• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Hash algorithms supported by the CESA: MD5, SHA1 and SHA256.
4  *
5  * Author: Boris Brezillon <boris.brezillon@free-electrons.com>
6  * Author: Arnaud Ebalard <arno@natisbad.org>
7  *
8  * This work is based on an initial version written by
9  * Sebastian Andrzej Siewior < sebastian at breakpoint dot cc >
10  */
11 
12 #include <crypto/hmac.h>
13 #include <crypto/md5.h>
14 #include <crypto/sha1.h>
15 #include <crypto/sha2.h>
16 #include <linux/device.h>
17 #include <linux/dma-mapping.h>
18 
19 #include "cesa.h"
20 
21 struct mv_cesa_ahash_dma_iter {
22 	struct mv_cesa_dma_iter base;
23 	struct mv_cesa_sg_dma_iter src;
24 };
25 
26 static inline void
mv_cesa_ahash_req_iter_init(struct mv_cesa_ahash_dma_iter * iter,struct ahash_request * req)27 mv_cesa_ahash_req_iter_init(struct mv_cesa_ahash_dma_iter *iter,
28 			    struct ahash_request *req)
29 {
30 	struct mv_cesa_ahash_req *creq = ahash_request_ctx(req);
31 	unsigned int len = req->nbytes + creq->cache_ptr;
32 
33 	if (!creq->last_req)
34 		len &= ~CESA_HASH_BLOCK_SIZE_MSK;
35 
36 	mv_cesa_req_dma_iter_init(&iter->base, len);
37 	mv_cesa_sg_dma_iter_init(&iter->src, req->src, DMA_TO_DEVICE);
38 	iter->src.op_offset = creq->cache_ptr;
39 }
40 
41 static inline bool
mv_cesa_ahash_req_iter_next_op(struct mv_cesa_ahash_dma_iter * iter)42 mv_cesa_ahash_req_iter_next_op(struct mv_cesa_ahash_dma_iter *iter)
43 {
44 	iter->src.op_offset = 0;
45 
46 	return mv_cesa_req_dma_iter_next_op(&iter->base);
47 }
48 
49 static inline int
mv_cesa_ahash_dma_alloc_cache(struct mv_cesa_ahash_dma_req * req,gfp_t flags)50 mv_cesa_ahash_dma_alloc_cache(struct mv_cesa_ahash_dma_req *req, gfp_t flags)
51 {
52 	req->cache = dma_pool_alloc(cesa_dev->dma->cache_pool, flags,
53 				    &req->cache_dma);
54 	if (!req->cache)
55 		return -ENOMEM;
56 
57 	return 0;
58 }
59 
60 static inline void
mv_cesa_ahash_dma_free_cache(struct mv_cesa_ahash_dma_req * req)61 mv_cesa_ahash_dma_free_cache(struct mv_cesa_ahash_dma_req *req)
62 {
63 	if (!req->cache)
64 		return;
65 
66 	dma_pool_free(cesa_dev->dma->cache_pool, req->cache,
67 		      req->cache_dma);
68 }
69 
mv_cesa_ahash_dma_alloc_padding(struct mv_cesa_ahash_dma_req * req,gfp_t flags)70 static int mv_cesa_ahash_dma_alloc_padding(struct mv_cesa_ahash_dma_req *req,
71 					   gfp_t flags)
72 {
73 	if (req->padding)
74 		return 0;
75 
76 	req->padding = dma_pool_alloc(cesa_dev->dma->padding_pool, flags,
77 				      &req->padding_dma);
78 	if (!req->padding)
79 		return -ENOMEM;
80 
81 	return 0;
82 }
83 
mv_cesa_ahash_dma_free_padding(struct mv_cesa_ahash_dma_req * req)84 static void mv_cesa_ahash_dma_free_padding(struct mv_cesa_ahash_dma_req *req)
85 {
86 	if (!req->padding)
87 		return;
88 
89 	dma_pool_free(cesa_dev->dma->padding_pool, req->padding,
90 		      req->padding_dma);
91 	req->padding = NULL;
92 }
93 
mv_cesa_ahash_dma_last_cleanup(struct ahash_request * req)94 static inline void mv_cesa_ahash_dma_last_cleanup(struct ahash_request *req)
95 {
96 	struct mv_cesa_ahash_req *creq = ahash_request_ctx(req);
97 
98 	mv_cesa_ahash_dma_free_padding(&creq->req.dma);
99 }
100 
mv_cesa_ahash_dma_cleanup(struct ahash_request * req)101 static inline void mv_cesa_ahash_dma_cleanup(struct ahash_request *req)
102 {
103 	struct mv_cesa_ahash_req *creq = ahash_request_ctx(req);
104 
105 	dma_unmap_sg(cesa_dev->dev, req->src, creq->src_nents, DMA_TO_DEVICE);
106 	mv_cesa_ahash_dma_free_cache(&creq->req.dma);
107 	mv_cesa_dma_cleanup(&creq->base);
108 }
109 
mv_cesa_ahash_cleanup(struct ahash_request * req)110 static inline void mv_cesa_ahash_cleanup(struct ahash_request *req)
111 {
112 	struct mv_cesa_ahash_req *creq = ahash_request_ctx(req);
113 	struct mv_cesa_engine *engine = creq->base.engine;
114 
115 	if (mv_cesa_req_get_type(&creq->base) == CESA_DMA_REQ)
116 		mv_cesa_ahash_dma_cleanup(req);
117 
118 	atomic_sub(req->nbytes, &engine->load);
119 }
120 
mv_cesa_ahash_last_cleanup(struct ahash_request * req)121 static void mv_cesa_ahash_last_cleanup(struct ahash_request *req)
122 {
123 	struct mv_cesa_ahash_req *creq = ahash_request_ctx(req);
124 
125 	if (mv_cesa_req_get_type(&creq->base) == CESA_DMA_REQ)
126 		mv_cesa_ahash_dma_last_cleanup(req);
127 }
128 
mv_cesa_ahash_pad_len(struct mv_cesa_ahash_req * creq)129 static int mv_cesa_ahash_pad_len(struct mv_cesa_ahash_req *creq)
130 {
131 	unsigned int index, padlen;
132 
133 	index = creq->len & CESA_HASH_BLOCK_SIZE_MSK;
134 	padlen = (index < 56) ? (56 - index) : (64 + 56 - index);
135 
136 	return padlen;
137 }
138 
mv_cesa_ahash_pad_req(struct mv_cesa_ahash_req * creq,u8 * buf)139 static int mv_cesa_ahash_pad_req(struct mv_cesa_ahash_req *creq, u8 *buf)
140 {
141 	unsigned int padlen;
142 
143 	buf[0] = 0x80;
144 	/* Pad out to 56 mod 64 */
145 	padlen = mv_cesa_ahash_pad_len(creq);
146 	memset(buf + 1, 0, padlen - 1);
147 
148 	if (creq->algo_le) {
149 		__le64 bits = cpu_to_le64(creq->len << 3);
150 
151 		memcpy(buf + padlen, &bits, sizeof(bits));
152 	} else {
153 		__be64 bits = cpu_to_be64(creq->len << 3);
154 
155 		memcpy(buf + padlen, &bits, sizeof(bits));
156 	}
157 
158 	return padlen + 8;
159 }
160 
mv_cesa_ahash_std_step(struct ahash_request * req)161 static void mv_cesa_ahash_std_step(struct ahash_request *req)
162 {
163 	struct mv_cesa_ahash_req *creq = ahash_request_ctx(req);
164 	struct mv_cesa_ahash_std_req *sreq = &creq->req.std;
165 	struct mv_cesa_engine *engine = creq->base.engine;
166 	struct mv_cesa_op_ctx *op;
167 	unsigned int new_cache_ptr = 0;
168 	u32 frag_mode;
169 	size_t  len;
170 	unsigned int digsize;
171 	int i;
172 
173 	mv_cesa_adjust_op(engine, &creq->op_tmpl);
174 	if (engine->pool)
175 		memcpy(engine->sram_pool, &creq->op_tmpl,
176 		       sizeof(creq->op_tmpl));
177 	else
178 		memcpy_toio(engine->sram, &creq->op_tmpl,
179 			    sizeof(creq->op_tmpl));
180 
181 	if (!sreq->offset) {
182 		digsize = crypto_ahash_digestsize(crypto_ahash_reqtfm(req));
183 		for (i = 0; i < digsize / 4; i++)
184 			writel_relaxed(creq->state[i],
185 				       engine->regs + CESA_IVDIG(i));
186 	}
187 
188 	if (creq->cache_ptr) {
189 		if (engine->pool)
190 			memcpy(engine->sram_pool + CESA_SA_DATA_SRAM_OFFSET,
191 			       creq->cache, creq->cache_ptr);
192 		else
193 			memcpy_toio(engine->sram + CESA_SA_DATA_SRAM_OFFSET,
194 				    creq->cache, creq->cache_ptr);
195 	}
196 
197 	len = min_t(size_t, req->nbytes + creq->cache_ptr - sreq->offset,
198 		    CESA_SA_SRAM_PAYLOAD_SIZE);
199 
200 	if (!creq->last_req) {
201 		new_cache_ptr = len & CESA_HASH_BLOCK_SIZE_MSK;
202 		len &= ~CESA_HASH_BLOCK_SIZE_MSK;
203 	}
204 
205 	if (len - creq->cache_ptr)
206 		sreq->offset += mv_cesa_sg_copy_to_sram(
207 			engine, req->src, creq->src_nents,
208 			CESA_SA_DATA_SRAM_OFFSET + creq->cache_ptr,
209 			len - creq->cache_ptr, sreq->offset);
210 
211 	op = &creq->op_tmpl;
212 
213 	frag_mode = mv_cesa_get_op_cfg(op) & CESA_SA_DESC_CFG_FRAG_MSK;
214 
215 	if (creq->last_req && sreq->offset == req->nbytes &&
216 	    creq->len <= CESA_SA_DESC_MAC_SRC_TOTAL_LEN_MAX) {
217 		if (frag_mode == CESA_SA_DESC_CFG_FIRST_FRAG)
218 			frag_mode = CESA_SA_DESC_CFG_NOT_FRAG;
219 		else if (frag_mode == CESA_SA_DESC_CFG_MID_FRAG)
220 			frag_mode = CESA_SA_DESC_CFG_LAST_FRAG;
221 	}
222 
223 	if (frag_mode == CESA_SA_DESC_CFG_NOT_FRAG ||
224 	    frag_mode == CESA_SA_DESC_CFG_LAST_FRAG) {
225 		if (len &&
226 		    creq->len <= CESA_SA_DESC_MAC_SRC_TOTAL_LEN_MAX) {
227 			mv_cesa_set_mac_op_total_len(op, creq->len);
228 		} else {
229 			int trailerlen = mv_cesa_ahash_pad_len(creq) + 8;
230 
231 			if (len + trailerlen > CESA_SA_SRAM_PAYLOAD_SIZE) {
232 				len &= CESA_HASH_BLOCK_SIZE_MSK;
233 				new_cache_ptr = 64 - trailerlen;
234 				if (engine->pool)
235 					memcpy(creq->cache,
236 					       engine->sram_pool +
237 					       CESA_SA_DATA_SRAM_OFFSET + len,
238 					       new_cache_ptr);
239 				else
240 					memcpy_fromio(creq->cache,
241 						      engine->sram +
242 						      CESA_SA_DATA_SRAM_OFFSET +
243 						      len,
244 						      new_cache_ptr);
245 			} else {
246 				i = mv_cesa_ahash_pad_req(creq, creq->cache);
247 				len += i;
248 				if (engine->pool)
249 					memcpy(engine->sram_pool + len +
250 					       CESA_SA_DATA_SRAM_OFFSET,
251 					       creq->cache, i);
252 				else
253 					memcpy_toio(engine->sram + len +
254 						    CESA_SA_DATA_SRAM_OFFSET,
255 						    creq->cache, i);
256 			}
257 
258 			if (frag_mode == CESA_SA_DESC_CFG_LAST_FRAG)
259 				frag_mode = CESA_SA_DESC_CFG_MID_FRAG;
260 			else
261 				frag_mode = CESA_SA_DESC_CFG_FIRST_FRAG;
262 		}
263 	}
264 
265 	mv_cesa_set_mac_op_frag_len(op, len);
266 	mv_cesa_update_op_cfg(op, frag_mode, CESA_SA_DESC_CFG_FRAG_MSK);
267 
268 	/* FIXME: only update enc_len field */
269 	if (engine->pool)
270 		memcpy(engine->sram_pool, op, sizeof(*op));
271 	else
272 		memcpy_toio(engine->sram, op, sizeof(*op));
273 
274 	if (frag_mode == CESA_SA_DESC_CFG_FIRST_FRAG)
275 		mv_cesa_update_op_cfg(op, CESA_SA_DESC_CFG_MID_FRAG,
276 				      CESA_SA_DESC_CFG_FRAG_MSK);
277 
278 	creq->cache_ptr = new_cache_ptr;
279 
280 	mv_cesa_set_int_mask(engine, CESA_SA_INT_ACCEL0_DONE);
281 	writel_relaxed(CESA_SA_CFG_PARA_DIS, engine->regs + CESA_SA_CFG);
282 	WARN_ON(readl(engine->regs + CESA_SA_CMD) &
283 		CESA_SA_CMD_EN_CESA_SA_ACCL0);
284 	writel(CESA_SA_CMD_EN_CESA_SA_ACCL0, engine->regs + CESA_SA_CMD);
285 }
286 
mv_cesa_ahash_std_process(struct ahash_request * req,u32 status)287 static int mv_cesa_ahash_std_process(struct ahash_request *req, u32 status)
288 {
289 	struct mv_cesa_ahash_req *creq = ahash_request_ctx(req);
290 	struct mv_cesa_ahash_std_req *sreq = &creq->req.std;
291 
292 	if (sreq->offset < (req->nbytes - creq->cache_ptr))
293 		return -EINPROGRESS;
294 
295 	return 0;
296 }
297 
mv_cesa_ahash_dma_prepare(struct ahash_request * req)298 static inline void mv_cesa_ahash_dma_prepare(struct ahash_request *req)
299 {
300 	struct mv_cesa_ahash_req *creq = ahash_request_ctx(req);
301 	struct mv_cesa_req *basereq = &creq->base;
302 
303 	mv_cesa_dma_prepare(basereq, basereq->engine);
304 }
305 
mv_cesa_ahash_std_prepare(struct ahash_request * req)306 static void mv_cesa_ahash_std_prepare(struct ahash_request *req)
307 {
308 	struct mv_cesa_ahash_req *creq = ahash_request_ctx(req);
309 	struct mv_cesa_ahash_std_req *sreq = &creq->req.std;
310 
311 	sreq->offset = 0;
312 }
313 
mv_cesa_ahash_dma_step(struct ahash_request * req)314 static void mv_cesa_ahash_dma_step(struct ahash_request *req)
315 {
316 	struct mv_cesa_ahash_req *creq = ahash_request_ctx(req);
317 	struct mv_cesa_req *base = &creq->base;
318 
319 	/* We must explicitly set the digest state. */
320 	if (base->chain.first->flags & CESA_TDMA_SET_STATE) {
321 		struct mv_cesa_engine *engine = base->engine;
322 		int i;
323 
324 		/* Set the hash state in the IVDIG regs. */
325 		for (i = 0; i < ARRAY_SIZE(creq->state); i++)
326 			writel_relaxed(creq->state[i], engine->regs +
327 				       CESA_IVDIG(i));
328 	}
329 
330 	mv_cesa_dma_step(base);
331 }
332 
mv_cesa_ahash_step(struct crypto_async_request * req)333 static void mv_cesa_ahash_step(struct crypto_async_request *req)
334 {
335 	struct ahash_request *ahashreq = ahash_request_cast(req);
336 	struct mv_cesa_ahash_req *creq = ahash_request_ctx(ahashreq);
337 
338 	if (mv_cesa_req_get_type(&creq->base) == CESA_DMA_REQ)
339 		mv_cesa_ahash_dma_step(ahashreq);
340 	else
341 		mv_cesa_ahash_std_step(ahashreq);
342 }
343 
mv_cesa_ahash_process(struct crypto_async_request * req,u32 status)344 static int mv_cesa_ahash_process(struct crypto_async_request *req, u32 status)
345 {
346 	struct ahash_request *ahashreq = ahash_request_cast(req);
347 	struct mv_cesa_ahash_req *creq = ahash_request_ctx(ahashreq);
348 
349 	if (mv_cesa_req_get_type(&creq->base) == CESA_DMA_REQ)
350 		return mv_cesa_dma_process(&creq->base, status);
351 
352 	return mv_cesa_ahash_std_process(ahashreq, status);
353 }
354 
mv_cesa_ahash_complete(struct crypto_async_request * req)355 static void mv_cesa_ahash_complete(struct crypto_async_request *req)
356 {
357 	struct ahash_request *ahashreq = ahash_request_cast(req);
358 	struct mv_cesa_ahash_req *creq = ahash_request_ctx(ahashreq);
359 	struct mv_cesa_engine *engine = creq->base.engine;
360 	unsigned int digsize;
361 	int i;
362 
363 	digsize = crypto_ahash_digestsize(crypto_ahash_reqtfm(ahashreq));
364 
365 	if (mv_cesa_req_get_type(&creq->base) == CESA_DMA_REQ &&
366 	    (creq->base.chain.last->flags & CESA_TDMA_TYPE_MSK) ==
367 	     CESA_TDMA_RESULT) {
368 		__le32 *data = NULL;
369 
370 		/*
371 		 * Result is already in the correct endianness when the SA is
372 		 * used
373 		 */
374 		data = creq->base.chain.last->op->ctx.hash.hash;
375 		for (i = 0; i < digsize / 4; i++)
376 			creq->state[i] = le32_to_cpu(data[i]);
377 
378 		memcpy(ahashreq->result, data, digsize);
379 	} else {
380 		for (i = 0; i < digsize / 4; i++)
381 			creq->state[i] = readl_relaxed(engine->regs +
382 						       CESA_IVDIG(i));
383 		if (creq->last_req) {
384 			/*
385 			 * Hardware's MD5 digest is in little endian format, but
386 			 * SHA in big endian format
387 			 */
388 			if (creq->algo_le) {
389 				__le32 *result = (void *)ahashreq->result;
390 
391 				for (i = 0; i < digsize / 4; i++)
392 					result[i] = cpu_to_le32(creq->state[i]);
393 			} else {
394 				__be32 *result = (void *)ahashreq->result;
395 
396 				for (i = 0; i < digsize / 4; i++)
397 					result[i] = cpu_to_be32(creq->state[i]);
398 			}
399 		}
400 	}
401 }
402 
mv_cesa_ahash_prepare(struct crypto_async_request * req,struct mv_cesa_engine * engine)403 static void mv_cesa_ahash_prepare(struct crypto_async_request *req,
404 				  struct mv_cesa_engine *engine)
405 {
406 	struct ahash_request *ahashreq = ahash_request_cast(req);
407 	struct mv_cesa_ahash_req *creq = ahash_request_ctx(ahashreq);
408 
409 	creq->base.engine = engine;
410 
411 	if (mv_cesa_req_get_type(&creq->base) == CESA_DMA_REQ)
412 		mv_cesa_ahash_dma_prepare(ahashreq);
413 	else
414 		mv_cesa_ahash_std_prepare(ahashreq);
415 }
416 
mv_cesa_ahash_req_cleanup(struct crypto_async_request * req)417 static void mv_cesa_ahash_req_cleanup(struct crypto_async_request *req)
418 {
419 	struct ahash_request *ahashreq = ahash_request_cast(req);
420 	struct mv_cesa_ahash_req *creq = ahash_request_ctx(ahashreq);
421 
422 	if (creq->last_req)
423 		mv_cesa_ahash_last_cleanup(ahashreq);
424 
425 	mv_cesa_ahash_cleanup(ahashreq);
426 
427 	if (creq->cache_ptr)
428 		sg_pcopy_to_buffer(ahashreq->src, creq->src_nents,
429 				   creq->cache,
430 				   creq->cache_ptr,
431 				   ahashreq->nbytes - creq->cache_ptr);
432 }
433 
434 static const struct mv_cesa_req_ops mv_cesa_ahash_req_ops = {
435 	.step = mv_cesa_ahash_step,
436 	.process = mv_cesa_ahash_process,
437 	.cleanup = mv_cesa_ahash_req_cleanup,
438 	.complete = mv_cesa_ahash_complete,
439 };
440 
mv_cesa_ahash_init(struct ahash_request * req,struct mv_cesa_op_ctx * tmpl,bool algo_le)441 static void mv_cesa_ahash_init(struct ahash_request *req,
442 			      struct mv_cesa_op_ctx *tmpl, bool algo_le)
443 {
444 	struct mv_cesa_ahash_req *creq = ahash_request_ctx(req);
445 
446 	memset(creq, 0, sizeof(*creq));
447 	mv_cesa_update_op_cfg(tmpl,
448 			      CESA_SA_DESC_CFG_OP_MAC_ONLY |
449 			      CESA_SA_DESC_CFG_FIRST_FRAG,
450 			      CESA_SA_DESC_CFG_OP_MSK |
451 			      CESA_SA_DESC_CFG_FRAG_MSK);
452 	mv_cesa_set_mac_op_total_len(tmpl, 0);
453 	mv_cesa_set_mac_op_frag_len(tmpl, 0);
454 	creq->op_tmpl = *tmpl;
455 	creq->len = 0;
456 	creq->algo_le = algo_le;
457 }
458 
mv_cesa_ahash_cra_init(struct crypto_tfm * tfm)459 static inline int mv_cesa_ahash_cra_init(struct crypto_tfm *tfm)
460 {
461 	struct mv_cesa_hash_ctx *ctx = crypto_tfm_ctx(tfm);
462 
463 	ctx->base.ops = &mv_cesa_ahash_req_ops;
464 
465 	crypto_ahash_set_reqsize(__crypto_ahash_cast(tfm),
466 				 sizeof(struct mv_cesa_ahash_req));
467 	return 0;
468 }
469 
mv_cesa_ahash_cache_req(struct ahash_request * req)470 static bool mv_cesa_ahash_cache_req(struct ahash_request *req)
471 {
472 	struct mv_cesa_ahash_req *creq = ahash_request_ctx(req);
473 	bool cached = false;
474 
475 	if (creq->cache_ptr + req->nbytes < CESA_MAX_HASH_BLOCK_SIZE &&
476 	    !creq->last_req) {
477 		cached = true;
478 
479 		if (!req->nbytes)
480 			return cached;
481 
482 		sg_pcopy_to_buffer(req->src, creq->src_nents,
483 				   creq->cache + creq->cache_ptr,
484 				   req->nbytes, 0);
485 
486 		creq->cache_ptr += req->nbytes;
487 	}
488 
489 	return cached;
490 }
491 
492 static struct mv_cesa_op_ctx *
mv_cesa_dma_add_frag(struct mv_cesa_tdma_chain * chain,struct mv_cesa_op_ctx * tmpl,unsigned int frag_len,gfp_t flags)493 mv_cesa_dma_add_frag(struct mv_cesa_tdma_chain *chain,
494 		     struct mv_cesa_op_ctx *tmpl, unsigned int frag_len,
495 		     gfp_t flags)
496 {
497 	struct mv_cesa_op_ctx *op;
498 	int ret;
499 
500 	op = mv_cesa_dma_add_op(chain, tmpl, false, flags);
501 	if (IS_ERR(op))
502 		return op;
503 
504 	/* Set the operation block fragment length. */
505 	mv_cesa_set_mac_op_frag_len(op, frag_len);
506 
507 	/* Append dummy desc to launch operation */
508 	ret = mv_cesa_dma_add_dummy_launch(chain, flags);
509 	if (ret)
510 		return ERR_PTR(ret);
511 
512 	if (mv_cesa_mac_op_is_first_frag(tmpl))
513 		mv_cesa_update_op_cfg(tmpl,
514 				      CESA_SA_DESC_CFG_MID_FRAG,
515 				      CESA_SA_DESC_CFG_FRAG_MSK);
516 
517 	return op;
518 }
519 
520 static int
mv_cesa_ahash_dma_add_cache(struct mv_cesa_tdma_chain * chain,struct mv_cesa_ahash_req * creq,gfp_t flags)521 mv_cesa_ahash_dma_add_cache(struct mv_cesa_tdma_chain *chain,
522 			    struct mv_cesa_ahash_req *creq,
523 			    gfp_t flags)
524 {
525 	struct mv_cesa_ahash_dma_req *ahashdreq = &creq->req.dma;
526 	int ret;
527 
528 	if (!creq->cache_ptr)
529 		return 0;
530 
531 	ret = mv_cesa_ahash_dma_alloc_cache(ahashdreq, flags);
532 	if (ret)
533 		return ret;
534 
535 	memcpy(ahashdreq->cache, creq->cache, creq->cache_ptr);
536 
537 	return mv_cesa_dma_add_data_transfer(chain,
538 					     CESA_SA_DATA_SRAM_OFFSET,
539 					     ahashdreq->cache_dma,
540 					     creq->cache_ptr,
541 					     CESA_TDMA_DST_IN_SRAM,
542 					     flags);
543 }
544 
545 static struct mv_cesa_op_ctx *
mv_cesa_ahash_dma_last_req(struct mv_cesa_tdma_chain * chain,struct mv_cesa_ahash_dma_iter * dma_iter,struct mv_cesa_ahash_req * creq,unsigned int frag_len,gfp_t flags)546 mv_cesa_ahash_dma_last_req(struct mv_cesa_tdma_chain *chain,
547 			   struct mv_cesa_ahash_dma_iter *dma_iter,
548 			   struct mv_cesa_ahash_req *creq,
549 			   unsigned int frag_len, gfp_t flags)
550 {
551 	struct mv_cesa_ahash_dma_req *ahashdreq = &creq->req.dma;
552 	unsigned int len, trailerlen, padoff = 0;
553 	struct mv_cesa_op_ctx *op;
554 	int ret;
555 
556 	/*
557 	 * If the transfer is smaller than our maximum length, and we have
558 	 * some data outstanding, we can ask the engine to finish the hash.
559 	 */
560 	if (creq->len <= CESA_SA_DESC_MAC_SRC_TOTAL_LEN_MAX && frag_len) {
561 		op = mv_cesa_dma_add_frag(chain, &creq->op_tmpl, frag_len,
562 					  flags);
563 		if (IS_ERR(op))
564 			return op;
565 
566 		mv_cesa_set_mac_op_total_len(op, creq->len);
567 		mv_cesa_update_op_cfg(op, mv_cesa_mac_op_is_first_frag(op) ?
568 						CESA_SA_DESC_CFG_NOT_FRAG :
569 						CESA_SA_DESC_CFG_LAST_FRAG,
570 				      CESA_SA_DESC_CFG_FRAG_MSK);
571 
572 		ret = mv_cesa_dma_add_result_op(chain,
573 						CESA_SA_CFG_SRAM_OFFSET,
574 						CESA_SA_DATA_SRAM_OFFSET,
575 						CESA_TDMA_SRC_IN_SRAM, flags);
576 		if (ret)
577 			return ERR_PTR(-ENOMEM);
578 		return op;
579 	}
580 
581 	/*
582 	 * The request is longer than the engine can handle, or we have
583 	 * no data outstanding. Manually generate the padding, adding it
584 	 * as a "mid" fragment.
585 	 */
586 	ret = mv_cesa_ahash_dma_alloc_padding(ahashdreq, flags);
587 	if (ret)
588 		return ERR_PTR(ret);
589 
590 	trailerlen = mv_cesa_ahash_pad_req(creq, ahashdreq->padding);
591 
592 	len = min(CESA_SA_SRAM_PAYLOAD_SIZE - frag_len, trailerlen);
593 	if (len) {
594 		ret = mv_cesa_dma_add_data_transfer(chain,
595 						CESA_SA_DATA_SRAM_OFFSET +
596 						frag_len,
597 						ahashdreq->padding_dma,
598 						len, CESA_TDMA_DST_IN_SRAM,
599 						flags);
600 		if (ret)
601 			return ERR_PTR(ret);
602 
603 		op = mv_cesa_dma_add_frag(chain, &creq->op_tmpl, frag_len + len,
604 					  flags);
605 		if (IS_ERR(op))
606 			return op;
607 
608 		if (len == trailerlen)
609 			return op;
610 
611 		padoff += len;
612 	}
613 
614 	ret = mv_cesa_dma_add_data_transfer(chain,
615 					    CESA_SA_DATA_SRAM_OFFSET,
616 					    ahashdreq->padding_dma +
617 					    padoff,
618 					    trailerlen - padoff,
619 					    CESA_TDMA_DST_IN_SRAM,
620 					    flags);
621 	if (ret)
622 		return ERR_PTR(ret);
623 
624 	return mv_cesa_dma_add_frag(chain, &creq->op_tmpl, trailerlen - padoff,
625 				    flags);
626 }
627 
mv_cesa_ahash_dma_req_init(struct ahash_request * req)628 static int mv_cesa_ahash_dma_req_init(struct ahash_request *req)
629 {
630 	struct mv_cesa_ahash_req *creq = ahash_request_ctx(req);
631 	gfp_t flags = (req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP) ?
632 		      GFP_KERNEL : GFP_ATOMIC;
633 	struct mv_cesa_req *basereq = &creq->base;
634 	struct mv_cesa_ahash_dma_iter iter;
635 	struct mv_cesa_op_ctx *op = NULL;
636 	unsigned int frag_len;
637 	bool set_state = false;
638 	int ret;
639 	u32 type;
640 
641 	basereq->chain.first = NULL;
642 	basereq->chain.last = NULL;
643 
644 	if (!mv_cesa_mac_op_is_first_frag(&creq->op_tmpl))
645 		set_state = true;
646 
647 	if (creq->src_nents) {
648 		ret = dma_map_sg(cesa_dev->dev, req->src, creq->src_nents,
649 				 DMA_TO_DEVICE);
650 		if (!ret) {
651 			ret = -ENOMEM;
652 			goto err;
653 		}
654 	}
655 
656 	mv_cesa_tdma_desc_iter_init(&basereq->chain);
657 	mv_cesa_ahash_req_iter_init(&iter, req);
658 
659 	/*
660 	 * Add the cache (left-over data from a previous block) first.
661 	 * This will never overflow the SRAM size.
662 	 */
663 	ret = mv_cesa_ahash_dma_add_cache(&basereq->chain, creq, flags);
664 	if (ret)
665 		goto err_free_tdma;
666 
667 	if (iter.base.len > iter.src.op_offset) {
668 		/*
669 		 * Add all the new data, inserting an operation block and
670 		 * launch command between each full SRAM block-worth of
671 		 * data. We intentionally do not add the final op block.
672 		 */
673 		while (true) {
674 			ret = mv_cesa_dma_add_op_transfers(&basereq->chain,
675 							   &iter.base,
676 							   &iter.src, flags);
677 			if (ret)
678 				goto err_free_tdma;
679 
680 			frag_len = iter.base.op_len;
681 
682 			if (!mv_cesa_ahash_req_iter_next_op(&iter))
683 				break;
684 
685 			op = mv_cesa_dma_add_frag(&basereq->chain,
686 						  &creq->op_tmpl,
687 						  frag_len, flags);
688 			if (IS_ERR(op)) {
689 				ret = PTR_ERR(op);
690 				goto err_free_tdma;
691 			}
692 		}
693 	} else {
694 		/* Account for the data that was in the cache. */
695 		frag_len = iter.base.op_len;
696 	}
697 
698 	/*
699 	 * At this point, frag_len indicates whether we have any data
700 	 * outstanding which needs an operation.  Queue up the final
701 	 * operation, which depends whether this is the final request.
702 	 */
703 	if (creq->last_req)
704 		op = mv_cesa_ahash_dma_last_req(&basereq->chain, &iter, creq,
705 						frag_len, flags);
706 	else if (frag_len)
707 		op = mv_cesa_dma_add_frag(&basereq->chain, &creq->op_tmpl,
708 					  frag_len, flags);
709 
710 	if (IS_ERR(op)) {
711 		ret = PTR_ERR(op);
712 		goto err_free_tdma;
713 	}
714 
715 	/*
716 	 * If results are copied via DMA, this means that this
717 	 * request can be directly processed by the engine,
718 	 * without partial updates. So we can chain it at the
719 	 * DMA level with other requests.
720 	 */
721 	type = basereq->chain.last->flags & CESA_TDMA_TYPE_MSK;
722 
723 	if (op && type != CESA_TDMA_RESULT) {
724 		/* Add dummy desc to wait for crypto operation end */
725 		ret = mv_cesa_dma_add_dummy_end(&basereq->chain, flags);
726 		if (ret)
727 			goto err_free_tdma;
728 	}
729 
730 	if (!creq->last_req)
731 		creq->cache_ptr = req->nbytes + creq->cache_ptr -
732 				  iter.base.len;
733 	else
734 		creq->cache_ptr = 0;
735 
736 	basereq->chain.last->flags |= CESA_TDMA_END_OF_REQ;
737 
738 	if (type != CESA_TDMA_RESULT)
739 		basereq->chain.last->flags |= CESA_TDMA_BREAK_CHAIN;
740 
741 	if (set_state) {
742 		/*
743 		 * Put the CESA_TDMA_SET_STATE flag on the first tdma desc to
744 		 * let the step logic know that the IVDIG registers should be
745 		 * explicitly set before launching a TDMA chain.
746 		 */
747 		basereq->chain.first->flags |= CESA_TDMA_SET_STATE;
748 	}
749 
750 	return 0;
751 
752 err_free_tdma:
753 	mv_cesa_dma_cleanup(basereq);
754 	dma_unmap_sg(cesa_dev->dev, req->src, creq->src_nents, DMA_TO_DEVICE);
755 
756 err:
757 	mv_cesa_ahash_last_cleanup(req);
758 
759 	return ret;
760 }
761 
mv_cesa_ahash_req_init(struct ahash_request * req,bool * cached)762 static int mv_cesa_ahash_req_init(struct ahash_request *req, bool *cached)
763 {
764 	struct mv_cesa_ahash_req *creq = ahash_request_ctx(req);
765 
766 	creq->src_nents = sg_nents_for_len(req->src, req->nbytes);
767 	if (creq->src_nents < 0) {
768 		dev_err(cesa_dev->dev, "Invalid number of src SG");
769 		return creq->src_nents;
770 	}
771 
772 	*cached = mv_cesa_ahash_cache_req(req);
773 
774 	if (*cached)
775 		return 0;
776 
777 	if (cesa_dev->caps->has_tdma)
778 		return mv_cesa_ahash_dma_req_init(req);
779 	else
780 		return 0;
781 }
782 
mv_cesa_ahash_queue_req(struct ahash_request * req)783 static int mv_cesa_ahash_queue_req(struct ahash_request *req)
784 {
785 	struct mv_cesa_ahash_req *creq = ahash_request_ctx(req);
786 	struct mv_cesa_engine *engine;
787 	bool cached = false;
788 	int ret;
789 
790 	ret = mv_cesa_ahash_req_init(req, &cached);
791 	if (ret)
792 		return ret;
793 
794 	if (cached)
795 		return 0;
796 
797 	engine = mv_cesa_select_engine(req->nbytes);
798 	mv_cesa_ahash_prepare(&req->base, engine);
799 
800 	ret = mv_cesa_queue_req(&req->base, &creq->base);
801 
802 	if (mv_cesa_req_needs_cleanup(&req->base, ret))
803 		mv_cesa_ahash_cleanup(req);
804 
805 	return ret;
806 }
807 
mv_cesa_ahash_update(struct ahash_request * req)808 static int mv_cesa_ahash_update(struct ahash_request *req)
809 {
810 	struct mv_cesa_ahash_req *creq = ahash_request_ctx(req);
811 
812 	creq->len += req->nbytes;
813 
814 	return mv_cesa_ahash_queue_req(req);
815 }
816 
mv_cesa_ahash_final(struct ahash_request * req)817 static int mv_cesa_ahash_final(struct ahash_request *req)
818 {
819 	struct mv_cesa_ahash_req *creq = ahash_request_ctx(req);
820 	struct mv_cesa_op_ctx *tmpl = &creq->op_tmpl;
821 
822 	mv_cesa_set_mac_op_total_len(tmpl, creq->len);
823 	creq->last_req = true;
824 	req->nbytes = 0;
825 
826 	return mv_cesa_ahash_queue_req(req);
827 }
828 
mv_cesa_ahash_finup(struct ahash_request * req)829 static int mv_cesa_ahash_finup(struct ahash_request *req)
830 {
831 	struct mv_cesa_ahash_req *creq = ahash_request_ctx(req);
832 	struct mv_cesa_op_ctx *tmpl = &creq->op_tmpl;
833 
834 	creq->len += req->nbytes;
835 	mv_cesa_set_mac_op_total_len(tmpl, creq->len);
836 	creq->last_req = true;
837 
838 	return mv_cesa_ahash_queue_req(req);
839 }
840 
mv_cesa_ahash_export(struct ahash_request * req,void * hash,u64 * len,void * cache)841 static int mv_cesa_ahash_export(struct ahash_request *req, void *hash,
842 				u64 *len, void *cache)
843 {
844 	struct crypto_ahash *ahash = crypto_ahash_reqtfm(req);
845 	struct mv_cesa_ahash_req *creq = ahash_request_ctx(req);
846 	unsigned int digsize = crypto_ahash_digestsize(ahash);
847 	unsigned int blocksize;
848 
849 	blocksize = crypto_ahash_blocksize(ahash);
850 
851 	*len = creq->len;
852 	memcpy(hash, creq->state, digsize);
853 	memset(cache, 0, blocksize);
854 	memcpy(cache, creq->cache, creq->cache_ptr);
855 
856 	return 0;
857 }
858 
mv_cesa_ahash_import(struct ahash_request * req,const void * hash,u64 len,const void * cache)859 static int mv_cesa_ahash_import(struct ahash_request *req, const void *hash,
860 				u64 len, const void *cache)
861 {
862 	struct crypto_ahash *ahash = crypto_ahash_reqtfm(req);
863 	struct mv_cesa_ahash_req *creq = ahash_request_ctx(req);
864 	unsigned int digsize = crypto_ahash_digestsize(ahash);
865 	unsigned int blocksize;
866 	unsigned int cache_ptr;
867 	int ret;
868 
869 	ret = crypto_ahash_init(req);
870 	if (ret)
871 		return ret;
872 
873 	blocksize = crypto_ahash_blocksize(ahash);
874 	if (len >= blocksize)
875 		mv_cesa_update_op_cfg(&creq->op_tmpl,
876 				      CESA_SA_DESC_CFG_MID_FRAG,
877 				      CESA_SA_DESC_CFG_FRAG_MSK);
878 
879 	creq->len = len;
880 	memcpy(creq->state, hash, digsize);
881 	creq->cache_ptr = 0;
882 
883 	cache_ptr = do_div(len, blocksize);
884 	if (!cache_ptr)
885 		return 0;
886 
887 	memcpy(creq->cache, cache, cache_ptr);
888 	creq->cache_ptr = cache_ptr;
889 
890 	return 0;
891 }
892 
mv_cesa_md5_init(struct ahash_request * req)893 static int mv_cesa_md5_init(struct ahash_request *req)
894 {
895 	struct mv_cesa_ahash_req *creq = ahash_request_ctx(req);
896 	struct mv_cesa_op_ctx tmpl = { };
897 
898 	mv_cesa_set_op_cfg(&tmpl, CESA_SA_DESC_CFG_MACM_MD5);
899 
900 	mv_cesa_ahash_init(req, &tmpl, true);
901 
902 	creq->state[0] = MD5_H0;
903 	creq->state[1] = MD5_H1;
904 	creq->state[2] = MD5_H2;
905 	creq->state[3] = MD5_H3;
906 
907 	return 0;
908 }
909 
mv_cesa_md5_export(struct ahash_request * req,void * out)910 static int mv_cesa_md5_export(struct ahash_request *req, void *out)
911 {
912 	struct md5_state *out_state = out;
913 
914 	return mv_cesa_ahash_export(req, out_state->hash,
915 				    &out_state->byte_count, out_state->block);
916 }
917 
mv_cesa_md5_import(struct ahash_request * req,const void * in)918 static int mv_cesa_md5_import(struct ahash_request *req, const void *in)
919 {
920 	const struct md5_state *in_state = in;
921 
922 	return mv_cesa_ahash_import(req, in_state->hash, in_state->byte_count,
923 				    in_state->block);
924 }
925 
mv_cesa_md5_digest(struct ahash_request * req)926 static int mv_cesa_md5_digest(struct ahash_request *req)
927 {
928 	int ret;
929 
930 	ret = mv_cesa_md5_init(req);
931 	if (ret)
932 		return ret;
933 
934 	return mv_cesa_ahash_finup(req);
935 }
936 
937 struct ahash_alg mv_md5_alg = {
938 	.init = mv_cesa_md5_init,
939 	.update = mv_cesa_ahash_update,
940 	.final = mv_cesa_ahash_final,
941 	.finup = mv_cesa_ahash_finup,
942 	.digest = mv_cesa_md5_digest,
943 	.export = mv_cesa_md5_export,
944 	.import = mv_cesa_md5_import,
945 	.halg = {
946 		.digestsize = MD5_DIGEST_SIZE,
947 		.statesize = sizeof(struct md5_state),
948 		.base = {
949 			.cra_name = "md5",
950 			.cra_driver_name = "mv-md5",
951 			.cra_priority = 0,
952 			.cra_flags = CRYPTO_ALG_ASYNC |
953 				     CRYPTO_ALG_ALLOCATES_MEMORY |
954 				     CRYPTO_ALG_KERN_DRIVER_ONLY,
955 			.cra_blocksize = MD5_HMAC_BLOCK_SIZE,
956 			.cra_ctxsize = sizeof(struct mv_cesa_hash_ctx),
957 			.cra_init = mv_cesa_ahash_cra_init,
958 			.cra_module = THIS_MODULE,
959 		}
960 	}
961 };
962 
mv_cesa_sha1_init(struct ahash_request * req)963 static int mv_cesa_sha1_init(struct ahash_request *req)
964 {
965 	struct mv_cesa_ahash_req *creq = ahash_request_ctx(req);
966 	struct mv_cesa_op_ctx tmpl = { };
967 
968 	mv_cesa_set_op_cfg(&tmpl, CESA_SA_DESC_CFG_MACM_SHA1);
969 
970 	mv_cesa_ahash_init(req, &tmpl, false);
971 
972 	creq->state[0] = SHA1_H0;
973 	creq->state[1] = SHA1_H1;
974 	creq->state[2] = SHA1_H2;
975 	creq->state[3] = SHA1_H3;
976 	creq->state[4] = SHA1_H4;
977 
978 	return 0;
979 }
980 
mv_cesa_sha1_export(struct ahash_request * req,void * out)981 static int mv_cesa_sha1_export(struct ahash_request *req, void *out)
982 {
983 	struct sha1_state *out_state = out;
984 
985 	return mv_cesa_ahash_export(req, out_state->state, &out_state->count,
986 				    out_state->buffer);
987 }
988 
mv_cesa_sha1_import(struct ahash_request * req,const void * in)989 static int mv_cesa_sha1_import(struct ahash_request *req, const void *in)
990 {
991 	const struct sha1_state *in_state = in;
992 
993 	return mv_cesa_ahash_import(req, in_state->state, in_state->count,
994 				    in_state->buffer);
995 }
996 
mv_cesa_sha1_digest(struct ahash_request * req)997 static int mv_cesa_sha1_digest(struct ahash_request *req)
998 {
999 	int ret;
1000 
1001 	ret = mv_cesa_sha1_init(req);
1002 	if (ret)
1003 		return ret;
1004 
1005 	return mv_cesa_ahash_finup(req);
1006 }
1007 
1008 struct ahash_alg mv_sha1_alg = {
1009 	.init = mv_cesa_sha1_init,
1010 	.update = mv_cesa_ahash_update,
1011 	.final = mv_cesa_ahash_final,
1012 	.finup = mv_cesa_ahash_finup,
1013 	.digest = mv_cesa_sha1_digest,
1014 	.export = mv_cesa_sha1_export,
1015 	.import = mv_cesa_sha1_import,
1016 	.halg = {
1017 		.digestsize = SHA1_DIGEST_SIZE,
1018 		.statesize = sizeof(struct sha1_state),
1019 		.base = {
1020 			.cra_name = "sha1",
1021 			.cra_driver_name = "mv-sha1",
1022 			.cra_priority = 0,
1023 			.cra_flags = CRYPTO_ALG_ASYNC |
1024 				     CRYPTO_ALG_ALLOCATES_MEMORY |
1025 				     CRYPTO_ALG_KERN_DRIVER_ONLY,
1026 			.cra_blocksize = SHA1_BLOCK_SIZE,
1027 			.cra_ctxsize = sizeof(struct mv_cesa_hash_ctx),
1028 			.cra_init = mv_cesa_ahash_cra_init,
1029 			.cra_module = THIS_MODULE,
1030 		}
1031 	}
1032 };
1033 
mv_cesa_sha256_init(struct ahash_request * req)1034 static int mv_cesa_sha256_init(struct ahash_request *req)
1035 {
1036 	struct mv_cesa_ahash_req *creq = ahash_request_ctx(req);
1037 	struct mv_cesa_op_ctx tmpl = { };
1038 
1039 	mv_cesa_set_op_cfg(&tmpl, CESA_SA_DESC_CFG_MACM_SHA256);
1040 
1041 	mv_cesa_ahash_init(req, &tmpl, false);
1042 
1043 	creq->state[0] = SHA256_H0;
1044 	creq->state[1] = SHA256_H1;
1045 	creq->state[2] = SHA256_H2;
1046 	creq->state[3] = SHA256_H3;
1047 	creq->state[4] = SHA256_H4;
1048 	creq->state[5] = SHA256_H5;
1049 	creq->state[6] = SHA256_H6;
1050 	creq->state[7] = SHA256_H7;
1051 
1052 	return 0;
1053 }
1054 
mv_cesa_sha256_digest(struct ahash_request * req)1055 static int mv_cesa_sha256_digest(struct ahash_request *req)
1056 {
1057 	int ret;
1058 
1059 	ret = mv_cesa_sha256_init(req);
1060 	if (ret)
1061 		return ret;
1062 
1063 	return mv_cesa_ahash_finup(req);
1064 }
1065 
mv_cesa_sha256_export(struct ahash_request * req,void * out)1066 static int mv_cesa_sha256_export(struct ahash_request *req, void *out)
1067 {
1068 	struct sha256_state *out_state = out;
1069 
1070 	return mv_cesa_ahash_export(req, out_state->state, &out_state->count,
1071 				    out_state->buf);
1072 }
1073 
mv_cesa_sha256_import(struct ahash_request * req,const void * in)1074 static int mv_cesa_sha256_import(struct ahash_request *req, const void *in)
1075 {
1076 	const struct sha256_state *in_state = in;
1077 
1078 	return mv_cesa_ahash_import(req, in_state->state, in_state->count,
1079 				    in_state->buf);
1080 }
1081 
1082 struct ahash_alg mv_sha256_alg = {
1083 	.init = mv_cesa_sha256_init,
1084 	.update = mv_cesa_ahash_update,
1085 	.final = mv_cesa_ahash_final,
1086 	.finup = mv_cesa_ahash_finup,
1087 	.digest = mv_cesa_sha256_digest,
1088 	.export = mv_cesa_sha256_export,
1089 	.import = mv_cesa_sha256_import,
1090 	.halg = {
1091 		.digestsize = SHA256_DIGEST_SIZE,
1092 		.statesize = sizeof(struct sha256_state),
1093 		.base = {
1094 			.cra_name = "sha256",
1095 			.cra_driver_name = "mv-sha256",
1096 			.cra_priority = 0,
1097 			.cra_flags = CRYPTO_ALG_ASYNC |
1098 				     CRYPTO_ALG_ALLOCATES_MEMORY |
1099 				     CRYPTO_ALG_KERN_DRIVER_ONLY,
1100 			.cra_blocksize = SHA256_BLOCK_SIZE,
1101 			.cra_ctxsize = sizeof(struct mv_cesa_hash_ctx),
1102 			.cra_init = mv_cesa_ahash_cra_init,
1103 			.cra_module = THIS_MODULE,
1104 		}
1105 	}
1106 };
1107 
mv_cesa_ahmac_iv_state_init(struct ahash_request * req,u8 * pad,void * state,unsigned int blocksize)1108 static int mv_cesa_ahmac_iv_state_init(struct ahash_request *req, u8 *pad,
1109 				       void *state, unsigned int blocksize)
1110 {
1111 	DECLARE_CRYPTO_WAIT(result);
1112 	struct scatterlist sg;
1113 	int ret;
1114 
1115 	ahash_request_set_callback(req, CRYPTO_TFM_REQ_MAY_BACKLOG,
1116 				   crypto_req_done, &result);
1117 	sg_init_one(&sg, pad, blocksize);
1118 	ahash_request_set_crypt(req, &sg, pad, blocksize);
1119 
1120 	ret = crypto_ahash_init(req);
1121 	if (ret)
1122 		return ret;
1123 
1124 	ret = crypto_ahash_update(req);
1125 	ret = crypto_wait_req(ret, &result);
1126 
1127 	if (ret)
1128 		return ret;
1129 
1130 	ret = crypto_ahash_export(req, state);
1131 	if (ret)
1132 		return ret;
1133 
1134 	return 0;
1135 }
1136 
mv_cesa_ahmac_pad_init(struct ahash_request * req,const u8 * key,unsigned int keylen,u8 * ipad,u8 * opad,unsigned int blocksize)1137 static int mv_cesa_ahmac_pad_init(struct ahash_request *req,
1138 				  const u8 *key, unsigned int keylen,
1139 				  u8 *ipad, u8 *opad,
1140 				  unsigned int blocksize)
1141 {
1142 	DECLARE_CRYPTO_WAIT(result);
1143 	struct scatterlist sg;
1144 	int ret;
1145 	int i;
1146 
1147 	if (keylen <= blocksize) {
1148 		memcpy(ipad, key, keylen);
1149 	} else {
1150 		u8 *keydup = kmemdup(key, keylen, GFP_KERNEL);
1151 
1152 		if (!keydup)
1153 			return -ENOMEM;
1154 
1155 		ahash_request_set_callback(req, CRYPTO_TFM_REQ_MAY_BACKLOG,
1156 					   crypto_req_done, &result);
1157 		sg_init_one(&sg, keydup, keylen);
1158 		ahash_request_set_crypt(req, &sg, ipad, keylen);
1159 
1160 		ret = crypto_ahash_digest(req);
1161 		ret = crypto_wait_req(ret, &result);
1162 
1163 		/* Set the memory region to 0 to avoid any leak. */
1164 		kfree_sensitive(keydup);
1165 
1166 		if (ret)
1167 			return ret;
1168 
1169 		keylen = crypto_ahash_digestsize(crypto_ahash_reqtfm(req));
1170 	}
1171 
1172 	memset(ipad + keylen, 0, blocksize - keylen);
1173 	memcpy(opad, ipad, blocksize);
1174 
1175 	for (i = 0; i < blocksize; i++) {
1176 		ipad[i] ^= HMAC_IPAD_VALUE;
1177 		opad[i] ^= HMAC_OPAD_VALUE;
1178 	}
1179 
1180 	return 0;
1181 }
1182 
mv_cesa_ahmac_setkey(const char * hash_alg_name,const u8 * key,unsigned int keylen,void * istate,void * ostate)1183 static int mv_cesa_ahmac_setkey(const char *hash_alg_name,
1184 				const u8 *key, unsigned int keylen,
1185 				void *istate, void *ostate)
1186 {
1187 	struct ahash_request *req;
1188 	struct crypto_ahash *tfm;
1189 	unsigned int blocksize;
1190 	u8 *ipad = NULL;
1191 	u8 *opad;
1192 	int ret;
1193 
1194 	tfm = crypto_alloc_ahash(hash_alg_name, 0, 0);
1195 	if (IS_ERR(tfm))
1196 		return PTR_ERR(tfm);
1197 
1198 	req = ahash_request_alloc(tfm, GFP_KERNEL);
1199 	if (!req) {
1200 		ret = -ENOMEM;
1201 		goto free_ahash;
1202 	}
1203 
1204 	crypto_ahash_clear_flags(tfm, ~0);
1205 
1206 	blocksize = crypto_tfm_alg_blocksize(crypto_ahash_tfm(tfm));
1207 
1208 	ipad = kcalloc(2, blocksize, GFP_KERNEL);
1209 	if (!ipad) {
1210 		ret = -ENOMEM;
1211 		goto free_req;
1212 	}
1213 
1214 	opad = ipad + blocksize;
1215 
1216 	ret = mv_cesa_ahmac_pad_init(req, key, keylen, ipad, opad, blocksize);
1217 	if (ret)
1218 		goto free_ipad;
1219 
1220 	ret = mv_cesa_ahmac_iv_state_init(req, ipad, istate, blocksize);
1221 	if (ret)
1222 		goto free_ipad;
1223 
1224 	ret = mv_cesa_ahmac_iv_state_init(req, opad, ostate, blocksize);
1225 
1226 free_ipad:
1227 	kfree(ipad);
1228 free_req:
1229 	ahash_request_free(req);
1230 free_ahash:
1231 	crypto_free_ahash(tfm);
1232 
1233 	return ret;
1234 }
1235 
mv_cesa_ahmac_cra_init(struct crypto_tfm * tfm)1236 static int mv_cesa_ahmac_cra_init(struct crypto_tfm *tfm)
1237 {
1238 	struct mv_cesa_hmac_ctx *ctx = crypto_tfm_ctx(tfm);
1239 
1240 	ctx->base.ops = &mv_cesa_ahash_req_ops;
1241 
1242 	crypto_ahash_set_reqsize(__crypto_ahash_cast(tfm),
1243 				 sizeof(struct mv_cesa_ahash_req));
1244 	return 0;
1245 }
1246 
mv_cesa_ahmac_md5_init(struct ahash_request * req)1247 static int mv_cesa_ahmac_md5_init(struct ahash_request *req)
1248 {
1249 	struct mv_cesa_hmac_ctx *ctx = crypto_tfm_ctx(req->base.tfm);
1250 	struct mv_cesa_op_ctx tmpl = { };
1251 
1252 	mv_cesa_set_op_cfg(&tmpl, CESA_SA_DESC_CFG_MACM_HMAC_MD5);
1253 	memcpy(tmpl.ctx.hash.iv, ctx->iv, sizeof(ctx->iv));
1254 
1255 	mv_cesa_ahash_init(req, &tmpl, true);
1256 
1257 	return 0;
1258 }
1259 
mv_cesa_ahmac_md5_setkey(struct crypto_ahash * tfm,const u8 * key,unsigned int keylen)1260 static int mv_cesa_ahmac_md5_setkey(struct crypto_ahash *tfm, const u8 *key,
1261 				    unsigned int keylen)
1262 {
1263 	struct mv_cesa_hmac_ctx *ctx = crypto_tfm_ctx(crypto_ahash_tfm(tfm));
1264 	struct md5_state istate, ostate;
1265 	int ret, i;
1266 
1267 	ret = mv_cesa_ahmac_setkey("mv-md5", key, keylen, &istate, &ostate);
1268 	if (ret)
1269 		return ret;
1270 
1271 	for (i = 0; i < ARRAY_SIZE(istate.hash); i++)
1272 		ctx->iv[i] = cpu_to_be32(istate.hash[i]);
1273 
1274 	for (i = 0; i < ARRAY_SIZE(ostate.hash); i++)
1275 		ctx->iv[i + 8] = cpu_to_be32(ostate.hash[i]);
1276 
1277 	return 0;
1278 }
1279 
mv_cesa_ahmac_md5_digest(struct ahash_request * req)1280 static int mv_cesa_ahmac_md5_digest(struct ahash_request *req)
1281 {
1282 	int ret;
1283 
1284 	ret = mv_cesa_ahmac_md5_init(req);
1285 	if (ret)
1286 		return ret;
1287 
1288 	return mv_cesa_ahash_finup(req);
1289 }
1290 
1291 struct ahash_alg mv_ahmac_md5_alg = {
1292 	.init = mv_cesa_ahmac_md5_init,
1293 	.update = mv_cesa_ahash_update,
1294 	.final = mv_cesa_ahash_final,
1295 	.finup = mv_cesa_ahash_finup,
1296 	.digest = mv_cesa_ahmac_md5_digest,
1297 	.setkey = mv_cesa_ahmac_md5_setkey,
1298 	.export = mv_cesa_md5_export,
1299 	.import = mv_cesa_md5_import,
1300 	.halg = {
1301 		.digestsize = MD5_DIGEST_SIZE,
1302 		.statesize = sizeof(struct md5_state),
1303 		.base = {
1304 			.cra_name = "hmac(md5)",
1305 			.cra_driver_name = "mv-hmac-md5",
1306 			.cra_priority = 0,
1307 			.cra_flags = CRYPTO_ALG_ASYNC |
1308 				     CRYPTO_ALG_ALLOCATES_MEMORY |
1309 				     CRYPTO_ALG_KERN_DRIVER_ONLY,
1310 			.cra_blocksize = MD5_HMAC_BLOCK_SIZE,
1311 			.cra_ctxsize = sizeof(struct mv_cesa_hmac_ctx),
1312 			.cra_init = mv_cesa_ahmac_cra_init,
1313 			.cra_module = THIS_MODULE,
1314 		}
1315 	}
1316 };
1317 
mv_cesa_ahmac_sha1_init(struct ahash_request * req)1318 static int mv_cesa_ahmac_sha1_init(struct ahash_request *req)
1319 {
1320 	struct mv_cesa_hmac_ctx *ctx = crypto_tfm_ctx(req->base.tfm);
1321 	struct mv_cesa_op_ctx tmpl = { };
1322 
1323 	mv_cesa_set_op_cfg(&tmpl, CESA_SA_DESC_CFG_MACM_HMAC_SHA1);
1324 	memcpy(tmpl.ctx.hash.iv, ctx->iv, sizeof(ctx->iv));
1325 
1326 	mv_cesa_ahash_init(req, &tmpl, false);
1327 
1328 	return 0;
1329 }
1330 
mv_cesa_ahmac_sha1_setkey(struct crypto_ahash * tfm,const u8 * key,unsigned int keylen)1331 static int mv_cesa_ahmac_sha1_setkey(struct crypto_ahash *tfm, const u8 *key,
1332 				     unsigned int keylen)
1333 {
1334 	struct mv_cesa_hmac_ctx *ctx = crypto_tfm_ctx(crypto_ahash_tfm(tfm));
1335 	struct sha1_state istate, ostate;
1336 	int ret, i;
1337 
1338 	ret = mv_cesa_ahmac_setkey("mv-sha1", key, keylen, &istate, &ostate);
1339 	if (ret)
1340 		return ret;
1341 
1342 	for (i = 0; i < ARRAY_SIZE(istate.state); i++)
1343 		ctx->iv[i] = cpu_to_be32(istate.state[i]);
1344 
1345 	for (i = 0; i < ARRAY_SIZE(ostate.state); i++)
1346 		ctx->iv[i + 8] = cpu_to_be32(ostate.state[i]);
1347 
1348 	return 0;
1349 }
1350 
mv_cesa_ahmac_sha1_digest(struct ahash_request * req)1351 static int mv_cesa_ahmac_sha1_digest(struct ahash_request *req)
1352 {
1353 	int ret;
1354 
1355 	ret = mv_cesa_ahmac_sha1_init(req);
1356 	if (ret)
1357 		return ret;
1358 
1359 	return mv_cesa_ahash_finup(req);
1360 }
1361 
1362 struct ahash_alg mv_ahmac_sha1_alg = {
1363 	.init = mv_cesa_ahmac_sha1_init,
1364 	.update = mv_cesa_ahash_update,
1365 	.final = mv_cesa_ahash_final,
1366 	.finup = mv_cesa_ahash_finup,
1367 	.digest = mv_cesa_ahmac_sha1_digest,
1368 	.setkey = mv_cesa_ahmac_sha1_setkey,
1369 	.export = mv_cesa_sha1_export,
1370 	.import = mv_cesa_sha1_import,
1371 	.halg = {
1372 		.digestsize = SHA1_DIGEST_SIZE,
1373 		.statesize = sizeof(struct sha1_state),
1374 		.base = {
1375 			.cra_name = "hmac(sha1)",
1376 			.cra_driver_name = "mv-hmac-sha1",
1377 			.cra_priority = 0,
1378 			.cra_flags = CRYPTO_ALG_ASYNC |
1379 				     CRYPTO_ALG_ALLOCATES_MEMORY |
1380 				     CRYPTO_ALG_KERN_DRIVER_ONLY,
1381 			.cra_blocksize = SHA1_BLOCK_SIZE,
1382 			.cra_ctxsize = sizeof(struct mv_cesa_hmac_ctx),
1383 			.cra_init = mv_cesa_ahmac_cra_init,
1384 			.cra_module = THIS_MODULE,
1385 		}
1386 	}
1387 };
1388 
mv_cesa_ahmac_sha256_setkey(struct crypto_ahash * tfm,const u8 * key,unsigned int keylen)1389 static int mv_cesa_ahmac_sha256_setkey(struct crypto_ahash *tfm, const u8 *key,
1390 				       unsigned int keylen)
1391 {
1392 	struct mv_cesa_hmac_ctx *ctx = crypto_tfm_ctx(crypto_ahash_tfm(tfm));
1393 	struct sha256_state istate, ostate;
1394 	int ret, i;
1395 
1396 	ret = mv_cesa_ahmac_setkey("mv-sha256", key, keylen, &istate, &ostate);
1397 	if (ret)
1398 		return ret;
1399 
1400 	for (i = 0; i < ARRAY_SIZE(istate.state); i++)
1401 		ctx->iv[i] = cpu_to_be32(istate.state[i]);
1402 
1403 	for (i = 0; i < ARRAY_SIZE(ostate.state); i++)
1404 		ctx->iv[i + 8] = cpu_to_be32(ostate.state[i]);
1405 
1406 	return 0;
1407 }
1408 
mv_cesa_ahmac_sha256_init(struct ahash_request * req)1409 static int mv_cesa_ahmac_sha256_init(struct ahash_request *req)
1410 {
1411 	struct mv_cesa_hmac_ctx *ctx = crypto_tfm_ctx(req->base.tfm);
1412 	struct mv_cesa_op_ctx tmpl = { };
1413 
1414 	mv_cesa_set_op_cfg(&tmpl, CESA_SA_DESC_CFG_MACM_HMAC_SHA256);
1415 	memcpy(tmpl.ctx.hash.iv, ctx->iv, sizeof(ctx->iv));
1416 
1417 	mv_cesa_ahash_init(req, &tmpl, false);
1418 
1419 	return 0;
1420 }
1421 
mv_cesa_ahmac_sha256_digest(struct ahash_request * req)1422 static int mv_cesa_ahmac_sha256_digest(struct ahash_request *req)
1423 {
1424 	int ret;
1425 
1426 	ret = mv_cesa_ahmac_sha256_init(req);
1427 	if (ret)
1428 		return ret;
1429 
1430 	return mv_cesa_ahash_finup(req);
1431 }
1432 
1433 struct ahash_alg mv_ahmac_sha256_alg = {
1434 	.init = mv_cesa_ahmac_sha256_init,
1435 	.update = mv_cesa_ahash_update,
1436 	.final = mv_cesa_ahash_final,
1437 	.finup = mv_cesa_ahash_finup,
1438 	.digest = mv_cesa_ahmac_sha256_digest,
1439 	.setkey = mv_cesa_ahmac_sha256_setkey,
1440 	.export = mv_cesa_sha256_export,
1441 	.import = mv_cesa_sha256_import,
1442 	.halg = {
1443 		.digestsize = SHA256_DIGEST_SIZE,
1444 		.statesize = sizeof(struct sha256_state),
1445 		.base = {
1446 			.cra_name = "hmac(sha256)",
1447 			.cra_driver_name = "mv-hmac-sha256",
1448 			.cra_priority = 0,
1449 			.cra_flags = CRYPTO_ALG_ASYNC |
1450 				     CRYPTO_ALG_ALLOCATES_MEMORY |
1451 				     CRYPTO_ALG_KERN_DRIVER_ONLY,
1452 			.cra_blocksize = SHA256_BLOCK_SIZE,
1453 			.cra_ctxsize = sizeof(struct mv_cesa_hmac_ctx),
1454 			.cra_init = mv_cesa_ahmac_cra_init,
1455 			.cra_module = THIS_MODULE,
1456 		}
1457 	}
1458 };
1459