERR(skb);
1357 	}
1358 	kfree_skb(skb);
1359 
1360 	skb = __hci_cmd_sync(hdev, 0xfca1, 1, &trace_enable, HCI_INIT_TIMEOUT);
1361 	if (IS_ERR(skb)) {
1362 		bt_dev_err(hdev, "Enable tracing of link statistics events failed (%ld)",
1363 			   PTR_ERR(skb));
1364 		return PTR_ERR(skb);
1365 	}
1366 	kfree_skb(skb);
1367 
1368 	bt_dev_info(hdev, "set debug features: trace_enable 0x%02x mask 0x%02x",
1369 		    trace_enable, mask[3]);
1370 
1371 	return 0;
1372 }
1373 
btintel_reset_debug_features(struct hci_dev * hdev,const struct intel_debug_features * features)1374 static int btintel_reset_debug_features(struct hci_dev *hdev,
1375 				 const struct intel_debug_features *features)
1376 {
1377 	u8 mask[11] = { 0x0a, 0x92, 0x02, 0x00, 0x00, 0x00, 0x00, 0x00,
1378 			0x00, 0x00, 0x00 };
1379 	u8 trace_enable = 0x00;
1380 	struct sk_buff *skb;
1381 
1382 	if (!features) {
1383 		bt_dev_warn(hdev, "Debug features not read");
1384 		return -EINVAL;
1385 	}
1386 
1387 	if (!(features->page1[0] & 0x3f)) {
1388 		bt_dev_info(hdev, "Telemetry exception format not supported");
1389 		return 0;
1390 	}
1391 
1392 	/* Should stop the trace before writing ddc event mask. */
1393 	skb = __hci_cmd_sync(hdev, 0xfca1, 1, &trace_enable, HCI_INIT_TIMEOUT);
1394 	if (IS_ERR(skb)) {
1395 		bt_dev_err(hdev, "Stop tracing of link statistics events failed (%ld)",
1396 			   PTR_ERR(skb));
1397 		return PTR_ERR(skb);
1398 	}
1399 	kfree_skb(skb);
1400 
1401 	skb = __hci_cmd_sync(hdev, 0xfc8b, 11, mask, HCI_INIT_TIMEOUT);
1402 	if (IS_ERR(skb)) {
1403 		bt_dev_err(hdev, "Setting Intel telemetry ddc write event mask failed (%ld)",
1404 			   PTR_ERR(skb));
1405 		return PTR_ERR(skb);
1406 	}
1407 	kfree_skb(skb);
1408 
1409 	bt_dev_info(hdev, "reset debug features: trace_enable 0x%02x mask 0x%02x",
1410 		    trace_enable, mask[3]);
1411 
1412 	return 0;
1413 }
1414 
btintel_set_quality_report(struct hci_dev * hdev,bool enable)1415 int btintel_set_quality_report(struct hci_dev *hdev, bool enable)
1416 {
1417 	struct intel_debug_features features;
1418 	int err;
1419 
1420 	bt_dev_dbg(hdev, "enable %d", enable);
1421 
1422 	/* Read the Intel supported features and if new exception formats
1423 	 * supported, need to load the additional DDC config to enable.
1424 	 */
1425 	err = btintel_read_debug_features(hdev, &features);
1426 	if (err)
1427 		return err;
1428 
1429 	/* Set or reset the debug features. */
1430 	if (enable)
1431 		err = btintel_set_debug_features(hdev, &features);
1432 	else
1433 		err = btintel_reset_debug_features(hdev, &features);
1434 
1435 	return err;
1436 }
1437 EXPORT_SYMBOL_GPL(btintel_set_quality_report);
1438 
btintel_coredump(struct hci_dev * hdev)1439 static void btintel_coredump(struct hci_dev *hdev)
1440 {
1441 	struct sk_buff *skb;
1442 
1443 	skb = __hci_cmd_sync(hdev, 0xfc4e, 0, NULL, HCI_CMD_TIMEOUT);
1444 	if (IS_ERR(skb)) {
1445 		bt_dev_err(hdev, "Coredump failed (%ld)", PTR_ERR(skb));
1446 		return;
1447 	}
1448 
1449 	kfree_skb(skb);
1450 }
1451 
btintel_dmp_hdr(struct hci_dev * hdev,struct sk_buff * skb)1452 static void btintel_dmp_hdr(struct hci_dev *hdev, struct sk_buff *skb)
1453 {
1454 	char buf[80];
1455 
1456 	snprintf(buf, sizeof(buf), "Controller Name: 0x%X\n",
1457 		 coredump_info.hw_variant);
1458 	skb_put_data(skb, buf, strlen(buf));
1459 
1460 	snprintf(buf, sizeof(buf), "Firmware Version: 0x%X\n",
1461 		 coredump_info.fw_build_num);
1462 	skb_put_data(skb, buf, strlen(buf));
1463 
1464 	snprintf(buf, sizeof(buf), "Driver: %s\n", coredump_info.driver_name);
1465 	skb_put_data(skb, buf, strlen(buf));
1466 
1467 	snprintf(buf, sizeof(buf), "Vendor: Intel\n");
1468 	skb_put_data(skb, buf, strlen(buf));
1469 }
1470 
btintel_register_devcoredump_support(struct hci_dev * hdev)1471 static int btintel_register_devcoredump_support(struct hci_dev *hdev)
1472 {
1473 	struct intel_debug_features features;
1474 	int err;
1475 
1476 	err = btintel_read_debug_features(hdev, &features);
1477 	if (err) {
1478 		bt_dev_info(hdev, "Error reading debug features");
1479 		return err;
1480 	}
1481 
1482 	if (!(features.page1[0] & 0x3f)) {
1483 		bt_dev_dbg(hdev, "Telemetry exception format not supported");
1484 		return -EOPNOTSUPP;
1485 	}
1486 
1487 	hci_devcd_register(hdev, btintel_coredump, btintel_dmp_hdr, NULL);
1488 
1489 	return err;
1490 }
1491 
btintel_legacy_rom_get_fw(struct hci_dev * hdev,struct intel_version * ver)1492 static const struct firmware *btintel_legacy_rom_get_fw(struct hci_dev *hdev,
1493 					       struct intel_version *ver)
1494 {
1495 	const struct firmware *fw;
1496 	char fwname[64];
1497 	int ret;
1498 
1499 	snprintf(fwname, sizeof(fwname),
1500 		 "intel/ibt-hw-%x.%x.%x-fw-%x.%x.%x.%x.%x.bseq",
1501 		 ver->hw_platform, ver->hw_variant, ver->hw_revision,
1502 		 ver->fw_variant,  ver->fw_revision, ver->fw_build_num,
1503 		 ver->fw_build_ww, ver->fw_build_yy);
1504 
1505 	ret = request_firmware(&fw, fwname, &hdev->dev);
1506 	if (ret < 0) {
1507 		if (ret == -EINVAL) {
1508 			bt_dev_err(hdev, "Intel firmware file request failed (%d)",
1509 				   ret);
1510 			return NULL;
1511 		}
1512 
1513 		bt_dev_err(hdev, "failed to open Intel firmware file: %s (%d)",
1514 			   fwname, ret);
1515 
1516 		/* If the correct firmware patch file is not found, use the
1517 		 * default firmware patch file instead
1518 		 */
1519 		snprintf(fwname, sizeof(fwname), "intel/ibt-hw-%x.%x.bseq",
1520 			 ver->hw_platform, ver->hw_variant);
1521 		if (request_firmware(&fw, fwname, &hdev->dev) < 0) {
1522 			bt_dev_err(hdev, "failed to open default fw file: %s",
1523 				   fwname);
1524 			return NULL;
1525 		}
1526 	}
1527 
1528 	bt_dev_info(hdev, "Intel Bluetooth firmware file: %s", fwname);
1529 
1530 	return fw;
1531 }
1532 
btintel_legacy_rom_patching(struct hci_dev * hdev,const struct firmware * fw,const u8 ** fw_ptr,int * disable_patch)1533 static int btintel_legacy_rom_patching(struct hci_dev *hdev,
1534 				      const struct firmware *fw,
1535 				      const u8 **fw_ptr, int *disable_patch)
1536 {
1537 	struct sk_buff *skb;
1538 	struct hci_command_hdr *cmd;
1539 	const u8 *cmd_param;
1540 	struct hci_event_hdr *evt = NULL;
1541 	const u8 *evt_param = NULL;
1542 	int remain = fw->size - (*fw_ptr - fw->data);
1543 
1544 	/* The first byte indicates the types of the patch command or event.
1545 	 * 0x01 means HCI command and 0x02 is HCI event. If the first bytes
1546 	 * in the current firmware buffer doesn't start with 0x01 or
1547 	 * the size of remain buffer is smaller than HCI command header,
1548 	 * the firmware file is corrupted and it should stop the patching
1549 	 * process.
1550 	 */
1551 	if (remain > HCI_COMMAND_HDR_SIZE && *fw_ptr[0] != 0x01) {
1552 		bt_dev_err(hdev, "Intel fw corrupted: invalid cmd read");
1553 		return -EINVAL;
1554 	}
1555 	(*fw_ptr)++;
1556 	remain--;
1557 
1558 	cmd = (struct hci_command_hdr *)(*fw_ptr);
1559 	*fw_ptr += sizeof(*cmd);
1560 	remain -= sizeof(*cmd);
1561 
1562 	/* Ensure that the remain firmware data is long enough than the length
1563 	 * of command parameter. If not, the firmware file is corrupted.
1564 	 */
1565 	if (remain < cmd->plen) {
1566 		bt_dev_err(hdev, "Intel fw corrupted: invalid cmd len");
1567 		return -EFAULT;
1568 	}
1569 
1570 	/* If there is a command that loads a patch in the firmware
1571 	 * file, then enable the patch upon success, otherwise just
1572 	 * disable the manufacturer mode, for example patch activation
1573 	 * is not required when the default firmware patch file is used
1574 	 * because there are no patch data to load.
1575 	 */
1576 	if (*disable_patch && le16_to_cpu(cmd->opcode) == 0xfc8e)
1577 		*disable_patch = 0;
1578 
1579 	cmd_param = *fw_ptr;
1580 	*fw_ptr += cmd->plen;
1581 	remain -= cmd->plen;
1582 
1583 	/* This reads the expected events when the above command is sent to the
1584 	 * device. Some vendor commands expects more than one events, for
1585 	 * example command status event followed by vendor specific event.
1586 	 * For this case, it only keeps the last expected event. so the command
1587 	 * can be sent with __hci_cmd_sync_ev() which returns the sk_buff of
1588 	 * last expected event.
1589 	 */
1590 	while (remain > HCI_EVENT_HDR_SIZE && *fw_ptr[0] == 0x02) {
1591 		(*fw_ptr)++;
1592 		remain--;
1593 
1594 		evt = (struct hci_event_hdr *)(*fw_ptr);
1595 		*fw_ptr += sizeof(*evt);
1596 		remain -= sizeof(*evt);
1597 
1598 		if (remain < evt->plen) {
1599 			bt_dev_err(hdev, "Intel fw corrupted: invalid evt len");
1600 			return -EFAULT;
1601 		}
1602 
1603 		evt_param = *fw_ptr;
1604 		*fw_ptr += evt->plen;
1605 		remain -= evt->plen;
1606 	}
1607 
1608 	/* Every HCI commands in the firmware file has its correspond event.
1609 	 * If event is not found or remain is smaller than zero, the firmware
1610 	 * file is corrupted.
1611 	 */
1612 	if (!evt || !evt_param || remain < 0) {
1613 		bt_dev_err(hdev, "Intel fw corrupted: invalid evt read");
1614 		return -EFAULT;
1615 	}
1616 
1617 	skb = __hci_cmd_sync_ev(hdev, le16_to_cpu(cmd->opcode), cmd->plen,
1618 				cmd_param, evt->evt, HCI_INIT_TIMEOUT);
1619 	if (IS_ERR(skb)) {
1620 		bt_dev_err(hdev, "sending Intel patch command (0x%4.4x) failed (%ld)",
1621 			   cmd->opcode, PTR_ERR(skb));
1622 		return PTR_ERR(skb);
1623 	}
1624 
1625 	/* It ensures that the returned event matches the event data read from
1626 	 * the firmware file. At fist, it checks the length and then
1627 	 * the contents of the event.
1628 	 */
1629 	if (skb->len != evt->plen) {
1630 		bt_dev_err(hdev, "mismatch event length (opcode 0x%4.4x)",
1631 			   le16_to_cpu(cmd->opcode));
1632 		kfree_skb(skb);
1633 		return -EFAULT;
1634 	}
1635 
1636 	if (memcmp(skb->data, evt_param, evt->plen)) {
1637 		bt_dev_err(hdev, "mismatch event parameter (opcode 0x%4.4x)",
1638 			   le16_to_cpu(cmd->opcode));
1639 		kfree_skb(skb);
1640 		return -EFAULT;
1641 	}
1642 	kfree_skb(skb);
1643 
1644 	return 0;
1645 }
1646 
btintel_legacy_rom_setup(struct hci_dev * hdev,struct intel_version * ver)1647 static int btintel_legacy_rom_setup(struct hci_dev *hdev,
1648 				    struct intel_version *ver)
1649 {
1650 	const struct firmware *fw;
1651 	const u8 *fw_ptr;
1652 	int disable_patch, err;
1653 	struct intel_version new_ver;
1654 
1655 	BT_DBG("%s", hdev->name);
1656 
1657 	/* fw_patch_num indicates the version of patch the device currently
1658 	 * have. If there is no patch data in the device, it is always 0x00.
1659 	 * So, if it is other than 0x00, no need to patch the device again.
1660 	 */
1661 	if (ver->fw_patch_num) {
1662 		bt_dev_info(hdev,
1663 			    "Intel device is already patched. patch num: %02x",
1664 			    ver->fw_patch_num);
1665 		goto complete;
1666 	}
1667 
1668 	/* Opens the firmware patch file based on the firmware version read
1669 	 * from the controller. If it fails to open the matching firmware
1670 	 * patch file, it tries to open the default firmware patch file.
1671 	 * If no patch file is found, allow the device to operate without
1672 	 * a patch.
1673 	 */
1674 	fw = btintel_legacy_rom_get_fw(hdev, ver);
1675 	if (!fw)
1676 		goto complete;
1677 	fw_ptr = fw->data;
1678 
1679 	/* Enable the manufacturer mode of the controller.
1680 	 * Only while this mode is enabled, the driver can download the
1681 	 * firmware patch data and configuration parameters.
1682 	 */
1683 	err = btintel_enter_mfg(hdev);
1684 	if (err) {
1685 		release_firmware(fw);
1686 		return err;
1687 	}
1688 
1689 	disable_patch = 1;
1690 
1691 	/* The firmware data file consists of list of Intel specific HCI
1692 	 * commands and its expected events. The first byte indicates the
1693 	 * type of the message, either HCI command or HCI event.
1694 	 *
1695 	 * It reads the command and its expected event from the firmware file,
1696 	 * and send to the controller. Once __hci_cmd_sync_ev() returns,
1697 	 * the returned event is compared with the event read from the firmware
1698 	 * file and it will continue until all the messages are downloaded to
1699 	 * the controller.
1700 	 *
1701 	 * Once the firmware patching is completed successfully,
1702 	 * the manufacturer mode is disabled with reset and activating the
1703 	 * downloaded patch.
1704 	 *
1705 	 * If the firmware patching fails, the manufacturer mode is
1706 	 * disabled with reset and deactivating the patch.
1707 	 *
1708 	 * If the default patch file is used, no reset is done when disabling
1709 	 * the manufacturer.
1710 	 */
1711 	while (fw->size > fw_ptr - fw->data) {
1712 		int ret;
1713 
1714 		ret = btintel_legacy_rom_patching(hdev, fw, &fw_ptr,
1715 						 &disable_patch);
1716 		if (ret < 0)
1717 			goto exit_mfg_deactivate;
1718 	}
1719 
1720 	release_firmware(fw);
1721 
1722 	if (disable_patch)
1723 		goto exit_mfg_disable;
1724 
1725 	/* Patching completed successfully and disable the manufacturer mode
1726 	 * with reset and activate the downloaded firmware patches.
1727 	 */
1728 	err = btintel_exit_mfg(hdev, true, true);
1729 	if (err)
1730 		return err;
1731 
1732 	/* Need build number for downloaded fw patches in
1733 	 * every power-on boot
1734 	 */
1735 	err = btintel_read_version(hdev, &new_ver);
1736 	if (err)
1737 		return err;
1738 
1739 	bt_dev_info(hdev, "Intel BT fw patch 0x%02x completed & activated",
1740 		    new_ver.fw_patch_num);
1741 
1742 	goto complete;
1743 
1744 exit_mfg_disable:
1745 	/* Disable the manufacturer mode without reset */
1746 	err = btintel_exit_mfg(hdev, false, false);
1747 	if (err)
1748 		return err;
1749 
1750 	bt_dev_info(hdev, "Intel firmware patch completed");
1751 
1752 	goto complete;
1753 
1754 exit_mfg_deactivate:
1755 	release_firmware(fw);
1756 
1757 	/* Patching failed. Disable the manufacturer mode with reset and
1758 	 * deactivate the downloaded firmware patches.
1759 	 */
1760 	err = btintel_exit_mfg(hdev, true, false);
1761 	if (err)
1762 		return err;
1763 
1764 	bt_dev_info(hdev, "Intel firmware patch completed and deactivated");
1765 
1766 complete:
1767 	/* Set the event mask for Intel specific vendor events. This enables
1768 	 * a few extra events that are useful during general operation.
1769 	 */
1770 	btintel_set_event_mask_mfg(hdev, false);
1771 
1772 	btintel_check_bdaddr(hdev);
1773 
1774 	return 0;
1775 }
1776 
btintel_download_wait(struct hci_dev * hdev,ktime_t calltime,int msec)1777 static int btintel_download_wait(struct hci_dev *hdev, ktime_t calltime, int msec)
1778 {
1779 	ktime_t delta, rettime;
1780 	unsigned long long duration;
1781 	int err;
1782 
1783 	btintel_set_flag(hdev, INTEL_FIRMWARE_LOADED);
1784 
1785 	bt_dev_info(hdev, "Waiting for firmware download to complete");
1786 
1787 	err = btintel_wait_on_flag_timeout(hdev, INTEL_DOWNLOADING,
1788 					   TASK_INTERRUPTIBLE,
1789 					   msecs_to_jiffies(msec));
1790 	if (err == -EINTR) {
1791 		bt_dev_err(hdev, "Firmware loading interrupted");
1792 		return err;
1793 	}
1794 
1795 	if (err) {
1796 		bt_dev_err(hdev, "Firmware loading timeout");
1797 		return -ETIMEDOUT;
1798 	}
1799 
1800 	if (btintel_test_flag(hdev, INTEL_FIRMWARE_FAILED)) {
1801 		bt_dev_err(hdev, "Firmware loading failed");
1802 		return -ENOEXEC;
1803 	}
1804 
1805 	rettime = ktime_get();
1806 	delta = ktime_sub(rettime, calltime);
1807 	duration = (unsigned long long)ktime_to_ns(delta) >> 10;
1808 
1809 	bt_dev_info(hdev, "Firmware loaded in %llu usecs", duration);
1810 
1811 	return 0;
1812 }
1813 
btintel_boot_wait(struct hci_dev * hdev,ktime_t calltime,int msec)1814 static int btintel_boot_wait(struct hci_dev *hdev, ktime_t calltime, int msec)
1815 {
1816 	ktime_t delta, rettime;
1817 	unsigned long long duration;
1818 	int err;
1819 
1820 	bt_dev_info(hdev, "Waiting for device to boot");
1821 
1822 	err = btintel_wait_on_flag_timeout(hdev, INTEL_BOOTING,
1823 					   TASK_INTERRUPTIBLE,
1824 					   msecs_to_jiffies(msec));
1825 	if (err == -EINTR) {
1826 		bt_dev_err(hdev, "Device boot interrupted");
1827 		return -EINTR;
1828 	}
1829 
1830 	if (err) {
1831 		bt_dev_err(hdev, "Device boot timeout");
1832 		return -ETIMEDOUT;
1833 	}
1834 
1835 	rettime = ktime_get();
1836 	delta = ktime_sub(rettime, calltime);
1837 	duration = (unsigned long long) ktime_to_ns(delta) >> 10;
1838 
1839 	bt_dev_info(hdev, "Device booted in %llu usecs", duration);
1840 
1841 	return 0;
1842 }
1843 
btintel_boot_wait_d0(struct hci_dev * hdev,ktime_t calltime,int msec)1844 static int btintel_boot_wait_d0(struct hci_dev *hdev, ktime_t calltime,
1845 				int msec)
1846 {
1847 	ktime_t delta, rettime;
1848 	unsigned long long duration;
1849 	int err;
1850 
1851 	bt_dev_info(hdev, "Waiting for device transition to d0");
1852 
1853 	err = btintel_wait_on_flag_timeout(hdev, INTEL_WAIT_FOR_D0,
1854 					   TASK_INTERRUPTIBLE,
1855 					   msecs_to_jiffies(msec));
1856 	if (err == -EINTR) {
1857 		bt_dev_err(hdev, "Device d0 move interrupted");
1858 		return -EINTR;
1859 	}
1860 
1861 	if (err) {
1862 		bt_dev_err(hdev, "Device d0 move timeout");
1863 		return -ETIMEDOUT;
1864 	}
1865 
1866 	rettime = ktime_get();
1867 	delta = ktime_sub(rettime, calltime);
1868 	duration = (unsigned long long)ktime_to_ns(delta) >> 10;
1869 
1870 	bt_dev_info(hdev, "Device moved to D0 in %llu usecs", duration);
1871 
1872 	return 0;
1873 }
1874 
btintel_boot(struct hci_dev * hdev,u32 boot_addr)1875 static int btintel_boot(struct hci_dev *hdev, u32 boot_addr)
1876 {
1877 	ktime_t calltime;
1878 	int err;
1879 
1880 	calltime = ktime_get();
1881 
1882 	btintel_set_flag(hdev, INTEL_BOOTING);
1883 	btintel_set_flag(hdev, INTEL_WAIT_FOR_D0);
1884 
1885 	err = btintel_send_intel_reset(hdev, boot_addr);
1886 	if (err) {
1887 		bt_dev_err(hdev, "Intel Soft Reset failed (%d)", err);
1888 		btintel_reset_to_bootloader(hdev);
1889 		return err;
1890 	}
1891 
1892 	/* The bootloader will not indicate when the device is ready. This
1893 	 * is done by the operational firmware sending bootup notification.
1894 	 *
1895 	 * Booting into operational firmware should not take longer than
1896 	 * 5 second. However if that happens, then just fail the setup
1897 	 * since something went wrong.
1898 	 */
1899 	err = btintel_boot_wait(hdev, calltime, 5000);
1900 	if (err == -ETIMEDOUT) {
1901 		btintel_reset_to_bootloader(hdev);
1902 		goto exit_error;
1903 	}
1904 
1905 	if (hdev->bus == HCI_PCI) {
1906 		/* In case of PCIe, after receiving bootup event, driver performs
1907 		 * D0 entry by writing 0 to sleep control register (check
1908 		 * btintel_pcie_recv_event())
1909 		 * Firmware acks with alive interrupt indicating host is full ready to
1910 		 * perform BT operation. Lets wait here till INTEL_WAIT_FOR_D0
1911 		 * bit is cleared.
1912 		 */
1913 		calltime = ktime_get();
1914 		err = btintel_boot_wait_d0(hdev, calltime, 2000);
1915 	}
1916 
1917 exit_error:
1918 	return err;
1919 }
1920 
btintel_get_fw_name(struct intel_version * ver,struct intel_boot_params * params,char * fw_name,size_t len,const char * suffix)1921 static int btintel_get_fw_name(struct intel_version *ver,
1922 					     struct intel_boot_params *params,
1923 					     char *fw_name, size_t len,
1924 					     const char *suffix)
1925 {
1926 	switch (ver->hw_variant) {
1927 	case 0x0b:	/* SfP */
1928 	case 0x0c:	/* WsP */
1929 		snprintf(fw_name, len, "intel/ibt-%u-%u.%s",
1930 			 ver->hw_variant,
1931 			 le16_to_cpu(params->dev_revid),
1932 			 suffix);
1933 		break;
1934 	case 0x11:	/* JfP */
1935 	case 0x12:	/* ThP */
1936 	case 0x13:	/* HrP */
1937 	case 0x14:	/* CcP */
1938 		snprintf(fw_name, len, "intel/ibt-%u-%u-%u.%s",
1939 			 ver->hw_variant,
1940 			 ver->hw_revision,
1941 			 ver->fw_revision,
1942 			 suffix);
1943 		break;
1944 	default:
1945 		return -EINVAL;
1946 	}
1947 
1948 	return 0;
1949 }
1950 
btintel_download_fw(struct hci_dev * hdev,struct intel_version * ver,struct intel_boot_params * params,u32 * boot_param)1951 static int btintel_download_fw(struct hci_dev *hdev,
1952 					 struct intel_version *ver,
1953 					 struct intel_boot_params *params,
1954 					 u32 *boot_param)
1955 {
1956 	const struct firmware *fw;
1957 	char fwname[64];
1958 	int err;
1959 	ktime_t calltime;
1960 
1961 	if (!ver || !params)
1962 		return -EINVAL;
1963 
1964 	/* The firmware variant determines if the device is in bootloader
1965 	 * mode or is running operational firmware. The value 0x06 identifies
1966 	 * the bootloader and the value 0x23 identifies the operational
1967 	 * firmware.
1968 	 *
1969 	 * When the operational firmware is already present, then only
1970 	 * the check for valid Bluetooth device address is needed. This
1971 	 * determines if the device will be added as configured or
1972 	 * unconfigured controller.
1973 	 *
1974 	 * It is not possible to use the Secure Boot Parameters in this
1975 	 * case since that command is only available in bootloader mode.
1976 	 */
1977 	if (ver->fw_variant == 0x23) {
1978 		btintel_clear_flag(hdev, INTEL_BOOTLOADER);
1979 		btintel_check_bdaddr(hdev);
1980 
1981 		/* SfP and WsP don't seem to update the firmware version on file
1982 		 * so version checking is currently possible.
1983 		 */
1984 		switch (ver->hw_variant) {
1985 		case 0x0b:	/* SfP */
1986 		case 0x0c:	/* WsP */
1987 			return 0;
1988 		}
1989 
1990 		/* Proceed to download to check if the version matches */
1991 		goto download;
1992 	}
1993 
1994 	/* Read the secure boot parameters to identify the operating
1995 	 * details of the bootloader.
1996 	 */
1997 	err = btintel_read_boot_params(hdev, params);
1998 	if (err)
1999 		return err;
2000 
2001 	/* It is required that every single firmware fragment is acknowledged
2002 	 * with a command complete event. If the boot parameters indicate
2003 	 * that this bootloader does not send them, then abort the setup.
2004 	 */
2005 	if (params->limited_cce != 0x00) {
2006 		bt_dev_err(hdev, "Unsupported Intel firmware loading method (%u)",
2007 			   params->limited_cce);
2008 		return -EINVAL;
2009 	}
2010 
2011 	/* If the OTP has no valid Bluetooth device address, then there will
2012 	 * also be no valid address for the operational firmware.
2013 	 */
2014 	if (!bacmp(&params->otp_bdaddr, BDADDR_ANY)) {
2015 		bt_dev_info(hdev, "No device address configured");
2016 		set_bit(HCI_QUIRK_INVALID_BDADDR, &hdev->quirks);
2017 	}
2018 
2019 download:
2020 	/* With this Intel bootloader only the hardware variant and device
2021 	 * revision information are used to select the right firmware for SfP
2022 	 * and WsP.
2023 	 *
2024 	 * The firmware filename is ibt-<hw_variant>-<dev_revid>.sfi.
2025 	 *
2026 	 * Currently the supported hardware variants are:
2027 	 *   11 (0x0b) for iBT3.0 (LnP/SfP)
2028 	 *   12 (0x0c) for iBT3.5 (WsP)
2029 	 *
2030 	 * For ThP/JfP and for future SKU's, the FW name varies based on HW
2031 	 * variant, HW revision and FW revision, as these are dependent on CNVi
2032 	 * and RF Combination.
2033 	 *
2034 	 *   17 (0x11) for iBT3.5 (JfP)
2035 	 *   18 (0x12) for iBT3.5 (ThP)
2036 	 *
2037 	 * The firmware file name for these will be
2038 	 * ibt-<hw_variant>-<hw_revision>-<fw_revision>.sfi.
2039 	 *
2040 	 */
2041 	err = btintel_get_fw_name(ver, params, fwname, sizeof(fwname), "sfi");
2042 	if (err < 0) {
2043 		if (!btintel_test_flag(hdev, INTEL_BOOTLOADER)) {
2044 			/* Firmware has already been loaded */
2045 			btintel_set_flag(hdev, INTEL_FIRMWARE_LOADED);
2046 			return 0;
2047 		}
2048 
2049 		bt_dev_err(hdev, "Unsupported Intel firmware naming");
2050 		return -EINVAL;
2051 	}
2052 
2053 	err = firmware_request_nowarn(&fw, fwname, &hdev->dev);
2054 	if (err < 0) {
2055 		if (!btintel_test_flag(hdev, INTEL_BOOTLOADER)) {
2056 			/* Firmware has already been loaded */
2057 			btintel_set_flag(hdev, INTEL_FIRMWARE_LOADED);
2058 			return 0;
2059 		}
2060 
2061 		bt_dev_err(hdev, "Failed to load Intel firmware file %s (%d)",
2062 			   fwname, err);
2063 		return err;
2064 	}
2065 
2066 	bt_dev_info(hdev, "Found device firmware: %s", fwname);
2067 
2068 	if (fw->size < 644) {
2069 		bt_dev_err(hdev, "Invalid size of firmware file (%zu)",
2070 			   fw->size);
2071 		err = -EBADF;
2072 		goto done;
2073 	}
2074 
2075 	calltime = ktime_get();
2076 
2077 	btintel_set_flag(hdev, INTEL_DOWNLOADING);
2078 
2079 	/* Start firmware downloading and get boot parameter */
2080 	err = btintel_download_firmware(hdev, ver, fw, boot_param);
2081 	if (err < 0) {
2082 		if (err == -EALREADY) {
2083 			/* Firmware has already been loaded */
2084 			btintel_set_flag(hdev, INTEL_FIRMWARE_LOADED);
2085 			err = 0;
2086 			goto done;
2087 		}
2088 
2089 		/* When FW download fails, send Intel Reset to retry
2090 		 * FW download.
2091 		 */
2092 		btintel_reset_to_bootloader(hdev);
2093 		goto done;
2094 	}
2095 
2096 	/* Before switching the device into operational mode and with that
2097 	 * booting the loaded firmware, wait for the bootloader notification
2098 	 * that all fragments have been successfully received.
2099 	 *
2100 	 * When the event processing receives the notification, then the
2101 	 * INTEL_DOWNLOADING flag will be cleared.
2102 	 *
2103 	 * The firmware loading should not take longer than 5 seconds
2104 	 * and thus just timeout if that happens and fail the setup
2105 	 * of this device.
2106 	 */
2107 	err = btintel_download_wait(hdev, calltime, 5000);
2108 	if (err == -ETIMEDOUT)
2109 		btintel_reset_to_bootloader(hdev);
2110 
2111 done:
2112 	release_firmware(fw);
2113 	return err;
2114 }
2115 
btintel_bootloader_setup(struct hci_dev * hdev,struct intel_version * ver)2116 static int btintel_bootloader_setup(struct hci_dev *hdev,
2117 				    struct intel_version *ver)
2118 {
2119 	struct intel_version new_ver;
2120 	struct intel_boot_params params;
2121 	u32 boot_param;
2122 	char ddcname[64];
2123 	int err;
2124 
2125 	BT_DBG("%s", hdev->name);
2126 
2127 	/* Set the default boot parameter to 0x0 and it is updated to
2128 	 * SKU specific boot parameter after reading Intel_Write_Boot_Params
2129 	 * command while downloading the firmware.
2130 	 */
2131 	boot_param = 0x00000000;
2132 
2133 	btintel_set_flag(hdev, INTEL_BOOTLOADER);
2134 
2135 	err = btintel_download_fw(hdev, ver, &params, &boot_param);
2136 	if (err)
2137 		return err;
2138 
2139 	/* controller is already having an operational firmware */
2140 	if (ver->fw_variant == 0x23)
2141 		goto finish;
2142 
2143 	err = btintel_boot(hdev, boot_param);
2144 	if (err)
2145 		return err;
2146 
2147 	btintel_clear_flag(hdev, INTEL_BOOTLOADER);
2148 
2149 	err = btintel_get_fw_name(ver, &params, ddcname,
2150 						sizeof(ddcname), "ddc");
2151 
2152 	if (err < 0) {
2153 		bt_dev_err(hdev, "Unsupported Intel firmware naming");
2154 	} else {
2155 		/* Once the device is running in operational mode, it needs to
2156 		 * apply the device configuration (DDC) parameters.
2157 		 *
2158 		 * The device can work without DDC parameters, so even if it
2159 		 * fails to load the file, no need to fail the setup.
2160 		 */
2161 		btintel_load_ddc_config(hdev, ddcname);
2162 	}
2163 
2164 	hci_dev_clear_flag(hdev, HCI_QUALITY_REPORT);
2165 
2166 	/* Read the Intel version information after loading the FW  */
2167 	err = btintel_read_version(hdev, &new_ver);
2168 	if (err)
2169 		return err;
2170 
2171 	btintel_version_info(hdev, &new_ver);
2172 
2173 finish:
2174 	/* Set the event mask for Intel specific vendor events. This enables
2175 	 * a few extra events that are useful during general operation. It
2176 	 * does not enable any debugging related events.
2177 	 *
2178 	 * The device will function correctly without these events enabled
2179 	 * and thus no need to fail the setup.
2180 	 */
2181 	btintel_set_event_mask(hdev, false);
2182 
2183 	return 0;
2184 }
2185 
btintel_get_fw_name_tlv(const struct intel_version_tlv * ver,char * fw_name,size_t len,const char * suffix)2186 static void btintel_get_fw_name_tlv(const struct intel_version_tlv *ver,
2187 				    char *fw_name, size_t len,
2188 				    const char *suffix)
2189 {
2190 	const char *format;
2191 	u32 cnvi, cnvr;
2192 
2193 	cnvi = INTEL_CNVX_TOP_PACK_SWAB(INTEL_CNVX_TOP_TYPE(ver->cnvi_top),
2194 					INTEL_CNVX_TOP_STEP(ver->cnvi_top));
2195 
2196 	cnvr = INTEL_CNVX_TOP_PACK_SWAB(INTEL_CNVX_TOP_TYPE(ver->cnvr_top),
2197 					INTEL_CNVX_TOP_STEP(ver->cnvr_top));
2198 
2199 	/* Only Blazar  product supports downloading of intermediate loader
2200 	 * image
2201 	 */
2202 	if (INTEL_HW_VARIANT(ver->cnvi_bt) >= 0x1e) {
2203 		u8 zero[BTINTEL_FWID_MAXLEN];
2204 
2205 		if (ver->img_type == BTINTEL_IMG_BOOTLOADER) {
2206 			format = "intel/ibt-%04x-%04x-iml.%s";
2207 			snprintf(fw_name, len, format, cnvi, cnvr, suffix);
2208 			return;
2209 		}
2210 
2211 		memset(zero, 0, sizeof(zero));
2212 
2213 		/* ibt-<cnvi_top type+cnvi_top step>-<cnvr_top type+cnvr_top step-fw_id> */
2214 		if (memcmp(ver->fw_id, zero, sizeof(zero))) {
2215 			format = "intel/ibt-%04x-%04x-%s.%s";
2216 			snprintf(fw_name, len, format, cnvi, cnvr,
2217 				 ver->fw_id, suffix);
2218 			return;
2219 		}
2220 		/* If firmware id is not present, fallback to legacy naming
2221 		 * convention
2222 		 */
2223 	}
2224 	/* Fallback to legacy naming convention for other controllers
2225 	 * ibt-<cnvi_top type+cnvi_top step>-<cnvr_top type+cnvr_top step>
2226 	 */
2227 	format = "intel/ibt-%04x-%04x.%s";
2228 	snprintf(fw_name, len, format, cnvi, cnvr, suffix);
2229 }
2230 
btintel_get_iml_tlv(const struct intel_version_tlv * ver,char * fw_name,size_t len,const char * suffix)2231 static void btintel_get_iml_tlv(const struct intel_version_tlv *ver,
2232 				char *fw_name, size_t len,
2233 				const char *suffix)
2234 {
2235 	const char *format;
2236 	u32 cnvi, cnvr;
2237 
2238 	cnvi = INTEL_CNVX_TOP_PACK_SWAB(INTEL_CNVX_TOP_TYPE(ver->cnvi_top),
2239 					INTEL_CNVX_TOP_STEP(ver->cnvi_top));
2240 
2241 	cnvr = INTEL_CNVX_TOP_PACK_SWAB(INTEL_CNVX_TOP_TYPE(ver->cnvr_top),
2242 					INTEL_CNVX_TOP_STEP(ver->cnvr_top));
2243 
2244 	format = "intel/ibt-%04x-%04x-iml.%s";
2245 	snprintf(fw_name, len, format, cnvi, cnvr, suffix);
2246 }
2247 
btintel_prepare_fw_download_tlv(struct hci_dev * hdev,struct intel_version_tlv * ver,u32 * boot_param)2248 static int btintel_prepare_fw_download_tlv(struct hci_dev *hdev,
2249 					   struct intel_version_tlv *ver,
2250 					   u32 *boot_param)
2251 {
2252 	const struct firmware *fw;
2253 	char fwname[128];
2254 	int err;
2255 	ktime_t calltime;
2256 
2257 	if (!ver || !boot_param)
2258 		return -EINVAL;
2259 
2260 	/* The firmware variant determines if the device is in bootloader
2261 	 * mode or is running operational firmware. The value 0x03 identifies
2262 	 * the bootloader and the value 0x23 identifies the operational
2263 	 * firmware.
2264 	 *
2265 	 * When the operational firmware is already present, then only
2266 	 * the check for valid Bluetooth device address is needed. This
2267 	 * determines if the device will be added as configured or
2268 	 * unconfigured controller.
2269 	 *
2270 	 * It is not possible to use the Secure Boot Parameters in this
2271 	 * case since that command is only available in bootloader mode.
2272 	 */
2273 	if (ver->img_type == BTINTEL_IMG_OP) {
2274 		btintel_clear_flag(hdev, INTEL_BOOTLOADER);
2275 		btintel_check_bdaddr(hdev);
2276 	} else {
2277 		/*
2278 		 * Check for valid bd address in boot loader mode. Device
2279 		 * will be marked as unconfigured if empty bd address is
2280 		 * found.
2281 		 */
2282 		if (!bacmp(&ver->otp_bd_addr, BDADDR_ANY)) {
2283 			bt_dev_info(hdev, "No device address configured");
2284 			set_bit(HCI_QUIRK_INVALID_BDADDR, &hdev->quirks);
2285 		}
2286 	}
2287 
2288 	if (ver->img_type == BTINTEL_IMG_OP) {
2289 		/* Controller running OP image. In case of FW downgrade,
2290 		 * FWID TLV may not be present and driver may attempt to load
2291 		 * firmware image which doesn't exist. Lets compare the version
2292 		 * of IML image
2293 		 */
2294 		if (INTEL_HW_VARIANT(ver->cnvi_bt) >= 0x1e)
2295 			btintel_get_iml_tlv(ver, fwname, sizeof(fwname), "sfi");
2296 		else
2297 			btintel_get_fw_name_tlv(ver, fwname, sizeof(fwname), "sfi");
2298 	} else {
2299 		btintel_get_fw_name_tlv(ver, fwname, sizeof(fwname), "sfi");
2300 	}
2301 
2302 	err = firmware_request_nowarn(&fw, fwname, &hdev->dev);
2303 	if (err < 0) {
2304 		if (!btintel_test_flag(hdev, INTEL_BOOTLOADER)) {
2305 			/* Firmware has already been loaded */
2306 			btintel_set_flag(hdev, INTEL_FIRMWARE_LOADED);
2307 			return 0;
2308 		}
2309 
2310 		bt_dev_err(hdev, "Failed to load Intel firmware file %s (%d)",
2311 			   fwname, err);
2312 
2313 		return err;
2314 	}
2315 
2316 	bt_dev_info(hdev, "Found device firmware: %s", fwname);
2317 
2318 	if (fw->size < 644) {
2319 		bt_dev_err(hdev, "Invalid size of firmware file (%zu)",
2320 			   fw->size);
2321 		err = -EBADF;
2322 		goto done;
2323 	}
2324 
2325 	calltime = ktime_get();
2326 
2327 	btintel_set_flag(hdev, INTEL_DOWNLOADING);
2328 
2329 	/* Start firmware downloading and get boot parameter */
2330 	err = btintel_download_fw_tlv(hdev, ver, fw, boot_param,
2331 					       INTEL_HW_VARIANT(ver->cnvi_bt),
2332 					       ver->sbe_type);
2333 	if (err < 0) {
2334 		if (err == -EALREADY) {
2335 			/* Firmware has already been loaded */
2336 			btintel_set_flag(hdev, INTEL_FIRMWARE_LOADED);
2337 			err = 0;
2338 			goto done;
2339 		}
2340 
2341 		/* When FW download fails, send Intel Reset to retry
2342 		 * FW download.
2343 		 */
2344 		btintel_reset_to_bootloader(hdev);
2345 		goto done;
2346 	}
2347 
2348 	/* Before switching the device into operational mode and with that
2349 	 * booting the loaded firmware, wait for the bootloader notification
2350 	 * that all fragments have been successfully received.
2351 	 *
2352 	 * When the event processing receives the notification, then the
2353 	 * BTUSB_DOWNLOADING flag will be cleared.
2354 	 *
2355 	 * The firmware loading should not take longer than 5 seconds
2356 	 * and thus just timeout if that happens and fail the setup
2357 	 * of this device.
2358 	 */
2359 	err = btintel_download_wait(hdev, calltime, 5000);
2360 	if (err == -ETIMEDOUT)
2361 		btintel_reset_to_bootloader(hdev);
2362 
2363 done:
2364 	release_firmware(fw);
2365 	return err;
2366 }
2367 
btintel_get_codec_config_data(struct hci_dev * hdev,__u8 link,struct bt_codec * codec,__u8 * ven_len,__u8 ** ven_data)2368 static int btintel_get_codec_config_data(struct hci_dev *hdev,
2369 					 __u8 link, struct bt_codec *codec,
2370 					 __u8 *ven_len, __u8 **ven_data)
2371 {
2372 	int err = 0;
2373 
2374 	if (!ven_data || !ven_len)
2375 		return -EINVAL;
2376 
2377 	*ven_len = 0;
2378 	*ven_data = NULL;
2379 
2380 	if (link != ESCO_LINK) {
2381 		bt_dev_err(hdev, "Invalid link type(%u)", link);
2382 		return -EINVAL;
2383 	}
2384 
2385 	*ven_data = kmalloc(sizeof(__u8), GFP_KERNEL);
2386 	if (!*ven_data) {
2387 		err = -ENOMEM;
2388 		goto error;
2389 	}
2390 
2391 	/* supports only CVSD and mSBC offload codecs */
2392 	switch (codec->id) {
2393 	case 0x02:
2394 		**ven_data = 0x00;
2395 		break;
2396 	case 0x05:
2397 		**ven_data = 0x01;
2398 		break;
2399 	default:
2400 		err = -EINVAL;
2401 		bt_dev_err(hdev, "Invalid codec id(%u)", codec->id);
2402 		goto error;
2403 	}
2404 	/* codec and its capabilities are pre-defined to ids
2405 	 * preset id = 0x00 represents CVSD codec with sampling rate 8K
2406 	 * preset id = 0x01 represents mSBC codec with sampling rate 16K
2407 	 */
2408 	*ven_len = sizeof(__u8);
2409 	return err;
2410 
2411 error:
2412 	kfree(*ven_data);
2413 	*ven_data = NULL;
2414 	return err;
2415 }
2416 
btintel_get_data_path_id(struct hci_dev * hdev,__u8 * data_path_id)2417 static int btintel_get_data_path_id(struct hci_dev *hdev, __u8 *data_path_id)
2418 {
2419 	/* Intel uses 1 as data path id for all the usecases */
2420 	*data_path_id = 1;
2421 	return 0;
2422 }
2423 
btintel_configure_offload(struct hci_dev * hdev)2424 static int btintel_configure_offload(struct hci_dev *hdev)
2425 {
2426 	struct sk_buff *skb;
2427 	int err = 0;
2428 	struct intel_offload_use_cases *use_cases;
2429 
2430 	skb = __hci_cmd_sync(hdev, 0xfc86, 0, NULL, HCI_INIT_TIMEOUT);
2431 	if (IS_ERR(skb)) {
2432 		bt_dev_err(hdev, "Reading offload use cases failed (%ld)",
2433 			   PTR_ERR(skb));
2434 		return PTR_ERR(skb);
2435 	}
2436 
2437 	if (skb->len < sizeof(*use_cases)) {
2438 		err = -EIO;
2439 		goto error;
2440 	}
2441 
2442 	use_cases = (void *)skb->data;
2443 
2444 	if (use_cases->status) {
2445 		err = -bt_to_errno(skb->data[0]);
2446 		goto error;
2447 	}
2448 
2449 	if (use_cases->preset[0] & 0x03) {
2450 		hdev->get_data_path_id = btintel_get_data_path_id;
2451 		hdev->get_codec_config_data = btintel_get_codec_config_data;
2452 	}
2453 error:
2454 	kfree_skb(skb);
2455 	return err;
2456 }
2457 
btintel_set_ppag(struct hci_dev * hdev,struct intel_version_tlv * ver)2458 static void btintel_set_ppag(struct hci_dev *hdev, struct intel_version_tlv *ver)
2459 {
2460 	struct sk_buff *skb;
2461 	struct hci_ppag_enable_cmd ppag_cmd;
2462 	acpi_handle handle;
2463 	struct acpi_buffer buffer = {ACPI_ALLOCATE_BUFFER, NULL};
2464 	union acpi_object *p, *elements;
2465 	u32 domain, mode;
2466 	acpi_status status;
2467 
2468 	/* PPAG is not supported if CRF is HrP2, Jfp2, JfP1 */
2469 	switch (ver->cnvr_top & 0xFFF) {
2470 	case 0x504:     /* Hrp2 */
2471 	case 0x202:     /* Jfp2 */
2472 	case 0x201:     /* Jfp1 */
2473 		bt_dev_dbg(hdev, "PPAG not supported for Intel CNVr (0x%3x)",
2474 			   ver->cnvr_top & 0xFFF);
2475 		return;
2476 	}
2477 
2478 	handle = ACPI_HANDLE(GET_HCIDEV_DEV(hdev));
2479 	if (!handle) {
2480 		bt_dev_info(hdev, "No support for BT device in ACPI firmware");
2481 		return;
2482 	}
2483 
2484 	status = acpi_evaluate_object(handle, "PPAG", NULL, &buffer);
2485 	if (ACPI_FAILURE(status)) {
2486 		if (status == AE_NOT_FOUND) {
2487 			bt_dev_dbg(hdev, "PPAG-BT: ACPI entry not found");
2488 			return;
2489 		}
2490 		bt_dev_warn(hdev, "PPAG-BT: ACPI Failure: %s", acpi_format_exception(status));
2491 		return;
2492 	}
2493 
2494 	p = buffer.pointer;
2495 	if (p->type != ACPI_TYPE_PACKAGE || p->package.count != 2) {
2496 		bt_dev_warn(hdev, "PPAG-BT: Invalid object type: %d or package count: %d",
2497 			    p->type, p->package.count);
2498 		kfree(buffer.pointer);
2499 		return;
2500 	}
2501 
2502 	elements = p->package.elements;
2503 
2504 	/* PPAG table is located at element[1] */
2505 	p = &elements[1];
2506 
2507 	domain = (u32)p->package.elements[0].integer.value;
2508 	mode = (u32)p->package.elements[1].integer.value;
2509 	kfree(buffer.pointer);
2510 
2511 	if (domain != 0x12) {
2512 		bt_dev_dbg(hdev, "PPAG-BT: Bluetooth domain is disabled in ACPI firmware");
2513 		return;
2514 	}
2515 
2516 	/* PPAG mode
2517 	 * BIT 0 : 0 Disabled in EU
2518 	 *         1 Enabled in EU
2519 	 * BIT 1 : 0 Disabled in China
2520 	 *         1 Enabled in China
2521 	 */
2522 	mode &= 0x03;
2523 
2524 	if (!mode) {
2525 		bt_dev_dbg(hdev, "PPAG-BT: EU, China mode are disabled in BIOS");
2526 		return;
2527 	}
2528 
2529 	ppag_cmd.ppag_enable_flags = cpu_to_le32(mode);
2530 
2531 	skb = __hci_cmd_sync(hdev, INTEL_OP_PPAG_CMD, sizeof(ppag_cmd),
2532 			     &ppag_cmd, HCI_CMD_TIMEOUT);
2533 	if (IS_ERR(skb)) {
2534 		bt_dev_warn(hdev, "Failed to send PPAG Enable (%ld)", PTR_ERR(skb));
2535 		return;
2536 	}
2537 	bt_dev_info(hdev, "PPAG-BT: Enabled (Mode %d)", mode);
2538 	kfree_skb(skb);
2539 }
2540 
btintel_acpi_reset_method(struct hci_dev * hdev)2541 static int btintel_acpi_reset_method(struct hci_dev *hdev)
2542 {
2543 	int ret = 0;
2544 	acpi_status status;
2545 	union acpi_object *p, *ref;
2546 	struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
2547 
2548 	status = acpi_evaluate_object(ACPI_HANDLE(GET_HCIDEV_DEV(hdev)), "_PRR", NULL, &buffer);
2549 	if (ACPI_FAILURE(status)) {
2550 		bt_dev_err(hdev, "Failed to run _PRR method");
2551 		ret = -ENODEV;
2552 		return ret;
2553 	}
2554 	p = buffer.pointer;
2555 
2556 	if (p->package.count != 1 || p->type != ACPI_TYPE_PACKAGE) {
2557 		bt_dev_err(hdev, "Invalid arguments");
2558 		ret = -EINVAL;
2559 		goto exit_on_error;
2560 	}
2561 
2562 	ref = &p->package.elements[0];
2563 	if (ref->type != ACPI_TYPE_LOCAL_REFERENCE) {
2564 		bt_dev_err(hdev, "Invalid object type: 0x%x", ref->type);
2565 		ret = -EINVAL;
2566 		goto exit_on_error;
2567 	}
2568 
2569 	status = acpi_evaluate_object(ref->reference.handle, "_RST", NULL, NULL);
2570 	if (ACPI_FAILURE(status)) {
2571 		bt_dev_err(hdev, "Failed to run_RST method");
2572 		ret = -ENODEV;
2573 		goto exit_on_error;
2574 	}
2575 
2576 exit_on_error:
2577 	kfree(buffer.pointer);
2578 	return ret;
2579 }
2580 
btintel_set_dsm_reset_method(struct hci_dev * hdev,struct intel_version_tlv * ver_tlv)2581 static void btintel_set_dsm_reset_method(struct hci_dev *hdev,
2582 					 struct intel_version_tlv *ver_tlv)
2583 {
2584 	struct btintel_data *data = hci_get_priv(hdev);
2585 	acpi_handle handle = ACPI_HANDLE(GET_HCIDEV_DEV(hdev));
2586 	u8 reset_payload[4] = {0x01, 0x00, 0x01, 0x00};
2587 	union acpi_object *obj, argv4;
2588 	enum {
2589 		RESET_TYPE_WDISABLE2,
2590 		RESET_TYPE_VSEC
2591 	};
2592 
2593 	handle = ACPI_HANDLE(GET_HCIDEV_DEV(hdev));
2594 
2595 	if (!handle) {
2596 		bt_dev_dbg(hdev, "No support for bluetooth device in ACPI firmware");
2597 		return;
2598 	}
2599 
2600 	if (!acpi_has_method(handle, "_PRR")) {
2601 		bt_dev_err(hdev, "No support for _PRR ACPI method");
2602 		return;
2603 	}
2604 
2605 	switch (ver_tlv->cnvi_top & 0xfff) {
2606 	case 0x910: /* GalePeak2 */
2607 		reset_payload[2] = RESET_TYPE_VSEC;
2608 		break;
2609 	default:
2610 		/* WDISABLE2 is the default reset method */
2611 		reset_payload[2] = RESET_TYPE_WDISABLE2;
2612 
2613 		if (!acpi_check_dsm(handle, &btintel_guid_dsm, 0,
2614 				    BIT(DSM_SET_WDISABLE2_DELAY))) {
2615 			bt_dev_err(hdev, "No dsm support to set reset delay");
2616 			return;
2617 		}
2618 		argv4.integer.type = ACPI_TYPE_INTEGER;
2619 		/* delay required to toggle BT power */
2620 		argv4.integer.value = 160;
2621 		obj = acpi_evaluate_dsm(handle, &btintel_guid_dsm, 0,
2622 					DSM_SET_WDISABLE2_DELAY, &argv4);
2623 		if (!obj) {
2624 			bt_dev_err(hdev, "Failed to call dsm to set reset delay");
2625 			return;
2626 		}
2627 		ACPI_FREE(obj);
2628 	}
2629 
2630 	bt_dev_info(hdev, "DSM reset method type: 0x%02x", reset_payload[2]);
2631 
2632 	if (!acpi_check_dsm(handle, &btintel_guid_dsm, 0,
2633 			    DSM_SET_RESET_METHOD)) {
2634 		bt_dev_warn(hdev, "No support for dsm to set reset method");
2635 		return;
2636 	}
2637 	argv4.buffer.type = ACPI_TYPE_BUFFER;
2638 	argv4.buffer.length = sizeof(reset_payload);
2639 	argv4.buffer.pointer = reset_payload;
2640 
2641 	obj = acpi_evaluate_dsm(handle, &btintel_guid_dsm, 0,
2642 				DSM_SET_RESET_METHOD, &argv4);
2643 	if (!obj) {
2644 		bt_dev_err(hdev, "Failed to call dsm to set reset method");
2645 		return;
2646 	}
2647 	ACPI_FREE(obj);
2648 	data->acpi_reset_method = btintel_acpi_reset_method;
2649 }
2650 
2651 #define BTINTEL_ISODATA_HANDLE_BASE 0x900
2652 
btintel_classify_pkt_type(struct hci_dev * hdev,struct sk_buff * skb)2653 static u8 btintel_classify_pkt_type(struct hci_dev *hdev, struct sk_buff *skb)
2654 {
2655 	/*
2656 	 * Distinguish ISO data packets form ACL data packets
2657 	 * based on their connection handle value range.
2658 	 */
2659 	if (iso_capable(hdev) && hci_skb_pkt_type(skb) == HCI_ACLDATA_PKT) {
2660 		__u16 handle = __le16_to_cpu(hci_acl_hdr(skb)->handle);
2661 
2662 		if (hci_handle(handle) >= BTINTEL_ISODATA_HANDLE_BASE)
2663 			return HCI_ISODATA_PKT;
2664 	}
2665 
2666 	return hci_skb_pkt_type(skb);
2667 }
2668 
2669 /*
2670  * UefiCnvCommonDSBR UEFI variable provides information from the OEM platforms
2671  * if they have replaced the BRI (Bluetooth Radio Interface) resistor to
2672  * overcome the potential STEP errors on their designs. Based on the
2673  * configauration, bluetooth firmware shall adjust the BRI response line drive
2674  * strength. The below structure represents DSBR data.
2675  * struct {
2676  *	u8 header;
2677  *	u32 dsbr;
2678  * } __packed;
2679  *
2680  * header - defines revision number of the structure
2681  * dsbr - defines drive strength BRI response
2682  *	bit0
2683  *		0 - instructs bluetooth firmware to use default values
2684  *		1 - instructs bluetooth firmware to override default values
2685  *	bit3:1
2686  *		Reserved
2687  *	bit7:4
2688  *		DSBR override values (only if bit0 is set. Default value is 0xF
2689  *	bit31:7
2690  *		Reserved
2691  * Expected values for dsbr field:
2692  *	1. 0xF1 - indicates that the resistor on board is 33 Ohm
2693  *	2. 0x00 or 0xB1 - indicates that the resistor on board is 10 Ohm
2694  *	3. Non existing UEFI variable or invalid (none of the above) - indicates
2695  *	   that the resistor on board is 10 Ohm
2696  * Even if uefi variable is not present, driver shall send 0xfc0a command to
2697  * firmware to use default values.
2698  *
2699  */
btintel_uefi_get_dsbr(u32 * dsbr_var)2700 static int btintel_uefi_get_dsbr(u32 *dsbr_var)
2701 {
2702 	struct btintel_dsbr {
2703 		u8 header;
2704 		u32 dsbr;
2705 	} __packed data;
2706 
2707 	efi_status_t status;
2708 	unsigned long data_size = sizeof(data);
2709 	efi_guid_t guid = EFI_GUID(0xe65d8884, 0xd4af, 0x4b20, 0x8d, 0x03,
2710 				   0x77, 0x2e, 0xcc, 0x3d, 0xa5, 0x31);
2711 
2712 	if (!IS_ENABLED(CONFIG_EFI))
2713 		return -EOPNOTSUPP;
2714 
2715 	if (!efi_rt_services_supported(EFI_RT_SUPPORTED_GET_VARIABLE))
2716 		return -EOPNOTSUPP;
2717 
2718 	status = efi.get_variable(BTINTEL_EFI_DSBR, &guid, NULL, &data_size,
2719 				  &data);
2720 
2721 	if (status != EFI_SUCCESS || data_size != sizeof(data))
2722 		return -ENXIO;
2723 
2724 	*dsbr_var = data.dsbr;
2725 	return 0;
2726 }
2727 
btintel_set_dsbr(struct hci_dev * hdev,struct intel_version_tlv * ver)2728 static int btintel_set_dsbr(struct hci_dev *hdev, struct intel_version_tlv *ver)
2729 {
2730 	struct btintel_dsbr_cmd {
2731 		u8 enable;
2732 		u8 dsbr;
2733 	} __packed;
2734 
2735 	struct btintel_dsbr_cmd cmd;
2736 	struct sk_buff *skb;
2737 	u8 status;
2738 	u32 dsbr;
2739 	bool apply_dsbr;
2740 	int err;
2741 
2742 	/* DSBR command needs to be sent for BlazarI + B0 step product after
2743 	 * downloading IML image.
2744 	 */
2745 	apply_dsbr = (ver->img_type == BTINTEL_IMG_IML &&
2746 		((ver->cnvi_top & 0xfff) == BTINTEL_CNVI_BLAZARI) &&
2747 		INTEL_CNVX_TOP_STEP(ver->cnvi_top) == 0x01);
2748 
2749 	if (!apply_dsbr)
2750 		return 0;
2751 
2752 	dsbr = 0;
2753 	err = btintel_uefi_get_dsbr(&dsbr);
2754 	if (err < 0)
2755 		bt_dev_dbg(hdev, "Error reading efi: %ls  (%d)",
2756 			   BTINTEL_EFI_DSBR, err);
2757 
2758 	cmd.enable = dsbr & BIT(0);
2759 	cmd.dsbr = dsbr >> 4 & 0xF;
2760 
2761 	bt_dev_info(hdev, "dsbr: enable: 0x%2.2x value: 0x%2.2x", cmd.enable,
2762 		    cmd.dsbr);
2763 
2764 	skb = __hci_cmd_sync(hdev, 0xfc0a, sizeof(cmd), &cmd,  HCI_CMD_TIMEOUT);
2765 	if (IS_ERR(skb))
2766 		return -bt_to_errno(PTR_ERR(skb));
2767 
2768 	status = skb->data[0];
2769 	kfree_skb(skb);
2770 
2771 	if (status)
2772 		return -bt_to_errno(status);
2773 
2774 	return 0;
2775 }
2776 
btintel_bootloader_setup_tlv(struct hci_dev * hdev,struct intel_version_tlv * ver)2777 int btintel_bootloader_setup_tlv(struct hci_dev *hdev,
2778 				 struct intel_version_tlv *ver)
2779 {
2780 	u32 boot_param;
2781 	char ddcname[64];
2782 	int err;
2783 	struct intel_version_tlv new_ver;
2784 
2785 	bt_dev_dbg(hdev, "");
2786 
2787 	/* Set the default boot parameter to 0x0 and it is updated to
2788 	 * SKU specific boot parameter after reading Intel_Write_Boot_Params
2789 	 * command while downloading the firmware.
2790 	 */
2791 	boot_param = 0x00000000;
2792 
2793 	btintel_set_flag(hdev, INTEL_BOOTLOADER);
2794 
2795 	err = btintel_prepare_fw_download_tlv(hdev, ver, &boot_param);
2796 	if (err)
2797 		return err;
2798 
2799 	/* check if controller is already having an operational firmware */
2800 	if (ver->img_type == BTINTEL_IMG_OP)
2801 		goto finish;
2802 
2803 	err = btintel_boot(hdev, boot_param);
2804 	if (err)
2805 		return err;
2806 
2807 	err = btintel_read_version_tlv(hdev, ver);
2808 	if (err)
2809 		return err;
2810 
2811 	/* set drive strength of BRI response */
2812 	err = btintel_set_dsbr(hdev, ver);
2813 	if (err) {
2814 		bt_dev_err(hdev, "Failed to send dsbr command (%d)", err);
2815 		return err;
2816 	}
2817 
2818 	/* If image type returned is BTINTEL_IMG_IML, then controller supports
2819 	 * intermediate loader image
2820 	 */
2821 	if (ver->img_type == BTINTEL_IMG_IML) {
2822 		err = btintel_prepare_fw_download_tlv(hdev, ver, &boot_param);
2823 		if (err)
2824 			return err;
2825 
2826 		err = btintel_boot(hdev, boot_param);
2827 		if (err)
2828 			return err;
2829 	}
2830 
2831 	btintel_clear_flag(hdev, INTEL_BOOTLOADER);
2832 
2833 	btintel_get_fw_name_tlv(ver, ddcname, sizeof(ddcname), "ddc");
2834 	/* Once the device is running in operational mode, it needs to
2835 	 * apply the device configuration (DDC) parameters.
2836 	 *
2837 	 * The device can work without DDC parameters, so even if it
2838 	 * fails to load the file, no need to fail the setup.
2839 	 */
2840 	btintel_load_ddc_config(hdev, ddcname);
2841 
2842 	/* Read supported use cases and set callbacks to fetch datapath id */
2843 	btintel_configure_offload(hdev);
2844 
2845 	hci_dev_clear_flag(hdev, HCI_QUALITY_REPORT);
2846 
2847 	/* Set PPAG feature */
2848 	btintel_set_ppag(hdev, ver);
2849 
2850 	/* Read the Intel version information after loading the FW  */
2851 	err = btintel_read_version_tlv(hdev, &new_ver);
2852 	if (err)
2853 		return err;
2854 
2855 	btintel_version_info_tlv(hdev, &new_ver);
2856 
2857 finish:
2858 	/* Set the event mask for Intel specific vendor events. This enables
2859 	 * a few extra events that are useful during general operation. It
2860 	 * does not enable any debugging related events.
2861 	 *
2862 	 * The device will function correctly without these events enabled
2863 	 * and thus no need to fail the setup.
2864 	 */
2865 	btintel_set_event_mask(hdev, false);
2866 
2867 	return 0;
2868 }
2869 EXPORT_SYMBOL_GPL(btintel_bootloader_setup_tlv);
2870 
btintel_set_msft_opcode(struct hci_dev * hdev,u8 hw_variant)2871 void btintel_set_msft_opcode(struct hci_dev *hdev, u8 hw_variant)
2872 {
2873 	switch (hw_variant) {
2874 	/* Legacy bootloader devices that supports MSFT Extension */
2875 	case 0x11:	/* JfP */
2876 	case 0x12:	/* ThP */
2877 	case 0x13:	/* HrP */
2878 	case 0x14:	/* CcP */
2879 	/* All Intel new genration controllers support the Microsoft vendor
2880 	 * extension are using 0xFC1E for VsMsftOpCode.
2881 	 */
2882 	case 0x17:
2883 	case 0x18:
2884 	case 0x19:
2885 	case 0x1b:
2886 	case 0x1c:
2887 	case 0x1d:
2888 	case 0x1e:
2889 		hci_set_msft_opcode(hdev, 0xFC1E);
2890 		break;
2891 	default:
2892 		/* Not supported */
2893 		break;
2894 	}
2895 }
2896 EXPORT_SYMBOL_GPL(btintel_set_msft_opcode);
2897 
btintel_print_fseq_info(struct hci_dev * hdev)2898 void btintel_print_fseq_info(struct hci_dev *hdev)
2899 {
2900 	struct sk_buff *skb;
2901 	u8 *p;
2902 	u32 val;
2903 	const char *str;
2904 
2905 	skb = __hci_cmd_sync(hdev, 0xfcb3, 0, NULL, HCI_CMD_TIMEOUT);
2906 	if (IS_ERR(skb)) {
2907 		bt_dev_dbg(hdev, "Reading fseq status command failed (%ld)",
2908 			   PTR_ERR(skb));
2909 		return;
2910 	}
2911 
2912 	if (skb->len < (sizeof(u32) * 16 + 2)) {
2913 		bt_dev_dbg(hdev, "Malformed packet of length %u received",
2914 			   skb->len);
2915 		kfree_skb(skb);
2916 		return;
2917 	}
2918 
2919 	p = skb_pull_data(skb, 1);
2920 	if (*p) {
2921 		bt_dev_dbg(hdev, "Failed to get fseq status (0x%2.2x)", *p);
2922 		kfree_skb(skb);
2923 		return;
2924 	}
2925 
2926 	p = skb_pull_data(skb, 1);
2927 	switch (*p) {
2928 	case 0:
2929 		str = "Success";
2930 		break;
2931 	case 1:
2932 		str = "Fatal error";
2933 		break;
2934 	case 2:
2935 		str = "Semaphore acquire error";
2936 		break;
2937 	default:
2938 		str = "Unknown error";
2939 		break;
2940 	}
2941 
2942 	if (*p) {
2943 		bt_dev_err(hdev, "Fseq status: %s (0x%2.2x)", str, *p);
2944 		kfree_skb(skb);
2945 		return;
2946 	}
2947 
2948 	bt_dev_info(hdev, "Fseq status: %s (0x%2.2x)", str, *p);
2949 
2950 	val = get_unaligned_le32(skb_pull_data(skb, 4));
2951 	bt_dev_dbg(hdev, "Reason: 0x%8.8x", val);
2952 
2953 	val = get_unaligned_le32(skb_pull_data(skb, 4));
2954 	bt_dev_dbg(hdev, "Global version: 0x%8.8x", val);
2955 
2956 	val = get_unaligned_le32(skb_pull_data(skb, 4));
2957 	bt_dev_dbg(hdev, "Installed version: 0x%8.8x", val);
2958 
2959 	p = skb->data;
2960 	skb_pull_data(skb, 4);
2961 	bt_dev_info(hdev, "Fseq executed: %2.2u.%2.2u.%2.2u.%2.2u", p[0], p[1],
2962 		    p[2], p[3]);
2963 
2964 	p = skb->data;
2965 	skb_pull_data(skb, 4);
2966 	bt_dev_info(hdev, "Fseq BT Top: %2.2u.%2.2u.%2.2u.%2.2u", p[0], p[1],
2967 		    p[2], p[3]);
2968 
2969 	val = get_unaligned_le32(skb_pull_data(skb, 4));
2970 	bt_dev_dbg(hdev, "Fseq Top init version: 0x%8.8x", val);
2971 
2972 	val = get_unaligned_le32(skb_pull_data(skb, 4));
2973 	bt_dev_dbg(hdev, "Fseq Cnvio init version: 0x%8.8x", val);
2974 
2975 	val = get_unaligned_le32(skb_pull_data(skb, 4));
2976 	bt_dev_dbg(hdev, "Fseq MBX Wifi file version: 0x%8.8x", val);
2977 
2978 	val = get_unaligned_le32(skb_pull_data(skb, 4));
2979 	bt_dev_dbg(hdev, "Fseq BT version: 0x%8.8x", val);
2980 
2981 	val = get_unaligned_le32(skb_pull_data(skb, 4));
2982 	bt_dev_dbg(hdev, "Fseq Top reset address: 0x%8.8x", val);
2983 
2984 	val = get_unaligned_le32(skb_pull_data(skb, 4));
2985 	bt_dev_dbg(hdev, "Fseq MBX timeout: 0x%8.8x", val);
2986 
2987 	val = get_unaligned_le32(skb_pull_data(skb, 4));
2988 	bt_dev_dbg(hdev, "Fseq MBX ack: 0x%8.8x", val);
2989 
2990 	val = get_unaligned_le32(skb_pull_data(skb, 4));
2991 	bt_dev_dbg(hdev, "Fseq CNVi id: 0x%8.8x", val);
2992 
2993 	val = get_unaligned_le32(skb_pull_data(skb, 4));
2994 	bt_dev_dbg(hdev, "Fseq CNVr id: 0x%8.8x", val);
2995 
2996 	val = get_unaligned_le32(skb_pull_data(skb, 4));
2997 	bt_dev_dbg(hdev, "Fseq Error handle: 0x%8.8x", val);
2998 
2999 	val = get_unaligned_le32(skb_pull_data(skb, 4));
3000 	bt_dev_dbg(hdev, "Fseq Magic noalive indication: 0x%8.8x", val);
3001 
3002 	val = get_unaligned_le32(skb_pull_data(skb, 4));
3003 	bt_dev_dbg(hdev, "Fseq OTP version: 0x%8.8x", val);
3004 
3005 	val = get_unaligned_le32(skb_pull_data(skb, 4));
3006 	bt_dev_dbg(hdev, "Fseq MBX otp version: 0x%8.8x", val);
3007 
3008 	kfree_skb(skb);
3009 }
3010 EXPORT_SYMBOL_GPL(btintel_print_fseq_info);
3011 
btintel_setup_combined(struct hci_dev * hdev)3012 static int btintel_setup_combined(struct hci_dev *hdev)
3013 {
3014 	const u8 param[1] = { 0xFF };
3015 	struct intel_version ver;
3016 	struct intel_version_tlv ver_tlv;
3017 	struct sk_buff *skb;
3018 	int err;
3019 
3020 	BT_DBG("%s", hdev->name);
3021 
3022 	/* The some controllers have a bug with the first HCI command sent to it
3023 	 * returning number of completed commands as zero. This would stall the
3024 	 * command processing in the Bluetooth core.
3025 	 *
3026 	 * As a workaround, send HCI Reset command first which will reset the
3027 	 * number of completed commands and allow normal command processing
3028 	 * from now on.
3029 	 *
3030 	 * Regarding the INTEL_BROKEN_SHUTDOWN_LED flag, these devices maybe
3031 	 * in the SW_RFKILL ON state as a workaround of fixing LED issue during
3032 	 * the shutdown() procedure, and once the device is in SW_RFKILL ON
3033 	 * state, the only way to exit out of it is sending the HCI_Reset
3034 	 * command.
3035 	 */
3036 	if (btintel_test_flag(hdev, INTEL_BROKEN_INITIAL_NCMD) ||
3037 	    btintel_test_flag(hdev, INTEL_BROKEN_SHUTDOWN_LED)) {
3038 		skb = __hci_cmd_sync(hdev, HCI_OP_RESET, 0, NULL,
3039 				     HCI_INIT_TIMEOUT);
3040 		if (IS_ERR(skb)) {
3041 			bt_dev_err(hdev,
3042 				   "sending initial HCI reset failed (%ld)",
3043 				   PTR_ERR(skb));
3044 			return PTR_ERR(skb);
3045 		}
3046 		kfree_skb(skb);
3047 	}
3048 
3049 	/* Starting from TyP device, the command parameter and response are
3050 	 * changed even though the OCF for HCI_Intel_Read_Version command
3051 	 * remains same. The legacy devices can handle even if the
3052 	 * command has a parameter and returns a correct version information.
3053 	 * So, it uses new format to support both legacy and new format.
3054 	 */
3055 	skb = __hci_cmd_sync(hdev, 0xfc05, 1, param, HCI_CMD_TIMEOUT);
3056 	if (IS_ERR(skb)) {
3057 		bt_dev_err(hdev, "Reading Intel version command failed (%ld)",
3058 			   PTR_ERR(skb));
3059 		return PTR_ERR(skb);
3060 	}
3061 
3062 	/* Check the status */
3063 	if (skb->data[0]) {
3064 		bt_dev_err(hdev, "Intel Read Version command failed (%02x)",
3065 			   skb->data[0]);
3066 		err = -EIO;
3067 		goto exit_error;
3068 	}
3069 
3070 	/* Apply the common HCI quirks for Intel device */
3071 	set_bit(HCI_QUIRK_STRICT_DUPLICATE_FILTER, &hdev->quirks);
3072 	set_bit(HCI_QUIRK_SIMULTANEOUS_DISCOVERY, &hdev->quirks);
3073 	set_bit(HCI_QUIRK_NON_PERSISTENT_DIAG, &hdev->quirks);
3074 
3075 	/* Set up the quality report callback for Intel devices */
3076 	hdev->set_quality_report = btintel_set_quality_report;
3077 
3078 	/* For Legacy device, check the HW platform value and size */
3079 	if (skb->len == sizeof(ver) && skb->data[1] == 0x37) {
3080 		bt_dev_dbg(hdev, "Read the legacy Intel version information");
3081 
3082 		memcpy(&ver, skb->data, sizeof(ver));
3083 
3084 		/* Display version information */
3085 		btintel_version_info(hdev, &ver);
3086 
3087 		/* Check for supported iBT hardware variants of this firmware
3088 		 * loading method.
3089 		 *
3090 		 * This check has been put in place to ensure correct forward
3091 		 * compatibility options when newer hardware variants come
3092 		 * along.
3093 		 */
3094 		switch (ver.hw_variant) {
3095 		case 0x07:	/* WP */
3096 		case 0x08:	/* StP */
3097 			/* Legacy ROM product */
3098 			btintel_set_flag(hdev, INTEL_ROM_LEGACY);
3099 
3100 			/* Apply the device specific HCI quirks
3101 			 *
3102 			 * WBS for SdP - For the Legacy ROM products, only SdP
3103 			 * supports the WBS. But the version information is not
3104 			 * enough to use here because the StP2 and SdP have same
3105 			 * hw_variant and fw_variant. So, this flag is set by
3106 			 * the transport driver (btusb) based on the HW info
3107 			 * (idProduct)
3108 			 */
3109 			if (!btintel_test_flag(hdev,
3110 					       INTEL_ROM_LEGACY_NO_WBS_SUPPORT))
3111 				set_bit(HCI_QUIRK_WIDEBAND_SPEECH_SUPPORTED,
3112 					&hdev->quirks);
3113 
3114 			err = btintel_legacy_rom_setup(hdev, &ver);
3115 			break;
3116 		case 0x0b:      /* SfP */
3117 		case 0x11:      /* JfP */
3118 		case 0x12:      /* ThP */
3119 		case 0x13:      /* HrP */
3120 		case 0x14:      /* CcP */
3121 			fallthrough;
3122 		case 0x0c:	/* WsP */
3123 			/* Apply the device specific HCI quirks
3124 			 *
3125 			 * All Legacy bootloader devices support WBS
3126 			 */
3127 			set_bit(HCI_QUIRK_WIDEBAND_SPEECH_SUPPORTED,
3128 				&hdev->quirks);
3129 
3130 			/* These variants don't seem to support LE Coded PHY */
3131 			set_bit(HCI_QUIRK_BROKEN_LE_CODED, &hdev->quirks);
3132 
3133 			/* Setup MSFT Extension support */
3134 			btintel_set_msft_opcode(hdev, ver.hw_variant);
3135 
3136 			err = btintel_bootloader_setup(hdev, &ver);
3137 			btintel_register_devcoredump_support(hdev);
3138 			break;
3139 		default:
3140 			bt_dev_err(hdev, "Unsupported Intel hw variant (%u)",
3141 				   ver.hw_variant);
3142 			err = -EINVAL;
3143 		}
3144 
3145 		hci_set_hw_info(hdev,
3146 				"INTEL platform=%u variant=%u revision=%u",
3147 				ver.hw_platform, ver.hw_variant,
3148 				ver.hw_revision);
3149 
3150 		goto exit_error;
3151 	}
3152 
3153 	/* memset ver_tlv to start with clean state as few fields are exclusive
3154 	 * to bootloader mode and are not populated in operational mode
3155 	 */
3156 	memset(&ver_tlv, 0, sizeof(ver_tlv));
3157 	/* For TLV type device, parse the tlv data */
3158 	err = btintel_parse_version_tlv(hdev, &ver_tlv, skb);
3159 	if (err) {
3160 		bt_dev_err(hdev, "Failed to parse TLV version information");
3161 		goto exit_error;
3162 	}
3163 
3164 	if (INTEL_HW_PLATFORM(ver_tlv.cnvi_bt) != 0x37) {
3165 		bt_dev_err(hdev, "Unsupported Intel hardware platform (0x%2x)",
3166 			   INTEL_HW_PLATFORM(ver_tlv.cnvi_bt));
3167 		err = -EINVAL;
3168 		goto exit_error;
3169 	}
3170 
3171 	/* Check for supported iBT hardware variants of this firmware
3172 	 * loading method.
3173 	 *
3174 	 * This check has been put in place to ensure correct forward
3175 	 * compatibility options when newer hardware variants come
3176 	 * along.
3177 	 */
3178 	switch (INTEL_HW_VARIANT(ver_tlv.cnvi_bt)) {
3179 	case 0x11:      /* JfP */
3180 	case 0x12:      /* ThP */
3181 	case 0x13:      /* HrP */
3182 	case 0x14:      /* CcP */
3183 		/* Some legacy bootloader devices starting from JfP,
3184 		 * the operational firmware supports both old and TLV based
3185 		 * HCI_Intel_Read_Version command based on the command
3186 		 * parameter.
3187 		 *
3188 		 * For upgrading firmware case, the TLV based version cannot
3189 		 * be used because the firmware filename for legacy bootloader
3190 		 * is based on the old format.
3191 		 *
3192 		 * Also, it is not easy to convert TLV based version from the
3193 		 * legacy version format.
3194 		 *
3195 		 * So, as a workaround for those devices, use the legacy
3196 		 * HCI_Intel_Read_Version to get the version information and
3197 		 * run the legacy bootloader setup.
3198 		 */
3199 		err = btintel_read_version(hdev, &ver);
3200 		if (err)
3201 			break;
3202 
3203 		/* Apply the device specific HCI quirks
3204 		 *
3205 		 * All Legacy bootloader devices support WBS
3206 		 */
3207 		set_bit(HCI_QUIRK_WIDEBAND_SPEECH_SUPPORTED, &hdev->quirks);
3208 
3209 		/* These variants don't seem to support LE Coded PHY */
3210 		set_bit(HCI_QUIRK_BROKEN_LE_CODED, &hdev->quirks);
3211 
3212 		/* Setup MSFT Extension support */
3213 		btintel_set_msft_opcode(hdev, ver.hw_variant);
3214 
3215 		err = btintel_bootloader_setup(hdev, &ver);
3216 		btintel_register_devcoredump_support(hdev);
3217 		break;
3218 	case 0x18: /* GfP2 */
3219 	case 0x1c: /* GaP */
3220 		/* Re-classify packet type for controllers with LE audio */
3221 		hdev->classify_pkt_type = btintel_classify_pkt_type;
3222 		fallthrough;
3223 	case 0x17:
3224 	case 0x19:
3225 	case 0x1b:
3226 	case 0x1d:
3227 	case 0x1e:
3228 		/* Display version information of TLV type */
3229 		btintel_version_info_tlv(hdev, &ver_tlv);
3230 
3231 		/* Apply the device specific HCI quirks for TLV based devices
3232 		 *
3233 		 * All TLV based devices support WBS
3234 		 */
3235 		set_bit(HCI_QUIRK_WIDEBAND_SPEECH_SUPPORTED, &hdev->quirks);
3236 
3237 		/* Setup MSFT Extension support */
3238 		btintel_set_msft_opcode(hdev,
3239 					INTEL_HW_VARIANT(ver_tlv.cnvi_bt));
3240 		btintel_set_dsm_reset_method(hdev, &ver_tlv);
3241 
3242 		err = btintel_bootloader_setup_tlv(hdev, &ver_tlv);
3243 		if (err)
3244 			goto exit_error;
3245 
3246 		btintel_register_devcoredump_support(hdev);
3247 		btintel_print_fseq_info(hdev);
3248 		break;
3249 	default:
3250 		bt_dev_err(hdev, "Unsupported Intel hw variant (%u)",
3251 			   INTEL_HW_VARIANT(ver_tlv.cnvi_bt));
3252 		err = -EINVAL;
3253 		break;
3254 	}
3255 
3256 	hci_set_hw_info(hdev, "INTEL platform=%u variant=%u",
3257 			INTEL_HW_PLATFORM(ver_tlv.cnvi_bt),
3258 			INTEL_HW_VARIANT(ver_tlv.cnvi_bt));
3259 
3260 exit_error:
3261 	kfree_skb(skb);
3262 
3263 	return err;
3264 }
3265 
btintel_shutdown_combined(struct hci_dev * hdev)3266 int btintel_shutdown_combined(struct hci_dev *hdev)
3267 {
3268 	struct sk_buff *skb;
3269 	int ret;
3270 
3271 	/* Send HCI Reset to the controller to stop any BT activity which
3272 	 * were triggered. This will help to save power and maintain the
3273 	 * sync b/w Host and controller
3274 	 */
3275 	skb = __hci_cmd_sync(hdev, HCI_OP_RESET, 0, NULL, HCI_INIT_TIMEOUT);
3276 	if (IS_ERR(skb)) {
3277 		bt_dev_err(hdev, "HCI reset during shutdown failed");
3278 		return PTR_ERR(skb);
3279 	}
3280 	kfree_skb(skb);
3281 
3282 
3283 	/* Some platforms have an issue with BT LED when the interface is
3284 	 * down or BT radio is turned off, which takes 5 seconds to BT LED
3285 	 * goes off. As a workaround, sends HCI_Intel_SW_RFKILL to put the
3286 	 * device in the RFKILL ON state which turns off the BT LED immediately.
3287 	 */
3288 	if (btintel_test_flag(hdev, INTEL_BROKEN_SHUTDOWN_LED)) {
3289 		skb = __hci_cmd_sync(hdev, 0xfc3f, 0, NULL, HCI_INIT_TIMEOUT);
3290 		if (IS_ERR(skb)) {
3291 			ret = PTR_ERR(skb);
3292 			bt_dev_err(hdev, "turning off Intel device LED failed");
3293 			return ret;
3294 		}
3295 		kfree_skb(skb);
3296 	}
3297 
3298 	return 0;
3299 }
3300 EXPORT_SYMBOL_GPL(btintel_shutdown_combined);
3301 
btintel_configure_setup(struct hci_dev * hdev,const char * driver_name)3302 int btintel_configure_setup(struct hci_dev *hdev, const char *driver_name)
3303 {
3304 	hdev->manufacturer = 2;
3305 	hdev->setup = btintel_setup_combined;
3306 	hdev->shutdown = btintel_shutdown_combined;
3307 	hdev->hw_error = btintel_hw_error;
3308 	hdev->set_diag = btintel_set_diag_combined;
3309 	hdev->set_bdaddr = btintel_set_bdaddr;
3310 
3311 	coredump_info.driver_name = driver_name;
3312 
3313 	return 0;
3314 }
3315 EXPORT_SYMBOL_GPL(btintel_configure_setup);
3316 
btintel_diagnostics(struct hci_dev * hdev,struct sk_buff * skb)3317 int btintel_diagnostics(struct hci_dev *hdev, struct sk_buff *skb)
3318 {
3319 	struct intel_tlv *tlv = (void *)&skb->data[5];
3320 
3321 	/* The first event is always an event type TLV */
3322 	if (tlv->type != INTEL_TLV_TYPE_ID)
3323 		goto recv_frame;
3324 
3325 	switch (tlv->val[0]) {
3326 	case INTEL_TLV_SYSTEM_EXCEPTION:
3327 	case INTEL_TLV_FATAL_EXCEPTION:
3328 	case INTEL_TLV_DEBUG_EXCEPTION:
3329 	case INTEL_TLV_TEST_EXCEPTION:
3330 		/* Generate devcoredump from exception */
3331 		if (!hci_devcd_init(hdev, skb->len)) {
3332 			hci_devcd_append(hdev, skb_clone(skb, GFP_ATOMIC));
3333 			hci_devcd_complete(hdev);
3334 		} else {
3335 			bt_dev_err(hdev, "Failed to generate devcoredump");
3336 		}
3337 	break;
3338 	default:
3339 		bt_dev_err(hdev, "Invalid exception type %02X", tlv->val[0]);
3340 	}
3341 
3342 recv_frame:
3343 	return hci_recv_frame(hdev, skb);
3344 }
3345 EXPORT_SYMBOL_GPL(btintel_diagnostics);
3346 
btintel_recv_event(struct hci_dev * hdev,struct sk_buff * skb)3347 int btintel_recv_event(struct hci_dev *hdev, struct sk_buff *skb)
3348 {
3349 	struct hci_event_hdr *hdr = (void *)skb->data;
3350 	const char diagnostics_hdr[] = { 0x87, 0x80, 0x03 };
3351 
3352 	if (skb->len > HCI_EVENT_HDR_SIZE && hdr->evt == 0xff &&
3353 	    hdr->plen > 0) {
3354 		const void *ptr = skb->data + HCI_EVENT_HDR_SIZE + 1;
3355 		unsigned int len = skb->len - HCI_EVENT_HDR_SIZE - 1;
3356 
3357 		if (btintel_test_flag(hdev, INTEL_BOOTLOADER)) {
3358 			switch (skb->data[2]) {
3359 			case 0x02:
3360 				/* When switching to the operational firmware
3361 				 * the device sends a vendor specific event
3362 				 * indicating that the bootup completed.
3363 				 */
3364 				btintel_bootup(hdev, ptr, len);
3365 				kfree_skb(skb);
3366 				return 0;
3367 			case 0x06:
3368 				/* When the firmware loading completes the
3369 				 * device sends out a vendor specific event
3370 				 * indicating the result of the firmware
3371 				 * loading.
3372 				 */
3373 				btintel_secure_send_result(hdev, ptr, len);
3374 				kfree_skb(skb);
3375 				return 0;
3376 			}
3377 		}
3378 
3379 		/* Handle all diagnostics events separately. May still call
3380 		 * hci_recv_frame.
3381 		 */
3382 		if (len >= sizeof(diagnostics_hdr) &&
3383 		    memcmp(&skb->data[2], diagnostics_hdr,
3384 			   sizeof(diagnostics_hdr)) == 0) {
3385 			return btintel_diagnostics(hdev, skb);
3386 		}
3387 	}
3388 
3389 	return hci_recv_frame(hdev, skb);
3390 }
3391 EXPORT_SYMBOL_GPL(btintel_recv_event);
3392 
btintel_bootup(struct hci_dev * hdev,const void * ptr,unsigned int len)3393 void btintel_bootup(struct hci_dev *hdev, const void *ptr, unsigned int len)
3394 {
3395 	const struct intel_bootup *evt = ptr;
3396 
3397 	if (len != sizeof(*evt))
3398 		return;
3399 
3400 	if (btintel_test_and_clear_flag(hdev, INTEL_BOOTING))
3401 		btintel_wake_up_flag(hdev, INTEL_BOOTING);
3402 }
3403 EXPORT_SYMBOL_GPL(btintel_bootup);
3404 
btintel_secure_send_result(struct hci_dev * hdev,const void * ptr,unsigned int len)3405 void btintel_secure_send_result(struct hci_dev *hdev,
3406 				const void *ptr, unsigned int len)
3407 {
3408 	const struct intel_secure_send_result *evt = ptr;
3409 
3410 	if (len != sizeof(*evt))
3411 		return;
3412 
3413 	if (evt->result)
3414 		btintel_set_flag(hdev, INTEL_FIRMWARE_FAILED);
3415 
3416 	if (btintel_test_and_clear_flag(hdev, INTEL_DOWNLOADING) &&
3417 	    btintel_test_flag(hdev, INTEL_FIRMWARE_LOADED))
3418 		btintel_wake_up_flag(hdev, INTEL_DOWNLOADING);
3419 }
3420 EXPORT_SYMBOL_GPL(btintel_secure_send_result);
3421 
3422 MODULE_AUTHOR("Marcel Holtmann <marcel@holtmann.org>");
3423 MODULE_DESCRIPTION("Bluetooth support for Intel devices ver " VERSION);
3424 MODULE_VERSION(VERSION);
3425 MODULE_LICENSE("GPL");
3426 MODULE_FIRMWARE("intel/ibt-11-5.sfi");
3427 MODULE_FIRMWARE("intel/ibt-11-5.ddc");
3428 MODULE_FIRMWARE("intel/ibt-12-16.sfi");
3429 MODULE_FIRMWARE("intel/ibt-12-16.ddc");
3430