• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright (c) 2019 HiSilicon Limited. */
3 #include <asm/page.h>
4 #include <linux/acpi.h>
5 #include <linux/bitmap.h>
6 #include <linux/dma-mapping.h>
7 #include <linux/idr.h>
8 #include <linux/io.h>
9 #include <linux/irqreturn.h>
10 #include <linux/log2.h>
11 #include <linux/pm_runtime.h>
12 #include <linux/seq_file.h>
13 #include <linux/slab.h>
14 #include <linux/uacce.h>
15 #include <linux/uaccess.h>
16 #include <uapi/misc/uacce/hisi_qm.h>
17 #include <linux/hisi_acc_qm.h>
18 #include "qm_common.h"
19 
20 /* eq/aeq irq enable */
21 #define QM_VF_AEQ_INT_SOURCE		0x0
22 #define QM_VF_AEQ_INT_MASK		0x4
23 #define QM_VF_EQ_INT_SOURCE		0x8
24 #define QM_VF_EQ_INT_MASK		0xc
25 
26 #define QM_IRQ_VECTOR_MASK		GENMASK(15, 0)
27 #define QM_IRQ_TYPE_MASK		GENMASK(15, 0)
28 #define QM_IRQ_TYPE_SHIFT		16
29 #define QM_ABN_IRQ_TYPE_MASK		GENMASK(7, 0)
30 
31 /* mailbox */
32 #define QM_MB_PING_ALL_VFS		0xffff
33 #define QM_MB_CMD_DATA_SHIFT		32
34 #define QM_MB_CMD_DATA_MASK		GENMASK(31, 0)
35 #define QM_MB_STATUS_MASK		GENMASK(12, 9)
36 
37 /* sqc shift */
38 #define QM_SQ_HOP_NUM_SHIFT		0
39 #define QM_SQ_PAGE_SIZE_SHIFT		4
40 #define QM_SQ_BUF_SIZE_SHIFT		8
41 #define QM_SQ_SQE_SIZE_SHIFT		12
42 #define QM_SQ_PRIORITY_SHIFT		0
43 #define QM_SQ_ORDERS_SHIFT		4
44 #define QM_SQ_TYPE_SHIFT		8
45 #define QM_QC_PASID_ENABLE		0x1
46 #define QM_QC_PASID_ENABLE_SHIFT	7
47 
48 #define QM_SQ_TYPE_MASK			GENMASK(3, 0)
49 #define QM_SQ_TAIL_IDX(sqc)		((le16_to_cpu((sqc).w11) >> 6) & 0x1)
50 
51 /* cqc shift */
52 #define QM_CQ_HOP_NUM_SHIFT		0
53 #define QM_CQ_PAGE_SIZE_SHIFT		4
54 #define QM_CQ_BUF_SIZE_SHIFT		8
55 #define QM_CQ_CQE_SIZE_SHIFT		12
56 #define QM_CQ_PHASE_SHIFT		0
57 #define QM_CQ_FLAG_SHIFT		1
58 
59 #define QM_CQE_PHASE(cqe)		(le16_to_cpu((cqe)->w7) & 0x1)
60 #define QM_QC_CQE_SIZE			4
61 #define QM_CQ_TAIL_IDX(cqc)		((le16_to_cpu((cqc).w11) >> 6) & 0x1)
62 
63 /* eqc shift */
64 #define QM_EQE_AEQE_SIZE		(2UL << 12)
65 #define QM_EQC_PHASE_SHIFT		16
66 
67 #define QM_EQE_PHASE(eqe)		((le32_to_cpu((eqe)->dw0) >> 16) & 0x1)
68 #define QM_EQE_CQN_MASK			GENMASK(15, 0)
69 
70 #define QM_AEQE_PHASE(aeqe)		((le32_to_cpu((aeqe)->dw0) >> 16) & 0x1)
71 #define QM_AEQE_TYPE_SHIFT		17
72 #define QM_AEQE_TYPE_MASK		0xf
73 #define QM_AEQE_CQN_MASK		GENMASK(15, 0)
74 #define QM_CQ_OVERFLOW			0
75 #define QM_EQ_OVERFLOW			1
76 #define QM_CQE_ERROR			2
77 
78 #define QM_XQ_DEPTH_SHIFT		16
79 #define QM_XQ_DEPTH_MASK		GENMASK(15, 0)
80 
81 #define QM_DOORBELL_CMD_SQ		0
82 #define QM_DOORBELL_CMD_CQ		1
83 #define QM_DOORBELL_CMD_EQ		2
84 #define QM_DOORBELL_CMD_AEQ		3
85 
86 #define QM_DOORBELL_BASE_V1		0x340
87 #define QM_DB_CMD_SHIFT_V1		16
88 #define QM_DB_INDEX_SHIFT_V1		32
89 #define QM_DB_PRIORITY_SHIFT_V1		48
90 #define QM_PAGE_SIZE			0x0034
91 #define QM_QP_DB_INTERVAL		0x10000
92 #define QM_DB_TIMEOUT_CFG		0x100074
93 #define QM_DB_TIMEOUT_SET		0x1fffff
94 
95 #define QM_MEM_START_INIT		0x100040
96 #define QM_MEM_INIT_DONE		0x100044
97 #define QM_VFT_CFG_RDY			0x10006c
98 #define QM_VFT_CFG_OP_WR		0x100058
99 #define QM_VFT_CFG_TYPE			0x10005c
100 #define QM_VFT_CFG			0x100060
101 #define QM_VFT_CFG_OP_ENABLE		0x100054
102 #define QM_PM_CTRL			0x100148
103 #define QM_IDLE_DISABLE			BIT(9)
104 
105 #define QM_VFT_CFG_DATA_L		0x100064
106 #define QM_VFT_CFG_DATA_H		0x100068
107 #define QM_SQC_VFT_BUF_SIZE		(7ULL << 8)
108 #define QM_SQC_VFT_SQC_SIZE		(5ULL << 12)
109 #define QM_SQC_VFT_INDEX_NUMBER		(1ULL << 16)
110 #define QM_SQC_VFT_START_SQN_SHIFT	28
111 #define QM_SQC_VFT_VALID		(1ULL << 44)
112 #define QM_SQC_VFT_SQN_SHIFT		45
113 #define QM_CQC_VFT_BUF_SIZE		(7ULL << 8)
114 #define QM_CQC_VFT_SQC_SIZE		(5ULL << 12)
115 #define QM_CQC_VFT_INDEX_NUMBER		(1ULL << 16)
116 #define QM_CQC_VFT_VALID		(1ULL << 28)
117 
118 #define QM_SQC_VFT_BASE_SHIFT_V2	28
119 #define QM_SQC_VFT_BASE_MASK_V2		GENMASK(15, 0)
120 #define QM_SQC_VFT_NUM_SHIFT_V2		45
121 #define QM_SQC_VFT_NUM_MASK_V2		GENMASK(9, 0)
122 
123 #define QM_ABNORMAL_INT_SOURCE		0x100000
124 #define QM_ABNORMAL_INT_MASK		0x100004
125 #define QM_ABNORMAL_INT_MASK_VALUE	0x7fff
126 #define QM_ABNORMAL_INT_STATUS		0x100008
127 #define QM_ABNORMAL_INT_SET		0x10000c
128 #define QM_ABNORMAL_INF00		0x100010
129 #define QM_FIFO_OVERFLOW_TYPE		0xc0
130 #define QM_FIFO_OVERFLOW_TYPE_SHIFT	6
131 #define QM_FIFO_OVERFLOW_VF		0x3f
132 #define QM_FIFO_OVERFLOW_QP_SHIFT	16
133 #define QM_ABNORMAL_INF01		0x100014
134 #define QM_DB_TIMEOUT_TYPE		0xc0
135 #define QM_DB_TIMEOUT_TYPE_SHIFT	6
136 #define QM_DB_TIMEOUT_VF		0x3f
137 #define QM_DB_TIMEOUT_QP_SHIFT		16
138 #define QM_ABNORMAL_INF02		0x100018
139 #define QM_AXI_POISON_ERR		BIT(22)
140 #define QM_RAS_CE_ENABLE		0x1000ec
141 #define QM_RAS_FE_ENABLE		0x1000f0
142 #define QM_RAS_NFE_ENABLE		0x1000f4
143 #define QM_RAS_CE_THRESHOLD		0x1000f8
144 #define QM_RAS_CE_TIMES_PER_IRQ		1
145 #define QM_OOO_SHUTDOWN_SEL		0x1040f8
146 #define QM_AXI_RRESP_ERR		BIT(0)
147 #define QM_ECC_MBIT			BIT(2)
148 #define QM_DB_TIMEOUT			BIT(10)
149 #define QM_OF_FIFO_OF			BIT(11)
150 
151 #define QM_RESET_WAIT_TIMEOUT		400
152 #define QM_PEH_VENDOR_ID		0x1000d8
153 #define ACC_VENDOR_ID_VALUE		0x5a5a
154 #define QM_PEH_DFX_INFO0		0x1000fc
155 #define QM_PEH_DFX_INFO1		0x100100
156 #define QM_PEH_DFX_MASK			(BIT(0) | BIT(2))
157 #define QM_PEH_MSI_FINISH_MASK		GENMASK(19, 16)
158 #define ACC_PEH_SRIOV_CTRL_VF_MSE_SHIFT	3
159 #define ACC_PEH_MSI_DISABLE		GENMASK(31, 0)
160 #define ACC_MASTER_GLOBAL_CTRL_SHUTDOWN	0x1
161 #define ACC_MASTER_TRANS_RETURN_RW	3
162 #define ACC_MASTER_TRANS_RETURN		0x300150
163 #define ACC_MASTER_GLOBAL_CTRL		0x300000
164 #define ACC_AM_CFG_PORT_WR_EN		0x30001c
165 #define QM_RAS_NFE_MBIT_DISABLE		~QM_ECC_MBIT
166 #define ACC_AM_ROB_ECC_INT_STS		0x300104
167 #define ACC_ROB_ECC_ERR_MULTPL		BIT(1)
168 #define QM_MSI_CAP_ENABLE		BIT(16)
169 
170 /* interfunction communication */
171 #define QM_IFC_READY_STATUS		0x100128
172 #define QM_IFC_INT_SET_P		0x100130
173 #define QM_IFC_INT_CFG			0x100134
174 #define QM_IFC_INT_SOURCE_P		0x100138
175 #define QM_IFC_INT_SOURCE_V		0x0020
176 #define QM_IFC_INT_MASK			0x0024
177 #define QM_IFC_INT_STATUS		0x0028
178 #define QM_IFC_INT_SET_V		0x002C
179 #define QM_IFC_SEND_ALL_VFS		GENMASK(6, 0)
180 #define QM_IFC_INT_SOURCE_CLR		GENMASK(63, 0)
181 #define QM_IFC_INT_SOURCE_MASK		BIT(0)
182 #define QM_IFC_INT_DISABLE		BIT(0)
183 #define QM_IFC_INT_STATUS_MASK		BIT(0)
184 #define QM_IFC_INT_SET_MASK		BIT(0)
185 #define QM_WAIT_DST_ACK			10
186 #define QM_MAX_PF_WAIT_COUNT		10
187 #define QM_MAX_VF_WAIT_COUNT		40
188 #define QM_VF_RESET_WAIT_US            20000
189 #define QM_VF_RESET_WAIT_CNT           3000
190 #define QM_VF_RESET_WAIT_TIMEOUT_US    \
191 	(QM_VF_RESET_WAIT_US * QM_VF_RESET_WAIT_CNT)
192 
193 #define POLL_PERIOD			10
194 #define POLL_TIMEOUT			1000
195 #define WAIT_PERIOD_US_MAX		200
196 #define WAIT_PERIOD_US_MIN		100
197 #define MAX_WAIT_COUNTS			1000
198 #define QM_CACHE_WB_START		0x204
199 #define QM_CACHE_WB_DONE		0x208
200 #define QM_FUNC_CAPS_REG		0x3100
201 #define QM_CAPBILITY_VERSION		GENMASK(7, 0)
202 
203 #define PCI_BAR_2			2
204 #define PCI_BAR_4			4
205 #define QMC_ALIGN(sz)			ALIGN(sz, 32)
206 
207 #define QM_DBG_READ_LEN		256
208 #define QM_PCI_COMMAND_INVALID		~0
209 #define QM_RESET_STOP_TX_OFFSET		1
210 #define QM_RESET_STOP_RX_OFFSET		2
211 
212 #define WAIT_PERIOD			20
213 #define REMOVE_WAIT_DELAY		10
214 
215 #define QM_QOS_PARAM_NUM		2
216 #define QM_QOS_MAX_VAL			1000
217 #define QM_QOS_RATE			100
218 #define QM_QOS_EXPAND_RATE		1000
219 #define QM_SHAPER_CIR_B_MASK		GENMASK(7, 0)
220 #define QM_SHAPER_CIR_U_MASK		GENMASK(10, 8)
221 #define QM_SHAPER_CIR_S_MASK		GENMASK(14, 11)
222 #define QM_SHAPER_FACTOR_CIR_U_SHIFT	8
223 #define QM_SHAPER_FACTOR_CIR_S_SHIFT	11
224 #define QM_SHAPER_FACTOR_CBS_B_SHIFT	15
225 #define QM_SHAPER_FACTOR_CBS_S_SHIFT	19
226 #define QM_SHAPER_CBS_B			1
227 #define QM_SHAPER_VFT_OFFSET		6
228 #define QM_QOS_MIN_ERROR_RATE		5
229 #define QM_SHAPER_MIN_CBS_S		8
230 #define QM_QOS_TICK			0x300U
231 #define QM_QOS_DIVISOR_CLK		0x1f40U
232 #define QM_QOS_MAX_CIR_B		200
233 #define QM_QOS_MIN_CIR_B		100
234 #define QM_QOS_MAX_CIR_U		6
235 #define QM_AUTOSUSPEND_DELAY		3000
236 
237 #define QM_DEV_ALG_MAX_LEN		256
238 
239  /* abnormal status value for stopping queue */
240 #define QM_STOP_QUEUE_FAIL		1
241 #define	QM_DUMP_SQC_FAIL		3
242 #define	QM_DUMP_CQC_FAIL		4
243 #define	QM_FINISH_WAIT			5
244 
245 #define QM_MK_CQC_DW3_V1(hop_num, pg_sz, buf_sz, cqe_sz) \
246 	(((hop_num) << QM_CQ_HOP_NUM_SHIFT) | \
247 	((pg_sz) << QM_CQ_PAGE_SIZE_SHIFT) | \
248 	((buf_sz) << QM_CQ_BUF_SIZE_SHIFT) | \
249 	((cqe_sz) << QM_CQ_CQE_SIZE_SHIFT))
250 
251 #define QM_MK_CQC_DW3_V2(cqe_sz, cq_depth) \
252 	((((u32)cq_depth) - 1) | ((cqe_sz) << QM_CQ_CQE_SIZE_SHIFT))
253 
254 #define QM_MK_SQC_W13(priority, orders, alg_type) \
255 	(((priority) << QM_SQ_PRIORITY_SHIFT) | \
256 	((orders) << QM_SQ_ORDERS_SHIFT) | \
257 	(((alg_type) & QM_SQ_TYPE_MASK) << QM_SQ_TYPE_SHIFT))
258 
259 #define QM_MK_SQC_DW3_V1(hop_num, pg_sz, buf_sz, sqe_sz) \
260 	(((hop_num) << QM_SQ_HOP_NUM_SHIFT) | \
261 	((pg_sz) << QM_SQ_PAGE_SIZE_SHIFT) | \
262 	((buf_sz) << QM_SQ_BUF_SIZE_SHIFT) | \
263 	((u32)ilog2(sqe_sz) << QM_SQ_SQE_SIZE_SHIFT))
264 
265 #define QM_MK_SQC_DW3_V2(sqe_sz, sq_depth) \
266 	((((u32)sq_depth) - 1) | ((u32)ilog2(sqe_sz) << QM_SQ_SQE_SIZE_SHIFT))
267 
268 enum vft_type {
269 	SQC_VFT = 0,
270 	CQC_VFT,
271 	SHAPER_VFT,
272 };
273 
274 enum qm_alg_type {
275 	ALG_TYPE_0,
276 	ALG_TYPE_1,
277 };
278 
279 enum qm_mb_cmd {
280 	QM_PF_FLR_PREPARE = 0x01,
281 	QM_PF_SRST_PREPARE,
282 	QM_PF_RESET_DONE,
283 	QM_VF_PREPARE_DONE,
284 	QM_VF_PREPARE_FAIL,
285 	QM_VF_START_DONE,
286 	QM_VF_START_FAIL,
287 	QM_PF_SET_QOS,
288 	QM_VF_GET_QOS,
289 };
290 
291 enum qm_basic_type {
292 	QM_TOTAL_QP_NUM_CAP = 0x0,
293 	QM_FUNC_MAX_QP_CAP,
294 	QM_XEQ_DEPTH_CAP,
295 	QM_QP_DEPTH_CAP,
296 	QM_EQ_IRQ_TYPE_CAP,
297 	QM_AEQ_IRQ_TYPE_CAP,
298 	QM_ABN_IRQ_TYPE_CAP,
299 	QM_PF2VF_IRQ_TYPE_CAP,
300 	QM_PF_IRQ_NUM_CAP,
301 	QM_VF_IRQ_NUM_CAP,
302 };
303 
304 enum qm_pre_store_cap_idx {
305 	QM_EQ_IRQ_TYPE_CAP_IDX = 0x0,
306 	QM_AEQ_IRQ_TYPE_CAP_IDX,
307 	QM_ABN_IRQ_TYPE_CAP_IDX,
308 	QM_PF2VF_IRQ_TYPE_CAP_IDX,
309 };
310 
311 static const struct hisi_qm_cap_info qm_cap_info_comm[] = {
312 	{QM_SUPPORT_DB_ISOLATION, 0x30,   0, BIT(0),  0x0, 0x0, 0x0},
313 	{QM_SUPPORT_FUNC_QOS,     0x3100, 0, BIT(8),  0x0, 0x0, 0x1},
314 	{QM_SUPPORT_STOP_QP,      0x3100, 0, BIT(9),  0x0, 0x0, 0x1},
315 	{QM_SUPPORT_STOP_FUNC,     0x3100, 0, BIT(10), 0x0, 0x0, 0x1},
316 	{QM_SUPPORT_MB_COMMAND,   0x3100, 0, BIT(11), 0x0, 0x0, 0x1},
317 	{QM_SUPPORT_SVA_PREFETCH, 0x3100, 0, BIT(14), 0x0, 0x0, 0x1},
318 };
319 
320 static const struct hisi_qm_cap_info qm_cap_info_pf[] = {
321 	{QM_SUPPORT_RPM, 0x3100, 0, BIT(13), 0x0, 0x0, 0x1},
322 };
323 
324 static const struct hisi_qm_cap_info qm_cap_info_vf[] = {
325 	{QM_SUPPORT_RPM, 0x3100, 0, BIT(12), 0x0, 0x0, 0x0},
326 };
327 
328 static const struct hisi_qm_cap_info qm_basic_info[] = {
329 	{QM_TOTAL_QP_NUM_CAP,   0x100158, 0,  GENMASK(10, 0), 0x1000,    0x400,     0x400},
330 	{QM_FUNC_MAX_QP_CAP,    0x100158, 11, GENMASK(10, 0), 0x1000,    0x400,     0x400},
331 	{QM_XEQ_DEPTH_CAP,      0x3104,   0,  GENMASK(31, 0), 0x800,     0x4000800, 0x4000800},
332 	{QM_QP_DEPTH_CAP,       0x3108,   0,  GENMASK(31, 0), 0x4000400, 0x4000400, 0x4000400},
333 	{QM_EQ_IRQ_TYPE_CAP,    0x310c,   0,  GENMASK(31, 0), 0x10000,   0x10000,   0x10000},
334 	{QM_AEQ_IRQ_TYPE_CAP,   0x3110,   0,  GENMASK(31, 0), 0x0,       0x10001,   0x10001},
335 	{QM_ABN_IRQ_TYPE_CAP,   0x3114,   0,  GENMASK(31, 0), 0x0,       0x10003,   0x10003},
336 	{QM_PF2VF_IRQ_TYPE_CAP, 0x3118,   0,  GENMASK(31, 0), 0x0,       0x0,       0x10002},
337 	{QM_PF_IRQ_NUM_CAP,     0x311c,   16, GENMASK(15, 0), 0x1,       0x4,       0x4},
338 	{QM_VF_IRQ_NUM_CAP,     0x311c,   0,  GENMASK(15, 0), 0x1,       0x2,       0x3},
339 };
340 
341 static const u32 qm_pre_store_caps[] = {
342 	QM_EQ_IRQ_TYPE_CAP,
343 	QM_AEQ_IRQ_TYPE_CAP,
344 	QM_ABN_IRQ_TYPE_CAP,
345 	QM_PF2VF_IRQ_TYPE_CAP,
346 };
347 
348 struct qm_mailbox {
349 	__le16 w0;
350 	__le16 queue_num;
351 	__le32 base_l;
352 	__le32 base_h;
353 	__le32 rsvd;
354 };
355 
356 struct qm_doorbell {
357 	__le16 queue_num;
358 	__le16 cmd;
359 	__le16 index;
360 	__le16 priority;
361 };
362 
363 struct hisi_qm_resource {
364 	struct hisi_qm *qm;
365 	int distance;
366 	struct list_head list;
367 };
368 
369 /**
370  * struct qm_hw_err - Structure describing the device errors
371  * @list: hardware error list
372  * @timestamp: timestamp when the error occurred
373  */
374 struct qm_hw_err {
375 	struct list_head list;
376 	unsigned long long timestamp;
377 };
378 
379 struct hisi_qm_hw_ops {
380 	int (*get_vft)(struct hisi_qm *qm, u32 *base, u32 *number);
381 	void (*qm_db)(struct hisi_qm *qm, u16 qn,
382 		      u8 cmd, u16 index, u8 priority);
383 	int (*debug_init)(struct hisi_qm *qm);
384 	void (*hw_error_init)(struct hisi_qm *qm);
385 	void (*hw_error_uninit)(struct hisi_qm *qm);
386 	enum acc_err_result (*hw_error_handle)(struct hisi_qm *qm);
387 	int (*set_msi)(struct hisi_qm *qm, bool set);
388 };
389 
390 struct hisi_qm_hw_error {
391 	u32 int_msk;
392 	const char *msg;
393 };
394 
395 static const struct hisi_qm_hw_error qm_hw_error[] = {
396 	{ .int_msk = BIT(0), .msg = "qm_axi_rresp" },
397 	{ .int_msk = BIT(1), .msg = "qm_axi_bresp" },
398 	{ .int_msk = BIT(2), .msg = "qm_ecc_mbit" },
399 	{ .int_msk = BIT(3), .msg = "qm_ecc_1bit" },
400 	{ .int_msk = BIT(4), .msg = "qm_acc_get_task_timeout" },
401 	{ .int_msk = BIT(5), .msg = "qm_acc_do_task_timeout" },
402 	{ .int_msk = BIT(6), .msg = "qm_acc_wb_not_ready_timeout" },
403 	{ .int_msk = BIT(7), .msg = "qm_sq_cq_vf_invalid" },
404 	{ .int_msk = BIT(8), .msg = "qm_cq_vf_invalid" },
405 	{ .int_msk = BIT(9), .msg = "qm_sq_vf_invalid" },
406 	{ .int_msk = BIT(10), .msg = "qm_db_timeout" },
407 	{ .int_msk = BIT(11), .msg = "qm_of_fifo_of" },
408 	{ .int_msk = BIT(12), .msg = "qm_db_random_invalid" },
409 	{ .int_msk = BIT(13), .msg = "qm_mailbox_timeout" },
410 	{ .int_msk = BIT(14), .msg = "qm_flr_timeout" },
411 };
412 
413 static const char * const qm_db_timeout[] = {
414 	"sq", "cq", "eq", "aeq",
415 };
416 
417 static const char * const qm_fifo_overflow[] = {
418 	"cq", "eq", "aeq",
419 };
420 
421 struct qm_typical_qos_table {
422 	u32 start;
423 	u32 end;
424 	u32 val;
425 };
426 
427 /* the qos step is 100 */
428 static struct qm_typical_qos_table shaper_cir_s[] = {
429 	{100, 100, 4},
430 	{200, 200, 3},
431 	{300, 500, 2},
432 	{600, 1000, 1},
433 	{1100, 100000, 0},
434 };
435 
436 static struct qm_typical_qos_table shaper_cbs_s[] = {
437 	{100, 200, 9},
438 	{300, 500, 11},
439 	{600, 1000, 12},
440 	{1100, 10000, 16},
441 	{10100, 25000, 17},
442 	{25100, 50000, 18},
443 	{50100, 100000, 19}
444 };
445 
446 static void qm_irqs_unregister(struct hisi_qm *qm);
447 static int qm_reset_device(struct hisi_qm *qm);
448 
qm_get_hw_error_status(struct hisi_qm * qm)449 static u32 qm_get_hw_error_status(struct hisi_qm *qm)
450 {
451 	return readl(qm->io_base + QM_ABNORMAL_INT_STATUS);
452 }
453 
qm_get_dev_err_status(struct hisi_qm * qm)454 static u32 qm_get_dev_err_status(struct hisi_qm *qm)
455 {
456 	return qm->err_ini->get_dev_hw_err_status(qm);
457 }
458 
459 /* Check if the error causes the master ooo block */
qm_check_dev_error(struct hisi_qm * qm)460 static bool qm_check_dev_error(struct hisi_qm *qm)
461 {
462 	u32 val, dev_val;
463 
464 	if (qm->fun_type == QM_HW_VF)
465 		return false;
466 
467 	val = qm_get_hw_error_status(qm) & qm->err_info.qm_shutdown_mask;
468 	dev_val = qm_get_dev_err_status(qm) & qm->err_info.dev_shutdown_mask;
469 
470 	return val || dev_val;
471 }
472 
qm_wait_reset_finish(struct hisi_qm * qm)473 static int qm_wait_reset_finish(struct hisi_qm *qm)
474 {
475 	int delay = 0;
476 
477 	/* All reset requests need to be queued for processing */
478 	while (test_and_set_bit(QM_RESETTING, &qm->misc_ctl)) {
479 		msleep(++delay);
480 		if (delay > QM_RESET_WAIT_TIMEOUT)
481 			return -EBUSY;
482 	}
483 
484 	return 0;
485 }
486 
qm_reset_prepare_ready(struct hisi_qm * qm)487 static int qm_reset_prepare_ready(struct hisi_qm *qm)
488 {
489 	struct pci_dev *pdev = qm->pdev;
490 	struct hisi_qm *pf_qm = pci_get_drvdata(pci_physfn(pdev));
491 
492 	/*
493 	 * PF and VF on host doesnot support resetting at the
494 	 * same time on Kunpeng920.
495 	 */
496 	if (qm->ver < QM_HW_V3)
497 		return qm_wait_reset_finish(pf_qm);
498 
499 	return qm_wait_reset_finish(qm);
500 }
501 
qm_reset_bit_clear(struct hisi_qm * qm)502 static void qm_reset_bit_clear(struct hisi_qm *qm)
503 {
504 	struct pci_dev *pdev = qm->pdev;
505 	struct hisi_qm *pf_qm = pci_get_drvdata(pci_physfn(pdev));
506 
507 	if (qm->ver < QM_HW_V3)
508 		clear_bit(QM_RESETTING, &pf_qm->misc_ctl);
509 
510 	clear_bit(QM_RESETTING, &qm->misc_ctl);
511 }
512 
qm_mb_pre_init(struct qm_mailbox * mailbox,u8 cmd,u64 base,u16 queue,bool op)513 static void qm_mb_pre_init(struct qm_mailbox *mailbox, u8 cmd,
514 			   u64 base, u16 queue, bool op)
515 {
516 	mailbox->w0 = cpu_to_le16((cmd) |
517 		((op) ? 0x1 << QM_MB_OP_SHIFT : 0) |
518 		(0x1 << QM_MB_BUSY_SHIFT));
519 	mailbox->queue_num = cpu_to_le16(queue);
520 	mailbox->base_l = cpu_to_le32(lower_32_bits(base));
521 	mailbox->base_h = cpu_to_le32(upper_32_bits(base));
522 	mailbox->rsvd = 0;
523 }
524 
525 /* return 0 mailbox ready, -ETIMEDOUT hardware timeout */
hisi_qm_wait_mb_ready(struct hisi_qm * qm)526 int hisi_qm_wait_mb_ready(struct hisi_qm *qm)
527 {
528 	u32 val;
529 
530 	return readl_relaxed_poll_timeout(qm->io_base + QM_MB_CMD_SEND_BASE,
531 					  val, !((val >> QM_MB_BUSY_SHIFT) &
532 					  0x1), POLL_PERIOD, POLL_TIMEOUT);
533 }
534 EXPORT_SYMBOL_GPL(hisi_qm_wait_mb_ready);
535 
536 /* 128 bit should be written to hardware at one time to trigger a mailbox */
qm_mb_write(struct hisi_qm * qm,const void * src)537 static void qm_mb_write(struct hisi_qm *qm, const void *src)
538 {
539 	void __iomem *fun_base = qm->io_base + QM_MB_CMD_SEND_BASE;
540 
541 #if IS_ENABLED(CONFIG_ARM64)
542 	unsigned long tmp0 = 0, tmp1 = 0;
543 #endif
544 
545 	if (!IS_ENABLED(CONFIG_ARM64)) {
546 		memcpy_toio(fun_base, src, 16);
547 		dma_wmb();
548 		return;
549 	}
550 
551 #if IS_ENABLED(CONFIG_ARM64)
552 	asm volatile("ldp %0, %1, %3\n"
553 		     "stp %0, %1, %2\n"
554 		     "dmb oshst\n"
555 		     : "=&r" (tmp0),
556 		       "=&r" (tmp1),
557 		       "+Q" (*((char __iomem *)fun_base))
558 		     : "Q" (*((char *)src))
559 		     : "memory");
560 #endif
561 }
562 
qm_mb_nolock(struct hisi_qm * qm,struct qm_mailbox * mailbox)563 static int qm_mb_nolock(struct hisi_qm *qm, struct qm_mailbox *mailbox)
564 {
565 	int ret;
566 	u32 val;
567 
568 	if (unlikely(hisi_qm_wait_mb_ready(qm))) {
569 		dev_err(&qm->pdev->dev, "QM mailbox is busy to start!\n");
570 		ret = -EBUSY;
571 		goto mb_busy;
572 	}
573 
574 	qm_mb_write(qm, mailbox);
575 
576 	if (unlikely(hisi_qm_wait_mb_ready(qm))) {
577 		dev_err(&qm->pdev->dev, "QM mailbox operation timeout!\n");
578 		ret = -ETIMEDOUT;
579 		goto mb_busy;
580 	}
581 
582 	val = readl(qm->io_base + QM_MB_CMD_SEND_BASE);
583 	if (val & QM_MB_STATUS_MASK) {
584 		dev_err(&qm->pdev->dev, "QM mailbox operation failed!\n");
585 		ret = -EIO;
586 		goto mb_busy;
587 	}
588 
589 	return 0;
590 
591 mb_busy:
592 	atomic64_inc(&qm->debug.dfx.mb_err_cnt);
593 	return ret;
594 }
595 
hisi_qm_mb(struct hisi_qm * qm,u8 cmd,dma_addr_t dma_addr,u16 queue,bool op)596 int hisi_qm_mb(struct hisi_qm *qm, u8 cmd, dma_addr_t dma_addr, u16 queue,
597 	       bool op)
598 {
599 	struct qm_mailbox mailbox;
600 	int ret;
601 
602 	qm_mb_pre_init(&mailbox, cmd, dma_addr, queue, op);
603 
604 	mutex_lock(&qm->mailbox_lock);
605 	ret = qm_mb_nolock(qm, &mailbox);
606 	mutex_unlock(&qm->mailbox_lock);
607 
608 	return ret;
609 }
610 EXPORT_SYMBOL_GPL(hisi_qm_mb);
611 
612 /* op 0: set xqc information to hardware, 1: get xqc information from hardware. */
qm_set_and_get_xqc(struct hisi_qm * qm,u8 cmd,void * xqc,u32 qp_id,bool op)613 int qm_set_and_get_xqc(struct hisi_qm *qm, u8 cmd, void *xqc, u32 qp_id, bool op)
614 {
615 	struct hisi_qm *pf_qm = pci_get_drvdata(pci_physfn(qm->pdev));
616 	struct qm_mailbox mailbox;
617 	dma_addr_t xqc_dma;
618 	void *tmp_xqc;
619 	size_t size;
620 	int ret;
621 
622 	switch (cmd) {
623 	case QM_MB_CMD_SQC:
624 		size = sizeof(struct qm_sqc);
625 		tmp_xqc = qm->xqc_buf.sqc;
626 		xqc_dma = qm->xqc_buf.sqc_dma;
627 		break;
628 	case QM_MB_CMD_CQC:
629 		size = sizeof(struct qm_cqc);
630 		tmp_xqc = qm->xqc_buf.cqc;
631 		xqc_dma = qm->xqc_buf.cqc_dma;
632 		break;
633 	case QM_MB_CMD_EQC:
634 		size = sizeof(struct qm_eqc);
635 		tmp_xqc = qm->xqc_buf.eqc;
636 		xqc_dma = qm->xqc_buf.eqc_dma;
637 		break;
638 	case QM_MB_CMD_AEQC:
639 		size = sizeof(struct qm_aeqc);
640 		tmp_xqc = qm->xqc_buf.aeqc;
641 		xqc_dma = qm->xqc_buf.aeqc_dma;
642 		break;
643 	default:
644 		dev_err(&qm->pdev->dev, "unknown mailbox cmd %u\n", cmd);
645 		return -EINVAL;
646 	}
647 
648 	/* Setting xqc will fail if master OOO is blocked. */
649 	if (qm_check_dev_error(pf_qm)) {
650 		dev_err(&qm->pdev->dev, "failed to send mailbox since qm is stop!\n");
651 		return -EIO;
652 	}
653 
654 	mutex_lock(&qm->mailbox_lock);
655 	if (!op)
656 		memcpy(tmp_xqc, xqc, size);
657 
658 	qm_mb_pre_init(&mailbox, cmd, xqc_dma, qp_id, op);
659 	ret = qm_mb_nolock(qm, &mailbox);
660 	if (!ret && op)
661 		memcpy(xqc, tmp_xqc, size);
662 
663 	mutex_unlock(&qm->mailbox_lock);
664 
665 	return ret;
666 }
667 
qm_db_v1(struct hisi_qm * qm,u16 qn,u8 cmd,u16 index,u8 priority)668 static void qm_db_v1(struct hisi_qm *qm, u16 qn, u8 cmd, u16 index, u8 priority)
669 {
670 	u64 doorbell;
671 
672 	doorbell = qn | ((u64)cmd << QM_DB_CMD_SHIFT_V1) |
673 		   ((u64)index << QM_DB_INDEX_SHIFT_V1)  |
674 		   ((u64)priority << QM_DB_PRIORITY_SHIFT_V1);
675 
676 	writeq(doorbell, qm->io_base + QM_DOORBELL_BASE_V1);
677 }
678 
qm_db_v2(struct hisi_qm * qm,u16 qn,u8 cmd,u16 index,u8 priority)679 static void qm_db_v2(struct hisi_qm *qm, u16 qn, u8 cmd, u16 index, u8 priority)
680 {
681 	void __iomem *io_base = qm->io_base;
682 	u16 randata = 0;
683 	u64 doorbell;
684 
685 	if (cmd == QM_DOORBELL_CMD_SQ || cmd == QM_DOORBELL_CMD_CQ)
686 		io_base = qm->db_io_base + (u64)qn * qm->db_interval +
687 			  QM_DOORBELL_SQ_CQ_BASE_V2;
688 	else
689 		io_base += QM_DOORBELL_EQ_AEQ_BASE_V2;
690 
691 	doorbell = qn | ((u64)cmd << QM_DB_CMD_SHIFT_V2) |
692 		   ((u64)randata << QM_DB_RAND_SHIFT_V2) |
693 		   ((u64)index << QM_DB_INDEX_SHIFT_V2) |
694 		   ((u64)priority << QM_DB_PRIORITY_SHIFT_V2);
695 
696 	writeq(doorbell, io_base);
697 }
698 
qm_db(struct hisi_qm * qm,u16 qn,u8 cmd,u16 index,u8 priority)699 static void qm_db(struct hisi_qm *qm, u16 qn, u8 cmd, u16 index, u8 priority)
700 {
701 	dev_dbg(&qm->pdev->dev, "QM doorbell request: qn=%u, cmd=%u, index=%u\n",
702 		qn, cmd, index);
703 
704 	qm->ops->qm_db(qm, qn, cmd, index, priority);
705 }
706 
qm_disable_clock_gate(struct hisi_qm * qm)707 static void qm_disable_clock_gate(struct hisi_qm *qm)
708 {
709 	u32 val;
710 
711 	/* if qm enables clock gating in Kunpeng930, qos will be inaccurate. */
712 	if (qm->ver < QM_HW_V3)
713 		return;
714 
715 	val = readl(qm->io_base + QM_PM_CTRL);
716 	val |= QM_IDLE_DISABLE;
717 	writel(val, qm->io_base +  QM_PM_CTRL);
718 }
719 
qm_dev_mem_reset(struct hisi_qm * qm)720 static int qm_dev_mem_reset(struct hisi_qm *qm)
721 {
722 	u32 val;
723 
724 	writel(0x1, qm->io_base + QM_MEM_START_INIT);
725 	return readl_relaxed_poll_timeout(qm->io_base + QM_MEM_INIT_DONE, val,
726 					  val & BIT(0), POLL_PERIOD,
727 					  POLL_TIMEOUT);
728 }
729 
730 /**
731  * hisi_qm_get_hw_info() - Get device information.
732  * @qm: The qm which want to get information.
733  * @info_table: Array for storing device information.
734  * @index: Index in info_table.
735  * @is_read: Whether read from reg, 0: not support read from reg.
736  *
737  * This function returns device information the caller needs.
738  */
hisi_qm_get_hw_info(struct hisi_qm * qm,const struct hisi_qm_cap_info * info_table,u32 index,bool is_read)739 u32 hisi_qm_get_hw_info(struct hisi_qm *qm,
740 			const struct hisi_qm_cap_info *info_table,
741 			u32 index, bool is_read)
742 {
743 	u32 val;
744 
745 	switch (qm->ver) {
746 	case QM_HW_V1:
747 		return info_table[index].v1_val;
748 	case QM_HW_V2:
749 		return info_table[index].v2_val;
750 	default:
751 		if (!is_read)
752 			return info_table[index].v3_val;
753 
754 		val = readl(qm->io_base + info_table[index].offset);
755 		return (val >> info_table[index].shift) & info_table[index].mask;
756 	}
757 }
758 EXPORT_SYMBOL_GPL(hisi_qm_get_hw_info);
759 
qm_get_xqc_depth(struct hisi_qm * qm,u16 * low_bits,u16 * high_bits,enum qm_basic_type type)760 static void qm_get_xqc_depth(struct hisi_qm *qm, u16 *low_bits,
761 			     u16 *high_bits, enum qm_basic_type type)
762 {
763 	u32 depth;
764 
765 	depth = hisi_qm_get_hw_info(qm, qm_basic_info, type, qm->cap_ver);
766 	*low_bits = depth & QM_XQ_DEPTH_MASK;
767 	*high_bits = (depth >> QM_XQ_DEPTH_SHIFT) & QM_XQ_DEPTH_MASK;
768 }
769 
hisi_qm_set_algs(struct hisi_qm * qm,u64 alg_msk,const struct qm_dev_alg * dev_algs,u32 dev_algs_size)770 int hisi_qm_set_algs(struct hisi_qm *qm, u64 alg_msk, const struct qm_dev_alg *dev_algs,
771 		     u32 dev_algs_size)
772 {
773 	struct device *dev = &qm->pdev->dev;
774 	char *algs, *ptr;
775 	int i;
776 
777 	if (!qm->uacce)
778 		return 0;
779 
780 	if (dev_algs_size >= QM_DEV_ALG_MAX_LEN) {
781 		dev_err(dev, "algs size %u is equal or larger than %d.\n",
782 			dev_algs_size, QM_DEV_ALG_MAX_LEN);
783 		return -EINVAL;
784 	}
785 
786 	algs = devm_kzalloc(dev, QM_DEV_ALG_MAX_LEN * sizeof(char), GFP_KERNEL);
787 	if (!algs)
788 		return -ENOMEM;
789 
790 	for (i = 0; i < dev_algs_size; i++)
791 		if (alg_msk & dev_algs[i].alg_msk)
792 			strcat(algs, dev_algs[i].alg);
793 
794 	ptr = strrchr(algs, '\n');
795 	if (ptr) {
796 		*ptr = '\0';
797 		qm->uacce->algs = algs;
798 	}
799 
800 	return 0;
801 }
802 EXPORT_SYMBOL_GPL(hisi_qm_set_algs);
803 
qm_get_irq_num(struct hisi_qm * qm)804 static u32 qm_get_irq_num(struct hisi_qm *qm)
805 {
806 	if (qm->fun_type == QM_HW_PF)
807 		return hisi_qm_get_hw_info(qm, qm_basic_info, QM_PF_IRQ_NUM_CAP, qm->cap_ver);
808 
809 	return hisi_qm_get_hw_info(qm, qm_basic_info, QM_VF_IRQ_NUM_CAP, qm->cap_ver);
810 }
811 
qm_pm_get_sync(struct hisi_qm * qm)812 static int qm_pm_get_sync(struct hisi_qm *qm)
813 {
814 	struct device *dev = &qm->pdev->dev;
815 	int ret;
816 
817 	if (!test_bit(QM_SUPPORT_RPM, &qm->caps))
818 		return 0;
819 
820 	ret = pm_runtime_resume_and_get(dev);
821 	if (ret < 0) {
822 		dev_err(dev, "failed to get_sync(%d).\n", ret);
823 		return ret;
824 	}
825 
826 	return 0;
827 }
828 
qm_pm_put_sync(struct hisi_qm * qm)829 static void qm_pm_put_sync(struct hisi_qm *qm)
830 {
831 	struct device *dev = &qm->pdev->dev;
832 
833 	if (!test_bit(QM_SUPPORT_RPM, &qm->caps))
834 		return;
835 
836 	pm_runtime_mark_last_busy(dev);
837 	pm_runtime_put_autosuspend(dev);
838 }
839 
qm_cq_head_update(struct hisi_qp * qp)840 static void qm_cq_head_update(struct hisi_qp *qp)
841 {
842 	if (qp->qp_status.cq_head == qp->cq_depth - 1) {
843 		qp->qp_status.cqc_phase = !qp->qp_status.cqc_phase;
844 		qp->qp_status.cq_head = 0;
845 	} else {
846 		qp->qp_status.cq_head++;
847 	}
848 }
849 
qm_poll_req_cb(struct hisi_qp * qp)850 static void qm_poll_req_cb(struct hisi_qp *qp)
851 {
852 	struct qm_cqe *cqe = qp->cqe + qp->qp_status.cq_head;
853 	struct hisi_qm *qm = qp->qm;
854 
855 	while (QM_CQE_PHASE(cqe) == qp->qp_status.cqc_phase) {
856 		dma_rmb();
857 		qp->req_cb(qp, qp->sqe + qm->sqe_size *
858 			   le16_to_cpu(cqe->sq_head));
859 		qm_cq_head_update(qp);
860 		cqe = qp->cqe + qp->qp_status.cq_head;
861 		qm_db(qm, qp->qp_id, QM_DOORBELL_CMD_CQ,
862 		      qp->qp_status.cq_head, 0);
863 		atomic_dec(&qp->qp_status.used);
864 
865 		cond_resched();
866 	}
867 
868 	/* set c_flag */
869 	qm_db(qm, qp->qp_id, QM_DOORBELL_CMD_CQ, qp->qp_status.cq_head, 1);
870 }
871 
qm_work_process(struct work_struct * work)872 static void qm_work_process(struct work_struct *work)
873 {
874 	struct hisi_qm_poll_data *poll_data =
875 		container_of(work, struct hisi_qm_poll_data, work);
876 	struct hisi_qm *qm = poll_data->qm;
877 	u16 eqe_num = poll_data->eqe_num;
878 	struct hisi_qp *qp;
879 	int i;
880 
881 	for (i = eqe_num - 1; i >= 0; i--) {
882 		qp = &qm->qp_array[poll_data->qp_finish_id[i]];
883 		if (unlikely(atomic_read(&qp->qp_status.flags) == QP_STOP))
884 			continue;
885 
886 		if (qp->event_cb) {
887 			qp->event_cb(qp);
888 			continue;
889 		}
890 
891 		if (likely(qp->req_cb))
892 			qm_poll_req_cb(qp);
893 	}
894 }
895 
qm_get_complete_eqe_num(struct hisi_qm * qm)896 static void qm_get_complete_eqe_num(struct hisi_qm *qm)
897 {
898 	struct qm_eqe *eqe = qm->eqe + qm->status.eq_head;
899 	struct hisi_qm_poll_data *poll_data = NULL;
900 	u16 eq_depth = qm->eq_depth;
901 	u16 cqn, eqe_num = 0;
902 
903 	if (QM_EQE_PHASE(eqe) != qm->status.eqc_phase) {
904 		atomic64_inc(&qm->debug.dfx.err_irq_cnt);
905 		qm_db(qm, 0, QM_DOORBELL_CMD_EQ, qm->status.eq_head, 0);
906 		return;
907 	}
908 
909 	cqn = le32_to_cpu(eqe->dw0) & QM_EQE_CQN_MASK;
910 	if (unlikely(cqn >= qm->qp_num))
911 		return;
912 	poll_data = &qm->poll_data[cqn];
913 
914 	while (QM_EQE_PHASE(eqe) == qm->status.eqc_phase) {
915 		cqn = le32_to_cpu(eqe->dw0) & QM_EQE_CQN_MASK;
916 		poll_data->qp_finish_id[eqe_num] = cqn;
917 		eqe_num++;
918 
919 		if (qm->status.eq_head == eq_depth - 1) {
920 			qm->status.eqc_phase = !qm->status.eqc_phase;
921 			eqe = qm->eqe;
922 			qm->status.eq_head = 0;
923 		} else {
924 			eqe++;
925 			qm->status.eq_head++;
926 		}
927 
928 		if (eqe_num == (eq_depth >> 1) - 1)
929 			break;
930 	}
931 
932 	poll_data->eqe_num = eqe_num;
933 	queue_work(qm->wq, &poll_data->work);
934 	qm_db(qm, 0, QM_DOORBELL_CMD_EQ, qm->status.eq_head, 0);
935 }
936 
qm_eq_irq(int irq,void * data)937 static irqreturn_t qm_eq_irq(int irq, void *data)
938 {
939 	struct hisi_qm *qm = data;
940 
941 	/* Get qp id of completed tasks and re-enable the interrupt */
942 	qm_get_complete_eqe_num(qm);
943 
944 	return IRQ_HANDLED;
945 }
946 
qm_mb_cmd_irq(int irq,void * data)947 static irqreturn_t qm_mb_cmd_irq(int irq, void *data)
948 {
949 	struct hisi_qm *qm = data;
950 	u32 val;
951 
952 	val = readl(qm->io_base + QM_IFC_INT_STATUS);
953 	val &= QM_IFC_INT_STATUS_MASK;
954 	if (!val)
955 		return IRQ_NONE;
956 
957 	if (test_bit(QM_DRIVER_REMOVING, &qm->misc_ctl)) {
958 		dev_warn(&qm->pdev->dev, "Driver is down, message cannot be processed!\n");
959 		return IRQ_HANDLED;
960 	}
961 
962 	schedule_work(&qm->cmd_process);
963 
964 	return IRQ_HANDLED;
965 }
966 
qm_set_qp_disable(struct hisi_qp * qp,int offset)967 static void qm_set_qp_disable(struct hisi_qp *qp, int offset)
968 {
969 	u32 *addr;
970 
971 	if (qp->is_in_kernel)
972 		return;
973 
974 	addr = (u32 *)(qp->qdma.va + qp->qdma.size) - offset;
975 	*addr = 1;
976 
977 	/* make sure setup is completed */
978 	smp_wmb();
979 }
980 
qm_disable_qp(struct hisi_qm * qm,u32 qp_id)981 static void qm_disable_qp(struct hisi_qm *qm, u32 qp_id)
982 {
983 	struct hisi_qp *qp = &qm->qp_array[qp_id];
984 
985 	qm_set_qp_disable(qp, QM_RESET_STOP_TX_OFFSET);
986 	hisi_qm_stop_qp(qp);
987 	qm_set_qp_disable(qp, QM_RESET_STOP_RX_OFFSET);
988 }
989 
qm_reset_function(struct hisi_qm * qm)990 static void qm_reset_function(struct hisi_qm *qm)
991 {
992 	struct hisi_qm *pf_qm = pci_get_drvdata(pci_physfn(qm->pdev));
993 	struct device *dev = &qm->pdev->dev;
994 	int ret;
995 
996 	if (qm_check_dev_error(pf_qm))
997 		return;
998 
999 	ret = qm_reset_prepare_ready(qm);
1000 	if (ret) {
1001 		dev_err(dev, "reset function not ready\n");
1002 		return;
1003 	}
1004 
1005 	ret = hisi_qm_stop(qm, QM_DOWN);
1006 	if (ret) {
1007 		dev_err(dev, "failed to stop qm when reset function\n");
1008 		goto clear_bit;
1009 	}
1010 
1011 	ret = hisi_qm_start(qm);
1012 	if (ret)
1013 		dev_err(dev, "failed to start qm when reset function\n");
1014 
1015 clear_bit:
1016 	qm_reset_bit_clear(qm);
1017 }
1018 
qm_aeq_thread(int irq,void * data)1019 static irqreturn_t qm_aeq_thread(int irq, void *data)
1020 {
1021 	struct hisi_qm *qm = data;
1022 	struct qm_aeqe *aeqe = qm->aeqe + qm->status.aeq_head;
1023 	u16 aeq_depth = qm->aeq_depth;
1024 	u32 type, qp_id;
1025 
1026 	atomic64_inc(&qm->debug.dfx.aeq_irq_cnt);
1027 
1028 	while (QM_AEQE_PHASE(aeqe) == qm->status.aeqc_phase) {
1029 		type = (le32_to_cpu(aeqe->dw0) >> QM_AEQE_TYPE_SHIFT) &
1030 			QM_AEQE_TYPE_MASK;
1031 		qp_id = le32_to_cpu(aeqe->dw0) & QM_AEQE_CQN_MASK;
1032 
1033 		switch (type) {
1034 		case QM_EQ_OVERFLOW:
1035 			dev_err(&qm->pdev->dev, "eq overflow, reset function\n");
1036 			qm_reset_function(qm);
1037 			return IRQ_HANDLED;
1038 		case QM_CQ_OVERFLOW:
1039 			dev_err(&qm->pdev->dev, "cq overflow, stop qp(%u)\n",
1040 				qp_id);
1041 			fallthrough;
1042 		case QM_CQE_ERROR:
1043 			qm_disable_qp(qm, qp_id);
1044 			break;
1045 		default:
1046 			dev_err(&qm->pdev->dev, "unknown error type %u\n",
1047 				type);
1048 			break;
1049 		}
1050 
1051 		if (qm->status.aeq_head == aeq_depth - 1) {
1052 			qm->status.aeqc_phase = !qm->status.aeqc_phase;
1053 			aeqe = qm->aeqe;
1054 			qm->status.aeq_head = 0;
1055 		} else {
1056 			aeqe++;
1057 			qm->status.aeq_head++;
1058 		}
1059 	}
1060 
1061 	qm_db(qm, 0, QM_DOORBELL_CMD_AEQ, qm->status.aeq_head, 0);
1062 
1063 	return IRQ_HANDLED;
1064 }
1065 
qm_init_qp_status(struct hisi_qp * qp)1066 static void qm_init_qp_status(struct hisi_qp *qp)
1067 {
1068 	struct hisi_qp_status *qp_status = &qp->qp_status;
1069 
1070 	qp_status->sq_tail = 0;
1071 	qp_status->cq_head = 0;
1072 	qp_status->cqc_phase = true;
1073 	atomic_set(&qp_status->used, 0);
1074 }
1075 
qm_init_prefetch(struct hisi_qm * qm)1076 static void qm_init_prefetch(struct hisi_qm *qm)
1077 {
1078 	struct device *dev = &qm->pdev->dev;
1079 	u32 page_type = 0x0;
1080 
1081 	if (!test_bit(QM_SUPPORT_SVA_PREFETCH, &qm->caps))
1082 		return;
1083 
1084 	switch (PAGE_SIZE) {
1085 	case SZ_4K:
1086 		page_type = 0x0;
1087 		break;
1088 	case SZ_16K:
1089 		page_type = 0x1;
1090 		break;
1091 	case SZ_64K:
1092 		page_type = 0x2;
1093 		break;
1094 	default:
1095 		dev_err(dev, "system page size is not support: %lu, default set to 4KB",
1096 			PAGE_SIZE);
1097 	}
1098 
1099 	writel(page_type, qm->io_base + QM_PAGE_SIZE);
1100 }
1101 
1102 /*
1103  * acc_shaper_para_calc() Get the IR value by the qos formula, the return value
1104  * is the expected qos calculated.
1105  * the formula:
1106  * IR = X Mbps if ir = 1 means IR = 100 Mbps, if ir = 10000 means = 10Gbps
1107  *
1108  *		IR_b * (2 ^ IR_u) * 8000
1109  * IR(Mbps) = -------------------------
1110  *		  Tick * (2 ^ IR_s)
1111  */
acc_shaper_para_calc(u64 cir_b,u64 cir_u,u64 cir_s)1112 static u32 acc_shaper_para_calc(u64 cir_b, u64 cir_u, u64 cir_s)
1113 {
1114 	return ((cir_b * QM_QOS_DIVISOR_CLK) * (1 << cir_u)) /
1115 					(QM_QOS_TICK * (1 << cir_s));
1116 }
1117 
acc_shaper_calc_cbs_s(u32 ir)1118 static u32 acc_shaper_calc_cbs_s(u32 ir)
1119 {
1120 	int table_size = ARRAY_SIZE(shaper_cbs_s);
1121 	int i;
1122 
1123 	for (i = 0; i < table_size; i++) {
1124 		if (ir >= shaper_cbs_s[i].start && ir <= shaper_cbs_s[i].end)
1125 			return shaper_cbs_s[i].val;
1126 	}
1127 
1128 	return QM_SHAPER_MIN_CBS_S;
1129 }
1130 
acc_shaper_calc_cir_s(u32 ir)1131 static u32 acc_shaper_calc_cir_s(u32 ir)
1132 {
1133 	int table_size = ARRAY_SIZE(shaper_cir_s);
1134 	int i;
1135 
1136 	for (i = 0; i < table_size; i++) {
1137 		if (ir >= shaper_cir_s[i].start && ir <= shaper_cir_s[i].end)
1138 			return shaper_cir_s[i].val;
1139 	}
1140 
1141 	return 0;
1142 }
1143 
qm_get_shaper_para(u32 ir,struct qm_shaper_factor * factor)1144 static int qm_get_shaper_para(u32 ir, struct qm_shaper_factor *factor)
1145 {
1146 	u32 cir_b, cir_u, cir_s, ir_calc;
1147 	u32 error_rate;
1148 
1149 	factor->cbs_s = acc_shaper_calc_cbs_s(ir);
1150 	cir_s = acc_shaper_calc_cir_s(ir);
1151 
1152 	for (cir_b = QM_QOS_MIN_CIR_B; cir_b <= QM_QOS_MAX_CIR_B; cir_b++) {
1153 		for (cir_u = 0; cir_u <= QM_QOS_MAX_CIR_U; cir_u++) {
1154 			ir_calc = acc_shaper_para_calc(cir_b, cir_u, cir_s);
1155 
1156 			error_rate = QM_QOS_EXPAND_RATE * (u32)abs(ir_calc - ir) / ir;
1157 			if (error_rate <= QM_QOS_MIN_ERROR_RATE) {
1158 				factor->cir_b = cir_b;
1159 				factor->cir_u = cir_u;
1160 				factor->cir_s = cir_s;
1161 				return 0;
1162 			}
1163 		}
1164 	}
1165 
1166 	return -EINVAL;
1167 }
1168 
qm_vft_data_cfg(struct hisi_qm * qm,enum vft_type type,u32 base,u32 number,struct qm_shaper_factor * factor)1169 static void qm_vft_data_cfg(struct hisi_qm *qm, enum vft_type type, u32 base,
1170 			    u32 number, struct qm_shaper_factor *factor)
1171 {
1172 	u64 tmp = 0;
1173 
1174 	if (number > 0) {
1175 		switch (type) {
1176 		case SQC_VFT:
1177 			if (qm->ver == QM_HW_V1) {
1178 				tmp = QM_SQC_VFT_BUF_SIZE	|
1179 				      QM_SQC_VFT_SQC_SIZE	|
1180 				      QM_SQC_VFT_INDEX_NUMBER	|
1181 				      QM_SQC_VFT_VALID		|
1182 				      (u64)base << QM_SQC_VFT_START_SQN_SHIFT;
1183 			} else {
1184 				tmp = (u64)base << QM_SQC_VFT_START_SQN_SHIFT |
1185 				      QM_SQC_VFT_VALID |
1186 				      (u64)(number - 1) << QM_SQC_VFT_SQN_SHIFT;
1187 			}
1188 			break;
1189 		case CQC_VFT:
1190 			if (qm->ver == QM_HW_V1) {
1191 				tmp = QM_CQC_VFT_BUF_SIZE	|
1192 				      QM_CQC_VFT_SQC_SIZE	|
1193 				      QM_CQC_VFT_INDEX_NUMBER	|
1194 				      QM_CQC_VFT_VALID;
1195 			} else {
1196 				tmp = QM_CQC_VFT_VALID;
1197 			}
1198 			break;
1199 		case SHAPER_VFT:
1200 			if (factor) {
1201 				tmp = factor->cir_b |
1202 				(factor->cir_u << QM_SHAPER_FACTOR_CIR_U_SHIFT) |
1203 				(factor->cir_s << QM_SHAPER_FACTOR_CIR_S_SHIFT) |
1204 				(QM_SHAPER_CBS_B << QM_SHAPER_FACTOR_CBS_B_SHIFT) |
1205 				(factor->cbs_s << QM_SHAPER_FACTOR_CBS_S_SHIFT);
1206 			}
1207 			break;
1208 		}
1209 	}
1210 
1211 	writel(lower_32_bits(tmp), qm->io_base + QM_VFT_CFG_DATA_L);
1212 	writel(upper_32_bits(tmp), qm->io_base + QM_VFT_CFG_DATA_H);
1213 }
1214 
qm_set_vft_common(struct hisi_qm * qm,enum vft_type type,u32 fun_num,u32 base,u32 number)1215 static int qm_set_vft_common(struct hisi_qm *qm, enum vft_type type,
1216 			     u32 fun_num, u32 base, u32 number)
1217 {
1218 	struct qm_shaper_factor *factor = NULL;
1219 	unsigned int val;
1220 	int ret;
1221 
1222 	if (type == SHAPER_VFT && test_bit(QM_SUPPORT_FUNC_QOS, &qm->caps))
1223 		factor = &qm->factor[fun_num];
1224 
1225 	ret = readl_relaxed_poll_timeout(qm->io_base + QM_VFT_CFG_RDY, val,
1226 					 val & BIT(0), POLL_PERIOD,
1227 					 POLL_TIMEOUT);
1228 	if (ret)
1229 		return ret;
1230 
1231 	writel(0x0, qm->io_base + QM_VFT_CFG_OP_WR);
1232 	writel(type, qm->io_base + QM_VFT_CFG_TYPE);
1233 	if (type == SHAPER_VFT)
1234 		fun_num |= base << QM_SHAPER_VFT_OFFSET;
1235 
1236 	writel(fun_num, qm->io_base + QM_VFT_CFG);
1237 
1238 	qm_vft_data_cfg(qm, type, base, number, factor);
1239 
1240 	writel(0x0, qm->io_base + QM_VFT_CFG_RDY);
1241 	writel(0x1, qm->io_base + QM_VFT_CFG_OP_ENABLE);
1242 
1243 	return readl_relaxed_poll_timeout(qm->io_base + QM_VFT_CFG_RDY, val,
1244 					  val & BIT(0), POLL_PERIOD,
1245 					  POLL_TIMEOUT);
1246 }
1247 
qm_shaper_init_vft(struct hisi_qm * qm,u32 fun_num)1248 static int qm_shaper_init_vft(struct hisi_qm *qm, u32 fun_num)
1249 {
1250 	u32 qos = qm->factor[fun_num].func_qos;
1251 	int ret, i;
1252 
1253 	ret = qm_get_shaper_para(qos * QM_QOS_RATE, &qm->factor[fun_num]);
1254 	if (ret) {
1255 		dev_err(&qm->pdev->dev, "failed to calculate shaper parameter!\n");
1256 		return ret;
1257 	}
1258 	writel(qm->type_rate, qm->io_base + QM_SHAPER_CFG);
1259 	for (i = ALG_TYPE_0; i <= ALG_TYPE_1; i++) {
1260 		/* The base number of queue reuse for different alg type */
1261 		ret = qm_set_vft_common(qm, SHAPER_VFT, fun_num, i, 1);
1262 		if (ret)
1263 			return ret;
1264 	}
1265 
1266 	return 0;
1267 }
1268 
1269 /* The config should be conducted after qm_dev_mem_reset() */
qm_set_sqc_cqc_vft(struct hisi_qm * qm,u32 fun_num,u32 base,u32 number)1270 static int qm_set_sqc_cqc_vft(struct hisi_qm *qm, u32 fun_num, u32 base,
1271 			      u32 number)
1272 {
1273 	int ret, i;
1274 
1275 	for (i = SQC_VFT; i <= CQC_VFT; i++) {
1276 		ret = qm_set_vft_common(qm, i, fun_num, base, number);
1277 		if (ret)
1278 			return ret;
1279 	}
1280 
1281 	/* init default shaper qos val */
1282 	if (test_bit(QM_SUPPORT_FUNC_QOS, &qm->caps)) {
1283 		ret = qm_shaper_init_vft(qm, fun_num);
1284 		if (ret)
1285 			goto back_sqc_cqc;
1286 	}
1287 
1288 	return 0;
1289 back_sqc_cqc:
1290 	for (i = SQC_VFT; i <= CQC_VFT; i++)
1291 		qm_set_vft_common(qm, i, fun_num, 0, 0);
1292 
1293 	return ret;
1294 }
1295 
qm_get_vft_v2(struct hisi_qm * qm,u32 * base,u32 * number)1296 static int qm_get_vft_v2(struct hisi_qm *qm, u32 *base, u32 *number)
1297 {
1298 	u64 sqc_vft;
1299 	int ret;
1300 
1301 	ret = hisi_qm_mb(qm, QM_MB_CMD_SQC_VFT_V2, 0, 0, 1);
1302 	if (ret)
1303 		return ret;
1304 
1305 	sqc_vft = readl(qm->io_base + QM_MB_CMD_DATA_ADDR_L) |
1306 		  ((u64)readl(qm->io_base + QM_MB_CMD_DATA_ADDR_H) << 32);
1307 	*base = QM_SQC_VFT_BASE_MASK_V2 & (sqc_vft >> QM_SQC_VFT_BASE_SHIFT_V2);
1308 	*number = (QM_SQC_VFT_NUM_MASK_V2 &
1309 		   (sqc_vft >> QM_SQC_VFT_NUM_SHIFT_V2)) + 1;
1310 
1311 	return 0;
1312 }
1313 
qm_hw_error_init_v1(struct hisi_qm * qm)1314 static void qm_hw_error_init_v1(struct hisi_qm *qm)
1315 {
1316 	writel(QM_ABNORMAL_INT_MASK_VALUE, qm->io_base + QM_ABNORMAL_INT_MASK);
1317 }
1318 
qm_hw_error_cfg(struct hisi_qm * qm)1319 static void qm_hw_error_cfg(struct hisi_qm *qm)
1320 {
1321 	struct hisi_qm_err_info *err_info = &qm->err_info;
1322 
1323 	qm->error_mask = err_info->nfe | err_info->ce | err_info->fe;
1324 	/* clear QM hw residual error source */
1325 	writel(qm->error_mask, qm->io_base + QM_ABNORMAL_INT_SOURCE);
1326 
1327 	/* configure error type */
1328 	writel(err_info->ce, qm->io_base + QM_RAS_CE_ENABLE);
1329 	writel(QM_RAS_CE_TIMES_PER_IRQ, qm->io_base + QM_RAS_CE_THRESHOLD);
1330 	writel(err_info->nfe, qm->io_base + QM_RAS_NFE_ENABLE);
1331 	writel(err_info->fe, qm->io_base + QM_RAS_FE_ENABLE);
1332 }
1333 
qm_hw_error_init_v2(struct hisi_qm * qm)1334 static void qm_hw_error_init_v2(struct hisi_qm *qm)
1335 {
1336 	u32 irq_unmask;
1337 
1338 	qm_hw_error_cfg(qm);
1339 
1340 	irq_unmask = ~qm->error_mask;
1341 	irq_unmask &= readl(qm->io_base + QM_ABNORMAL_INT_MASK);
1342 	writel(irq_unmask, qm->io_base + QM_ABNORMAL_INT_MASK);
1343 }
1344 
qm_hw_error_uninit_v2(struct hisi_qm * qm)1345 static void qm_hw_error_uninit_v2(struct hisi_qm *qm)
1346 {
1347 	u32 irq_mask = qm->error_mask;
1348 
1349 	irq_mask |= readl(qm->io_base + QM_ABNORMAL_INT_MASK);
1350 	writel(irq_mask, qm->io_base + QM_ABNORMAL_INT_MASK);
1351 }
1352 
qm_hw_error_init_v3(struct hisi_qm * qm)1353 static void qm_hw_error_init_v3(struct hisi_qm *qm)
1354 {
1355 	u32 irq_unmask;
1356 
1357 	qm_hw_error_cfg(qm);
1358 
1359 	/* enable close master ooo when hardware error happened */
1360 	writel(qm->err_info.qm_shutdown_mask, qm->io_base + QM_OOO_SHUTDOWN_SEL);
1361 
1362 	irq_unmask = ~qm->error_mask;
1363 	irq_unmask &= readl(qm->io_base + QM_ABNORMAL_INT_MASK);
1364 	writel(irq_unmask, qm->io_base + QM_ABNORMAL_INT_MASK);
1365 }
1366 
qm_hw_error_uninit_v3(struct hisi_qm * qm)1367 static void qm_hw_error_uninit_v3(struct hisi_qm *qm)
1368 {
1369 	u32 irq_mask = qm->error_mask;
1370 
1371 	irq_mask |= readl(qm->io_base + QM_ABNORMAL_INT_MASK);
1372 	writel(irq_mask, qm->io_base + QM_ABNORMAL_INT_MASK);
1373 
1374 	/* disable close master ooo when hardware error happened */
1375 	writel(0x0, qm->io_base + QM_OOO_SHUTDOWN_SEL);
1376 }
1377 
qm_log_hw_error(struct hisi_qm * qm,u32 error_status)1378 static void qm_log_hw_error(struct hisi_qm *qm, u32 error_status)
1379 {
1380 	const struct hisi_qm_hw_error *err;
1381 	struct device *dev = &qm->pdev->dev;
1382 	u32 reg_val, type, vf_num, qp_id;
1383 	int i;
1384 
1385 	for (i = 0; i < ARRAY_SIZE(qm_hw_error); i++) {
1386 		err = &qm_hw_error[i];
1387 		if (!(err->int_msk & error_status))
1388 			continue;
1389 
1390 		dev_err(dev, "%s [error status=0x%x] found\n",
1391 			err->msg, err->int_msk);
1392 
1393 		if (err->int_msk & QM_DB_TIMEOUT) {
1394 			reg_val = readl(qm->io_base + QM_ABNORMAL_INF01);
1395 			type = (reg_val & QM_DB_TIMEOUT_TYPE) >>
1396 			       QM_DB_TIMEOUT_TYPE_SHIFT;
1397 			vf_num = reg_val & QM_DB_TIMEOUT_VF;
1398 			qp_id = reg_val >> QM_DB_TIMEOUT_QP_SHIFT;
1399 			dev_err(dev, "qm %s doorbell timeout in function %u qp %u\n",
1400 				qm_db_timeout[type], vf_num, qp_id);
1401 		} else if (err->int_msk & QM_OF_FIFO_OF) {
1402 			reg_val = readl(qm->io_base + QM_ABNORMAL_INF00);
1403 			type = (reg_val & QM_FIFO_OVERFLOW_TYPE) >>
1404 			       QM_FIFO_OVERFLOW_TYPE_SHIFT;
1405 			vf_num = reg_val & QM_FIFO_OVERFLOW_VF;
1406 			qp_id = reg_val >> QM_FIFO_OVERFLOW_QP_SHIFT;
1407 			if (type < ARRAY_SIZE(qm_fifo_overflow))
1408 				dev_err(dev, "qm %s fifo overflow in function %u qp %u\n",
1409 					qm_fifo_overflow[type], vf_num, qp_id);
1410 			else
1411 				dev_err(dev, "unknown error type\n");
1412 		} else if (err->int_msk & QM_AXI_RRESP_ERR) {
1413 			reg_val = readl(qm->io_base + QM_ABNORMAL_INF02);
1414 			if (reg_val & QM_AXI_POISON_ERR)
1415 				dev_err(dev, "qm axi poison error happened\n");
1416 		}
1417 	}
1418 }
1419 
qm_hw_error_handle_v2(struct hisi_qm * qm)1420 static enum acc_err_result qm_hw_error_handle_v2(struct hisi_qm *qm)
1421 {
1422 	u32 error_status;
1423 
1424 	error_status = qm_get_hw_error_status(qm);
1425 	if (error_status & qm->error_mask) {
1426 		if (error_status & QM_ECC_MBIT)
1427 			qm->err_status.is_qm_ecc_mbit = true;
1428 
1429 		qm_log_hw_error(qm, error_status);
1430 		if (error_status & qm->err_info.qm_reset_mask) {
1431 			/* Disable the same error reporting until device is recovered. */
1432 			writel(qm->err_info.nfe & (~error_status),
1433 			       qm->io_base + QM_RAS_NFE_ENABLE);
1434 			return ACC_ERR_NEED_RESET;
1435 		}
1436 
1437 		/* Clear error source if not need reset. */
1438 		writel(error_status, qm->io_base + QM_ABNORMAL_INT_SOURCE);
1439 		writel(qm->err_info.nfe, qm->io_base + QM_RAS_NFE_ENABLE);
1440 		writel(qm->err_info.ce, qm->io_base + QM_RAS_CE_ENABLE);
1441 	}
1442 
1443 	return ACC_ERR_RECOVERED;
1444 }
1445 
qm_get_mb_cmd(struct hisi_qm * qm,u64 * msg,u16 fun_num)1446 static int qm_get_mb_cmd(struct hisi_qm *qm, u64 *msg, u16 fun_num)
1447 {
1448 	struct qm_mailbox mailbox;
1449 	int ret;
1450 
1451 	qm_mb_pre_init(&mailbox, QM_MB_CMD_DST, 0, fun_num, 0);
1452 	mutex_lock(&qm->mailbox_lock);
1453 	ret = qm_mb_nolock(qm, &mailbox);
1454 	if (ret)
1455 		goto err_unlock;
1456 
1457 	*msg = readl(qm->io_base + QM_MB_CMD_DATA_ADDR_L) |
1458 		  ((u64)readl(qm->io_base + QM_MB_CMD_DATA_ADDR_H) << 32);
1459 
1460 err_unlock:
1461 	mutex_unlock(&qm->mailbox_lock);
1462 	return ret;
1463 }
1464 
qm_clear_cmd_interrupt(struct hisi_qm * qm,u64 vf_mask)1465 static void qm_clear_cmd_interrupt(struct hisi_qm *qm, u64 vf_mask)
1466 {
1467 	u32 val;
1468 
1469 	if (qm->fun_type == QM_HW_PF)
1470 		writeq(vf_mask, qm->io_base + QM_IFC_INT_SOURCE_P);
1471 
1472 	val = readl(qm->io_base + QM_IFC_INT_SOURCE_V);
1473 	val |= QM_IFC_INT_SOURCE_MASK;
1474 	writel(val, qm->io_base + QM_IFC_INT_SOURCE_V);
1475 }
1476 
qm_handle_vf_msg(struct hisi_qm * qm,u32 vf_id)1477 static void qm_handle_vf_msg(struct hisi_qm *qm, u32 vf_id)
1478 {
1479 	struct device *dev = &qm->pdev->dev;
1480 	u32 cmd;
1481 	u64 msg;
1482 	int ret;
1483 
1484 	ret = qm_get_mb_cmd(qm, &msg, vf_id);
1485 	if (ret) {
1486 		dev_err(dev, "failed to get msg from VF(%u)!\n", vf_id);
1487 		return;
1488 	}
1489 
1490 	cmd = msg & QM_MB_CMD_DATA_MASK;
1491 	switch (cmd) {
1492 	case QM_VF_PREPARE_FAIL:
1493 		dev_err(dev, "failed to stop VF(%u)!\n", vf_id);
1494 		break;
1495 	case QM_VF_START_FAIL:
1496 		dev_err(dev, "failed to start VF(%u)!\n", vf_id);
1497 		break;
1498 	case QM_VF_PREPARE_DONE:
1499 	case QM_VF_START_DONE:
1500 		break;
1501 	default:
1502 		dev_err(dev, "unsupported cmd %u sent by VF(%u)!\n", cmd, vf_id);
1503 		break;
1504 	}
1505 }
1506 
qm_wait_vf_prepare_finish(struct hisi_qm * qm)1507 static int qm_wait_vf_prepare_finish(struct hisi_qm *qm)
1508 {
1509 	struct device *dev = &qm->pdev->dev;
1510 	u32 vfs_num = qm->vfs_num;
1511 	int cnt = 0;
1512 	int ret = 0;
1513 	u64 val;
1514 	u32 i;
1515 
1516 	if (!qm->vfs_num || !test_bit(QM_SUPPORT_MB_COMMAND, &qm->caps))
1517 		return 0;
1518 
1519 	while (true) {
1520 		val = readq(qm->io_base + QM_IFC_INT_SOURCE_P);
1521 		/* All VFs send command to PF, break */
1522 		if ((val & GENMASK(vfs_num, 1)) == GENMASK(vfs_num, 1))
1523 			break;
1524 
1525 		if (++cnt > QM_MAX_PF_WAIT_COUNT) {
1526 			ret = -EBUSY;
1527 			break;
1528 		}
1529 
1530 		msleep(QM_WAIT_DST_ACK);
1531 	}
1532 
1533 	/* PF check VFs msg */
1534 	for (i = 1; i <= vfs_num; i++) {
1535 		if (val & BIT(i))
1536 			qm_handle_vf_msg(qm, i);
1537 		else
1538 			dev_err(dev, "VF(%u) not ping PF!\n", i);
1539 	}
1540 
1541 	/* PF clear interrupt to ack VFs */
1542 	qm_clear_cmd_interrupt(qm, val);
1543 
1544 	return ret;
1545 }
1546 
qm_trigger_vf_interrupt(struct hisi_qm * qm,u32 fun_num)1547 static void qm_trigger_vf_interrupt(struct hisi_qm *qm, u32 fun_num)
1548 {
1549 	u32 val;
1550 
1551 	val = readl(qm->io_base + QM_IFC_INT_CFG);
1552 	val &= ~QM_IFC_SEND_ALL_VFS;
1553 	val |= fun_num;
1554 	writel(val, qm->io_base + QM_IFC_INT_CFG);
1555 
1556 	val = readl(qm->io_base + QM_IFC_INT_SET_P);
1557 	val |= QM_IFC_INT_SET_MASK;
1558 	writel(val, qm->io_base + QM_IFC_INT_SET_P);
1559 }
1560 
qm_trigger_pf_interrupt(struct hisi_qm * qm)1561 static void qm_trigger_pf_interrupt(struct hisi_qm *qm)
1562 {
1563 	u32 val;
1564 
1565 	val = readl(qm->io_base + QM_IFC_INT_SET_V);
1566 	val |= QM_IFC_INT_SET_MASK;
1567 	writel(val, qm->io_base + QM_IFC_INT_SET_V);
1568 }
1569 
qm_ping_single_vf(struct hisi_qm * qm,u64 cmd,u32 fun_num)1570 static int qm_ping_single_vf(struct hisi_qm *qm, u64 cmd, u32 fun_num)
1571 {
1572 	struct device *dev = &qm->pdev->dev;
1573 	struct qm_mailbox mailbox;
1574 	int cnt = 0;
1575 	u64 val;
1576 	int ret;
1577 
1578 	qm_mb_pre_init(&mailbox, QM_MB_CMD_SRC, cmd, fun_num, 0);
1579 	mutex_lock(&qm->mailbox_lock);
1580 	ret = qm_mb_nolock(qm, &mailbox);
1581 	if (ret) {
1582 		dev_err(dev, "failed to send command to vf(%u)!\n", fun_num);
1583 		goto err_unlock;
1584 	}
1585 
1586 	qm_trigger_vf_interrupt(qm, fun_num);
1587 	while (true) {
1588 		msleep(QM_WAIT_DST_ACK);
1589 		val = readq(qm->io_base + QM_IFC_READY_STATUS);
1590 		/* if VF respond, PF notifies VF successfully. */
1591 		if (!(val & BIT(fun_num)))
1592 			goto err_unlock;
1593 
1594 		if (++cnt > QM_MAX_PF_WAIT_COUNT) {
1595 			dev_err(dev, "failed to get response from VF(%u)!\n", fun_num);
1596 			ret = -ETIMEDOUT;
1597 			break;
1598 		}
1599 	}
1600 
1601 err_unlock:
1602 	mutex_unlock(&qm->mailbox_lock);
1603 	return ret;
1604 }
1605 
qm_ping_all_vfs(struct hisi_qm * qm,u64 cmd)1606 static int qm_ping_all_vfs(struct hisi_qm *qm, u64 cmd)
1607 {
1608 	struct device *dev = &qm->pdev->dev;
1609 	u32 vfs_num = qm->vfs_num;
1610 	struct qm_mailbox mailbox;
1611 	u64 val = 0;
1612 	int cnt = 0;
1613 	int ret;
1614 	u32 i;
1615 
1616 	qm_mb_pre_init(&mailbox, QM_MB_CMD_SRC, cmd, QM_MB_PING_ALL_VFS, 0);
1617 	mutex_lock(&qm->mailbox_lock);
1618 	/* PF sends command to all VFs by mailbox */
1619 	ret = qm_mb_nolock(qm, &mailbox);
1620 	if (ret) {
1621 		dev_err(dev, "failed to send command to VFs!\n");
1622 		mutex_unlock(&qm->mailbox_lock);
1623 		return ret;
1624 	}
1625 
1626 	qm_trigger_vf_interrupt(qm, QM_IFC_SEND_ALL_VFS);
1627 	while (true) {
1628 		msleep(QM_WAIT_DST_ACK);
1629 		val = readq(qm->io_base + QM_IFC_READY_STATUS);
1630 		/* If all VFs acked, PF notifies VFs successfully. */
1631 		if (!(val & GENMASK(vfs_num, 1))) {
1632 			mutex_unlock(&qm->mailbox_lock);
1633 			return 0;
1634 		}
1635 
1636 		if (++cnt > QM_MAX_PF_WAIT_COUNT)
1637 			break;
1638 	}
1639 
1640 	mutex_unlock(&qm->mailbox_lock);
1641 
1642 	/* Check which vf respond timeout. */
1643 	for (i = 1; i <= vfs_num; i++) {
1644 		if (val & BIT(i))
1645 			dev_err(dev, "failed to get response from VF(%u)!\n", i);
1646 	}
1647 
1648 	return -ETIMEDOUT;
1649 }
1650 
qm_ping_pf(struct hisi_qm * qm,u64 cmd)1651 static int qm_ping_pf(struct hisi_qm *qm, u64 cmd)
1652 {
1653 	struct qm_mailbox mailbox;
1654 	int cnt = 0;
1655 	u32 val;
1656 	int ret;
1657 
1658 	qm_mb_pre_init(&mailbox, QM_MB_CMD_SRC, cmd, 0, 0);
1659 	mutex_lock(&qm->mailbox_lock);
1660 	ret = qm_mb_nolock(qm, &mailbox);
1661 	if (ret) {
1662 		dev_err(&qm->pdev->dev, "failed to send command to PF!\n");
1663 		goto unlock;
1664 	}
1665 
1666 	qm_trigger_pf_interrupt(qm);
1667 	/* Waiting for PF response */
1668 	while (true) {
1669 		msleep(QM_WAIT_DST_ACK);
1670 		val = readl(qm->io_base + QM_IFC_INT_SET_V);
1671 		if (!(val & QM_IFC_INT_STATUS_MASK))
1672 			break;
1673 
1674 		if (++cnt > QM_MAX_VF_WAIT_COUNT) {
1675 			ret = -ETIMEDOUT;
1676 			break;
1677 		}
1678 	}
1679 
1680 unlock:
1681 	mutex_unlock(&qm->mailbox_lock);
1682 	return ret;
1683 }
1684 
qm_drain_qm(struct hisi_qm * qm)1685 static int qm_drain_qm(struct hisi_qm *qm)
1686 {
1687 	return hisi_qm_mb(qm, QM_MB_CMD_FLUSH_QM, 0, 0, 0);
1688 }
1689 
qm_stop_qp(struct hisi_qp * qp)1690 static int qm_stop_qp(struct hisi_qp *qp)
1691 {
1692 	return hisi_qm_mb(qp->qm, QM_MB_CMD_STOP_QP, 0, qp->qp_id, 0);
1693 }
1694 
qm_set_msi(struct hisi_qm * qm,bool set)1695 static int qm_set_msi(struct hisi_qm *qm, bool set)
1696 {
1697 	struct pci_dev *pdev = qm->pdev;
1698 
1699 	if (set) {
1700 		pci_write_config_dword(pdev, pdev->msi_cap + PCI_MSI_MASK_64,
1701 				       0);
1702 	} else {
1703 		pci_write_config_dword(pdev, pdev->msi_cap + PCI_MSI_MASK_64,
1704 				       ACC_PEH_MSI_DISABLE);
1705 		if (qm->err_status.is_qm_ecc_mbit ||
1706 		    qm->err_status.is_dev_ecc_mbit)
1707 			return 0;
1708 
1709 		mdelay(1);
1710 		if (readl(qm->io_base + QM_PEH_DFX_INFO0))
1711 			return -EFAULT;
1712 	}
1713 
1714 	return 0;
1715 }
1716 
qm_wait_msi_finish(struct hisi_qm * qm)1717 static void qm_wait_msi_finish(struct hisi_qm *qm)
1718 {
1719 	struct pci_dev *pdev = qm->pdev;
1720 	u32 cmd = ~0;
1721 	int cnt = 0;
1722 	u32 val;
1723 	int ret;
1724 
1725 	while (true) {
1726 		pci_read_config_dword(pdev, pdev->msi_cap +
1727 				      PCI_MSI_PENDING_64, &cmd);
1728 		if (!cmd)
1729 			break;
1730 
1731 		if (++cnt > MAX_WAIT_COUNTS) {
1732 			pci_warn(pdev, "failed to empty MSI PENDING!\n");
1733 			break;
1734 		}
1735 
1736 		udelay(1);
1737 	}
1738 
1739 	ret = readl_relaxed_poll_timeout(qm->io_base + QM_PEH_DFX_INFO0,
1740 					 val, !(val & QM_PEH_DFX_MASK),
1741 					 POLL_PERIOD, POLL_TIMEOUT);
1742 	if (ret)
1743 		pci_warn(pdev, "failed to empty PEH MSI!\n");
1744 
1745 	ret = readl_relaxed_poll_timeout(qm->io_base + QM_PEH_DFX_INFO1,
1746 					 val, !(val & QM_PEH_MSI_FINISH_MASK),
1747 					 POLL_PERIOD, POLL_TIMEOUT);
1748 	if (ret)
1749 		pci_warn(pdev, "failed to finish MSI operation!\n");
1750 }
1751 
qm_set_msi_v3(struct hisi_qm * qm,bool set)1752 static int qm_set_msi_v3(struct hisi_qm *qm, bool set)
1753 {
1754 	struct pci_dev *pdev = qm->pdev;
1755 	int ret = -ETIMEDOUT;
1756 	u32 cmd, i;
1757 
1758 	pci_read_config_dword(pdev, pdev->msi_cap, &cmd);
1759 	if (set)
1760 		cmd |= QM_MSI_CAP_ENABLE;
1761 	else
1762 		cmd &= ~QM_MSI_CAP_ENABLE;
1763 
1764 	pci_write_config_dword(pdev, pdev->msi_cap, cmd);
1765 	if (set) {
1766 		for (i = 0; i < MAX_WAIT_COUNTS; i++) {
1767 			pci_read_config_dword(pdev, pdev->msi_cap, &cmd);
1768 			if (cmd & QM_MSI_CAP_ENABLE)
1769 				return 0;
1770 
1771 			udelay(1);
1772 		}
1773 	} else {
1774 		udelay(WAIT_PERIOD_US_MIN);
1775 		qm_wait_msi_finish(qm);
1776 		ret = 0;
1777 	}
1778 
1779 	return ret;
1780 }
1781 
1782 static const struct hisi_qm_hw_ops qm_hw_ops_v1 = {
1783 	.qm_db = qm_db_v1,
1784 	.hw_error_init = qm_hw_error_init_v1,
1785 	.set_msi = qm_set_msi,
1786 };
1787 
1788 static const struct hisi_qm_hw_ops qm_hw_ops_v2 = {
1789 	.get_vft = qm_get_vft_v2,
1790 	.qm_db = qm_db_v2,
1791 	.hw_error_init = qm_hw_error_init_v2,
1792 	.hw_error_uninit = qm_hw_error_uninit_v2,
1793 	.hw_error_handle = qm_hw_error_handle_v2,
1794 	.set_msi = qm_set_msi,
1795 };
1796 
1797 static const struct hisi_qm_hw_ops qm_hw_ops_v3 = {
1798 	.get_vft = qm_get_vft_v2,
1799 	.qm_db = qm_db_v2,
1800 	.hw_error_init = qm_hw_error_init_v3,
1801 	.hw_error_uninit = qm_hw_error_uninit_v3,
1802 	.hw_error_handle = qm_hw_error_handle_v2,
1803 	.set_msi = qm_set_msi_v3,
1804 };
1805 
qm_get_avail_sqe(struct hisi_qp * qp)1806 static void *qm_get_avail_sqe(struct hisi_qp *qp)
1807 {
1808 	struct hisi_qp_status *qp_status = &qp->qp_status;
1809 	u16 sq_tail = qp_status->sq_tail;
1810 
1811 	if (unlikely(atomic_read(&qp->qp_status.used) == qp->sq_depth - 1))
1812 		return NULL;
1813 
1814 	return qp->sqe + sq_tail * qp->qm->sqe_size;
1815 }
1816 
hisi_qm_unset_hw_reset(struct hisi_qp * qp)1817 static void hisi_qm_unset_hw_reset(struct hisi_qp *qp)
1818 {
1819 	u64 *addr;
1820 
1821 	/* Use last 64 bits of DUS to reset status. */
1822 	addr = (u64 *)(qp->qdma.va + qp->qdma.size) - QM_RESET_STOP_TX_OFFSET;
1823 	*addr = 0;
1824 }
1825 
qm_create_qp_nolock(struct hisi_qm * qm,u8 alg_type)1826 static struct hisi_qp *qm_create_qp_nolock(struct hisi_qm *qm, u8 alg_type)
1827 {
1828 	struct device *dev = &qm->pdev->dev;
1829 	struct hisi_qp *qp;
1830 	int qp_id;
1831 
1832 	if (atomic_read(&qm->status.flags) == QM_STOP) {
1833 		dev_info_ratelimited(dev, "failed to create qp as qm is stop!\n");
1834 		return ERR_PTR(-EPERM);
1835 	}
1836 
1837 	if (qm->qp_in_used == qm->qp_num) {
1838 		dev_info_ratelimited(dev, "All %u queues of QM are busy!\n",
1839 				     qm->qp_num);
1840 		atomic64_inc(&qm->debug.dfx.create_qp_err_cnt);
1841 		return ERR_PTR(-EBUSY);
1842 	}
1843 
1844 	qp_id = idr_alloc_cyclic(&qm->qp_idr, NULL, 0, qm->qp_num, GFP_ATOMIC);
1845 	if (qp_id < 0) {
1846 		dev_info_ratelimited(dev, "All %u queues of QM are busy!\n",
1847 				    qm->qp_num);
1848 		atomic64_inc(&qm->debug.dfx.create_qp_err_cnt);
1849 		return ERR_PTR(-EBUSY);
1850 	}
1851 
1852 	qp = &qm->qp_array[qp_id];
1853 	hisi_qm_unset_hw_reset(qp);
1854 	memset(qp->cqe, 0, sizeof(struct qm_cqe) * qp->cq_depth);
1855 
1856 	qp->event_cb = NULL;
1857 	qp->req_cb = NULL;
1858 	qp->qp_id = qp_id;
1859 	qp->alg_type = alg_type;
1860 	qp->is_in_kernel = true;
1861 	qm->qp_in_used++;
1862 
1863 	return qp;
1864 }
1865 
1866 /**
1867  * hisi_qm_create_qp() - Create a queue pair from qm.
1868  * @qm: The qm we create a qp from.
1869  * @alg_type: Accelerator specific algorithm type in sqc.
1870  *
1871  * Return created qp, negative error code if failed.
1872  */
hisi_qm_create_qp(struct hisi_qm * qm,u8 alg_type)1873 static struct hisi_qp *hisi_qm_create_qp(struct hisi_qm *qm, u8 alg_type)
1874 {
1875 	struct hisi_qp *qp;
1876 	int ret;
1877 
1878 	ret = qm_pm_get_sync(qm);
1879 	if (ret)
1880 		return ERR_PTR(ret);
1881 
1882 	down_write(&qm->qps_lock);
1883 	qp = qm_create_qp_nolock(qm, alg_type);
1884 	up_write(&qm->qps_lock);
1885 
1886 	if (IS_ERR(qp))
1887 		qm_pm_put_sync(qm);
1888 
1889 	return qp;
1890 }
1891 
1892 /**
1893  * hisi_qm_release_qp() - Release a qp back to its qm.
1894  * @qp: The qp we want to release.
1895  *
1896  * This function releases the resource of a qp.
1897  */
hisi_qm_release_qp(struct hisi_qp * qp)1898 static void hisi_qm_release_qp(struct hisi_qp *qp)
1899 {
1900 	struct hisi_qm *qm = qp->qm;
1901 
1902 	down_write(&qm->qps_lock);
1903 
1904 	qm->qp_in_used--;
1905 	idr_remove(&qm->qp_idr, qp->qp_id);
1906 
1907 	up_write(&qm->qps_lock);
1908 
1909 	qm_pm_put_sync(qm);
1910 }
1911 
qm_sq_ctx_cfg(struct hisi_qp * qp,int qp_id,u32 pasid)1912 static int qm_sq_ctx_cfg(struct hisi_qp *qp, int qp_id, u32 pasid)
1913 {
1914 	struct hisi_qm *qm = qp->qm;
1915 	enum qm_hw_ver ver = qm->ver;
1916 	struct qm_sqc sqc = {0};
1917 
1918 	if (ver == QM_HW_V1) {
1919 		sqc.dw3 = cpu_to_le32(QM_MK_SQC_DW3_V1(0, 0, 0, qm->sqe_size));
1920 		sqc.w8 = cpu_to_le16(qp->sq_depth - 1);
1921 	} else {
1922 		sqc.dw3 = cpu_to_le32(QM_MK_SQC_DW3_V2(qm->sqe_size, qp->sq_depth));
1923 		sqc.w8 = 0; /* rand_qc */
1924 	}
1925 	sqc.w13 = cpu_to_le16(QM_MK_SQC_W13(0, 1, qp->alg_type));
1926 	sqc.base_l = cpu_to_le32(lower_32_bits(qp->sqe_dma));
1927 	sqc.base_h = cpu_to_le32(upper_32_bits(qp->sqe_dma));
1928 	sqc.cq_num = cpu_to_le16(qp_id);
1929 	sqc.pasid = cpu_to_le16(pasid);
1930 
1931 	if (ver >= QM_HW_V3 && qm->use_sva && !qp->is_in_kernel)
1932 		sqc.w11 = cpu_to_le16(QM_QC_PASID_ENABLE <<
1933 				      QM_QC_PASID_ENABLE_SHIFT);
1934 
1935 	return qm_set_and_get_xqc(qm, QM_MB_CMD_SQC, &sqc, qp_id, 0);
1936 }
1937 
qm_cq_ctx_cfg(struct hisi_qp * qp,int qp_id,u32 pasid)1938 static int qm_cq_ctx_cfg(struct hisi_qp *qp, int qp_id, u32 pasid)
1939 {
1940 	struct hisi_qm *qm = qp->qm;
1941 	enum qm_hw_ver ver = qm->ver;
1942 	struct qm_cqc cqc = {0};
1943 
1944 	if (ver == QM_HW_V1) {
1945 		cqc.dw3 = cpu_to_le32(QM_MK_CQC_DW3_V1(0, 0, 0, QM_QC_CQE_SIZE));
1946 		cqc.w8 = cpu_to_le16(qp->cq_depth - 1);
1947 	} else {
1948 		cqc.dw3 = cpu_to_le32(QM_MK_CQC_DW3_V2(QM_QC_CQE_SIZE, qp->cq_depth));
1949 		cqc.w8 = 0; /* rand_qc */
1950 	}
1951 	/*
1952 	 * Enable request finishing interrupts defaultly.
1953 	 * So, there will be some interrupts until disabling
1954 	 * this.
1955 	 */
1956 	cqc.dw6 = cpu_to_le32(1 << QM_CQ_PHASE_SHIFT | 1 << QM_CQ_FLAG_SHIFT);
1957 	cqc.base_l = cpu_to_le32(lower_32_bits(qp->cqe_dma));
1958 	cqc.base_h = cpu_to_le32(upper_32_bits(qp->cqe_dma));
1959 	cqc.pasid = cpu_to_le16(pasid);
1960 
1961 	if (ver >= QM_HW_V3 && qm->use_sva && !qp->is_in_kernel)
1962 		cqc.w11 = cpu_to_le16(QM_QC_PASID_ENABLE);
1963 
1964 	return qm_set_and_get_xqc(qm, QM_MB_CMD_CQC, &cqc, qp_id, 0);
1965 }
1966 
qm_qp_ctx_cfg(struct hisi_qp * qp,int qp_id,u32 pasid)1967 static int qm_qp_ctx_cfg(struct hisi_qp *qp, int qp_id, u32 pasid)
1968 {
1969 	int ret;
1970 
1971 	qm_init_qp_status(qp);
1972 
1973 	ret = qm_sq_ctx_cfg(qp, qp_id, pasid);
1974 	if (ret)
1975 		return ret;
1976 
1977 	return qm_cq_ctx_cfg(qp, qp_id, pasid);
1978 }
1979 
qm_start_qp_nolock(struct hisi_qp * qp,unsigned long arg)1980 static int qm_start_qp_nolock(struct hisi_qp *qp, unsigned long arg)
1981 {
1982 	struct hisi_qm *qm = qp->qm;
1983 	struct device *dev = &qm->pdev->dev;
1984 	int qp_id = qp->qp_id;
1985 	u32 pasid = arg;
1986 	int ret;
1987 
1988 	if (atomic_read(&qm->status.flags) == QM_STOP) {
1989 		dev_info_ratelimited(dev, "failed to start qp as qm is stop!\n");
1990 		return -EPERM;
1991 	}
1992 
1993 	ret = qm_qp_ctx_cfg(qp, qp_id, pasid);
1994 	if (ret)
1995 		return ret;
1996 
1997 	atomic_set(&qp->qp_status.flags, QP_START);
1998 	dev_dbg(dev, "queue %d started\n", qp_id);
1999 
2000 	return 0;
2001 }
2002 
2003 /**
2004  * hisi_qm_start_qp() - Start a qp into running.
2005  * @qp: The qp we want to start to run.
2006  * @arg: Accelerator specific argument.
2007  *
2008  * After this function, qp can receive request from user. Return 0 if
2009  * successful, negative error code if failed.
2010  */
hisi_qm_start_qp(struct hisi_qp * qp,unsigned long arg)2011 int hisi_qm_start_qp(struct hisi_qp *qp, unsigned long arg)
2012 {
2013 	struct hisi_qm *qm = qp->qm;
2014 	int ret;
2015 
2016 	down_write(&qm->qps_lock);
2017 	ret = qm_start_qp_nolock(qp, arg);
2018 	up_write(&qm->qps_lock);
2019 
2020 	return ret;
2021 }
2022 EXPORT_SYMBOL_GPL(hisi_qm_start_qp);
2023 
2024 /**
2025  * qp_stop_fail_cb() - call request cb.
2026  * @qp: stopped failed qp.
2027  *
2028  * Callback function should be called whether task completed or not.
2029  */
qp_stop_fail_cb(struct hisi_qp * qp)2030 static void qp_stop_fail_cb(struct hisi_qp *qp)
2031 {
2032 	int qp_used = atomic_read(&qp->qp_status.used);
2033 	u16 cur_tail = qp->qp_status.sq_tail;
2034 	u16 sq_depth = qp->sq_depth;
2035 	u16 cur_head = (cur_tail + sq_depth - qp_used) % sq_depth;
2036 	struct hisi_qm *qm = qp->qm;
2037 	u16 pos;
2038 	int i;
2039 
2040 	for (i = 0; i < qp_used; i++) {
2041 		pos = (i + cur_head) % sq_depth;
2042 		qp->req_cb(qp, qp->sqe + (u32)(qm->sqe_size * pos));
2043 		atomic_dec(&qp->qp_status.used);
2044 	}
2045 }
2046 
qm_wait_qp_empty(struct hisi_qm * qm,u32 * state,u32 qp_id)2047 static int qm_wait_qp_empty(struct hisi_qm *qm, u32 *state, u32 qp_id)
2048 {
2049 	struct device *dev = &qm->pdev->dev;
2050 	struct qm_sqc sqc;
2051 	struct qm_cqc cqc;
2052 	int ret, i = 0;
2053 
2054 	while (++i) {
2055 		ret = qm_set_and_get_xqc(qm, QM_MB_CMD_SQC, &sqc, qp_id, 1);
2056 		if (ret) {
2057 			dev_err_ratelimited(dev, "Failed to dump sqc!\n");
2058 			*state = QM_DUMP_SQC_FAIL;
2059 			return ret;
2060 		}
2061 
2062 		ret = qm_set_and_get_xqc(qm, QM_MB_CMD_CQC, &cqc, qp_id, 1);
2063 		if (ret) {
2064 			dev_err_ratelimited(dev, "Failed to dump cqc!\n");
2065 			*state = QM_DUMP_CQC_FAIL;
2066 			return ret;
2067 		}
2068 
2069 		if ((sqc.tail == cqc.tail) &&
2070 		    (QM_SQ_TAIL_IDX(sqc) == QM_CQ_TAIL_IDX(cqc)))
2071 			break;
2072 
2073 		if (i == MAX_WAIT_COUNTS) {
2074 			dev_err(dev, "Fail to empty queue %u!\n", qp_id);
2075 			*state = QM_STOP_QUEUE_FAIL;
2076 			return -ETIMEDOUT;
2077 		}
2078 
2079 		usleep_range(WAIT_PERIOD_US_MIN, WAIT_PERIOD_US_MAX);
2080 	}
2081 
2082 	return 0;
2083 }
2084 
2085 /**
2086  * qm_drain_qp() - Drain a qp.
2087  * @qp: The qp we want to drain.
2088  *
2089  * If the device does not support stopping queue by sending mailbox,
2090  * determine whether the queue is cleared by judging the tail pointers of
2091  * sq and cq.
2092  */
qm_drain_qp(struct hisi_qp * qp)2093 static int qm_drain_qp(struct hisi_qp *qp)
2094 {
2095 	struct hisi_qm *qm = qp->qm;
2096 	struct hisi_qm *pf_qm = pci_get_drvdata(pci_physfn(qm->pdev));
2097 	u32 state = 0;
2098 	int ret;
2099 
2100 	/* No need to judge if master OOO is blocked. */
2101 	if (qm_check_dev_error(pf_qm))
2102 		return 0;
2103 
2104 	/* HW V3 supports drain qp by device */
2105 	if (test_bit(QM_SUPPORT_STOP_QP, &qm->caps)) {
2106 		ret = qm_stop_qp(qp);
2107 		if (ret) {
2108 			dev_err(&qm->pdev->dev, "Failed to stop qp!\n");
2109 			state = QM_STOP_QUEUE_FAIL;
2110 			goto set_dev_state;
2111 		}
2112 		return ret;
2113 	}
2114 
2115 	ret = qm_wait_qp_empty(qm, &state, qp->qp_id);
2116 	if (ret)
2117 		goto set_dev_state;
2118 
2119 	return 0;
2120 
2121 set_dev_state:
2122 	if (qm->debug.dev_dfx.dev_timeout)
2123 		qm->debug.dev_dfx.dev_state = state;
2124 
2125 	return ret;
2126 }
2127 
qm_stop_qp_nolock(struct hisi_qp * qp)2128 static void qm_stop_qp_nolock(struct hisi_qp *qp)
2129 {
2130 	struct hisi_qm *qm = qp->qm;
2131 	struct device *dev = &qm->pdev->dev;
2132 	int ret;
2133 
2134 	/*
2135 	 * It is allowed to stop and release qp when reset, If the qp is
2136 	 * stopped when reset but still want to be released then, the
2137 	 * is_resetting flag should be set negative so that this qp will not
2138 	 * be restarted after reset.
2139 	 */
2140 	if (atomic_read(&qp->qp_status.flags) != QP_START) {
2141 		qp->is_resetting = false;
2142 		return;
2143 	}
2144 
2145 	atomic_set(&qp->qp_status.flags, QP_STOP);
2146 
2147 	/* V3 supports direct stop function when FLR prepare */
2148 	if (qm->ver < QM_HW_V3 || qm->status.stop_reason == QM_NORMAL) {
2149 		ret = qm_drain_qp(qp);
2150 		if (ret)
2151 			dev_err(dev, "Failed to drain out data for stopping qp(%u)!\n", qp->qp_id);
2152 	}
2153 
2154 	flush_workqueue(qm->wq);
2155 	if (unlikely(qp->is_resetting && atomic_read(&qp->qp_status.used)))
2156 		qp_stop_fail_cb(qp);
2157 
2158 	dev_dbg(dev, "stop queue %u!", qp->qp_id);
2159 }
2160 
2161 /**
2162  * hisi_qm_stop_qp() - Stop a qp in qm.
2163  * @qp: The qp we want to stop.
2164  *
2165  * This function is reverse of hisi_qm_start_qp.
2166  */
hisi_qm_stop_qp(struct hisi_qp * qp)2167 void hisi_qm_stop_qp(struct hisi_qp *qp)
2168 {
2169 	down_write(&qp->qm->qps_lock);
2170 	qm_stop_qp_nolock(qp);
2171 	up_write(&qp->qm->qps_lock);
2172 }
2173 EXPORT_SYMBOL_GPL(hisi_qm_stop_qp);
2174 
2175 /**
2176  * hisi_qp_send() - Queue up a task in the hardware queue.
2177  * @qp: The qp in which to put the message.
2178  * @msg: The message.
2179  *
2180  * This function will return -EBUSY if qp is currently full, and -EAGAIN
2181  * if qp related qm is resetting.
2182  *
2183  * Note: This function may run with qm_irq_thread and ACC reset at same time.
2184  *       It has no race with qm_irq_thread. However, during hisi_qp_send, ACC
2185  *       reset may happen, we have no lock here considering performance. This
2186  *       causes current qm_db sending fail or can not receive sended sqe. QM
2187  *       sync/async receive function should handle the error sqe. ACC reset
2188  *       done function should clear used sqe to 0.
2189  */
hisi_qp_send(struct hisi_qp * qp,const void * msg)2190 int hisi_qp_send(struct hisi_qp *qp, const void *msg)
2191 {
2192 	struct hisi_qp_status *qp_status = &qp->qp_status;
2193 	u16 sq_tail = qp_status->sq_tail;
2194 	u16 sq_tail_next = (sq_tail + 1) % qp->sq_depth;
2195 	void *sqe = qm_get_avail_sqe(qp);
2196 
2197 	if (unlikely(atomic_read(&qp->qp_status.flags) == QP_STOP ||
2198 		     atomic_read(&qp->qm->status.flags) == QM_STOP ||
2199 		     qp->is_resetting)) {
2200 		dev_info_ratelimited(&qp->qm->pdev->dev, "QP is stopped or resetting\n");
2201 		return -EAGAIN;
2202 	}
2203 
2204 	if (!sqe)
2205 		return -EBUSY;
2206 
2207 	memcpy(sqe, msg, qp->qm->sqe_size);
2208 
2209 	qm_db(qp->qm, qp->qp_id, QM_DOORBELL_CMD_SQ, sq_tail_next, 0);
2210 	atomic_inc(&qp->qp_status.used);
2211 	qp_status->sq_tail = sq_tail_next;
2212 
2213 	return 0;
2214 }
2215 EXPORT_SYMBOL_GPL(hisi_qp_send);
2216 
hisi_qm_cache_wb(struct hisi_qm * qm)2217 static void hisi_qm_cache_wb(struct hisi_qm *qm)
2218 {
2219 	unsigned int val;
2220 
2221 	if (qm->ver == QM_HW_V1)
2222 		return;
2223 
2224 	writel(0x1, qm->io_base + QM_CACHE_WB_START);
2225 	if (readl_relaxed_poll_timeout(qm->io_base + QM_CACHE_WB_DONE,
2226 				       val, val & BIT(0), POLL_PERIOD,
2227 				       POLL_TIMEOUT))
2228 		dev_err(&qm->pdev->dev, "QM writeback sqc cache fail!\n");
2229 }
2230 
qm_qp_event_notifier(struct hisi_qp * qp)2231 static void qm_qp_event_notifier(struct hisi_qp *qp)
2232 {
2233 	wake_up_interruptible(&qp->uacce_q->wait);
2234 }
2235 
2236  /* This function returns free number of qp in qm. */
hisi_qm_get_available_instances(struct uacce_device * uacce)2237 static int hisi_qm_get_available_instances(struct uacce_device *uacce)
2238 {
2239 	struct hisi_qm *qm = uacce->priv;
2240 	int ret;
2241 
2242 	down_read(&qm->qps_lock);
2243 	ret = qm->qp_num - qm->qp_in_used;
2244 	up_read(&qm->qps_lock);
2245 
2246 	return ret;
2247 }
2248 
hisi_qm_set_hw_reset(struct hisi_qm * qm,int offset)2249 static void hisi_qm_set_hw_reset(struct hisi_qm *qm, int offset)
2250 {
2251 	int i;
2252 
2253 	for (i = 0; i < qm->qp_num; i++)
2254 		qm_set_qp_disable(&qm->qp_array[i], offset);
2255 }
2256 
hisi_qm_uacce_get_queue(struct uacce_device * uacce,unsigned long arg,struct uacce_queue * q)2257 static int hisi_qm_uacce_get_queue(struct uacce_device *uacce,
2258 				   unsigned long arg,
2259 				   struct uacce_queue *q)
2260 {
2261 	struct hisi_qm *qm = uacce->priv;
2262 	struct hisi_qp *qp;
2263 	u8 alg_type = 0;
2264 
2265 	qp = hisi_qm_create_qp(qm, alg_type);
2266 	if (IS_ERR(qp))
2267 		return PTR_ERR(qp);
2268 
2269 	q->priv = qp;
2270 	q->uacce = uacce;
2271 	qp->uacce_q = q;
2272 	qp->event_cb = qm_qp_event_notifier;
2273 	qp->pasid = arg;
2274 	qp->is_in_kernel = false;
2275 
2276 	return 0;
2277 }
2278 
hisi_qm_uacce_put_queue(struct uacce_queue * q)2279 static void hisi_qm_uacce_put_queue(struct uacce_queue *q)
2280 {
2281 	struct hisi_qp *qp = q->priv;
2282 
2283 	hisi_qm_release_qp(qp);
2284 }
2285 
2286 /* map sq/cq/doorbell to user space */
hisi_qm_uacce_mmap(struct uacce_queue * q,struct vm_area_struct * vma,struct uacce_qfile_region * qfr)2287 static int hisi_qm_uacce_mmap(struct uacce_queue *q,
2288 			      struct vm_area_struct *vma,
2289 			      struct uacce_qfile_region *qfr)
2290 {
2291 	struct hisi_qp *qp = q->priv;
2292 	struct hisi_qm *qm = qp->qm;
2293 	resource_size_t phys_base = qm->db_phys_base +
2294 				    qp->qp_id * qm->db_interval;
2295 	size_t sz = vma->vm_end - vma->vm_start;
2296 	struct pci_dev *pdev = qm->pdev;
2297 	struct device *dev = &pdev->dev;
2298 	unsigned long vm_pgoff;
2299 	int ret;
2300 
2301 	switch (qfr->type) {
2302 	case UACCE_QFRT_MMIO:
2303 		if (qm->ver == QM_HW_V1) {
2304 			if (sz > PAGE_SIZE * QM_DOORBELL_PAGE_NR)
2305 				return -EINVAL;
2306 		} else if (!test_bit(QM_SUPPORT_DB_ISOLATION, &qm->caps)) {
2307 			if (sz > PAGE_SIZE * (QM_DOORBELL_PAGE_NR +
2308 			    QM_DOORBELL_SQ_CQ_BASE_V2 / PAGE_SIZE))
2309 				return -EINVAL;
2310 		} else {
2311 			if (sz > qm->db_interval)
2312 				return -EINVAL;
2313 		}
2314 
2315 		vm_flags_set(vma, VM_IO);
2316 
2317 		return remap_pfn_range(vma, vma->vm_start,
2318 				       phys_base >> PAGE_SHIFT,
2319 				       sz, pgprot_noncached(vma->vm_page_prot));
2320 	case UACCE_QFRT_DUS:
2321 		if (sz != qp->qdma.size)
2322 			return -EINVAL;
2323 
2324 		/*
2325 		 * dma_mmap_coherent() requires vm_pgoff as 0
2326 		 * restore vm_pfoff to initial value for mmap()
2327 		 */
2328 		vm_pgoff = vma->vm_pgoff;
2329 		vma->vm_pgoff = 0;
2330 		ret = dma_mmap_coherent(dev, vma, qp->qdma.va,
2331 					qp->qdma.dma, sz);
2332 		vma->vm_pgoff = vm_pgoff;
2333 		return ret;
2334 
2335 	default:
2336 		return -EINVAL;
2337 	}
2338 }
2339 
hisi_qm_uacce_start_queue(struct uacce_queue * q)2340 static int hisi_qm_uacce_start_queue(struct uacce_queue *q)
2341 {
2342 	struct hisi_qp *qp = q->priv;
2343 
2344 	return hisi_qm_start_qp(qp, qp->pasid);
2345 }
2346 
hisi_qm_uacce_stop_queue(struct uacce_queue * q)2347 static void hisi_qm_uacce_stop_queue(struct uacce_queue *q)
2348 {
2349 	struct hisi_qp *qp = q->priv;
2350 	struct hisi_qm *qm = qp->qm;
2351 	struct qm_dev_dfx *dev_dfx = &qm->debug.dev_dfx;
2352 	u32 i = 0;
2353 
2354 	hisi_qm_stop_qp(qp);
2355 
2356 	if (!dev_dfx->dev_timeout || !dev_dfx->dev_state)
2357 		return;
2358 
2359 	/*
2360 	 * After the queue fails to be stopped,
2361 	 * wait for a period of time before releasing the queue.
2362 	 */
2363 	while (++i) {
2364 		msleep(WAIT_PERIOD);
2365 
2366 		/* Since dev_timeout maybe modified, check i >= dev_timeout */
2367 		if (i >= dev_dfx->dev_timeout) {
2368 			dev_err(&qm->pdev->dev, "Stop q %u timeout, state %u\n",
2369 			       qp->qp_id, dev_dfx->dev_state);
2370 			dev_dfx->dev_state = QM_FINISH_WAIT;
2371 			break;
2372 		}
2373 	}
2374 }
2375 
hisi_qm_is_q_updated(struct uacce_queue * q)2376 static int hisi_qm_is_q_updated(struct uacce_queue *q)
2377 {
2378 	struct hisi_qp *qp = q->priv;
2379 	struct qm_cqe *cqe = qp->cqe + qp->qp_status.cq_head;
2380 	int updated = 0;
2381 
2382 	while (QM_CQE_PHASE(cqe) == qp->qp_status.cqc_phase) {
2383 		/* make sure to read data from memory */
2384 		dma_rmb();
2385 		qm_cq_head_update(qp);
2386 		cqe = qp->cqe + qp->qp_status.cq_head;
2387 		updated = 1;
2388 	}
2389 
2390 	return updated;
2391 }
2392 
qm_set_sqctype(struct uacce_queue * q,u16 type)2393 static void qm_set_sqctype(struct uacce_queue *q, u16 type)
2394 {
2395 	struct hisi_qm *qm = q->uacce->priv;
2396 	struct hisi_qp *qp = q->priv;
2397 
2398 	down_write(&qm->qps_lock);
2399 	qp->alg_type = type;
2400 	up_write(&qm->qps_lock);
2401 }
2402 
hisi_qm_uacce_ioctl(struct uacce_queue * q,unsigned int cmd,unsigned long arg)2403 static long hisi_qm_uacce_ioctl(struct uacce_queue *q, unsigned int cmd,
2404 				unsigned long arg)
2405 {
2406 	struct hisi_qp *qp = q->priv;
2407 	struct hisi_qp_info qp_info;
2408 	struct hisi_qp_ctx qp_ctx;
2409 
2410 	if (cmd == UACCE_CMD_QM_SET_QP_CTX) {
2411 		if (copy_from_user(&qp_ctx, (void __user *)arg,
2412 				   sizeof(struct hisi_qp_ctx)))
2413 			return -EFAULT;
2414 
2415 		if (qp_ctx.qc_type != 0 && qp_ctx.qc_type != 1)
2416 			return -EINVAL;
2417 
2418 		qm_set_sqctype(q, qp_ctx.qc_type);
2419 		qp_ctx.id = qp->qp_id;
2420 
2421 		if (copy_to_user((void __user *)arg, &qp_ctx,
2422 				 sizeof(struct hisi_qp_ctx)))
2423 			return -EFAULT;
2424 
2425 		return 0;
2426 	} else if (cmd == UACCE_CMD_QM_SET_QP_INFO) {
2427 		if (copy_from_user(&qp_info, (void __user *)arg,
2428 				   sizeof(struct hisi_qp_info)))
2429 			return -EFAULT;
2430 
2431 		qp_info.sqe_size = qp->qm->sqe_size;
2432 		qp_info.sq_depth = qp->sq_depth;
2433 		qp_info.cq_depth = qp->cq_depth;
2434 
2435 		if (copy_to_user((void __user *)arg, &qp_info,
2436 				  sizeof(struct hisi_qp_info)))
2437 			return -EFAULT;
2438 
2439 		return 0;
2440 	}
2441 
2442 	return -EINVAL;
2443 }
2444 
2445 /**
2446  * qm_hw_err_isolate() - Try to set the isolation status of the uacce device
2447  * according to user's configuration of error threshold.
2448  * @qm: the uacce device
2449  */
qm_hw_err_isolate(struct hisi_qm * qm)2450 static int qm_hw_err_isolate(struct hisi_qm *qm)
2451 {
2452 	struct qm_hw_err *err, *tmp, *hw_err;
2453 	struct qm_err_isolate *isolate;
2454 	u32 count = 0;
2455 
2456 	isolate = &qm->isolate_data;
2457 
2458 #define SECONDS_PER_HOUR	3600
2459 
2460 	/* All the hw errs are processed by PF driver */
2461 	if (qm->uacce->is_vf || isolate->is_isolate || !isolate->err_threshold)
2462 		return 0;
2463 
2464 	hw_err = kzalloc(sizeof(*hw_err), GFP_KERNEL);
2465 	if (!hw_err)
2466 		return -ENOMEM;
2467 
2468 	/*
2469 	 * Time-stamp every slot AER error. Then check the AER error log when the
2470 	 * next device AER error occurred. if the device slot AER error count exceeds
2471 	 * the setting error threshold in one hour, the isolated state will be set
2472 	 * to true. And the AER error logs that exceed one hour will be cleared.
2473 	 */
2474 	mutex_lock(&isolate->isolate_lock);
2475 	hw_err->timestamp = jiffies;
2476 	list_for_each_entry_safe(err, tmp, &isolate->qm_hw_errs, list) {
2477 		if ((hw_err->timestamp - err->timestamp) / HZ >
2478 		    SECONDS_PER_HOUR) {
2479 			list_del(&err->list);
2480 			kfree(err);
2481 		} else {
2482 			count++;
2483 		}
2484 	}
2485 	list_add(&hw_err->list, &isolate->qm_hw_errs);
2486 	mutex_unlock(&isolate->isolate_lock);
2487 
2488 	if (count >= isolate->err_threshold)
2489 		isolate->is_isolate = true;
2490 
2491 	return 0;
2492 }
2493 
qm_hw_err_destroy(struct hisi_qm * qm)2494 static void qm_hw_err_destroy(struct hisi_qm *qm)
2495 {
2496 	struct qm_hw_err *err, *tmp;
2497 
2498 	mutex_lock(&qm->isolate_data.isolate_lock);
2499 	list_for_each_entry_safe(err, tmp, &qm->isolate_data.qm_hw_errs, list) {
2500 		list_del(&err->list);
2501 		kfree(err);
2502 	}
2503 	mutex_unlock(&qm->isolate_data.isolate_lock);
2504 }
2505 
hisi_qm_get_isolate_state(struct uacce_device * uacce)2506 static enum uacce_dev_state hisi_qm_get_isolate_state(struct uacce_device *uacce)
2507 {
2508 	struct hisi_qm *qm = uacce->priv;
2509 	struct hisi_qm *pf_qm;
2510 
2511 	if (uacce->is_vf)
2512 		pf_qm = pci_get_drvdata(pci_physfn(qm->pdev));
2513 	else
2514 		pf_qm = qm;
2515 
2516 	return pf_qm->isolate_data.is_isolate ?
2517 			UACCE_DEV_ISOLATE : UACCE_DEV_NORMAL;
2518 }
2519 
hisi_qm_isolate_threshold_write(struct uacce_device * uacce,u32 num)2520 static int hisi_qm_isolate_threshold_write(struct uacce_device *uacce, u32 num)
2521 {
2522 	struct hisi_qm *qm = uacce->priv;
2523 
2524 	/* Must be set by PF */
2525 	if (uacce->is_vf)
2526 		return -EPERM;
2527 
2528 	if (qm->isolate_data.is_isolate)
2529 		return -EPERM;
2530 
2531 	qm->isolate_data.err_threshold = num;
2532 
2533 	/* After the policy is updated, need to reset the hardware err list */
2534 	qm_hw_err_destroy(qm);
2535 
2536 	return 0;
2537 }
2538 
hisi_qm_isolate_threshold_read(struct uacce_device * uacce)2539 static u32 hisi_qm_isolate_threshold_read(struct uacce_device *uacce)
2540 {
2541 	struct hisi_qm *qm = uacce->priv;
2542 	struct hisi_qm *pf_qm;
2543 
2544 	if (uacce->is_vf) {
2545 		pf_qm = pci_get_drvdata(pci_physfn(qm->pdev));
2546 		return pf_qm->isolate_data.err_threshold;
2547 	}
2548 
2549 	return qm->isolate_data.err_threshold;
2550 }
2551 
2552 static const struct uacce_ops uacce_qm_ops = {
2553 	.get_available_instances = hisi_qm_get_available_instances,
2554 	.get_queue = hisi_qm_uacce_get_queue,
2555 	.put_queue = hisi_qm_uacce_put_queue,
2556 	.start_queue = hisi_qm_uacce_start_queue,
2557 	.stop_queue = hisi_qm_uacce_stop_queue,
2558 	.mmap = hisi_qm_uacce_mmap,
2559 	.ioctl = hisi_qm_uacce_ioctl,
2560 	.is_q_updated = hisi_qm_is_q_updated,
2561 	.get_isolate_state = hisi_qm_get_isolate_state,
2562 	.isolate_err_threshold_write = hisi_qm_isolate_threshold_write,
2563 	.isolate_err_threshold_read = hisi_qm_isolate_threshold_read,
2564 };
2565 
qm_remove_uacce(struct hisi_qm * qm)2566 static void qm_remove_uacce(struct hisi_qm *qm)
2567 {
2568 	struct uacce_device *uacce = qm->uacce;
2569 
2570 	if (qm->use_sva) {
2571 		qm_hw_err_destroy(qm);
2572 		uacce_remove(uacce);
2573 		qm->uacce = NULL;
2574 	}
2575 }
2576 
qm_alloc_uacce(struct hisi_qm * qm)2577 static int qm_alloc_uacce(struct hisi_qm *qm)
2578 {
2579 	struct pci_dev *pdev = qm->pdev;
2580 	struct uacce_device *uacce;
2581 	unsigned long mmio_page_nr;
2582 	unsigned long dus_page_nr;
2583 	u16 sq_depth, cq_depth;
2584 	struct uacce_interface interface = {
2585 		.flags = UACCE_DEV_SVA,
2586 		.ops = &uacce_qm_ops,
2587 	};
2588 	int ret;
2589 
2590 	ret = strscpy(interface.name, dev_driver_string(&pdev->dev),
2591 		      sizeof(interface.name));
2592 	if (ret < 0)
2593 		return -ENAMETOOLONG;
2594 
2595 	uacce = uacce_alloc(&pdev->dev, &interface);
2596 	if (IS_ERR(uacce))
2597 		return PTR_ERR(uacce);
2598 
2599 	if (uacce->flags & UACCE_DEV_SVA) {
2600 		qm->use_sva = true;
2601 	} else {
2602 		/* only consider sva case */
2603 		qm_remove_uacce(qm);
2604 		return -EINVAL;
2605 	}
2606 
2607 	uacce->is_vf = pdev->is_virtfn;
2608 	uacce->priv = qm;
2609 
2610 	if (qm->ver == QM_HW_V1)
2611 		uacce->api_ver = HISI_QM_API_VER_BASE;
2612 	else if (qm->ver == QM_HW_V2)
2613 		uacce->api_ver = HISI_QM_API_VER2_BASE;
2614 	else
2615 		uacce->api_ver = HISI_QM_API_VER3_BASE;
2616 
2617 	if (qm->ver == QM_HW_V1)
2618 		mmio_page_nr = QM_DOORBELL_PAGE_NR;
2619 	else if (!test_bit(QM_SUPPORT_DB_ISOLATION, &qm->caps))
2620 		mmio_page_nr = QM_DOORBELL_PAGE_NR +
2621 			QM_DOORBELL_SQ_CQ_BASE_V2 / PAGE_SIZE;
2622 	else
2623 		mmio_page_nr = qm->db_interval / PAGE_SIZE;
2624 
2625 	qm_get_xqc_depth(qm, &sq_depth, &cq_depth, QM_QP_DEPTH_CAP);
2626 
2627 	/* Add one more page for device or qp status */
2628 	dus_page_nr = (PAGE_SIZE - 1 + qm->sqe_size * sq_depth +
2629 		       sizeof(struct qm_cqe) * cq_depth  + PAGE_SIZE) >>
2630 					 PAGE_SHIFT;
2631 
2632 	uacce->qf_pg_num[UACCE_QFRT_MMIO] = mmio_page_nr;
2633 	uacce->qf_pg_num[UACCE_QFRT_DUS]  = dus_page_nr;
2634 
2635 	qm->uacce = uacce;
2636 	INIT_LIST_HEAD(&qm->isolate_data.qm_hw_errs);
2637 	mutex_init(&qm->isolate_data.isolate_lock);
2638 
2639 	return 0;
2640 }
2641 
2642 /**
2643  * qm_frozen() - Try to froze QM to cut continuous queue request. If
2644  * there is user on the QM, return failure without doing anything.
2645  * @qm: The qm needed to be fronzen.
2646  *
2647  * This function frozes QM, then we can do SRIOV disabling.
2648  */
qm_frozen(struct hisi_qm * qm)2649 static int qm_frozen(struct hisi_qm *qm)
2650 {
2651 	if (test_bit(QM_DRIVER_REMOVING, &qm->misc_ctl))
2652 		return 0;
2653 
2654 	down_write(&qm->qps_lock);
2655 
2656 	if (!qm->qp_in_used) {
2657 		qm->qp_in_used = qm->qp_num;
2658 		up_write(&qm->qps_lock);
2659 		set_bit(QM_DRIVER_REMOVING, &qm->misc_ctl);
2660 		return 0;
2661 	}
2662 
2663 	up_write(&qm->qps_lock);
2664 
2665 	return -EBUSY;
2666 }
2667 
qm_try_frozen_vfs(struct pci_dev * pdev,struct hisi_qm_list * qm_list)2668 static int qm_try_frozen_vfs(struct pci_dev *pdev,
2669 			     struct hisi_qm_list *qm_list)
2670 {
2671 	struct hisi_qm *qm, *vf_qm;
2672 	struct pci_dev *dev;
2673 	int ret = 0;
2674 
2675 	if (!qm_list || !pdev)
2676 		return -EINVAL;
2677 
2678 	/* Try to frozen all the VFs as disable SRIOV */
2679 	mutex_lock(&qm_list->lock);
2680 	list_for_each_entry(qm, &qm_list->list, list) {
2681 		dev = qm->pdev;
2682 		if (dev == pdev)
2683 			continue;
2684 		if (pci_physfn(dev) == pdev) {
2685 			vf_qm = pci_get_drvdata(dev);
2686 			ret = qm_frozen(vf_qm);
2687 			if (ret)
2688 				goto frozen_fail;
2689 		}
2690 	}
2691 
2692 frozen_fail:
2693 	mutex_unlock(&qm_list->lock);
2694 
2695 	return ret;
2696 }
2697 
2698 /**
2699  * hisi_qm_wait_task_finish() - Wait until the task is finished
2700  * when removing the driver.
2701  * @qm: The qm needed to wait for the task to finish.
2702  * @qm_list: The list of all available devices.
2703  */
hisi_qm_wait_task_finish(struct hisi_qm * qm,struct hisi_qm_list * qm_list)2704 void hisi_qm_wait_task_finish(struct hisi_qm *qm, struct hisi_qm_list *qm_list)
2705 {
2706 	while (qm_frozen(qm) ||
2707 	       ((qm->fun_type == QM_HW_PF) &&
2708 	       qm_try_frozen_vfs(qm->pdev, qm_list))) {
2709 		msleep(WAIT_PERIOD);
2710 	}
2711 
2712 	while (test_bit(QM_RST_SCHED, &qm->misc_ctl) ||
2713 	       test_bit(QM_RESETTING, &qm->misc_ctl))
2714 		msleep(WAIT_PERIOD);
2715 
2716 	if (test_bit(QM_SUPPORT_MB_COMMAND, &qm->caps))
2717 		flush_work(&qm->cmd_process);
2718 
2719 	udelay(REMOVE_WAIT_DELAY);
2720 }
2721 EXPORT_SYMBOL_GPL(hisi_qm_wait_task_finish);
2722 
hisi_qp_memory_uninit(struct hisi_qm * qm,int num)2723 static void hisi_qp_memory_uninit(struct hisi_qm *qm, int num)
2724 {
2725 	struct device *dev = &qm->pdev->dev;
2726 	struct qm_dma *qdma;
2727 	int i;
2728 
2729 	for (i = num - 1; i >= 0; i--) {
2730 		qdma = &qm->qp_array[i].qdma;
2731 		dma_free_coherent(dev, qdma->size, qdma->va, qdma->dma);
2732 		kfree(qm->poll_data[i].qp_finish_id);
2733 	}
2734 
2735 	kfree(qm->poll_data);
2736 	kfree(qm->qp_array);
2737 }
2738 
hisi_qp_memory_init(struct hisi_qm * qm,size_t dma_size,int id,u16 sq_depth,u16 cq_depth)2739 static int hisi_qp_memory_init(struct hisi_qm *qm, size_t dma_size, int id,
2740 			       u16 sq_depth, u16 cq_depth)
2741 {
2742 	struct device *dev = &qm->pdev->dev;
2743 	size_t off = qm->sqe_size * sq_depth;
2744 	struct hisi_qp *qp;
2745 	int ret = -ENOMEM;
2746 
2747 	qm->poll_data[id].qp_finish_id = kcalloc(qm->qp_num, sizeof(u16),
2748 						 GFP_KERNEL);
2749 	if (!qm->poll_data[id].qp_finish_id)
2750 		return -ENOMEM;
2751 
2752 	qp = &qm->qp_array[id];
2753 	qp->qdma.va = dma_alloc_coherent(dev, dma_size, &qp->qdma.dma,
2754 					 GFP_KERNEL);
2755 	if (!qp->qdma.va)
2756 		goto err_free_qp_finish_id;
2757 
2758 	qp->sqe = qp->qdma.va;
2759 	qp->sqe_dma = qp->qdma.dma;
2760 	qp->cqe = qp->qdma.va + off;
2761 	qp->cqe_dma = qp->qdma.dma + off;
2762 	qp->qdma.size = dma_size;
2763 	qp->sq_depth = sq_depth;
2764 	qp->cq_depth = cq_depth;
2765 	qp->qm = qm;
2766 	qp->qp_id = id;
2767 
2768 	return 0;
2769 
2770 err_free_qp_finish_id:
2771 	kfree(qm->poll_data[id].qp_finish_id);
2772 	return ret;
2773 }
2774 
hisi_qm_pre_init(struct hisi_qm * qm)2775 static void hisi_qm_pre_init(struct hisi_qm *qm)
2776 {
2777 	struct pci_dev *pdev = qm->pdev;
2778 
2779 	if (qm->ver == QM_HW_V1)
2780 		qm->ops = &qm_hw_ops_v1;
2781 	else if (qm->ver == QM_HW_V2)
2782 		qm->ops = &qm_hw_ops_v2;
2783 	else
2784 		qm->ops = &qm_hw_ops_v3;
2785 
2786 	pci_set_drvdata(pdev, qm);
2787 	mutex_init(&qm->mailbox_lock);
2788 	init_rwsem(&qm->qps_lock);
2789 	qm->qp_in_used = 0;
2790 	if (test_bit(QM_SUPPORT_RPM, &qm->caps)) {
2791 		if (!acpi_device_power_manageable(ACPI_COMPANION(&pdev->dev)))
2792 			dev_info(&pdev->dev, "_PS0 and _PR0 are not defined");
2793 	}
2794 }
2795 
qm_cmd_uninit(struct hisi_qm * qm)2796 static void qm_cmd_uninit(struct hisi_qm *qm)
2797 {
2798 	u32 val;
2799 
2800 	if (!test_bit(QM_SUPPORT_MB_COMMAND, &qm->caps))
2801 		return;
2802 
2803 	val = readl(qm->io_base + QM_IFC_INT_MASK);
2804 	val |= QM_IFC_INT_DISABLE;
2805 	writel(val, qm->io_base + QM_IFC_INT_MASK);
2806 }
2807 
qm_cmd_init(struct hisi_qm * qm)2808 static void qm_cmd_init(struct hisi_qm *qm)
2809 {
2810 	u32 val;
2811 
2812 	if (!test_bit(QM_SUPPORT_MB_COMMAND, &qm->caps))
2813 		return;
2814 
2815 	/* Clear communication interrupt source */
2816 	qm_clear_cmd_interrupt(qm, QM_IFC_INT_SOURCE_CLR);
2817 
2818 	/* Enable pf to vf communication reg. */
2819 	val = readl(qm->io_base + QM_IFC_INT_MASK);
2820 	val &= ~QM_IFC_INT_DISABLE;
2821 	writel(val, qm->io_base + QM_IFC_INT_MASK);
2822 }
2823 
qm_put_pci_res(struct hisi_qm * qm)2824 static void qm_put_pci_res(struct hisi_qm *qm)
2825 {
2826 	struct pci_dev *pdev = qm->pdev;
2827 
2828 	if (test_bit(QM_SUPPORT_DB_ISOLATION, &qm->caps))
2829 		iounmap(qm->db_io_base);
2830 
2831 	iounmap(qm->io_base);
2832 	pci_release_mem_regions(pdev);
2833 }
2834 
hisi_qm_pci_uninit(struct hisi_qm * qm)2835 static void hisi_qm_pci_uninit(struct hisi_qm *qm)
2836 {
2837 	struct pci_dev *pdev = qm->pdev;
2838 
2839 	pci_free_irq_vectors(pdev);
2840 	qm_put_pci_res(qm);
2841 	pci_disable_device(pdev);
2842 }
2843 
hisi_qm_set_state(struct hisi_qm * qm,u8 state)2844 static void hisi_qm_set_state(struct hisi_qm *qm, u8 state)
2845 {
2846 	if (qm->ver > QM_HW_V2 && qm->fun_type == QM_HW_VF)
2847 		writel(state, qm->io_base + QM_VF_STATE);
2848 }
2849 
hisi_qm_unint_work(struct hisi_qm * qm)2850 static void hisi_qm_unint_work(struct hisi_qm *qm)
2851 {
2852 	destroy_workqueue(qm->wq);
2853 }
2854 
hisi_qm_free_rsv_buf(struct hisi_qm * qm)2855 static void hisi_qm_free_rsv_buf(struct hisi_qm *qm)
2856 {
2857 	struct qm_dma *xqc_dma = &qm->xqc_buf.qcdma;
2858 	struct device *dev = &qm->pdev->dev;
2859 
2860 	dma_free_coherent(dev, xqc_dma->size, xqc_dma->va, xqc_dma->dma);
2861 }
2862 
hisi_qm_memory_uninit(struct hisi_qm * qm)2863 static void hisi_qm_memory_uninit(struct hisi_qm *qm)
2864 {
2865 	struct device *dev = &qm->pdev->dev;
2866 
2867 	hisi_qp_memory_uninit(qm, qm->qp_num);
2868 	hisi_qm_free_rsv_buf(qm);
2869 	if (qm->qdma.va) {
2870 		hisi_qm_cache_wb(qm);
2871 		dma_free_coherent(dev, qm->qdma.size,
2872 				  qm->qdma.va, qm->qdma.dma);
2873 	}
2874 
2875 	idr_destroy(&qm->qp_idr);
2876 
2877 	if (test_bit(QM_SUPPORT_FUNC_QOS, &qm->caps))
2878 		kfree(qm->factor);
2879 }
2880 
2881 /**
2882  * hisi_qm_uninit() - Uninitialize qm.
2883  * @qm: The qm needed uninit.
2884  *
2885  * This function uninits qm related device resources.
2886  */
hisi_qm_uninit(struct hisi_qm * qm)2887 void hisi_qm_uninit(struct hisi_qm *qm)
2888 {
2889 	qm_cmd_uninit(qm);
2890 	hisi_qm_unint_work(qm);
2891 
2892 	down_write(&qm->qps_lock);
2893 	hisi_qm_memory_uninit(qm);
2894 	hisi_qm_set_state(qm, QM_NOT_READY);
2895 	up_write(&qm->qps_lock);
2896 
2897 	qm_remove_uacce(qm);
2898 	qm_irqs_unregister(qm);
2899 	hisi_qm_pci_uninit(qm);
2900 }
2901 EXPORT_SYMBOL_GPL(hisi_qm_uninit);
2902 
2903 /**
2904  * hisi_qm_get_vft() - Get vft from a qm.
2905  * @qm: The qm we want to get its vft.
2906  * @base: The base number of queue in vft.
2907  * @number: The number of queues in vft.
2908  *
2909  * We can allocate multiple queues to a qm by configuring virtual function
2910  * table. We get related configures by this function. Normally, we call this
2911  * function in VF driver to get the queue information.
2912  *
2913  * qm hw v1 does not support this interface.
2914  */
hisi_qm_get_vft(struct hisi_qm * qm,u32 * base,u32 * number)2915 static int hisi_qm_get_vft(struct hisi_qm *qm, u32 *base, u32 *number)
2916 {
2917 	if (!base || !number)
2918 		return -EINVAL;
2919 
2920 	if (!qm->ops->get_vft) {
2921 		dev_err(&qm->pdev->dev, "Don't support vft read!\n");
2922 		return -EINVAL;
2923 	}
2924 
2925 	return qm->ops->get_vft(qm, base, number);
2926 }
2927 
2928 /**
2929  * hisi_qm_set_vft() - Set vft to a qm.
2930  * @qm: The qm we want to set its vft.
2931  * @fun_num: The function number.
2932  * @base: The base number of queue in vft.
2933  * @number: The number of queues in vft.
2934  *
2935  * This function is alway called in PF driver, it is used to assign queues
2936  * among PF and VFs.
2937  *
2938  * Assign queues A~B to PF: hisi_qm_set_vft(qm, 0, A, B - A + 1)
2939  * Assign queues A~B to VF: hisi_qm_set_vft(qm, 2, A, B - A + 1)
2940  * (VF function number 0x2)
2941  */
hisi_qm_set_vft(struct hisi_qm * qm,u32 fun_num,u32 base,u32 number)2942 static int hisi_qm_set_vft(struct hisi_qm *qm, u32 fun_num, u32 base,
2943 		    u32 number)
2944 {
2945 	u32 max_q_num = qm->ctrl_qp_num;
2946 
2947 	if (base >= max_q_num || number > max_q_num ||
2948 	    (base + number) > max_q_num)
2949 		return -EINVAL;
2950 
2951 	return qm_set_sqc_cqc_vft(qm, fun_num, base, number);
2952 }
2953 
qm_init_eq_aeq_status(struct hisi_qm * qm)2954 static void qm_init_eq_aeq_status(struct hisi_qm *qm)
2955 {
2956 	struct hisi_qm_status *status = &qm->status;
2957 
2958 	status->eq_head = 0;
2959 	status->aeq_head = 0;
2960 	status->eqc_phase = true;
2961 	status->aeqc_phase = true;
2962 }
2963 
qm_enable_eq_aeq_interrupts(struct hisi_qm * qm)2964 static void qm_enable_eq_aeq_interrupts(struct hisi_qm *qm)
2965 {
2966 	/* Clear eq/aeq interrupt source */
2967 	qm_db(qm, 0, QM_DOORBELL_CMD_AEQ, qm->status.aeq_head, 0);
2968 	qm_db(qm, 0, QM_DOORBELL_CMD_EQ, qm->status.eq_head, 0);
2969 
2970 	writel(0x0, qm->io_base + QM_VF_EQ_INT_MASK);
2971 	writel(0x0, qm->io_base + QM_VF_AEQ_INT_MASK);
2972 }
2973 
qm_disable_eq_aeq_interrupts(struct hisi_qm * qm)2974 static void qm_disable_eq_aeq_interrupts(struct hisi_qm *qm)
2975 {
2976 	writel(0x1, qm->io_base + QM_VF_EQ_INT_MASK);
2977 	writel(0x1, qm->io_base + QM_VF_AEQ_INT_MASK);
2978 }
2979 
qm_eq_ctx_cfg(struct hisi_qm * qm)2980 static int qm_eq_ctx_cfg(struct hisi_qm *qm)
2981 {
2982 	struct qm_eqc eqc = {0};
2983 
2984 	eqc.base_l = cpu_to_le32(lower_32_bits(qm->eqe_dma));
2985 	eqc.base_h = cpu_to_le32(upper_32_bits(qm->eqe_dma));
2986 	if (qm->ver == QM_HW_V1)
2987 		eqc.dw3 = cpu_to_le32(QM_EQE_AEQE_SIZE);
2988 	eqc.dw6 = cpu_to_le32(((u32)qm->eq_depth - 1) | (1 << QM_EQC_PHASE_SHIFT));
2989 
2990 	return qm_set_and_get_xqc(qm, QM_MB_CMD_EQC, &eqc, 0, 0);
2991 }
2992 
qm_aeq_ctx_cfg(struct hisi_qm * qm)2993 static int qm_aeq_ctx_cfg(struct hisi_qm *qm)
2994 {
2995 	struct qm_aeqc aeqc = {0};
2996 
2997 	aeqc.base_l = cpu_to_le32(lower_32_bits(qm->aeqe_dma));
2998 	aeqc.base_h = cpu_to_le32(upper_32_bits(qm->aeqe_dma));
2999 	aeqc.dw6 = cpu_to_le32(((u32)qm->aeq_depth - 1) | (1 << QM_EQC_PHASE_SHIFT));
3000 
3001 	return qm_set_and_get_xqc(qm, QM_MB_CMD_AEQC, &aeqc, 0, 0);
3002 }
3003 
qm_eq_aeq_ctx_cfg(struct hisi_qm * qm)3004 static int qm_eq_aeq_ctx_cfg(struct hisi_qm *qm)
3005 {
3006 	struct device *dev = &qm->pdev->dev;
3007 	int ret;
3008 
3009 	qm_init_eq_aeq_status(qm);
3010 
3011 	ret = qm_eq_ctx_cfg(qm);
3012 	if (ret) {
3013 		dev_err(dev, "Set eqc failed!\n");
3014 		return ret;
3015 	}
3016 
3017 	return qm_aeq_ctx_cfg(qm);
3018 }
3019 
__hisi_qm_start(struct hisi_qm * qm)3020 static int __hisi_qm_start(struct hisi_qm *qm)
3021 {
3022 	int ret;
3023 
3024 	WARN_ON(!qm->qdma.va);
3025 
3026 	if (qm->fun_type == QM_HW_PF) {
3027 		ret = hisi_qm_set_vft(qm, 0, qm->qp_base, qm->qp_num);
3028 		if (ret)
3029 			return ret;
3030 	}
3031 
3032 	ret = qm_eq_aeq_ctx_cfg(qm);
3033 	if (ret)
3034 		return ret;
3035 
3036 	ret = hisi_qm_mb(qm, QM_MB_CMD_SQC_BT, qm->sqc_dma, 0, 0);
3037 	if (ret)
3038 		return ret;
3039 
3040 	ret = hisi_qm_mb(qm, QM_MB_CMD_CQC_BT, qm->cqc_dma, 0, 0);
3041 	if (ret)
3042 		return ret;
3043 
3044 	qm_init_prefetch(qm);
3045 	qm_enable_eq_aeq_interrupts(qm);
3046 
3047 	return 0;
3048 }
3049 
3050 /**
3051  * hisi_qm_start() - start qm
3052  * @qm: The qm to be started.
3053  *
3054  * This function starts a qm, then we can allocate qp from this qm.
3055  */
hisi_qm_start(struct hisi_qm * qm)3056 int hisi_qm_start(struct hisi_qm *qm)
3057 {
3058 	struct device *dev = &qm->pdev->dev;
3059 	int ret = 0;
3060 
3061 	down_write(&qm->qps_lock);
3062 
3063 	dev_dbg(dev, "qm start with %u queue pairs\n", qm->qp_num);
3064 
3065 	if (!qm->qp_num) {
3066 		dev_err(dev, "qp_num should not be 0\n");
3067 		ret = -EINVAL;
3068 		goto err_unlock;
3069 	}
3070 
3071 	ret = __hisi_qm_start(qm);
3072 	if (ret)
3073 		goto err_unlock;
3074 
3075 	atomic_set(&qm->status.flags, QM_WORK);
3076 	hisi_qm_set_state(qm, QM_READY);
3077 
3078 err_unlock:
3079 	up_write(&qm->qps_lock);
3080 	return ret;
3081 }
3082 EXPORT_SYMBOL_GPL(hisi_qm_start);
3083 
qm_restart(struct hisi_qm * qm)3084 static int qm_restart(struct hisi_qm *qm)
3085 {
3086 	struct device *dev = &qm->pdev->dev;
3087 	struct hisi_qp *qp;
3088 	int ret, i;
3089 
3090 	ret = hisi_qm_start(qm);
3091 	if (ret < 0)
3092 		return ret;
3093 
3094 	down_write(&qm->qps_lock);
3095 	for (i = 0; i < qm->qp_num; i++) {
3096 		qp = &qm->qp_array[i];
3097 		if (atomic_read(&qp->qp_status.flags) == QP_STOP &&
3098 		    qp->is_resetting == true) {
3099 			ret = qm_start_qp_nolock(qp, 0);
3100 			if (ret < 0) {
3101 				dev_err(dev, "Failed to start qp%d!\n", i);
3102 
3103 				up_write(&qm->qps_lock);
3104 				return ret;
3105 			}
3106 			qp->is_resetting = false;
3107 		}
3108 	}
3109 	up_write(&qm->qps_lock);
3110 
3111 	return 0;
3112 }
3113 
3114 /* Stop started qps in reset flow */
qm_stop_started_qp(struct hisi_qm * qm)3115 static void qm_stop_started_qp(struct hisi_qm *qm)
3116 {
3117 	struct hisi_qp *qp;
3118 	int i;
3119 
3120 	for (i = 0; i < qm->qp_num; i++) {
3121 		qp = &qm->qp_array[i];
3122 		if (atomic_read(&qp->qp_status.flags) == QP_START) {
3123 			qp->is_resetting = true;
3124 			qm_stop_qp_nolock(qp);
3125 		}
3126 	}
3127 }
3128 
3129 /**
3130  * qm_clear_queues() - Clear all queues memory in a qm.
3131  * @qm: The qm in which the queues will be cleared.
3132  *
3133  * This function clears all queues memory in a qm. Reset of accelerator can
3134  * use this to clear queues.
3135  */
qm_clear_queues(struct hisi_qm * qm)3136 static void qm_clear_queues(struct hisi_qm *qm)
3137 {
3138 	struct hisi_qp *qp;
3139 	int i;
3140 
3141 	for (i = 0; i < qm->qp_num; i++) {
3142 		qp = &qm->qp_array[i];
3143 		if (qp->is_in_kernel && qp->is_resetting)
3144 			memset(qp->qdma.va, 0, qp->qdma.size);
3145 	}
3146 
3147 	memset(qm->qdma.va, 0, qm->qdma.size);
3148 }
3149 
3150 /**
3151  * hisi_qm_stop() - Stop a qm.
3152  * @qm: The qm which will be stopped.
3153  * @r: The reason to stop qm.
3154  *
3155  * This function stops qm and its qps, then qm can not accept request.
3156  * Related resources are not released at this state, we can use hisi_qm_start
3157  * to let qm start again.
3158  */
hisi_qm_stop(struct hisi_qm * qm,enum qm_stop_reason r)3159 int hisi_qm_stop(struct hisi_qm *qm, enum qm_stop_reason r)
3160 {
3161 	struct device *dev = &qm->pdev->dev;
3162 	int ret = 0;
3163 
3164 	down_write(&qm->qps_lock);
3165 
3166 	if (atomic_read(&qm->status.flags) == QM_STOP)
3167 		goto err_unlock;
3168 
3169 	/* Stop all the request sending at first. */
3170 	atomic_set(&qm->status.flags, QM_STOP);
3171 	qm->status.stop_reason = r;
3172 
3173 	if (qm->status.stop_reason != QM_NORMAL) {
3174 		hisi_qm_set_hw_reset(qm, QM_RESET_STOP_TX_OFFSET);
3175 		/*
3176 		 * When performing soft reset, the hardware will no longer
3177 		 * do tasks, and the tasks in the device will be flushed
3178 		 * out directly since the master ooo is closed.
3179 		 */
3180 		if (test_bit(QM_SUPPORT_STOP_FUNC, &qm->caps) &&
3181 		    r != QM_SOFT_RESET) {
3182 			ret = qm_drain_qm(qm);
3183 			if (ret) {
3184 				dev_err(dev, "failed to drain qm!\n");
3185 				goto err_unlock;
3186 			}
3187 		}
3188 
3189 		qm_stop_started_qp(qm);
3190 
3191 		hisi_qm_set_hw_reset(qm, QM_RESET_STOP_RX_OFFSET);
3192 	}
3193 
3194 	qm_disable_eq_aeq_interrupts(qm);
3195 	if (qm->fun_type == QM_HW_PF) {
3196 		ret = hisi_qm_set_vft(qm, 0, 0, 0);
3197 		if (ret < 0) {
3198 			dev_err(dev, "Failed to set vft!\n");
3199 			ret = -EBUSY;
3200 			goto err_unlock;
3201 		}
3202 	}
3203 
3204 	qm_clear_queues(qm);
3205 	qm->status.stop_reason = QM_NORMAL;
3206 
3207 err_unlock:
3208 	up_write(&qm->qps_lock);
3209 	return ret;
3210 }
3211 EXPORT_SYMBOL_GPL(hisi_qm_stop);
3212 
qm_hw_error_init(struct hisi_qm * qm)3213 static void qm_hw_error_init(struct hisi_qm *qm)
3214 {
3215 	if (!qm->ops->hw_error_init) {
3216 		dev_err(&qm->pdev->dev, "QM doesn't support hw error handling!\n");
3217 		return;
3218 	}
3219 
3220 	qm->ops->hw_error_init(qm);
3221 }
3222 
qm_hw_error_uninit(struct hisi_qm * qm)3223 static void qm_hw_error_uninit(struct hisi_qm *qm)
3224 {
3225 	if (!qm->ops->hw_error_uninit) {
3226 		dev_err(&qm->pdev->dev, "Unexpected QM hw error uninit!\n");
3227 		return;
3228 	}
3229 
3230 	qm->ops->hw_error_uninit(qm);
3231 }
3232 
qm_hw_error_handle(struct hisi_qm * qm)3233 static enum acc_err_result qm_hw_error_handle(struct hisi_qm *qm)
3234 {
3235 	if (!qm->ops->hw_error_handle) {
3236 		dev_err(&qm->pdev->dev, "QM doesn't support hw error report!\n");
3237 		return ACC_ERR_NONE;
3238 	}
3239 
3240 	return qm->ops->hw_error_handle(qm);
3241 }
3242 
3243 /**
3244  * hisi_qm_dev_err_init() - Initialize device error configuration.
3245  * @qm: The qm for which we want to do error initialization.
3246  *
3247  * Initialize QM and device error related configuration.
3248  */
hisi_qm_dev_err_init(struct hisi_qm * qm)3249 void hisi_qm_dev_err_init(struct hisi_qm *qm)
3250 {
3251 	if (qm->fun_type == QM_HW_VF)
3252 		return;
3253 
3254 	qm_hw_error_init(qm);
3255 
3256 	if (!qm->err_ini->hw_err_enable) {
3257 		dev_err(&qm->pdev->dev, "Device doesn't support hw error init!\n");
3258 		return;
3259 	}
3260 	qm->err_ini->hw_err_enable(qm);
3261 }
3262 EXPORT_SYMBOL_GPL(hisi_qm_dev_err_init);
3263 
3264 /**
3265  * hisi_qm_dev_err_uninit() - Uninitialize device error configuration.
3266  * @qm: The qm for which we want to do error uninitialization.
3267  *
3268  * Uninitialize QM and device error related configuration.
3269  */
hisi_qm_dev_err_uninit(struct hisi_qm * qm)3270 void hisi_qm_dev_err_uninit(struct hisi_qm *qm)
3271 {
3272 	if (qm->fun_type == QM_HW_VF)
3273 		return;
3274 
3275 	qm_hw_error_uninit(qm);
3276 
3277 	if (!qm->err_ini->hw_err_disable) {
3278 		dev_err(&qm->pdev->dev, "Unexpected device hw error uninit!\n");
3279 		return;
3280 	}
3281 	qm->err_ini->hw_err_disable(qm);
3282 }
3283 EXPORT_SYMBOL_GPL(hisi_qm_dev_err_uninit);
3284 
3285 /**
3286  * hisi_qm_free_qps() - free multiple queue pairs.
3287  * @qps: The queue pairs need to be freed.
3288  * @qp_num: The num of queue pairs.
3289  */
hisi_qm_free_qps(struct hisi_qp ** qps,int qp_num)3290 void hisi_qm_free_qps(struct hisi_qp **qps, int qp_num)
3291 {
3292 	int i;
3293 
3294 	if (!qps || qp_num <= 0)
3295 		return;
3296 
3297 	for (i = qp_num - 1; i >= 0; i--)
3298 		hisi_qm_release_qp(qps[i]);
3299 }
3300 EXPORT_SYMBOL_GPL(hisi_qm_free_qps);
3301 
free_list(struct list_head * head)3302 static void free_list(struct list_head *head)
3303 {
3304 	struct hisi_qm_resource *res, *tmp;
3305 
3306 	list_for_each_entry_safe(res, tmp, head, list) {
3307 		list_del(&res->list);
3308 		kfree(res);
3309 	}
3310 }
3311 
hisi_qm_sort_devices(int node,struct list_head * head,struct hisi_qm_list * qm_list)3312 static int hisi_qm_sort_devices(int node, struct list_head *head,
3313 				struct hisi_qm_list *qm_list)
3314 {
3315 	struct hisi_qm_resource *res, *tmp;
3316 	struct hisi_qm *qm;
3317 	struct list_head *n;
3318 	struct device *dev;
3319 	int dev_node;
3320 
3321 	list_for_each_entry(qm, &qm_list->list, list) {
3322 		dev = &qm->pdev->dev;
3323 
3324 		dev_node = dev_to_node(dev);
3325 		if (dev_node < 0)
3326 			dev_node = 0;
3327 
3328 		res = kzalloc(sizeof(*res), GFP_KERNEL);
3329 		if (!res)
3330 			return -ENOMEM;
3331 
3332 		res->qm = qm;
3333 		res->distance = node_distance(dev_node, node);
3334 		n = head;
3335 		list_for_each_entry(tmp, head, list) {
3336 			if (res->distance < tmp->distance) {
3337 				n = &tmp->list;
3338 				break;
3339 			}
3340 		}
3341 		list_add_tail(&res->list, n);
3342 	}
3343 
3344 	return 0;
3345 }
3346 
3347 /**
3348  * hisi_qm_alloc_qps_node() - Create multiple queue pairs.
3349  * @qm_list: The list of all available devices.
3350  * @qp_num: The number of queue pairs need created.
3351  * @alg_type: The algorithm type.
3352  * @node: The numa node.
3353  * @qps: The queue pairs need created.
3354  *
3355  * This function will sort all available device according to numa distance.
3356  * Then try to create all queue pairs from one device, if all devices do
3357  * not meet the requirements will return error.
3358  */
hisi_qm_alloc_qps_node(struct hisi_qm_list * qm_list,int qp_num,u8 alg_type,int node,struct hisi_qp ** qps)3359 int hisi_qm_alloc_qps_node(struct hisi_qm_list *qm_list, int qp_num,
3360 			   u8 alg_type, int node, struct hisi_qp **qps)
3361 {
3362 	struct hisi_qm_resource *tmp;
3363 	int ret = -ENODEV;
3364 	LIST_HEAD(head);
3365 	int i;
3366 
3367 	if (!qps || !qm_list || qp_num <= 0)
3368 		return -EINVAL;
3369 
3370 	mutex_lock(&qm_list->lock);
3371 	if (hisi_qm_sort_devices(node, &head, qm_list)) {
3372 		mutex_unlock(&qm_list->lock);
3373 		goto err;
3374 	}
3375 
3376 	list_for_each_entry(tmp, &head, list) {
3377 		for (i = 0; i < qp_num; i++) {
3378 			qps[i] = hisi_qm_create_qp(tmp->qm, alg_type);
3379 			if (IS_ERR(qps[i])) {
3380 				hisi_qm_free_qps(qps, i);
3381 				break;
3382 			}
3383 		}
3384 
3385 		if (i == qp_num) {
3386 			ret = 0;
3387 			break;
3388 		}
3389 	}
3390 
3391 	mutex_unlock(&qm_list->lock);
3392 	if (ret)
3393 		pr_info("Failed to create qps, node[%d], alg[%u], qp[%d]!\n",
3394 			node, alg_type, qp_num);
3395 
3396 err:
3397 	free_list(&head);
3398 	return ret;
3399 }
3400 EXPORT_SYMBOL_GPL(hisi_qm_alloc_qps_node);
3401 
qm_vf_q_assign(struct hisi_qm * qm,u32 num_vfs)3402 static int qm_vf_q_assign(struct hisi_qm *qm, u32 num_vfs)
3403 {
3404 	u32 remain_q_num, vfs_q_num, act_q_num, q_num, i, j;
3405 	u32 max_qp_num = qm->max_qp_num;
3406 	u32 q_base = qm->qp_num;
3407 	int ret;
3408 
3409 	if (!num_vfs)
3410 		return -EINVAL;
3411 
3412 	vfs_q_num = qm->ctrl_qp_num - qm->qp_num;
3413 
3414 	/* If vfs_q_num is less than num_vfs, return error. */
3415 	if (vfs_q_num < num_vfs)
3416 		return -EINVAL;
3417 
3418 	q_num = vfs_q_num / num_vfs;
3419 	remain_q_num = vfs_q_num % num_vfs;
3420 
3421 	for (i = num_vfs; i > 0; i--) {
3422 		/*
3423 		 * if q_num + remain_q_num > max_qp_num in last vf, divide the
3424 		 * remaining queues equally.
3425 		 */
3426 		if (i == num_vfs && q_num + remain_q_num <= max_qp_num) {
3427 			act_q_num = q_num + remain_q_num;
3428 			remain_q_num = 0;
3429 		} else if (remain_q_num > 0) {
3430 			act_q_num = q_num + 1;
3431 			remain_q_num--;
3432 		} else {
3433 			act_q_num = q_num;
3434 		}
3435 
3436 		act_q_num = min(act_q_num, max_qp_num);
3437 		ret = hisi_qm_set_vft(qm, i, q_base, act_q_num);
3438 		if (ret) {
3439 			for (j = num_vfs; j > i; j--)
3440 				hisi_qm_set_vft(qm, j, 0, 0);
3441 			return ret;
3442 		}
3443 		q_base += act_q_num;
3444 	}
3445 
3446 	return 0;
3447 }
3448 
qm_clear_vft_config(struct hisi_qm * qm)3449 static int qm_clear_vft_config(struct hisi_qm *qm)
3450 {
3451 	int ret;
3452 	u32 i;
3453 
3454 	for (i = 1; i <= qm->vfs_num; i++) {
3455 		ret = hisi_qm_set_vft(qm, i, 0, 0);
3456 		if (ret)
3457 			return ret;
3458 	}
3459 	qm->vfs_num = 0;
3460 
3461 	return 0;
3462 }
3463 
qm_func_shaper_enable(struct hisi_qm * qm,u32 fun_index,u32 qos)3464 static int qm_func_shaper_enable(struct hisi_qm *qm, u32 fun_index, u32 qos)
3465 {
3466 	struct device *dev = &qm->pdev->dev;
3467 	u32 ir = qos * QM_QOS_RATE;
3468 	int ret, total_vfs, i;
3469 
3470 	total_vfs = pci_sriov_get_totalvfs(qm->pdev);
3471 	if (fun_index > total_vfs)
3472 		return -EINVAL;
3473 
3474 	qm->factor[fun_index].func_qos = qos;
3475 
3476 	ret = qm_get_shaper_para(ir, &qm->factor[fun_index]);
3477 	if (ret) {
3478 		dev_err(dev, "failed to calculate shaper parameter!\n");
3479 		return -EINVAL;
3480 	}
3481 
3482 	for (i = ALG_TYPE_0; i <= ALG_TYPE_1; i++) {
3483 		/* The base number of queue reuse for different alg type */
3484 		ret = qm_set_vft_common(qm, SHAPER_VFT, fun_index, i, 1);
3485 		if (ret) {
3486 			dev_err(dev, "type: %d, failed to set shaper vft!\n", i);
3487 			return -EINVAL;
3488 		}
3489 	}
3490 
3491 	return 0;
3492 }
3493 
qm_get_shaper_vft_qos(struct hisi_qm * qm,u32 fun_index)3494 static u32 qm_get_shaper_vft_qos(struct hisi_qm *qm, u32 fun_index)
3495 {
3496 	u64 cir_u = 0, cir_b = 0, cir_s = 0;
3497 	u64 shaper_vft, ir_calc, ir;
3498 	unsigned int val;
3499 	u32 error_rate;
3500 	int ret;
3501 
3502 	ret = readl_relaxed_poll_timeout(qm->io_base + QM_VFT_CFG_RDY, val,
3503 					 val & BIT(0), POLL_PERIOD,
3504 					 POLL_TIMEOUT);
3505 	if (ret)
3506 		return 0;
3507 
3508 	writel(0x1, qm->io_base + QM_VFT_CFG_OP_WR);
3509 	writel(SHAPER_VFT, qm->io_base + QM_VFT_CFG_TYPE);
3510 	writel(fun_index, qm->io_base + QM_VFT_CFG);
3511 
3512 	writel(0x0, qm->io_base + QM_VFT_CFG_RDY);
3513 	writel(0x1, qm->io_base + QM_VFT_CFG_OP_ENABLE);
3514 
3515 	ret = readl_relaxed_poll_timeout(qm->io_base + QM_VFT_CFG_RDY, val,
3516 					 val & BIT(0), POLL_PERIOD,
3517 					 POLL_TIMEOUT);
3518 	if (ret)
3519 		return 0;
3520 
3521 	shaper_vft = readl(qm->io_base + QM_VFT_CFG_DATA_L) |
3522 		  ((u64)readl(qm->io_base + QM_VFT_CFG_DATA_H) << 32);
3523 
3524 	cir_b = shaper_vft & QM_SHAPER_CIR_B_MASK;
3525 	cir_u = shaper_vft & QM_SHAPER_CIR_U_MASK;
3526 	cir_u = cir_u >> QM_SHAPER_FACTOR_CIR_U_SHIFT;
3527 
3528 	cir_s = shaper_vft & QM_SHAPER_CIR_S_MASK;
3529 	cir_s = cir_s >> QM_SHAPER_FACTOR_CIR_S_SHIFT;
3530 
3531 	ir_calc = acc_shaper_para_calc(cir_b, cir_u, cir_s);
3532 
3533 	ir = qm->factor[fun_index].func_qos * QM_QOS_RATE;
3534 
3535 	error_rate = QM_QOS_EXPAND_RATE * (u32)abs(ir_calc - ir) / ir;
3536 	if (error_rate > QM_QOS_MIN_ERROR_RATE) {
3537 		pci_err(qm->pdev, "error_rate: %u, get function qos is error!\n", error_rate);
3538 		return 0;
3539 	}
3540 
3541 	return ir;
3542 }
3543 
qm_vf_get_qos(struct hisi_qm * qm,u32 fun_num)3544 static void qm_vf_get_qos(struct hisi_qm *qm, u32 fun_num)
3545 {
3546 	struct device *dev = &qm->pdev->dev;
3547 	u64 mb_cmd;
3548 	u32 qos;
3549 	int ret;
3550 
3551 	qos = qm_get_shaper_vft_qos(qm, fun_num);
3552 	if (!qos) {
3553 		dev_err(dev, "function(%u) failed to get qos by PF!\n", fun_num);
3554 		return;
3555 	}
3556 
3557 	mb_cmd = QM_PF_SET_QOS | (u64)qos << QM_MB_CMD_DATA_SHIFT;
3558 	ret = qm_ping_single_vf(qm, mb_cmd, fun_num);
3559 	if (ret)
3560 		dev_err(dev, "failed to send cmd to VF(%u)!\n", fun_num);
3561 }
3562 
qm_vf_read_qos(struct hisi_qm * qm)3563 static int qm_vf_read_qos(struct hisi_qm *qm)
3564 {
3565 	int cnt = 0;
3566 	int ret = -EINVAL;
3567 
3568 	/* reset mailbox qos val */
3569 	qm->mb_qos = 0;
3570 
3571 	/* vf ping pf to get function qos */
3572 	ret = qm_ping_pf(qm, QM_VF_GET_QOS);
3573 	if (ret) {
3574 		pci_err(qm->pdev, "failed to send cmd to PF to get qos!\n");
3575 		return ret;
3576 	}
3577 
3578 	while (true) {
3579 		msleep(QM_WAIT_DST_ACK);
3580 		if (qm->mb_qos)
3581 			break;
3582 
3583 		if (++cnt > QM_MAX_VF_WAIT_COUNT) {
3584 			pci_err(qm->pdev, "PF ping VF timeout!\n");
3585 			return  -ETIMEDOUT;
3586 		}
3587 	}
3588 
3589 	return ret;
3590 }
3591 
qm_algqos_read(struct file * filp,char __user * buf,size_t count,loff_t * pos)3592 static ssize_t qm_algqos_read(struct file *filp, char __user *buf,
3593 			       size_t count, loff_t *pos)
3594 {
3595 	struct hisi_qm *qm = filp->private_data;
3596 	char tbuf[QM_DBG_READ_LEN];
3597 	u32 qos_val, ir;
3598 	int ret;
3599 
3600 	ret = hisi_qm_get_dfx_access(qm);
3601 	if (ret)
3602 		return ret;
3603 
3604 	/* Mailbox and reset cannot be operated at the same time */
3605 	if (test_and_set_bit(QM_RESETTING, &qm->misc_ctl)) {
3606 		pci_err(qm->pdev, "dev resetting, read alg qos failed!\n");
3607 		ret = -EAGAIN;
3608 		goto err_put_dfx_access;
3609 	}
3610 
3611 	if (qm->fun_type == QM_HW_PF) {
3612 		ir = qm_get_shaper_vft_qos(qm, 0);
3613 	} else {
3614 		ret = qm_vf_read_qos(qm);
3615 		if (ret)
3616 			goto err_get_status;
3617 		ir = qm->mb_qos;
3618 	}
3619 
3620 	qos_val = ir / QM_QOS_RATE;
3621 	ret = scnprintf(tbuf, QM_DBG_READ_LEN, "%u\n", qos_val);
3622 
3623 	ret = simple_read_from_buffer(buf, count, pos, tbuf, ret);
3624 
3625 err_get_status:
3626 	clear_bit(QM_RESETTING, &qm->misc_ctl);
3627 err_put_dfx_access:
3628 	hisi_qm_put_dfx_access(qm);
3629 	return ret;
3630 }
3631 
qm_get_qos_value(struct hisi_qm * qm,const char * buf,unsigned long * val,unsigned int * fun_index)3632 static ssize_t qm_get_qos_value(struct hisi_qm *qm, const char *buf,
3633 			       unsigned long *val,
3634 			       unsigned int *fun_index)
3635 {
3636 	const struct bus_type *bus_type = qm->pdev->dev.bus;
3637 	char tbuf_bdf[QM_DBG_READ_LEN] = {0};
3638 	char val_buf[QM_DBG_READ_LEN] = {0};
3639 	struct pci_dev *pdev;
3640 	struct device *dev;
3641 	int ret;
3642 
3643 	ret = sscanf(buf, "%s %s", tbuf_bdf, val_buf);
3644 	if (ret != QM_QOS_PARAM_NUM)
3645 		return -EINVAL;
3646 
3647 	ret = kstrtoul(val_buf, 10, val);
3648 	if (ret || *val == 0 || *val > QM_QOS_MAX_VAL) {
3649 		pci_err(qm->pdev, "input qos value is error, please set 1~1000!\n");
3650 		return -EINVAL;
3651 	}
3652 
3653 	dev = bus_find_device_by_name(bus_type, NULL, tbuf_bdf);
3654 	if (!dev) {
3655 		pci_err(qm->pdev, "input pci bdf number is error!\n");
3656 		return -ENODEV;
3657 	}
3658 
3659 	pdev = container_of(dev, struct pci_dev, dev);
3660 
3661 	*fun_index = pdev->devfn;
3662 
3663 	return 0;
3664 }
3665 
qm_algqos_write(struct file * filp,const char __user * buf,size_t count,loff_t * pos)3666 static ssize_t qm_algqos_write(struct file *filp, const char __user *buf,
3667 			       size_t count, loff_t *pos)
3668 {
3669 	struct hisi_qm *qm = filp->private_data;
3670 	char tbuf[QM_DBG_READ_LEN];
3671 	unsigned int fun_index;
3672 	unsigned long val;
3673 	int len, ret;
3674 
3675 	if (*pos != 0)
3676 		return 0;
3677 
3678 	if (count >= QM_DBG_READ_LEN)
3679 		return -ENOSPC;
3680 
3681 	len = simple_write_to_buffer(tbuf, QM_DBG_READ_LEN - 1, pos, buf, count);
3682 	if (len < 0)
3683 		return len;
3684 
3685 	tbuf[len] = '\0';
3686 	ret = qm_get_qos_value(qm, tbuf, &val, &fun_index);
3687 	if (ret)
3688 		return ret;
3689 
3690 	/* Mailbox and reset cannot be operated at the same time */
3691 	if (test_and_set_bit(QM_RESETTING, &qm->misc_ctl)) {
3692 		pci_err(qm->pdev, "dev resetting, write alg qos failed!\n");
3693 		return -EAGAIN;
3694 	}
3695 
3696 	ret = qm_pm_get_sync(qm);
3697 	if (ret) {
3698 		ret = -EINVAL;
3699 		goto err_get_status;
3700 	}
3701 
3702 	ret = qm_func_shaper_enable(qm, fun_index, val);
3703 	if (ret) {
3704 		pci_err(qm->pdev, "failed to enable function shaper!\n");
3705 		ret = -EINVAL;
3706 		goto err_put_sync;
3707 	}
3708 
3709 	pci_info(qm->pdev, "the qos value of function%u is set to %lu.\n",
3710 		 fun_index, val);
3711 	ret = count;
3712 
3713 err_put_sync:
3714 	qm_pm_put_sync(qm);
3715 err_get_status:
3716 	clear_bit(QM_RESETTING, &qm->misc_ctl);
3717 	return ret;
3718 }
3719 
3720 static const struct file_operations qm_algqos_fops = {
3721 	.owner = THIS_MODULE,
3722 	.open = simple_open,
3723 	.read = qm_algqos_read,
3724 	.write = qm_algqos_write,
3725 };
3726 
3727 /**
3728  * hisi_qm_set_algqos_init() - Initialize function qos debugfs files.
3729  * @qm: The qm for which we want to add debugfs files.
3730  *
3731  * Create function qos debugfs files, VF ping PF to get function qos.
3732  */
hisi_qm_set_algqos_init(struct hisi_qm * qm)3733 void hisi_qm_set_algqos_init(struct hisi_qm *qm)
3734 {
3735 	if (qm->fun_type == QM_HW_PF)
3736 		debugfs_create_file("alg_qos", 0644, qm->debug.debug_root,
3737 				    qm, &qm_algqos_fops);
3738 	else if (test_bit(QM_SUPPORT_MB_COMMAND, &qm->caps))
3739 		debugfs_create_file("alg_qos", 0444, qm->debug.debug_root,
3740 				    qm, &qm_algqos_fops);
3741 }
3742 
hisi_qm_init_vf_qos(struct hisi_qm * qm,int total_func)3743 static void hisi_qm_init_vf_qos(struct hisi_qm *qm, int total_func)
3744 {
3745 	int i;
3746 
3747 	for (i = 1; i <= total_func; i++)
3748 		qm->factor[i].func_qos = QM_QOS_MAX_VAL;
3749 }
3750 
3751 /**
3752  * hisi_qm_sriov_enable() - enable virtual functions
3753  * @pdev: the PCIe device
3754  * @max_vfs: the number of virtual functions to enable
3755  *
3756  * Returns the number of enabled VFs. If there are VFs enabled already or
3757  * max_vfs is more than the total number of device can be enabled, returns
3758  * failure.
3759  */
hisi_qm_sriov_enable(struct pci_dev * pdev,int max_vfs)3760 int hisi_qm_sriov_enable(struct pci_dev *pdev, int max_vfs)
3761 {
3762 	struct hisi_qm *qm = pci_get_drvdata(pdev);
3763 	int pre_existing_vfs, num_vfs, total_vfs, ret;
3764 
3765 	ret = qm_pm_get_sync(qm);
3766 	if (ret)
3767 		return ret;
3768 
3769 	total_vfs = pci_sriov_get_totalvfs(pdev);
3770 	pre_existing_vfs = pci_num_vf(pdev);
3771 	if (pre_existing_vfs) {
3772 		pci_err(pdev, "%d VFs already enabled. Please disable pre-enabled VFs!\n",
3773 			pre_existing_vfs);
3774 		goto err_put_sync;
3775 	}
3776 
3777 	if (max_vfs > total_vfs) {
3778 		pci_err(pdev, "%d VFs is more than total VFs %d!\n", max_vfs, total_vfs);
3779 		ret = -ERANGE;
3780 		goto err_put_sync;
3781 	}
3782 
3783 	num_vfs = max_vfs;
3784 
3785 	if (test_bit(QM_SUPPORT_FUNC_QOS, &qm->caps))
3786 		hisi_qm_init_vf_qos(qm, num_vfs);
3787 
3788 	ret = qm_vf_q_assign(qm, num_vfs);
3789 	if (ret) {
3790 		pci_err(pdev, "Can't assign queues for VF!\n");
3791 		goto err_put_sync;
3792 	}
3793 
3794 	ret = pci_enable_sriov(pdev, num_vfs);
3795 	if (ret) {
3796 		pci_err(pdev, "Can't enable VF!\n");
3797 		qm_clear_vft_config(qm);
3798 		goto err_put_sync;
3799 	}
3800 	qm->vfs_num = num_vfs;
3801 
3802 	pci_info(pdev, "VF enabled, vfs_num(=%d)!\n", num_vfs);
3803 
3804 	return num_vfs;
3805 
3806 err_put_sync:
3807 	qm_pm_put_sync(qm);
3808 	return ret;
3809 }
3810 EXPORT_SYMBOL_GPL(hisi_qm_sriov_enable);
3811 
3812 /**
3813  * hisi_qm_sriov_disable - disable virtual functions
3814  * @pdev: the PCI device.
3815  * @is_frozen: true when all the VFs are frozen.
3816  *
3817  * Return failure if there are VFs assigned already or VF is in used.
3818  */
hisi_qm_sriov_disable(struct pci_dev * pdev,bool is_frozen)3819 int hisi_qm_sriov_disable(struct pci_dev *pdev, bool is_frozen)
3820 {
3821 	struct hisi_qm *qm = pci_get_drvdata(pdev);
3822 
3823 	if (pci_vfs_assigned(pdev)) {
3824 		pci_err(pdev, "Failed to disable VFs as VFs are assigned!\n");
3825 		return -EPERM;
3826 	}
3827 
3828 	/* While VF is in used, SRIOV cannot be disabled. */
3829 	if (!is_frozen && qm_try_frozen_vfs(pdev, qm->qm_list)) {
3830 		pci_err(pdev, "Task is using its VF!\n");
3831 		return -EBUSY;
3832 	}
3833 
3834 	pci_disable_sriov(pdev);
3835 
3836 	qm->vfs_num = 0;
3837 	qm_pm_put_sync(qm);
3838 
3839 	return qm_clear_vft_config(qm);
3840 }
3841 EXPORT_SYMBOL_GPL(hisi_qm_sriov_disable);
3842 
3843 /**
3844  * hisi_qm_sriov_configure - configure the number of VFs
3845  * @pdev: The PCI device
3846  * @num_vfs: The number of VFs need enabled
3847  *
3848  * Enable SR-IOV according to num_vfs, 0 means disable.
3849  */
hisi_qm_sriov_configure(struct pci_dev * pdev,int num_vfs)3850 int hisi_qm_sriov_configure(struct pci_dev *pdev, int num_vfs)
3851 {
3852 	if (num_vfs == 0)
3853 		return hisi_qm_sriov_disable(pdev, false);
3854 	else
3855 		return hisi_qm_sriov_enable(pdev, num_vfs);
3856 }
3857 EXPORT_SYMBOL_GPL(hisi_qm_sriov_configure);
3858 
qm_dev_err_handle(struct hisi_qm * qm)3859 static enum acc_err_result qm_dev_err_handle(struct hisi_qm *qm)
3860 {
3861 	if (!qm->err_ini->get_err_result) {
3862 		dev_err(&qm->pdev->dev, "Device doesn't support reset!\n");
3863 		return ACC_ERR_NONE;
3864 	}
3865 
3866 	return qm->err_ini->get_err_result(qm);
3867 }
3868 
qm_process_dev_error(struct hisi_qm * qm)3869 static enum acc_err_result qm_process_dev_error(struct hisi_qm *qm)
3870 {
3871 	enum acc_err_result qm_ret, dev_ret;
3872 
3873 	/* log qm error */
3874 	qm_ret = qm_hw_error_handle(qm);
3875 
3876 	/* log device error */
3877 	dev_ret = qm_dev_err_handle(qm);
3878 
3879 	return (qm_ret == ACC_ERR_NEED_RESET ||
3880 		dev_ret == ACC_ERR_NEED_RESET) ?
3881 		ACC_ERR_NEED_RESET : ACC_ERR_RECOVERED;
3882 }
3883 
3884 /**
3885  * hisi_qm_dev_err_detected() - Get device and qm error status then log it.
3886  * @pdev: The PCI device which need report error.
3887  * @state: The connectivity between CPU and device.
3888  *
3889  * We register this function into PCIe AER handlers, It will report device or
3890  * qm hardware error status when error occur.
3891  */
hisi_qm_dev_err_detected(struct pci_dev * pdev,pci_channel_state_t state)3892 pci_ers_result_t hisi_qm_dev_err_detected(struct pci_dev *pdev,
3893 					  pci_channel_state_t state)
3894 {
3895 	struct hisi_qm *qm = pci_get_drvdata(pdev);
3896 	enum acc_err_result ret;
3897 
3898 	if (pdev->is_virtfn)
3899 		return PCI_ERS_RESULT_NONE;
3900 
3901 	pci_info(pdev, "PCI error detected, state(=%u)!!\n", state);
3902 	if (state == pci_channel_io_perm_failure)
3903 		return PCI_ERS_RESULT_DISCONNECT;
3904 
3905 	ret = qm_process_dev_error(qm);
3906 	if (ret == ACC_ERR_NEED_RESET)
3907 		return PCI_ERS_RESULT_NEED_RESET;
3908 
3909 	return PCI_ERS_RESULT_RECOVERED;
3910 }
3911 EXPORT_SYMBOL_GPL(hisi_qm_dev_err_detected);
3912 
qm_check_req_recv(struct hisi_qm * qm)3913 static int qm_check_req_recv(struct hisi_qm *qm)
3914 {
3915 	struct pci_dev *pdev = qm->pdev;
3916 	int ret;
3917 	u32 val;
3918 
3919 	if (qm->ver >= QM_HW_V3)
3920 		return 0;
3921 
3922 	writel(ACC_VENDOR_ID_VALUE, qm->io_base + QM_PEH_VENDOR_ID);
3923 	ret = readl_relaxed_poll_timeout(qm->io_base + QM_PEH_VENDOR_ID, val,
3924 					 (val == ACC_VENDOR_ID_VALUE),
3925 					 POLL_PERIOD, POLL_TIMEOUT);
3926 	if (ret) {
3927 		dev_err(&pdev->dev, "Fails to read QM reg!\n");
3928 		return ret;
3929 	}
3930 
3931 	writel(PCI_VENDOR_ID_HUAWEI, qm->io_base + QM_PEH_VENDOR_ID);
3932 	ret = readl_relaxed_poll_timeout(qm->io_base + QM_PEH_VENDOR_ID, val,
3933 					 (val == PCI_VENDOR_ID_HUAWEI),
3934 					 POLL_PERIOD, POLL_TIMEOUT);
3935 	if (ret)
3936 		dev_err(&pdev->dev, "Fails to read QM reg in the second time!\n");
3937 
3938 	return ret;
3939 }
3940 
qm_set_pf_mse(struct hisi_qm * qm,bool set)3941 static int qm_set_pf_mse(struct hisi_qm *qm, bool set)
3942 {
3943 	struct pci_dev *pdev = qm->pdev;
3944 	u16 cmd;
3945 	int i;
3946 
3947 	pci_read_config_word(pdev, PCI_COMMAND, &cmd);
3948 	if (set)
3949 		cmd |= PCI_COMMAND_MEMORY;
3950 	else
3951 		cmd &= ~PCI_COMMAND_MEMORY;
3952 
3953 	pci_write_config_word(pdev, PCI_COMMAND, cmd);
3954 	for (i = 0; i < MAX_WAIT_COUNTS; i++) {
3955 		pci_read_config_word(pdev, PCI_COMMAND, &cmd);
3956 		if (set == ((cmd & PCI_COMMAND_MEMORY) >> 1))
3957 			return 0;
3958 
3959 		udelay(1);
3960 	}
3961 
3962 	return -ETIMEDOUT;
3963 }
3964 
qm_set_vf_mse(struct hisi_qm * qm,bool set)3965 static int qm_set_vf_mse(struct hisi_qm *qm, bool set)
3966 {
3967 	struct pci_dev *pdev = qm->pdev;
3968 	u16 sriov_ctrl;
3969 	int pos;
3970 	int i;
3971 
3972 	/*
3973 	 * Since function qm_set_vf_mse is called only after SRIOV is enabled,
3974 	 * pci_find_ext_capability cannot return 0, pos does not need to be
3975 	 * checked.
3976 	 */
3977 	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_SRIOV);
3978 	pci_read_config_word(pdev, pos + PCI_SRIOV_CTRL, &sriov_ctrl);
3979 	if (set)
3980 		sriov_ctrl |= PCI_SRIOV_CTRL_MSE;
3981 	else
3982 		sriov_ctrl &= ~PCI_SRIOV_CTRL_MSE;
3983 	pci_write_config_word(pdev, pos + PCI_SRIOV_CTRL, sriov_ctrl);
3984 
3985 	for (i = 0; i < MAX_WAIT_COUNTS; i++) {
3986 		pci_read_config_word(pdev, pos + PCI_SRIOV_CTRL, &sriov_ctrl);
3987 		if (set == (sriov_ctrl & PCI_SRIOV_CTRL_MSE) >>
3988 		    ACC_PEH_SRIOV_CTRL_VF_MSE_SHIFT)
3989 			return 0;
3990 
3991 		udelay(1);
3992 	}
3993 
3994 	return -ETIMEDOUT;
3995 }
3996 
qm_dev_ecc_mbit_handle(struct hisi_qm * qm)3997 static void qm_dev_ecc_mbit_handle(struct hisi_qm *qm)
3998 {
3999 	u32 nfe_enb = 0;
4000 
4001 	/* Kunpeng930 hardware automatically close master ooo when NFE occurs */
4002 	if (qm->ver >= QM_HW_V3)
4003 		return;
4004 
4005 	if (!qm->err_status.is_dev_ecc_mbit &&
4006 	    qm->err_status.is_qm_ecc_mbit &&
4007 	    qm->err_ini->close_axi_master_ooo) {
4008 		qm->err_ini->close_axi_master_ooo(qm);
4009 	} else if (qm->err_status.is_dev_ecc_mbit &&
4010 		   !qm->err_status.is_qm_ecc_mbit &&
4011 		   !qm->err_ini->close_axi_master_ooo) {
4012 		nfe_enb = readl(qm->io_base + QM_RAS_NFE_ENABLE);
4013 		writel(nfe_enb & QM_RAS_NFE_MBIT_DISABLE,
4014 		       qm->io_base + QM_RAS_NFE_ENABLE);
4015 		writel(QM_ECC_MBIT, qm->io_base + QM_ABNORMAL_INT_SET);
4016 	}
4017 }
4018 
qm_vf_reset_prepare(struct hisi_qm * qm,enum qm_stop_reason stop_reason)4019 static int qm_vf_reset_prepare(struct hisi_qm *qm,
4020 			       enum qm_stop_reason stop_reason)
4021 {
4022 	struct hisi_qm_list *qm_list = qm->qm_list;
4023 	struct pci_dev *pdev = qm->pdev;
4024 	struct pci_dev *virtfn;
4025 	struct hisi_qm *vf_qm;
4026 	int ret = 0;
4027 
4028 	mutex_lock(&qm_list->lock);
4029 	list_for_each_entry(vf_qm, &qm_list->list, list) {
4030 		virtfn = vf_qm->pdev;
4031 		if (virtfn == pdev)
4032 			continue;
4033 
4034 		if (pci_physfn(virtfn) == pdev) {
4035 			/* save VFs PCIE BAR configuration */
4036 			pci_save_state(virtfn);
4037 
4038 			ret = hisi_qm_stop(vf_qm, stop_reason);
4039 			if (ret)
4040 				goto stop_fail;
4041 		}
4042 	}
4043 
4044 stop_fail:
4045 	mutex_unlock(&qm_list->lock);
4046 	return ret;
4047 }
4048 
qm_try_stop_vfs(struct hisi_qm * qm,u64 cmd,enum qm_stop_reason stop_reason)4049 static int qm_try_stop_vfs(struct hisi_qm *qm, u64 cmd,
4050 			   enum qm_stop_reason stop_reason)
4051 {
4052 	struct pci_dev *pdev = qm->pdev;
4053 	int ret;
4054 
4055 	if (!qm->vfs_num)
4056 		return 0;
4057 
4058 	/* Kunpeng930 supports to notify VFs to stop before PF reset */
4059 	if (test_bit(QM_SUPPORT_MB_COMMAND, &qm->caps)) {
4060 		ret = qm_ping_all_vfs(qm, cmd);
4061 		if (ret)
4062 			pci_err(pdev, "failed to send cmd to all VFs before PF reset!\n");
4063 	} else {
4064 		ret = qm_vf_reset_prepare(qm, stop_reason);
4065 		if (ret)
4066 			pci_err(pdev, "failed to prepare reset, ret = %d.\n", ret);
4067 	}
4068 
4069 	return ret;
4070 }
4071 
qm_controller_reset_prepare(struct hisi_qm * qm)4072 static int qm_controller_reset_prepare(struct hisi_qm *qm)
4073 {
4074 	struct pci_dev *pdev = qm->pdev;
4075 	int ret;
4076 
4077 	ret = qm_reset_prepare_ready(qm);
4078 	if (ret) {
4079 		pci_err(pdev, "Controller reset not ready!\n");
4080 		return ret;
4081 	}
4082 
4083 	qm_dev_ecc_mbit_handle(qm);
4084 
4085 	/* PF obtains the information of VF by querying the register. */
4086 	qm_cmd_uninit(qm);
4087 
4088 	/* Whether VFs stop successfully, soft reset will continue. */
4089 	ret = qm_try_stop_vfs(qm, QM_PF_SRST_PREPARE, QM_SOFT_RESET);
4090 	if (ret)
4091 		pci_err(pdev, "failed to stop vfs by pf in soft reset.\n");
4092 
4093 	ret = hisi_qm_stop(qm, QM_SOFT_RESET);
4094 	if (ret) {
4095 		pci_err(pdev, "Fails to stop QM!\n");
4096 		qm_reset_bit_clear(qm);
4097 		return ret;
4098 	}
4099 
4100 	if (qm->use_sva) {
4101 		ret = qm_hw_err_isolate(qm);
4102 		if (ret)
4103 			pci_err(pdev, "failed to isolate hw err!\n");
4104 	}
4105 
4106 	ret = qm_wait_vf_prepare_finish(qm);
4107 	if (ret)
4108 		pci_err(pdev, "failed to stop by vfs in soft reset!\n");
4109 
4110 	clear_bit(QM_RST_SCHED, &qm->misc_ctl);
4111 
4112 	return 0;
4113 }
4114 
qm_master_ooo_check(struct hisi_qm * qm)4115 static int qm_master_ooo_check(struct hisi_qm *qm)
4116 {
4117 	u32 val;
4118 	int ret;
4119 
4120 	/* Check the ooo register of the device before resetting the device. */
4121 	writel(ACC_MASTER_GLOBAL_CTRL_SHUTDOWN, qm->io_base + ACC_MASTER_GLOBAL_CTRL);
4122 	ret = readl_relaxed_poll_timeout(qm->io_base + ACC_MASTER_TRANS_RETURN,
4123 					 val, (val == ACC_MASTER_TRANS_RETURN_RW),
4124 					 POLL_PERIOD, POLL_TIMEOUT);
4125 	if (ret)
4126 		pci_warn(qm->pdev, "Bus lock! Please reset system.\n");
4127 
4128 	return ret;
4129 }
4130 
qm_soft_reset_prepare(struct hisi_qm * qm)4131 static int qm_soft_reset_prepare(struct hisi_qm *qm)
4132 {
4133 	struct pci_dev *pdev = qm->pdev;
4134 	int ret;
4135 
4136 	/* Ensure all doorbells and mailboxes received by QM */
4137 	ret = qm_check_req_recv(qm);
4138 	if (ret)
4139 		return ret;
4140 
4141 	if (qm->vfs_num) {
4142 		ret = qm_set_vf_mse(qm, false);
4143 		if (ret) {
4144 			pci_err(pdev, "Fails to disable vf MSE bit.\n");
4145 			return ret;
4146 		}
4147 	}
4148 
4149 	ret = qm->ops->set_msi(qm, false);
4150 	if (ret) {
4151 		pci_err(pdev, "Fails to disable PEH MSI bit.\n");
4152 		return ret;
4153 	}
4154 
4155 	ret = qm_master_ooo_check(qm);
4156 	if (ret)
4157 		return ret;
4158 
4159 	if (qm->err_ini->close_sva_prefetch)
4160 		qm->err_ini->close_sva_prefetch(qm);
4161 
4162 	ret = qm_set_pf_mse(qm, false);
4163 	if (ret)
4164 		pci_err(pdev, "Fails to disable pf MSE bit.\n");
4165 
4166 	return ret;
4167 }
4168 
qm_reset_device(struct hisi_qm * qm)4169 static int qm_reset_device(struct hisi_qm *qm)
4170 {
4171 	struct pci_dev *pdev = qm->pdev;
4172 
4173 	/* The reset related sub-control registers are not in PCI BAR */
4174 	if (ACPI_HANDLE(&pdev->dev)) {
4175 		unsigned long long value = 0;
4176 		acpi_status s;
4177 
4178 		s = acpi_evaluate_integer(ACPI_HANDLE(&pdev->dev),
4179 					  qm->err_info.acpi_rst,
4180 					  NULL, &value);
4181 		if (ACPI_FAILURE(s)) {
4182 			pci_err(pdev, "NO controller reset method!\n");
4183 			return -EIO;
4184 		}
4185 
4186 		if (value) {
4187 			pci_err(pdev, "Reset step %llu failed!\n", value);
4188 			return -EIO;
4189 		}
4190 
4191 		return 0;
4192 	}
4193 
4194 	pci_err(pdev, "No reset method!\n");
4195 	return -EINVAL;
4196 }
4197 
qm_soft_reset(struct hisi_qm * qm)4198 static int qm_soft_reset(struct hisi_qm *qm)
4199 {
4200 	int ret;
4201 
4202 	ret = qm_soft_reset_prepare(qm);
4203 	if (ret)
4204 		return ret;
4205 
4206 	return qm_reset_device(qm);
4207 }
4208 
qm_vf_reset_done(struct hisi_qm * qm)4209 static int qm_vf_reset_done(struct hisi_qm *qm)
4210 {
4211 	struct hisi_qm_list *qm_list = qm->qm_list;
4212 	struct pci_dev *pdev = qm->pdev;
4213 	struct pci_dev *virtfn;
4214 	struct hisi_qm *vf_qm;
4215 	int ret = 0;
4216 
4217 	mutex_lock(&qm_list->lock);
4218 	list_for_each_entry(vf_qm, &qm_list->list, list) {
4219 		virtfn = vf_qm->pdev;
4220 		if (virtfn == pdev)
4221 			continue;
4222 
4223 		if (pci_physfn(virtfn) == pdev) {
4224 			/* enable VFs PCIE BAR configuration */
4225 			pci_restore_state(virtfn);
4226 
4227 			ret = qm_restart(vf_qm);
4228 			if (ret)
4229 				goto restart_fail;
4230 		}
4231 	}
4232 
4233 restart_fail:
4234 	mutex_unlock(&qm_list->lock);
4235 	return ret;
4236 }
4237 
qm_try_start_vfs(struct hisi_qm * qm,enum qm_mb_cmd cmd)4238 static int qm_try_start_vfs(struct hisi_qm *qm, enum qm_mb_cmd cmd)
4239 {
4240 	struct pci_dev *pdev = qm->pdev;
4241 	int ret;
4242 
4243 	if (!qm->vfs_num)
4244 		return 0;
4245 
4246 	ret = qm_vf_q_assign(qm, qm->vfs_num);
4247 	if (ret) {
4248 		pci_err(pdev, "failed to assign VFs, ret = %d.\n", ret);
4249 		return ret;
4250 	}
4251 
4252 	/* Kunpeng930 supports to notify VFs to start after PF reset. */
4253 	if (test_bit(QM_SUPPORT_MB_COMMAND, &qm->caps)) {
4254 		ret = qm_ping_all_vfs(qm, cmd);
4255 		if (ret)
4256 			pci_warn(pdev, "failed to send cmd to all VFs after PF reset!\n");
4257 	} else {
4258 		ret = qm_vf_reset_done(qm);
4259 		if (ret)
4260 			pci_warn(pdev, "failed to start vfs, ret = %d.\n", ret);
4261 	}
4262 
4263 	return ret;
4264 }
4265 
qm_dev_hw_init(struct hisi_qm * qm)4266 static int qm_dev_hw_init(struct hisi_qm *qm)
4267 {
4268 	return qm->err_ini->hw_init(qm);
4269 }
4270 
qm_restart_prepare(struct hisi_qm * qm)4271 static void qm_restart_prepare(struct hisi_qm *qm)
4272 {
4273 	u32 value;
4274 
4275 	if (qm->err_ini->open_sva_prefetch)
4276 		qm->err_ini->open_sva_prefetch(qm);
4277 
4278 	if (qm->ver >= QM_HW_V3)
4279 		return;
4280 
4281 	if (!qm->err_status.is_qm_ecc_mbit &&
4282 	    !qm->err_status.is_dev_ecc_mbit)
4283 		return;
4284 
4285 	/* temporarily close the OOO port used for PEH to write out MSI */
4286 	value = readl(qm->io_base + ACC_AM_CFG_PORT_WR_EN);
4287 	writel(value & ~qm->err_info.msi_wr_port,
4288 	       qm->io_base + ACC_AM_CFG_PORT_WR_EN);
4289 
4290 	/* clear dev ecc 2bit error source if having */
4291 	value = qm_get_dev_err_status(qm) & qm->err_info.ecc_2bits_mask;
4292 	if (value && qm->err_ini->clear_dev_hw_err_status)
4293 		qm->err_ini->clear_dev_hw_err_status(qm, value);
4294 
4295 	/* clear QM ecc mbit error source */
4296 	writel(QM_ECC_MBIT, qm->io_base + QM_ABNORMAL_INT_SOURCE);
4297 
4298 	/* clear AM Reorder Buffer ecc mbit source */
4299 	writel(ACC_ROB_ECC_ERR_MULTPL, qm->io_base + ACC_AM_ROB_ECC_INT_STS);
4300 }
4301 
qm_restart_done(struct hisi_qm * qm)4302 static void qm_restart_done(struct hisi_qm *qm)
4303 {
4304 	u32 value;
4305 
4306 	if (qm->ver >= QM_HW_V3)
4307 		goto clear_flags;
4308 
4309 	if (!qm->err_status.is_qm_ecc_mbit &&
4310 	    !qm->err_status.is_dev_ecc_mbit)
4311 		return;
4312 
4313 	/* open the OOO port for PEH to write out MSI */
4314 	value = readl(qm->io_base + ACC_AM_CFG_PORT_WR_EN);
4315 	value |= qm->err_info.msi_wr_port;
4316 	writel(value, qm->io_base + ACC_AM_CFG_PORT_WR_EN);
4317 
4318 clear_flags:
4319 	qm->err_status.is_qm_ecc_mbit = false;
4320 	qm->err_status.is_dev_ecc_mbit = false;
4321 }
4322 
qm_controller_reset_done(struct hisi_qm * qm)4323 static int qm_controller_reset_done(struct hisi_qm *qm)
4324 {
4325 	struct pci_dev *pdev = qm->pdev;
4326 	int ret;
4327 
4328 	ret = qm->ops->set_msi(qm, true);
4329 	if (ret) {
4330 		pci_err(pdev, "Fails to enable PEH MSI bit!\n");
4331 		return ret;
4332 	}
4333 
4334 	ret = qm_set_pf_mse(qm, true);
4335 	if (ret) {
4336 		pci_err(pdev, "Fails to enable pf MSE bit!\n");
4337 		return ret;
4338 	}
4339 
4340 	if (qm->vfs_num) {
4341 		ret = qm_set_vf_mse(qm, true);
4342 		if (ret) {
4343 			pci_err(pdev, "Fails to enable vf MSE bit!\n");
4344 			return ret;
4345 		}
4346 	}
4347 
4348 	ret = qm_dev_hw_init(qm);
4349 	if (ret) {
4350 		pci_err(pdev, "Failed to init device\n");
4351 		return ret;
4352 	}
4353 
4354 	qm_restart_prepare(qm);
4355 	hisi_qm_dev_err_init(qm);
4356 	if (qm->err_ini->open_axi_master_ooo)
4357 		qm->err_ini->open_axi_master_ooo(qm);
4358 
4359 	ret = qm_dev_mem_reset(qm);
4360 	if (ret) {
4361 		pci_err(pdev, "failed to reset device memory\n");
4362 		return ret;
4363 	}
4364 
4365 	ret = qm_restart(qm);
4366 	if (ret) {
4367 		pci_err(pdev, "Failed to start QM!\n");
4368 		return ret;
4369 	}
4370 
4371 	ret = qm_try_start_vfs(qm, QM_PF_RESET_DONE);
4372 	if (ret)
4373 		pci_err(pdev, "failed to start vfs by pf in soft reset.\n");
4374 
4375 	ret = qm_wait_vf_prepare_finish(qm);
4376 	if (ret)
4377 		pci_err(pdev, "failed to start by vfs in soft reset!\n");
4378 
4379 	qm_cmd_init(qm);
4380 	qm_restart_done(qm);
4381 
4382 	qm_reset_bit_clear(qm);
4383 
4384 	return 0;
4385 }
4386 
qm_controller_reset(struct hisi_qm * qm)4387 static int qm_controller_reset(struct hisi_qm *qm)
4388 {
4389 	struct pci_dev *pdev = qm->pdev;
4390 	int ret;
4391 
4392 	pci_info(pdev, "Controller resetting...\n");
4393 
4394 	ret = qm_controller_reset_prepare(qm);
4395 	if (ret) {
4396 		hisi_qm_set_hw_reset(qm, QM_RESET_STOP_TX_OFFSET);
4397 		hisi_qm_set_hw_reset(qm, QM_RESET_STOP_RX_OFFSET);
4398 		clear_bit(QM_RST_SCHED, &qm->misc_ctl);
4399 		return ret;
4400 	}
4401 
4402 	hisi_qm_show_last_dfx_regs(qm);
4403 	if (qm->err_ini->show_last_dfx_regs)
4404 		qm->err_ini->show_last_dfx_regs(qm);
4405 
4406 	ret = qm_soft_reset(qm);
4407 	if (ret)
4408 		goto err_reset;
4409 
4410 	ret = qm_controller_reset_done(qm);
4411 	if (ret)
4412 		goto err_reset;
4413 
4414 	pci_info(pdev, "Controller reset complete\n");
4415 
4416 	return 0;
4417 
4418 err_reset:
4419 	pci_err(pdev, "Controller reset failed (%d)\n", ret);
4420 	qm_reset_bit_clear(qm);
4421 
4422 	/* if resetting fails, isolate the device */
4423 	if (qm->use_sva)
4424 		qm->isolate_data.is_isolate = true;
4425 	return ret;
4426 }
4427 
4428 /**
4429  * hisi_qm_dev_slot_reset() - slot reset
4430  * @pdev: the PCIe device
4431  *
4432  * This function offers QM relate PCIe device reset interface. Drivers which
4433  * use QM can use this function as slot_reset in its struct pci_error_handlers.
4434  */
hisi_qm_dev_slot_reset(struct pci_dev * pdev)4435 pci_ers_result_t hisi_qm_dev_slot_reset(struct pci_dev *pdev)
4436 {
4437 	struct hisi_qm *qm = pci_get_drvdata(pdev);
4438 	int ret;
4439 
4440 	if (pdev->is_virtfn)
4441 		return PCI_ERS_RESULT_RECOVERED;
4442 
4443 	/* reset pcie device controller */
4444 	ret = qm_controller_reset(qm);
4445 	if (ret) {
4446 		pci_err(pdev, "Controller reset failed (%d)\n", ret);
4447 		return PCI_ERS_RESULT_DISCONNECT;
4448 	}
4449 
4450 	return PCI_ERS_RESULT_RECOVERED;
4451 }
4452 EXPORT_SYMBOL_GPL(hisi_qm_dev_slot_reset);
4453 
hisi_qm_reset_prepare(struct pci_dev * pdev)4454 void hisi_qm_reset_prepare(struct pci_dev *pdev)
4455 {
4456 	struct hisi_qm *pf_qm = pci_get_drvdata(pci_physfn(pdev));
4457 	struct hisi_qm *qm = pci_get_drvdata(pdev);
4458 	u32 delay = 0;
4459 	int ret;
4460 
4461 	hisi_qm_dev_err_uninit(pf_qm);
4462 
4463 	/*
4464 	 * Check whether there is an ECC mbit error, If it occurs, need to
4465 	 * wait for soft reset to fix it.
4466 	 */
4467 	while (qm_check_dev_error(pf_qm)) {
4468 		msleep(++delay);
4469 		if (delay > QM_RESET_WAIT_TIMEOUT)
4470 			return;
4471 	}
4472 
4473 	ret = qm_reset_prepare_ready(qm);
4474 	if (ret) {
4475 		pci_err(pdev, "FLR not ready!\n");
4476 		return;
4477 	}
4478 
4479 	/* PF obtains the information of VF by querying the register. */
4480 	if (qm->fun_type == QM_HW_PF)
4481 		qm_cmd_uninit(qm);
4482 
4483 	ret = qm_try_stop_vfs(qm, QM_PF_FLR_PREPARE, QM_DOWN);
4484 	if (ret)
4485 		pci_err(pdev, "failed to stop vfs by pf in FLR.\n");
4486 
4487 	ret = hisi_qm_stop(qm, QM_DOWN);
4488 	if (ret) {
4489 		pci_err(pdev, "Failed to stop QM, ret = %d.\n", ret);
4490 		hisi_qm_set_hw_reset(qm, QM_RESET_STOP_TX_OFFSET);
4491 		hisi_qm_set_hw_reset(qm, QM_RESET_STOP_RX_OFFSET);
4492 		return;
4493 	}
4494 
4495 	ret = qm_wait_vf_prepare_finish(qm);
4496 	if (ret)
4497 		pci_err(pdev, "failed to stop by vfs in FLR!\n");
4498 
4499 	pci_info(pdev, "FLR resetting...\n");
4500 }
4501 EXPORT_SYMBOL_GPL(hisi_qm_reset_prepare);
4502 
qm_flr_reset_complete(struct pci_dev * pdev)4503 static bool qm_flr_reset_complete(struct pci_dev *pdev)
4504 {
4505 	struct pci_dev *pf_pdev = pci_physfn(pdev);
4506 	struct hisi_qm *qm = pci_get_drvdata(pf_pdev);
4507 	u32 id;
4508 
4509 	pci_read_config_dword(qm->pdev, PCI_COMMAND, &id);
4510 	if (id == QM_PCI_COMMAND_INVALID) {
4511 		pci_err(pdev, "Device can not be used!\n");
4512 		return false;
4513 	}
4514 
4515 	return true;
4516 }
4517 
hisi_qm_reset_done(struct pci_dev * pdev)4518 void hisi_qm_reset_done(struct pci_dev *pdev)
4519 {
4520 	struct hisi_qm *pf_qm = pci_get_drvdata(pci_physfn(pdev));
4521 	struct hisi_qm *qm = pci_get_drvdata(pdev);
4522 	int ret;
4523 
4524 	if (qm->fun_type == QM_HW_PF) {
4525 		ret = qm_dev_hw_init(qm);
4526 		if (ret) {
4527 			pci_err(pdev, "Failed to init PF, ret = %d.\n", ret);
4528 			goto flr_done;
4529 		}
4530 	}
4531 
4532 	hisi_qm_dev_err_init(pf_qm);
4533 
4534 	ret = qm_restart(qm);
4535 	if (ret) {
4536 		pci_err(pdev, "Failed to start QM, ret = %d.\n", ret);
4537 		goto flr_done;
4538 	}
4539 
4540 	ret = qm_try_start_vfs(qm, QM_PF_RESET_DONE);
4541 	if (ret)
4542 		pci_err(pdev, "failed to start vfs by pf in FLR.\n");
4543 
4544 	ret = qm_wait_vf_prepare_finish(qm);
4545 	if (ret)
4546 		pci_err(pdev, "failed to start by vfs in FLR!\n");
4547 
4548 flr_done:
4549 	if (qm->fun_type == QM_HW_PF)
4550 		qm_cmd_init(qm);
4551 
4552 	if (qm_flr_reset_complete(pdev))
4553 		pci_info(pdev, "FLR reset complete\n");
4554 
4555 	qm_reset_bit_clear(qm);
4556 }
4557 EXPORT_SYMBOL_GPL(hisi_qm_reset_done);
4558 
qm_abnormal_irq(int irq,void * data)4559 static irqreturn_t qm_abnormal_irq(int irq, void *data)
4560 {
4561 	struct hisi_qm *qm = data;
4562 	enum acc_err_result ret;
4563 
4564 	atomic64_inc(&qm->debug.dfx.abnormal_irq_cnt);
4565 	ret = qm_process_dev_error(qm);
4566 	if (ret == ACC_ERR_NEED_RESET &&
4567 	    !test_bit(QM_DRIVER_REMOVING, &qm->misc_ctl) &&
4568 	    !test_and_set_bit(QM_RST_SCHED, &qm->misc_ctl))
4569 		schedule_work(&qm->rst_work);
4570 
4571 	return IRQ_HANDLED;
4572 }
4573 
4574 /**
4575  * hisi_qm_dev_shutdown() - Shutdown device.
4576  * @pdev: The device will be shutdown.
4577  *
4578  * This function will stop qm when OS shutdown or rebooting.
4579  */
hisi_qm_dev_shutdown(struct pci_dev * pdev)4580 void hisi_qm_dev_shutdown(struct pci_dev *pdev)
4581 {
4582 	struct hisi_qm *qm = pci_get_drvdata(pdev);
4583 	int ret;
4584 
4585 	ret = hisi_qm_stop(qm, QM_DOWN);
4586 	if (ret)
4587 		dev_err(&pdev->dev, "Fail to stop qm in shutdown!\n");
4588 
4589 	hisi_qm_cache_wb(qm);
4590 }
4591 EXPORT_SYMBOL_GPL(hisi_qm_dev_shutdown);
4592 
hisi_qm_controller_reset(struct work_struct * rst_work)4593 static void hisi_qm_controller_reset(struct work_struct *rst_work)
4594 {
4595 	struct hisi_qm *qm = container_of(rst_work, struct hisi_qm, rst_work);
4596 	int ret;
4597 
4598 	ret = qm_pm_get_sync(qm);
4599 	if (ret) {
4600 		clear_bit(QM_RST_SCHED, &qm->misc_ctl);
4601 		return;
4602 	}
4603 
4604 	/* reset pcie device controller */
4605 	ret = qm_controller_reset(qm);
4606 	if (ret)
4607 		dev_err(&qm->pdev->dev, "controller reset failed (%d)\n", ret);
4608 
4609 	qm_pm_put_sync(qm);
4610 }
4611 
qm_pf_reset_vf_prepare(struct hisi_qm * qm,enum qm_stop_reason stop_reason)4612 static void qm_pf_reset_vf_prepare(struct hisi_qm *qm,
4613 				   enum qm_stop_reason stop_reason)
4614 {
4615 	enum qm_mb_cmd cmd = QM_VF_PREPARE_DONE;
4616 	struct pci_dev *pdev = qm->pdev;
4617 	int ret;
4618 
4619 	ret = qm_reset_prepare_ready(qm);
4620 	if (ret) {
4621 		dev_err(&pdev->dev, "reset prepare not ready!\n");
4622 		atomic_set(&qm->status.flags, QM_STOP);
4623 		cmd = QM_VF_PREPARE_FAIL;
4624 		goto err_prepare;
4625 	}
4626 
4627 	ret = hisi_qm_stop(qm, stop_reason);
4628 	if (ret) {
4629 		dev_err(&pdev->dev, "failed to stop QM, ret = %d.\n", ret);
4630 		atomic_set(&qm->status.flags, QM_STOP);
4631 		cmd = QM_VF_PREPARE_FAIL;
4632 		goto err_prepare;
4633 	} else {
4634 		goto out;
4635 	}
4636 
4637 err_prepare:
4638 	hisi_qm_set_hw_reset(qm, QM_RESET_STOP_TX_OFFSET);
4639 	hisi_qm_set_hw_reset(qm, QM_RESET_STOP_RX_OFFSET);
4640 out:
4641 	pci_save_state(pdev);
4642 	ret = qm_ping_pf(qm, cmd);
4643 	if (ret)
4644 		dev_warn(&pdev->dev, "PF responds timeout in reset prepare!\n");
4645 }
4646 
qm_pf_reset_vf_done(struct hisi_qm * qm)4647 static void qm_pf_reset_vf_done(struct hisi_qm *qm)
4648 {
4649 	enum qm_mb_cmd cmd = QM_VF_START_DONE;
4650 	struct pci_dev *pdev = qm->pdev;
4651 	int ret;
4652 
4653 	pci_restore_state(pdev);
4654 	ret = hisi_qm_start(qm);
4655 	if (ret) {
4656 		dev_err(&pdev->dev, "failed to start QM, ret = %d.\n", ret);
4657 		cmd = QM_VF_START_FAIL;
4658 	}
4659 
4660 	qm_cmd_init(qm);
4661 	ret = qm_ping_pf(qm, cmd);
4662 	if (ret)
4663 		dev_warn(&pdev->dev, "PF responds timeout in reset done!\n");
4664 
4665 	qm_reset_bit_clear(qm);
4666 }
4667 
qm_wait_pf_reset_finish(struct hisi_qm * qm)4668 static int qm_wait_pf_reset_finish(struct hisi_qm *qm)
4669 {
4670 	struct device *dev = &qm->pdev->dev;
4671 	u32 val, cmd;
4672 	u64 msg;
4673 	int ret;
4674 
4675 	/* Wait for reset to finish */
4676 	ret = readl_relaxed_poll_timeout(qm->io_base + QM_IFC_INT_SOURCE_V, val,
4677 					 val == BIT(0), QM_VF_RESET_WAIT_US,
4678 					 QM_VF_RESET_WAIT_TIMEOUT_US);
4679 	/* hardware completion status should be available by this time */
4680 	if (ret) {
4681 		dev_err(dev, "couldn't get reset done status from PF, timeout!\n");
4682 		return -ETIMEDOUT;
4683 	}
4684 
4685 	/*
4686 	 * Whether message is got successfully,
4687 	 * VF needs to ack PF by clearing the interrupt.
4688 	 */
4689 	ret = qm_get_mb_cmd(qm, &msg, 0);
4690 	qm_clear_cmd_interrupt(qm, 0);
4691 	if (ret) {
4692 		dev_err(dev, "failed to get msg from PF in reset done!\n");
4693 		return ret;
4694 	}
4695 
4696 	cmd = msg & QM_MB_CMD_DATA_MASK;
4697 	if (cmd != QM_PF_RESET_DONE) {
4698 		dev_err(dev, "the cmd(%u) is not reset done!\n", cmd);
4699 		ret = -EINVAL;
4700 	}
4701 
4702 	return ret;
4703 }
4704 
qm_pf_reset_vf_process(struct hisi_qm * qm,enum qm_stop_reason stop_reason)4705 static void qm_pf_reset_vf_process(struct hisi_qm *qm,
4706 				   enum qm_stop_reason stop_reason)
4707 {
4708 	struct device *dev = &qm->pdev->dev;
4709 	int ret;
4710 
4711 	dev_info(dev, "device reset start...\n");
4712 
4713 	/* The message is obtained by querying the register during resetting */
4714 	qm_cmd_uninit(qm);
4715 	qm_pf_reset_vf_prepare(qm, stop_reason);
4716 
4717 	ret = qm_wait_pf_reset_finish(qm);
4718 	if (ret)
4719 		goto err_get_status;
4720 
4721 	qm_pf_reset_vf_done(qm);
4722 
4723 	dev_info(dev, "device reset done.\n");
4724 
4725 	return;
4726 
4727 err_get_status:
4728 	qm_cmd_init(qm);
4729 	qm_reset_bit_clear(qm);
4730 }
4731 
qm_handle_cmd_msg(struct hisi_qm * qm,u32 fun_num)4732 static void qm_handle_cmd_msg(struct hisi_qm *qm, u32 fun_num)
4733 {
4734 	struct device *dev = &qm->pdev->dev;
4735 	u64 msg;
4736 	u32 cmd;
4737 	int ret;
4738 
4739 	/*
4740 	 * Get the msg from source by sending mailbox. Whether message is got
4741 	 * successfully, destination needs to ack source by clearing the interrupt.
4742 	 */
4743 	ret = qm_get_mb_cmd(qm, &msg, fun_num);
4744 	qm_clear_cmd_interrupt(qm, BIT(fun_num));
4745 	if (ret) {
4746 		dev_err(dev, "failed to get msg from source!\n");
4747 		return;
4748 	}
4749 
4750 	cmd = msg & QM_MB_CMD_DATA_MASK;
4751 	switch (cmd) {
4752 	case QM_PF_FLR_PREPARE:
4753 		qm_pf_reset_vf_process(qm, QM_DOWN);
4754 		break;
4755 	case QM_PF_SRST_PREPARE:
4756 		qm_pf_reset_vf_process(qm, QM_SOFT_RESET);
4757 		break;
4758 	case QM_VF_GET_QOS:
4759 		qm_vf_get_qos(qm, fun_num);
4760 		break;
4761 	case QM_PF_SET_QOS:
4762 		qm->mb_qos = msg >> QM_MB_CMD_DATA_SHIFT;
4763 		break;
4764 	default:
4765 		dev_err(dev, "unsupported cmd %u sent by function(%u)!\n", cmd, fun_num);
4766 		break;
4767 	}
4768 }
4769 
qm_cmd_process(struct work_struct * cmd_process)4770 static void qm_cmd_process(struct work_struct *cmd_process)
4771 {
4772 	struct hisi_qm *qm = container_of(cmd_process,
4773 					struct hisi_qm, cmd_process);
4774 	u32 vfs_num = qm->vfs_num;
4775 	u64 val;
4776 	u32 i;
4777 
4778 	if (qm->fun_type == QM_HW_PF) {
4779 		val = readq(qm->io_base + QM_IFC_INT_SOURCE_P);
4780 		if (!val)
4781 			return;
4782 
4783 		for (i = 1; i <= vfs_num; i++) {
4784 			if (val & BIT(i))
4785 				qm_handle_cmd_msg(qm, i);
4786 		}
4787 
4788 		return;
4789 	}
4790 
4791 	qm_handle_cmd_msg(qm, 0);
4792 }
4793 
4794 /**
4795  * hisi_qm_alg_register() - Register alg to crypto.
4796  * @qm: The qm needs add.
4797  * @qm_list: The qm list.
4798  * @guard: Guard of qp_num.
4799  *
4800  * Register algorithm to crypto when the function is satisfy guard.
4801  */
hisi_qm_alg_register(struct hisi_qm * qm,struct hisi_qm_list * qm_list,int guard)4802 int hisi_qm_alg_register(struct hisi_qm *qm, struct hisi_qm_list *qm_list, int guard)
4803 {
4804 	struct device *dev = &qm->pdev->dev;
4805 
4806 	if (qm->ver <= QM_HW_V2 && qm->use_sva) {
4807 		dev_info(dev, "HW V2 not both use uacce sva mode and hardware crypto algs.\n");
4808 		return 0;
4809 	}
4810 
4811 	if (qm->qp_num < guard) {
4812 		dev_info(dev, "qp_num is less than task need.\n");
4813 		return 0;
4814 	}
4815 
4816 	return qm_list->register_to_crypto(qm);
4817 }
4818 EXPORT_SYMBOL_GPL(hisi_qm_alg_register);
4819 
4820 /**
4821  * hisi_qm_alg_unregister() - Unregister alg from crypto.
4822  * @qm: The qm needs delete.
4823  * @qm_list: The qm list.
4824  * @guard: Guard of qp_num.
4825  *
4826  * Unregister algorithm from crypto when the last function is satisfy guard.
4827  */
hisi_qm_alg_unregister(struct hisi_qm * qm,struct hisi_qm_list * qm_list,int guard)4828 void hisi_qm_alg_unregister(struct hisi_qm *qm, struct hisi_qm_list *qm_list, int guard)
4829 {
4830 	if (qm->ver <= QM_HW_V2 && qm->use_sva)
4831 		return;
4832 
4833 	if (qm->qp_num < guard)
4834 		return;
4835 
4836 	qm_list->unregister_from_crypto(qm);
4837 }
4838 EXPORT_SYMBOL_GPL(hisi_qm_alg_unregister);
4839 
qm_unregister_abnormal_irq(struct hisi_qm * qm)4840 static void qm_unregister_abnormal_irq(struct hisi_qm *qm)
4841 {
4842 	struct pci_dev *pdev = qm->pdev;
4843 	u32 irq_vector, val;
4844 
4845 	if (qm->fun_type == QM_HW_VF)
4846 		return;
4847 
4848 	val = qm->cap_tables.qm_cap_table[QM_ABN_IRQ_TYPE_CAP_IDX].cap_val;
4849 	if (!((val >> QM_IRQ_TYPE_SHIFT) & QM_ABN_IRQ_TYPE_MASK))
4850 		return;
4851 
4852 	irq_vector = val & QM_IRQ_VECTOR_MASK;
4853 	free_irq(pci_irq_vector(pdev, irq_vector), qm);
4854 }
4855 
qm_register_abnormal_irq(struct hisi_qm * qm)4856 static int qm_register_abnormal_irq(struct hisi_qm *qm)
4857 {
4858 	struct pci_dev *pdev = qm->pdev;
4859 	u32 irq_vector, val;
4860 	int ret;
4861 
4862 	if (qm->fun_type == QM_HW_VF)
4863 		return 0;
4864 
4865 	val = qm->cap_tables.qm_cap_table[QM_ABN_IRQ_TYPE_CAP_IDX].cap_val;
4866 	if (!((val >> QM_IRQ_TYPE_SHIFT) & QM_ABN_IRQ_TYPE_MASK))
4867 		return 0;
4868 
4869 	irq_vector = val & QM_IRQ_VECTOR_MASK;
4870 	ret = request_irq(pci_irq_vector(pdev, irq_vector), qm_abnormal_irq, 0, qm->dev_name, qm);
4871 	if (ret)
4872 		dev_err(&qm->pdev->dev, "failed to request abnormal irq, ret = %d", ret);
4873 
4874 	return ret;
4875 }
4876 
qm_unregister_mb_cmd_irq(struct hisi_qm * qm)4877 static void qm_unregister_mb_cmd_irq(struct hisi_qm *qm)
4878 {
4879 	struct pci_dev *pdev = qm->pdev;
4880 	u32 irq_vector, val;
4881 
4882 	val = qm->cap_tables.qm_cap_table[QM_PF2VF_IRQ_TYPE_CAP_IDX].cap_val;
4883 	if (!((val >> QM_IRQ_TYPE_SHIFT) & QM_IRQ_TYPE_MASK))
4884 		return;
4885 
4886 	irq_vector = val & QM_IRQ_VECTOR_MASK;
4887 	free_irq(pci_irq_vector(pdev, irq_vector), qm);
4888 }
4889 
qm_register_mb_cmd_irq(struct hisi_qm * qm)4890 static int qm_register_mb_cmd_irq(struct hisi_qm *qm)
4891 {
4892 	struct pci_dev *pdev = qm->pdev;
4893 	u32 irq_vector, val;
4894 	int ret;
4895 
4896 	val = qm->cap_tables.qm_cap_table[QM_PF2VF_IRQ_TYPE_CAP_IDX].cap_val;
4897 	if (!((val >> QM_IRQ_TYPE_SHIFT) & QM_IRQ_TYPE_MASK))
4898 		return 0;
4899 
4900 	irq_vector = val & QM_IRQ_VECTOR_MASK;
4901 	ret = request_irq(pci_irq_vector(pdev, irq_vector), qm_mb_cmd_irq, 0, qm->dev_name, qm);
4902 	if (ret)
4903 		dev_err(&pdev->dev, "failed to request function communication irq, ret = %d", ret);
4904 
4905 	return ret;
4906 }
4907 
qm_unregister_aeq_irq(struct hisi_qm * qm)4908 static void qm_unregister_aeq_irq(struct hisi_qm *qm)
4909 {
4910 	struct pci_dev *pdev = qm->pdev;
4911 	u32 irq_vector, val;
4912 
4913 	val = qm->cap_tables.qm_cap_table[QM_AEQ_IRQ_TYPE_CAP_IDX].cap_val;
4914 	if (!((val >> QM_IRQ_TYPE_SHIFT) & QM_IRQ_TYPE_MASK))
4915 		return;
4916 
4917 	irq_vector = val & QM_IRQ_VECTOR_MASK;
4918 	free_irq(pci_irq_vector(pdev, irq_vector), qm);
4919 }
4920 
qm_register_aeq_irq(struct hisi_qm * qm)4921 static int qm_register_aeq_irq(struct hisi_qm *qm)
4922 {
4923 	struct pci_dev *pdev = qm->pdev;
4924 	u32 irq_vector, val;
4925 	int ret;
4926 
4927 	val = qm->cap_tables.qm_cap_table[QM_AEQ_IRQ_TYPE_CAP_IDX].cap_val;
4928 	if (!((val >> QM_IRQ_TYPE_SHIFT) & QM_IRQ_TYPE_MASK))
4929 		return 0;
4930 
4931 	irq_vector = val & QM_IRQ_VECTOR_MASK;
4932 	ret = request_threaded_irq(pci_irq_vector(pdev, irq_vector), NULL,
4933 						   qm_aeq_thread, IRQF_ONESHOT, qm->dev_name, qm);
4934 	if (ret)
4935 		dev_err(&pdev->dev, "failed to request eq irq, ret = %d", ret);
4936 
4937 	return ret;
4938 }
4939 
qm_unregister_eq_irq(struct hisi_qm * qm)4940 static void qm_unregister_eq_irq(struct hisi_qm *qm)
4941 {
4942 	struct pci_dev *pdev = qm->pdev;
4943 	u32 irq_vector, val;
4944 
4945 	val = qm->cap_tables.qm_cap_table[QM_EQ_IRQ_TYPE_CAP_IDX].cap_val;
4946 	if (!((val >> QM_IRQ_TYPE_SHIFT) & QM_IRQ_TYPE_MASK))
4947 		return;
4948 
4949 	irq_vector = val & QM_IRQ_VECTOR_MASK;
4950 	free_irq(pci_irq_vector(pdev, irq_vector), qm);
4951 }
4952 
qm_register_eq_irq(struct hisi_qm * qm)4953 static int qm_register_eq_irq(struct hisi_qm *qm)
4954 {
4955 	struct pci_dev *pdev = qm->pdev;
4956 	u32 irq_vector, val;
4957 	int ret;
4958 
4959 	val = qm->cap_tables.qm_cap_table[QM_EQ_IRQ_TYPE_CAP_IDX].cap_val;
4960 	if (!((val >> QM_IRQ_TYPE_SHIFT) & QM_IRQ_TYPE_MASK))
4961 		return 0;
4962 
4963 	irq_vector = val & QM_IRQ_VECTOR_MASK;
4964 	ret = request_irq(pci_irq_vector(pdev, irq_vector), qm_eq_irq, 0, qm->dev_name, qm);
4965 	if (ret)
4966 		dev_err(&pdev->dev, "failed to request eq irq, ret = %d", ret);
4967 
4968 	return ret;
4969 }
4970 
qm_irqs_unregister(struct hisi_qm * qm)4971 static void qm_irqs_unregister(struct hisi_qm *qm)
4972 {
4973 	qm_unregister_mb_cmd_irq(qm);
4974 	qm_unregister_abnormal_irq(qm);
4975 	qm_unregister_aeq_irq(qm);
4976 	qm_unregister_eq_irq(qm);
4977 }
4978 
qm_irqs_register(struct hisi_qm * qm)4979 static int qm_irqs_register(struct hisi_qm *qm)
4980 {
4981 	int ret;
4982 
4983 	ret = qm_register_eq_irq(qm);
4984 	if (ret)
4985 		return ret;
4986 
4987 	ret = qm_register_aeq_irq(qm);
4988 	if (ret)
4989 		goto free_eq_irq;
4990 
4991 	ret = qm_register_abnormal_irq(qm);
4992 	if (ret)
4993 		goto free_aeq_irq;
4994 
4995 	ret = qm_register_mb_cmd_irq(qm);
4996 	if (ret)
4997 		goto free_abnormal_irq;
4998 
4999 	return 0;
5000 
5001 free_abnormal_irq:
5002 	qm_unregister_abnormal_irq(qm);
5003 free_aeq_irq:
5004 	qm_unregister_aeq_irq(qm);
5005 free_eq_irq:
5006 	qm_unregister_eq_irq(qm);
5007 	return ret;
5008 }
5009 
qm_get_qp_num(struct hisi_qm * qm)5010 static int qm_get_qp_num(struct hisi_qm *qm)
5011 {
5012 	struct device *dev = &qm->pdev->dev;
5013 	bool is_db_isolation;
5014 
5015 	/* VF's qp_num assigned by PF in v2, and VF can get qp_num by vft. */
5016 	if (qm->fun_type == QM_HW_VF) {
5017 		if (qm->ver != QM_HW_V1)
5018 			/* v2 starts to support get vft by mailbox */
5019 			return hisi_qm_get_vft(qm, &qm->qp_base, &qm->qp_num);
5020 
5021 		return 0;
5022 	}
5023 
5024 	is_db_isolation = test_bit(QM_SUPPORT_DB_ISOLATION, &qm->caps);
5025 	qm->ctrl_qp_num = hisi_qm_get_hw_info(qm, qm_basic_info, QM_TOTAL_QP_NUM_CAP, true);
5026 	qm->max_qp_num = hisi_qm_get_hw_info(qm, qm_basic_info,
5027 					     QM_FUNC_MAX_QP_CAP, is_db_isolation);
5028 
5029 	if (qm->qp_num <= qm->max_qp_num)
5030 		return 0;
5031 
5032 	if (test_bit(QM_MODULE_PARAM, &qm->misc_ctl)) {
5033 		/* Check whether the set qp number is valid */
5034 		dev_err(dev, "qp num(%u) is more than max qp num(%u)!\n",
5035 			qm->qp_num, qm->max_qp_num);
5036 		return -EINVAL;
5037 	}
5038 
5039 	dev_info(dev, "Default qp num(%u) is too big, reset it to Function's max qp num(%u)!\n",
5040 		 qm->qp_num, qm->max_qp_num);
5041 	qm->qp_num = qm->max_qp_num;
5042 	qm->debug.curr_qm_qp_num = qm->qp_num;
5043 
5044 	return 0;
5045 }
5046 
qm_pre_store_irq_type_caps(struct hisi_qm * qm)5047 static int qm_pre_store_irq_type_caps(struct hisi_qm *qm)
5048 {
5049 	struct hisi_qm_cap_record *qm_cap;
5050 	struct pci_dev *pdev = qm->pdev;
5051 	size_t i, size;
5052 
5053 	size = ARRAY_SIZE(qm_pre_store_caps);
5054 	qm_cap = devm_kzalloc(&pdev->dev, sizeof(*qm_cap) * size, GFP_KERNEL);
5055 	if (!qm_cap)
5056 		return -ENOMEM;
5057 
5058 	for (i = 0; i < size; i++) {
5059 		qm_cap[i].type = qm_pre_store_caps[i];
5060 		qm_cap[i].cap_val = hisi_qm_get_hw_info(qm, qm_basic_info,
5061 							qm_pre_store_caps[i], qm->cap_ver);
5062 	}
5063 
5064 	qm->cap_tables.qm_cap_table = qm_cap;
5065 
5066 	return 0;
5067 }
5068 
qm_get_hw_caps(struct hisi_qm * qm)5069 static int qm_get_hw_caps(struct hisi_qm *qm)
5070 {
5071 	const struct hisi_qm_cap_info *cap_info = qm->fun_type == QM_HW_PF ?
5072 						  qm_cap_info_pf : qm_cap_info_vf;
5073 	u32 size = qm->fun_type == QM_HW_PF ? ARRAY_SIZE(qm_cap_info_pf) :
5074 				   ARRAY_SIZE(qm_cap_info_vf);
5075 	u32 val, i;
5076 
5077 	/* Doorbell isolate register is a independent register. */
5078 	val = hisi_qm_get_hw_info(qm, qm_cap_info_comm, QM_SUPPORT_DB_ISOLATION, true);
5079 	if (val)
5080 		set_bit(QM_SUPPORT_DB_ISOLATION, &qm->caps);
5081 
5082 	if (qm->ver >= QM_HW_V3) {
5083 		val = readl(qm->io_base + QM_FUNC_CAPS_REG);
5084 		qm->cap_ver = val & QM_CAPBILITY_VERSION;
5085 	}
5086 
5087 	/* Get PF/VF common capbility */
5088 	for (i = 1; i < ARRAY_SIZE(qm_cap_info_comm); i++) {
5089 		val = hisi_qm_get_hw_info(qm, qm_cap_info_comm, i, qm->cap_ver);
5090 		if (val)
5091 			set_bit(qm_cap_info_comm[i].type, &qm->caps);
5092 	}
5093 
5094 	/* Get PF/VF different capbility */
5095 	for (i = 0; i < size; i++) {
5096 		val = hisi_qm_get_hw_info(qm, cap_info, i, qm->cap_ver);
5097 		if (val)
5098 			set_bit(cap_info[i].type, &qm->caps);
5099 	}
5100 
5101 	/* Fetch and save the value of irq type related capability registers */
5102 	return qm_pre_store_irq_type_caps(qm);
5103 }
5104 
qm_get_pci_res(struct hisi_qm * qm)5105 static int qm_get_pci_res(struct hisi_qm *qm)
5106 {
5107 	struct pci_dev *pdev = qm->pdev;
5108 	struct device *dev = &pdev->dev;
5109 	int ret;
5110 
5111 	ret = pci_request_mem_regions(pdev, qm->dev_name);
5112 	if (ret < 0) {
5113 		dev_err(dev, "Failed to request mem regions!\n");
5114 		return ret;
5115 	}
5116 
5117 	qm->phys_base = pci_resource_start(pdev, PCI_BAR_2);
5118 	qm->io_base = ioremap(qm->phys_base, pci_resource_len(pdev, PCI_BAR_2));
5119 	if (!qm->io_base) {
5120 		ret = -EIO;
5121 		goto err_request_mem_regions;
5122 	}
5123 
5124 	ret = qm_get_hw_caps(qm);
5125 	if (ret)
5126 		goto err_ioremap;
5127 
5128 	if (test_bit(QM_SUPPORT_DB_ISOLATION, &qm->caps)) {
5129 		qm->db_interval = QM_QP_DB_INTERVAL;
5130 		qm->db_phys_base = pci_resource_start(pdev, PCI_BAR_4);
5131 		qm->db_io_base = ioremap(qm->db_phys_base,
5132 					 pci_resource_len(pdev, PCI_BAR_4));
5133 		if (!qm->db_io_base) {
5134 			ret = -EIO;
5135 			goto err_ioremap;
5136 		}
5137 	} else {
5138 		qm->db_phys_base = qm->phys_base;
5139 		qm->db_io_base = qm->io_base;
5140 		qm->db_interval = 0;
5141 	}
5142 
5143 	ret = qm_get_qp_num(qm);
5144 	if (ret)
5145 		goto err_db_ioremap;
5146 
5147 	return 0;
5148 
5149 err_db_ioremap:
5150 	if (test_bit(QM_SUPPORT_DB_ISOLATION, &qm->caps))
5151 		iounmap(qm->db_io_base);
5152 err_ioremap:
5153 	iounmap(qm->io_base);
5154 err_request_mem_regions:
5155 	pci_release_mem_regions(pdev);
5156 	return ret;
5157 }
5158 
qm_clear_device(struct hisi_qm * qm)5159 static int qm_clear_device(struct hisi_qm *qm)
5160 {
5161 	acpi_handle handle = ACPI_HANDLE(&qm->pdev->dev);
5162 	int ret;
5163 
5164 	if (qm->fun_type == QM_HW_VF)
5165 		return 0;
5166 
5167 	/* Device does not support reset, return */
5168 	if (!qm->err_ini->err_info_init)
5169 		return 0;
5170 	qm->err_ini->err_info_init(qm);
5171 
5172 	if (!handle)
5173 		return 0;
5174 
5175 	/* No reset method, return */
5176 	if (!acpi_has_method(handle, qm->err_info.acpi_rst))
5177 		return 0;
5178 
5179 	ret = qm_master_ooo_check(qm);
5180 	if (ret) {
5181 		writel(0x0, qm->io_base + ACC_MASTER_GLOBAL_CTRL);
5182 		return ret;
5183 	}
5184 
5185 	return qm_reset_device(qm);
5186 }
5187 
hisi_qm_pci_init(struct hisi_qm * qm)5188 static int hisi_qm_pci_init(struct hisi_qm *qm)
5189 {
5190 	struct pci_dev *pdev = qm->pdev;
5191 	struct device *dev = &pdev->dev;
5192 	unsigned int num_vec;
5193 	int ret;
5194 
5195 	ret = pci_enable_device_mem(pdev);
5196 	if (ret < 0) {
5197 		dev_err(dev, "Failed to enable device mem!\n");
5198 		return ret;
5199 	}
5200 
5201 	ret = qm_get_pci_res(qm);
5202 	if (ret)
5203 		goto err_disable_pcidev;
5204 
5205 	ret = dma_set_mask_and_coherent(dev, DMA_BIT_MASK(64));
5206 	if (ret < 0)
5207 		goto err_get_pci_res;
5208 	pci_set_master(pdev);
5209 
5210 	num_vec = qm_get_irq_num(qm);
5211 	ret = pci_alloc_irq_vectors(pdev, num_vec, num_vec, PCI_IRQ_MSI);
5212 	if (ret < 0) {
5213 		dev_err(dev, "Failed to enable MSI vectors!\n");
5214 		goto err_get_pci_res;
5215 	}
5216 
5217 	ret = qm_clear_device(qm);
5218 	if (ret)
5219 		goto err_free_vectors;
5220 
5221 	return 0;
5222 
5223 err_free_vectors:
5224 	pci_free_irq_vectors(pdev);
5225 err_get_pci_res:
5226 	qm_put_pci_res(qm);
5227 err_disable_pcidev:
5228 	pci_disable_device(pdev);
5229 	return ret;
5230 }
5231 
hisi_qm_init_work(struct hisi_qm * qm)5232 static int hisi_qm_init_work(struct hisi_qm *qm)
5233 {
5234 	int i;
5235 
5236 	for (i = 0; i < qm->qp_num; i++)
5237 		INIT_WORK(&qm->poll_data[i].work, qm_work_process);
5238 
5239 	if (qm->fun_type == QM_HW_PF)
5240 		INIT_WORK(&qm->rst_work, hisi_qm_controller_reset);
5241 
5242 	if (qm->ver > QM_HW_V2)
5243 		INIT_WORK(&qm->cmd_process, qm_cmd_process);
5244 
5245 	qm->wq = alloc_workqueue("%s", WQ_HIGHPRI | WQ_MEM_RECLAIM |
5246 				 WQ_UNBOUND, num_online_cpus(),
5247 				 pci_name(qm->pdev));
5248 	if (!qm->wq) {
5249 		pci_err(qm->pdev, "failed to alloc workqueue!\n");
5250 		return -ENOMEM;
5251 	}
5252 
5253 	return 0;
5254 }
5255 
hisi_qp_alloc_memory(struct hisi_qm * qm)5256 static int hisi_qp_alloc_memory(struct hisi_qm *qm)
5257 {
5258 	struct device *dev = &qm->pdev->dev;
5259 	u16 sq_depth, cq_depth;
5260 	size_t qp_dma_size;
5261 	int i, ret;
5262 
5263 	qm->qp_array = kcalloc(qm->qp_num, sizeof(struct hisi_qp), GFP_KERNEL);
5264 	if (!qm->qp_array)
5265 		return -ENOMEM;
5266 
5267 	qm->poll_data = kcalloc(qm->qp_num, sizeof(struct hisi_qm_poll_data), GFP_KERNEL);
5268 	if (!qm->poll_data) {
5269 		kfree(qm->qp_array);
5270 		return -ENOMEM;
5271 	}
5272 
5273 	qm_get_xqc_depth(qm, &sq_depth, &cq_depth, QM_QP_DEPTH_CAP);
5274 
5275 	/* one more page for device or qp statuses */
5276 	qp_dma_size = qm->sqe_size * sq_depth + sizeof(struct qm_cqe) * cq_depth;
5277 	qp_dma_size = PAGE_ALIGN(qp_dma_size) + PAGE_SIZE;
5278 	for (i = 0; i < qm->qp_num; i++) {
5279 		qm->poll_data[i].qm = qm;
5280 		ret = hisi_qp_memory_init(qm, qp_dma_size, i, sq_depth, cq_depth);
5281 		if (ret)
5282 			goto err_init_qp_mem;
5283 
5284 		dev_dbg(dev, "allocate qp dma buf size=%zx)\n", qp_dma_size);
5285 	}
5286 
5287 	return 0;
5288 err_init_qp_mem:
5289 	hisi_qp_memory_uninit(qm, i);
5290 
5291 	return ret;
5292 }
5293 
hisi_qm_alloc_rsv_buf(struct hisi_qm * qm)5294 static int hisi_qm_alloc_rsv_buf(struct hisi_qm *qm)
5295 {
5296 	struct qm_rsv_buf *xqc_buf = &qm->xqc_buf;
5297 	struct qm_dma *xqc_dma = &xqc_buf->qcdma;
5298 	struct device *dev = &qm->pdev->dev;
5299 	size_t off = 0;
5300 
5301 #define QM_XQC_BUF_INIT(xqc_buf, type) do { \
5302 	(xqc_buf)->type = ((xqc_buf)->qcdma.va + (off)); \
5303 	(xqc_buf)->type##_dma = (xqc_buf)->qcdma.dma + (off); \
5304 	off += QMC_ALIGN(sizeof(struct qm_##type)); \
5305 } while (0)
5306 
5307 	xqc_dma->size = QMC_ALIGN(sizeof(struct qm_eqc)) +
5308 			QMC_ALIGN(sizeof(struct qm_aeqc)) +
5309 			QMC_ALIGN(sizeof(struct qm_sqc)) +
5310 			QMC_ALIGN(sizeof(struct qm_cqc));
5311 	xqc_dma->va = dma_alloc_coherent(dev, xqc_dma->size,
5312 					 &xqc_dma->dma, GFP_KERNEL);
5313 	if (!xqc_dma->va)
5314 		return -ENOMEM;
5315 
5316 	QM_XQC_BUF_INIT(xqc_buf, eqc);
5317 	QM_XQC_BUF_INIT(xqc_buf, aeqc);
5318 	QM_XQC_BUF_INIT(xqc_buf, sqc);
5319 	QM_XQC_BUF_INIT(xqc_buf, cqc);
5320 
5321 	return 0;
5322 }
5323 
hisi_qm_memory_init(struct hisi_qm * qm)5324 static int hisi_qm_memory_init(struct hisi_qm *qm)
5325 {
5326 	struct device *dev = &qm->pdev->dev;
5327 	int ret, total_func;
5328 	size_t off = 0;
5329 
5330 	if (test_bit(QM_SUPPORT_FUNC_QOS, &qm->caps)) {
5331 		total_func = pci_sriov_get_totalvfs(qm->pdev) + 1;
5332 		qm->factor = kcalloc(total_func, sizeof(struct qm_shaper_factor), GFP_KERNEL);
5333 		if (!qm->factor)
5334 			return -ENOMEM;
5335 
5336 		/* Only the PF value needs to be initialized */
5337 		qm->factor[0].func_qos = QM_QOS_MAX_VAL;
5338 	}
5339 
5340 #define QM_INIT_BUF(qm, type, num) do { \
5341 	(qm)->type = ((qm)->qdma.va + (off)); \
5342 	(qm)->type##_dma = (qm)->qdma.dma + (off); \
5343 	off += QMC_ALIGN(sizeof(struct qm_##type) * (num)); \
5344 } while (0)
5345 
5346 	idr_init(&qm->qp_idr);
5347 	qm_get_xqc_depth(qm, &qm->eq_depth, &qm->aeq_depth, QM_XEQ_DEPTH_CAP);
5348 	qm->qdma.size = QMC_ALIGN(sizeof(struct qm_eqe) * qm->eq_depth) +
5349 			QMC_ALIGN(sizeof(struct qm_aeqe) * qm->aeq_depth) +
5350 			QMC_ALIGN(sizeof(struct qm_sqc) * qm->qp_num) +
5351 			QMC_ALIGN(sizeof(struct qm_cqc) * qm->qp_num);
5352 	qm->qdma.va = dma_alloc_coherent(dev, qm->qdma.size, &qm->qdma.dma,
5353 					 GFP_ATOMIC);
5354 	dev_dbg(dev, "allocate qm dma buf size=%zx)\n", qm->qdma.size);
5355 	if (!qm->qdma.va) {
5356 		ret = -ENOMEM;
5357 		goto err_destroy_idr;
5358 	}
5359 
5360 	QM_INIT_BUF(qm, eqe, qm->eq_depth);
5361 	QM_INIT_BUF(qm, aeqe, qm->aeq_depth);
5362 	QM_INIT_BUF(qm, sqc, qm->qp_num);
5363 	QM_INIT_BUF(qm, cqc, qm->qp_num);
5364 
5365 	ret = hisi_qm_alloc_rsv_buf(qm);
5366 	if (ret)
5367 		goto err_free_qdma;
5368 
5369 	ret = hisi_qp_alloc_memory(qm);
5370 	if (ret)
5371 		goto err_free_reserve_buf;
5372 
5373 	return 0;
5374 
5375 err_free_reserve_buf:
5376 	hisi_qm_free_rsv_buf(qm);
5377 err_free_qdma:
5378 	dma_free_coherent(dev, qm->qdma.size, qm->qdma.va, qm->qdma.dma);
5379 err_destroy_idr:
5380 	idr_destroy(&qm->qp_idr);
5381 	if (test_bit(QM_SUPPORT_FUNC_QOS, &qm->caps))
5382 		kfree(qm->factor);
5383 
5384 	return ret;
5385 }
5386 
5387 /**
5388  * hisi_qm_init() - Initialize configures about qm.
5389  * @qm: The qm needing init.
5390  *
5391  * This function init qm, then we can call hisi_qm_start to put qm into work.
5392  */
hisi_qm_init(struct hisi_qm * qm)5393 int hisi_qm_init(struct hisi_qm *qm)
5394 {
5395 	struct pci_dev *pdev = qm->pdev;
5396 	struct device *dev = &pdev->dev;
5397 	int ret;
5398 
5399 	hisi_qm_pre_init(qm);
5400 
5401 	ret = hisi_qm_pci_init(qm);
5402 	if (ret)
5403 		return ret;
5404 
5405 	ret = qm_irqs_register(qm);
5406 	if (ret)
5407 		goto err_pci_init;
5408 
5409 	if (qm->fun_type == QM_HW_PF) {
5410 		/* Set the doorbell timeout to QM_DB_TIMEOUT_CFG ns. */
5411 		writel(QM_DB_TIMEOUT_SET, qm->io_base + QM_DB_TIMEOUT_CFG);
5412 		qm_disable_clock_gate(qm);
5413 		ret = qm_dev_mem_reset(qm);
5414 		if (ret) {
5415 			dev_err(dev, "failed to reset device memory\n");
5416 			goto err_irq_register;
5417 		}
5418 	}
5419 
5420 	if (qm->mode == UACCE_MODE_SVA) {
5421 		ret = qm_alloc_uacce(qm);
5422 		if (ret < 0)
5423 			dev_warn(dev, "fail to alloc uacce (%d)\n", ret);
5424 	}
5425 
5426 	ret = hisi_qm_memory_init(qm);
5427 	if (ret)
5428 		goto err_alloc_uacce;
5429 
5430 	ret = hisi_qm_init_work(qm);
5431 	if (ret)
5432 		goto err_free_qm_memory;
5433 
5434 	qm_cmd_init(qm);
5435 
5436 	return 0;
5437 
5438 err_free_qm_memory:
5439 	hisi_qm_memory_uninit(qm);
5440 err_alloc_uacce:
5441 	qm_remove_uacce(qm);
5442 err_irq_register:
5443 	qm_irqs_unregister(qm);
5444 err_pci_init:
5445 	hisi_qm_pci_uninit(qm);
5446 	return ret;
5447 }
5448 EXPORT_SYMBOL_GPL(hisi_qm_init);
5449 
5450 /**
5451  * hisi_qm_get_dfx_access() - Try to get dfx access.
5452  * @qm: pointer to accelerator device.
5453  *
5454  * Try to get dfx access, then user can get message.
5455  *
5456  * If device is in suspended, return failure, otherwise
5457  * bump up the runtime PM usage counter.
5458  */
hisi_qm_get_dfx_access(struct hisi_qm * qm)5459 int hisi_qm_get_dfx_access(struct hisi_qm *qm)
5460 {
5461 	struct device *dev = &qm->pdev->dev;
5462 
5463 	if (pm_runtime_suspended(dev)) {
5464 		dev_info(dev, "can not read/write - device in suspended.\n");
5465 		return -EAGAIN;
5466 	}
5467 
5468 	return qm_pm_get_sync(qm);
5469 }
5470 EXPORT_SYMBOL_GPL(hisi_qm_get_dfx_access);
5471 
5472 /**
5473  * hisi_qm_put_dfx_access() - Put dfx access.
5474  * @qm: pointer to accelerator device.
5475  *
5476  * Put dfx access, drop runtime PM usage counter.
5477  */
hisi_qm_put_dfx_access(struct hisi_qm * qm)5478 void hisi_qm_put_dfx_access(struct hisi_qm *qm)
5479 {
5480 	qm_pm_put_sync(qm);
5481 }
5482 EXPORT_SYMBOL_GPL(hisi_qm_put_dfx_access);
5483 
5484 /**
5485  * hisi_qm_pm_init() - Initialize qm runtime PM.
5486  * @qm: pointer to accelerator device.
5487  *
5488  * Function that initialize qm runtime PM.
5489  */
hisi_qm_pm_init(struct hisi_qm * qm)5490 void hisi_qm_pm_init(struct hisi_qm *qm)
5491 {
5492 	struct device *dev = &qm->pdev->dev;
5493 
5494 	if (!test_bit(QM_SUPPORT_RPM, &qm->caps))
5495 		return;
5496 
5497 	pm_runtime_set_autosuspend_delay(dev, QM_AUTOSUSPEND_DELAY);
5498 	pm_runtime_use_autosuspend(dev);
5499 	pm_runtime_put_noidle(dev);
5500 }
5501 EXPORT_SYMBOL_GPL(hisi_qm_pm_init);
5502 
5503 /**
5504  * hisi_qm_pm_uninit() - Uninitialize qm runtime PM.
5505  * @qm: pointer to accelerator device.
5506  *
5507  * Function that uninitialize qm runtime PM.
5508  */
hisi_qm_pm_uninit(struct hisi_qm * qm)5509 void hisi_qm_pm_uninit(struct hisi_qm *qm)
5510 {
5511 	struct device *dev = &qm->pdev->dev;
5512 
5513 	if (!test_bit(QM_SUPPORT_RPM, &qm->caps))
5514 		return;
5515 
5516 	pm_runtime_get_noresume(dev);
5517 	pm_runtime_dont_use_autosuspend(dev);
5518 }
5519 EXPORT_SYMBOL_GPL(hisi_qm_pm_uninit);
5520 
qm_prepare_for_suspend(struct hisi_qm * qm)5521 static int qm_prepare_for_suspend(struct hisi_qm *qm)
5522 {
5523 	struct pci_dev *pdev = qm->pdev;
5524 	int ret;
5525 
5526 	ret = qm->ops->set_msi(qm, false);
5527 	if (ret) {
5528 		pci_err(pdev, "failed to disable MSI before suspending!\n");
5529 		return ret;
5530 	}
5531 
5532 	ret = qm_master_ooo_check(qm);
5533 	if (ret)
5534 		return ret;
5535 
5536 	ret = qm_set_pf_mse(qm, false);
5537 	if (ret)
5538 		pci_err(pdev, "failed to disable MSE before suspending!\n");
5539 
5540 	return ret;
5541 }
5542 
qm_rebuild_for_resume(struct hisi_qm * qm)5543 static int qm_rebuild_for_resume(struct hisi_qm *qm)
5544 {
5545 	struct pci_dev *pdev = qm->pdev;
5546 	int ret;
5547 
5548 	ret = qm_set_pf_mse(qm, true);
5549 	if (ret) {
5550 		pci_err(pdev, "failed to enable MSE after resuming!\n");
5551 		return ret;
5552 	}
5553 
5554 	ret = qm->ops->set_msi(qm, true);
5555 	if (ret) {
5556 		pci_err(pdev, "failed to enable MSI after resuming!\n");
5557 		return ret;
5558 	}
5559 
5560 	ret = qm_dev_hw_init(qm);
5561 	if (ret) {
5562 		pci_err(pdev, "failed to init device after resuming\n");
5563 		return ret;
5564 	}
5565 
5566 	qm_cmd_init(qm);
5567 	hisi_qm_dev_err_init(qm);
5568 	/* Set the doorbell timeout to QM_DB_TIMEOUT_CFG ns. */
5569 	writel(QM_DB_TIMEOUT_SET, qm->io_base + QM_DB_TIMEOUT_CFG);
5570 	qm_disable_clock_gate(qm);
5571 	ret = qm_dev_mem_reset(qm);
5572 	if (ret)
5573 		pci_err(pdev, "failed to reset device memory\n");
5574 
5575 	return ret;
5576 }
5577 
5578 /**
5579  * hisi_qm_suspend() - Runtime suspend of given device.
5580  * @dev: device to suspend.
5581  *
5582  * Function that suspend the device.
5583  */
hisi_qm_suspend(struct device * dev)5584 int hisi_qm_suspend(struct device *dev)
5585 {
5586 	struct pci_dev *pdev = to_pci_dev(dev);
5587 	struct hisi_qm *qm = pci_get_drvdata(pdev);
5588 	int ret;
5589 
5590 	pci_info(pdev, "entering suspended state\n");
5591 
5592 	ret = hisi_qm_stop(qm, QM_NORMAL);
5593 	if (ret) {
5594 		pci_err(pdev, "failed to stop qm(%d)\n", ret);
5595 		return ret;
5596 	}
5597 
5598 	ret = qm_prepare_for_suspend(qm);
5599 	if (ret)
5600 		pci_err(pdev, "failed to prepare suspended(%d)\n", ret);
5601 
5602 	return ret;
5603 }
5604 EXPORT_SYMBOL_GPL(hisi_qm_suspend);
5605 
5606 /**
5607  * hisi_qm_resume() - Runtime resume of given device.
5608  * @dev: device to resume.
5609  *
5610  * Function that resume the device.
5611  */
hisi_qm_resume(struct device * dev)5612 int hisi_qm_resume(struct device *dev)
5613 {
5614 	struct pci_dev *pdev = to_pci_dev(dev);
5615 	struct hisi_qm *qm = pci_get_drvdata(pdev);
5616 	int ret;
5617 
5618 	pci_info(pdev, "resuming from suspend state\n");
5619 
5620 	ret = qm_rebuild_for_resume(qm);
5621 	if (ret) {
5622 		pci_err(pdev, "failed to rebuild resume(%d)\n", ret);
5623 		return ret;
5624 	}
5625 
5626 	ret = hisi_qm_start(qm);
5627 	if (ret) {
5628 		if (qm_check_dev_error(qm)) {
5629 			pci_info(pdev, "failed to start qm due to device error, device will be reset!\n");
5630 			return 0;
5631 		}
5632 
5633 		pci_err(pdev, "failed to start qm(%d)!\n", ret);
5634 	}
5635 
5636 	return ret;
5637 }
5638 EXPORT_SYMBOL_GPL(hisi_qm_resume);
5639 
5640 MODULE_LICENSE("GPL v2");
5641 MODULE_AUTHOR("Zhou Wang <wangzhou1@hisilicon.com>");
5642 MODULE_DESCRIPTION("HiSilicon Accelerator queue manager driver");
5643