1 // SPDX-License-Identifier: MIT
2 /*
3 * Copyright 2014-2018 Advanced Micro Devices, Inc.
4 *
5 * Permission is hereby granted, free of charge, to any person obtaining a
6 * copy of this software and associated documentation files (the "Software"),
7 * to deal in the Software without restriction, including without limitation
8 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
9 * and/or sell copies of the Software, and to permit persons to whom the
10 * Software is furnished to do so, subject to the following conditions:
11 *
12 * The above copyright notice and this permission notice shall be included in
13 * all copies or substantial portions of the Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
19 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
20 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
21 * OTHER DEALINGS IN THE SOFTWARE.
22 */
23 #include <linux/dma-buf.h>
24 #include <linux/list.h>
25 #include <linux/pagemap.h>
26 #include <linux/sched/mm.h>
27 #include <linux/sched/task.h>
28 #include <drm/ttm/ttm_tt.h>
29
30 #include <drm/drm_exec.h>
31
32 #include "amdgpu_object.h"
33 #include "amdgpu_gem.h"
34 #include "amdgpu_vm.h"
35 #include "amdgpu_hmm.h"
36 #include "amdgpu_amdkfd.h"
37 #include "amdgpu_dma_buf.h"
38 #include <uapi/linux/kfd_ioctl.h>
39 #include "amdgpu_xgmi.h"
40 #include "kfd_priv.h"
41 #include "kfd_smi_events.h"
42
43 /* Userptr restore delay, just long enough to allow consecutive VM
44 * changes to accumulate
45 */
46 #define AMDGPU_USERPTR_RESTORE_DELAY_MS 1
47 #define AMDGPU_RESERVE_MEM_LIMIT (3UL << 29)
48
49 /*
50 * Align VRAM availability to 2MB to avoid fragmentation caused by 4K allocations in the tail 2MB
51 * BO chunk
52 */
53 #define VRAM_AVAILABLITY_ALIGN (1 << 21)
54
55 /* Impose limit on how much memory KFD can use */
56 static struct {
57 uint64_t max_system_mem_limit;
58 uint64_t max_ttm_mem_limit;
59 int64_t system_mem_used;
60 int64_t ttm_mem_used;
61 spinlock_t mem_limit_lock;
62 } kfd_mem_limit;
63
64 static const char * const domain_bit_to_string[] = {
65 "CPU",
66 "GTT",
67 "VRAM",
68 "GDS",
69 "GWS",
70 "OA"
71 };
72
73 #define domain_string(domain) domain_bit_to_string[ffs(domain)-1]
74
75 static void amdgpu_amdkfd_restore_userptr_worker(struct work_struct *work);
76
kfd_mem_is_attached(struct amdgpu_vm * avm,struct kgd_mem * mem)77 static bool kfd_mem_is_attached(struct amdgpu_vm *avm,
78 struct kgd_mem *mem)
79 {
80 struct kfd_mem_attachment *entry;
81
82 list_for_each_entry(entry, &mem->attachments, list)
83 if (entry->bo_va->base.vm == avm)
84 return true;
85
86 return false;
87 }
88
89 /**
90 * reuse_dmamap() - Check whether adev can share the original
91 * userptr BO
92 *
93 * If both adev and bo_adev are in direct mapping or
94 * in the same iommu group, they can share the original BO.
95 *
96 * @adev: Device to which can or cannot share the original BO
97 * @bo_adev: Device to which allocated BO belongs to
98 *
99 * Return: returns true if adev can share original userptr BO,
100 * false otherwise.
101 */
reuse_dmamap(struct amdgpu_device * adev,struct amdgpu_device * bo_adev)102 static bool reuse_dmamap(struct amdgpu_device *adev, struct amdgpu_device *bo_adev)
103 {
104 return (adev->ram_is_direct_mapped && bo_adev->ram_is_direct_mapped) ||
105 (adev->dev->iommu_group == bo_adev->dev->iommu_group);
106 }
107
108 /* Set memory usage limits. Current, limits are
109 * System (TTM + userptr) memory - 15/16th System RAM
110 * TTM memory - 3/8th System RAM
111 */
amdgpu_amdkfd_gpuvm_init_mem_limits(void)112 void amdgpu_amdkfd_gpuvm_init_mem_limits(void)
113 {
114 struct sysinfo si;
115 uint64_t mem;
116
117 if (kfd_mem_limit.max_system_mem_limit)
118 return;
119
120 si_meminfo(&si);
121 mem = si.totalram - si.totalhigh;
122 mem *= si.mem_unit;
123
124 spin_lock_init(&kfd_mem_limit.mem_limit_lock);
125 kfd_mem_limit.max_system_mem_limit = mem - (mem >> 6);
126 if (kfd_mem_limit.max_system_mem_limit < 2 * AMDGPU_RESERVE_MEM_LIMIT)
127 kfd_mem_limit.max_system_mem_limit >>= 1;
128 else
129 kfd_mem_limit.max_system_mem_limit -= AMDGPU_RESERVE_MEM_LIMIT;
130
131 kfd_mem_limit.max_ttm_mem_limit = ttm_tt_pages_limit() << PAGE_SHIFT;
132 pr_debug("Kernel memory limit %lluM, TTM limit %lluM\n",
133 (kfd_mem_limit.max_system_mem_limit >> 20),
134 (kfd_mem_limit.max_ttm_mem_limit >> 20));
135 }
136
amdgpu_amdkfd_reserve_system_mem(uint64_t size)137 void amdgpu_amdkfd_reserve_system_mem(uint64_t size)
138 {
139 kfd_mem_limit.system_mem_used += size;
140 }
141
142 /* Estimate page table size needed to represent a given memory size
143 *
144 * With 4KB pages, we need one 8 byte PTE for each 4KB of memory
145 * (factor 512, >> 9). With 2MB pages, we need one 8 byte PTE for 2MB
146 * of memory (factor 256K, >> 18). ROCm user mode tries to optimize
147 * for 2MB pages for TLB efficiency. However, small allocations and
148 * fragmented system memory still need some 4KB pages. We choose a
149 * compromise that should work in most cases without reserving too
150 * much memory for page tables unnecessarily (factor 16K, >> 14).
151 */
152
153 #define ESTIMATE_PT_SIZE(mem_size) max(((mem_size) >> 14), AMDGPU_VM_RESERVED_VRAM)
154
155 /**
156 * amdgpu_amdkfd_reserve_mem_limit() - Decrease available memory by size
157 * of buffer.
158 *
159 * @adev: Device to which allocated BO belongs to
160 * @size: Size of buffer, in bytes, encapsulated by B0. This should be
161 * equivalent to amdgpu_bo_size(BO)
162 * @alloc_flag: Flag used in allocating a BO as noted above
163 * @xcp_id: xcp_id is used to get xcp from xcp manager, one xcp is
164 * managed as one compute node in driver for app
165 *
166 * Return:
167 * returns -ENOMEM in case of error, ZERO otherwise
168 */
amdgpu_amdkfd_reserve_mem_limit(struct amdgpu_device * adev,uint64_t size,u32 alloc_flag,int8_t xcp_id)169 int amdgpu_amdkfd_reserve_mem_limit(struct amdgpu_device *adev,
170 uint64_t size, u32 alloc_flag, int8_t xcp_id)
171 {
172 uint64_t reserved_for_pt =
173 ESTIMATE_PT_SIZE(amdgpu_amdkfd_total_mem_size);
174 struct amdgpu_ras *con = amdgpu_ras_get_context(adev);
175 uint64_t reserved_for_ras = (con ? con->reserved_pages_in_bytes : 0);
176 size_t system_mem_needed, ttm_mem_needed, vram_needed;
177 int ret = 0;
178 uint64_t vram_size = 0;
179
180 system_mem_needed = 0;
181 ttm_mem_needed = 0;
182 vram_needed = 0;
183 if (alloc_flag & KFD_IOC_ALLOC_MEM_FLAGS_GTT) {
184 system_mem_needed = size;
185 ttm_mem_needed = size;
186 } else if (alloc_flag & KFD_IOC_ALLOC_MEM_FLAGS_VRAM) {
187 /*
188 * Conservatively round up the allocation requirement to 2 MB
189 * to avoid fragmentation caused by 4K allocations in the tail
190 * 2M BO chunk.
191 */
192 vram_needed = size;
193 /*
194 * For GFX 9.4.3, get the VRAM size from XCP structs
195 */
196 if (WARN_ONCE(xcp_id < 0, "invalid XCP ID %d", xcp_id))
197 return -EINVAL;
198
199 vram_size = KFD_XCP_MEMORY_SIZE(adev, xcp_id);
200 if (adev->flags & AMD_IS_APU) {
201 system_mem_needed = size;
202 ttm_mem_needed = size;
203 }
204 } else if (alloc_flag & KFD_IOC_ALLOC_MEM_FLAGS_USERPTR) {
205 system_mem_needed = size;
206 } else if (!(alloc_flag &
207 (KFD_IOC_ALLOC_MEM_FLAGS_DOORBELL |
208 KFD_IOC_ALLOC_MEM_FLAGS_MMIO_REMAP))) {
209 pr_err("%s: Invalid BO type %#x\n", __func__, alloc_flag);
210 return -ENOMEM;
211 }
212
213 spin_lock(&kfd_mem_limit.mem_limit_lock);
214
215 if (kfd_mem_limit.system_mem_used + system_mem_needed >
216 kfd_mem_limit.max_system_mem_limit)
217 pr_debug("Set no_system_mem_limit=1 if using shared memory\n");
218
219 if ((kfd_mem_limit.system_mem_used + system_mem_needed >
220 kfd_mem_limit.max_system_mem_limit && !no_system_mem_limit) ||
221 (kfd_mem_limit.ttm_mem_used + ttm_mem_needed >
222 kfd_mem_limit.max_ttm_mem_limit) ||
223 (adev && xcp_id >= 0 && adev->kfd.vram_used[xcp_id] + vram_needed >
224 vram_size - reserved_for_pt - reserved_for_ras - atomic64_read(&adev->vram_pin_size))) {
225 ret = -ENOMEM;
226 goto release;
227 }
228
229 /* Update memory accounting by decreasing available system
230 * memory, TTM memory and GPU memory as computed above
231 */
232 WARN_ONCE(vram_needed && !adev,
233 "adev reference can't be null when vram is used");
234 if (adev && xcp_id >= 0) {
235 adev->kfd.vram_used[xcp_id] += vram_needed;
236 adev->kfd.vram_used_aligned[xcp_id] +=
237 (adev->flags & AMD_IS_APU) ?
238 vram_needed :
239 ALIGN(vram_needed, VRAM_AVAILABLITY_ALIGN);
240 }
241 kfd_mem_limit.system_mem_used += system_mem_needed;
242 kfd_mem_limit.ttm_mem_used += ttm_mem_needed;
243
244 release:
245 spin_unlock(&kfd_mem_limit.mem_limit_lock);
246 return ret;
247 }
248
amdgpu_amdkfd_unreserve_mem_limit(struct amdgpu_device * adev,uint64_t size,u32 alloc_flag,int8_t xcp_id)249 void amdgpu_amdkfd_unreserve_mem_limit(struct amdgpu_device *adev,
250 uint64_t size, u32 alloc_flag, int8_t xcp_id)
251 {
252 spin_lock(&kfd_mem_limit.mem_limit_lock);
253
254 if (alloc_flag & KFD_IOC_ALLOC_MEM_FLAGS_GTT) {
255 kfd_mem_limit.system_mem_used -= size;
256 kfd_mem_limit.ttm_mem_used -= size;
257 } else if (alloc_flag & KFD_IOC_ALLOC_MEM_FLAGS_VRAM) {
258 WARN_ONCE(!adev,
259 "adev reference can't be null when alloc mem flags vram is set");
260 if (WARN_ONCE(xcp_id < 0, "invalid XCP ID %d", xcp_id))
261 goto release;
262
263 if (adev) {
264 adev->kfd.vram_used[xcp_id] -= size;
265 if (adev->flags & AMD_IS_APU) {
266 adev->kfd.vram_used_aligned[xcp_id] -= size;
267 kfd_mem_limit.system_mem_used -= size;
268 kfd_mem_limit.ttm_mem_used -= size;
269 } else {
270 adev->kfd.vram_used_aligned[xcp_id] -=
271 ALIGN(size, VRAM_AVAILABLITY_ALIGN);
272 }
273 }
274 } else if (alloc_flag & KFD_IOC_ALLOC_MEM_FLAGS_USERPTR) {
275 kfd_mem_limit.system_mem_used -= size;
276 } else if (!(alloc_flag &
277 (KFD_IOC_ALLOC_MEM_FLAGS_DOORBELL |
278 KFD_IOC_ALLOC_MEM_FLAGS_MMIO_REMAP))) {
279 pr_err("%s: Invalid BO type %#x\n", __func__, alloc_flag);
280 goto release;
281 }
282 WARN_ONCE(adev && xcp_id >= 0 && adev->kfd.vram_used[xcp_id] < 0,
283 "KFD VRAM memory accounting unbalanced for xcp: %d", xcp_id);
284 WARN_ONCE(kfd_mem_limit.ttm_mem_used < 0,
285 "KFD TTM memory accounting unbalanced");
286 WARN_ONCE(kfd_mem_limit.system_mem_used < 0,
287 "KFD system memory accounting unbalanced");
288
289 release:
290 spin_unlock(&kfd_mem_limit.mem_limit_lock);
291 }
292
amdgpu_amdkfd_release_notify(struct amdgpu_bo * bo)293 void amdgpu_amdkfd_release_notify(struct amdgpu_bo *bo)
294 {
295 struct amdgpu_device *adev = amdgpu_ttm_adev(bo->tbo.bdev);
296 u32 alloc_flags = bo->kfd_bo->alloc_flags;
297 u64 size = amdgpu_bo_size(bo);
298
299 amdgpu_amdkfd_unreserve_mem_limit(adev, size, alloc_flags,
300 bo->xcp_id);
301
302 kfree(bo->kfd_bo);
303 }
304
305 /**
306 * create_dmamap_sg_bo() - Creates a amdgpu_bo object to reflect information
307 * about USERPTR or DOOREBELL or MMIO BO.
308 *
309 * @adev: Device for which dmamap BO is being created
310 * @mem: BO of peer device that is being DMA mapped. Provides parameters
311 * in building the dmamap BO
312 * @bo_out: Output parameter updated with handle of dmamap BO
313 */
314 static int
create_dmamap_sg_bo(struct amdgpu_device * adev,struct kgd_mem * mem,struct amdgpu_bo ** bo_out)315 create_dmamap_sg_bo(struct amdgpu_device *adev,
316 struct kgd_mem *mem, struct amdgpu_bo **bo_out)
317 {
318 struct drm_gem_object *gem_obj;
319 int ret;
320 uint64_t flags = 0;
321
322 ret = amdgpu_bo_reserve(mem->bo, false);
323 if (ret)
324 return ret;
325
326 if (mem->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_USERPTR)
327 flags |= mem->bo->flags & (AMDGPU_GEM_CREATE_COHERENT |
328 AMDGPU_GEM_CREATE_UNCACHED);
329
330 ret = amdgpu_gem_object_create(adev, mem->bo->tbo.base.size, 1,
331 AMDGPU_GEM_DOMAIN_CPU, AMDGPU_GEM_CREATE_PREEMPTIBLE | flags,
332 ttm_bo_type_sg, mem->bo->tbo.base.resv, &gem_obj, 0);
333
334 amdgpu_bo_unreserve(mem->bo);
335
336 if (ret) {
337 pr_err("Error in creating DMA mappable SG BO on domain: %d\n", ret);
338 return -EINVAL;
339 }
340
341 *bo_out = gem_to_amdgpu_bo(gem_obj);
342 (*bo_out)->parent = amdgpu_bo_ref(mem->bo);
343 return ret;
344 }
345
346 /* amdgpu_amdkfd_remove_eviction_fence - Removes eviction fence from BO's
347 * reservation object.
348 *
349 * @bo: [IN] Remove eviction fence(s) from this BO
350 * @ef: [IN] This eviction fence is removed if it
351 * is present in the shared list.
352 *
353 * NOTE: Must be called with BO reserved i.e. bo->tbo.resv->lock held.
354 */
amdgpu_amdkfd_remove_eviction_fence(struct amdgpu_bo * bo,struct amdgpu_amdkfd_fence * ef)355 static int amdgpu_amdkfd_remove_eviction_fence(struct amdgpu_bo *bo,
356 struct amdgpu_amdkfd_fence *ef)
357 {
358 struct dma_fence *replacement;
359
360 if (!ef)
361 return -EINVAL;
362
363 /* TODO: Instead of block before we should use the fence of the page
364 * table update and TLB flush here directly.
365 */
366 replacement = dma_fence_get_stub();
367 dma_resv_replace_fences(bo->tbo.base.resv, ef->base.context,
368 replacement, DMA_RESV_USAGE_BOOKKEEP);
369 dma_fence_put(replacement);
370 return 0;
371 }
372
373 /**
374 * amdgpu_amdkfd_remove_all_eviction_fences - Remove all eviction fences
375 * @bo: the BO where to remove the evictions fences from.
376 *
377 * This functions should only be used on release when all references to the BO
378 * are already dropped. We remove the eviction fence from the private copy of
379 * the dma_resv object here since that is what is used during release to
380 * determine of the BO is idle or not.
381 */
amdgpu_amdkfd_remove_all_eviction_fences(struct amdgpu_bo * bo)382 void amdgpu_amdkfd_remove_all_eviction_fences(struct amdgpu_bo *bo)
383 {
384 struct dma_resv *resv = &bo->tbo.base._resv;
385 struct dma_fence *fence, *stub;
386 struct dma_resv_iter cursor;
387
388 dma_resv_assert_held(resv);
389
390 stub = dma_fence_get_stub();
391 dma_resv_for_each_fence(&cursor, resv, DMA_RESV_USAGE_BOOKKEEP, fence) {
392 if (!to_amdgpu_amdkfd_fence(fence))
393 continue;
394
395 dma_resv_replace_fences(resv, fence->context, stub,
396 DMA_RESV_USAGE_BOOKKEEP);
397 }
398 dma_fence_put(stub);
399 }
400
amdgpu_amdkfd_bo_validate(struct amdgpu_bo * bo,uint32_t domain,bool wait)401 static int amdgpu_amdkfd_bo_validate(struct amdgpu_bo *bo, uint32_t domain,
402 bool wait)
403 {
404 struct ttm_operation_ctx ctx = { false, false };
405 int ret;
406
407 if (WARN(amdgpu_ttm_tt_get_usermm(bo->tbo.ttm),
408 "Called with userptr BO"))
409 return -EINVAL;
410
411 /* bo has been pinned, not need validate it */
412 if (bo->tbo.pin_count)
413 return 0;
414
415 amdgpu_bo_placement_from_domain(bo, domain);
416
417 ret = ttm_bo_validate(&bo->tbo, &bo->placement, &ctx);
418 if (ret)
419 goto validate_fail;
420 if (wait)
421 amdgpu_bo_sync_wait(bo, AMDGPU_FENCE_OWNER_KFD, false);
422
423 validate_fail:
424 return ret;
425 }
426
amdgpu_amdkfd_bo_validate_and_fence(struct amdgpu_bo * bo,uint32_t domain,struct dma_fence * fence)427 int amdgpu_amdkfd_bo_validate_and_fence(struct amdgpu_bo *bo,
428 uint32_t domain,
429 struct dma_fence *fence)
430 {
431 int ret = amdgpu_bo_reserve(bo, false);
432
433 if (ret)
434 return ret;
435
436 ret = amdgpu_amdkfd_bo_validate(bo, domain, true);
437 if (ret)
438 goto unreserve_out;
439
440 ret = dma_resv_reserve_fences(bo->tbo.base.resv, 1);
441 if (ret)
442 goto unreserve_out;
443
444 dma_resv_add_fence(bo->tbo.base.resv, fence,
445 DMA_RESV_USAGE_BOOKKEEP);
446
447 unreserve_out:
448 amdgpu_bo_unreserve(bo);
449
450 return ret;
451 }
452
amdgpu_amdkfd_validate_vm_bo(void * _unused,struct amdgpu_bo * bo)453 static int amdgpu_amdkfd_validate_vm_bo(void *_unused, struct amdgpu_bo *bo)
454 {
455 return amdgpu_amdkfd_bo_validate(bo, bo->allowed_domains, false);
456 }
457
458 /* vm_validate_pt_pd_bos - Validate page table and directory BOs
459 *
460 * Page directories are not updated here because huge page handling
461 * during page table updates can invalidate page directory entries
462 * again. Page directories are only updated after updating page
463 * tables.
464 */
vm_validate_pt_pd_bos(struct amdgpu_vm * vm,struct ww_acquire_ctx * ticket)465 static int vm_validate_pt_pd_bos(struct amdgpu_vm *vm,
466 struct ww_acquire_ctx *ticket)
467 {
468 struct amdgpu_bo *pd = vm->root.bo;
469 struct amdgpu_device *adev = amdgpu_ttm_adev(pd->tbo.bdev);
470 int ret;
471
472 ret = amdgpu_vm_validate(adev, vm, ticket,
473 amdgpu_amdkfd_validate_vm_bo, NULL);
474 if (ret) {
475 pr_err("failed to validate PT BOs\n");
476 return ret;
477 }
478
479 vm->pd_phys_addr = amdgpu_gmc_pd_addr(vm->root.bo);
480
481 return 0;
482 }
483
vm_update_pds(struct amdgpu_vm * vm,struct amdgpu_sync * sync)484 static int vm_update_pds(struct amdgpu_vm *vm, struct amdgpu_sync *sync)
485 {
486 struct amdgpu_bo *pd = vm->root.bo;
487 struct amdgpu_device *adev = amdgpu_ttm_adev(pd->tbo.bdev);
488 int ret;
489
490 ret = amdgpu_vm_update_pdes(adev, vm, false);
491 if (ret)
492 return ret;
493
494 return amdgpu_sync_fence(sync, vm->last_update);
495 }
496
get_pte_flags(struct amdgpu_device * adev,struct kgd_mem * mem)497 static uint64_t get_pte_flags(struct amdgpu_device *adev, struct kgd_mem *mem)
498 {
499 uint32_t mapping_flags = AMDGPU_VM_PAGE_READABLE |
500 AMDGPU_VM_MTYPE_DEFAULT;
501
502 if (mem->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_WRITABLE)
503 mapping_flags |= AMDGPU_VM_PAGE_WRITEABLE;
504 if (mem->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_EXECUTABLE)
505 mapping_flags |= AMDGPU_VM_PAGE_EXECUTABLE;
506
507 return amdgpu_gem_va_map_flags(adev, mapping_flags);
508 }
509
510 /**
511 * create_sg_table() - Create an sg_table for a contiguous DMA addr range
512 * @addr: The starting address to point to
513 * @size: Size of memory area in bytes being pointed to
514 *
515 * Allocates an instance of sg_table and initializes it to point to memory
516 * area specified by input parameters. The address used to build is assumed
517 * to be DMA mapped, if needed.
518 *
519 * DOORBELL or MMIO BOs use only one scatterlist node in their sg_table
520 * because they are physically contiguous.
521 *
522 * Return: Initialized instance of SG Table or NULL
523 */
create_sg_table(uint64_t addr,uint32_t size)524 static struct sg_table *create_sg_table(uint64_t addr, uint32_t size)
525 {
526 struct sg_table *sg = kmalloc(sizeof(*sg), GFP_KERNEL);
527
528 if (!sg)
529 return NULL;
530 if (sg_alloc_table(sg, 1, GFP_KERNEL)) {
531 kfree(sg);
532 return NULL;
533 }
534 sg_dma_address(sg->sgl) = addr;
535 sg->sgl->length = size;
536 #ifdef CONFIG_NEED_SG_DMA_LENGTH
537 sg->sgl->dma_length = size;
538 #endif
539 return sg;
540 }
541
542 static int
kfd_mem_dmamap_userptr(struct kgd_mem * mem,struct kfd_mem_attachment * attachment)543 kfd_mem_dmamap_userptr(struct kgd_mem *mem,
544 struct kfd_mem_attachment *attachment)
545 {
546 enum dma_data_direction direction =
547 mem->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_WRITABLE ?
548 DMA_BIDIRECTIONAL : DMA_TO_DEVICE;
549 struct ttm_operation_ctx ctx = {.interruptible = true};
550 struct amdgpu_bo *bo = attachment->bo_va->base.bo;
551 struct amdgpu_device *adev = attachment->adev;
552 struct ttm_tt *src_ttm = mem->bo->tbo.ttm;
553 struct ttm_tt *ttm = bo->tbo.ttm;
554 int ret;
555
556 if (WARN_ON(ttm->num_pages != src_ttm->num_pages))
557 return -EINVAL;
558
559 ttm->sg = kmalloc(sizeof(*ttm->sg), GFP_KERNEL);
560 if (unlikely(!ttm->sg))
561 return -ENOMEM;
562
563 /* Same sequence as in amdgpu_ttm_tt_pin_userptr */
564 ret = sg_alloc_table_from_pages(ttm->sg, src_ttm->pages,
565 ttm->num_pages, 0,
566 (u64)ttm->num_pages << PAGE_SHIFT,
567 GFP_KERNEL);
568 if (unlikely(ret))
569 goto free_sg;
570
571 ret = dma_map_sgtable(adev->dev, ttm->sg, direction, 0);
572 if (unlikely(ret))
573 goto release_sg;
574
575 amdgpu_bo_placement_from_domain(bo, AMDGPU_GEM_DOMAIN_GTT);
576 ret = ttm_bo_validate(&bo->tbo, &bo->placement, &ctx);
577 if (ret)
578 goto unmap_sg;
579
580 return 0;
581
582 unmap_sg:
583 dma_unmap_sgtable(adev->dev, ttm->sg, direction, 0);
584 release_sg:
585 pr_err("DMA map userptr failed: %d\n", ret);
586 sg_free_table(ttm->sg);
587 free_sg:
588 kfree(ttm->sg);
589 ttm->sg = NULL;
590 return ret;
591 }
592
593 static int
kfd_mem_dmamap_dmabuf(struct kfd_mem_attachment * attachment)594 kfd_mem_dmamap_dmabuf(struct kfd_mem_attachment *attachment)
595 {
596 struct ttm_operation_ctx ctx = {.interruptible = true};
597 struct amdgpu_bo *bo = attachment->bo_va->base.bo;
598 int ret;
599
600 amdgpu_bo_placement_from_domain(bo, AMDGPU_GEM_DOMAIN_CPU);
601 ret = ttm_bo_validate(&bo->tbo, &bo->placement, &ctx);
602 if (ret)
603 return ret;
604
605 amdgpu_bo_placement_from_domain(bo, AMDGPU_GEM_DOMAIN_GTT);
606 return ttm_bo_validate(&bo->tbo, &bo->placement, &ctx);
607 }
608
609 /**
610 * kfd_mem_dmamap_sg_bo() - Create DMA mapped sg_table to access DOORBELL or MMIO BO
611 * @mem: SG BO of the DOORBELL or MMIO resource on the owning device
612 * @attachment: Virtual address attachment of the BO on accessing device
613 *
614 * An access request from the device that owns DOORBELL does not require DMA mapping.
615 * This is because the request doesn't go through PCIe root complex i.e. it instead
616 * loops back. The need to DMA map arises only when accessing peer device's DOORBELL
617 *
618 * In contrast, all access requests for MMIO need to be DMA mapped without regard to
619 * device ownership. This is because access requests for MMIO go through PCIe root
620 * complex.
621 *
622 * This is accomplished in two steps:
623 * - Obtain DMA mapped address of DOORBELL or MMIO memory that could be used
624 * in updating requesting device's page table
625 * - Signal TTM to mark memory pointed to by requesting device's BO as GPU
626 * accessible. This allows an update of requesting device's page table
627 * with entries associated with DOOREBELL or MMIO memory
628 *
629 * This method is invoked in the following contexts:
630 * - Mapping of DOORBELL or MMIO BO of same or peer device
631 * - Validating an evicted DOOREBELL or MMIO BO on device seeking access
632 *
633 * Return: ZERO if successful, NON-ZERO otherwise
634 */
635 static int
kfd_mem_dmamap_sg_bo(struct kgd_mem * mem,struct kfd_mem_attachment * attachment)636 kfd_mem_dmamap_sg_bo(struct kgd_mem *mem,
637 struct kfd_mem_attachment *attachment)
638 {
639 struct ttm_operation_ctx ctx = {.interruptible = true};
640 struct amdgpu_bo *bo = attachment->bo_va->base.bo;
641 struct amdgpu_device *adev = attachment->adev;
642 struct ttm_tt *ttm = bo->tbo.ttm;
643 enum dma_data_direction dir;
644 dma_addr_t dma_addr;
645 bool mmio;
646 int ret;
647
648 /* Expect SG Table of dmapmap BO to be NULL */
649 mmio = (mem->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_MMIO_REMAP);
650 if (unlikely(ttm->sg)) {
651 pr_err("SG Table of %d BO for peer device is UNEXPECTEDLY NON-NULL", mmio);
652 return -EINVAL;
653 }
654
655 dir = mem->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_WRITABLE ?
656 DMA_BIDIRECTIONAL : DMA_TO_DEVICE;
657 dma_addr = mem->bo->tbo.sg->sgl->dma_address;
658 pr_debug("%d BO size: %d\n", mmio, mem->bo->tbo.sg->sgl->length);
659 pr_debug("%d BO address before DMA mapping: %llx\n", mmio, dma_addr);
660 dma_addr = dma_map_resource(adev->dev, dma_addr,
661 mem->bo->tbo.sg->sgl->length, dir, DMA_ATTR_SKIP_CPU_SYNC);
662 ret = dma_mapping_error(adev->dev, dma_addr);
663 if (unlikely(ret))
664 return ret;
665 pr_debug("%d BO address after DMA mapping: %llx\n", mmio, dma_addr);
666
667 ttm->sg = create_sg_table(dma_addr, mem->bo->tbo.sg->sgl->length);
668 if (unlikely(!ttm->sg)) {
669 ret = -ENOMEM;
670 goto unmap_sg;
671 }
672
673 amdgpu_bo_placement_from_domain(bo, AMDGPU_GEM_DOMAIN_GTT);
674 ret = ttm_bo_validate(&bo->tbo, &bo->placement, &ctx);
675 if (unlikely(ret))
676 goto free_sg;
677
678 return ret;
679
680 free_sg:
681 sg_free_table(ttm->sg);
682 kfree(ttm->sg);
683 ttm->sg = NULL;
684 unmap_sg:
685 dma_unmap_resource(adev->dev, dma_addr, mem->bo->tbo.sg->sgl->length,
686 dir, DMA_ATTR_SKIP_CPU_SYNC);
687 return ret;
688 }
689
690 static int
kfd_mem_dmamap_attachment(struct kgd_mem * mem,struct kfd_mem_attachment * attachment)691 kfd_mem_dmamap_attachment(struct kgd_mem *mem,
692 struct kfd_mem_attachment *attachment)
693 {
694 switch (attachment->type) {
695 case KFD_MEM_ATT_SHARED:
696 return 0;
697 case KFD_MEM_ATT_USERPTR:
698 return kfd_mem_dmamap_userptr(mem, attachment);
699 case KFD_MEM_ATT_DMABUF:
700 return kfd_mem_dmamap_dmabuf(attachment);
701 case KFD_MEM_ATT_SG:
702 return kfd_mem_dmamap_sg_bo(mem, attachment);
703 default:
704 WARN_ON_ONCE(1);
705 }
706 return -EINVAL;
707 }
708
709 static void
kfd_mem_dmaunmap_userptr(struct kgd_mem * mem,struct kfd_mem_attachment * attachment)710 kfd_mem_dmaunmap_userptr(struct kgd_mem *mem,
711 struct kfd_mem_attachment *attachment)
712 {
713 enum dma_data_direction direction =
714 mem->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_WRITABLE ?
715 DMA_BIDIRECTIONAL : DMA_TO_DEVICE;
716 struct ttm_operation_ctx ctx = {.interruptible = false};
717 struct amdgpu_bo *bo = attachment->bo_va->base.bo;
718 struct amdgpu_device *adev = attachment->adev;
719 struct ttm_tt *ttm = bo->tbo.ttm;
720
721 if (unlikely(!ttm->sg))
722 return;
723
724 amdgpu_bo_placement_from_domain(bo, AMDGPU_GEM_DOMAIN_CPU);
725 ttm_bo_validate(&bo->tbo, &bo->placement, &ctx);
726
727 dma_unmap_sgtable(adev->dev, ttm->sg, direction, 0);
728 sg_free_table(ttm->sg);
729 kfree(ttm->sg);
730 ttm->sg = NULL;
731 }
732
733 static void
kfd_mem_dmaunmap_dmabuf(struct kfd_mem_attachment * attachment)734 kfd_mem_dmaunmap_dmabuf(struct kfd_mem_attachment *attachment)
735 {
736 /* This is a no-op. We don't want to trigger eviction fences when
737 * unmapping DMABufs. Therefore the invalidation (moving to system
738 * domain) is done in kfd_mem_dmamap_dmabuf.
739 */
740 }
741
742 /**
743 * kfd_mem_dmaunmap_sg_bo() - Free DMA mapped sg_table of DOORBELL or MMIO BO
744 * @mem: SG BO of the DOORBELL or MMIO resource on the owning device
745 * @attachment: Virtual address attachment of the BO on accessing device
746 *
747 * The method performs following steps:
748 * - Signal TTM to mark memory pointed to by BO as GPU inaccessible
749 * - Free SG Table that is used to encapsulate DMA mapped memory of
750 * peer device's DOORBELL or MMIO memory
751 *
752 * This method is invoked in the following contexts:
753 * UNMapping of DOORBELL or MMIO BO on a device having access to its memory
754 * Eviction of DOOREBELL or MMIO BO on device having access to its memory
755 *
756 * Return: void
757 */
758 static void
kfd_mem_dmaunmap_sg_bo(struct kgd_mem * mem,struct kfd_mem_attachment * attachment)759 kfd_mem_dmaunmap_sg_bo(struct kgd_mem *mem,
760 struct kfd_mem_attachment *attachment)
761 {
762 struct ttm_operation_ctx ctx = {.interruptible = true};
763 struct amdgpu_bo *bo = attachment->bo_va->base.bo;
764 struct amdgpu_device *adev = attachment->adev;
765 struct ttm_tt *ttm = bo->tbo.ttm;
766 enum dma_data_direction dir;
767
768 if (unlikely(!ttm->sg)) {
769 pr_debug("SG Table of BO is NULL");
770 return;
771 }
772
773 amdgpu_bo_placement_from_domain(bo, AMDGPU_GEM_DOMAIN_CPU);
774 ttm_bo_validate(&bo->tbo, &bo->placement, &ctx);
775
776 dir = mem->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_WRITABLE ?
777 DMA_BIDIRECTIONAL : DMA_TO_DEVICE;
778 dma_unmap_resource(adev->dev, ttm->sg->sgl->dma_address,
779 ttm->sg->sgl->length, dir, DMA_ATTR_SKIP_CPU_SYNC);
780 sg_free_table(ttm->sg);
781 kfree(ttm->sg);
782 ttm->sg = NULL;
783 bo->tbo.sg = NULL;
784 }
785
786 static void
kfd_mem_dmaunmap_attachment(struct kgd_mem * mem,struct kfd_mem_attachment * attachment)787 kfd_mem_dmaunmap_attachment(struct kgd_mem *mem,
788 struct kfd_mem_attachment *attachment)
789 {
790 switch (attachment->type) {
791 case KFD_MEM_ATT_SHARED:
792 break;
793 case KFD_MEM_ATT_USERPTR:
794 kfd_mem_dmaunmap_userptr(mem, attachment);
795 break;
796 case KFD_MEM_ATT_DMABUF:
797 kfd_mem_dmaunmap_dmabuf(attachment);
798 break;
799 case KFD_MEM_ATT_SG:
800 kfd_mem_dmaunmap_sg_bo(mem, attachment);
801 break;
802 default:
803 WARN_ON_ONCE(1);
804 }
805 }
806
kfd_mem_export_dmabuf(struct kgd_mem * mem)807 static int kfd_mem_export_dmabuf(struct kgd_mem *mem)
808 {
809 if (!mem->dmabuf) {
810 struct amdgpu_device *bo_adev;
811 struct dma_buf *dmabuf;
812
813 bo_adev = amdgpu_ttm_adev(mem->bo->tbo.bdev);
814 dmabuf = drm_gem_prime_handle_to_dmabuf(&bo_adev->ddev, bo_adev->kfd.client.file,
815 mem->gem_handle,
816 mem->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_WRITABLE ?
817 DRM_RDWR : 0);
818 if (IS_ERR(dmabuf))
819 return PTR_ERR(dmabuf);
820 mem->dmabuf = dmabuf;
821 }
822
823 return 0;
824 }
825
826 static int
kfd_mem_attach_dmabuf(struct amdgpu_device * adev,struct kgd_mem * mem,struct amdgpu_bo ** bo)827 kfd_mem_attach_dmabuf(struct amdgpu_device *adev, struct kgd_mem *mem,
828 struct amdgpu_bo **bo)
829 {
830 struct drm_gem_object *gobj;
831 int ret;
832
833 ret = kfd_mem_export_dmabuf(mem);
834 if (ret)
835 return ret;
836
837 gobj = amdgpu_gem_prime_import(adev_to_drm(adev), mem->dmabuf);
838 if (IS_ERR(gobj))
839 return PTR_ERR(gobj);
840
841 *bo = gem_to_amdgpu_bo(gobj);
842 (*bo)->flags |= AMDGPU_GEM_CREATE_PREEMPTIBLE;
843
844 return 0;
845 }
846
847 /* kfd_mem_attach - Add a BO to a VM
848 *
849 * Everything that needs to bo done only once when a BO is first added
850 * to a VM. It can later be mapped and unmapped many times without
851 * repeating these steps.
852 *
853 * 0. Create BO for DMA mapping, if needed
854 * 1. Allocate and initialize BO VA entry data structure
855 * 2. Add BO to the VM
856 * 3. Determine ASIC-specific PTE flags
857 * 4. Alloc page tables and directories if needed
858 * 4a. Validate new page tables and directories
859 */
kfd_mem_attach(struct amdgpu_device * adev,struct kgd_mem * mem,struct amdgpu_vm * vm,bool is_aql)860 static int kfd_mem_attach(struct amdgpu_device *adev, struct kgd_mem *mem,
861 struct amdgpu_vm *vm, bool is_aql)
862 {
863 struct amdgpu_device *bo_adev = amdgpu_ttm_adev(mem->bo->tbo.bdev);
864 unsigned long bo_size = mem->bo->tbo.base.size;
865 uint64_t va = mem->va;
866 struct kfd_mem_attachment *attachment[2] = {NULL, NULL};
867 struct amdgpu_bo *bo[2] = {NULL, NULL};
868 struct amdgpu_bo_va *bo_va;
869 bool same_hive = false;
870 int i, ret;
871
872 if (!va) {
873 pr_err("Invalid VA when adding BO to VM\n");
874 return -EINVAL;
875 }
876
877 /* Determine access to VRAM, MMIO and DOORBELL BOs of peer devices
878 *
879 * The access path of MMIO and DOORBELL BOs of is always over PCIe.
880 * In contrast the access path of VRAM BOs depens upon the type of
881 * link that connects the peer device. Access over PCIe is allowed
882 * if peer device has large BAR. In contrast, access over xGMI is
883 * allowed for both small and large BAR configurations of peer device
884 */
885 if ((adev != bo_adev && !(adev->flags & AMD_IS_APU)) &&
886 ((mem->domain == AMDGPU_GEM_DOMAIN_VRAM) ||
887 (mem->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_DOORBELL) ||
888 (mem->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_MMIO_REMAP))) {
889 if (mem->domain == AMDGPU_GEM_DOMAIN_VRAM)
890 same_hive = amdgpu_xgmi_same_hive(adev, bo_adev);
891 if (!same_hive && !amdgpu_device_is_peer_accessible(bo_adev, adev))
892 return -EINVAL;
893 }
894
895 for (i = 0; i <= is_aql; i++) {
896 attachment[i] = kzalloc(sizeof(*attachment[i]), GFP_KERNEL);
897 if (unlikely(!attachment[i])) {
898 ret = -ENOMEM;
899 goto unwind;
900 }
901
902 pr_debug("\t add VA 0x%llx - 0x%llx to vm %p\n", va,
903 va + bo_size, vm);
904
905 if ((adev == bo_adev && !(mem->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_MMIO_REMAP)) ||
906 (amdgpu_ttm_tt_get_usermm(mem->bo->tbo.ttm) && reuse_dmamap(adev, bo_adev)) ||
907 (mem->domain == AMDGPU_GEM_DOMAIN_GTT && reuse_dmamap(adev, bo_adev)) ||
908 same_hive) {
909 /* Mappings on the local GPU, or VRAM mappings in the
910 * local hive, or userptr, or GTT mapping can reuse dma map
911 * address space share the original BO
912 */
913 attachment[i]->type = KFD_MEM_ATT_SHARED;
914 bo[i] = mem->bo;
915 drm_gem_object_get(&bo[i]->tbo.base);
916 } else if (i > 0) {
917 /* Multiple mappings on the same GPU share the BO */
918 attachment[i]->type = KFD_MEM_ATT_SHARED;
919 bo[i] = bo[0];
920 drm_gem_object_get(&bo[i]->tbo.base);
921 } else if (amdgpu_ttm_tt_get_usermm(mem->bo->tbo.ttm)) {
922 /* Create an SG BO to DMA-map userptrs on other GPUs */
923 attachment[i]->type = KFD_MEM_ATT_USERPTR;
924 ret = create_dmamap_sg_bo(adev, mem, &bo[i]);
925 if (ret)
926 goto unwind;
927 /* Handle DOORBELL BOs of peer devices and MMIO BOs of local and peer devices */
928 } else if (mem->bo->tbo.type == ttm_bo_type_sg) {
929 WARN_ONCE(!(mem->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_DOORBELL ||
930 mem->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_MMIO_REMAP),
931 "Handing invalid SG BO in ATTACH request");
932 attachment[i]->type = KFD_MEM_ATT_SG;
933 ret = create_dmamap_sg_bo(adev, mem, &bo[i]);
934 if (ret)
935 goto unwind;
936 /* Enable acces to GTT and VRAM BOs of peer devices */
937 } else if (mem->domain == AMDGPU_GEM_DOMAIN_GTT ||
938 mem->domain == AMDGPU_GEM_DOMAIN_VRAM) {
939 attachment[i]->type = KFD_MEM_ATT_DMABUF;
940 ret = kfd_mem_attach_dmabuf(adev, mem, &bo[i]);
941 if (ret)
942 goto unwind;
943 pr_debug("Employ DMABUF mechanism to enable peer GPU access\n");
944 } else {
945 WARN_ONCE(true, "Handling invalid ATTACH request");
946 ret = -EINVAL;
947 goto unwind;
948 }
949
950 /* Add BO to VM internal data structures */
951 ret = amdgpu_bo_reserve(bo[i], false);
952 if (ret) {
953 pr_debug("Unable to reserve BO during memory attach");
954 goto unwind;
955 }
956 bo_va = amdgpu_vm_bo_find(vm, bo[i]);
957 if (!bo_va)
958 bo_va = amdgpu_vm_bo_add(adev, vm, bo[i]);
959 else
960 ++bo_va->ref_count;
961 attachment[i]->bo_va = bo_va;
962 amdgpu_bo_unreserve(bo[i]);
963 if (unlikely(!attachment[i]->bo_va)) {
964 ret = -ENOMEM;
965 pr_err("Failed to add BO object to VM. ret == %d\n",
966 ret);
967 goto unwind;
968 }
969 attachment[i]->va = va;
970 attachment[i]->pte_flags = get_pte_flags(adev, mem);
971 attachment[i]->adev = adev;
972 list_add(&attachment[i]->list, &mem->attachments);
973
974 va += bo_size;
975 }
976
977 return 0;
978
979 unwind:
980 for (; i >= 0; i--) {
981 if (!attachment[i])
982 continue;
983 if (attachment[i]->bo_va) {
984 amdgpu_bo_reserve(bo[i], true);
985 if (--attachment[i]->bo_va->ref_count == 0)
986 amdgpu_vm_bo_del(adev, attachment[i]->bo_va);
987 amdgpu_bo_unreserve(bo[i]);
988 list_del(&attachment[i]->list);
989 }
990 if (bo[i])
991 drm_gem_object_put(&bo[i]->tbo.base);
992 kfree(attachment[i]);
993 }
994 return ret;
995 }
996
kfd_mem_detach(struct kfd_mem_attachment * attachment)997 static void kfd_mem_detach(struct kfd_mem_attachment *attachment)
998 {
999 struct amdgpu_bo *bo = attachment->bo_va->base.bo;
1000
1001 pr_debug("\t remove VA 0x%llx in entry %p\n",
1002 attachment->va, attachment);
1003 if (--attachment->bo_va->ref_count == 0)
1004 amdgpu_vm_bo_del(attachment->adev, attachment->bo_va);
1005 drm_gem_object_put(&bo->tbo.base);
1006 list_del(&attachment->list);
1007 kfree(attachment);
1008 }
1009
add_kgd_mem_to_kfd_bo_list(struct kgd_mem * mem,struct amdkfd_process_info * process_info,bool userptr)1010 static void add_kgd_mem_to_kfd_bo_list(struct kgd_mem *mem,
1011 struct amdkfd_process_info *process_info,
1012 bool userptr)
1013 {
1014 mutex_lock(&process_info->lock);
1015 if (userptr)
1016 list_add_tail(&mem->validate_list,
1017 &process_info->userptr_valid_list);
1018 else
1019 list_add_tail(&mem->validate_list, &process_info->kfd_bo_list);
1020 mutex_unlock(&process_info->lock);
1021 }
1022
remove_kgd_mem_from_kfd_bo_list(struct kgd_mem * mem,struct amdkfd_process_info * process_info)1023 static void remove_kgd_mem_from_kfd_bo_list(struct kgd_mem *mem,
1024 struct amdkfd_process_info *process_info)
1025 {
1026 mutex_lock(&process_info->lock);
1027 list_del(&mem->validate_list);
1028 mutex_unlock(&process_info->lock);
1029 }
1030
1031 /* Initializes user pages. It registers the MMU notifier and validates
1032 * the userptr BO in the GTT domain.
1033 *
1034 * The BO must already be on the userptr_valid_list. Otherwise an
1035 * eviction and restore may happen that leaves the new BO unmapped
1036 * with the user mode queues running.
1037 *
1038 * Takes the process_info->lock to protect against concurrent restore
1039 * workers.
1040 *
1041 * Returns 0 for success, negative errno for errors.
1042 */
init_user_pages(struct kgd_mem * mem,uint64_t user_addr,bool criu_resume)1043 static int init_user_pages(struct kgd_mem *mem, uint64_t user_addr,
1044 bool criu_resume)
1045 {
1046 struct amdkfd_process_info *process_info = mem->process_info;
1047 struct amdgpu_bo *bo = mem->bo;
1048 struct ttm_operation_ctx ctx = { true, false };
1049 struct hmm_range *range;
1050 int ret = 0;
1051
1052 mutex_lock(&process_info->lock);
1053
1054 ret = amdgpu_ttm_tt_set_userptr(&bo->tbo, user_addr, 0);
1055 if (ret) {
1056 pr_err("%s: Failed to set userptr: %d\n", __func__, ret);
1057 goto out;
1058 }
1059
1060 ret = amdgpu_hmm_register(bo, user_addr);
1061 if (ret) {
1062 pr_err("%s: Failed to register MMU notifier: %d\n",
1063 __func__, ret);
1064 goto out;
1065 }
1066
1067 if (criu_resume) {
1068 /*
1069 * During a CRIU restore operation, the userptr buffer objects
1070 * will be validated in the restore_userptr_work worker at a
1071 * later stage when it is scheduled by another ioctl called by
1072 * CRIU master process for the target pid for restore.
1073 */
1074 mutex_lock(&process_info->notifier_lock);
1075 mem->invalid++;
1076 mutex_unlock(&process_info->notifier_lock);
1077 mutex_unlock(&process_info->lock);
1078 return 0;
1079 }
1080
1081 ret = amdgpu_ttm_tt_get_user_pages(bo, bo->tbo.ttm->pages, &range);
1082 if (ret) {
1083 if (ret == -EAGAIN)
1084 pr_debug("Failed to get user pages, try again\n");
1085 else
1086 pr_err("%s: Failed to get user pages: %d\n", __func__, ret);
1087 goto unregister_out;
1088 }
1089
1090 ret = amdgpu_bo_reserve(bo, true);
1091 if (ret) {
1092 pr_err("%s: Failed to reserve BO\n", __func__);
1093 goto release_out;
1094 }
1095 amdgpu_bo_placement_from_domain(bo, mem->domain);
1096 ret = ttm_bo_validate(&bo->tbo, &bo->placement, &ctx);
1097 if (ret)
1098 pr_err("%s: failed to validate BO\n", __func__);
1099 amdgpu_bo_unreserve(bo);
1100
1101 release_out:
1102 amdgpu_ttm_tt_get_user_pages_done(bo->tbo.ttm, range);
1103 unregister_out:
1104 if (ret)
1105 amdgpu_hmm_unregister(bo);
1106 out:
1107 mutex_unlock(&process_info->lock);
1108 return ret;
1109 }
1110
1111 /* Reserving a BO and its page table BOs must happen atomically to
1112 * avoid deadlocks. Some operations update multiple VMs at once. Track
1113 * all the reservation info in a context structure. Optionally a sync
1114 * object can track VM updates.
1115 */
1116 struct bo_vm_reservation_context {
1117 /* DRM execution context for the reservation */
1118 struct drm_exec exec;
1119 /* Number of VMs reserved */
1120 unsigned int n_vms;
1121 /* Pointer to sync object */
1122 struct amdgpu_sync *sync;
1123 };
1124
1125 enum bo_vm_match {
1126 BO_VM_NOT_MAPPED = 0, /* Match VMs where a BO is not mapped */
1127 BO_VM_MAPPED, /* Match VMs where a BO is mapped */
1128 BO_VM_ALL, /* Match all VMs a BO was added to */
1129 };
1130
1131 /**
1132 * reserve_bo_and_vm - reserve a BO and a VM unconditionally.
1133 * @mem: KFD BO structure.
1134 * @vm: the VM to reserve.
1135 * @ctx: the struct that will be used in unreserve_bo_and_vms().
1136 */
reserve_bo_and_vm(struct kgd_mem * mem,struct amdgpu_vm * vm,struct bo_vm_reservation_context * ctx)1137 static int reserve_bo_and_vm(struct kgd_mem *mem,
1138 struct amdgpu_vm *vm,
1139 struct bo_vm_reservation_context *ctx)
1140 {
1141 struct amdgpu_bo *bo = mem->bo;
1142 int ret;
1143
1144 WARN_ON(!vm);
1145
1146 ctx->n_vms = 1;
1147 ctx->sync = &mem->sync;
1148 drm_exec_init(&ctx->exec, DRM_EXEC_INTERRUPTIBLE_WAIT, 0);
1149 drm_exec_until_all_locked(&ctx->exec) {
1150 ret = amdgpu_vm_lock_pd(vm, &ctx->exec, 2);
1151 drm_exec_retry_on_contention(&ctx->exec);
1152 if (unlikely(ret))
1153 goto error;
1154
1155 ret = drm_exec_prepare_obj(&ctx->exec, &bo->tbo.base, 1);
1156 drm_exec_retry_on_contention(&ctx->exec);
1157 if (unlikely(ret))
1158 goto error;
1159 }
1160 return 0;
1161
1162 error:
1163 pr_err("Failed to reserve buffers in ttm.\n");
1164 drm_exec_fini(&ctx->exec);
1165 return ret;
1166 }
1167
1168 /**
1169 * reserve_bo_and_cond_vms - reserve a BO and some VMs conditionally
1170 * @mem: KFD BO structure.
1171 * @vm: the VM to reserve. If NULL, then all VMs associated with the BO
1172 * is used. Otherwise, a single VM associated with the BO.
1173 * @map_type: the mapping status that will be used to filter the VMs.
1174 * @ctx: the struct that will be used in unreserve_bo_and_vms().
1175 *
1176 * Returns 0 for success, negative for failure.
1177 */
reserve_bo_and_cond_vms(struct kgd_mem * mem,struct amdgpu_vm * vm,enum bo_vm_match map_type,struct bo_vm_reservation_context * ctx)1178 static int reserve_bo_and_cond_vms(struct kgd_mem *mem,
1179 struct amdgpu_vm *vm, enum bo_vm_match map_type,
1180 struct bo_vm_reservation_context *ctx)
1181 {
1182 struct kfd_mem_attachment *entry;
1183 struct amdgpu_bo *bo = mem->bo;
1184 int ret;
1185
1186 ctx->sync = &mem->sync;
1187 drm_exec_init(&ctx->exec, DRM_EXEC_INTERRUPTIBLE_WAIT |
1188 DRM_EXEC_IGNORE_DUPLICATES, 0);
1189 drm_exec_until_all_locked(&ctx->exec) {
1190 ctx->n_vms = 0;
1191 list_for_each_entry(entry, &mem->attachments, list) {
1192 if ((vm && vm != entry->bo_va->base.vm) ||
1193 (entry->is_mapped != map_type
1194 && map_type != BO_VM_ALL))
1195 continue;
1196
1197 ret = amdgpu_vm_lock_pd(entry->bo_va->base.vm,
1198 &ctx->exec, 2);
1199 drm_exec_retry_on_contention(&ctx->exec);
1200 if (unlikely(ret))
1201 goto error;
1202 ++ctx->n_vms;
1203 }
1204
1205 ret = drm_exec_prepare_obj(&ctx->exec, &bo->tbo.base, 1);
1206 drm_exec_retry_on_contention(&ctx->exec);
1207 if (unlikely(ret))
1208 goto error;
1209 }
1210 return 0;
1211
1212 error:
1213 pr_err("Failed to reserve buffers in ttm.\n");
1214 drm_exec_fini(&ctx->exec);
1215 return ret;
1216 }
1217
1218 /**
1219 * unreserve_bo_and_vms - Unreserve BO and VMs from a reservation context
1220 * @ctx: Reservation context to unreserve
1221 * @wait: Optionally wait for a sync object representing pending VM updates
1222 * @intr: Whether the wait is interruptible
1223 *
1224 * Also frees any resources allocated in
1225 * reserve_bo_and_(cond_)vm(s). Returns the status from
1226 * amdgpu_sync_wait.
1227 */
unreserve_bo_and_vms(struct bo_vm_reservation_context * ctx,bool wait,bool intr)1228 static int unreserve_bo_and_vms(struct bo_vm_reservation_context *ctx,
1229 bool wait, bool intr)
1230 {
1231 int ret = 0;
1232
1233 if (wait)
1234 ret = amdgpu_sync_wait(ctx->sync, intr);
1235
1236 drm_exec_fini(&ctx->exec);
1237 ctx->sync = NULL;
1238 return ret;
1239 }
1240
unmap_bo_from_gpuvm(struct kgd_mem * mem,struct kfd_mem_attachment * entry,struct amdgpu_sync * sync)1241 static int unmap_bo_from_gpuvm(struct kgd_mem *mem,
1242 struct kfd_mem_attachment *entry,
1243 struct amdgpu_sync *sync)
1244 {
1245 struct amdgpu_bo_va *bo_va = entry->bo_va;
1246 struct amdgpu_device *adev = entry->adev;
1247 struct amdgpu_vm *vm = bo_va->base.vm;
1248
1249 if (bo_va->queue_refcount) {
1250 pr_debug("bo_va->queue_refcount %d\n", bo_va->queue_refcount);
1251 return -EBUSY;
1252 }
1253
1254 amdgpu_vm_bo_unmap(adev, bo_va, entry->va);
1255
1256 amdgpu_vm_clear_freed(adev, vm, &bo_va->last_pt_update);
1257
1258 amdgpu_sync_fence(sync, bo_va->last_pt_update);
1259
1260 return 0;
1261 }
1262
update_gpuvm_pte(struct kgd_mem * mem,struct kfd_mem_attachment * entry,struct amdgpu_sync * sync)1263 static int update_gpuvm_pte(struct kgd_mem *mem,
1264 struct kfd_mem_attachment *entry,
1265 struct amdgpu_sync *sync)
1266 {
1267 struct amdgpu_bo_va *bo_va = entry->bo_va;
1268 struct amdgpu_device *adev = entry->adev;
1269 int ret;
1270
1271 ret = kfd_mem_dmamap_attachment(mem, entry);
1272 if (ret)
1273 return ret;
1274
1275 /* Update the page tables */
1276 ret = amdgpu_vm_bo_update(adev, bo_va, false);
1277 if (ret) {
1278 pr_err("amdgpu_vm_bo_update failed\n");
1279 return ret;
1280 }
1281
1282 return amdgpu_sync_fence(sync, bo_va->last_pt_update);
1283 }
1284
map_bo_to_gpuvm(struct kgd_mem * mem,struct kfd_mem_attachment * entry,struct amdgpu_sync * sync,bool no_update_pte)1285 static int map_bo_to_gpuvm(struct kgd_mem *mem,
1286 struct kfd_mem_attachment *entry,
1287 struct amdgpu_sync *sync,
1288 bool no_update_pte)
1289 {
1290 int ret;
1291
1292 /* Set virtual address for the allocation */
1293 ret = amdgpu_vm_bo_map(entry->adev, entry->bo_va, entry->va, 0,
1294 amdgpu_bo_size(entry->bo_va->base.bo),
1295 entry->pte_flags);
1296 if (ret) {
1297 pr_err("Failed to map VA 0x%llx in vm. ret %d\n",
1298 entry->va, ret);
1299 return ret;
1300 }
1301
1302 if (no_update_pte)
1303 return 0;
1304
1305 ret = update_gpuvm_pte(mem, entry, sync);
1306 if (ret) {
1307 pr_err("update_gpuvm_pte() failed\n");
1308 goto update_gpuvm_pte_failed;
1309 }
1310
1311 return 0;
1312
1313 update_gpuvm_pte_failed:
1314 unmap_bo_from_gpuvm(mem, entry, sync);
1315 kfd_mem_dmaunmap_attachment(mem, entry);
1316 return ret;
1317 }
1318
process_validate_vms(struct amdkfd_process_info * process_info,struct ww_acquire_ctx * ticket)1319 static int process_validate_vms(struct amdkfd_process_info *process_info,
1320 struct ww_acquire_ctx *ticket)
1321 {
1322 struct amdgpu_vm *peer_vm;
1323 int ret;
1324
1325 list_for_each_entry(peer_vm, &process_info->vm_list_head,
1326 vm_list_node) {
1327 ret = vm_validate_pt_pd_bos(peer_vm, ticket);
1328 if (ret)
1329 return ret;
1330 }
1331
1332 return 0;
1333 }
1334
process_sync_pds_resv(struct amdkfd_process_info * process_info,struct amdgpu_sync * sync)1335 static int process_sync_pds_resv(struct amdkfd_process_info *process_info,
1336 struct amdgpu_sync *sync)
1337 {
1338 struct amdgpu_vm *peer_vm;
1339 int ret;
1340
1341 list_for_each_entry(peer_vm, &process_info->vm_list_head,
1342 vm_list_node) {
1343 struct amdgpu_bo *pd = peer_vm->root.bo;
1344
1345 ret = amdgpu_sync_resv(NULL, sync, pd->tbo.base.resv,
1346 AMDGPU_SYNC_NE_OWNER,
1347 AMDGPU_FENCE_OWNER_KFD);
1348 if (ret)
1349 return ret;
1350 }
1351
1352 return 0;
1353 }
1354
process_update_pds(struct amdkfd_process_info * process_info,struct amdgpu_sync * sync)1355 static int process_update_pds(struct amdkfd_process_info *process_info,
1356 struct amdgpu_sync *sync)
1357 {
1358 struct amdgpu_vm *peer_vm;
1359 int ret;
1360
1361 list_for_each_entry(peer_vm, &process_info->vm_list_head,
1362 vm_list_node) {
1363 ret = vm_update_pds(peer_vm, sync);
1364 if (ret)
1365 return ret;
1366 }
1367
1368 return 0;
1369 }
1370
init_kfd_vm(struct amdgpu_vm * vm,void ** process_info,struct dma_fence ** ef)1371 static int init_kfd_vm(struct amdgpu_vm *vm, void **process_info,
1372 struct dma_fence **ef)
1373 {
1374 struct amdkfd_process_info *info = NULL;
1375 int ret;
1376
1377 if (!*process_info) {
1378 info = kzalloc(sizeof(*info), GFP_KERNEL);
1379 if (!info)
1380 return -ENOMEM;
1381
1382 mutex_init(&info->lock);
1383 mutex_init(&info->notifier_lock);
1384 INIT_LIST_HEAD(&info->vm_list_head);
1385 INIT_LIST_HEAD(&info->kfd_bo_list);
1386 INIT_LIST_HEAD(&info->userptr_valid_list);
1387 INIT_LIST_HEAD(&info->userptr_inval_list);
1388
1389 info->eviction_fence =
1390 amdgpu_amdkfd_fence_create(dma_fence_context_alloc(1),
1391 current->mm,
1392 NULL);
1393 if (!info->eviction_fence) {
1394 pr_err("Failed to create eviction fence\n");
1395 ret = -ENOMEM;
1396 goto create_evict_fence_fail;
1397 }
1398
1399 info->pid = get_task_pid(current->group_leader, PIDTYPE_PID);
1400 INIT_DELAYED_WORK(&info->restore_userptr_work,
1401 amdgpu_amdkfd_restore_userptr_worker);
1402
1403 *process_info = info;
1404 }
1405
1406 vm->process_info = *process_info;
1407
1408 /* Validate page directory and attach eviction fence */
1409 ret = amdgpu_bo_reserve(vm->root.bo, true);
1410 if (ret)
1411 goto reserve_pd_fail;
1412 ret = vm_validate_pt_pd_bos(vm, NULL);
1413 if (ret) {
1414 pr_err("validate_pt_pd_bos() failed\n");
1415 goto validate_pd_fail;
1416 }
1417 ret = amdgpu_bo_sync_wait(vm->root.bo,
1418 AMDGPU_FENCE_OWNER_KFD, false);
1419 if (ret)
1420 goto wait_pd_fail;
1421 ret = dma_resv_reserve_fences(vm->root.bo->tbo.base.resv, 1);
1422 if (ret)
1423 goto reserve_shared_fail;
1424 dma_resv_add_fence(vm->root.bo->tbo.base.resv,
1425 &vm->process_info->eviction_fence->base,
1426 DMA_RESV_USAGE_BOOKKEEP);
1427 amdgpu_bo_unreserve(vm->root.bo);
1428
1429 /* Update process info */
1430 mutex_lock(&vm->process_info->lock);
1431 list_add_tail(&vm->vm_list_node,
1432 &(vm->process_info->vm_list_head));
1433 vm->process_info->n_vms++;
1434 if (ef)
1435 *ef = dma_fence_get(&vm->process_info->eviction_fence->base);
1436 mutex_unlock(&vm->process_info->lock);
1437
1438 return 0;
1439
1440 reserve_shared_fail:
1441 wait_pd_fail:
1442 validate_pd_fail:
1443 amdgpu_bo_unreserve(vm->root.bo);
1444 reserve_pd_fail:
1445 vm->process_info = NULL;
1446 if (info) {
1447 dma_fence_put(&info->eviction_fence->base);
1448 *process_info = NULL;
1449 put_pid(info->pid);
1450 create_evict_fence_fail:
1451 mutex_destroy(&info->lock);
1452 mutex_destroy(&info->notifier_lock);
1453 kfree(info);
1454 }
1455 return ret;
1456 }
1457
1458 /**
1459 * amdgpu_amdkfd_gpuvm_pin_bo() - Pins a BO using following criteria
1460 * @bo: Handle of buffer object being pinned
1461 * @domain: Domain into which BO should be pinned
1462 *
1463 * - USERPTR BOs are UNPINNABLE and will return error
1464 * - All other BO types (GTT, VRAM, MMIO and DOORBELL) will have their
1465 * PIN count incremented. It is valid to PIN a BO multiple times
1466 *
1467 * Return: ZERO if successful in pinning, Non-Zero in case of error.
1468 */
amdgpu_amdkfd_gpuvm_pin_bo(struct amdgpu_bo * bo,u32 domain)1469 static int amdgpu_amdkfd_gpuvm_pin_bo(struct amdgpu_bo *bo, u32 domain)
1470 {
1471 int ret = 0;
1472
1473 ret = amdgpu_bo_reserve(bo, false);
1474 if (unlikely(ret))
1475 return ret;
1476
1477 if (bo->flags & AMDGPU_GEM_CREATE_VRAM_CONTIGUOUS) {
1478 /*
1479 * If bo is not contiguous on VRAM, move to system memory first to ensure
1480 * we can get contiguous VRAM space after evicting other BOs.
1481 */
1482 if (!(bo->tbo.resource->placement & TTM_PL_FLAG_CONTIGUOUS)) {
1483 struct ttm_operation_ctx ctx = { true, false };
1484
1485 amdgpu_bo_placement_from_domain(bo, AMDGPU_GEM_DOMAIN_GTT);
1486 ret = ttm_bo_validate(&bo->tbo, &bo->placement, &ctx);
1487 if (unlikely(ret)) {
1488 pr_debug("validate bo 0x%p to GTT failed %d\n", &bo->tbo, ret);
1489 goto out;
1490 }
1491 }
1492 }
1493
1494 ret = amdgpu_bo_pin(bo, domain);
1495 if (ret)
1496 pr_err("Error in Pinning BO to domain: %d\n", domain);
1497
1498 amdgpu_bo_sync_wait(bo, AMDGPU_FENCE_OWNER_KFD, false);
1499 out:
1500 amdgpu_bo_unreserve(bo);
1501 return ret;
1502 }
1503
1504 /**
1505 * amdgpu_amdkfd_gpuvm_unpin_bo() - Unpins BO using following criteria
1506 * @bo: Handle of buffer object being unpinned
1507 *
1508 * - Is a illegal request for USERPTR BOs and is ignored
1509 * - All other BO types (GTT, VRAM, MMIO and DOORBELL) will have their
1510 * PIN count decremented. Calls to UNPIN must balance calls to PIN
1511 */
amdgpu_amdkfd_gpuvm_unpin_bo(struct amdgpu_bo * bo)1512 static void amdgpu_amdkfd_gpuvm_unpin_bo(struct amdgpu_bo *bo)
1513 {
1514 int ret = 0;
1515
1516 ret = amdgpu_bo_reserve(bo, false);
1517 if (unlikely(ret))
1518 return;
1519
1520 amdgpu_bo_unpin(bo);
1521 amdgpu_bo_unreserve(bo);
1522 }
1523
amdgpu_amdkfd_gpuvm_set_vm_pasid(struct amdgpu_device * adev,struct amdgpu_vm * avm,u32 pasid)1524 int amdgpu_amdkfd_gpuvm_set_vm_pasid(struct amdgpu_device *adev,
1525 struct amdgpu_vm *avm, u32 pasid)
1526
1527 {
1528 int ret;
1529
1530 /* Free the original amdgpu allocated pasid,
1531 * will be replaced with kfd allocated pasid.
1532 */
1533 if (avm->pasid) {
1534 amdgpu_pasid_free(avm->pasid);
1535 amdgpu_vm_set_pasid(adev, avm, 0);
1536 }
1537
1538 ret = amdgpu_vm_set_pasid(adev, avm, pasid);
1539 if (ret)
1540 return ret;
1541
1542 return 0;
1543 }
1544
amdgpu_amdkfd_gpuvm_acquire_process_vm(struct amdgpu_device * adev,struct amdgpu_vm * avm,void ** process_info,struct dma_fence ** ef)1545 int amdgpu_amdkfd_gpuvm_acquire_process_vm(struct amdgpu_device *adev,
1546 struct amdgpu_vm *avm,
1547 void **process_info,
1548 struct dma_fence **ef)
1549 {
1550 int ret;
1551
1552 /* Already a compute VM? */
1553 if (avm->process_info)
1554 return -EINVAL;
1555
1556 /* Convert VM into a compute VM */
1557 ret = amdgpu_vm_make_compute(adev, avm);
1558 if (ret)
1559 return ret;
1560
1561 /* Initialize KFD part of the VM and process info */
1562 ret = init_kfd_vm(avm, process_info, ef);
1563 if (ret)
1564 return ret;
1565
1566 amdgpu_vm_set_task_info(avm);
1567
1568 return 0;
1569 }
1570
amdgpu_amdkfd_gpuvm_destroy_cb(struct amdgpu_device * adev,struct amdgpu_vm * vm)1571 void amdgpu_amdkfd_gpuvm_destroy_cb(struct amdgpu_device *adev,
1572 struct amdgpu_vm *vm)
1573 {
1574 struct amdkfd_process_info *process_info = vm->process_info;
1575
1576 if (!process_info)
1577 return;
1578
1579 /* Update process info */
1580 mutex_lock(&process_info->lock);
1581 process_info->n_vms--;
1582 list_del(&vm->vm_list_node);
1583 mutex_unlock(&process_info->lock);
1584
1585 vm->process_info = NULL;
1586
1587 /* Release per-process resources when last compute VM is destroyed */
1588 if (!process_info->n_vms) {
1589 WARN_ON(!list_empty(&process_info->kfd_bo_list));
1590 WARN_ON(!list_empty(&process_info->userptr_valid_list));
1591 WARN_ON(!list_empty(&process_info->userptr_inval_list));
1592
1593 dma_fence_put(&process_info->eviction_fence->base);
1594 cancel_delayed_work_sync(&process_info->restore_userptr_work);
1595 put_pid(process_info->pid);
1596 mutex_destroy(&process_info->lock);
1597 mutex_destroy(&process_info->notifier_lock);
1598 kfree(process_info);
1599 }
1600 }
1601
amdgpu_amdkfd_gpuvm_release_process_vm(struct amdgpu_device * adev,void * drm_priv)1602 void amdgpu_amdkfd_gpuvm_release_process_vm(struct amdgpu_device *adev,
1603 void *drm_priv)
1604 {
1605 struct amdgpu_vm *avm;
1606
1607 if (WARN_ON(!adev || !drm_priv))
1608 return;
1609
1610 avm = drm_priv_to_vm(drm_priv);
1611
1612 pr_debug("Releasing process vm %p\n", avm);
1613
1614 /* The original pasid of amdgpu vm has already been
1615 * released during making a amdgpu vm to a compute vm
1616 * The current pasid is managed by kfd and will be
1617 * released on kfd process destroy. Set amdgpu pasid
1618 * to 0 to avoid duplicate release.
1619 */
1620 amdgpu_vm_release_compute(adev, avm);
1621 }
1622
amdgpu_amdkfd_gpuvm_get_process_page_dir(void * drm_priv)1623 uint64_t amdgpu_amdkfd_gpuvm_get_process_page_dir(void *drm_priv)
1624 {
1625 struct amdgpu_vm *avm = drm_priv_to_vm(drm_priv);
1626 struct amdgpu_bo *pd = avm->root.bo;
1627 struct amdgpu_device *adev = amdgpu_ttm_adev(pd->tbo.bdev);
1628
1629 if (adev->asic_type < CHIP_VEGA10)
1630 return avm->pd_phys_addr >> AMDGPU_GPU_PAGE_SHIFT;
1631 return avm->pd_phys_addr;
1632 }
1633
amdgpu_amdkfd_block_mmu_notifications(void * p)1634 void amdgpu_amdkfd_block_mmu_notifications(void *p)
1635 {
1636 struct amdkfd_process_info *pinfo = (struct amdkfd_process_info *)p;
1637
1638 mutex_lock(&pinfo->lock);
1639 WRITE_ONCE(pinfo->block_mmu_notifications, true);
1640 mutex_unlock(&pinfo->lock);
1641 }
1642
amdgpu_amdkfd_criu_resume(void * p)1643 int amdgpu_amdkfd_criu_resume(void *p)
1644 {
1645 int ret = 0;
1646 struct amdkfd_process_info *pinfo = (struct amdkfd_process_info *)p;
1647
1648 mutex_lock(&pinfo->lock);
1649 pr_debug("scheduling work\n");
1650 mutex_lock(&pinfo->notifier_lock);
1651 pinfo->evicted_bos++;
1652 mutex_unlock(&pinfo->notifier_lock);
1653 if (!READ_ONCE(pinfo->block_mmu_notifications)) {
1654 ret = -EINVAL;
1655 goto out_unlock;
1656 }
1657 WRITE_ONCE(pinfo->block_mmu_notifications, false);
1658 queue_delayed_work(system_freezable_wq,
1659 &pinfo->restore_userptr_work, 0);
1660
1661 out_unlock:
1662 mutex_unlock(&pinfo->lock);
1663 return ret;
1664 }
1665
amdgpu_amdkfd_get_available_memory(struct amdgpu_device * adev,uint8_t xcp_id)1666 size_t amdgpu_amdkfd_get_available_memory(struct amdgpu_device *adev,
1667 uint8_t xcp_id)
1668 {
1669 uint64_t reserved_for_pt =
1670 ESTIMATE_PT_SIZE(amdgpu_amdkfd_total_mem_size);
1671 struct amdgpu_ras *con = amdgpu_ras_get_context(adev);
1672 uint64_t reserved_for_ras = (con ? con->reserved_pages_in_bytes : 0);
1673 ssize_t available;
1674 uint64_t vram_available, system_mem_available, ttm_mem_available;
1675
1676 spin_lock(&kfd_mem_limit.mem_limit_lock);
1677 vram_available = KFD_XCP_MEMORY_SIZE(adev, xcp_id)
1678 - adev->kfd.vram_used_aligned[xcp_id]
1679 - atomic64_read(&adev->vram_pin_size)
1680 - reserved_for_pt
1681 - reserved_for_ras;
1682
1683 if (adev->flags & AMD_IS_APU) {
1684 system_mem_available = no_system_mem_limit ?
1685 kfd_mem_limit.max_system_mem_limit :
1686 kfd_mem_limit.max_system_mem_limit -
1687 kfd_mem_limit.system_mem_used;
1688
1689 ttm_mem_available = kfd_mem_limit.max_ttm_mem_limit -
1690 kfd_mem_limit.ttm_mem_used;
1691
1692 available = min3(system_mem_available, ttm_mem_available,
1693 vram_available);
1694 available = ALIGN_DOWN(available, PAGE_SIZE);
1695 } else {
1696 available = ALIGN_DOWN(vram_available, VRAM_AVAILABLITY_ALIGN);
1697 }
1698
1699 spin_unlock(&kfd_mem_limit.mem_limit_lock);
1700
1701 if (available < 0)
1702 available = 0;
1703
1704 return available;
1705 }
1706
amdgpu_amdkfd_gpuvm_alloc_memory_of_gpu(struct amdgpu_device * adev,uint64_t va,uint64_t size,void * drm_priv,struct kgd_mem ** mem,uint64_t * offset,uint32_t flags,bool criu_resume)1707 int amdgpu_amdkfd_gpuvm_alloc_memory_of_gpu(
1708 struct amdgpu_device *adev, uint64_t va, uint64_t size,
1709 void *drm_priv, struct kgd_mem **mem,
1710 uint64_t *offset, uint32_t flags, bool criu_resume)
1711 {
1712 struct amdgpu_vm *avm = drm_priv_to_vm(drm_priv);
1713 struct amdgpu_fpriv *fpriv = container_of(avm, struct amdgpu_fpriv, vm);
1714 enum ttm_bo_type bo_type = ttm_bo_type_device;
1715 struct sg_table *sg = NULL;
1716 uint64_t user_addr = 0;
1717 struct amdgpu_bo *bo;
1718 struct drm_gem_object *gobj = NULL;
1719 u32 domain, alloc_domain;
1720 uint64_t aligned_size;
1721 int8_t xcp_id = -1;
1722 u64 alloc_flags;
1723 int ret;
1724
1725 /*
1726 * Check on which domain to allocate BO
1727 */
1728 if (flags & KFD_IOC_ALLOC_MEM_FLAGS_VRAM) {
1729 domain = alloc_domain = AMDGPU_GEM_DOMAIN_VRAM;
1730
1731 if (adev->flags & AMD_IS_APU) {
1732 domain = AMDGPU_GEM_DOMAIN_GTT;
1733 alloc_domain = AMDGPU_GEM_DOMAIN_GTT;
1734 alloc_flags = 0;
1735 } else {
1736 alloc_flags = AMDGPU_GEM_CREATE_VRAM_WIPE_ON_RELEASE;
1737 alloc_flags |= (flags & KFD_IOC_ALLOC_MEM_FLAGS_PUBLIC) ?
1738 AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED : 0;
1739
1740 /* For contiguous VRAM allocation */
1741 if (flags & KFD_IOC_ALLOC_MEM_FLAGS_CONTIGUOUS)
1742 alloc_flags |= AMDGPU_GEM_CREATE_VRAM_CONTIGUOUS;
1743 }
1744 xcp_id = fpriv->xcp_id == AMDGPU_XCP_NO_PARTITION ?
1745 0 : fpriv->xcp_id;
1746 } else if (flags & KFD_IOC_ALLOC_MEM_FLAGS_GTT) {
1747 domain = alloc_domain = AMDGPU_GEM_DOMAIN_GTT;
1748 alloc_flags = 0;
1749 } else {
1750 domain = AMDGPU_GEM_DOMAIN_GTT;
1751 alloc_domain = AMDGPU_GEM_DOMAIN_CPU;
1752 alloc_flags = AMDGPU_GEM_CREATE_PREEMPTIBLE;
1753
1754 if (flags & KFD_IOC_ALLOC_MEM_FLAGS_USERPTR) {
1755 if (!offset || !*offset)
1756 return -EINVAL;
1757 user_addr = untagged_addr(*offset);
1758 } else if (flags & (KFD_IOC_ALLOC_MEM_FLAGS_DOORBELL |
1759 KFD_IOC_ALLOC_MEM_FLAGS_MMIO_REMAP)) {
1760 bo_type = ttm_bo_type_sg;
1761 if (size > UINT_MAX)
1762 return -EINVAL;
1763 sg = create_sg_table(*offset, size);
1764 if (!sg)
1765 return -ENOMEM;
1766 } else {
1767 return -EINVAL;
1768 }
1769 }
1770
1771 if (flags & KFD_IOC_ALLOC_MEM_FLAGS_COHERENT)
1772 alloc_flags |= AMDGPU_GEM_CREATE_COHERENT;
1773 if (flags & KFD_IOC_ALLOC_MEM_FLAGS_EXT_COHERENT)
1774 alloc_flags |= AMDGPU_GEM_CREATE_EXT_COHERENT;
1775 if (flags & KFD_IOC_ALLOC_MEM_FLAGS_UNCACHED)
1776 alloc_flags |= AMDGPU_GEM_CREATE_UNCACHED;
1777
1778 *mem = kzalloc(sizeof(struct kgd_mem), GFP_KERNEL);
1779 if (!*mem) {
1780 ret = -ENOMEM;
1781 goto err;
1782 }
1783 INIT_LIST_HEAD(&(*mem)->attachments);
1784 mutex_init(&(*mem)->lock);
1785 (*mem)->aql_queue = !!(flags & KFD_IOC_ALLOC_MEM_FLAGS_AQL_QUEUE_MEM);
1786
1787 /* Workaround for AQL queue wraparound bug. Map the same
1788 * memory twice. That means we only actually allocate half
1789 * the memory.
1790 */
1791 if ((*mem)->aql_queue)
1792 size >>= 1;
1793 aligned_size = PAGE_ALIGN(size);
1794
1795 (*mem)->alloc_flags = flags;
1796
1797 amdgpu_sync_create(&(*mem)->sync);
1798
1799 ret = amdgpu_amdkfd_reserve_mem_limit(adev, aligned_size, flags,
1800 xcp_id);
1801 if (ret) {
1802 pr_debug("Insufficient memory\n");
1803 goto err_reserve_limit;
1804 }
1805
1806 pr_debug("\tcreate BO VA 0x%llx size 0x%llx domain %s xcp_id %d\n",
1807 va, (*mem)->aql_queue ? size << 1 : size,
1808 domain_string(alloc_domain), xcp_id);
1809
1810 ret = amdgpu_gem_object_create(adev, aligned_size, 1, alloc_domain, alloc_flags,
1811 bo_type, NULL, &gobj, xcp_id + 1);
1812 if (ret) {
1813 pr_debug("Failed to create BO on domain %s. ret %d\n",
1814 domain_string(alloc_domain), ret);
1815 goto err_bo_create;
1816 }
1817 ret = drm_vma_node_allow(&gobj->vma_node, drm_priv);
1818 if (ret) {
1819 pr_debug("Failed to allow vma node access. ret %d\n", ret);
1820 goto err_node_allow;
1821 }
1822 ret = drm_gem_handle_create(adev->kfd.client.file, gobj, &(*mem)->gem_handle);
1823 if (ret)
1824 goto err_gem_handle_create;
1825 bo = gem_to_amdgpu_bo(gobj);
1826 if (bo_type == ttm_bo_type_sg) {
1827 bo->tbo.sg = sg;
1828 bo->tbo.ttm->sg = sg;
1829 }
1830 bo->kfd_bo = *mem;
1831 (*mem)->bo = bo;
1832 if (user_addr)
1833 bo->flags |= AMDGPU_AMDKFD_CREATE_USERPTR_BO;
1834
1835 (*mem)->va = va;
1836 (*mem)->domain = domain;
1837 (*mem)->mapped_to_gpu_memory = 0;
1838 (*mem)->process_info = avm->process_info;
1839
1840 add_kgd_mem_to_kfd_bo_list(*mem, avm->process_info, user_addr);
1841
1842 if (user_addr) {
1843 pr_debug("creating userptr BO for user_addr = %llx\n", user_addr);
1844 ret = init_user_pages(*mem, user_addr, criu_resume);
1845 if (ret)
1846 goto allocate_init_user_pages_failed;
1847 } else if (flags & (KFD_IOC_ALLOC_MEM_FLAGS_DOORBELL |
1848 KFD_IOC_ALLOC_MEM_FLAGS_MMIO_REMAP)) {
1849 ret = amdgpu_amdkfd_gpuvm_pin_bo(bo, AMDGPU_GEM_DOMAIN_GTT);
1850 if (ret) {
1851 pr_err("Pinning MMIO/DOORBELL BO during ALLOC FAILED\n");
1852 goto err_pin_bo;
1853 }
1854 bo->allowed_domains = AMDGPU_GEM_DOMAIN_GTT;
1855 bo->preferred_domains = AMDGPU_GEM_DOMAIN_GTT;
1856 } else {
1857 mutex_lock(&avm->process_info->lock);
1858 if (avm->process_info->eviction_fence &&
1859 !dma_fence_is_signaled(&avm->process_info->eviction_fence->base))
1860 ret = amdgpu_amdkfd_bo_validate_and_fence(bo, domain,
1861 &avm->process_info->eviction_fence->base);
1862 mutex_unlock(&avm->process_info->lock);
1863 if (ret)
1864 goto err_validate_bo;
1865 }
1866
1867 if (offset)
1868 *offset = amdgpu_bo_mmap_offset(bo);
1869
1870 return 0;
1871
1872 allocate_init_user_pages_failed:
1873 err_pin_bo:
1874 err_validate_bo:
1875 remove_kgd_mem_from_kfd_bo_list(*mem, avm->process_info);
1876 drm_gem_handle_delete(adev->kfd.client.file, (*mem)->gem_handle);
1877 err_gem_handle_create:
1878 drm_vma_node_revoke(&gobj->vma_node, drm_priv);
1879 err_node_allow:
1880 /* Don't unreserve system mem limit twice */
1881 goto err_reserve_limit;
1882 err_bo_create:
1883 amdgpu_amdkfd_unreserve_mem_limit(adev, aligned_size, flags, xcp_id);
1884 err_reserve_limit:
1885 amdgpu_sync_free(&(*mem)->sync);
1886 mutex_destroy(&(*mem)->lock);
1887 if (gobj)
1888 drm_gem_object_put(gobj);
1889 else
1890 kfree(*mem);
1891 err:
1892 if (sg) {
1893 sg_free_table(sg);
1894 kfree(sg);
1895 }
1896 return ret;
1897 }
1898
amdgpu_amdkfd_gpuvm_free_memory_of_gpu(struct amdgpu_device * adev,struct kgd_mem * mem,void * drm_priv,uint64_t * size)1899 int amdgpu_amdkfd_gpuvm_free_memory_of_gpu(
1900 struct amdgpu_device *adev, struct kgd_mem *mem, void *drm_priv,
1901 uint64_t *size)
1902 {
1903 struct amdkfd_process_info *process_info = mem->process_info;
1904 unsigned long bo_size = mem->bo->tbo.base.size;
1905 bool use_release_notifier = (mem->bo->kfd_bo == mem);
1906 struct kfd_mem_attachment *entry, *tmp;
1907 struct bo_vm_reservation_context ctx;
1908 unsigned int mapped_to_gpu_memory;
1909 int ret;
1910 bool is_imported = false;
1911
1912 mutex_lock(&mem->lock);
1913
1914 /* Unpin MMIO/DOORBELL BO's that were pinned during allocation */
1915 if (mem->alloc_flags &
1916 (KFD_IOC_ALLOC_MEM_FLAGS_DOORBELL |
1917 KFD_IOC_ALLOC_MEM_FLAGS_MMIO_REMAP)) {
1918 amdgpu_amdkfd_gpuvm_unpin_bo(mem->bo);
1919 }
1920
1921 mapped_to_gpu_memory = mem->mapped_to_gpu_memory;
1922 is_imported = mem->is_imported;
1923 mutex_unlock(&mem->lock);
1924 /* lock is not needed after this, since mem is unused and will
1925 * be freed anyway
1926 */
1927
1928 if (mapped_to_gpu_memory > 0) {
1929 pr_debug("BO VA 0x%llx size 0x%lx is still mapped.\n",
1930 mem->va, bo_size);
1931 return -EBUSY;
1932 }
1933
1934 /* Make sure restore workers don't access the BO any more */
1935 mutex_lock(&process_info->lock);
1936 list_del(&mem->validate_list);
1937 mutex_unlock(&process_info->lock);
1938
1939 /* Cleanup user pages and MMU notifiers */
1940 if (amdgpu_ttm_tt_get_usermm(mem->bo->tbo.ttm)) {
1941 amdgpu_hmm_unregister(mem->bo);
1942 mutex_lock(&process_info->notifier_lock);
1943 amdgpu_ttm_tt_discard_user_pages(mem->bo->tbo.ttm, mem->range);
1944 mutex_unlock(&process_info->notifier_lock);
1945 }
1946
1947 ret = reserve_bo_and_cond_vms(mem, NULL, BO_VM_ALL, &ctx);
1948 if (unlikely(ret))
1949 return ret;
1950
1951 amdgpu_amdkfd_remove_eviction_fence(mem->bo,
1952 process_info->eviction_fence);
1953 pr_debug("Release VA 0x%llx - 0x%llx\n", mem->va,
1954 mem->va + bo_size * (1 + mem->aql_queue));
1955
1956 /* Remove from VM internal data structures */
1957 list_for_each_entry_safe(entry, tmp, &mem->attachments, list) {
1958 kfd_mem_dmaunmap_attachment(mem, entry);
1959 kfd_mem_detach(entry);
1960 }
1961
1962 ret = unreserve_bo_and_vms(&ctx, false, false);
1963
1964 /* Free the sync object */
1965 amdgpu_sync_free(&mem->sync);
1966
1967 /* If the SG is not NULL, it's one we created for a doorbell or mmio
1968 * remap BO. We need to free it.
1969 */
1970 if (mem->bo->tbo.sg) {
1971 sg_free_table(mem->bo->tbo.sg);
1972 kfree(mem->bo->tbo.sg);
1973 }
1974
1975 /* Update the size of the BO being freed if it was allocated from
1976 * VRAM and is not imported. For APP APU VRAM allocations are done
1977 * in GTT domain
1978 */
1979 if (size) {
1980 if (!is_imported &&
1981 (mem->bo->preferred_domains == AMDGPU_GEM_DOMAIN_VRAM ||
1982 ((adev->flags & AMD_IS_APU) &&
1983 mem->bo->preferred_domains == AMDGPU_GEM_DOMAIN_GTT)))
1984 *size = bo_size;
1985 else
1986 *size = 0;
1987 }
1988
1989 /* Free the BO*/
1990 drm_vma_node_revoke(&mem->bo->tbo.base.vma_node, drm_priv);
1991 drm_gem_handle_delete(adev->kfd.client.file, mem->gem_handle);
1992 if (mem->dmabuf) {
1993 dma_buf_put(mem->dmabuf);
1994 mem->dmabuf = NULL;
1995 }
1996 mutex_destroy(&mem->lock);
1997
1998 /* If this releases the last reference, it will end up calling
1999 * amdgpu_amdkfd_release_notify and kfree the mem struct. That's why
2000 * this needs to be the last call here.
2001 */
2002 drm_gem_object_put(&mem->bo->tbo.base);
2003
2004 /*
2005 * For kgd_mem allocated in amdgpu_amdkfd_gpuvm_import_dmabuf(),
2006 * explicitly free it here.
2007 */
2008 if (!use_release_notifier)
2009 kfree(mem);
2010
2011 return ret;
2012 }
2013
amdgpu_amdkfd_gpuvm_map_memory_to_gpu(struct amdgpu_device * adev,struct kgd_mem * mem,void * drm_priv)2014 int amdgpu_amdkfd_gpuvm_map_memory_to_gpu(
2015 struct amdgpu_device *adev, struct kgd_mem *mem,
2016 void *drm_priv)
2017 {
2018 struct amdgpu_vm *avm = drm_priv_to_vm(drm_priv);
2019 int ret;
2020 struct amdgpu_bo *bo;
2021 uint32_t domain;
2022 struct kfd_mem_attachment *entry;
2023 struct bo_vm_reservation_context ctx;
2024 unsigned long bo_size;
2025 bool is_invalid_userptr = false;
2026
2027 bo = mem->bo;
2028 if (!bo) {
2029 pr_err("Invalid BO when mapping memory to GPU\n");
2030 return -EINVAL;
2031 }
2032
2033 /* Make sure restore is not running concurrently. Since we
2034 * don't map invalid userptr BOs, we rely on the next restore
2035 * worker to do the mapping
2036 */
2037 mutex_lock(&mem->process_info->lock);
2038
2039 /* Lock notifier lock. If we find an invalid userptr BO, we can be
2040 * sure that the MMU notifier is no longer running
2041 * concurrently and the queues are actually stopped
2042 */
2043 if (amdgpu_ttm_tt_get_usermm(bo->tbo.ttm)) {
2044 mutex_lock(&mem->process_info->notifier_lock);
2045 is_invalid_userptr = !!mem->invalid;
2046 mutex_unlock(&mem->process_info->notifier_lock);
2047 }
2048
2049 mutex_lock(&mem->lock);
2050
2051 domain = mem->domain;
2052 bo_size = bo->tbo.base.size;
2053
2054 pr_debug("Map VA 0x%llx - 0x%llx to vm %p domain %s\n",
2055 mem->va,
2056 mem->va + bo_size * (1 + mem->aql_queue),
2057 avm, domain_string(domain));
2058
2059 if (!kfd_mem_is_attached(avm, mem)) {
2060 ret = kfd_mem_attach(adev, mem, avm, mem->aql_queue);
2061 if (ret)
2062 goto out;
2063 }
2064
2065 ret = reserve_bo_and_vm(mem, avm, &ctx);
2066 if (unlikely(ret))
2067 goto out;
2068
2069 /* Userptr can be marked as "not invalid", but not actually be
2070 * validated yet (still in the system domain). In that case
2071 * the queues are still stopped and we can leave mapping for
2072 * the next restore worker
2073 */
2074 if (amdgpu_ttm_tt_get_usermm(bo->tbo.ttm) &&
2075 bo->tbo.resource->mem_type == TTM_PL_SYSTEM)
2076 is_invalid_userptr = true;
2077
2078 ret = vm_validate_pt_pd_bos(avm, NULL);
2079 if (unlikely(ret))
2080 goto out_unreserve;
2081
2082 list_for_each_entry(entry, &mem->attachments, list) {
2083 if (entry->bo_va->base.vm != avm || entry->is_mapped)
2084 continue;
2085
2086 pr_debug("\t map VA 0x%llx - 0x%llx in entry %p\n",
2087 entry->va, entry->va + bo_size, entry);
2088
2089 ret = map_bo_to_gpuvm(mem, entry, ctx.sync,
2090 is_invalid_userptr);
2091 if (ret) {
2092 pr_err("Failed to map bo to gpuvm\n");
2093 goto out_unreserve;
2094 }
2095
2096 ret = vm_update_pds(avm, ctx.sync);
2097 if (ret) {
2098 pr_err("Failed to update page directories\n");
2099 goto out_unreserve;
2100 }
2101
2102 entry->is_mapped = true;
2103 mem->mapped_to_gpu_memory++;
2104 pr_debug("\t INC mapping count %d\n",
2105 mem->mapped_to_gpu_memory);
2106 }
2107
2108 ret = unreserve_bo_and_vms(&ctx, false, false);
2109
2110 goto out;
2111
2112 out_unreserve:
2113 unreserve_bo_and_vms(&ctx, false, false);
2114 out:
2115 mutex_unlock(&mem->process_info->lock);
2116 mutex_unlock(&mem->lock);
2117 return ret;
2118 }
2119
amdgpu_amdkfd_gpuvm_dmaunmap_mem(struct kgd_mem * mem,void * drm_priv)2120 int amdgpu_amdkfd_gpuvm_dmaunmap_mem(struct kgd_mem *mem, void *drm_priv)
2121 {
2122 struct kfd_mem_attachment *entry;
2123 struct amdgpu_vm *vm;
2124 int ret;
2125
2126 vm = drm_priv_to_vm(drm_priv);
2127
2128 mutex_lock(&mem->lock);
2129
2130 ret = amdgpu_bo_reserve(mem->bo, true);
2131 if (ret)
2132 goto out;
2133
2134 list_for_each_entry(entry, &mem->attachments, list) {
2135 if (entry->bo_va->base.vm != vm)
2136 continue;
2137 if (entry->bo_va->base.bo->tbo.ttm &&
2138 !entry->bo_va->base.bo->tbo.ttm->sg)
2139 continue;
2140
2141 kfd_mem_dmaunmap_attachment(mem, entry);
2142 }
2143
2144 amdgpu_bo_unreserve(mem->bo);
2145 out:
2146 mutex_unlock(&mem->lock);
2147
2148 return ret;
2149 }
2150
amdgpu_amdkfd_gpuvm_unmap_memory_from_gpu(struct amdgpu_device * adev,struct kgd_mem * mem,void * drm_priv)2151 int amdgpu_amdkfd_gpuvm_unmap_memory_from_gpu(
2152 struct amdgpu_device *adev, struct kgd_mem *mem, void *drm_priv)
2153 {
2154 struct amdgpu_vm *avm = drm_priv_to_vm(drm_priv);
2155 unsigned long bo_size = mem->bo->tbo.base.size;
2156 struct kfd_mem_attachment *entry;
2157 struct bo_vm_reservation_context ctx;
2158 int ret;
2159
2160 mutex_lock(&mem->lock);
2161
2162 ret = reserve_bo_and_cond_vms(mem, avm, BO_VM_MAPPED, &ctx);
2163 if (unlikely(ret))
2164 goto out;
2165 /* If no VMs were reserved, it means the BO wasn't actually mapped */
2166 if (ctx.n_vms == 0) {
2167 ret = -EINVAL;
2168 goto unreserve_out;
2169 }
2170
2171 ret = vm_validate_pt_pd_bos(avm, NULL);
2172 if (unlikely(ret))
2173 goto unreserve_out;
2174
2175 pr_debug("Unmap VA 0x%llx - 0x%llx from vm %p\n",
2176 mem->va,
2177 mem->va + bo_size * (1 + mem->aql_queue),
2178 avm);
2179
2180 list_for_each_entry(entry, &mem->attachments, list) {
2181 if (entry->bo_va->base.vm != avm || !entry->is_mapped)
2182 continue;
2183
2184 pr_debug("\t unmap VA 0x%llx - 0x%llx from entry %p\n",
2185 entry->va, entry->va + bo_size, entry);
2186
2187 ret = unmap_bo_from_gpuvm(mem, entry, ctx.sync);
2188 if (ret)
2189 goto unreserve_out;
2190
2191 entry->is_mapped = false;
2192
2193 mem->mapped_to_gpu_memory--;
2194 pr_debug("\t DEC mapping count %d\n",
2195 mem->mapped_to_gpu_memory);
2196 }
2197
2198 unreserve_out:
2199 unreserve_bo_and_vms(&ctx, false, false);
2200 out:
2201 mutex_unlock(&mem->lock);
2202 return ret;
2203 }
2204
amdgpu_amdkfd_gpuvm_sync_memory(struct amdgpu_device * adev,struct kgd_mem * mem,bool intr)2205 int amdgpu_amdkfd_gpuvm_sync_memory(
2206 struct amdgpu_device *adev, struct kgd_mem *mem, bool intr)
2207 {
2208 struct amdgpu_sync sync;
2209 int ret;
2210
2211 amdgpu_sync_create(&sync);
2212
2213 mutex_lock(&mem->lock);
2214 amdgpu_sync_clone(&mem->sync, &sync);
2215 mutex_unlock(&mem->lock);
2216
2217 ret = amdgpu_sync_wait(&sync, intr);
2218 amdgpu_sync_free(&sync);
2219 return ret;
2220 }
2221
2222 /**
2223 * amdgpu_amdkfd_map_gtt_bo_to_gart - Map BO to GART and increment reference count
2224 * @bo: Buffer object to be mapped
2225 * @bo_gart: Return bo reference
2226 *
2227 * Before return, bo reference count is incremented. To release the reference and unpin/
2228 * unmap the BO, call amdgpu_amdkfd_free_gtt_mem.
2229 */
amdgpu_amdkfd_map_gtt_bo_to_gart(struct amdgpu_bo * bo,struct amdgpu_bo ** bo_gart)2230 int amdgpu_amdkfd_map_gtt_bo_to_gart(struct amdgpu_bo *bo, struct amdgpu_bo **bo_gart)
2231 {
2232 int ret;
2233
2234 ret = amdgpu_bo_reserve(bo, true);
2235 if (ret) {
2236 pr_err("Failed to reserve bo. ret %d\n", ret);
2237 goto err_reserve_bo_failed;
2238 }
2239
2240 ret = amdgpu_bo_pin(bo, AMDGPU_GEM_DOMAIN_GTT);
2241 if (ret) {
2242 pr_err("Failed to pin bo. ret %d\n", ret);
2243 goto err_pin_bo_failed;
2244 }
2245
2246 ret = amdgpu_ttm_alloc_gart(&bo->tbo);
2247 if (ret) {
2248 pr_err("Failed to bind bo to GART. ret %d\n", ret);
2249 goto err_map_bo_gart_failed;
2250 }
2251
2252 amdgpu_amdkfd_remove_eviction_fence(
2253 bo, bo->vm_bo->vm->process_info->eviction_fence);
2254
2255 amdgpu_bo_unreserve(bo);
2256
2257 *bo_gart = amdgpu_bo_ref(bo);
2258
2259 return 0;
2260
2261 err_map_bo_gart_failed:
2262 amdgpu_bo_unpin(bo);
2263 err_pin_bo_failed:
2264 amdgpu_bo_unreserve(bo);
2265 err_reserve_bo_failed:
2266
2267 return ret;
2268 }
2269
2270 /** amdgpu_amdkfd_gpuvm_map_gtt_bo_to_kernel() - Map a GTT BO for kernel CPU access
2271 *
2272 * @mem: Buffer object to be mapped for CPU access
2273 * @kptr[out]: pointer in kernel CPU address space
2274 * @size[out]: size of the buffer
2275 *
2276 * Pins the BO and maps it for kernel CPU access. The eviction fence is removed
2277 * from the BO, since pinned BOs cannot be evicted. The bo must remain on the
2278 * validate_list, so the GPU mapping can be restored after a page table was
2279 * evicted.
2280 *
2281 * Return: 0 on success, error code on failure
2282 */
amdgpu_amdkfd_gpuvm_map_gtt_bo_to_kernel(struct kgd_mem * mem,void ** kptr,uint64_t * size)2283 int amdgpu_amdkfd_gpuvm_map_gtt_bo_to_kernel(struct kgd_mem *mem,
2284 void **kptr, uint64_t *size)
2285 {
2286 int ret;
2287 struct amdgpu_bo *bo = mem->bo;
2288
2289 if (amdgpu_ttm_tt_get_usermm(bo->tbo.ttm)) {
2290 pr_err("userptr can't be mapped to kernel\n");
2291 return -EINVAL;
2292 }
2293
2294 mutex_lock(&mem->process_info->lock);
2295
2296 ret = amdgpu_bo_reserve(bo, true);
2297 if (ret) {
2298 pr_err("Failed to reserve bo. ret %d\n", ret);
2299 goto bo_reserve_failed;
2300 }
2301
2302 ret = amdgpu_bo_pin(bo, AMDGPU_GEM_DOMAIN_GTT);
2303 if (ret) {
2304 pr_err("Failed to pin bo. ret %d\n", ret);
2305 goto pin_failed;
2306 }
2307
2308 ret = amdgpu_bo_kmap(bo, kptr);
2309 if (ret) {
2310 pr_err("Failed to map bo to kernel. ret %d\n", ret);
2311 goto kmap_failed;
2312 }
2313
2314 amdgpu_amdkfd_remove_eviction_fence(
2315 bo, mem->process_info->eviction_fence);
2316
2317 if (size)
2318 *size = amdgpu_bo_size(bo);
2319
2320 amdgpu_bo_unreserve(bo);
2321
2322 mutex_unlock(&mem->process_info->lock);
2323 return 0;
2324
2325 kmap_failed:
2326 amdgpu_bo_unpin(bo);
2327 pin_failed:
2328 amdgpu_bo_unreserve(bo);
2329 bo_reserve_failed:
2330 mutex_unlock(&mem->process_info->lock);
2331
2332 return ret;
2333 }
2334
2335 /** amdgpu_amdkfd_gpuvm_map_gtt_bo_to_kernel() - Unmap a GTT BO for kernel CPU access
2336 *
2337 * @mem: Buffer object to be unmapped for CPU access
2338 *
2339 * Removes the kernel CPU mapping and unpins the BO. It does not restore the
2340 * eviction fence, so this function should only be used for cleanup before the
2341 * BO is destroyed.
2342 */
amdgpu_amdkfd_gpuvm_unmap_gtt_bo_from_kernel(struct kgd_mem * mem)2343 void amdgpu_amdkfd_gpuvm_unmap_gtt_bo_from_kernel(struct kgd_mem *mem)
2344 {
2345 struct amdgpu_bo *bo = mem->bo;
2346
2347 amdgpu_bo_reserve(bo, true);
2348 amdgpu_bo_kunmap(bo);
2349 amdgpu_bo_unpin(bo);
2350 amdgpu_bo_unreserve(bo);
2351 }
2352
amdgpu_amdkfd_gpuvm_get_vm_fault_info(struct amdgpu_device * adev,struct kfd_vm_fault_info * mem)2353 int amdgpu_amdkfd_gpuvm_get_vm_fault_info(struct amdgpu_device *adev,
2354 struct kfd_vm_fault_info *mem)
2355 {
2356 if (atomic_read(&adev->gmc.vm_fault_info_updated) == 1) {
2357 *mem = *adev->gmc.vm_fault_info;
2358 mb(); /* make sure read happened */
2359 atomic_set(&adev->gmc.vm_fault_info_updated, 0);
2360 }
2361 return 0;
2362 }
2363
import_obj_create(struct amdgpu_device * adev,struct dma_buf * dma_buf,struct drm_gem_object * obj,uint64_t va,void * drm_priv,struct kgd_mem ** mem,uint64_t * size,uint64_t * mmap_offset)2364 static int import_obj_create(struct amdgpu_device *adev,
2365 struct dma_buf *dma_buf,
2366 struct drm_gem_object *obj,
2367 uint64_t va, void *drm_priv,
2368 struct kgd_mem **mem, uint64_t *size,
2369 uint64_t *mmap_offset)
2370 {
2371 struct amdgpu_vm *avm = drm_priv_to_vm(drm_priv);
2372 struct amdgpu_bo *bo;
2373 int ret;
2374
2375 bo = gem_to_amdgpu_bo(obj);
2376 if (!(bo->preferred_domains & (AMDGPU_GEM_DOMAIN_VRAM |
2377 AMDGPU_GEM_DOMAIN_GTT)))
2378 /* Only VRAM and GTT BOs are supported */
2379 return -EINVAL;
2380
2381 *mem = kzalloc(sizeof(struct kgd_mem), GFP_KERNEL);
2382 if (!*mem)
2383 return -ENOMEM;
2384
2385 ret = drm_vma_node_allow(&obj->vma_node, drm_priv);
2386 if (ret)
2387 goto err_free_mem;
2388
2389 if (size)
2390 *size = amdgpu_bo_size(bo);
2391
2392 if (mmap_offset)
2393 *mmap_offset = amdgpu_bo_mmap_offset(bo);
2394
2395 INIT_LIST_HEAD(&(*mem)->attachments);
2396 mutex_init(&(*mem)->lock);
2397
2398 (*mem)->alloc_flags =
2399 ((bo->preferred_domains & AMDGPU_GEM_DOMAIN_VRAM) ?
2400 KFD_IOC_ALLOC_MEM_FLAGS_VRAM : KFD_IOC_ALLOC_MEM_FLAGS_GTT)
2401 | KFD_IOC_ALLOC_MEM_FLAGS_WRITABLE
2402 | KFD_IOC_ALLOC_MEM_FLAGS_EXECUTABLE;
2403
2404 get_dma_buf(dma_buf);
2405 (*mem)->dmabuf = dma_buf;
2406 (*mem)->bo = bo;
2407 (*mem)->va = va;
2408 (*mem)->domain = (bo->preferred_domains & AMDGPU_GEM_DOMAIN_VRAM) &&
2409 !(adev->flags & AMD_IS_APU) ?
2410 AMDGPU_GEM_DOMAIN_VRAM : AMDGPU_GEM_DOMAIN_GTT;
2411
2412 (*mem)->mapped_to_gpu_memory = 0;
2413 (*mem)->process_info = avm->process_info;
2414 add_kgd_mem_to_kfd_bo_list(*mem, avm->process_info, false);
2415 amdgpu_sync_create(&(*mem)->sync);
2416 (*mem)->is_imported = true;
2417
2418 mutex_lock(&avm->process_info->lock);
2419 if (avm->process_info->eviction_fence &&
2420 !dma_fence_is_signaled(&avm->process_info->eviction_fence->base))
2421 ret = amdgpu_amdkfd_bo_validate_and_fence(bo, (*mem)->domain,
2422 &avm->process_info->eviction_fence->base);
2423 mutex_unlock(&avm->process_info->lock);
2424 if (ret)
2425 goto err_remove_mem;
2426
2427 return 0;
2428
2429 err_remove_mem:
2430 remove_kgd_mem_from_kfd_bo_list(*mem, avm->process_info);
2431 drm_vma_node_revoke(&obj->vma_node, drm_priv);
2432 err_free_mem:
2433 kfree(*mem);
2434 return ret;
2435 }
2436
amdgpu_amdkfd_gpuvm_import_dmabuf_fd(struct amdgpu_device * adev,int fd,uint64_t va,void * drm_priv,struct kgd_mem ** mem,uint64_t * size,uint64_t * mmap_offset)2437 int amdgpu_amdkfd_gpuvm_import_dmabuf_fd(struct amdgpu_device *adev, int fd,
2438 uint64_t va, void *drm_priv,
2439 struct kgd_mem **mem, uint64_t *size,
2440 uint64_t *mmap_offset)
2441 {
2442 struct drm_gem_object *obj;
2443 uint32_t handle;
2444 int ret;
2445
2446 ret = drm_gem_prime_fd_to_handle(&adev->ddev, adev->kfd.client.file, fd,
2447 &handle);
2448 if (ret)
2449 return ret;
2450 obj = drm_gem_object_lookup(adev->kfd.client.file, handle);
2451 if (!obj) {
2452 ret = -EINVAL;
2453 goto err_release_handle;
2454 }
2455
2456 ret = import_obj_create(adev, obj->dma_buf, obj, va, drm_priv, mem, size,
2457 mmap_offset);
2458 if (ret)
2459 goto err_put_obj;
2460
2461 (*mem)->gem_handle = handle;
2462
2463 return 0;
2464
2465 err_put_obj:
2466 drm_gem_object_put(obj);
2467 err_release_handle:
2468 drm_gem_handle_delete(adev->kfd.client.file, handle);
2469 return ret;
2470 }
2471
amdgpu_amdkfd_gpuvm_export_dmabuf(struct kgd_mem * mem,struct dma_buf ** dma_buf)2472 int amdgpu_amdkfd_gpuvm_export_dmabuf(struct kgd_mem *mem,
2473 struct dma_buf **dma_buf)
2474 {
2475 int ret;
2476
2477 mutex_lock(&mem->lock);
2478 ret = kfd_mem_export_dmabuf(mem);
2479 if (ret)
2480 goto out;
2481
2482 get_dma_buf(mem->dmabuf);
2483 *dma_buf = mem->dmabuf;
2484 out:
2485 mutex_unlock(&mem->lock);
2486 return ret;
2487 }
2488
2489 /* Evict a userptr BO by stopping the queues if necessary
2490 *
2491 * Runs in MMU notifier, may be in RECLAIM_FS context. This means it
2492 * cannot do any memory allocations, and cannot take any locks that
2493 * are held elsewhere while allocating memory.
2494 *
2495 * It doesn't do anything to the BO itself. The real work happens in
2496 * restore, where we get updated page addresses. This function only
2497 * ensures that GPU access to the BO is stopped.
2498 */
amdgpu_amdkfd_evict_userptr(struct mmu_interval_notifier * mni,unsigned long cur_seq,struct kgd_mem * mem)2499 int amdgpu_amdkfd_evict_userptr(struct mmu_interval_notifier *mni,
2500 unsigned long cur_seq, struct kgd_mem *mem)
2501 {
2502 struct amdkfd_process_info *process_info = mem->process_info;
2503 int r = 0;
2504
2505 /* Do not process MMU notifications during CRIU restore until
2506 * KFD_CRIU_OP_RESUME IOCTL is received
2507 */
2508 if (READ_ONCE(process_info->block_mmu_notifications))
2509 return 0;
2510
2511 mutex_lock(&process_info->notifier_lock);
2512 mmu_interval_set_seq(mni, cur_seq);
2513
2514 mem->invalid++;
2515 if (++process_info->evicted_bos == 1) {
2516 /* First eviction, stop the queues */
2517 r = kgd2kfd_quiesce_mm(mni->mm,
2518 KFD_QUEUE_EVICTION_TRIGGER_USERPTR);
2519 if (r)
2520 pr_err("Failed to quiesce KFD\n");
2521 queue_delayed_work(system_freezable_wq,
2522 &process_info->restore_userptr_work,
2523 msecs_to_jiffies(AMDGPU_USERPTR_RESTORE_DELAY_MS));
2524 }
2525 mutex_unlock(&process_info->notifier_lock);
2526
2527 return r;
2528 }
2529
2530 /* Update invalid userptr BOs
2531 *
2532 * Moves invalidated (evicted) userptr BOs from userptr_valid_list to
2533 * userptr_inval_list and updates user pages for all BOs that have
2534 * been invalidated since their last update.
2535 */
update_invalid_user_pages(struct amdkfd_process_info * process_info,struct mm_struct * mm)2536 static int update_invalid_user_pages(struct amdkfd_process_info *process_info,
2537 struct mm_struct *mm)
2538 {
2539 struct kgd_mem *mem, *tmp_mem;
2540 struct amdgpu_bo *bo;
2541 struct ttm_operation_ctx ctx = { false, false };
2542 uint32_t invalid;
2543 int ret = 0;
2544
2545 mutex_lock(&process_info->notifier_lock);
2546
2547 /* Move all invalidated BOs to the userptr_inval_list */
2548 list_for_each_entry_safe(mem, tmp_mem,
2549 &process_info->userptr_valid_list,
2550 validate_list)
2551 if (mem->invalid)
2552 list_move_tail(&mem->validate_list,
2553 &process_info->userptr_inval_list);
2554
2555 /* Go through userptr_inval_list and update any invalid user_pages */
2556 list_for_each_entry(mem, &process_info->userptr_inval_list,
2557 validate_list) {
2558 invalid = mem->invalid;
2559 if (!invalid)
2560 /* BO hasn't been invalidated since the last
2561 * revalidation attempt. Keep its page list.
2562 */
2563 continue;
2564
2565 bo = mem->bo;
2566
2567 amdgpu_ttm_tt_discard_user_pages(bo->tbo.ttm, mem->range);
2568 mem->range = NULL;
2569
2570 /* BO reservations and getting user pages (hmm_range_fault)
2571 * must happen outside the notifier lock
2572 */
2573 mutex_unlock(&process_info->notifier_lock);
2574
2575 /* Move the BO to system (CPU) domain if necessary to unmap
2576 * and free the SG table
2577 */
2578 if (bo->tbo.resource->mem_type != TTM_PL_SYSTEM) {
2579 if (amdgpu_bo_reserve(bo, true))
2580 return -EAGAIN;
2581 amdgpu_bo_placement_from_domain(bo, AMDGPU_GEM_DOMAIN_CPU);
2582 ret = ttm_bo_validate(&bo->tbo, &bo->placement, &ctx);
2583 amdgpu_bo_unreserve(bo);
2584 if (ret) {
2585 pr_err("%s: Failed to invalidate userptr BO\n",
2586 __func__);
2587 return -EAGAIN;
2588 }
2589 }
2590
2591 /* Get updated user pages */
2592 ret = amdgpu_ttm_tt_get_user_pages(bo, bo->tbo.ttm->pages,
2593 &mem->range);
2594 if (ret) {
2595 pr_debug("Failed %d to get user pages\n", ret);
2596
2597 /* Return -EFAULT bad address error as success. It will
2598 * fail later with a VM fault if the GPU tries to access
2599 * it. Better than hanging indefinitely with stalled
2600 * user mode queues.
2601 *
2602 * Return other error -EBUSY or -ENOMEM to retry restore
2603 */
2604 if (ret != -EFAULT)
2605 return ret;
2606
2607 ret = 0;
2608 }
2609
2610 mutex_lock(&process_info->notifier_lock);
2611
2612 /* Mark the BO as valid unless it was invalidated
2613 * again concurrently.
2614 */
2615 if (mem->invalid != invalid) {
2616 ret = -EAGAIN;
2617 goto unlock_out;
2618 }
2619 /* set mem valid if mem has hmm range associated */
2620 if (mem->range)
2621 mem->invalid = 0;
2622 }
2623
2624 unlock_out:
2625 mutex_unlock(&process_info->notifier_lock);
2626
2627 return ret;
2628 }
2629
2630 /* Validate invalid userptr BOs
2631 *
2632 * Validates BOs on the userptr_inval_list. Also updates GPUVM page tables
2633 * with new page addresses and waits for the page table updates to complete.
2634 */
validate_invalid_user_pages(struct amdkfd_process_info * process_info)2635 static int validate_invalid_user_pages(struct amdkfd_process_info *process_info)
2636 {
2637 struct ttm_operation_ctx ctx = { false, false };
2638 struct amdgpu_sync sync;
2639 struct drm_exec exec;
2640
2641 struct amdgpu_vm *peer_vm;
2642 struct kgd_mem *mem, *tmp_mem;
2643 struct amdgpu_bo *bo;
2644 int ret;
2645
2646 amdgpu_sync_create(&sync);
2647
2648 drm_exec_init(&exec, 0, 0);
2649 /* Reserve all BOs and page tables for validation */
2650 drm_exec_until_all_locked(&exec) {
2651 /* Reserve all the page directories */
2652 list_for_each_entry(peer_vm, &process_info->vm_list_head,
2653 vm_list_node) {
2654 ret = amdgpu_vm_lock_pd(peer_vm, &exec, 2);
2655 drm_exec_retry_on_contention(&exec);
2656 if (unlikely(ret))
2657 goto unreserve_out;
2658 }
2659
2660 /* Reserve the userptr_inval_list entries to resv_list */
2661 list_for_each_entry(mem, &process_info->userptr_inval_list,
2662 validate_list) {
2663 struct drm_gem_object *gobj;
2664
2665 gobj = &mem->bo->tbo.base;
2666 ret = drm_exec_prepare_obj(&exec, gobj, 1);
2667 drm_exec_retry_on_contention(&exec);
2668 if (unlikely(ret))
2669 goto unreserve_out;
2670 }
2671 }
2672
2673 ret = process_validate_vms(process_info, NULL);
2674 if (ret)
2675 goto unreserve_out;
2676
2677 /* Validate BOs and update GPUVM page tables */
2678 list_for_each_entry_safe(mem, tmp_mem,
2679 &process_info->userptr_inval_list,
2680 validate_list) {
2681 struct kfd_mem_attachment *attachment;
2682
2683 bo = mem->bo;
2684
2685 /* Validate the BO if we got user pages */
2686 if (bo->tbo.ttm->pages[0]) {
2687 amdgpu_bo_placement_from_domain(bo, mem->domain);
2688 ret = ttm_bo_validate(&bo->tbo, &bo->placement, &ctx);
2689 if (ret) {
2690 pr_err("%s: failed to validate BO\n", __func__);
2691 goto unreserve_out;
2692 }
2693 }
2694
2695 /* Update mapping. If the BO was not validated
2696 * (because we couldn't get user pages), this will
2697 * clear the page table entries, which will result in
2698 * VM faults if the GPU tries to access the invalid
2699 * memory.
2700 */
2701 list_for_each_entry(attachment, &mem->attachments, list) {
2702 if (!attachment->is_mapped)
2703 continue;
2704
2705 kfd_mem_dmaunmap_attachment(mem, attachment);
2706 ret = update_gpuvm_pte(mem, attachment, &sync);
2707 if (ret) {
2708 pr_err("%s: update PTE failed\n", __func__);
2709 /* make sure this gets validated again */
2710 mutex_lock(&process_info->notifier_lock);
2711 mem->invalid++;
2712 mutex_unlock(&process_info->notifier_lock);
2713 goto unreserve_out;
2714 }
2715 }
2716 }
2717
2718 /* Update page directories */
2719 ret = process_update_pds(process_info, &sync);
2720
2721 unreserve_out:
2722 drm_exec_fini(&exec);
2723 amdgpu_sync_wait(&sync, false);
2724 amdgpu_sync_free(&sync);
2725
2726 return ret;
2727 }
2728
2729 /* Confirm that all user pages are valid while holding the notifier lock
2730 *
2731 * Moves valid BOs from the userptr_inval_list back to userptr_val_list.
2732 */
confirm_valid_user_pages_locked(struct amdkfd_process_info * process_info)2733 static int confirm_valid_user_pages_locked(struct amdkfd_process_info *process_info)
2734 {
2735 struct kgd_mem *mem, *tmp_mem;
2736 int ret = 0;
2737
2738 list_for_each_entry_safe(mem, tmp_mem,
2739 &process_info->userptr_inval_list,
2740 validate_list) {
2741 bool valid;
2742
2743 /* keep mem without hmm range at userptr_inval_list */
2744 if (!mem->range)
2745 continue;
2746
2747 /* Only check mem with hmm range associated */
2748 valid = amdgpu_ttm_tt_get_user_pages_done(
2749 mem->bo->tbo.ttm, mem->range);
2750
2751 mem->range = NULL;
2752 if (!valid) {
2753 WARN(!mem->invalid, "Invalid BO not marked invalid");
2754 ret = -EAGAIN;
2755 continue;
2756 }
2757
2758 if (mem->invalid) {
2759 WARN(1, "Valid BO is marked invalid");
2760 ret = -EAGAIN;
2761 continue;
2762 }
2763
2764 list_move_tail(&mem->validate_list,
2765 &process_info->userptr_valid_list);
2766 }
2767
2768 return ret;
2769 }
2770
2771 /* Worker callback to restore evicted userptr BOs
2772 *
2773 * Tries to update and validate all userptr BOs. If successful and no
2774 * concurrent evictions happened, the queues are restarted. Otherwise,
2775 * reschedule for another attempt later.
2776 */
amdgpu_amdkfd_restore_userptr_worker(struct work_struct * work)2777 static void amdgpu_amdkfd_restore_userptr_worker(struct work_struct *work)
2778 {
2779 struct delayed_work *dwork = to_delayed_work(work);
2780 struct amdkfd_process_info *process_info =
2781 container_of(dwork, struct amdkfd_process_info,
2782 restore_userptr_work);
2783 struct task_struct *usertask;
2784 struct mm_struct *mm;
2785 uint32_t evicted_bos;
2786
2787 mutex_lock(&process_info->notifier_lock);
2788 evicted_bos = process_info->evicted_bos;
2789 mutex_unlock(&process_info->notifier_lock);
2790 if (!evicted_bos)
2791 return;
2792
2793 /* Reference task and mm in case of concurrent process termination */
2794 usertask = get_pid_task(process_info->pid, PIDTYPE_PID);
2795 if (!usertask)
2796 return;
2797 mm = get_task_mm(usertask);
2798 if (!mm) {
2799 put_task_struct(usertask);
2800 return;
2801 }
2802
2803 mutex_lock(&process_info->lock);
2804
2805 if (update_invalid_user_pages(process_info, mm))
2806 goto unlock_out;
2807 /* userptr_inval_list can be empty if all evicted userptr BOs
2808 * have been freed. In that case there is nothing to validate
2809 * and we can just restart the queues.
2810 */
2811 if (!list_empty(&process_info->userptr_inval_list)) {
2812 if (validate_invalid_user_pages(process_info))
2813 goto unlock_out;
2814 }
2815 /* Final check for concurrent evicton and atomic update. If
2816 * another eviction happens after successful update, it will
2817 * be a first eviction that calls quiesce_mm. The eviction
2818 * reference counting inside KFD will handle this case.
2819 */
2820 mutex_lock(&process_info->notifier_lock);
2821 if (process_info->evicted_bos != evicted_bos)
2822 goto unlock_notifier_out;
2823
2824 if (confirm_valid_user_pages_locked(process_info)) {
2825 WARN(1, "User pages unexpectedly invalid");
2826 goto unlock_notifier_out;
2827 }
2828
2829 process_info->evicted_bos = evicted_bos = 0;
2830
2831 if (kgd2kfd_resume_mm(mm)) {
2832 pr_err("%s: Failed to resume KFD\n", __func__);
2833 /* No recovery from this failure. Probably the CP is
2834 * hanging. No point trying again.
2835 */
2836 }
2837
2838 unlock_notifier_out:
2839 mutex_unlock(&process_info->notifier_lock);
2840 unlock_out:
2841 mutex_unlock(&process_info->lock);
2842
2843 /* If validation failed, reschedule another attempt */
2844 if (evicted_bos) {
2845 queue_delayed_work(system_freezable_wq,
2846 &process_info->restore_userptr_work,
2847 msecs_to_jiffies(AMDGPU_USERPTR_RESTORE_DELAY_MS));
2848
2849 kfd_smi_event_queue_restore_rescheduled(mm);
2850 }
2851 mmput(mm);
2852 put_task_struct(usertask);
2853 }
2854
replace_eviction_fence(struct dma_fence __rcu ** ef,struct dma_fence * new_ef)2855 static void replace_eviction_fence(struct dma_fence __rcu **ef,
2856 struct dma_fence *new_ef)
2857 {
2858 struct dma_fence *old_ef = rcu_replace_pointer(*ef, new_ef, true
2859 /* protected by process_info->lock */);
2860
2861 /* If we're replacing an unsignaled eviction fence, that fence will
2862 * never be signaled, and if anyone is still waiting on that fence,
2863 * they will hang forever. This should never happen. We should only
2864 * replace the fence in restore_work that only gets scheduled after
2865 * eviction work signaled the fence.
2866 */
2867 WARN_ONCE(!dma_fence_is_signaled(old_ef),
2868 "Replacing unsignaled eviction fence");
2869 dma_fence_put(old_ef);
2870 }
2871
2872 /** amdgpu_amdkfd_gpuvm_restore_process_bos - Restore all BOs for the given
2873 * KFD process identified by process_info
2874 *
2875 * @process_info: amdkfd_process_info of the KFD process
2876 *
2877 * After memory eviction, restore thread calls this function. The function
2878 * should be called when the Process is still valid. BO restore involves -
2879 *
2880 * 1. Release old eviction fence and create new one
2881 * 2. Get two copies of PD BO list from all the VMs. Keep one copy as pd_list.
2882 * 3 Use the second PD list and kfd_bo_list to create a list (ctx.list) of
2883 * BOs that need to be reserved.
2884 * 4. Reserve all the BOs
2885 * 5. Validate of PD and PT BOs.
2886 * 6. Validate all KFD BOs using kfd_bo_list and Map them and add new fence
2887 * 7. Add fence to all PD and PT BOs.
2888 * 8. Unreserve all BOs
2889 */
amdgpu_amdkfd_gpuvm_restore_process_bos(void * info,struct dma_fence __rcu ** ef)2890 int amdgpu_amdkfd_gpuvm_restore_process_bos(void *info, struct dma_fence __rcu **ef)
2891 {
2892 struct amdkfd_process_info *process_info = info;
2893 struct amdgpu_vm *peer_vm;
2894 struct kgd_mem *mem;
2895 struct list_head duplicate_save;
2896 struct amdgpu_sync sync_obj;
2897 unsigned long failed_size = 0;
2898 unsigned long total_size = 0;
2899 struct drm_exec exec;
2900 int ret;
2901
2902 INIT_LIST_HEAD(&duplicate_save);
2903
2904 mutex_lock(&process_info->lock);
2905
2906 drm_exec_init(&exec, DRM_EXEC_IGNORE_DUPLICATES, 0);
2907 drm_exec_until_all_locked(&exec) {
2908 list_for_each_entry(peer_vm, &process_info->vm_list_head,
2909 vm_list_node) {
2910 ret = amdgpu_vm_lock_pd(peer_vm, &exec, 2);
2911 drm_exec_retry_on_contention(&exec);
2912 if (unlikely(ret)) {
2913 pr_err("Locking VM PD failed, ret: %d\n", ret);
2914 goto ttm_reserve_fail;
2915 }
2916 }
2917
2918 /* Reserve all BOs and page tables/directory. Add all BOs from
2919 * kfd_bo_list to ctx.list
2920 */
2921 list_for_each_entry(mem, &process_info->kfd_bo_list,
2922 validate_list) {
2923 struct drm_gem_object *gobj;
2924
2925 gobj = &mem->bo->tbo.base;
2926 ret = drm_exec_prepare_obj(&exec, gobj, 1);
2927 drm_exec_retry_on_contention(&exec);
2928 if (unlikely(ret)) {
2929 pr_err("drm_exec_prepare_obj failed, ret: %d\n", ret);
2930 goto ttm_reserve_fail;
2931 }
2932 }
2933 }
2934
2935 amdgpu_sync_create(&sync_obj);
2936
2937 /* Validate BOs managed by KFD */
2938 list_for_each_entry(mem, &process_info->kfd_bo_list,
2939 validate_list) {
2940
2941 struct amdgpu_bo *bo = mem->bo;
2942 uint32_t domain = mem->domain;
2943 struct dma_resv_iter cursor;
2944 struct dma_fence *fence;
2945
2946 total_size += amdgpu_bo_size(bo);
2947
2948 ret = amdgpu_amdkfd_bo_validate(bo, domain, false);
2949 if (ret) {
2950 pr_debug("Memory eviction: Validate BOs failed\n");
2951 failed_size += amdgpu_bo_size(bo);
2952 ret = amdgpu_amdkfd_bo_validate(bo,
2953 AMDGPU_GEM_DOMAIN_GTT, false);
2954 if (ret) {
2955 pr_debug("Memory eviction: Try again\n");
2956 goto validate_map_fail;
2957 }
2958 }
2959 dma_resv_for_each_fence(&cursor, bo->tbo.base.resv,
2960 DMA_RESV_USAGE_KERNEL, fence) {
2961 ret = amdgpu_sync_fence(&sync_obj, fence);
2962 if (ret) {
2963 pr_debug("Memory eviction: Sync BO fence failed. Try again\n");
2964 goto validate_map_fail;
2965 }
2966 }
2967 }
2968
2969 if (failed_size)
2970 pr_debug("0x%lx/0x%lx in system\n", failed_size, total_size);
2971
2972 /* Validate PDs, PTs and evicted DMABuf imports last. Otherwise BO
2973 * validations above would invalidate DMABuf imports again.
2974 */
2975 ret = process_validate_vms(process_info, &exec.ticket);
2976 if (ret) {
2977 pr_debug("Validating VMs failed, ret: %d\n", ret);
2978 goto validate_map_fail;
2979 }
2980
2981 /* Update mappings managed by KFD. */
2982 list_for_each_entry(mem, &process_info->kfd_bo_list,
2983 validate_list) {
2984 struct kfd_mem_attachment *attachment;
2985
2986 list_for_each_entry(attachment, &mem->attachments, list) {
2987 if (!attachment->is_mapped)
2988 continue;
2989
2990 kfd_mem_dmaunmap_attachment(mem, attachment);
2991 ret = update_gpuvm_pte(mem, attachment, &sync_obj);
2992 if (ret) {
2993 pr_debug("Memory eviction: update PTE failed. Try again\n");
2994 goto validate_map_fail;
2995 }
2996 }
2997 }
2998
2999 /* Update mappings not managed by KFD */
3000 list_for_each_entry(peer_vm, &process_info->vm_list_head,
3001 vm_list_node) {
3002 struct amdgpu_device *adev = amdgpu_ttm_adev(
3003 peer_vm->root.bo->tbo.bdev);
3004
3005 ret = amdgpu_vm_handle_moved(adev, peer_vm, &exec.ticket);
3006 if (ret) {
3007 pr_debug("Memory eviction: handle moved failed. Try again\n");
3008 goto validate_map_fail;
3009 }
3010 }
3011
3012 /* Update page directories */
3013 ret = process_update_pds(process_info, &sync_obj);
3014 if (ret) {
3015 pr_debug("Memory eviction: update PDs failed. Try again\n");
3016 goto validate_map_fail;
3017 }
3018
3019 /* Sync with fences on all the page tables. They implicitly depend on any
3020 * move fences from amdgpu_vm_handle_moved above.
3021 */
3022 ret = process_sync_pds_resv(process_info, &sync_obj);
3023 if (ret) {
3024 pr_debug("Memory eviction: Failed to sync to PD BO moving fence. Try again\n");
3025 goto validate_map_fail;
3026 }
3027
3028 /* Wait for validate and PT updates to finish */
3029 amdgpu_sync_wait(&sync_obj, false);
3030
3031 /* The old eviction fence may be unsignaled if restore happens
3032 * after a GPU reset or suspend/resume. Keep the old fence in that
3033 * case. Otherwise release the old eviction fence and create new
3034 * one, because fence only goes from unsignaled to signaled once
3035 * and cannot be reused. Use context and mm from the old fence.
3036 *
3037 * If an old eviction fence signals after this check, that's OK.
3038 * Anyone signaling an eviction fence must stop the queues first
3039 * and schedule another restore worker.
3040 */
3041 if (dma_fence_is_signaled(&process_info->eviction_fence->base)) {
3042 struct amdgpu_amdkfd_fence *new_fence =
3043 amdgpu_amdkfd_fence_create(
3044 process_info->eviction_fence->base.context,
3045 process_info->eviction_fence->mm,
3046 NULL);
3047
3048 if (!new_fence) {
3049 pr_err("Failed to create eviction fence\n");
3050 ret = -ENOMEM;
3051 goto validate_map_fail;
3052 }
3053 dma_fence_put(&process_info->eviction_fence->base);
3054 process_info->eviction_fence = new_fence;
3055 replace_eviction_fence(ef, dma_fence_get(&new_fence->base));
3056 } else {
3057 WARN_ONCE(*ef != &process_info->eviction_fence->base,
3058 "KFD eviction fence doesn't match KGD process_info");
3059 }
3060
3061 /* Attach new eviction fence to all BOs except pinned ones */
3062 list_for_each_entry(mem, &process_info->kfd_bo_list, validate_list) {
3063 if (mem->bo->tbo.pin_count)
3064 continue;
3065
3066 dma_resv_add_fence(mem->bo->tbo.base.resv,
3067 &process_info->eviction_fence->base,
3068 DMA_RESV_USAGE_BOOKKEEP);
3069 }
3070 /* Attach eviction fence to PD / PT BOs and DMABuf imports */
3071 list_for_each_entry(peer_vm, &process_info->vm_list_head,
3072 vm_list_node) {
3073 struct amdgpu_bo *bo = peer_vm->root.bo;
3074
3075 dma_resv_add_fence(bo->tbo.base.resv,
3076 &process_info->eviction_fence->base,
3077 DMA_RESV_USAGE_BOOKKEEP);
3078 }
3079
3080 validate_map_fail:
3081 amdgpu_sync_free(&sync_obj);
3082 ttm_reserve_fail:
3083 drm_exec_fini(&exec);
3084 mutex_unlock(&process_info->lock);
3085 return ret;
3086 }
3087
amdgpu_amdkfd_add_gws_to_process(void * info,void * gws,struct kgd_mem ** mem)3088 int amdgpu_amdkfd_add_gws_to_process(void *info, void *gws, struct kgd_mem **mem)
3089 {
3090 struct amdkfd_process_info *process_info = (struct amdkfd_process_info *)info;
3091 struct amdgpu_bo *gws_bo = (struct amdgpu_bo *)gws;
3092 int ret;
3093
3094 if (!info || !gws)
3095 return -EINVAL;
3096
3097 *mem = kzalloc(sizeof(struct kgd_mem), GFP_KERNEL);
3098 if (!*mem)
3099 return -ENOMEM;
3100
3101 mutex_init(&(*mem)->lock);
3102 INIT_LIST_HEAD(&(*mem)->attachments);
3103 (*mem)->bo = amdgpu_bo_ref(gws_bo);
3104 (*mem)->domain = AMDGPU_GEM_DOMAIN_GWS;
3105 (*mem)->process_info = process_info;
3106 add_kgd_mem_to_kfd_bo_list(*mem, process_info, false);
3107 amdgpu_sync_create(&(*mem)->sync);
3108
3109
3110 /* Validate gws bo the first time it is added to process */
3111 mutex_lock(&(*mem)->process_info->lock);
3112 ret = amdgpu_bo_reserve(gws_bo, false);
3113 if (unlikely(ret)) {
3114 pr_err("Reserve gws bo failed %d\n", ret);
3115 goto bo_reservation_failure;
3116 }
3117
3118 ret = amdgpu_amdkfd_bo_validate(gws_bo, AMDGPU_GEM_DOMAIN_GWS, true);
3119 if (ret) {
3120 pr_err("GWS BO validate failed %d\n", ret);
3121 goto bo_validation_failure;
3122 }
3123 /* GWS resource is shared b/t amdgpu and amdkfd
3124 * Add process eviction fence to bo so they can
3125 * evict each other.
3126 */
3127 ret = dma_resv_reserve_fences(gws_bo->tbo.base.resv, 1);
3128 if (ret)
3129 goto reserve_shared_fail;
3130 dma_resv_add_fence(gws_bo->tbo.base.resv,
3131 &process_info->eviction_fence->base,
3132 DMA_RESV_USAGE_BOOKKEEP);
3133 amdgpu_bo_unreserve(gws_bo);
3134 mutex_unlock(&(*mem)->process_info->lock);
3135
3136 return ret;
3137
3138 reserve_shared_fail:
3139 bo_validation_failure:
3140 amdgpu_bo_unreserve(gws_bo);
3141 bo_reservation_failure:
3142 mutex_unlock(&(*mem)->process_info->lock);
3143 amdgpu_sync_free(&(*mem)->sync);
3144 remove_kgd_mem_from_kfd_bo_list(*mem, process_info);
3145 amdgpu_bo_unref(&gws_bo);
3146 mutex_destroy(&(*mem)->lock);
3147 kfree(*mem);
3148 *mem = NULL;
3149 return ret;
3150 }
3151
amdgpu_amdkfd_remove_gws_from_process(void * info,void * mem)3152 int amdgpu_amdkfd_remove_gws_from_process(void *info, void *mem)
3153 {
3154 int ret;
3155 struct amdkfd_process_info *process_info = (struct amdkfd_process_info *)info;
3156 struct kgd_mem *kgd_mem = (struct kgd_mem *)mem;
3157 struct amdgpu_bo *gws_bo = kgd_mem->bo;
3158
3159 /* Remove BO from process's validate list so restore worker won't touch
3160 * it anymore
3161 */
3162 remove_kgd_mem_from_kfd_bo_list(kgd_mem, process_info);
3163
3164 ret = amdgpu_bo_reserve(gws_bo, false);
3165 if (unlikely(ret)) {
3166 pr_err("Reserve gws bo failed %d\n", ret);
3167 //TODO add BO back to validate_list?
3168 return ret;
3169 }
3170 amdgpu_amdkfd_remove_eviction_fence(gws_bo,
3171 process_info->eviction_fence);
3172 amdgpu_bo_unreserve(gws_bo);
3173 amdgpu_sync_free(&kgd_mem->sync);
3174 amdgpu_bo_unref(&gws_bo);
3175 mutex_destroy(&kgd_mem->lock);
3176 kfree(mem);
3177 return 0;
3178 }
3179
3180 /* Returns GPU-specific tiling mode information */
amdgpu_amdkfd_get_tile_config(struct amdgpu_device * adev,struct tile_config * config)3181 int amdgpu_amdkfd_get_tile_config(struct amdgpu_device *adev,
3182 struct tile_config *config)
3183 {
3184 config->gb_addr_config = adev->gfx.config.gb_addr_config;
3185 config->tile_config_ptr = adev->gfx.config.tile_mode_array;
3186 config->num_tile_configs =
3187 ARRAY_SIZE(adev->gfx.config.tile_mode_array);
3188 config->macro_tile_config_ptr =
3189 adev->gfx.config.macrotile_mode_array;
3190 config->num_macro_tile_configs =
3191 ARRAY_SIZE(adev->gfx.config.macrotile_mode_array);
3192
3193 /* Those values are not set from GFX9 onwards */
3194 config->num_banks = adev->gfx.config.num_banks;
3195 config->num_ranks = adev->gfx.config.num_ranks;
3196
3197 return 0;
3198 }
3199
amdgpu_amdkfd_bo_mapped_to_dev(void * drm_priv,struct kgd_mem * mem)3200 bool amdgpu_amdkfd_bo_mapped_to_dev(void *drm_priv, struct kgd_mem *mem)
3201 {
3202 struct amdgpu_vm *vm = drm_priv_to_vm(drm_priv);
3203 struct kfd_mem_attachment *entry;
3204
3205 list_for_each_entry(entry, &mem->attachments, list) {
3206 if (entry->is_mapped && entry->bo_va->base.vm == vm)
3207 return true;
3208 }
3209 return false;
3210 }
3211
3212 #if defined(CONFIG_DEBUG_FS)
3213
kfd_debugfs_kfd_mem_limits(struct seq_file * m,void * data)3214 int kfd_debugfs_kfd_mem_limits(struct seq_file *m, void *data)
3215 {
3216
3217 spin_lock(&kfd_mem_limit.mem_limit_lock);
3218 seq_printf(m, "System mem used %lldM out of %lluM\n",
3219 (kfd_mem_limit.system_mem_used >> 20),
3220 (kfd_mem_limit.max_system_mem_limit >> 20));
3221 seq_printf(m, "TTM mem used %lldM out of %lluM\n",
3222 (kfd_mem_limit.ttm_mem_used >> 20),
3223 (kfd_mem_limit.max_ttm_mem_limit >> 20));
3224 spin_unlock(&kfd_mem_limit.mem_limit_lock);
3225
3226 return 0;
3227 }
3228
3229 #endif
3230