1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Hash algorithms supported by the CESA: MD5, SHA1 and SHA256.
4 *
5 * Author: Boris Brezillon <boris.brezillon@free-electrons.com>
6 * Author: Arnaud Ebalard <arno@natisbad.org>
7 *
8 * This work is based on an initial version written by
9 * Sebastian Andrzej Siewior < sebastian at breakpoint dot cc >
10 */
11
12 #include <crypto/hmac.h>
13 #include <crypto/md5.h>
14 #include <crypto/sha1.h>
15 #include <crypto/sha2.h>
16 #include <linux/device.h>
17 #include <linux/dma-mapping.h>
18
19 #include "cesa.h"
20
21 struct mv_cesa_ahash_dma_iter {
22 struct mv_cesa_dma_iter base;
23 struct mv_cesa_sg_dma_iter src;
24 };
25
26 static inline void
mv_cesa_ahash_req_iter_init(struct mv_cesa_ahash_dma_iter * iter,struct ahash_request * req)27 mv_cesa_ahash_req_iter_init(struct mv_cesa_ahash_dma_iter *iter,
28 struct ahash_request *req)
29 {
30 struct mv_cesa_ahash_req *creq = ahash_request_ctx(req);
31 unsigned int len = req->nbytes + creq->cache_ptr;
32
33 if (!creq->last_req)
34 len &= ~CESA_HASH_BLOCK_SIZE_MSK;
35
36 mv_cesa_req_dma_iter_init(&iter->base, len);
37 mv_cesa_sg_dma_iter_init(&iter->src, req->src, DMA_TO_DEVICE);
38 iter->src.op_offset = creq->cache_ptr;
39 }
40
41 static inline bool
mv_cesa_ahash_req_iter_next_op(struct mv_cesa_ahash_dma_iter * iter)42 mv_cesa_ahash_req_iter_next_op(struct mv_cesa_ahash_dma_iter *iter)
43 {
44 iter->src.op_offset = 0;
45
46 return mv_cesa_req_dma_iter_next_op(&iter->base);
47 }
48
49 static inline int
mv_cesa_ahash_dma_alloc_cache(struct mv_cesa_ahash_dma_req * req,gfp_t flags)50 mv_cesa_ahash_dma_alloc_cache(struct mv_cesa_ahash_dma_req *req, gfp_t flags)
51 {
52 req->cache = dma_pool_alloc(cesa_dev->dma->cache_pool, flags,
53 &req->cache_dma);
54 if (!req->cache)
55 return -ENOMEM;
56
57 return 0;
58 }
59
60 static inline void
mv_cesa_ahash_dma_free_cache(struct mv_cesa_ahash_dma_req * req)61 mv_cesa_ahash_dma_free_cache(struct mv_cesa_ahash_dma_req *req)
62 {
63 if (!req->cache)
64 return;
65
66 dma_pool_free(cesa_dev->dma->cache_pool, req->cache,
67 req->cache_dma);
68 }
69
mv_cesa_ahash_dma_alloc_padding(struct mv_cesa_ahash_dma_req * req,gfp_t flags)70 static int mv_cesa_ahash_dma_alloc_padding(struct mv_cesa_ahash_dma_req *req,
71 gfp_t flags)
72 {
73 if (req->padding)
74 return 0;
75
76 req->padding = dma_pool_alloc(cesa_dev->dma->padding_pool, flags,
77 &req->padding_dma);
78 if (!req->padding)
79 return -ENOMEM;
80
81 return 0;
82 }
83
mv_cesa_ahash_dma_free_padding(struct mv_cesa_ahash_dma_req * req)84 static void mv_cesa_ahash_dma_free_padding(struct mv_cesa_ahash_dma_req *req)
85 {
86 if (!req->padding)
87 return;
88
89 dma_pool_free(cesa_dev->dma->padding_pool, req->padding,
90 req->padding_dma);
91 req->padding = NULL;
92 }
93
mv_cesa_ahash_dma_last_cleanup(struct ahash_request * req)94 static inline void mv_cesa_ahash_dma_last_cleanup(struct ahash_request *req)
95 {
96 struct mv_cesa_ahash_req *creq = ahash_request_ctx(req);
97
98 mv_cesa_ahash_dma_free_padding(&creq->req.dma);
99 }
100
mv_cesa_ahash_dma_cleanup(struct ahash_request * req)101 static inline void mv_cesa_ahash_dma_cleanup(struct ahash_request *req)
102 {
103 struct mv_cesa_ahash_req *creq = ahash_request_ctx(req);
104
105 dma_unmap_sg(cesa_dev->dev, req->src, creq->src_nents, DMA_TO_DEVICE);
106 mv_cesa_ahash_dma_free_cache(&creq->req.dma);
107 mv_cesa_dma_cleanup(&creq->base);
108 }
109
mv_cesa_ahash_cleanup(struct ahash_request * req)110 static inline void mv_cesa_ahash_cleanup(struct ahash_request *req)
111 {
112 struct mv_cesa_ahash_req *creq = ahash_request_ctx(req);
113 struct mv_cesa_engine *engine = creq->base.engine;
114
115 if (mv_cesa_req_get_type(&creq->base) == CESA_DMA_REQ)
116 mv_cesa_ahash_dma_cleanup(req);
117
118 atomic_sub(req->nbytes, &engine->load);
119 }
120
mv_cesa_ahash_last_cleanup(struct ahash_request * req)121 static void mv_cesa_ahash_last_cleanup(struct ahash_request *req)
122 {
123 struct mv_cesa_ahash_req *creq = ahash_request_ctx(req);
124
125 if (mv_cesa_req_get_type(&creq->base) == CESA_DMA_REQ)
126 mv_cesa_ahash_dma_last_cleanup(req);
127 }
128
mv_cesa_ahash_pad_len(struct mv_cesa_ahash_req * creq)129 static int mv_cesa_ahash_pad_len(struct mv_cesa_ahash_req *creq)
130 {
131 unsigned int index, padlen;
132
133 index = creq->len & CESA_HASH_BLOCK_SIZE_MSK;
134 padlen = (index < 56) ? (56 - index) : (64 + 56 - index);
135
136 return padlen;
137 }
138
mv_cesa_ahash_pad_req(struct mv_cesa_ahash_req * creq,u8 * buf)139 static int mv_cesa_ahash_pad_req(struct mv_cesa_ahash_req *creq, u8 *buf)
140 {
141 unsigned int padlen;
142
143 buf[0] = 0x80;
144 /* Pad out to 56 mod 64 */
145 padlen = mv_cesa_ahash_pad_len(creq);
146 memset(buf + 1, 0, padlen - 1);
147
148 if (creq->algo_le) {
149 __le64 bits = cpu_to_le64(creq->len << 3);
150
151 memcpy(buf + padlen, &bits, sizeof(bits));
152 } else {
153 __be64 bits = cpu_to_be64(creq->len << 3);
154
155 memcpy(buf + padlen, &bits, sizeof(bits));
156 }
157
158 return padlen + 8;
159 }
160
mv_cesa_ahash_std_step(struct ahash_request * req)161 static void mv_cesa_ahash_std_step(struct ahash_request *req)
162 {
163 struct mv_cesa_ahash_req *creq = ahash_request_ctx(req);
164 struct mv_cesa_ahash_std_req *sreq = &creq->req.std;
165 struct mv_cesa_engine *engine = creq->base.engine;
166 struct mv_cesa_op_ctx *op;
167 unsigned int new_cache_ptr = 0;
168 u32 frag_mode;
169 size_t len;
170 unsigned int digsize;
171 int i;
172
173 mv_cesa_adjust_op(engine, &creq->op_tmpl);
174 if (engine->pool)
175 memcpy(engine->sram_pool, &creq->op_tmpl,
176 sizeof(creq->op_tmpl));
177 else
178 memcpy_toio(engine->sram, &creq->op_tmpl,
179 sizeof(creq->op_tmpl));
180
181 if (!sreq->offset) {
182 digsize = crypto_ahash_digestsize(crypto_ahash_reqtfm(req));
183 for (i = 0; i < digsize / 4; i++)
184 writel_relaxed(creq->state[i],
185 engine->regs + CESA_IVDIG(i));
186 }
187
188 if (creq->cache_ptr) {
189 if (engine->pool)
190 memcpy(engine->sram_pool + CESA_SA_DATA_SRAM_OFFSET,
191 creq->cache, creq->cache_ptr);
192 else
193 memcpy_toio(engine->sram + CESA_SA_DATA_SRAM_OFFSET,
194 creq->cache, creq->cache_ptr);
195 }
196
197 len = min_t(size_t, req->nbytes + creq->cache_ptr - sreq->offset,
198 CESA_SA_SRAM_PAYLOAD_SIZE);
199
200 if (!creq->last_req) {
201 new_cache_ptr = len & CESA_HASH_BLOCK_SIZE_MSK;
202 len &= ~CESA_HASH_BLOCK_SIZE_MSK;
203 }
204
205 if (len - creq->cache_ptr)
206 sreq->offset += mv_cesa_sg_copy_to_sram(
207 engine, req->src, creq->src_nents,
208 CESA_SA_DATA_SRAM_OFFSET + creq->cache_ptr,
209 len - creq->cache_ptr, sreq->offset);
210
211 op = &creq->op_tmpl;
212
213 frag_mode = mv_cesa_get_op_cfg(op) & CESA_SA_DESC_CFG_FRAG_MSK;
214
215 if (creq->last_req && sreq->offset == req->nbytes &&
216 creq->len <= CESA_SA_DESC_MAC_SRC_TOTAL_LEN_MAX) {
217 if (frag_mode == CESA_SA_DESC_CFG_FIRST_FRAG)
218 frag_mode = CESA_SA_DESC_CFG_NOT_FRAG;
219 else if (frag_mode == CESA_SA_DESC_CFG_MID_FRAG)
220 frag_mode = CESA_SA_DESC_CFG_LAST_FRAG;
221 }
222
223 if (frag_mode == CESA_SA_DESC_CFG_NOT_FRAG ||
224 frag_mode == CESA_SA_DESC_CFG_LAST_FRAG) {
225 if (len &&
226 creq->len <= CESA_SA_DESC_MAC_SRC_TOTAL_LEN_MAX) {
227 mv_cesa_set_mac_op_total_len(op, creq->len);
228 } else {
229 int trailerlen = mv_cesa_ahash_pad_len(creq) + 8;
230
231 if (len + trailerlen > CESA_SA_SRAM_PAYLOAD_SIZE) {
232 len &= CESA_HASH_BLOCK_SIZE_MSK;
233 new_cache_ptr = 64 - trailerlen;
234 if (engine->pool)
235 memcpy(creq->cache,
236 engine->sram_pool +
237 CESA_SA_DATA_SRAM_OFFSET + len,
238 new_cache_ptr);
239 else
240 memcpy_fromio(creq->cache,
241 engine->sram +
242 CESA_SA_DATA_SRAM_OFFSET +
243 len,
244 new_cache_ptr);
245 } else {
246 i = mv_cesa_ahash_pad_req(creq, creq->cache);
247 len += i;
248 if (engine->pool)
249 memcpy(engine->sram_pool + len +
250 CESA_SA_DATA_SRAM_OFFSET,
251 creq->cache, i);
252 else
253 memcpy_toio(engine->sram + len +
254 CESA_SA_DATA_SRAM_OFFSET,
255 creq->cache, i);
256 }
257
258 if (frag_mode == CESA_SA_DESC_CFG_LAST_FRAG)
259 frag_mode = CESA_SA_DESC_CFG_MID_FRAG;
260 else
261 frag_mode = CESA_SA_DESC_CFG_FIRST_FRAG;
262 }
263 }
264
265 mv_cesa_set_mac_op_frag_len(op, len);
266 mv_cesa_update_op_cfg(op, frag_mode, CESA_SA_DESC_CFG_FRAG_MSK);
267
268 /* FIXME: only update enc_len field */
269 if (engine->pool)
270 memcpy(engine->sram_pool, op, sizeof(*op));
271 else
272 memcpy_toio(engine->sram, op, sizeof(*op));
273
274 if (frag_mode == CESA_SA_DESC_CFG_FIRST_FRAG)
275 mv_cesa_update_op_cfg(op, CESA_SA_DESC_CFG_MID_FRAG,
276 CESA_SA_DESC_CFG_FRAG_MSK);
277
278 creq->cache_ptr = new_cache_ptr;
279
280 mv_cesa_set_int_mask(engine, CESA_SA_INT_ACCEL0_DONE);
281 writel_relaxed(CESA_SA_CFG_PARA_DIS, engine->regs + CESA_SA_CFG);
282 WARN_ON(readl(engine->regs + CESA_SA_CMD) &
283 CESA_SA_CMD_EN_CESA_SA_ACCL0);
284 writel(CESA_SA_CMD_EN_CESA_SA_ACCL0, engine->regs + CESA_SA_CMD);
285 }
286
mv_cesa_ahash_std_process(struct ahash_request * req,u32 status)287 static int mv_cesa_ahash_std_process(struct ahash_request *req, u32 status)
288 {
289 struct mv_cesa_ahash_req *creq = ahash_request_ctx(req);
290 struct mv_cesa_ahash_std_req *sreq = &creq->req.std;
291
292 if (sreq->offset < (req->nbytes - creq->cache_ptr))
293 return -EINPROGRESS;
294
295 return 0;
296 }
297
mv_cesa_ahash_dma_prepare(struct ahash_request * req)298 static inline void mv_cesa_ahash_dma_prepare(struct ahash_request *req)
299 {
300 struct mv_cesa_ahash_req *creq = ahash_request_ctx(req);
301 struct mv_cesa_req *basereq = &creq->base;
302
303 mv_cesa_dma_prepare(basereq, basereq->engine);
304 }
305
mv_cesa_ahash_std_prepare(struct ahash_request * req)306 static void mv_cesa_ahash_std_prepare(struct ahash_request *req)
307 {
308 struct mv_cesa_ahash_req *creq = ahash_request_ctx(req);
309 struct mv_cesa_ahash_std_req *sreq = &creq->req.std;
310
311 sreq->offset = 0;
312 }
313
mv_cesa_ahash_dma_step(struct ahash_request * req)314 static void mv_cesa_ahash_dma_step(struct ahash_request *req)
315 {
316 struct mv_cesa_ahash_req *creq = ahash_request_ctx(req);
317 struct mv_cesa_req *base = &creq->base;
318
319 /* We must explicitly set the digest state. */
320 if (base->chain.first->flags & CESA_TDMA_SET_STATE) {
321 struct mv_cesa_engine *engine = base->engine;
322 int i;
323
324 /* Set the hash state in the IVDIG regs. */
325 for (i = 0; i < ARRAY_SIZE(creq->state); i++)
326 writel_relaxed(creq->state[i], engine->regs +
327 CESA_IVDIG(i));
328 }
329
330 mv_cesa_dma_step(base);
331 }
332
mv_cesa_ahash_step(struct crypto_async_request * req)333 static void mv_cesa_ahash_step(struct crypto_async_request *req)
334 {
335 struct ahash_request *ahashreq = ahash_request_cast(req);
336 struct mv_cesa_ahash_req *creq = ahash_request_ctx(ahashreq);
337
338 if (mv_cesa_req_get_type(&creq->base) == CESA_DMA_REQ)
339 mv_cesa_ahash_dma_step(ahashreq);
340 else
341 mv_cesa_ahash_std_step(ahashreq);
342 }
343
mv_cesa_ahash_process(struct crypto_async_request * req,u32 status)344 static int mv_cesa_ahash_process(struct crypto_async_request *req, u32 status)
345 {
346 struct ahash_request *ahashreq = ahash_request_cast(req);
347 struct mv_cesa_ahash_req *creq = ahash_request_ctx(ahashreq);
348
349 if (mv_cesa_req_get_type(&creq->base) == CESA_DMA_REQ)
350 return mv_cesa_dma_process(&creq->base, status);
351
352 return mv_cesa_ahash_std_process(ahashreq, status);
353 }
354
mv_cesa_ahash_complete(struct crypto_async_request * req)355 static void mv_cesa_ahash_complete(struct crypto_async_request *req)
356 {
357 struct ahash_request *ahashreq = ahash_request_cast(req);
358 struct mv_cesa_ahash_req *creq = ahash_request_ctx(ahashreq);
359 struct mv_cesa_engine *engine = creq->base.engine;
360 unsigned int digsize;
361 int i;
362
363 digsize = crypto_ahash_digestsize(crypto_ahash_reqtfm(ahashreq));
364
365 if (mv_cesa_req_get_type(&creq->base) == CESA_DMA_REQ &&
366 (creq->base.chain.last->flags & CESA_TDMA_TYPE_MSK) ==
367 CESA_TDMA_RESULT) {
368 __le32 *data = NULL;
369
370 /*
371 * Result is already in the correct endianness when the SA is
372 * used
373 */
374 data = creq->base.chain.last->op->ctx.hash.hash;
375 for (i = 0; i < digsize / 4; i++)
376 creq->state[i] = le32_to_cpu(data[i]);
377
378 memcpy(ahashreq->result, data, digsize);
379 } else {
380 for (i = 0; i < digsize / 4; i++)
381 creq->state[i] = readl_relaxed(engine->regs +
382 CESA_IVDIG(i));
383 if (creq->last_req) {
384 /*
385 * Hardware's MD5 digest is in little endian format, but
386 * SHA in big endian format
387 */
388 if (creq->algo_le) {
389 __le32 *result = (void *)ahashreq->result;
390
391 for (i = 0; i < digsize / 4; i++)
392 result[i] = cpu_to_le32(creq->state[i]);
393 } else {
394 __be32 *result = (void *)ahashreq->result;
395
396 for (i = 0; i < digsize / 4; i++)
397 result[i] = cpu_to_be32(creq->state[i]);
398 }
399 }
400 }
401 }
402
mv_cesa_ahash_prepare(struct crypto_async_request * req,struct mv_cesa_engine * engine)403 static void mv_cesa_ahash_prepare(struct crypto_async_request *req,
404 struct mv_cesa_engine *engine)
405 {
406 struct ahash_request *ahashreq = ahash_request_cast(req);
407 struct mv_cesa_ahash_req *creq = ahash_request_ctx(ahashreq);
408
409 creq->base.engine = engine;
410
411 if (mv_cesa_req_get_type(&creq->base) == CESA_DMA_REQ)
412 mv_cesa_ahash_dma_prepare(ahashreq);
413 else
414 mv_cesa_ahash_std_prepare(ahashreq);
415 }
416
mv_cesa_ahash_req_cleanup(struct crypto_async_request * req)417 static void mv_cesa_ahash_req_cleanup(struct crypto_async_request *req)
418 {
419 struct ahash_request *ahashreq = ahash_request_cast(req);
420 struct mv_cesa_ahash_req *creq = ahash_request_ctx(ahashreq);
421
422 if (creq->last_req)
423 mv_cesa_ahash_last_cleanup(ahashreq);
424
425 mv_cesa_ahash_cleanup(ahashreq);
426
427 if (creq->cache_ptr)
428 sg_pcopy_to_buffer(ahashreq->src, creq->src_nents,
429 creq->cache,
430 creq->cache_ptr,
431 ahashreq->nbytes - creq->cache_ptr);
432 }
433
434 static const struct mv_cesa_req_ops mv_cesa_ahash_req_ops = {
435 .step = mv_cesa_ahash_step,
436 .process = mv_cesa_ahash_process,
437 .cleanup = mv_cesa_ahash_req_cleanup,
438 .complete = mv_cesa_ahash_complete,
439 };
440
mv_cesa_ahash_init(struct ahash_request * req,struct mv_cesa_op_ctx * tmpl,bool algo_le)441 static void mv_cesa_ahash_init(struct ahash_request *req,
442 struct mv_cesa_op_ctx *tmpl, bool algo_le)
443 {
444 struct mv_cesa_ahash_req *creq = ahash_request_ctx(req);
445
446 memset(creq, 0, sizeof(*creq));
447 mv_cesa_update_op_cfg(tmpl,
448 CESA_SA_DESC_CFG_OP_MAC_ONLY |
449 CESA_SA_DESC_CFG_FIRST_FRAG,
450 CESA_SA_DESC_CFG_OP_MSK |
451 CESA_SA_DESC_CFG_FRAG_MSK);
452 mv_cesa_set_mac_op_total_len(tmpl, 0);
453 mv_cesa_set_mac_op_frag_len(tmpl, 0);
454 creq->op_tmpl = *tmpl;
455 creq->len = 0;
456 creq->algo_le = algo_le;
457 }
458
mv_cesa_ahash_cra_init(struct crypto_tfm * tfm)459 static inline int mv_cesa_ahash_cra_init(struct crypto_tfm *tfm)
460 {
461 struct mv_cesa_hash_ctx *ctx = crypto_tfm_ctx(tfm);
462
463 ctx->base.ops = &mv_cesa_ahash_req_ops;
464
465 crypto_ahash_set_reqsize(__crypto_ahash_cast(tfm),
466 sizeof(struct mv_cesa_ahash_req));
467 return 0;
468 }
469
mv_cesa_ahash_cache_req(struct ahash_request * req)470 static bool mv_cesa_ahash_cache_req(struct ahash_request *req)
471 {
472 struct mv_cesa_ahash_req *creq = ahash_request_ctx(req);
473 bool cached = false;
474
475 if (creq->cache_ptr + req->nbytes < CESA_MAX_HASH_BLOCK_SIZE &&
476 !creq->last_req) {
477 cached = true;
478
479 if (!req->nbytes)
480 return cached;
481
482 sg_pcopy_to_buffer(req->src, creq->src_nents,
483 creq->cache + creq->cache_ptr,
484 req->nbytes, 0);
485
486 creq->cache_ptr += req->nbytes;
487 }
488
489 return cached;
490 }
491
492 static struct mv_cesa_op_ctx *
mv_cesa_dma_add_frag(struct mv_cesa_tdma_chain * chain,struct mv_cesa_op_ctx * tmpl,unsigned int frag_len,gfp_t flags)493 mv_cesa_dma_add_frag(struct mv_cesa_tdma_chain *chain,
494 struct mv_cesa_op_ctx *tmpl, unsigned int frag_len,
495 gfp_t flags)
496 {
497 struct mv_cesa_op_ctx *op;
498 int ret;
499
500 op = mv_cesa_dma_add_op(chain, tmpl, false, flags);
501 if (IS_ERR(op))
502 return op;
503
504 /* Set the operation block fragment length. */
505 mv_cesa_set_mac_op_frag_len(op, frag_len);
506
507 /* Append dummy desc to launch operation */
508 ret = mv_cesa_dma_add_dummy_launch(chain, flags);
509 if (ret)
510 return ERR_PTR(ret);
511
512 if (mv_cesa_mac_op_is_first_frag(tmpl))
513 mv_cesa_update_op_cfg(tmpl,
514 CESA_SA_DESC_CFG_MID_FRAG,
515 CESA_SA_DESC_CFG_FRAG_MSK);
516
517 return op;
518 }
519
520 static int
mv_cesa_ahash_dma_add_cache(struct mv_cesa_tdma_chain * chain,struct mv_cesa_ahash_req * creq,gfp_t flags)521 mv_cesa_ahash_dma_add_cache(struct mv_cesa_tdma_chain *chain,
522 struct mv_cesa_ahash_req *creq,
523 gfp_t flags)
524 {
525 struct mv_cesa_ahash_dma_req *ahashdreq = &creq->req.dma;
526 int ret;
527
528 if (!creq->cache_ptr)
529 return 0;
530
531 ret = mv_cesa_ahash_dma_alloc_cache(ahashdreq, flags);
532 if (ret)
533 return ret;
534
535 memcpy(ahashdreq->cache, creq->cache, creq->cache_ptr);
536
537 return mv_cesa_dma_add_data_transfer(chain,
538 CESA_SA_DATA_SRAM_OFFSET,
539 ahashdreq->cache_dma,
540 creq->cache_ptr,
541 CESA_TDMA_DST_IN_SRAM,
542 flags);
543 }
544
545 static struct mv_cesa_op_ctx *
mv_cesa_ahash_dma_last_req(struct mv_cesa_tdma_chain * chain,struct mv_cesa_ahash_dma_iter * dma_iter,struct mv_cesa_ahash_req * creq,unsigned int frag_len,gfp_t flags)546 mv_cesa_ahash_dma_last_req(struct mv_cesa_tdma_chain *chain,
547 struct mv_cesa_ahash_dma_iter *dma_iter,
548 struct mv_cesa_ahash_req *creq,
549 unsigned int frag_len, gfp_t flags)
550 {
551 struct mv_cesa_ahash_dma_req *ahashdreq = &creq->req.dma;
552 unsigned int len, trailerlen, padoff = 0;
553 struct mv_cesa_op_ctx *op;
554 int ret;
555
556 /*
557 * If the transfer is smaller than our maximum length, and we have
558 * some data outstanding, we can ask the engine to finish the hash.
559 */
560 if (creq->len <= CESA_SA_DESC_MAC_SRC_TOTAL_LEN_MAX && frag_len) {
561 op = mv_cesa_dma_add_frag(chain, &creq->op_tmpl, frag_len,
562 flags);
563 if (IS_ERR(op))
564 return op;
565
566 mv_cesa_set_mac_op_total_len(op, creq->len);
567 mv_cesa_update_op_cfg(op, mv_cesa_mac_op_is_first_frag(op) ?
568 CESA_SA_DESC_CFG_NOT_FRAG :
569 CESA_SA_DESC_CFG_LAST_FRAG,
570 CESA_SA_DESC_CFG_FRAG_MSK);
571
572 ret = mv_cesa_dma_add_result_op(chain,
573 CESA_SA_CFG_SRAM_OFFSET,
574 CESA_SA_DATA_SRAM_OFFSET,
575 CESA_TDMA_SRC_IN_SRAM, flags);
576 if (ret)
577 return ERR_PTR(-ENOMEM);
578 return op;
579 }
580
581 /*
582 * The request is longer than the engine can handle, or we have
583 * no data outstanding. Manually generate the padding, adding it
584 * as a "mid" fragment.
585 */
586 ret = mv_cesa_ahash_dma_alloc_padding(ahashdreq, flags);
587 if (ret)
588 return ERR_PTR(ret);
589
590 trailerlen = mv_cesa_ahash_pad_req(creq, ahashdreq->padding);
591
592 len = min(CESA_SA_SRAM_PAYLOAD_SIZE - frag_len, trailerlen);
593 if (len) {
594 ret = mv_cesa_dma_add_data_transfer(chain,
595 CESA_SA_DATA_SRAM_OFFSET +
596 frag_len,
597 ahashdreq->padding_dma,
598 len, CESA_TDMA_DST_IN_SRAM,
599 flags);
600 if (ret)
601 return ERR_PTR(ret);
602
603 op = mv_cesa_dma_add_frag(chain, &creq->op_tmpl, frag_len + len,
604 flags);
605 if (IS_ERR(op))
606 return op;
607
608 if (len == trailerlen)
609 return op;
610
611 padoff += len;
612 }
613
614 ret = mv_cesa_dma_add_data_transfer(chain,
615 CESA_SA_DATA_SRAM_OFFSET,
616 ahashdreq->padding_dma +
617 padoff,
618 trailerlen - padoff,
619 CESA_TDMA_DST_IN_SRAM,
620 flags);
621 if (ret)
622 return ERR_PTR(ret);
623
624 return mv_cesa_dma_add_frag(chain, &creq->op_tmpl, trailerlen - padoff,
625 flags);
626 }
627
mv_cesa_ahash_dma_req_init(struct ahash_request * req)628 static int mv_cesa_ahash_dma_req_init(struct ahash_request *req)
629 {
630 struct mv_cesa_ahash_req *creq = ahash_request_ctx(req);
631 gfp_t flags = (req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP) ?
632 GFP_KERNEL : GFP_ATOMIC;
633 struct mv_cesa_req *basereq = &creq->base;
634 struct mv_cesa_ahash_dma_iter iter;
635 struct mv_cesa_op_ctx *op = NULL;
636 unsigned int frag_len;
637 bool set_state = false;
638 int ret;
639 u32 type;
640
641 basereq->chain.first = NULL;
642 basereq->chain.last = NULL;
643
644 if (!mv_cesa_mac_op_is_first_frag(&creq->op_tmpl))
645 set_state = true;
646
647 if (creq->src_nents) {
648 ret = dma_map_sg(cesa_dev->dev, req->src, creq->src_nents,
649 DMA_TO_DEVICE);
650 if (!ret) {
651 ret = -ENOMEM;
652 goto err;
653 }
654 }
655
656 mv_cesa_tdma_desc_iter_init(&basereq->chain);
657 mv_cesa_ahash_req_iter_init(&iter, req);
658
659 /*
660 * Add the cache (left-over data from a previous block) first.
661 * This will never overflow the SRAM size.
662 */
663 ret = mv_cesa_ahash_dma_add_cache(&basereq->chain, creq, flags);
664 if (ret)
665 goto err_free_tdma;
666
667 if (iter.base.len > iter.src.op_offset) {
668 /*
669 * Add all the new data, inserting an operation block and
670 * launch command between each full SRAM block-worth of
671 * data. We intentionally do not add the final op block.
672 */
673 while (true) {
674 ret = mv_cesa_dma_add_op_transfers(&basereq->chain,
675 &iter.base,
676 &iter.src, flags);
677 if (ret)
678 goto err_free_tdma;
679
680 frag_len = iter.base.op_len;
681
682 if (!mv_cesa_ahash_req_iter_next_op(&iter))
683 break;
684
685 op = mv_cesa_dma_add_frag(&basereq->chain,
686 &creq->op_tmpl,
687 frag_len, flags);
688 if (IS_ERR(op)) {
689 ret = PTR_ERR(op);
690 goto err_free_tdma;
691 }
692 }
693 } else {
694 /* Account for the data that was in the cache. */
695 frag_len = iter.base.op_len;
696 }
697
698 /*
699 * At this point, frag_len indicates whether we have any data
700 * outstanding which needs an operation. Queue up the final
701 * operation, which depends whether this is the final request.
702 */
703 if (creq->last_req)
704 op = mv_cesa_ahash_dma_last_req(&basereq->chain, &iter, creq,
705 frag_len, flags);
706 else if (frag_len)
707 op = mv_cesa_dma_add_frag(&basereq->chain, &creq->op_tmpl,
708 frag_len, flags);
709
710 if (IS_ERR(op)) {
711 ret = PTR_ERR(op);
712 goto err_free_tdma;
713 }
714
715 /*
716 * If results are copied via DMA, this means that this
717 * request can be directly processed by the engine,
718 * without partial updates. So we can chain it at the
719 * DMA level with other requests.
720 */
721 type = basereq->chain.last->flags & CESA_TDMA_TYPE_MSK;
722
723 if (op && type != CESA_TDMA_RESULT) {
724 /* Add dummy desc to wait for crypto operation end */
725 ret = mv_cesa_dma_add_dummy_end(&basereq->chain, flags);
726 if (ret)
727 goto err_free_tdma;
728 }
729
730 if (!creq->last_req)
731 creq->cache_ptr = req->nbytes + creq->cache_ptr -
732 iter.base.len;
733 else
734 creq->cache_ptr = 0;
735
736 basereq->chain.last->flags |= CESA_TDMA_END_OF_REQ;
737
738 if (type != CESA_TDMA_RESULT)
739 basereq->chain.last->flags |= CESA_TDMA_BREAK_CHAIN;
740
741 if (set_state) {
742 /*
743 * Put the CESA_TDMA_SET_STATE flag on the first tdma desc to
744 * let the step logic know that the IVDIG registers should be
745 * explicitly set before launching a TDMA chain.
746 */
747 basereq->chain.first->flags |= CESA_TDMA_SET_STATE;
748 }
749
750 return 0;
751
752 err_free_tdma:
753 mv_cesa_dma_cleanup(basereq);
754 dma_unmap_sg(cesa_dev->dev, req->src, creq->src_nents, DMA_TO_DEVICE);
755
756 err:
757 mv_cesa_ahash_last_cleanup(req);
758
759 return ret;
760 }
761
mv_cesa_ahash_req_init(struct ahash_request * req,bool * cached)762 static int mv_cesa_ahash_req_init(struct ahash_request *req, bool *cached)
763 {
764 struct mv_cesa_ahash_req *creq = ahash_request_ctx(req);
765
766 creq->src_nents = sg_nents_for_len(req->src, req->nbytes);
767 if (creq->src_nents < 0) {
768 dev_err(cesa_dev->dev, "Invalid number of src SG");
769 return creq->src_nents;
770 }
771
772 *cached = mv_cesa_ahash_cache_req(req);
773
774 if (*cached)
775 return 0;
776
777 if (cesa_dev->caps->has_tdma)
778 return mv_cesa_ahash_dma_req_init(req);
779 else
780 return 0;
781 }
782
mv_cesa_ahash_queue_req(struct ahash_request * req)783 static int mv_cesa_ahash_queue_req(struct ahash_request *req)
784 {
785 struct mv_cesa_ahash_req *creq = ahash_request_ctx(req);
786 struct mv_cesa_engine *engine;
787 bool cached = false;
788 int ret;
789
790 ret = mv_cesa_ahash_req_init(req, &cached);
791 if (ret)
792 return ret;
793
794 if (cached)
795 return 0;
796
797 engine = mv_cesa_select_engine(req->nbytes);
798 mv_cesa_ahash_prepare(&req->base, engine);
799
800 ret = mv_cesa_queue_req(&req->base, &creq->base);
801
802 if (mv_cesa_req_needs_cleanup(&req->base, ret))
803 mv_cesa_ahash_cleanup(req);
804
805 return ret;
806 }
807
mv_cesa_ahash_update(struct ahash_request * req)808 static int mv_cesa_ahash_update(struct ahash_request *req)
809 {
810 struct mv_cesa_ahash_req *creq = ahash_request_ctx(req);
811
812 creq->len += req->nbytes;
813
814 return mv_cesa_ahash_queue_req(req);
815 }
816
mv_cesa_ahash_final(struct ahash_request * req)817 static int mv_cesa_ahash_final(struct ahash_request *req)
818 {
819 struct mv_cesa_ahash_req *creq = ahash_request_ctx(req);
820 struct mv_cesa_op_ctx *tmpl = &creq->op_tmpl;
821
822 mv_cesa_set_mac_op_total_len(tmpl, creq->len);
823 creq->last_req = true;
824 req->nbytes = 0;
825
826 return mv_cesa_ahash_queue_req(req);
827 }
828
mv_cesa_ahash_finup(struct ahash_request * req)829 static int mv_cesa_ahash_finup(struct ahash_request *req)
830 {
831 struct mv_cesa_ahash_req *creq = ahash_request_ctx(req);
832 struct mv_cesa_op_ctx *tmpl = &creq->op_tmpl;
833
834 creq->len += req->nbytes;
835 mv_cesa_set_mac_op_total_len(tmpl, creq->len);
836 creq->last_req = true;
837
838 return mv_cesa_ahash_queue_req(req);
839 }
840
mv_cesa_ahash_export(struct ahash_request * req,void * hash,u64 * len,void * cache)841 static int mv_cesa_ahash_export(struct ahash_request *req, void *hash,
842 u64 *len, void *cache)
843 {
844 struct crypto_ahash *ahash = crypto_ahash_reqtfm(req);
845 struct mv_cesa_ahash_req *creq = ahash_request_ctx(req);
846 unsigned int digsize = crypto_ahash_digestsize(ahash);
847 unsigned int blocksize;
848
849 blocksize = crypto_ahash_blocksize(ahash);
850
851 *len = creq->len;
852 memcpy(hash, creq->state, digsize);
853 memset(cache, 0, blocksize);
854 memcpy(cache, creq->cache, creq->cache_ptr);
855
856 return 0;
857 }
858
mv_cesa_ahash_import(struct ahash_request * req,const void * hash,u64 len,const void * cache)859 static int mv_cesa_ahash_import(struct ahash_request *req, const void *hash,
860 u64 len, const void *cache)
861 {
862 struct crypto_ahash *ahash = crypto_ahash_reqtfm(req);
863 struct mv_cesa_ahash_req *creq = ahash_request_ctx(req);
864 unsigned int digsize = crypto_ahash_digestsize(ahash);
865 unsigned int blocksize;
866 unsigned int cache_ptr;
867 int ret;
868
869 ret = crypto_ahash_init(req);
870 if (ret)
871 return ret;
872
873 blocksize = crypto_ahash_blocksize(ahash);
874 if (len >= blocksize)
875 mv_cesa_update_op_cfg(&creq->op_tmpl,
876 CESA_SA_DESC_CFG_MID_FRAG,
877 CESA_SA_DESC_CFG_FRAG_MSK);
878
879 creq->len = len;
880 memcpy(creq->state, hash, digsize);
881 creq->cache_ptr = 0;
882
883 cache_ptr = do_div(len, blocksize);
884 if (!cache_ptr)
885 return 0;
886
887 memcpy(creq->cache, cache, cache_ptr);
888 creq->cache_ptr = cache_ptr;
889
890 return 0;
891 }
892
mv_cesa_md5_init(struct ahash_request * req)893 static int mv_cesa_md5_init(struct ahash_request *req)
894 {
895 struct mv_cesa_ahash_req *creq = ahash_request_ctx(req);
896 struct mv_cesa_op_ctx tmpl = { };
897
898 mv_cesa_set_op_cfg(&tmpl, CESA_SA_DESC_CFG_MACM_MD5);
899
900 mv_cesa_ahash_init(req, &tmpl, true);
901
902 creq->state[0] = MD5_H0;
903 creq->state[1] = MD5_H1;
904 creq->state[2] = MD5_H2;
905 creq->state[3] = MD5_H3;
906
907 return 0;
908 }
909
mv_cesa_md5_export(struct ahash_request * req,void * out)910 static int mv_cesa_md5_export(struct ahash_request *req, void *out)
911 {
912 struct md5_state *out_state = out;
913
914 return mv_cesa_ahash_export(req, out_state->hash,
915 &out_state->byte_count, out_state->block);
916 }
917
mv_cesa_md5_import(struct ahash_request * req,const void * in)918 static int mv_cesa_md5_import(struct ahash_request *req, const void *in)
919 {
920 const struct md5_state *in_state = in;
921
922 return mv_cesa_ahash_import(req, in_state->hash, in_state->byte_count,
923 in_state->block);
924 }
925
mv_cesa_md5_digest(struct ahash_request * req)926 static int mv_cesa_md5_digest(struct ahash_request *req)
927 {
928 int ret;
929
930 ret = mv_cesa_md5_init(req);
931 if (ret)
932 return ret;
933
934 return mv_cesa_ahash_finup(req);
935 }
936
937 struct ahash_alg mv_md5_alg = {
938 .init = mv_cesa_md5_init,
939 .update = mv_cesa_ahash_update,
940 .final = mv_cesa_ahash_final,
941 .finup = mv_cesa_ahash_finup,
942 .digest = mv_cesa_md5_digest,
943 .export = mv_cesa_md5_export,
944 .import = mv_cesa_md5_import,
945 .halg = {
946 .digestsize = MD5_DIGEST_SIZE,
947 .statesize = sizeof(struct md5_state),
948 .base = {
949 .cra_name = "md5",
950 .cra_driver_name = "mv-md5",
951 .cra_priority = 0,
952 .cra_flags = CRYPTO_ALG_ASYNC |
953 CRYPTO_ALG_ALLOCATES_MEMORY |
954 CRYPTO_ALG_KERN_DRIVER_ONLY,
955 .cra_blocksize = MD5_HMAC_BLOCK_SIZE,
956 .cra_ctxsize = sizeof(struct mv_cesa_hash_ctx),
957 .cra_init = mv_cesa_ahash_cra_init,
958 .cra_module = THIS_MODULE,
959 }
960 }
961 };
962
mv_cesa_sha1_init(struct ahash_request * req)963 static int mv_cesa_sha1_init(struct ahash_request *req)
964 {
965 struct mv_cesa_ahash_req *creq = ahash_request_ctx(req);
966 struct mv_cesa_op_ctx tmpl = { };
967
968 mv_cesa_set_op_cfg(&tmpl, CESA_SA_DESC_CFG_MACM_SHA1);
969
970 mv_cesa_ahash_init(req, &tmpl, false);
971
972 creq->state[0] = SHA1_H0;
973 creq->state[1] = SHA1_H1;
974 creq->state[2] = SHA1_H2;
975 creq->state[3] = SHA1_H3;
976 creq->state[4] = SHA1_H4;
977
978 return 0;
979 }
980
mv_cesa_sha1_export(struct ahash_request * req,void * out)981 static int mv_cesa_sha1_export(struct ahash_request *req, void *out)
982 {
983 struct sha1_state *out_state = out;
984
985 return mv_cesa_ahash_export(req, out_state->state, &out_state->count,
986 out_state->buffer);
987 }
988
mv_cesa_sha1_import(struct ahash_request * req,const void * in)989 static int mv_cesa_sha1_import(struct ahash_request *req, const void *in)
990 {
991 const struct sha1_state *in_state = in;
992
993 return mv_cesa_ahash_import(req, in_state->state, in_state->count,
994 in_state->buffer);
995 }
996
mv_cesa_sha1_digest(struct ahash_request * req)997 static int mv_cesa_sha1_digest(struct ahash_request *req)
998 {
999 int ret;
1000
1001 ret = mv_cesa_sha1_init(req);
1002 if (ret)
1003 return ret;
1004
1005 return mv_cesa_ahash_finup(req);
1006 }
1007
1008 struct ahash_alg mv_sha1_alg = {
1009 .init = mv_cesa_sha1_init,
1010 .update = mv_cesa_ahash_update,
1011 .final = mv_cesa_ahash_final,
1012 .finup = mv_cesa_ahash_finup,
1013 .digest = mv_cesa_sha1_digest,
1014 .export = mv_cesa_sha1_export,
1015 .import = mv_cesa_sha1_import,
1016 .halg = {
1017 .digestsize = SHA1_DIGEST_SIZE,
1018 .statesize = sizeof(struct sha1_state),
1019 .base = {
1020 .cra_name = "sha1",
1021 .cra_driver_name = "mv-sha1",
1022 .cra_priority = 0,
1023 .cra_flags = CRYPTO_ALG_ASYNC |
1024 CRYPTO_ALG_ALLOCATES_MEMORY |
1025 CRYPTO_ALG_KERN_DRIVER_ONLY,
1026 .cra_blocksize = SHA1_BLOCK_SIZE,
1027 .cra_ctxsize = sizeof(struct mv_cesa_hash_ctx),
1028 .cra_init = mv_cesa_ahash_cra_init,
1029 .cra_module = THIS_MODULE,
1030 }
1031 }
1032 };
1033
mv_cesa_sha256_init(struct ahash_request * req)1034 static int mv_cesa_sha256_init(struct ahash_request *req)
1035 {
1036 struct mv_cesa_ahash_req *creq = ahash_request_ctx(req);
1037 struct mv_cesa_op_ctx tmpl = { };
1038
1039 mv_cesa_set_op_cfg(&tmpl, CESA_SA_DESC_CFG_MACM_SHA256);
1040
1041 mv_cesa_ahash_init(req, &tmpl, false);
1042
1043 creq->state[0] = SHA256_H0;
1044 creq->state[1] = SHA256_H1;
1045 creq->state[2] = SHA256_H2;
1046 creq->state[3] = SHA256_H3;
1047 creq->state[4] = SHA256_H4;
1048 creq->state[5] = SHA256_H5;
1049 creq->state[6] = SHA256_H6;
1050 creq->state[7] = SHA256_H7;
1051
1052 return 0;
1053 }
1054
mv_cesa_sha256_digest(struct ahash_request * req)1055 static int mv_cesa_sha256_digest(struct ahash_request *req)
1056 {
1057 int ret;
1058
1059 ret = mv_cesa_sha256_init(req);
1060 if (ret)
1061 return ret;
1062
1063 return mv_cesa_ahash_finup(req);
1064 }
1065
mv_cesa_sha256_export(struct ahash_request * req,void * out)1066 static int mv_cesa_sha256_export(struct ahash_request *req, void *out)
1067 {
1068 struct sha256_state *out_state = out;
1069
1070 return mv_cesa_ahash_export(req, out_state->state, &out_state->count,
1071 out_state->buf);
1072 }
1073
mv_cesa_sha256_import(struct ahash_request * req,const void * in)1074 static int mv_cesa_sha256_import(struct ahash_request *req, const void *in)
1075 {
1076 const struct sha256_state *in_state = in;
1077
1078 return mv_cesa_ahash_import(req, in_state->state, in_state->count,
1079 in_state->buf);
1080 }
1081
1082 struct ahash_alg mv_sha256_alg = {
1083 .init = mv_cesa_sha256_init,
1084 .update = mv_cesa_ahash_update,
1085 .final = mv_cesa_ahash_final,
1086 .finup = mv_cesa_ahash_finup,
1087 .digest = mv_cesa_sha256_digest,
1088 .export = mv_cesa_sha256_export,
1089 .import = mv_cesa_sha256_import,
1090 .halg = {
1091 .digestsize = SHA256_DIGEST_SIZE,
1092 .statesize = sizeof(struct sha256_state),
1093 .base = {
1094 .cra_name = "sha256",
1095 .cra_driver_name = "mv-sha256",
1096 .cra_priority = 0,
1097 .cra_flags = CRYPTO_ALG_ASYNC |
1098 CRYPTO_ALG_ALLOCATES_MEMORY |
1099 CRYPTO_ALG_KERN_DRIVER_ONLY,
1100 .cra_blocksize = SHA256_BLOCK_SIZE,
1101 .cra_ctxsize = sizeof(struct mv_cesa_hash_ctx),
1102 .cra_init = mv_cesa_ahash_cra_init,
1103 .cra_module = THIS_MODULE,
1104 }
1105 }
1106 };
1107
mv_cesa_ahmac_iv_state_init(struct ahash_request * req,u8 * pad,void * state,unsigned int blocksize)1108 static int mv_cesa_ahmac_iv_state_init(struct ahash_request *req, u8 *pad,
1109 void *state, unsigned int blocksize)
1110 {
1111 DECLARE_CRYPTO_WAIT(result);
1112 struct scatterlist sg;
1113 int ret;
1114
1115 ahash_request_set_callback(req, CRYPTO_TFM_REQ_MAY_BACKLOG,
1116 crypto_req_done, &result);
1117 sg_init_one(&sg, pad, blocksize);
1118 ahash_request_set_crypt(req, &sg, pad, blocksize);
1119
1120 ret = crypto_ahash_init(req);
1121 if (ret)
1122 return ret;
1123
1124 ret = crypto_ahash_update(req);
1125 ret = crypto_wait_req(ret, &result);
1126
1127 if (ret)
1128 return ret;
1129
1130 ret = crypto_ahash_export(req, state);
1131 if (ret)
1132 return ret;
1133
1134 return 0;
1135 }
1136
mv_cesa_ahmac_pad_init(struct ahash_request * req,const u8 * key,unsigned int keylen,u8 * ipad,u8 * opad,unsigned int blocksize)1137 static int mv_cesa_ahmac_pad_init(struct ahash_request *req,
1138 const u8 *key, unsigned int keylen,
1139 u8 *ipad, u8 *opad,
1140 unsigned int blocksize)
1141 {
1142 DECLARE_CRYPTO_WAIT(result);
1143 struct scatterlist sg;
1144 int ret;
1145 int i;
1146
1147 if (keylen <= blocksize) {
1148 memcpy(ipad, key, keylen);
1149 } else {
1150 u8 *keydup = kmemdup(key, keylen, GFP_KERNEL);
1151
1152 if (!keydup)
1153 return -ENOMEM;
1154
1155 ahash_request_set_callback(req, CRYPTO_TFM_REQ_MAY_BACKLOG,
1156 crypto_req_done, &result);
1157 sg_init_one(&sg, keydup, keylen);
1158 ahash_request_set_crypt(req, &sg, ipad, keylen);
1159
1160 ret = crypto_ahash_digest(req);
1161 ret = crypto_wait_req(ret, &result);
1162
1163 /* Set the memory region to 0 to avoid any leak. */
1164 kfree_sensitive(keydup);
1165
1166 if (ret)
1167 return ret;
1168
1169 keylen = crypto_ahash_digestsize(crypto_ahash_reqtfm(req));
1170 }
1171
1172 memset(ipad + keylen, 0, blocksize - keylen);
1173 memcpy(opad, ipad, blocksize);
1174
1175 for (i = 0; i < blocksize; i++) {
1176 ipad[i] ^= HMAC_IPAD_VALUE;
1177 opad[i] ^= HMAC_OPAD_VALUE;
1178 }
1179
1180 return 0;
1181 }
1182
mv_cesa_ahmac_setkey(const char * hash_alg_name,const u8 * key,unsigned int keylen,void * istate,void * ostate)1183 static int mv_cesa_ahmac_setkey(const char *hash_alg_name,
1184 const u8 *key, unsigned int keylen,
1185 void *istate, void *ostate)
1186 {
1187 struct ahash_request *req;
1188 struct crypto_ahash *tfm;
1189 unsigned int blocksize;
1190 u8 *ipad = NULL;
1191 u8 *opad;
1192 int ret;
1193
1194 tfm = crypto_alloc_ahash(hash_alg_name, 0, 0);
1195 if (IS_ERR(tfm))
1196 return PTR_ERR(tfm);
1197
1198 req = ahash_request_alloc(tfm, GFP_KERNEL);
1199 if (!req) {
1200 ret = -ENOMEM;
1201 goto free_ahash;
1202 }
1203
1204 crypto_ahash_clear_flags(tfm, ~0);
1205
1206 blocksize = crypto_tfm_alg_blocksize(crypto_ahash_tfm(tfm));
1207
1208 ipad = kcalloc(2, blocksize, GFP_KERNEL);
1209 if (!ipad) {
1210 ret = -ENOMEM;
1211 goto free_req;
1212 }
1213
1214 opad = ipad + blocksize;
1215
1216 ret = mv_cesa_ahmac_pad_init(req, key, keylen, ipad, opad, blocksize);
1217 if (ret)
1218 goto free_ipad;
1219
1220 ret = mv_cesa_ahmac_iv_state_init(req, ipad, istate, blocksize);
1221 if (ret)
1222 goto free_ipad;
1223
1224 ret = mv_cesa_ahmac_iv_state_init(req, opad, ostate, blocksize);
1225
1226 free_ipad:
1227 kfree(ipad);
1228 free_req:
1229 ahash_request_free(req);
1230 free_ahash:
1231 crypto_free_ahash(tfm);
1232
1233 return ret;
1234 }
1235
mv_cesa_ahmac_cra_init(struct crypto_tfm * tfm)1236 static int mv_cesa_ahmac_cra_init(struct crypto_tfm *tfm)
1237 {
1238 struct mv_cesa_hmac_ctx *ctx = crypto_tfm_ctx(tfm);
1239
1240 ctx->base.ops = &mv_cesa_ahash_req_ops;
1241
1242 crypto_ahash_set_reqsize(__crypto_ahash_cast(tfm),
1243 sizeof(struct mv_cesa_ahash_req));
1244 return 0;
1245 }
1246
mv_cesa_ahmac_md5_init(struct ahash_request * req)1247 static int mv_cesa_ahmac_md5_init(struct ahash_request *req)
1248 {
1249 struct mv_cesa_hmac_ctx *ctx = crypto_tfm_ctx(req->base.tfm);
1250 struct mv_cesa_op_ctx tmpl = { };
1251
1252 mv_cesa_set_op_cfg(&tmpl, CESA_SA_DESC_CFG_MACM_HMAC_MD5);
1253 memcpy(tmpl.ctx.hash.iv, ctx->iv, sizeof(ctx->iv));
1254
1255 mv_cesa_ahash_init(req, &tmpl, true);
1256
1257 return 0;
1258 }
1259
mv_cesa_ahmac_md5_setkey(struct crypto_ahash * tfm,const u8 * key,unsigned int keylen)1260 static int mv_cesa_ahmac_md5_setkey(struct crypto_ahash *tfm, const u8 *key,
1261 unsigned int keylen)
1262 {
1263 struct mv_cesa_hmac_ctx *ctx = crypto_tfm_ctx(crypto_ahash_tfm(tfm));
1264 struct md5_state istate, ostate;
1265 int ret, i;
1266
1267 ret = mv_cesa_ahmac_setkey("mv-md5", key, keylen, &istate, &ostate);
1268 if (ret)
1269 return ret;
1270
1271 for (i = 0; i < ARRAY_SIZE(istate.hash); i++)
1272 ctx->iv[i] = cpu_to_be32(istate.hash[i]);
1273
1274 for (i = 0; i < ARRAY_SIZE(ostate.hash); i++)
1275 ctx->iv[i + 8] = cpu_to_be32(ostate.hash[i]);
1276
1277 return 0;
1278 }
1279
mv_cesa_ahmac_md5_digest(struct ahash_request * req)1280 static int mv_cesa_ahmac_md5_digest(struct ahash_request *req)
1281 {
1282 int ret;
1283
1284 ret = mv_cesa_ahmac_md5_init(req);
1285 if (ret)
1286 return ret;
1287
1288 return mv_cesa_ahash_finup(req);
1289 }
1290
1291 struct ahash_alg mv_ahmac_md5_alg = {
1292 .init = mv_cesa_ahmac_md5_init,
1293 .update = mv_cesa_ahash_update,
1294 .final = mv_cesa_ahash_final,
1295 .finup = mv_cesa_ahash_finup,
1296 .digest = mv_cesa_ahmac_md5_digest,
1297 .setkey = mv_cesa_ahmac_md5_setkey,
1298 .export = mv_cesa_md5_export,
1299 .import = mv_cesa_md5_import,
1300 .halg = {
1301 .digestsize = MD5_DIGEST_SIZE,
1302 .statesize = sizeof(struct md5_state),
1303 .base = {
1304 .cra_name = "hmac(md5)",
1305 .cra_driver_name = "mv-hmac-md5",
1306 .cra_priority = 0,
1307 .cra_flags = CRYPTO_ALG_ASYNC |
1308 CRYPTO_ALG_ALLOCATES_MEMORY |
1309 CRYPTO_ALG_KERN_DRIVER_ONLY,
1310 .cra_blocksize = MD5_HMAC_BLOCK_SIZE,
1311 .cra_ctxsize = sizeof(struct mv_cesa_hmac_ctx),
1312 .cra_init = mv_cesa_ahmac_cra_init,
1313 .cra_module = THIS_MODULE,
1314 }
1315 }
1316 };
1317
mv_cesa_ahmac_sha1_init(struct ahash_request * req)1318 static int mv_cesa_ahmac_sha1_init(struct ahash_request *req)
1319 {
1320 struct mv_cesa_hmac_ctx *ctx = crypto_tfm_ctx(req->base.tfm);
1321 struct mv_cesa_op_ctx tmpl = { };
1322
1323 mv_cesa_set_op_cfg(&tmpl, CESA_SA_DESC_CFG_MACM_HMAC_SHA1);
1324 memcpy(tmpl.ctx.hash.iv, ctx->iv, sizeof(ctx->iv));
1325
1326 mv_cesa_ahash_init(req, &tmpl, false);
1327
1328 return 0;
1329 }
1330
mv_cesa_ahmac_sha1_setkey(struct crypto_ahash * tfm,const u8 * key,unsigned int keylen)1331 static int mv_cesa_ahmac_sha1_setkey(struct crypto_ahash *tfm, const u8 *key,
1332 unsigned int keylen)
1333 {
1334 struct mv_cesa_hmac_ctx *ctx = crypto_tfm_ctx(crypto_ahash_tfm(tfm));
1335 struct sha1_state istate, ostate;
1336 int ret, i;
1337
1338 ret = mv_cesa_ahmac_setkey("mv-sha1", key, keylen, &istate, &ostate);
1339 if (ret)
1340 return ret;
1341
1342 for (i = 0; i < ARRAY_SIZE(istate.state); i++)
1343 ctx->iv[i] = cpu_to_be32(istate.state[i]);
1344
1345 for (i = 0; i < ARRAY_SIZE(ostate.state); i++)
1346 ctx->iv[i + 8] = cpu_to_be32(ostate.state[i]);
1347
1348 return 0;
1349 }
1350
mv_cesa_ahmac_sha1_digest(struct ahash_request * req)1351 static int mv_cesa_ahmac_sha1_digest(struct ahash_request *req)
1352 {
1353 int ret;
1354
1355 ret = mv_cesa_ahmac_sha1_init(req);
1356 if (ret)
1357 return ret;
1358
1359 return mv_cesa_ahash_finup(req);
1360 }
1361
1362 struct ahash_alg mv_ahmac_sha1_alg = {
1363 .init = mv_cesa_ahmac_sha1_init,
1364 .update = mv_cesa_ahash_update,
1365 .final = mv_cesa_ahash_final,
1366 .finup = mv_cesa_ahash_finup,
1367 .digest = mv_cesa_ahmac_sha1_digest,
1368 .setkey = mv_cesa_ahmac_sha1_setkey,
1369 .export = mv_cesa_sha1_export,
1370 .import = mv_cesa_sha1_import,
1371 .halg = {
1372 .digestsize = SHA1_DIGEST_SIZE,
1373 .statesize = sizeof(struct sha1_state),
1374 .base = {
1375 .cra_name = "hmac(sha1)",
1376 .cra_driver_name = "mv-hmac-sha1",
1377 .cra_priority = 0,
1378 .cra_flags = CRYPTO_ALG_ASYNC |
1379 CRYPTO_ALG_ALLOCATES_MEMORY |
1380 CRYPTO_ALG_KERN_DRIVER_ONLY,
1381 .cra_blocksize = SHA1_BLOCK_SIZE,
1382 .cra_ctxsize = sizeof(struct mv_cesa_hmac_ctx),
1383 .cra_init = mv_cesa_ahmac_cra_init,
1384 .cra_module = THIS_MODULE,
1385 }
1386 }
1387 };
1388
mv_cesa_ahmac_sha256_setkey(struct crypto_ahash * tfm,const u8 * key,unsigned int keylen)1389 static int mv_cesa_ahmac_sha256_setkey(struct crypto_ahash *tfm, const u8 *key,
1390 unsigned int keylen)
1391 {
1392 struct mv_cesa_hmac_ctx *ctx = crypto_tfm_ctx(crypto_ahash_tfm(tfm));
1393 struct sha256_state istate, ostate;
1394 int ret, i;
1395
1396 ret = mv_cesa_ahmac_setkey("mv-sha256", key, keylen, &istate, &ostate);
1397 if (ret)
1398 return ret;
1399
1400 for (i = 0; i < ARRAY_SIZE(istate.state); i++)
1401 ctx->iv[i] = cpu_to_be32(istate.state[i]);
1402
1403 for (i = 0; i < ARRAY_SIZE(ostate.state); i++)
1404 ctx->iv[i + 8] = cpu_to_be32(ostate.state[i]);
1405
1406 return 0;
1407 }
1408
mv_cesa_ahmac_sha256_init(struct ahash_request * req)1409 static int mv_cesa_ahmac_sha256_init(struct ahash_request *req)
1410 {
1411 struct mv_cesa_hmac_ctx *ctx = crypto_tfm_ctx(req->base.tfm);
1412 struct mv_cesa_op_ctx tmpl = { };
1413
1414 mv_cesa_set_op_cfg(&tmpl, CESA_SA_DESC_CFG_MACM_HMAC_SHA256);
1415 memcpy(tmpl.ctx.hash.iv, ctx->iv, sizeof(ctx->iv));
1416
1417 mv_cesa_ahash_init(req, &tmpl, false);
1418
1419 return 0;
1420 }
1421
mv_cesa_ahmac_sha256_digest(struct ahash_request * req)1422 static int mv_cesa_ahmac_sha256_digest(struct ahash_request *req)
1423 {
1424 int ret;
1425
1426 ret = mv_cesa_ahmac_sha256_init(req);
1427 if (ret)
1428 return ret;
1429
1430 return mv_cesa_ahash_finup(req);
1431 }
1432
1433 struct ahash_alg mv_ahmac_sha256_alg = {
1434 .init = mv_cesa_ahmac_sha256_init,
1435 .update = mv_cesa_ahash_update,
1436 .final = mv_cesa_ahash_final,
1437 .finup = mv_cesa_ahash_finup,
1438 .digest = mv_cesa_ahmac_sha256_digest,
1439 .setkey = mv_cesa_ahmac_sha256_setkey,
1440 .export = mv_cesa_sha256_export,
1441 .import = mv_cesa_sha256_import,
1442 .halg = {
1443 .digestsize = SHA256_DIGEST_SIZE,
1444 .statesize = sizeof(struct sha256_state),
1445 .base = {
1446 .cra_name = "hmac(sha256)",
1447 .cra_driver_name = "mv-hmac-sha256",
1448 .cra_priority = 0,
1449 .cra_flags = CRYPTO_ALG_ASYNC |
1450 CRYPTO_ALG_ALLOCATES_MEMORY |
1451 CRYPTO_ALG_KERN_DRIVER_ONLY,
1452 .cra_blocksize = SHA256_BLOCK_SIZE,
1453 .cra_ctxsize = sizeof(struct mv_cesa_hmac_ctx),
1454 .cra_init = mv_cesa_ahmac_cra_init,
1455 .cra_module = THIS_MODULE,
1456 }
1457 }
1458 };
1459