• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0 OR MIT
2 /*
3  * Copyright 2014-2022 Advanced Micro Devices, Inc.
4  *
5  * Permission is hereby granted, free of charge, to any person obtaining a
6  * copy of this software and associated documentation files (the "Software"),
7  * to deal in the Software without restriction, including without limitation
8  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
9  * and/or sell copies of the Software, and to permit persons to whom the
10  * Software is furnished to do so, subject to the following conditions:
11  *
12  * The above copyright notice and this permission notice shall be included in
13  * all copies or substantial portions of the Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
19  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
20  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
21  * OTHER DEALINGS IN THE SOFTWARE.
22  */
23 
24 #include <linux/bsearch.h>
25 #include <linux/pci.h>
26 #include <linux/slab.h>
27 #include "kfd_priv.h"
28 #include "kfd_device_queue_manager.h"
29 #include "kfd_pm4_headers_vi.h"
30 #include "kfd_pm4_headers_aldebaran.h"
31 #include "cwsr_trap_handler.h"
32 #include "amdgpu_amdkfd.h"
33 #include "kfd_smi_events.h"
34 #include "kfd_svm.h"
35 #include "kfd_migrate.h"
36 #include "amdgpu.h"
37 #include "amdgpu_xcp.h"
38 
39 #define MQD_SIZE_ALIGNED 768
40 
41 /*
42  * kfd_locked is used to lock the kfd driver during suspend or reset
43  * once locked, kfd driver will stop any further GPU execution.
44  * create process (open) will return -EAGAIN.
45  */
46 static int kfd_locked;
47 
48 #ifdef CONFIG_DRM_AMDGPU_CIK
49 extern const struct kfd2kgd_calls gfx_v7_kfd2kgd;
50 #endif
51 extern const struct kfd2kgd_calls gfx_v8_kfd2kgd;
52 extern const struct kfd2kgd_calls gfx_v9_kfd2kgd;
53 extern const struct kfd2kgd_calls arcturus_kfd2kgd;
54 extern const struct kfd2kgd_calls aldebaran_kfd2kgd;
55 extern const struct kfd2kgd_calls gc_9_4_3_kfd2kgd;
56 extern const struct kfd2kgd_calls gfx_v10_kfd2kgd;
57 extern const struct kfd2kgd_calls gfx_v10_3_kfd2kgd;
58 extern const struct kfd2kgd_calls gfx_v11_kfd2kgd;
59 extern const struct kfd2kgd_calls gfx_v12_kfd2kgd;
60 
61 static int kfd_gtt_sa_init(struct kfd_dev *kfd, unsigned int buf_size,
62 				unsigned int chunk_size);
63 static void kfd_gtt_sa_fini(struct kfd_dev *kfd);
64 
65 static int kfd_resume(struct kfd_node *kfd);
66 
kfd_device_info_set_sdma_info(struct kfd_dev * kfd)67 static void kfd_device_info_set_sdma_info(struct kfd_dev *kfd)
68 {
69 	uint32_t sdma_version = amdgpu_ip_version(kfd->adev, SDMA0_HWIP, 0);
70 
71 	switch (sdma_version) {
72 	case IP_VERSION(4, 0, 0):/* VEGA10 */
73 	case IP_VERSION(4, 0, 1):/* VEGA12 */
74 	case IP_VERSION(4, 1, 0):/* RAVEN */
75 	case IP_VERSION(4, 1, 1):/* RAVEN */
76 	case IP_VERSION(4, 1, 2):/* RENOIR */
77 	case IP_VERSION(5, 2, 1):/* VANGOGH */
78 	case IP_VERSION(5, 2, 3):/* YELLOW_CARP */
79 	case IP_VERSION(5, 2, 6):/* GC 10.3.6 */
80 	case IP_VERSION(5, 2, 7):/* GC 10.3.7 */
81 		kfd->device_info.num_sdma_queues_per_engine = 2;
82 		break;
83 	case IP_VERSION(4, 2, 0):/* VEGA20 */
84 	case IP_VERSION(4, 2, 2):/* ARCTURUS */
85 	case IP_VERSION(4, 4, 0):/* ALDEBARAN */
86 	case IP_VERSION(4, 4, 2):
87 	case IP_VERSION(4, 4, 5):
88 	case IP_VERSION(5, 0, 0):/* NAVI10 */
89 	case IP_VERSION(5, 0, 1):/* CYAN_SKILLFISH */
90 	case IP_VERSION(5, 0, 2):/* NAVI14 */
91 	case IP_VERSION(5, 0, 5):/* NAVI12 */
92 	case IP_VERSION(5, 2, 0):/* SIENNA_CICHLID */
93 	case IP_VERSION(5, 2, 2):/* NAVY_FLOUNDER */
94 	case IP_VERSION(5, 2, 4):/* DIMGREY_CAVEFISH */
95 	case IP_VERSION(5, 2, 5):/* BEIGE_GOBY */
96 	case IP_VERSION(6, 0, 0):
97 	case IP_VERSION(6, 0, 1):
98 	case IP_VERSION(6, 0, 2):
99 	case IP_VERSION(6, 0, 3):
100 	case IP_VERSION(6, 1, 0):
101 	case IP_VERSION(6, 1, 1):
102 	case IP_VERSION(6, 1, 2):
103 	case IP_VERSION(7, 0, 0):
104 	case IP_VERSION(7, 0, 1):
105 		kfd->device_info.num_sdma_queues_per_engine = 8;
106 		break;
107 	default:
108 		dev_warn(kfd_device,
109 			"Default sdma queue per engine(8) is set due to mismatch of sdma ip block(SDMA_HWIP:0x%x).\n",
110 			sdma_version);
111 		kfd->device_info.num_sdma_queues_per_engine = 8;
112 	}
113 
114 	bitmap_zero(kfd->device_info.reserved_sdma_queues_bitmap, KFD_MAX_SDMA_QUEUES);
115 
116 	switch (sdma_version) {
117 	case IP_VERSION(6, 0, 0):
118 	case IP_VERSION(6, 0, 1):
119 	case IP_VERSION(6, 0, 2):
120 	case IP_VERSION(6, 0, 3):
121 	case IP_VERSION(6, 1, 0):
122 	case IP_VERSION(6, 1, 1):
123 	case IP_VERSION(6, 1, 2):
124 	case IP_VERSION(7, 0, 0):
125 	case IP_VERSION(7, 0, 1):
126 		/* Reserve 1 for paging and 1 for gfx */
127 		kfd->device_info.num_reserved_sdma_queues_per_engine = 2;
128 		/* BIT(0)=engine-0 queue-0; BIT(1)=engine-1 queue-0; BIT(2)=engine-0 queue-1; ... */
129 		bitmap_set(kfd->device_info.reserved_sdma_queues_bitmap, 0,
130 			   kfd->adev->sdma.num_instances *
131 			   kfd->device_info.num_reserved_sdma_queues_per_engine);
132 		break;
133 	default:
134 		break;
135 	}
136 }
137 
kfd_device_info_set_event_interrupt_class(struct kfd_dev * kfd)138 static void kfd_device_info_set_event_interrupt_class(struct kfd_dev *kfd)
139 {
140 	uint32_t gc_version = KFD_GC_VERSION(kfd);
141 
142 	switch (gc_version) {
143 	case IP_VERSION(9, 0, 1): /* VEGA10 */
144 	case IP_VERSION(9, 1, 0): /* RAVEN */
145 	case IP_VERSION(9, 2, 1): /* VEGA12 */
146 	case IP_VERSION(9, 2, 2): /* RAVEN */
147 	case IP_VERSION(9, 3, 0): /* RENOIR */
148 	case IP_VERSION(9, 4, 0): /* VEGA20 */
149 	case IP_VERSION(9, 4, 1): /* ARCTURUS */
150 	case IP_VERSION(9, 4, 2): /* ALDEBARAN */
151 		kfd->device_info.event_interrupt_class = &event_interrupt_class_v9;
152 		break;
153 	case IP_VERSION(9, 4, 3): /* GC 9.4.3 */
154 	case IP_VERSION(9, 4, 4): /* GC 9.4.4 */
155 		kfd->device_info.event_interrupt_class =
156 						&event_interrupt_class_v9_4_3;
157 		break;
158 	case IP_VERSION(10, 3, 1): /* VANGOGH */
159 	case IP_VERSION(10, 3, 3): /* YELLOW_CARP */
160 	case IP_VERSION(10, 3, 6): /* GC 10.3.6 */
161 	case IP_VERSION(10, 3, 7): /* GC 10.3.7 */
162 	case IP_VERSION(10, 1, 3): /* CYAN_SKILLFISH */
163 	case IP_VERSION(10, 1, 4):
164 	case IP_VERSION(10, 1, 10): /* NAVI10 */
165 	case IP_VERSION(10, 1, 2): /* NAVI12 */
166 	case IP_VERSION(10, 1, 1): /* NAVI14 */
167 	case IP_VERSION(10, 3, 0): /* SIENNA_CICHLID */
168 	case IP_VERSION(10, 3, 2): /* NAVY_FLOUNDER */
169 	case IP_VERSION(10, 3, 4): /* DIMGREY_CAVEFISH */
170 	case IP_VERSION(10, 3, 5): /* BEIGE_GOBY */
171 		kfd->device_info.event_interrupt_class = &event_interrupt_class_v10;
172 		break;
173 	case IP_VERSION(11, 0, 0):
174 	case IP_VERSION(11, 0, 1):
175 	case IP_VERSION(11, 0, 2):
176 	case IP_VERSION(11, 0, 3):
177 	case IP_VERSION(11, 0, 4):
178 	case IP_VERSION(11, 5, 0):
179 	case IP_VERSION(11, 5, 1):
180 	case IP_VERSION(11, 5, 2):
181 		kfd->device_info.event_interrupt_class = &event_interrupt_class_v11;
182 		break;
183 	case IP_VERSION(12, 0, 0):
184 	case IP_VERSION(12, 0, 1):
185 		/* GFX12_TODO: Change to v12 version. */
186 		kfd->device_info.event_interrupt_class = &event_interrupt_class_v11;
187 		break;
188 	default:
189 		dev_warn(kfd_device, "v9 event interrupt handler is set due to "
190 			"mismatch of gc ip block(GC_HWIP:0x%x).\n", gc_version);
191 		kfd->device_info.event_interrupt_class = &event_interrupt_class_v9;
192 	}
193 }
194 
kfd_device_info_init(struct kfd_dev * kfd,bool vf,uint32_t gfx_target_version)195 static void kfd_device_info_init(struct kfd_dev *kfd,
196 				 bool vf, uint32_t gfx_target_version)
197 {
198 	uint32_t gc_version = KFD_GC_VERSION(kfd);
199 	uint32_t asic_type = kfd->adev->asic_type;
200 
201 	kfd->device_info.max_pasid_bits = 16;
202 	kfd->device_info.max_no_of_hqd = 24;
203 	kfd->device_info.num_of_watch_points = 4;
204 	kfd->device_info.mqd_size_aligned = MQD_SIZE_ALIGNED;
205 	kfd->device_info.gfx_target_version = gfx_target_version;
206 
207 	if (KFD_IS_SOC15(kfd)) {
208 		kfd->device_info.doorbell_size = 8;
209 		kfd->device_info.ih_ring_entry_size = 8 * sizeof(uint32_t);
210 		kfd->device_info.supports_cwsr = true;
211 
212 		kfd_device_info_set_sdma_info(kfd);
213 
214 		kfd_device_info_set_event_interrupt_class(kfd);
215 
216 		if (gc_version < IP_VERSION(11, 0, 0)) {
217 			/* Navi2x+, Navi1x+ */
218 			if (gc_version == IP_VERSION(10, 3, 6))
219 				kfd->device_info.no_atomic_fw_version = 14;
220 			else if (gc_version == IP_VERSION(10, 3, 7))
221 				kfd->device_info.no_atomic_fw_version = 3;
222 			else if (gc_version >= IP_VERSION(10, 3, 0))
223 				kfd->device_info.no_atomic_fw_version = 92;
224 			else if (gc_version >= IP_VERSION(10, 1, 1))
225 				kfd->device_info.no_atomic_fw_version = 145;
226 
227 			/* Navi1x+ */
228 			if (gc_version >= IP_VERSION(10, 1, 1))
229 				kfd->device_info.needs_pci_atomics = true;
230 		} else if (gc_version < IP_VERSION(12, 0, 0)) {
231 			/*
232 			 * PCIe atomics support acknowledgment in GFX11 RS64 CPFW requires
233 			 * MEC version >= 509. Prior RS64 CPFW versions (and all F32) require
234 			 * PCIe atomics support.
235 			 */
236 			kfd->device_info.needs_pci_atomics = true;
237 			kfd->device_info.no_atomic_fw_version = kfd->adev->gfx.rs64_enable ? 509 : 0;
238 		} else if (gc_version < IP_VERSION(13, 0, 0)) {
239 			kfd->device_info.needs_pci_atomics = true;
240 			kfd->device_info.no_atomic_fw_version = 2090;
241 		} else {
242 			kfd->device_info.needs_pci_atomics = true;
243 		}
244 	} else {
245 		kfd->device_info.doorbell_size = 4;
246 		kfd->device_info.ih_ring_entry_size = 4 * sizeof(uint32_t);
247 		kfd->device_info.event_interrupt_class = &event_interrupt_class_cik;
248 		kfd->device_info.num_sdma_queues_per_engine = 2;
249 
250 		if (asic_type != CHIP_KAVERI &&
251 		    asic_type != CHIP_HAWAII &&
252 		    asic_type != CHIP_TONGA)
253 			kfd->device_info.supports_cwsr = true;
254 
255 		if (asic_type != CHIP_HAWAII && !vf)
256 			kfd->device_info.needs_pci_atomics = true;
257 	}
258 }
259 
kgd2kfd_probe(struct amdgpu_device * adev,bool vf)260 struct kfd_dev *kgd2kfd_probe(struct amdgpu_device *adev, bool vf)
261 {
262 	struct kfd_dev *kfd = NULL;
263 	const struct kfd2kgd_calls *f2g = NULL;
264 	uint32_t gfx_target_version = 0;
265 
266 	switch (adev->asic_type) {
267 #ifdef CONFIG_DRM_AMDGPU_CIK
268 	case CHIP_KAVERI:
269 		gfx_target_version = 70000;
270 		if (!vf)
271 			f2g = &gfx_v7_kfd2kgd;
272 		break;
273 #endif
274 	case CHIP_CARRIZO:
275 		gfx_target_version = 80001;
276 		if (!vf)
277 			f2g = &gfx_v8_kfd2kgd;
278 		break;
279 #ifdef CONFIG_DRM_AMDGPU_CIK
280 	case CHIP_HAWAII:
281 		gfx_target_version = 70001;
282 		if (!amdgpu_exp_hw_support)
283 			pr_info(
284 	"KFD support on Hawaii is experimental. See modparam exp_hw_support\n"
285 				);
286 		else if (!vf)
287 			f2g = &gfx_v7_kfd2kgd;
288 		break;
289 #endif
290 	case CHIP_TONGA:
291 		gfx_target_version = 80002;
292 		if (!vf)
293 			f2g = &gfx_v8_kfd2kgd;
294 		break;
295 	case CHIP_FIJI:
296 	case CHIP_POLARIS10:
297 		gfx_target_version = 80003;
298 		f2g = &gfx_v8_kfd2kgd;
299 		break;
300 	case CHIP_POLARIS11:
301 	case CHIP_POLARIS12:
302 	case CHIP_VEGAM:
303 		gfx_target_version = 80003;
304 		if (!vf)
305 			f2g = &gfx_v8_kfd2kgd;
306 		break;
307 	default:
308 		switch (amdgpu_ip_version(adev, GC_HWIP, 0)) {
309 		/* Vega 10 */
310 		case IP_VERSION(9, 0, 1):
311 			gfx_target_version = 90000;
312 			f2g = &gfx_v9_kfd2kgd;
313 			break;
314 		/* Raven */
315 		case IP_VERSION(9, 1, 0):
316 		case IP_VERSION(9, 2, 2):
317 			gfx_target_version = 90002;
318 			if (!vf)
319 				f2g = &gfx_v9_kfd2kgd;
320 			break;
321 		/* Vega12 */
322 		case IP_VERSION(9, 2, 1):
323 			gfx_target_version = 90004;
324 			if (!vf)
325 				f2g = &gfx_v9_kfd2kgd;
326 			break;
327 		/* Renoir */
328 		case IP_VERSION(9, 3, 0):
329 			gfx_target_version = 90012;
330 			if (!vf)
331 				f2g = &gfx_v9_kfd2kgd;
332 			break;
333 		/* Vega20 */
334 		case IP_VERSION(9, 4, 0):
335 			gfx_target_version = 90006;
336 			if (!vf)
337 				f2g = &gfx_v9_kfd2kgd;
338 			break;
339 		/* Arcturus */
340 		case IP_VERSION(9, 4, 1):
341 			gfx_target_version = 90008;
342 			f2g = &arcturus_kfd2kgd;
343 			break;
344 		/* Aldebaran */
345 		case IP_VERSION(9, 4, 2):
346 			gfx_target_version = 90010;
347 			f2g = &aldebaran_kfd2kgd;
348 			break;
349 		case IP_VERSION(9, 4, 3):
350 			gfx_target_version = adev->rev_id >= 1 ? 90402
351 					   : adev->flags & AMD_IS_APU ? 90400
352 					   : 90401;
353 			f2g = &gc_9_4_3_kfd2kgd;
354 			break;
355 		case IP_VERSION(9, 4, 4):
356 			gfx_target_version = 90402;
357 			f2g = &gc_9_4_3_kfd2kgd;
358 			break;
359 		/* Navi10 */
360 		case IP_VERSION(10, 1, 10):
361 			gfx_target_version = 100100;
362 			if (!vf)
363 				f2g = &gfx_v10_kfd2kgd;
364 			break;
365 		/* Navi12 */
366 		case IP_VERSION(10, 1, 2):
367 			gfx_target_version = 100101;
368 			f2g = &gfx_v10_kfd2kgd;
369 			break;
370 		/* Navi14 */
371 		case IP_VERSION(10, 1, 1):
372 			gfx_target_version = 100102;
373 			if (!vf)
374 				f2g = &gfx_v10_kfd2kgd;
375 			break;
376 		/* Cyan Skillfish */
377 		case IP_VERSION(10, 1, 3):
378 		case IP_VERSION(10, 1, 4):
379 			gfx_target_version = 100103;
380 			if (!vf)
381 				f2g = &gfx_v10_kfd2kgd;
382 			break;
383 		/* Sienna Cichlid */
384 		case IP_VERSION(10, 3, 0):
385 			gfx_target_version = 100300;
386 			f2g = &gfx_v10_3_kfd2kgd;
387 			break;
388 		/* Navy Flounder */
389 		case IP_VERSION(10, 3, 2):
390 			gfx_target_version = 100301;
391 			f2g = &gfx_v10_3_kfd2kgd;
392 			break;
393 		/* Van Gogh */
394 		case IP_VERSION(10, 3, 1):
395 			gfx_target_version = 100303;
396 			if (!vf)
397 				f2g = &gfx_v10_3_kfd2kgd;
398 			break;
399 		/* Dimgrey Cavefish */
400 		case IP_VERSION(10, 3, 4):
401 			gfx_target_version = 100302;
402 			f2g = &gfx_v10_3_kfd2kgd;
403 			break;
404 		/* Beige Goby */
405 		case IP_VERSION(10, 3, 5):
406 			gfx_target_version = 100304;
407 			f2g = &gfx_v10_3_kfd2kgd;
408 			break;
409 		/* Yellow Carp */
410 		case IP_VERSION(10, 3, 3):
411 			gfx_target_version = 100305;
412 			if (!vf)
413 				f2g = &gfx_v10_3_kfd2kgd;
414 			break;
415 		case IP_VERSION(10, 3, 6):
416 		case IP_VERSION(10, 3, 7):
417 			gfx_target_version = 100306;
418 			if (!vf)
419 				f2g = &gfx_v10_3_kfd2kgd;
420 			break;
421 		case IP_VERSION(11, 0, 0):
422 			gfx_target_version = 110000;
423 			f2g = &gfx_v11_kfd2kgd;
424 			break;
425 		case IP_VERSION(11, 0, 1):
426 		case IP_VERSION(11, 0, 4):
427 			gfx_target_version = 110003;
428 			f2g = &gfx_v11_kfd2kgd;
429 			break;
430 		case IP_VERSION(11, 0, 2):
431 			gfx_target_version = 110002;
432 			f2g = &gfx_v11_kfd2kgd;
433 			break;
434 		case IP_VERSION(11, 0, 3):
435 			/* Note: Compiler version is 11.0.1 while HW version is 11.0.3 */
436 			gfx_target_version = 110001;
437 			f2g = &gfx_v11_kfd2kgd;
438 			break;
439 		case IP_VERSION(11, 5, 0):
440 			gfx_target_version = 110500;
441 			f2g = &gfx_v11_kfd2kgd;
442 			break;
443 		case IP_VERSION(11, 5, 1):
444 			gfx_target_version = 110501;
445 			f2g = &gfx_v11_kfd2kgd;
446 			break;
447 		case IP_VERSION(11, 5, 2):
448 			gfx_target_version = 110502;
449 			f2g = &gfx_v11_kfd2kgd;
450 			break;
451 		case IP_VERSION(12, 0, 0):
452 			gfx_target_version = 120000;
453 			f2g = &gfx_v12_kfd2kgd;
454 			break;
455 		case IP_VERSION(12, 0, 1):
456 			gfx_target_version = 120001;
457 			f2g = &gfx_v12_kfd2kgd;
458 			break;
459 		default:
460 			break;
461 		}
462 		break;
463 	}
464 
465 	if (!f2g) {
466 		if (amdgpu_ip_version(adev, GC_HWIP, 0))
467 			dev_info(kfd_device,
468 				"GC IP %06x %s not supported in kfd\n",
469 				amdgpu_ip_version(adev, GC_HWIP, 0),
470 				vf ? "VF" : "");
471 		else
472 			dev_info(kfd_device, "%s %s not supported in kfd\n",
473 				amdgpu_asic_name[adev->asic_type], vf ? "VF" : "");
474 		return NULL;
475 	}
476 
477 	kfd = kzalloc(sizeof(*kfd), GFP_KERNEL);
478 	if (!kfd)
479 		return NULL;
480 
481 	kfd->adev = adev;
482 	kfd_device_info_init(kfd, vf, gfx_target_version);
483 	kfd->init_complete = false;
484 	kfd->kfd2kgd = f2g;
485 	atomic_set(&kfd->compute_profile, 0);
486 
487 	mutex_init(&kfd->doorbell_mutex);
488 
489 	ida_init(&kfd->doorbell_ida);
490 
491 	return kfd;
492 }
493 
kfd_cwsr_init(struct kfd_dev * kfd)494 static void kfd_cwsr_init(struct kfd_dev *kfd)
495 {
496 	if (cwsr_enable && kfd->device_info.supports_cwsr) {
497 		if (KFD_GC_VERSION(kfd) < IP_VERSION(9, 0, 1)) {
498 			BUILD_BUG_ON(sizeof(cwsr_trap_gfx8_hex)
499 					     > KFD_CWSR_TMA_OFFSET);
500 			kfd->cwsr_isa = cwsr_trap_gfx8_hex;
501 			kfd->cwsr_isa_size = sizeof(cwsr_trap_gfx8_hex);
502 		} else if (KFD_GC_VERSION(kfd) == IP_VERSION(9, 4, 1)) {
503 			BUILD_BUG_ON(sizeof(cwsr_trap_arcturus_hex)
504 					     > KFD_CWSR_TMA_OFFSET);
505 			kfd->cwsr_isa = cwsr_trap_arcturus_hex;
506 			kfd->cwsr_isa_size = sizeof(cwsr_trap_arcturus_hex);
507 		} else if (KFD_GC_VERSION(kfd) == IP_VERSION(9, 4, 2)) {
508 			BUILD_BUG_ON(sizeof(cwsr_trap_aldebaran_hex)
509 					     > KFD_CWSR_TMA_OFFSET);
510 			kfd->cwsr_isa = cwsr_trap_aldebaran_hex;
511 			kfd->cwsr_isa_size = sizeof(cwsr_trap_aldebaran_hex);
512 		} else if (KFD_GC_VERSION(kfd) == IP_VERSION(9, 4, 3) ||
513 			   KFD_GC_VERSION(kfd) == IP_VERSION(9, 4, 4)) {
514 			BUILD_BUG_ON(sizeof(cwsr_trap_gfx9_4_3_hex)
515 					     > KFD_CWSR_TMA_OFFSET);
516 			kfd->cwsr_isa = cwsr_trap_gfx9_4_3_hex;
517 			kfd->cwsr_isa_size = sizeof(cwsr_trap_gfx9_4_3_hex);
518 		} else if (KFD_GC_VERSION(kfd) < IP_VERSION(10, 1, 1)) {
519 			BUILD_BUG_ON(sizeof(cwsr_trap_gfx9_hex)
520 					     > KFD_CWSR_TMA_OFFSET);
521 			kfd->cwsr_isa = cwsr_trap_gfx9_hex;
522 			kfd->cwsr_isa_size = sizeof(cwsr_trap_gfx9_hex);
523 		} else if (KFD_GC_VERSION(kfd) < IP_VERSION(10, 3, 0)) {
524 			BUILD_BUG_ON(sizeof(cwsr_trap_nv1x_hex)
525 					     > KFD_CWSR_TMA_OFFSET);
526 			kfd->cwsr_isa = cwsr_trap_nv1x_hex;
527 			kfd->cwsr_isa_size = sizeof(cwsr_trap_nv1x_hex);
528 		} else if (KFD_GC_VERSION(kfd) < IP_VERSION(11, 0, 0)) {
529 			BUILD_BUG_ON(sizeof(cwsr_trap_gfx10_hex)
530 					     > KFD_CWSR_TMA_OFFSET);
531 			kfd->cwsr_isa = cwsr_trap_gfx10_hex;
532 			kfd->cwsr_isa_size = sizeof(cwsr_trap_gfx10_hex);
533 		} else if (KFD_GC_VERSION(kfd) < IP_VERSION(12, 0, 0)) {
534 			/* The gfx11 cwsr trap handler must fit inside a single
535 			   page. */
536 			BUILD_BUG_ON(sizeof(cwsr_trap_gfx11_hex) > PAGE_SIZE);
537 			kfd->cwsr_isa = cwsr_trap_gfx11_hex;
538 			kfd->cwsr_isa_size = sizeof(cwsr_trap_gfx11_hex);
539 		} else {
540 			BUILD_BUG_ON(sizeof(cwsr_trap_gfx12_hex)
541 					     > KFD_CWSR_TMA_OFFSET);
542 			kfd->cwsr_isa = cwsr_trap_gfx12_hex;
543 			kfd->cwsr_isa_size = sizeof(cwsr_trap_gfx12_hex);
544 		}
545 
546 		kfd->cwsr_enabled = true;
547 	}
548 }
549 
kfd_gws_init(struct kfd_node * node)550 static int kfd_gws_init(struct kfd_node *node)
551 {
552 	int ret = 0;
553 	struct kfd_dev *kfd = node->kfd;
554 	uint32_t mes_rev = node->adev->mes.sched_version & AMDGPU_MES_VERSION_MASK;
555 
556 	if (node->dqm->sched_policy == KFD_SCHED_POLICY_NO_HWS)
557 		return 0;
558 
559 	if (hws_gws_support || (KFD_IS_SOC15(node) &&
560 		((KFD_GC_VERSION(node) == IP_VERSION(9, 0, 1)
561 			&& kfd->mec2_fw_version >= 0x81b3) ||
562 		(KFD_GC_VERSION(node) <= IP_VERSION(9, 4, 0)
563 			&& kfd->mec2_fw_version >= 0x1b3)  ||
564 		(KFD_GC_VERSION(node) == IP_VERSION(9, 4, 1)
565 			&& kfd->mec2_fw_version >= 0x30)   ||
566 		(KFD_GC_VERSION(node) == IP_VERSION(9, 4, 2)
567 			&& kfd->mec2_fw_version >= 0x28) ||
568 		(KFD_GC_VERSION(node) == IP_VERSION(9, 4, 3) ||
569 		 KFD_GC_VERSION(node) == IP_VERSION(9, 4, 4)) ||
570 		(KFD_GC_VERSION(node) >= IP_VERSION(10, 3, 0)
571 			&& KFD_GC_VERSION(node) < IP_VERSION(11, 0, 0)
572 			&& kfd->mec2_fw_version >= 0x6b) ||
573 		(KFD_GC_VERSION(node) >= IP_VERSION(11, 0, 0)
574 			&& KFD_GC_VERSION(node) < IP_VERSION(12, 0, 0)
575 			&& mes_rev >= 68))))
576 		ret = amdgpu_amdkfd_alloc_gws(node->adev,
577 				node->adev->gds.gws_size, &node->gws);
578 
579 	return ret;
580 }
581 
kfd_smi_init(struct kfd_node * dev)582 static void kfd_smi_init(struct kfd_node *dev)
583 {
584 	INIT_LIST_HEAD(&dev->smi_clients);
585 	spin_lock_init(&dev->smi_lock);
586 }
587 
kfd_init_node(struct kfd_node * node)588 static int kfd_init_node(struct kfd_node *node)
589 {
590 	int err = -1;
591 
592 	if (kfd_interrupt_init(node)) {
593 		dev_err(kfd_device, "Error initializing interrupts\n");
594 		goto kfd_interrupt_error;
595 	}
596 
597 	node->dqm = device_queue_manager_init(node);
598 	if (!node->dqm) {
599 		dev_err(kfd_device, "Error initializing queue manager\n");
600 		goto device_queue_manager_error;
601 	}
602 
603 	if (kfd_gws_init(node)) {
604 		dev_err(kfd_device, "Could not allocate %d gws\n",
605 			node->adev->gds.gws_size);
606 		goto gws_error;
607 	}
608 
609 	if (kfd_resume(node))
610 		goto kfd_resume_error;
611 
612 	if (kfd_topology_add_device(node)) {
613 		dev_err(kfd_device, "Error adding device to topology\n");
614 		goto kfd_topology_add_device_error;
615 	}
616 
617 	kfd_smi_init(node);
618 
619 	return 0;
620 
621 kfd_topology_add_device_error:
622 kfd_resume_error:
623 gws_error:
624 	device_queue_manager_uninit(node->dqm);
625 device_queue_manager_error:
626 	kfd_interrupt_exit(node);
627 kfd_interrupt_error:
628 	if (node->gws)
629 		amdgpu_amdkfd_free_gws(node->adev, node->gws);
630 
631 	/* Cleanup the node memory here */
632 	kfree(node);
633 	return err;
634 }
635 
kfd_cleanup_nodes(struct kfd_dev * kfd,unsigned int num_nodes)636 static void kfd_cleanup_nodes(struct kfd_dev *kfd, unsigned int num_nodes)
637 {
638 	struct kfd_node *knode;
639 	unsigned int i;
640 
641 	/*
642 	 * flush_work ensures that there are no outstanding
643 	 * work-queue items that will access interrupt_ring. New work items
644 	 * can't be created because we stopped interrupt handling above.
645 	 */
646 	flush_workqueue(kfd->ih_wq);
647 	destroy_workqueue(kfd->ih_wq);
648 
649 	for (i = 0; i < num_nodes; i++) {
650 		knode = kfd->nodes[i];
651 		device_queue_manager_uninit(knode->dqm);
652 		kfd_interrupt_exit(knode);
653 		kfd_topology_remove_device(knode);
654 		if (knode->gws)
655 			amdgpu_amdkfd_free_gws(knode->adev, knode->gws);
656 		kfree(knode);
657 		kfd->nodes[i] = NULL;
658 	}
659 }
660 
kfd_setup_interrupt_bitmap(struct kfd_node * node,unsigned int kfd_node_idx)661 static void kfd_setup_interrupt_bitmap(struct kfd_node *node,
662 				       unsigned int kfd_node_idx)
663 {
664 	struct amdgpu_device *adev = node->adev;
665 	uint32_t xcc_mask = node->xcc_mask;
666 	uint32_t xcc, mapped_xcc;
667 	/*
668 	 * Interrupt bitmap is setup for processing interrupts from
669 	 * different XCDs and AIDs.
670 	 * Interrupt bitmap is defined as follows:
671 	 * 1. Bits 0-15 - correspond to the NodeId field.
672 	 *    Each bit corresponds to NodeId number. For example, if
673 	 *    a KFD node has interrupt bitmap set to 0x7, then this
674 	 *    KFD node will process interrupts with NodeId = 0, 1 and 2
675 	 *    in the IH cookie.
676 	 * 2. Bits 16-31 - unused.
677 	 *
678 	 * Please note that the kfd_node_idx argument passed to this
679 	 * function is not related to NodeId field received in the
680 	 * IH cookie.
681 	 *
682 	 * In CPX mode, a KFD node will process an interrupt if:
683 	 * - the Node Id matches the corresponding bit set in
684 	 *   Bits 0-15.
685 	 * - AND VMID reported in the interrupt lies within the
686 	 *   VMID range of the node.
687 	 */
688 	for_each_inst(xcc, xcc_mask) {
689 		mapped_xcc = GET_INST(GC, xcc);
690 		node->interrupt_bitmap |= (mapped_xcc % 2 ? 5 : 3) << (4 * (mapped_xcc / 2));
691 	}
692 	dev_info(kfd_device, "Node: %d, interrupt_bitmap: %x\n", kfd_node_idx,
693 							node->interrupt_bitmap);
694 }
695 
kgd2kfd_device_init(struct kfd_dev * kfd,const struct kgd2kfd_shared_resources * gpu_resources)696 bool kgd2kfd_device_init(struct kfd_dev *kfd,
697 			 const struct kgd2kfd_shared_resources *gpu_resources)
698 {
699 	unsigned int size, map_process_packet_size, i;
700 	struct kfd_node *node;
701 	uint32_t first_vmid_kfd, last_vmid_kfd, vmid_num_kfd;
702 	unsigned int max_proc_per_quantum;
703 	int partition_mode;
704 	int xcp_idx;
705 
706 	kfd->mec_fw_version = amdgpu_amdkfd_get_fw_version(kfd->adev,
707 			KGD_ENGINE_MEC1);
708 	kfd->mec2_fw_version = amdgpu_amdkfd_get_fw_version(kfd->adev,
709 			KGD_ENGINE_MEC2);
710 	kfd->sdma_fw_version = amdgpu_amdkfd_get_fw_version(kfd->adev,
711 			KGD_ENGINE_SDMA1);
712 	kfd->shared_resources = *gpu_resources;
713 
714 	kfd->num_nodes = amdgpu_xcp_get_num_xcp(kfd->adev->xcp_mgr);
715 
716 	if (kfd->num_nodes == 0) {
717 		dev_err(kfd_device,
718 			"KFD num nodes cannot be 0, num_xcc_in_node: %d\n",
719 			kfd->adev->gfx.num_xcc_per_xcp);
720 		goto out;
721 	}
722 
723 	/* Allow BIF to recode atomics to PCIe 3.0 AtomicOps.
724 	 * 32 and 64-bit requests are possible and must be
725 	 * supported.
726 	 */
727 	kfd->pci_atomic_requested = amdgpu_amdkfd_have_atomics_support(kfd->adev);
728 	if (!kfd->pci_atomic_requested &&
729 	    kfd->device_info.needs_pci_atomics &&
730 	    (!kfd->device_info.no_atomic_fw_version ||
731 	     kfd->mec_fw_version < kfd->device_info.no_atomic_fw_version)) {
732 		dev_info(kfd_device,
733 			 "skipped device %x:%x, PCI rejects atomics %d<%d\n",
734 			 kfd->adev->pdev->vendor, kfd->adev->pdev->device,
735 			 kfd->mec_fw_version,
736 			 kfd->device_info.no_atomic_fw_version);
737 		return false;
738 	}
739 
740 	first_vmid_kfd = ffs(gpu_resources->compute_vmid_bitmap)-1;
741 	last_vmid_kfd = fls(gpu_resources->compute_vmid_bitmap)-1;
742 	vmid_num_kfd = last_vmid_kfd - first_vmid_kfd + 1;
743 
744 	/* For GFX9.4.3, we need special handling for VMIDs depending on
745 	 * partition mode.
746 	 * In CPX mode, the VMID range needs to be shared between XCDs.
747 	 * Additionally, there are 13 VMIDs (3-15) available for KFD. To
748 	 * divide them equally, we change starting VMID to 4 and not use
749 	 * VMID 3.
750 	 * If the VMID range changes for GFX9.4.3, then this code MUST be
751 	 * revisited.
752 	 */
753 	if (kfd->adev->xcp_mgr) {
754 		partition_mode = amdgpu_xcp_query_partition_mode(kfd->adev->xcp_mgr,
755 								 AMDGPU_XCP_FL_LOCKED);
756 		if (partition_mode == AMDGPU_CPX_PARTITION_MODE &&
757 		    kfd->num_nodes != 1) {
758 			vmid_num_kfd /= 2;
759 			first_vmid_kfd = last_vmid_kfd + 1 - vmid_num_kfd*2;
760 		}
761 	}
762 
763 	/* Verify module parameters regarding mapped process number*/
764 	if (hws_max_conc_proc >= 0)
765 		max_proc_per_quantum = min((u32)hws_max_conc_proc, vmid_num_kfd);
766 	else
767 		max_proc_per_quantum = vmid_num_kfd;
768 
769 	/* calculate max size of mqds needed for queues */
770 	size = max_num_of_queues_per_device *
771 			kfd->device_info.mqd_size_aligned;
772 
773 	/*
774 	 * calculate max size of runlist packet.
775 	 * There can be only 2 packets at once
776 	 */
777 	map_process_packet_size = KFD_GC_VERSION(kfd) == IP_VERSION(9, 4, 2) ?
778 				sizeof(struct pm4_mes_map_process_aldebaran) :
779 				sizeof(struct pm4_mes_map_process);
780 	size += (KFD_MAX_NUM_OF_PROCESSES * map_process_packet_size +
781 		max_num_of_queues_per_device * sizeof(struct pm4_mes_map_queues)
782 		+ sizeof(struct pm4_mes_runlist)) * 2;
783 
784 	/* Add size of HIQ & DIQ */
785 	size += KFD_KERNEL_QUEUE_SIZE * 2;
786 
787 	/* add another 512KB for all other allocations on gart (HPD, fences) */
788 	size += 512 * 1024;
789 
790 	if (amdgpu_amdkfd_alloc_gtt_mem(
791 			kfd->adev, size, &kfd->gtt_mem,
792 			&kfd->gtt_start_gpu_addr, &kfd->gtt_start_cpu_ptr,
793 			false)) {
794 		dev_err(kfd_device, "Could not allocate %d bytes\n", size);
795 		goto alloc_gtt_mem_failure;
796 	}
797 
798 	dev_info(kfd_device, "Allocated %d bytes on gart\n", size);
799 
800 	/* Initialize GTT sa with 512 byte chunk size */
801 	if (kfd_gtt_sa_init(kfd, size, 512) != 0) {
802 		dev_err(kfd_device, "Error initializing gtt sub-allocator\n");
803 		goto kfd_gtt_sa_init_error;
804 	}
805 
806 	if (kfd_doorbell_init(kfd)) {
807 		dev_err(kfd_device,
808 			"Error initializing doorbell aperture\n");
809 		goto kfd_doorbell_error;
810 	}
811 
812 	if (amdgpu_use_xgmi_p2p)
813 		kfd->hive_id = kfd->adev->gmc.xgmi.hive_id;
814 
815 	/*
816 	 * For GFX9.4.3, the KFD abstracts all partitions within a socket as
817 	 * xGMI connected in the topology so assign a unique hive id per
818 	 * device based on the pci device location if device is in PCIe mode.
819 	 */
820 	if (!kfd->hive_id &&
821 	    (KFD_GC_VERSION(kfd) == IP_VERSION(9, 4, 3) ||
822 	     KFD_GC_VERSION(kfd) == IP_VERSION(9, 4, 4)) &&
823 	    kfd->num_nodes > 1)
824 		kfd->hive_id = pci_dev_id(kfd->adev->pdev);
825 
826 	kfd->noretry = kfd->adev->gmc.noretry;
827 
828 	kfd_cwsr_init(kfd);
829 
830 	dev_info(kfd_device, "Total number of KFD nodes to be created: %d\n",
831 				kfd->num_nodes);
832 
833 	/* Allocate the KFD nodes */
834 	for (i = 0, xcp_idx = 0; i < kfd->num_nodes; i++) {
835 		node = kzalloc(sizeof(struct kfd_node), GFP_KERNEL);
836 		if (!node)
837 			goto node_alloc_error;
838 
839 		node->node_id = i;
840 		node->adev = kfd->adev;
841 		node->kfd = kfd;
842 		node->kfd2kgd = kfd->kfd2kgd;
843 		node->vm_info.vmid_num_kfd = vmid_num_kfd;
844 		node->xcp = amdgpu_get_next_xcp(kfd->adev->xcp_mgr, &xcp_idx);
845 		/* TODO : Check if error handling is needed */
846 		if (node->xcp) {
847 			amdgpu_xcp_get_inst_details(node->xcp, AMDGPU_XCP_GFX,
848 						    &node->xcc_mask);
849 			++xcp_idx;
850 		} else {
851 			node->xcc_mask =
852 				(1U << NUM_XCC(kfd->adev->gfx.xcc_mask)) - 1;
853 		}
854 
855 		if (node->xcp) {
856 			dev_info(kfd_device, "KFD node %d partition %d size %lldM\n",
857 				node->node_id, node->xcp->mem_id,
858 				KFD_XCP_MEMORY_SIZE(node->adev, node->node_id) >> 20);
859 		}
860 
861 		if ((KFD_GC_VERSION(kfd) == IP_VERSION(9, 4, 3) ||
862 		     KFD_GC_VERSION(kfd) == IP_VERSION(9, 4, 4)) &&
863 		    partition_mode == AMDGPU_CPX_PARTITION_MODE &&
864 		    kfd->num_nodes != 1) {
865 			/* For GFX9.4.3 and CPX mode, first XCD gets VMID range
866 			 * 4-9 and second XCD gets VMID range 10-15.
867 			 */
868 
869 			node->vm_info.first_vmid_kfd = (i%2 == 0) ?
870 						first_vmid_kfd :
871 						first_vmid_kfd+vmid_num_kfd;
872 			node->vm_info.last_vmid_kfd = (i%2 == 0) ?
873 						last_vmid_kfd-vmid_num_kfd :
874 						last_vmid_kfd;
875 			node->compute_vmid_bitmap =
876 				((0x1 << (node->vm_info.last_vmid_kfd + 1)) - 1) -
877 				((0x1 << (node->vm_info.first_vmid_kfd)) - 1);
878 		} else {
879 			node->vm_info.first_vmid_kfd = first_vmid_kfd;
880 			node->vm_info.last_vmid_kfd = last_vmid_kfd;
881 			node->compute_vmid_bitmap =
882 				gpu_resources->compute_vmid_bitmap;
883 		}
884 		node->max_proc_per_quantum = max_proc_per_quantum;
885 		atomic_set(&node->sram_ecc_flag, 0);
886 
887 		amdgpu_amdkfd_get_local_mem_info(kfd->adev,
888 					&node->local_mem_info, node->xcp);
889 
890 		if (KFD_GC_VERSION(kfd) == IP_VERSION(9, 4, 3) ||
891 		    KFD_GC_VERSION(kfd) == IP_VERSION(9, 4, 4))
892 			kfd_setup_interrupt_bitmap(node, i);
893 
894 		/* Initialize the KFD node */
895 		if (kfd_init_node(node)) {
896 			dev_err(kfd_device, "Error initializing KFD node\n");
897 			goto node_init_error;
898 		}
899 
900 		spin_lock_init(&node->watch_points_lock);
901 
902 		kfd->nodes[i] = node;
903 	}
904 
905 	svm_range_set_max_pages(kfd->adev);
906 
907 	kfd->init_complete = true;
908 	dev_info(kfd_device, "added device %x:%x\n", kfd->adev->pdev->vendor,
909 		 kfd->adev->pdev->device);
910 
911 	pr_debug("Starting kfd with the following scheduling policy %d\n",
912 		node->dqm->sched_policy);
913 
914 	goto out;
915 
916 node_init_error:
917 node_alloc_error:
918 	kfd_cleanup_nodes(kfd, i);
919 	kfd_doorbell_fini(kfd);
920 kfd_doorbell_error:
921 	kfd_gtt_sa_fini(kfd);
922 kfd_gtt_sa_init_error:
923 	amdgpu_amdkfd_free_gtt_mem(kfd->adev, &kfd->gtt_mem);
924 alloc_gtt_mem_failure:
925 	dev_err(kfd_device,
926 		"device %x:%x NOT added due to errors\n",
927 		kfd->adev->pdev->vendor, kfd->adev->pdev->device);
928 out:
929 	return kfd->init_complete;
930 }
931 
kgd2kfd_device_exit(struct kfd_dev * kfd)932 void kgd2kfd_device_exit(struct kfd_dev *kfd)
933 {
934 	if (kfd->init_complete) {
935 		/* Cleanup KFD nodes */
936 		kfd_cleanup_nodes(kfd, kfd->num_nodes);
937 		/* Cleanup common/shared resources */
938 		kfd_doorbell_fini(kfd);
939 		ida_destroy(&kfd->doorbell_ida);
940 		kfd_gtt_sa_fini(kfd);
941 		amdgpu_amdkfd_free_gtt_mem(kfd->adev, &kfd->gtt_mem);
942 	}
943 
944 	kfree(kfd);
945 }
946 
kgd2kfd_pre_reset(struct kfd_dev * kfd,struct amdgpu_reset_context * reset_context)947 int kgd2kfd_pre_reset(struct kfd_dev *kfd,
948 		      struct amdgpu_reset_context *reset_context)
949 {
950 	struct kfd_node *node;
951 	int i;
952 
953 	if (!kfd->init_complete)
954 		return 0;
955 
956 	for (i = 0; i < kfd->num_nodes; i++) {
957 		node = kfd->nodes[i];
958 		kfd_smi_event_update_gpu_reset(node, false, reset_context);
959 	}
960 
961 	kgd2kfd_suspend(kfd, false);
962 
963 	for (i = 0; i < kfd->num_nodes; i++)
964 		kfd_signal_reset_event(kfd->nodes[i]);
965 
966 	return 0;
967 }
968 
969 /*
970  * Fix me. KFD won't be able to resume existing process for now.
971  * We will keep all existing process in a evicted state and
972  * wait the process to be terminated.
973  */
974 
kgd2kfd_post_reset(struct kfd_dev * kfd)975 int kgd2kfd_post_reset(struct kfd_dev *kfd)
976 {
977 	int ret;
978 	struct kfd_node *node;
979 	int i;
980 
981 	if (!kfd->init_complete)
982 		return 0;
983 
984 	for (i = 0; i < kfd->num_nodes; i++) {
985 		ret = kfd_resume(kfd->nodes[i]);
986 		if (ret)
987 			return ret;
988 	}
989 
990 	mutex_lock(&kfd_processes_mutex);
991 	--kfd_locked;
992 	mutex_unlock(&kfd_processes_mutex);
993 
994 	for (i = 0; i < kfd->num_nodes; i++) {
995 		node = kfd->nodes[i];
996 		atomic_set(&node->sram_ecc_flag, 0);
997 		kfd_smi_event_update_gpu_reset(node, true, NULL);
998 	}
999 
1000 	return 0;
1001 }
1002 
kfd_is_locked(void)1003 bool kfd_is_locked(void)
1004 {
1005 	lockdep_assert_held(&kfd_processes_mutex);
1006 	return  (kfd_locked > 0);
1007 }
1008 
kgd2kfd_suspend(struct kfd_dev * kfd,bool run_pm)1009 void kgd2kfd_suspend(struct kfd_dev *kfd, bool run_pm)
1010 {
1011 	struct kfd_node *node;
1012 	int i;
1013 
1014 	if (!kfd->init_complete)
1015 		return;
1016 
1017 	/* for runtime suspend, skip locking kfd */
1018 	if (!run_pm) {
1019 		mutex_lock(&kfd_processes_mutex);
1020 		/* For first KFD device suspend all the KFD processes */
1021 		if (++kfd_locked == 1)
1022 			kfd_suspend_all_processes();
1023 		mutex_unlock(&kfd_processes_mutex);
1024 	}
1025 
1026 	for (i = 0; i < kfd->num_nodes; i++) {
1027 		node = kfd->nodes[i];
1028 		node->dqm->ops.stop(node->dqm);
1029 	}
1030 }
1031 
kgd2kfd_resume(struct kfd_dev * kfd,bool run_pm)1032 int kgd2kfd_resume(struct kfd_dev *kfd, bool run_pm)
1033 {
1034 	int ret, i;
1035 
1036 	if (!kfd->init_complete)
1037 		return 0;
1038 
1039 	for (i = 0; i < kfd->num_nodes; i++) {
1040 		ret = kfd_resume(kfd->nodes[i]);
1041 		if (ret)
1042 			return ret;
1043 	}
1044 
1045 	/* for runtime resume, skip unlocking kfd */
1046 	if (!run_pm) {
1047 		mutex_lock(&kfd_processes_mutex);
1048 		if (--kfd_locked == 0)
1049 			ret = kfd_resume_all_processes();
1050 		WARN_ONCE(kfd_locked < 0, "KFD suspend / resume ref. error");
1051 		mutex_unlock(&kfd_processes_mutex);
1052 	}
1053 
1054 	return ret;
1055 }
1056 
kfd_resume(struct kfd_node * node)1057 static int kfd_resume(struct kfd_node *node)
1058 {
1059 	int err = 0;
1060 
1061 	err = node->dqm->ops.start(node->dqm);
1062 	if (err)
1063 		dev_err(kfd_device,
1064 			"Error starting queue manager for device %x:%x\n",
1065 			node->adev->pdev->vendor, node->adev->pdev->device);
1066 
1067 	return err;
1068 }
1069 
1070 /* This is called directly from KGD at ISR. */
kgd2kfd_interrupt(struct kfd_dev * kfd,const void * ih_ring_entry)1071 void kgd2kfd_interrupt(struct kfd_dev *kfd, const void *ih_ring_entry)
1072 {
1073 	uint32_t patched_ihre[KFD_MAX_RING_ENTRY_SIZE], i;
1074 	bool is_patched = false;
1075 	unsigned long flags;
1076 	struct kfd_node *node;
1077 
1078 	if (!kfd->init_complete)
1079 		return;
1080 
1081 	if (kfd->device_info.ih_ring_entry_size > sizeof(patched_ihre)) {
1082 		dev_err_once(kfd_device, "Ring entry too small\n");
1083 		return;
1084 	}
1085 
1086 	for (i = 0; i < kfd->num_nodes; i++) {
1087 		node = kfd->nodes[i];
1088 		spin_lock_irqsave(&node->interrupt_lock, flags);
1089 
1090 		if (node->interrupts_active
1091 		    && interrupt_is_wanted(node, ih_ring_entry,
1092 			    	patched_ihre, &is_patched)
1093 		    && enqueue_ih_ring_entry(node,
1094 			    	is_patched ? patched_ihre : ih_ring_entry)) {
1095 			queue_work(node->kfd->ih_wq, &node->interrupt_work);
1096 			spin_unlock_irqrestore(&node->interrupt_lock, flags);
1097 			return;
1098 		}
1099 		spin_unlock_irqrestore(&node->interrupt_lock, flags);
1100 	}
1101 
1102 }
1103 
kgd2kfd_quiesce_mm(struct mm_struct * mm,uint32_t trigger)1104 int kgd2kfd_quiesce_mm(struct mm_struct *mm, uint32_t trigger)
1105 {
1106 	struct kfd_process *p;
1107 	int r;
1108 
1109 	/* Because we are called from arbitrary context (workqueue) as opposed
1110 	 * to process context, kfd_process could attempt to exit while we are
1111 	 * running so the lookup function increments the process ref count.
1112 	 */
1113 	p = kfd_lookup_process_by_mm(mm);
1114 	if (!p)
1115 		return -ESRCH;
1116 
1117 	WARN(debug_evictions, "Evicting pid %d", p->lead_thread->pid);
1118 	r = kfd_process_evict_queues(p, trigger);
1119 
1120 	kfd_unref_process(p);
1121 	return r;
1122 }
1123 
kgd2kfd_resume_mm(struct mm_struct * mm)1124 int kgd2kfd_resume_mm(struct mm_struct *mm)
1125 {
1126 	struct kfd_process *p;
1127 	int r;
1128 
1129 	/* Because we are called from arbitrary context (workqueue) as opposed
1130 	 * to process context, kfd_process could attempt to exit while we are
1131 	 * running so the lookup function increments the process ref count.
1132 	 */
1133 	p = kfd_lookup_process_by_mm(mm);
1134 	if (!p)
1135 		return -ESRCH;
1136 
1137 	r = kfd_process_restore_queues(p);
1138 
1139 	kfd_unref_process(p);
1140 	return r;
1141 }
1142 
1143 /** kgd2kfd_schedule_evict_and_restore_process - Schedules work queue that will
1144  *   prepare for safe eviction of KFD BOs that belong to the specified
1145  *   process.
1146  *
1147  * @mm: mm_struct that identifies the specified KFD process
1148  * @fence: eviction fence attached to KFD process BOs
1149  *
1150  */
kgd2kfd_schedule_evict_and_restore_process(struct mm_struct * mm,struct dma_fence * fence)1151 int kgd2kfd_schedule_evict_and_restore_process(struct mm_struct *mm,
1152 					       struct dma_fence *fence)
1153 {
1154 	struct kfd_process *p;
1155 	unsigned long active_time;
1156 	unsigned long delay_jiffies = msecs_to_jiffies(PROCESS_ACTIVE_TIME_MS);
1157 
1158 	if (!fence)
1159 		return -EINVAL;
1160 
1161 	if (dma_fence_is_signaled(fence))
1162 		return 0;
1163 
1164 	p = kfd_lookup_process_by_mm(mm);
1165 	if (!p)
1166 		return -ENODEV;
1167 
1168 	if (fence->seqno == p->last_eviction_seqno)
1169 		goto out;
1170 
1171 	p->last_eviction_seqno = fence->seqno;
1172 
1173 	/* Avoid KFD process starvation. Wait for at least
1174 	 * PROCESS_ACTIVE_TIME_MS before evicting the process again
1175 	 */
1176 	active_time = get_jiffies_64() - p->last_restore_timestamp;
1177 	if (delay_jiffies > active_time)
1178 		delay_jiffies -= active_time;
1179 	else
1180 		delay_jiffies = 0;
1181 
1182 	/* During process initialization eviction_work.dwork is initialized
1183 	 * to kfd_evict_bo_worker
1184 	 */
1185 	WARN(debug_evictions, "Scheduling eviction of pid %d in %ld jiffies",
1186 	     p->lead_thread->pid, delay_jiffies);
1187 	schedule_delayed_work(&p->eviction_work, delay_jiffies);
1188 out:
1189 	kfd_unref_process(p);
1190 	return 0;
1191 }
1192 
kfd_gtt_sa_init(struct kfd_dev * kfd,unsigned int buf_size,unsigned int chunk_size)1193 static int kfd_gtt_sa_init(struct kfd_dev *kfd, unsigned int buf_size,
1194 				unsigned int chunk_size)
1195 {
1196 	if (WARN_ON(buf_size < chunk_size))
1197 		return -EINVAL;
1198 	if (WARN_ON(buf_size == 0))
1199 		return -EINVAL;
1200 	if (WARN_ON(chunk_size == 0))
1201 		return -EINVAL;
1202 
1203 	kfd->gtt_sa_chunk_size = chunk_size;
1204 	kfd->gtt_sa_num_of_chunks = buf_size / chunk_size;
1205 
1206 	kfd->gtt_sa_bitmap = bitmap_zalloc(kfd->gtt_sa_num_of_chunks,
1207 					   GFP_KERNEL);
1208 	if (!kfd->gtt_sa_bitmap)
1209 		return -ENOMEM;
1210 
1211 	pr_debug("gtt_sa_num_of_chunks = %d, gtt_sa_bitmap = %p\n",
1212 			kfd->gtt_sa_num_of_chunks, kfd->gtt_sa_bitmap);
1213 
1214 	mutex_init(&kfd->gtt_sa_lock);
1215 
1216 	return 0;
1217 }
1218 
kfd_gtt_sa_fini(struct kfd_dev * kfd)1219 static void kfd_gtt_sa_fini(struct kfd_dev *kfd)
1220 {
1221 	mutex_destroy(&kfd->gtt_sa_lock);
1222 	bitmap_free(kfd->gtt_sa_bitmap);
1223 }
1224 
kfd_gtt_sa_calc_gpu_addr(uint64_t start_addr,unsigned int bit_num,unsigned int chunk_size)1225 static inline uint64_t kfd_gtt_sa_calc_gpu_addr(uint64_t start_addr,
1226 						unsigned int bit_num,
1227 						unsigned int chunk_size)
1228 {
1229 	return start_addr + bit_num * chunk_size;
1230 }
1231 
kfd_gtt_sa_calc_cpu_addr(void * start_addr,unsigned int bit_num,unsigned int chunk_size)1232 static inline uint32_t *kfd_gtt_sa_calc_cpu_addr(void *start_addr,
1233 						unsigned int bit_num,
1234 						unsigned int chunk_size)
1235 {
1236 	return (uint32_t *) ((uint64_t) start_addr + bit_num * chunk_size);
1237 }
1238 
kfd_gtt_sa_allocate(struct kfd_node * node,unsigned int size,struct kfd_mem_obj ** mem_obj)1239 int kfd_gtt_sa_allocate(struct kfd_node *node, unsigned int size,
1240 			struct kfd_mem_obj **mem_obj)
1241 {
1242 	unsigned int found, start_search, cur_size;
1243 	struct kfd_dev *kfd = node->kfd;
1244 
1245 	if (size == 0)
1246 		return -EINVAL;
1247 
1248 	if (size > kfd->gtt_sa_num_of_chunks * kfd->gtt_sa_chunk_size)
1249 		return -ENOMEM;
1250 
1251 	*mem_obj = kzalloc(sizeof(struct kfd_mem_obj), GFP_KERNEL);
1252 	if (!(*mem_obj))
1253 		return -ENOMEM;
1254 
1255 	pr_debug("Allocated mem_obj = %p for size = %d\n", *mem_obj, size);
1256 
1257 	start_search = 0;
1258 
1259 	mutex_lock(&kfd->gtt_sa_lock);
1260 
1261 kfd_gtt_restart_search:
1262 	/* Find the first chunk that is free */
1263 	found = find_next_zero_bit(kfd->gtt_sa_bitmap,
1264 					kfd->gtt_sa_num_of_chunks,
1265 					start_search);
1266 
1267 	pr_debug("Found = %d\n", found);
1268 
1269 	/* If there wasn't any free chunk, bail out */
1270 	if (found == kfd->gtt_sa_num_of_chunks)
1271 		goto kfd_gtt_no_free_chunk;
1272 
1273 	/* Update fields of mem_obj */
1274 	(*mem_obj)->range_start = found;
1275 	(*mem_obj)->range_end = found;
1276 	(*mem_obj)->gpu_addr = kfd_gtt_sa_calc_gpu_addr(
1277 					kfd->gtt_start_gpu_addr,
1278 					found,
1279 					kfd->gtt_sa_chunk_size);
1280 	(*mem_obj)->cpu_ptr = kfd_gtt_sa_calc_cpu_addr(
1281 					kfd->gtt_start_cpu_ptr,
1282 					found,
1283 					kfd->gtt_sa_chunk_size);
1284 
1285 	pr_debug("gpu_addr = %p, cpu_addr = %p\n",
1286 			(uint64_t *) (*mem_obj)->gpu_addr, (*mem_obj)->cpu_ptr);
1287 
1288 	/* If we need only one chunk, mark it as allocated and get out */
1289 	if (size <= kfd->gtt_sa_chunk_size) {
1290 		pr_debug("Single bit\n");
1291 		__set_bit(found, kfd->gtt_sa_bitmap);
1292 		goto kfd_gtt_out;
1293 	}
1294 
1295 	/* Otherwise, try to see if we have enough contiguous chunks */
1296 	cur_size = size - kfd->gtt_sa_chunk_size;
1297 	do {
1298 		(*mem_obj)->range_end =
1299 			find_next_zero_bit(kfd->gtt_sa_bitmap,
1300 					kfd->gtt_sa_num_of_chunks, ++found);
1301 		/*
1302 		 * If next free chunk is not contiguous than we need to
1303 		 * restart our search from the last free chunk we found (which
1304 		 * wasn't contiguous to the previous ones
1305 		 */
1306 		if ((*mem_obj)->range_end != found) {
1307 			start_search = found;
1308 			goto kfd_gtt_restart_search;
1309 		}
1310 
1311 		/*
1312 		 * If we reached end of buffer, bail out with error
1313 		 */
1314 		if (found == kfd->gtt_sa_num_of_chunks)
1315 			goto kfd_gtt_no_free_chunk;
1316 
1317 		/* Check if we don't need another chunk */
1318 		if (cur_size <= kfd->gtt_sa_chunk_size)
1319 			cur_size = 0;
1320 		else
1321 			cur_size -= kfd->gtt_sa_chunk_size;
1322 
1323 	} while (cur_size > 0);
1324 
1325 	pr_debug("range_start = %d, range_end = %d\n",
1326 		(*mem_obj)->range_start, (*mem_obj)->range_end);
1327 
1328 	/* Mark the chunks as allocated */
1329 	bitmap_set(kfd->gtt_sa_bitmap, (*mem_obj)->range_start,
1330 		   (*mem_obj)->range_end - (*mem_obj)->range_start + 1);
1331 
1332 kfd_gtt_out:
1333 	mutex_unlock(&kfd->gtt_sa_lock);
1334 	return 0;
1335 
1336 kfd_gtt_no_free_chunk:
1337 	pr_debug("Allocation failed with mem_obj = %p\n", *mem_obj);
1338 	mutex_unlock(&kfd->gtt_sa_lock);
1339 	kfree(*mem_obj);
1340 	return -ENOMEM;
1341 }
1342 
kfd_gtt_sa_free(struct kfd_node * node,struct kfd_mem_obj * mem_obj)1343 int kfd_gtt_sa_free(struct kfd_node *node, struct kfd_mem_obj *mem_obj)
1344 {
1345 	struct kfd_dev *kfd = node->kfd;
1346 
1347 	/* Act like kfree when trying to free a NULL object */
1348 	if (!mem_obj)
1349 		return 0;
1350 
1351 	pr_debug("Free mem_obj = %p, range_start = %d, range_end = %d\n",
1352 			mem_obj, mem_obj->range_start, mem_obj->range_end);
1353 
1354 	mutex_lock(&kfd->gtt_sa_lock);
1355 
1356 	/* Mark the chunks as free */
1357 	bitmap_clear(kfd->gtt_sa_bitmap, mem_obj->range_start,
1358 		     mem_obj->range_end - mem_obj->range_start + 1);
1359 
1360 	mutex_unlock(&kfd->gtt_sa_lock);
1361 
1362 	kfree(mem_obj);
1363 	return 0;
1364 }
1365 
kgd2kfd_set_sram_ecc_flag(struct kfd_dev * kfd)1366 void kgd2kfd_set_sram_ecc_flag(struct kfd_dev *kfd)
1367 {
1368 	/*
1369 	 * TODO: Currently update SRAM ECC flag for first node.
1370 	 * This needs to be updated later when we can
1371 	 * identify SRAM ECC error on other nodes also.
1372 	 */
1373 	if (kfd)
1374 		atomic_inc(&kfd->nodes[0]->sram_ecc_flag);
1375 }
1376 
kfd_inc_compute_active(struct kfd_node * node)1377 void kfd_inc_compute_active(struct kfd_node *node)
1378 {
1379 	if (atomic_inc_return(&node->kfd->compute_profile) == 1)
1380 		amdgpu_amdkfd_set_compute_idle(node->adev, false);
1381 }
1382 
kfd_dec_compute_active(struct kfd_node * node)1383 void kfd_dec_compute_active(struct kfd_node *node)
1384 {
1385 	int count = atomic_dec_return(&node->kfd->compute_profile);
1386 
1387 	if (count == 0)
1388 		amdgpu_amdkfd_set_compute_idle(node->adev, true);
1389 	WARN_ONCE(count < 0, "Compute profile ref. count error");
1390 }
1391 
kgd2kfd_smi_event_throttle(struct kfd_dev * kfd,uint64_t throttle_bitmask)1392 void kgd2kfd_smi_event_throttle(struct kfd_dev *kfd, uint64_t throttle_bitmask)
1393 {
1394 	/*
1395 	 * TODO: For now, raise the throttling event only on first node.
1396 	 * This will need to change after we are able to determine
1397 	 * which node raised the throttling event.
1398 	 */
1399 	if (kfd && kfd->init_complete)
1400 		kfd_smi_event_update_thermal_throttling(kfd->nodes[0],
1401 							throttle_bitmask);
1402 }
1403 
1404 /* kfd_get_num_sdma_engines returns the number of PCIe optimized SDMA and
1405  * kfd_get_num_xgmi_sdma_engines returns the number of XGMI SDMA.
1406  * When the device has more than two engines, we reserve two for PCIe to enable
1407  * full-duplex and the rest are used as XGMI.
1408  */
kfd_get_num_sdma_engines(struct kfd_node * node)1409 unsigned int kfd_get_num_sdma_engines(struct kfd_node *node)
1410 {
1411 	/* If XGMI is not supported, all SDMA engines are PCIe */
1412 	if (!node->adev->gmc.xgmi.supported)
1413 		return node->adev->sdma.num_instances/(int)node->kfd->num_nodes;
1414 
1415 	return min(node->adev->sdma.num_instances/(int)node->kfd->num_nodes, 2);
1416 }
1417 
kfd_get_num_xgmi_sdma_engines(struct kfd_node * node)1418 unsigned int kfd_get_num_xgmi_sdma_engines(struct kfd_node *node)
1419 {
1420 	/* After reserved for PCIe, the rest of engines are XGMI */
1421 	return node->adev->sdma.num_instances/(int)node->kfd->num_nodes -
1422 		kfd_get_num_sdma_engines(node);
1423 }
1424 
kgd2kfd_check_and_lock_kfd(void)1425 int kgd2kfd_check_and_lock_kfd(void)
1426 {
1427 	mutex_lock(&kfd_processes_mutex);
1428 	if (!hash_empty(kfd_processes_table) || kfd_is_locked()) {
1429 		mutex_unlock(&kfd_processes_mutex);
1430 		return -EBUSY;
1431 	}
1432 
1433 	++kfd_locked;
1434 	mutex_unlock(&kfd_processes_mutex);
1435 
1436 	return 0;
1437 }
1438 
kgd2kfd_unlock_kfd(void)1439 void kgd2kfd_unlock_kfd(void)
1440 {
1441 	mutex_lock(&kfd_processes_mutex);
1442 	--kfd_locked;
1443 	mutex_unlock(&kfd_processes_mutex);
1444 }
1445 
kgd2kfd_start_sched(struct kfd_dev * kfd,uint32_t node_id)1446 int kgd2kfd_start_sched(struct kfd_dev *kfd, uint32_t node_id)
1447 {
1448 	struct kfd_node *node;
1449 	int ret;
1450 
1451 	if (!kfd->init_complete)
1452 		return 0;
1453 
1454 	if (node_id >= kfd->num_nodes) {
1455 		dev_warn(kfd->adev->dev, "Invalid node ID: %u exceeds %u\n",
1456 			 node_id, kfd->num_nodes - 1);
1457 		return -EINVAL;
1458 	}
1459 	node = kfd->nodes[node_id];
1460 
1461 	ret = node->dqm->ops.unhalt(node->dqm);
1462 	if (ret)
1463 		dev_err(kfd_device, "Error in starting scheduler\n");
1464 
1465 	return ret;
1466 }
1467 
kgd2kfd_stop_sched(struct kfd_dev * kfd,uint32_t node_id)1468 int kgd2kfd_stop_sched(struct kfd_dev *kfd, uint32_t node_id)
1469 {
1470 	struct kfd_node *node;
1471 
1472 	if (!kfd->init_complete)
1473 		return 0;
1474 
1475 	if (node_id >= kfd->num_nodes) {
1476 		dev_warn(kfd->adev->dev, "Invalid node ID: %u exceeds %u\n",
1477 			 node_id, kfd->num_nodes - 1);
1478 		return -EINVAL;
1479 	}
1480 
1481 	node = kfd->nodes[node_id];
1482 	return node->dqm->ops.halt(node->dqm);
1483 }
1484 
1485 #if defined(CONFIG_DEBUG_FS)
1486 
1487 /* This function will send a package to HIQ to hang the HWS
1488  * which will trigger a GPU reset and bring the HWS back to normal state
1489  */
kfd_debugfs_hang_hws(struct kfd_node * dev)1490 int kfd_debugfs_hang_hws(struct kfd_node *dev)
1491 {
1492 	if (dev->dqm->sched_policy != KFD_SCHED_POLICY_HWS) {
1493 		pr_err("HWS is not enabled");
1494 		return -EINVAL;
1495 	}
1496 
1497 	if (dev->kfd->shared_resources.enable_mes) {
1498 		dev_err(dev->adev->dev, "Inducing MES hang is not supported\n");
1499 		return -EINVAL;
1500 	}
1501 
1502 	return dqm_debugfs_hang_hws(dev->dqm);
1503 }
1504 
1505 #endif
1506