1 /*
2 * Copyright 2015 Advanced Micro Devices, Inc.
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice shall be included in
12 * all copies or substantial portions of the Software.
13 *
14 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
17 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20 * OTHER DEALINGS IN THE SOFTWARE.
21 *
22 * Authors: AMD
23 */
24
25 #include "dm_services.h"
26
27 #include "amdgpu.h"
28
29 #include "dc.h"
30
31 #include "core_status.h"
32 #include "core_types.h"
33 #include "hw_sequencer.h"
34 #include "dce/dce_hwseq.h"
35
36 #include "resource.h"
37 #include "dc_state.h"
38 #include "dc_state_priv.h"
39 #include "dc_plane_priv.h"
40
41 #include "gpio_service_interface.h"
42 #include "clk_mgr.h"
43 #include "clock_source.h"
44 #include "dc_bios_types.h"
45
46 #include "bios_parser_interface.h"
47 #include "bios/bios_parser_helper.h"
48 #include "include/irq_service_interface.h"
49 #include "transform.h"
50 #include "dmcu.h"
51 #include "dpp.h"
52 #include "timing_generator.h"
53 #include "abm.h"
54 #include "virtual/virtual_link_encoder.h"
55 #include "hubp.h"
56
57 #include "link_hwss.h"
58 #include "link_encoder.h"
59 #include "link_enc_cfg.h"
60
61 #include "link.h"
62 #include "dm_helpers.h"
63 #include "mem_input.h"
64
65 #include "dc_dmub_srv.h"
66
67 #include "dsc.h"
68
69 #include "vm_helper.h"
70
71 #include "dce/dce_i2c.h"
72
73 #include "dmub/dmub_srv.h"
74
75 #include "dce/dmub_psr.h"
76
77 #include "dce/dmub_hw_lock_mgr.h"
78
79 #include "dc_trace.h"
80
81 #include "hw_sequencer_private.h"
82
83 #if defined(CONFIG_DRM_AMD_DC_FP)
84 #include "dml2/dml2_internal_types.h"
85 #endif
86
87 #include "dce/dmub_outbox.h"
88
89 #define CTX \
90 dc->ctx
91
92 #define DC_LOGGER \
93 dc->ctx->logger
94
95 static const char DC_BUILD_ID[] = "production-build";
96
97 /**
98 * DOC: Overview
99 *
100 * DC is the OS-agnostic component of the amdgpu DC driver.
101 *
102 * DC maintains and validates a set of structs representing the state of the
103 * driver and writes that state to AMD hardware
104 *
105 * Main DC HW structs:
106 *
107 * struct dc - The central struct. One per driver. Created on driver load,
108 * destroyed on driver unload.
109 *
110 * struct dc_context - One per driver.
111 * Used as a backpointer by most other structs in dc.
112 *
113 * struct dc_link - One per connector (the physical DP, HDMI, miniDP, or eDP
114 * plugpoints). Created on driver load, destroyed on driver unload.
115 *
116 * struct dc_sink - One per display. Created on boot or hotplug.
117 * Destroyed on shutdown or hotunplug. A dc_link can have a local sink
118 * (the display directly attached). It may also have one or more remote
119 * sinks (in the Multi-Stream Transport case)
120 *
121 * struct resource_pool - One per driver. Represents the hw blocks not in the
122 * main pipeline. Not directly accessible by dm.
123 *
124 * Main dc state structs:
125 *
126 * These structs can be created and destroyed as needed. There is a full set of
127 * these structs in dc->current_state representing the currently programmed state.
128 *
129 * struct dc_state - The global DC state to track global state information,
130 * such as bandwidth values.
131 *
132 * struct dc_stream_state - Represents the hw configuration for the pipeline from
133 * a framebuffer to a display. Maps one-to-one with dc_sink.
134 *
135 * struct dc_plane_state - Represents a framebuffer. Each stream has at least one,
136 * and may have more in the Multi-Plane Overlay case.
137 *
138 * struct resource_context - Represents the programmable state of everything in
139 * the resource_pool. Not directly accessible by dm.
140 *
141 * struct pipe_ctx - A member of struct resource_context. Represents the
142 * internal hardware pipeline components. Each dc_plane_state has either
143 * one or two (in the pipe-split case).
144 */
145
146 /* Private functions */
147
elevate_update_type(enum surface_update_type * original,enum surface_update_type new)148 static inline void elevate_update_type(enum surface_update_type *original, enum surface_update_type new)
149 {
150 if (new > *original)
151 *original = new;
152 }
153
destroy_links(struct dc * dc)154 static void destroy_links(struct dc *dc)
155 {
156 uint32_t i;
157
158 for (i = 0; i < dc->link_count; i++) {
159 if (NULL != dc->links[i])
160 dc->link_srv->destroy_link(&dc->links[i]);
161 }
162 }
163
get_num_of_internal_disp(struct dc_link ** links,uint32_t num_links)164 static uint32_t get_num_of_internal_disp(struct dc_link **links, uint32_t num_links)
165 {
166 int i;
167 uint32_t count = 0;
168
169 for (i = 0; i < num_links; i++) {
170 if (links[i]->connector_signal == SIGNAL_TYPE_EDP ||
171 links[i]->is_internal_display)
172 count++;
173 }
174
175 return count;
176 }
177
get_seamless_boot_stream_count(struct dc_state * ctx)178 static int get_seamless_boot_stream_count(struct dc_state *ctx)
179 {
180 uint8_t i;
181 uint8_t seamless_boot_stream_count = 0;
182
183 for (i = 0; i < ctx->stream_count; i++)
184 if (ctx->streams[i]->apply_seamless_boot_optimization)
185 seamless_boot_stream_count++;
186
187 return seamless_boot_stream_count;
188 }
189
create_links(struct dc * dc,uint32_t num_virtual_links)190 static bool create_links(
191 struct dc *dc,
192 uint32_t num_virtual_links)
193 {
194 int i;
195 int connectors_num;
196 struct dc_bios *bios = dc->ctx->dc_bios;
197
198 dc->link_count = 0;
199
200 connectors_num = bios->funcs->get_connectors_number(bios);
201
202 DC_LOG_DC("BIOS object table - number of connectors: %d", connectors_num);
203
204 if (connectors_num > ENUM_ID_COUNT) {
205 dm_error(
206 "DC: Number of connectors %d exceeds maximum of %d!\n",
207 connectors_num,
208 ENUM_ID_COUNT);
209 return false;
210 }
211
212 dm_output_to_console(
213 "DC: %s: connectors_num: physical:%d, virtual:%d\n",
214 __func__,
215 connectors_num,
216 num_virtual_links);
217
218 /* When getting the number of connectors, the VBIOS reports the number of valid indices,
219 * but it doesn't say which indices are valid, and not every index has an actual connector.
220 * So, if we don't find a connector on an index, that is not an error.
221 *
222 * - There is no guarantee that the first N indices will be valid
223 * - VBIOS may report a higher amount of valid indices than there are actual connectors
224 * - Some VBIOS have valid configurations for more connectors than there actually are
225 * on the card. This may be because the manufacturer used the same VBIOS for different
226 * variants of the same card.
227 */
228 for (i = 0; dc->link_count < connectors_num && i < MAX_LINKS; i++) {
229 struct graphics_object_id connector_id = bios->funcs->get_connector_id(bios, i);
230 struct link_init_data link_init_params = {0};
231 struct dc_link *link;
232
233 if (connector_id.id == CONNECTOR_ID_UNKNOWN)
234 continue;
235
236 DC_LOG_DC("BIOS object table - printing link object info for connector number: %d, link_index: %d", i, dc->link_count);
237
238 link_init_params.ctx = dc->ctx;
239 /* next BIOS object table connector */
240 link_init_params.connector_index = i;
241 link_init_params.link_index = dc->link_count;
242 link_init_params.dc = dc;
243 link = dc->link_srv->create_link(&link_init_params);
244
245 if (link) {
246 dc->links[dc->link_count] = link;
247 link->dc = dc;
248 ++dc->link_count;
249 }
250 }
251
252 DC_LOG_DC("BIOS object table - end");
253
254 /* Create a link for each usb4 dpia port */
255 for (i = 0; i < dc->res_pool->usb4_dpia_count; i++) {
256 struct link_init_data link_init_params = {0};
257 struct dc_link *link;
258
259 link_init_params.ctx = dc->ctx;
260 link_init_params.connector_index = i;
261 link_init_params.link_index = dc->link_count;
262 link_init_params.dc = dc;
263 link_init_params.is_dpia_link = true;
264
265 link = dc->link_srv->create_link(&link_init_params);
266 if (link) {
267 dc->links[dc->link_count] = link;
268 link->dc = dc;
269 ++dc->link_count;
270 }
271 }
272
273 for (i = 0; i < num_virtual_links; i++) {
274 struct dc_link *link = kzalloc(sizeof(*link), GFP_KERNEL);
275 struct encoder_init_data enc_init = {0};
276
277 if (link == NULL) {
278 BREAK_TO_DEBUGGER();
279 goto failed_alloc;
280 }
281
282 link->link_index = dc->link_count;
283 dc->links[dc->link_count] = link;
284 dc->link_count++;
285
286 link->ctx = dc->ctx;
287 link->dc = dc;
288 link->connector_signal = SIGNAL_TYPE_VIRTUAL;
289 link->link_id.type = OBJECT_TYPE_CONNECTOR;
290 link->link_id.id = CONNECTOR_ID_VIRTUAL;
291 link->link_id.enum_id = ENUM_ID_1;
292 link->psr_settings.psr_version = DC_PSR_VERSION_UNSUPPORTED;
293 link->link_enc = kzalloc(sizeof(*link->link_enc), GFP_KERNEL);
294
295 if (!link->link_enc) {
296 BREAK_TO_DEBUGGER();
297 goto failed_alloc;
298 }
299
300 link->link_status.dpcd_caps = &link->dpcd_caps;
301
302 enc_init.ctx = dc->ctx;
303 enc_init.channel = CHANNEL_ID_UNKNOWN;
304 enc_init.hpd_source = HPD_SOURCEID_UNKNOWN;
305 enc_init.transmitter = TRANSMITTER_UNKNOWN;
306 enc_init.connector = link->link_id;
307 enc_init.encoder.type = OBJECT_TYPE_ENCODER;
308 enc_init.encoder.id = ENCODER_ID_INTERNAL_VIRTUAL;
309 enc_init.encoder.enum_id = ENUM_ID_1;
310 virtual_link_encoder_construct(link->link_enc, &enc_init);
311 }
312
313 dc->caps.num_of_internal_disp = get_num_of_internal_disp(dc->links, dc->link_count);
314
315 return true;
316
317 failed_alloc:
318 return false;
319 }
320
321 /* Create additional DIG link encoder objects if fewer than the platform
322 * supports were created during link construction. This can happen if the
323 * number of physical connectors is less than the number of DIGs.
324 */
create_link_encoders(struct dc * dc)325 static bool create_link_encoders(struct dc *dc)
326 {
327 bool res = true;
328 unsigned int num_usb4_dpia = dc->res_pool->res_cap->num_usb4_dpia;
329 unsigned int num_dig_link_enc = dc->res_pool->res_cap->num_dig_link_enc;
330 int i;
331
332 /* A platform without USB4 DPIA endpoints has a fixed mapping between DIG
333 * link encoders and physical display endpoints and does not require
334 * additional link encoder objects.
335 */
336 if (num_usb4_dpia == 0)
337 return res;
338
339 /* Create as many link encoder objects as the platform supports. DPIA
340 * endpoints can be programmably mapped to any DIG.
341 */
342 if (num_dig_link_enc > dc->res_pool->dig_link_enc_count) {
343 for (i = 0; i < num_dig_link_enc; i++) {
344 struct link_encoder *link_enc = dc->res_pool->link_encoders[i];
345
346 if (!link_enc && dc->res_pool->funcs->link_enc_create_minimal) {
347 link_enc = dc->res_pool->funcs->link_enc_create_minimal(dc->ctx,
348 (enum engine_id)(ENGINE_ID_DIGA + i));
349 if (link_enc) {
350 dc->res_pool->link_encoders[i] = link_enc;
351 dc->res_pool->dig_link_enc_count++;
352 } else {
353 res = false;
354 }
355 }
356 }
357 }
358
359 return res;
360 }
361
362 /* Destroy any additional DIG link encoder objects created by
363 * create_link_encoders().
364 * NB: Must only be called after destroy_links().
365 */
destroy_link_encoders(struct dc * dc)366 static void destroy_link_encoders(struct dc *dc)
367 {
368 unsigned int num_usb4_dpia;
369 unsigned int num_dig_link_enc;
370 int i;
371
372 if (!dc->res_pool)
373 return;
374
375 num_usb4_dpia = dc->res_pool->res_cap->num_usb4_dpia;
376 num_dig_link_enc = dc->res_pool->res_cap->num_dig_link_enc;
377
378 /* A platform without USB4 DPIA endpoints has a fixed mapping between DIG
379 * link encoders and physical display endpoints and does not require
380 * additional link encoder objects.
381 */
382 if (num_usb4_dpia == 0)
383 return;
384
385 for (i = 0; i < num_dig_link_enc; i++) {
386 struct link_encoder *link_enc = dc->res_pool->link_encoders[i];
387
388 if (link_enc) {
389 link_enc->funcs->destroy(&link_enc);
390 dc->res_pool->link_encoders[i] = NULL;
391 dc->res_pool->dig_link_enc_count--;
392 }
393 }
394 }
395
dc_perf_trace_create(void)396 static struct dc_perf_trace *dc_perf_trace_create(void)
397 {
398 return kzalloc(sizeof(struct dc_perf_trace), GFP_KERNEL);
399 }
400
dc_perf_trace_destroy(struct dc_perf_trace ** perf_trace)401 static void dc_perf_trace_destroy(struct dc_perf_trace **perf_trace)
402 {
403 kfree(*perf_trace);
404 *perf_trace = NULL;
405 }
406
set_long_vtotal(struct dc * dc,struct dc_stream_state * stream,struct dc_crtc_timing_adjust * adjust)407 static bool set_long_vtotal(struct dc *dc, struct dc_stream_state *stream, struct dc_crtc_timing_adjust *adjust)
408 {
409 if (!dc || !stream || !adjust)
410 return false;
411
412 if (!dc->current_state)
413 return false;
414
415 int i;
416
417 for (i = 0; i < MAX_PIPES; i++) {
418 struct pipe_ctx *pipe = &dc->current_state->res_ctx.pipe_ctx[i];
419
420 if (pipe->stream == stream && pipe->stream_res.tg) {
421 if (dc->hwss.set_long_vtotal)
422 dc->hwss.set_long_vtotal(&pipe, 1, adjust->v_total_min, adjust->v_total_max);
423
424 return true;
425 }
426 }
427
428 return false;
429 }
430
431 /**
432 * dc_stream_adjust_vmin_vmax - look up pipe context & update parts of DRR
433 * @dc: dc reference
434 * @stream: Initial dc stream state
435 * @adjust: Updated parameters for vertical_total_min and vertical_total_max
436 *
437 * Looks up the pipe context of dc_stream_state and updates the
438 * vertical_total_min and vertical_total_max of the DRR, Dynamic Refresh
439 * Rate, which is a power-saving feature that targets reducing panel
440 * refresh rate while the screen is static
441 *
442 * Return: %true if the pipe context is found and adjusted;
443 * %false if the pipe context is not found.
444 */
dc_stream_adjust_vmin_vmax(struct dc * dc,struct dc_stream_state * stream,struct dc_crtc_timing_adjust * adjust)445 bool dc_stream_adjust_vmin_vmax(struct dc *dc,
446 struct dc_stream_state *stream,
447 struct dc_crtc_timing_adjust *adjust)
448 {
449 int i;
450
451 /*
452 * Don't adjust DRR while there's bandwidth optimizations pending to
453 * avoid conflicting with firmware updates.
454 */
455 if (dc->ctx->dce_version > DCE_VERSION_MAX) {
456 if (dc->optimized_required || dc->wm_optimized_required) {
457 stream->adjust.timing_adjust_pending = true;
458 return false;
459 }
460 }
461
462 dc_exit_ips_for_hw_access(dc);
463
464 stream->adjust.v_total_max = adjust->v_total_max;
465 stream->adjust.v_total_mid = adjust->v_total_mid;
466 stream->adjust.v_total_mid_frame_num = adjust->v_total_mid_frame_num;
467 stream->adjust.v_total_min = adjust->v_total_min;
468 stream->adjust.allow_otg_v_count_halt = adjust->allow_otg_v_count_halt;
469
470 if (dc->caps.max_v_total != 0 &&
471 (adjust->v_total_max > dc->caps.max_v_total || adjust->v_total_min > dc->caps.max_v_total)) {
472 stream->adjust.timing_adjust_pending = false;
473 if (adjust->allow_otg_v_count_halt)
474 return set_long_vtotal(dc, stream, adjust);
475 else
476 return false;
477 }
478
479 for (i = 0; i < MAX_PIPES; i++) {
480 struct pipe_ctx *pipe = &dc->current_state->res_ctx.pipe_ctx[i];
481
482 if (pipe->stream == stream && pipe->stream_res.tg) {
483 dc->hwss.set_drr(&pipe,
484 1,
485 *adjust);
486 stream->adjust.timing_adjust_pending = false;
487 return true;
488 }
489 }
490 return false;
491 }
492
493 /**
494 * dc_stream_get_last_used_drr_vtotal - Looks up the pipe context of
495 * dc_stream_state and gets the last VTOTAL used by DRR (Dynamic Refresh Rate)
496 *
497 * @dc: [in] dc reference
498 * @stream: [in] Initial dc stream state
499 * @refresh_rate: [in] new refresh_rate
500 *
501 * Return: %true if the pipe context is found and there is an associated
502 * timing_generator for the DC;
503 * %false if the pipe context is not found or there is no
504 * timing_generator for the DC.
505 */
dc_stream_get_last_used_drr_vtotal(struct dc * dc,struct dc_stream_state * stream,uint32_t * refresh_rate)506 bool dc_stream_get_last_used_drr_vtotal(struct dc *dc,
507 struct dc_stream_state *stream,
508 uint32_t *refresh_rate)
509 {
510 bool status = false;
511
512 int i = 0;
513
514 dc_exit_ips_for_hw_access(dc);
515
516 for (i = 0; i < MAX_PIPES; i++) {
517 struct pipe_ctx *pipe = &dc->current_state->res_ctx.pipe_ctx[i];
518
519 if (pipe->stream == stream && pipe->stream_res.tg) {
520 /* Only execute if a function pointer has been defined for
521 * the DC version in question
522 */
523 if (pipe->stream_res.tg->funcs->get_last_used_drr_vtotal) {
524 pipe->stream_res.tg->funcs->get_last_used_drr_vtotal(pipe->stream_res.tg, refresh_rate);
525
526 status = true;
527
528 break;
529 }
530 }
531 }
532
533 return status;
534 }
535
dc_stream_get_crtc_position(struct dc * dc,struct dc_stream_state ** streams,int num_streams,unsigned int * v_pos,unsigned int * nom_v_pos)536 bool dc_stream_get_crtc_position(struct dc *dc,
537 struct dc_stream_state **streams, int num_streams,
538 unsigned int *v_pos, unsigned int *nom_v_pos)
539 {
540 /* TODO: Support multiple streams */
541 const struct dc_stream_state *stream = streams[0];
542 int i;
543 bool ret = false;
544 struct crtc_position position;
545
546 dc_exit_ips_for_hw_access(dc);
547
548 for (i = 0; i < MAX_PIPES; i++) {
549 struct pipe_ctx *pipe =
550 &dc->current_state->res_ctx.pipe_ctx[i];
551
552 if (pipe->stream == stream && pipe->stream_res.stream_enc) {
553 dc->hwss.get_position(&pipe, 1, &position);
554
555 *v_pos = position.vertical_count;
556 *nom_v_pos = position.nominal_vcount;
557 ret = true;
558 }
559 }
560 return ret;
561 }
562
563 #if defined(CONFIG_DRM_AMD_SECURE_DISPLAY)
564 static inline void
dc_stream_forward_dmub_crc_window(struct dc_dmub_srv * dmub_srv,struct rect * rect,struct otg_phy_mux * mux_mapping,bool is_stop)565 dc_stream_forward_dmub_crc_window(struct dc_dmub_srv *dmub_srv,
566 struct rect *rect, struct otg_phy_mux *mux_mapping, bool is_stop)
567 {
568 union dmub_rb_cmd cmd = {0};
569
570 cmd.secure_display.roi_info.phy_id = mux_mapping->phy_output_num;
571 cmd.secure_display.roi_info.otg_id = mux_mapping->otg_output_num;
572
573 if (is_stop) {
574 cmd.secure_display.header.type = DMUB_CMD__SECURE_DISPLAY;
575 cmd.secure_display.header.sub_type = DMUB_CMD__SECURE_DISPLAY_CRC_STOP_UPDATE;
576 } else {
577 cmd.secure_display.header.type = DMUB_CMD__SECURE_DISPLAY;
578 cmd.secure_display.header.sub_type = DMUB_CMD__SECURE_DISPLAY_CRC_WIN_NOTIFY;
579 cmd.secure_display.roi_info.x_start = rect->x;
580 cmd.secure_display.roi_info.y_start = rect->y;
581 cmd.secure_display.roi_info.x_end = rect->x + rect->width;
582 cmd.secure_display.roi_info.y_end = rect->y + rect->height;
583 }
584
585 dc_wake_and_execute_dmub_cmd(dmub_srv->ctx, &cmd, DM_DMUB_WAIT_TYPE_NO_WAIT);
586 }
587
588 static inline void
dc_stream_forward_dmcu_crc_window(struct dmcu * dmcu,struct rect * rect,struct otg_phy_mux * mux_mapping,bool is_stop)589 dc_stream_forward_dmcu_crc_window(struct dmcu *dmcu,
590 struct rect *rect, struct otg_phy_mux *mux_mapping, bool is_stop)
591 {
592 if (is_stop)
593 dmcu->funcs->stop_crc_win_update(dmcu, mux_mapping);
594 else
595 dmcu->funcs->forward_crc_window(dmcu, rect, mux_mapping);
596 }
597
598 bool
dc_stream_forward_crc_window(struct dc_stream_state * stream,struct rect * rect,bool is_stop)599 dc_stream_forward_crc_window(struct dc_stream_state *stream,
600 struct rect *rect, bool is_stop)
601 {
602 struct dmcu *dmcu;
603 struct dc_dmub_srv *dmub_srv;
604 struct otg_phy_mux mux_mapping;
605 struct pipe_ctx *pipe;
606 int i;
607 struct dc *dc = stream->ctx->dc;
608
609 for (i = 0; i < MAX_PIPES; i++) {
610 pipe = &dc->current_state->res_ctx.pipe_ctx[i];
611 if (pipe->stream == stream && !pipe->top_pipe && !pipe->prev_odm_pipe)
612 break;
613 }
614
615 /* Stream not found */
616 if (i == MAX_PIPES)
617 return false;
618
619 mux_mapping.phy_output_num = stream->link->link_enc_hw_inst;
620 mux_mapping.otg_output_num = pipe->stream_res.tg->inst;
621
622 dmcu = dc->res_pool->dmcu;
623 dmub_srv = dc->ctx->dmub_srv;
624
625 /* forward to dmub */
626 if (dmub_srv)
627 dc_stream_forward_dmub_crc_window(dmub_srv, rect, &mux_mapping, is_stop);
628 /* forward to dmcu */
629 else if (dmcu && dmcu->funcs->is_dmcu_initialized(dmcu))
630 dc_stream_forward_dmcu_crc_window(dmcu, rect, &mux_mapping, is_stop);
631 else
632 return false;
633
634 return true;
635 }
636 #endif /* CONFIG_DRM_AMD_SECURE_DISPLAY */
637
638 /**
639 * dc_stream_configure_crc() - Configure CRC capture for the given stream.
640 * @dc: DC Object
641 * @stream: The stream to configure CRC on.
642 * @enable: Enable CRC if true, disable otherwise.
643 * @crc_window: CRC window (x/y start/end) information
644 * @continuous: Capture CRC on every frame if true. Otherwise, only capture
645 * once.
646 *
647 * By default, only CRC0 is configured, and the entire frame is used to
648 * calculate the CRC.
649 *
650 * Return: %false if the stream is not found or CRC capture is not supported;
651 * %true if the stream has been configured.
652 */
dc_stream_configure_crc(struct dc * dc,struct dc_stream_state * stream,struct crc_params * crc_window,bool enable,bool continuous)653 bool dc_stream_configure_crc(struct dc *dc, struct dc_stream_state *stream,
654 struct crc_params *crc_window, bool enable, bool continuous)
655 {
656 struct pipe_ctx *pipe;
657 struct crc_params param;
658 struct timing_generator *tg;
659
660 pipe = resource_get_otg_master_for_stream(
661 &dc->current_state->res_ctx, stream);
662
663 /* Stream not found */
664 if (pipe == NULL)
665 return false;
666
667 dc_exit_ips_for_hw_access(dc);
668
669 /* By default, capture the full frame */
670 param.windowa_x_start = 0;
671 param.windowa_y_start = 0;
672 param.windowa_x_end = pipe->stream->timing.h_addressable;
673 param.windowa_y_end = pipe->stream->timing.v_addressable;
674 param.windowb_x_start = 0;
675 param.windowb_y_start = 0;
676 param.windowb_x_end = pipe->stream->timing.h_addressable;
677 param.windowb_y_end = pipe->stream->timing.v_addressable;
678
679 if (crc_window) {
680 param.windowa_x_start = crc_window->windowa_x_start;
681 param.windowa_y_start = crc_window->windowa_y_start;
682 param.windowa_x_end = crc_window->windowa_x_end;
683 param.windowa_y_end = crc_window->windowa_y_end;
684 param.windowb_x_start = crc_window->windowb_x_start;
685 param.windowb_y_start = crc_window->windowb_y_start;
686 param.windowb_x_end = crc_window->windowb_x_end;
687 param.windowb_y_end = crc_window->windowb_y_end;
688 }
689
690 param.dsc_mode = pipe->stream->timing.flags.DSC ? 1:0;
691 param.odm_mode = pipe->next_odm_pipe ? 1:0;
692
693 /* Default to the union of both windows */
694 param.selection = UNION_WINDOW_A_B;
695 param.continuous_mode = continuous;
696 param.enable = enable;
697
698 tg = pipe->stream_res.tg;
699
700 /* Only call if supported */
701 if (tg->funcs->configure_crc)
702 return tg->funcs->configure_crc(tg, ¶m);
703 DC_LOG_WARNING("CRC capture not supported.");
704 return false;
705 }
706
707 /**
708 * dc_stream_get_crc() - Get CRC values for the given stream.
709 *
710 * @dc: DC object.
711 * @stream: The DC stream state of the stream to get CRCs from.
712 * @r_cr: CRC value for the red component.
713 * @g_y: CRC value for the green component.
714 * @b_cb: CRC value for the blue component.
715 *
716 * dc_stream_configure_crc needs to be called beforehand to enable CRCs.
717 *
718 * Return:
719 * %false if stream is not found, or if CRCs are not enabled.
720 */
dc_stream_get_crc(struct dc * dc,struct dc_stream_state * stream,uint32_t * r_cr,uint32_t * g_y,uint32_t * b_cb)721 bool dc_stream_get_crc(struct dc *dc, struct dc_stream_state *stream,
722 uint32_t *r_cr, uint32_t *g_y, uint32_t *b_cb)
723 {
724 int i;
725 struct pipe_ctx *pipe;
726 struct timing_generator *tg;
727
728 dc_exit_ips_for_hw_access(dc);
729
730 for (i = 0; i < MAX_PIPES; i++) {
731 pipe = &dc->current_state->res_ctx.pipe_ctx[i];
732 if (pipe->stream == stream)
733 break;
734 }
735 /* Stream not found */
736 if (i == MAX_PIPES)
737 return false;
738
739 tg = pipe->stream_res.tg;
740
741 if (tg->funcs->get_crc)
742 return tg->funcs->get_crc(tg, r_cr, g_y, b_cb);
743 DC_LOG_WARNING("CRC capture not supported.");
744 return false;
745 }
746
dc_stream_set_dyn_expansion(struct dc * dc,struct dc_stream_state * stream,enum dc_dynamic_expansion option)747 void dc_stream_set_dyn_expansion(struct dc *dc, struct dc_stream_state *stream,
748 enum dc_dynamic_expansion option)
749 {
750 /* OPP FMT dyn expansion updates*/
751 int i;
752 struct pipe_ctx *pipe_ctx;
753
754 dc_exit_ips_for_hw_access(dc);
755
756 for (i = 0; i < MAX_PIPES; i++) {
757 if (dc->current_state->res_ctx.pipe_ctx[i].stream
758 == stream) {
759 pipe_ctx = &dc->current_state->res_ctx.pipe_ctx[i];
760 pipe_ctx->stream_res.opp->dyn_expansion = option;
761 pipe_ctx->stream_res.opp->funcs->opp_set_dyn_expansion(
762 pipe_ctx->stream_res.opp,
763 COLOR_SPACE_YCBCR601,
764 stream->timing.display_color_depth,
765 stream->signal);
766 }
767 }
768 }
769
dc_stream_set_dither_option(struct dc_stream_state * stream,enum dc_dither_option option)770 void dc_stream_set_dither_option(struct dc_stream_state *stream,
771 enum dc_dither_option option)
772 {
773 struct bit_depth_reduction_params params;
774 struct dc_link *link = stream->link;
775 struct pipe_ctx *pipes = NULL;
776 int i;
777
778 for (i = 0; i < MAX_PIPES; i++) {
779 if (link->dc->current_state->res_ctx.pipe_ctx[i].stream ==
780 stream) {
781 pipes = &link->dc->current_state->res_ctx.pipe_ctx[i];
782 break;
783 }
784 }
785
786 if (!pipes)
787 return;
788 if (option > DITHER_OPTION_MAX)
789 return;
790
791 dc_exit_ips_for_hw_access(stream->ctx->dc);
792
793 stream->dither_option = option;
794
795 memset(¶ms, 0, sizeof(params));
796 resource_build_bit_depth_reduction_params(stream, ¶ms);
797 stream->bit_depth_params = params;
798
799 if (pipes->plane_res.xfm &&
800 pipes->plane_res.xfm->funcs->transform_set_pixel_storage_depth) {
801 pipes->plane_res.xfm->funcs->transform_set_pixel_storage_depth(
802 pipes->plane_res.xfm,
803 pipes->plane_res.scl_data.lb_params.depth,
804 &stream->bit_depth_params);
805 }
806
807 pipes->stream_res.opp->funcs->
808 opp_program_bit_depth_reduction(pipes->stream_res.opp, ¶ms);
809 }
810
dc_stream_set_gamut_remap(struct dc * dc,const struct dc_stream_state * stream)811 bool dc_stream_set_gamut_remap(struct dc *dc, const struct dc_stream_state *stream)
812 {
813 int i;
814 bool ret = false;
815 struct pipe_ctx *pipes;
816
817 dc_exit_ips_for_hw_access(dc);
818
819 for (i = 0; i < MAX_PIPES; i++) {
820 if (dc->current_state->res_ctx.pipe_ctx[i].stream == stream) {
821 pipes = &dc->current_state->res_ctx.pipe_ctx[i];
822 dc->hwss.program_gamut_remap(pipes);
823 ret = true;
824 }
825 }
826
827 return ret;
828 }
829
dc_stream_program_csc_matrix(struct dc * dc,struct dc_stream_state * stream)830 bool dc_stream_program_csc_matrix(struct dc *dc, struct dc_stream_state *stream)
831 {
832 int i;
833 bool ret = false;
834 struct pipe_ctx *pipes;
835
836 dc_exit_ips_for_hw_access(dc);
837
838 for (i = 0; i < MAX_PIPES; i++) {
839 if (dc->current_state->res_ctx.pipe_ctx[i].stream
840 == stream) {
841
842 pipes = &dc->current_state->res_ctx.pipe_ctx[i];
843 dc->hwss.program_output_csc(dc,
844 pipes,
845 stream->output_color_space,
846 stream->csc_color_matrix.matrix,
847 pipes->stream_res.opp->inst);
848 ret = true;
849 }
850 }
851
852 return ret;
853 }
854
dc_stream_set_static_screen_params(struct dc * dc,struct dc_stream_state ** streams,int num_streams,const struct dc_static_screen_params * params)855 void dc_stream_set_static_screen_params(struct dc *dc,
856 struct dc_stream_state **streams,
857 int num_streams,
858 const struct dc_static_screen_params *params)
859 {
860 int i, j;
861 struct pipe_ctx *pipes_affected[MAX_PIPES];
862 int num_pipes_affected = 0;
863
864 dc_exit_ips_for_hw_access(dc);
865
866 for (i = 0; i < num_streams; i++) {
867 struct dc_stream_state *stream = streams[i];
868
869 for (j = 0; j < MAX_PIPES; j++) {
870 if (dc->current_state->res_ctx.pipe_ctx[j].stream
871 == stream) {
872 pipes_affected[num_pipes_affected++] =
873 &dc->current_state->res_ctx.pipe_ctx[j];
874 }
875 }
876 }
877
878 dc->hwss.set_static_screen_control(pipes_affected, num_pipes_affected, params);
879 }
880
dc_destruct(struct dc * dc)881 static void dc_destruct(struct dc *dc)
882 {
883 // reset link encoder assignment table on destruct
884 if (dc->res_pool && dc->res_pool->funcs->link_encs_assign)
885 link_enc_cfg_init(dc, dc->current_state);
886
887 if (dc->current_state) {
888 dc_state_release(dc->current_state);
889 dc->current_state = NULL;
890 }
891
892 destroy_links(dc);
893
894 destroy_link_encoders(dc);
895
896 if (dc->clk_mgr) {
897 dc_destroy_clk_mgr(dc->clk_mgr);
898 dc->clk_mgr = NULL;
899 }
900
901 dc_destroy_resource_pool(dc);
902
903 if (dc->link_srv)
904 link_destroy_link_service(&dc->link_srv);
905
906 if (dc->ctx) {
907 if (dc->ctx->gpio_service)
908 dal_gpio_service_destroy(&dc->ctx->gpio_service);
909
910 if (dc->ctx->created_bios)
911 dal_bios_parser_destroy(&dc->ctx->dc_bios);
912 kfree(dc->ctx->logger);
913 dc_perf_trace_destroy(&dc->ctx->perf_trace);
914
915 kfree(dc->ctx);
916 dc->ctx = NULL;
917 }
918
919 kfree(dc->bw_vbios);
920 dc->bw_vbios = NULL;
921
922 kfree(dc->bw_dceip);
923 dc->bw_dceip = NULL;
924
925 kfree(dc->dcn_soc);
926 dc->dcn_soc = NULL;
927
928 kfree(dc->dcn_ip);
929 dc->dcn_ip = NULL;
930
931 kfree(dc->vm_helper);
932 dc->vm_helper = NULL;
933
934 }
935
dc_construct_ctx(struct dc * dc,const struct dc_init_data * init_params)936 static bool dc_construct_ctx(struct dc *dc,
937 const struct dc_init_data *init_params)
938 {
939 struct dc_context *dc_ctx;
940
941 dc_ctx = kzalloc(sizeof(*dc_ctx), GFP_KERNEL);
942 if (!dc_ctx)
943 return false;
944
945 dc_ctx->cgs_device = init_params->cgs_device;
946 dc_ctx->driver_context = init_params->driver;
947 dc_ctx->dc = dc;
948 dc_ctx->asic_id = init_params->asic_id;
949 dc_ctx->dc_sink_id_count = 0;
950 dc_ctx->dc_stream_id_count = 0;
951 dc_ctx->dce_environment = init_params->dce_environment;
952 dc_ctx->dcn_reg_offsets = init_params->dcn_reg_offsets;
953 dc_ctx->nbio_reg_offsets = init_params->nbio_reg_offsets;
954 dc_ctx->clk_reg_offsets = init_params->clk_reg_offsets;
955
956 /* Create logger */
957 dc_ctx->logger = kmalloc(sizeof(*dc_ctx->logger), GFP_KERNEL);
958
959 if (!dc_ctx->logger) {
960 kfree(dc_ctx);
961 return false;
962 }
963
964 dc_ctx->logger->dev = adev_to_drm(init_params->driver);
965 dc->dml.logger = dc_ctx->logger;
966
967 dc_ctx->dce_version = resource_parse_asic_id(init_params->asic_id);
968
969 dc_ctx->perf_trace = dc_perf_trace_create();
970 if (!dc_ctx->perf_trace) {
971 kfree(dc_ctx);
972 ASSERT_CRITICAL(false);
973 return false;
974 }
975
976 dc->ctx = dc_ctx;
977
978 dc->link_srv = link_create_link_service();
979 if (!dc->link_srv)
980 return false;
981
982 return true;
983 }
984
dc_construct(struct dc * dc,const struct dc_init_data * init_params)985 static bool dc_construct(struct dc *dc,
986 const struct dc_init_data *init_params)
987 {
988 struct dc_context *dc_ctx;
989 struct bw_calcs_dceip *dc_dceip;
990 struct bw_calcs_vbios *dc_vbios;
991 struct dcn_soc_bounding_box *dcn_soc;
992 struct dcn_ip_params *dcn_ip;
993
994 dc->config = init_params->flags;
995
996 // Allocate memory for the vm_helper
997 dc->vm_helper = kzalloc(sizeof(struct vm_helper), GFP_KERNEL);
998 if (!dc->vm_helper) {
999 dm_error("%s: failed to create dc->vm_helper\n", __func__);
1000 goto fail;
1001 }
1002
1003 memcpy(&dc->bb_overrides, &init_params->bb_overrides, sizeof(dc->bb_overrides));
1004
1005 dc_dceip = kzalloc(sizeof(*dc_dceip), GFP_KERNEL);
1006 if (!dc_dceip) {
1007 dm_error("%s: failed to create dceip\n", __func__);
1008 goto fail;
1009 }
1010
1011 dc->bw_dceip = dc_dceip;
1012
1013 dc_vbios = kzalloc(sizeof(*dc_vbios), GFP_KERNEL);
1014 if (!dc_vbios) {
1015 dm_error("%s: failed to create vbios\n", __func__);
1016 goto fail;
1017 }
1018
1019 dc->bw_vbios = dc_vbios;
1020 dcn_soc = kzalloc(sizeof(*dcn_soc), GFP_KERNEL);
1021 if (!dcn_soc) {
1022 dm_error("%s: failed to create dcn_soc\n", __func__);
1023 goto fail;
1024 }
1025
1026 dc->dcn_soc = dcn_soc;
1027
1028 dcn_ip = kzalloc(sizeof(*dcn_ip), GFP_KERNEL);
1029 if (!dcn_ip) {
1030 dm_error("%s: failed to create dcn_ip\n", __func__);
1031 goto fail;
1032 }
1033
1034 dc->dcn_ip = dcn_ip;
1035
1036 if (init_params->bb_from_dmub)
1037 dc->dml2_options.bb_from_dmub = init_params->bb_from_dmub;
1038 else
1039 dc->dml2_options.bb_from_dmub = NULL;
1040
1041 if (!dc_construct_ctx(dc, init_params)) {
1042 dm_error("%s: failed to create ctx\n", __func__);
1043 goto fail;
1044 }
1045
1046 dc_ctx = dc->ctx;
1047
1048 /* Resource should construct all asic specific resources.
1049 * This should be the only place where we need to parse the asic id
1050 */
1051 if (init_params->vbios_override)
1052 dc_ctx->dc_bios = init_params->vbios_override;
1053 else {
1054 /* Create BIOS parser */
1055 struct bp_init_data bp_init_data;
1056
1057 bp_init_data.ctx = dc_ctx;
1058 bp_init_data.bios = init_params->asic_id.atombios_base_address;
1059
1060 dc_ctx->dc_bios = dal_bios_parser_create(
1061 &bp_init_data, dc_ctx->dce_version);
1062
1063 if (!dc_ctx->dc_bios) {
1064 ASSERT_CRITICAL(false);
1065 goto fail;
1066 }
1067
1068 dc_ctx->created_bios = true;
1069 }
1070
1071 dc->vendor_signature = init_params->vendor_signature;
1072
1073 /* Create GPIO service */
1074 dc_ctx->gpio_service = dal_gpio_service_create(
1075 dc_ctx->dce_version,
1076 dc_ctx->dce_environment,
1077 dc_ctx);
1078
1079 if (!dc_ctx->gpio_service) {
1080 ASSERT_CRITICAL(false);
1081 goto fail;
1082 }
1083
1084 dc->res_pool = dc_create_resource_pool(dc, init_params, dc_ctx->dce_version);
1085 if (!dc->res_pool)
1086 goto fail;
1087
1088 /* set i2c speed if not done by the respective dcnxxx__resource.c */
1089 if (dc->caps.i2c_speed_in_khz_hdcp == 0)
1090 dc->caps.i2c_speed_in_khz_hdcp = dc->caps.i2c_speed_in_khz;
1091 if (dc->caps.max_optimizable_video_width == 0)
1092 dc->caps.max_optimizable_video_width = 5120;
1093 dc->clk_mgr = dc_clk_mgr_create(dc->ctx, dc->res_pool->pp_smu, dc->res_pool->dccg);
1094 if (!dc->clk_mgr)
1095 goto fail;
1096 #ifdef CONFIG_DRM_AMD_DC_FP
1097 dc->clk_mgr->force_smu_not_present = init_params->force_smu_not_present;
1098
1099 if (dc->res_pool->funcs->update_bw_bounding_box) {
1100 DC_FP_START();
1101 dc->res_pool->funcs->update_bw_bounding_box(dc, dc->clk_mgr->bw_params);
1102 DC_FP_END();
1103 }
1104 #endif
1105
1106 if (!create_links(dc, init_params->num_virtual_links))
1107 goto fail;
1108
1109 /* Create additional DIG link encoder objects if fewer than the platform
1110 * supports were created during link construction.
1111 */
1112 if (!create_link_encoders(dc))
1113 goto fail;
1114
1115 /* Creation of current_state must occur after dc->dml
1116 * is initialized in dc_create_resource_pool because
1117 * on creation it copies the contents of dc->dml
1118 */
1119 dc->current_state = dc_state_create(dc, NULL);
1120
1121 if (!dc->current_state) {
1122 dm_error("%s: failed to create validate ctx\n", __func__);
1123 goto fail;
1124 }
1125
1126 return true;
1127
1128 fail:
1129 return false;
1130 }
1131
disable_all_writeback_pipes_for_stream(const struct dc * dc,struct dc_stream_state * stream,struct dc_state * context)1132 static void disable_all_writeback_pipes_for_stream(
1133 const struct dc *dc,
1134 struct dc_stream_state *stream,
1135 struct dc_state *context)
1136 {
1137 int i;
1138
1139 for (i = 0; i < stream->num_wb_info; i++)
1140 stream->writeback_info[i].wb_enabled = false;
1141 }
1142
apply_ctx_interdependent_lock(struct dc * dc,struct dc_state * context,struct dc_stream_state * stream,bool lock)1143 static void apply_ctx_interdependent_lock(struct dc *dc,
1144 struct dc_state *context,
1145 struct dc_stream_state *stream,
1146 bool lock)
1147 {
1148 int i;
1149
1150 /* Checks if interdependent update function pointer is NULL or not, takes care of DCE110 case */
1151 if (dc->hwss.interdependent_update_lock)
1152 dc->hwss.interdependent_update_lock(dc, context, lock);
1153 else {
1154 for (i = 0; i < dc->res_pool->pipe_count; i++) {
1155 struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[i];
1156 struct pipe_ctx *old_pipe_ctx = &dc->current_state->res_ctx.pipe_ctx[i];
1157
1158 // Copied conditions that were previously in dce110_apply_ctx_for_surface
1159 if (stream == pipe_ctx->stream) {
1160 if (resource_is_pipe_type(pipe_ctx, OPP_HEAD) &&
1161 (pipe_ctx->plane_state || old_pipe_ctx->plane_state))
1162 dc->hwss.pipe_control_lock(dc, pipe_ctx, lock);
1163 }
1164 }
1165 }
1166 }
1167
dc_update_visual_confirm_color(struct dc * dc,struct dc_state * context,struct pipe_ctx * pipe_ctx)1168 static void dc_update_visual_confirm_color(struct dc *dc, struct dc_state *context, struct pipe_ctx *pipe_ctx)
1169 {
1170 if (dc->ctx->dce_version >= DCN_VERSION_1_0) {
1171 memset(&pipe_ctx->visual_confirm_color, 0, sizeof(struct tg_color));
1172
1173 if (dc->debug.visual_confirm == VISUAL_CONFIRM_HDR)
1174 get_hdr_visual_confirm_color(pipe_ctx, &(pipe_ctx->visual_confirm_color));
1175 else if (dc->debug.visual_confirm == VISUAL_CONFIRM_SURFACE)
1176 get_surface_visual_confirm_color(pipe_ctx, &(pipe_ctx->visual_confirm_color));
1177 else if (dc->debug.visual_confirm == VISUAL_CONFIRM_SWIZZLE)
1178 get_surface_tile_visual_confirm_color(pipe_ctx, &(pipe_ctx->visual_confirm_color));
1179 else {
1180 if (dc->ctx->dce_version < DCN_VERSION_2_0)
1181 color_space_to_black_color(
1182 dc, pipe_ctx->stream->output_color_space, &(pipe_ctx->visual_confirm_color));
1183 }
1184 if (dc->ctx->dce_version >= DCN_VERSION_2_0) {
1185 if (dc->debug.visual_confirm == VISUAL_CONFIRM_MPCTREE)
1186 get_mpctree_visual_confirm_color(pipe_ctx, &(pipe_ctx->visual_confirm_color));
1187 else if (dc->debug.visual_confirm == VISUAL_CONFIRM_SUBVP)
1188 get_subvp_visual_confirm_color(pipe_ctx, &(pipe_ctx->visual_confirm_color));
1189 else if (dc->debug.visual_confirm == VISUAL_CONFIRM_MCLK_SWITCH)
1190 get_mclk_switch_visual_confirm_color(pipe_ctx, &(pipe_ctx->visual_confirm_color));
1191 else if (dc->debug.visual_confirm == VISUAL_CONFIRM_FAMS2)
1192 get_fams2_visual_confirm_color(dc, context, pipe_ctx, &(pipe_ctx->visual_confirm_color));
1193 }
1194 }
1195 }
1196
disable_dangling_plane(struct dc * dc,struct dc_state * context)1197 static void disable_dangling_plane(struct dc *dc, struct dc_state *context)
1198 {
1199 int i, j;
1200 struct dc_state *dangling_context = dc_state_create_current_copy(dc);
1201 struct dc_state *current_ctx;
1202 struct pipe_ctx *pipe;
1203 struct timing_generator *tg;
1204
1205 if (dangling_context == NULL)
1206 return;
1207
1208 for (i = 0; i < dc->res_pool->pipe_count; i++) {
1209 struct dc_stream_state *old_stream =
1210 dc->current_state->res_ctx.pipe_ctx[i].stream;
1211 bool should_disable = true;
1212 bool pipe_split_change = false;
1213
1214 if ((context->res_ctx.pipe_ctx[i].top_pipe) &&
1215 (dc->current_state->res_ctx.pipe_ctx[i].top_pipe))
1216 pipe_split_change = context->res_ctx.pipe_ctx[i].top_pipe->pipe_idx !=
1217 dc->current_state->res_ctx.pipe_ctx[i].top_pipe->pipe_idx;
1218 else
1219 pipe_split_change = context->res_ctx.pipe_ctx[i].top_pipe !=
1220 dc->current_state->res_ctx.pipe_ctx[i].top_pipe;
1221
1222 for (j = 0; j < context->stream_count; j++) {
1223 if (old_stream == context->streams[j]) {
1224 should_disable = false;
1225 break;
1226 }
1227 }
1228 if (!should_disable && pipe_split_change &&
1229 dc->current_state->stream_count != context->stream_count)
1230 should_disable = true;
1231
1232 if (old_stream && !dc->current_state->res_ctx.pipe_ctx[i].top_pipe &&
1233 !dc->current_state->res_ctx.pipe_ctx[i].prev_odm_pipe) {
1234 struct pipe_ctx *old_pipe, *new_pipe;
1235
1236 old_pipe = &dc->current_state->res_ctx.pipe_ctx[i];
1237 new_pipe = &context->res_ctx.pipe_ctx[i];
1238
1239 if (old_pipe->plane_state && !new_pipe->plane_state)
1240 should_disable = true;
1241 }
1242
1243 if (should_disable && old_stream) {
1244 bool is_phantom = dc_state_get_stream_subvp_type(dc->current_state, old_stream) == SUBVP_PHANTOM;
1245 pipe = &dc->current_state->res_ctx.pipe_ctx[i];
1246 tg = pipe->stream_res.tg;
1247 /* When disabling plane for a phantom pipe, we must turn on the
1248 * phantom OTG so the disable programming gets the double buffer
1249 * update. Otherwise the pipe will be left in a partially disabled
1250 * state that can result in underflow or hang when enabling it
1251 * again for different use.
1252 */
1253 if (is_phantom) {
1254 if (tg->funcs->enable_crtc) {
1255 int main_pipe_width = 0, main_pipe_height = 0;
1256 struct dc_stream_state *old_paired_stream = dc_state_get_paired_subvp_stream(dc->current_state, old_stream);
1257
1258 if (old_paired_stream) {
1259 main_pipe_width = old_paired_stream->dst.width;
1260 main_pipe_height = old_paired_stream->dst.height;
1261 }
1262
1263 if (dc->hwss.blank_phantom)
1264 dc->hwss.blank_phantom(dc, tg, main_pipe_width, main_pipe_height);
1265 tg->funcs->enable_crtc(tg);
1266 }
1267 }
1268
1269 if (is_phantom)
1270 dc_state_rem_all_phantom_planes_for_stream(dc, old_stream, dangling_context, true);
1271 else
1272 dc_state_rem_all_planes_for_stream(dc, old_stream, dangling_context);
1273 disable_all_writeback_pipes_for_stream(dc, old_stream, dangling_context);
1274
1275 if (pipe->stream && pipe->plane_state) {
1276 if (!dc->debug.using_dml2)
1277 set_p_state_switch_method(dc, context, pipe);
1278 dc_update_visual_confirm_color(dc, context, pipe);
1279 }
1280
1281 if (dc->hwss.apply_ctx_for_surface) {
1282 apply_ctx_interdependent_lock(dc, dc->current_state, old_stream, true);
1283 dc->hwss.apply_ctx_for_surface(dc, old_stream, 0, dangling_context);
1284 apply_ctx_interdependent_lock(dc, dc->current_state, old_stream, false);
1285 dc->hwss.post_unlock_program_front_end(dc, dangling_context);
1286 }
1287
1288 if (dc->res_pool->funcs->prepare_mcache_programming)
1289 dc->res_pool->funcs->prepare_mcache_programming(dc, dangling_context);
1290 if (dc->hwss.program_front_end_for_ctx) {
1291 dc->hwss.interdependent_update_lock(dc, dc->current_state, true);
1292 dc->hwss.program_front_end_for_ctx(dc, dangling_context);
1293 dc->hwss.interdependent_update_lock(dc, dc->current_state, false);
1294 dc->hwss.post_unlock_program_front_end(dc, dangling_context);
1295 }
1296 /* We need to put the phantom OTG back into it's default (disabled) state or we
1297 * can get corruption when transition from one SubVP config to a different one.
1298 * The OTG is set to disable on falling edge of VUPDATE so the plane disable
1299 * will still get it's double buffer update.
1300 */
1301 if (is_phantom) {
1302 if (tg->funcs->disable_phantom_crtc)
1303 tg->funcs->disable_phantom_crtc(tg);
1304 }
1305 }
1306 }
1307
1308 current_ctx = dc->current_state;
1309 dc->current_state = dangling_context;
1310 dc_state_release(current_ctx);
1311 }
1312
disable_vbios_mode_if_required(struct dc * dc,struct dc_state * context)1313 static void disable_vbios_mode_if_required(
1314 struct dc *dc,
1315 struct dc_state *context)
1316 {
1317 unsigned int i, j;
1318
1319 /* check if timing_changed, disable stream*/
1320 for (i = 0; i < dc->res_pool->pipe_count; i++) {
1321 struct dc_stream_state *stream = NULL;
1322 struct dc_link *link = NULL;
1323 struct pipe_ctx *pipe = NULL;
1324
1325 pipe = &context->res_ctx.pipe_ctx[i];
1326 stream = pipe->stream;
1327 if (stream == NULL)
1328 continue;
1329
1330 if (stream->apply_seamless_boot_optimization)
1331 continue;
1332
1333 // only looking for first odm pipe
1334 if (pipe->prev_odm_pipe)
1335 continue;
1336
1337 if (stream->link->local_sink &&
1338 stream->link->local_sink->sink_signal == SIGNAL_TYPE_EDP) {
1339 link = stream->link;
1340 }
1341
1342 if (link != NULL && link->link_enc->funcs->is_dig_enabled(link->link_enc)) {
1343 unsigned int enc_inst, tg_inst = 0;
1344 unsigned int pix_clk_100hz = 0;
1345
1346 enc_inst = link->link_enc->funcs->get_dig_frontend(link->link_enc);
1347 if (enc_inst != ENGINE_ID_UNKNOWN) {
1348 for (j = 0; j < dc->res_pool->stream_enc_count; j++) {
1349 if (dc->res_pool->stream_enc[j]->id == enc_inst) {
1350 tg_inst = dc->res_pool->stream_enc[j]->funcs->dig_source_otg(
1351 dc->res_pool->stream_enc[j]);
1352 break;
1353 }
1354 }
1355
1356 dc->res_pool->dp_clock_source->funcs->get_pixel_clk_frequency_100hz(
1357 dc->res_pool->dp_clock_source,
1358 tg_inst, &pix_clk_100hz);
1359
1360 if (link->link_status.link_active) {
1361 uint32_t requested_pix_clk_100hz =
1362 pipe->stream_res.pix_clk_params.requested_pix_clk_100hz;
1363
1364 if (pix_clk_100hz != requested_pix_clk_100hz) {
1365 dc->link_srv->set_dpms_off(pipe);
1366 pipe->stream->dpms_off = false;
1367 }
1368 }
1369 }
1370 }
1371 }
1372 }
1373
1374 /* Public functions */
1375
dc_create(const struct dc_init_data * init_params)1376 struct dc *dc_create(const struct dc_init_data *init_params)
1377 {
1378 struct dc *dc = kzalloc(sizeof(*dc), GFP_KERNEL);
1379 unsigned int full_pipe_count;
1380
1381 if (!dc)
1382 return NULL;
1383
1384 if (init_params->dce_environment == DCE_ENV_VIRTUAL_HW) {
1385 dc->caps.linear_pitch_alignment = 64;
1386 if (!dc_construct_ctx(dc, init_params))
1387 goto destruct_dc;
1388 } else {
1389 if (!dc_construct(dc, init_params))
1390 goto destruct_dc;
1391
1392 full_pipe_count = dc->res_pool->pipe_count;
1393 if (dc->res_pool->underlay_pipe_index != NO_UNDERLAY_PIPE)
1394 full_pipe_count--;
1395 dc->caps.max_streams = min(
1396 full_pipe_count,
1397 dc->res_pool->stream_enc_count);
1398
1399 dc->caps.max_links = dc->link_count;
1400 dc->caps.max_audios = dc->res_pool->audio_count;
1401 dc->caps.linear_pitch_alignment = 64;
1402
1403 dc->caps.max_dp_protocol_version = DP_VERSION_1_4;
1404
1405 dc->caps.max_otg_num = dc->res_pool->res_cap->num_timing_generator;
1406
1407 if (dc->res_pool->dmcu != NULL)
1408 dc->versions.dmcu_version = dc->res_pool->dmcu->dmcu_version;
1409 }
1410
1411 dc->dcn_reg_offsets = init_params->dcn_reg_offsets;
1412 dc->nbio_reg_offsets = init_params->nbio_reg_offsets;
1413 dc->clk_reg_offsets = init_params->clk_reg_offsets;
1414
1415 /* Populate versioning information */
1416 dc->versions.dc_ver = DC_VER;
1417
1418 dc->build_id = DC_BUILD_ID;
1419
1420 DC_LOG_DC("Display Core initialized\n");
1421
1422 return dc;
1423
1424 destruct_dc:
1425 dc_destruct(dc);
1426 kfree(dc);
1427 return NULL;
1428 }
1429
detect_edp_presence(struct dc * dc)1430 static void detect_edp_presence(struct dc *dc)
1431 {
1432 struct dc_link *edp_links[MAX_NUM_EDP];
1433 struct dc_link *edp_link = NULL;
1434 enum dc_connection_type type;
1435 int i;
1436 int edp_num;
1437
1438 dc_get_edp_links(dc, edp_links, &edp_num);
1439 if (!edp_num)
1440 return;
1441
1442 for (i = 0; i < edp_num; i++) {
1443 edp_link = edp_links[i];
1444 if (dc->config.edp_not_connected) {
1445 edp_link->edp_sink_present = false;
1446 } else {
1447 dc_link_detect_connection_type(edp_link, &type);
1448 edp_link->edp_sink_present = (type != dc_connection_none);
1449 }
1450 }
1451 }
1452
dc_hardware_init(struct dc * dc)1453 void dc_hardware_init(struct dc *dc)
1454 {
1455
1456 detect_edp_presence(dc);
1457 if (dc->ctx->dce_environment != DCE_ENV_VIRTUAL_HW)
1458 dc->hwss.init_hw(dc);
1459 }
1460
dc_init_callbacks(struct dc * dc,const struct dc_callback_init * init_params)1461 void dc_init_callbacks(struct dc *dc,
1462 const struct dc_callback_init *init_params)
1463 {
1464 dc->ctx->cp_psp = init_params->cp_psp;
1465 }
1466
dc_deinit_callbacks(struct dc * dc)1467 void dc_deinit_callbacks(struct dc *dc)
1468 {
1469 memset(&dc->ctx->cp_psp, 0, sizeof(dc->ctx->cp_psp));
1470 }
1471
dc_destroy(struct dc ** dc)1472 void dc_destroy(struct dc **dc)
1473 {
1474 dc_destruct(*dc);
1475 kfree(*dc);
1476 *dc = NULL;
1477 }
1478
enable_timing_multisync(struct dc * dc,struct dc_state * ctx)1479 static void enable_timing_multisync(
1480 struct dc *dc,
1481 struct dc_state *ctx)
1482 {
1483 int i, multisync_count = 0;
1484 int pipe_count = dc->res_pool->pipe_count;
1485 struct pipe_ctx *multisync_pipes[MAX_PIPES] = { NULL };
1486
1487 for (i = 0; i < pipe_count; i++) {
1488 if (!ctx->res_ctx.pipe_ctx[i].stream ||
1489 !ctx->res_ctx.pipe_ctx[i].stream->triggered_crtc_reset.enabled)
1490 continue;
1491 if (ctx->res_ctx.pipe_ctx[i].stream == ctx->res_ctx.pipe_ctx[i].stream->triggered_crtc_reset.event_source)
1492 continue;
1493 multisync_pipes[multisync_count] = &ctx->res_ctx.pipe_ctx[i];
1494 multisync_count++;
1495 }
1496
1497 if (multisync_count > 0) {
1498 dc->hwss.enable_per_frame_crtc_position_reset(
1499 dc, multisync_count, multisync_pipes);
1500 }
1501 }
1502
program_timing_sync(struct dc * dc,struct dc_state * ctx)1503 static void program_timing_sync(
1504 struct dc *dc,
1505 struct dc_state *ctx)
1506 {
1507 int i, j, k;
1508 int group_index = 0;
1509 int num_group = 0;
1510 int pipe_count = dc->res_pool->pipe_count;
1511 struct pipe_ctx *unsynced_pipes[MAX_PIPES] = { NULL };
1512
1513 for (i = 0; i < pipe_count; i++) {
1514 if (!ctx->res_ctx.pipe_ctx[i].stream
1515 || ctx->res_ctx.pipe_ctx[i].top_pipe
1516 || ctx->res_ctx.pipe_ctx[i].prev_odm_pipe)
1517 continue;
1518
1519 unsynced_pipes[i] = &ctx->res_ctx.pipe_ctx[i];
1520 }
1521
1522 for (i = 0; i < pipe_count; i++) {
1523 int group_size = 1;
1524 enum timing_synchronization_type sync_type = NOT_SYNCHRONIZABLE;
1525 struct pipe_ctx *pipe_set[MAX_PIPES];
1526
1527 if (!unsynced_pipes[i])
1528 continue;
1529
1530 pipe_set[0] = unsynced_pipes[i];
1531 unsynced_pipes[i] = NULL;
1532
1533 /* Add tg to the set, search rest of the tg's for ones with
1534 * same timing, add all tgs with same timing to the group
1535 */
1536 for (j = i + 1; j < pipe_count; j++) {
1537 if (!unsynced_pipes[j])
1538 continue;
1539 if (sync_type != TIMING_SYNCHRONIZABLE &&
1540 dc->hwss.enable_vblanks_synchronization &&
1541 unsynced_pipes[j]->stream_res.tg->funcs->align_vblanks &&
1542 resource_are_vblanks_synchronizable(
1543 unsynced_pipes[j]->stream,
1544 pipe_set[0]->stream)) {
1545 sync_type = VBLANK_SYNCHRONIZABLE;
1546 pipe_set[group_size] = unsynced_pipes[j];
1547 unsynced_pipes[j] = NULL;
1548 group_size++;
1549 } else
1550 if (sync_type != VBLANK_SYNCHRONIZABLE &&
1551 resource_are_streams_timing_synchronizable(
1552 unsynced_pipes[j]->stream,
1553 pipe_set[0]->stream)) {
1554 sync_type = TIMING_SYNCHRONIZABLE;
1555 pipe_set[group_size] = unsynced_pipes[j];
1556 unsynced_pipes[j] = NULL;
1557 group_size++;
1558 }
1559 }
1560
1561 /* set first unblanked pipe as master */
1562 for (j = 0; j < group_size; j++) {
1563 bool is_blanked;
1564
1565 if (pipe_set[j]->stream_res.opp->funcs->dpg_is_blanked)
1566 is_blanked =
1567 pipe_set[j]->stream_res.opp->funcs->dpg_is_blanked(pipe_set[j]->stream_res.opp);
1568 else
1569 is_blanked =
1570 pipe_set[j]->stream_res.tg->funcs->is_blanked(pipe_set[j]->stream_res.tg);
1571 if (!is_blanked) {
1572 if (j == 0)
1573 break;
1574
1575 swap(pipe_set[0], pipe_set[j]);
1576 break;
1577 }
1578 }
1579
1580 for (k = 0; k < group_size; k++) {
1581 struct dc_stream_status *status = dc_state_get_stream_status(ctx, pipe_set[k]->stream);
1582
1583 if (!status)
1584 continue;
1585
1586 status->timing_sync_info.group_id = num_group;
1587 status->timing_sync_info.group_size = group_size;
1588 if (k == 0)
1589 status->timing_sync_info.master = true;
1590 else
1591 status->timing_sync_info.master = false;
1592
1593 }
1594
1595 /* remove any other unblanked pipes as they have already been synced */
1596 if (dc->config.use_pipe_ctx_sync_logic) {
1597 /* check pipe's syncd to decide which pipe to be removed */
1598 for (j = 1; j < group_size; j++) {
1599 if (pipe_set[j]->pipe_idx_syncd == pipe_set[0]->pipe_idx_syncd) {
1600 group_size--;
1601 pipe_set[j] = pipe_set[group_size];
1602 j--;
1603 } else
1604 /* link slave pipe's syncd with master pipe */
1605 pipe_set[j]->pipe_idx_syncd = pipe_set[0]->pipe_idx_syncd;
1606 }
1607 } else {
1608 /* remove any other pipes by checking valid plane */
1609 for (j = j + 1; j < group_size; j++) {
1610 bool is_blanked;
1611
1612 if (pipe_set[j]->stream_res.opp->funcs->dpg_is_blanked)
1613 is_blanked =
1614 pipe_set[j]->stream_res.opp->funcs->dpg_is_blanked(pipe_set[j]->stream_res.opp);
1615 else
1616 is_blanked =
1617 pipe_set[j]->stream_res.tg->funcs->is_blanked(pipe_set[j]->stream_res.tg);
1618 if (!is_blanked) {
1619 group_size--;
1620 pipe_set[j] = pipe_set[group_size];
1621 j--;
1622 }
1623 }
1624 }
1625
1626 if (group_size > 1) {
1627 if (sync_type == TIMING_SYNCHRONIZABLE) {
1628 dc->hwss.enable_timing_synchronization(
1629 dc, ctx, group_index, group_size, pipe_set);
1630 } else
1631 if (sync_type == VBLANK_SYNCHRONIZABLE) {
1632 dc->hwss.enable_vblanks_synchronization(
1633 dc, group_index, group_size, pipe_set);
1634 }
1635 group_index++;
1636 }
1637 num_group++;
1638 }
1639 }
1640
streams_changed(struct dc * dc,struct dc_stream_state * streams[],uint8_t stream_count)1641 static bool streams_changed(struct dc *dc,
1642 struct dc_stream_state *streams[],
1643 uint8_t stream_count)
1644 {
1645 uint8_t i;
1646
1647 if (stream_count != dc->current_state->stream_count)
1648 return true;
1649
1650 for (i = 0; i < dc->current_state->stream_count; i++) {
1651 if (dc->current_state->streams[i] != streams[i])
1652 return true;
1653 if (!streams[i]->link->link_state_valid)
1654 return true;
1655 }
1656
1657 return false;
1658 }
1659
dc_validate_boot_timing(const struct dc * dc,const struct dc_sink * sink,struct dc_crtc_timing * crtc_timing)1660 bool dc_validate_boot_timing(const struct dc *dc,
1661 const struct dc_sink *sink,
1662 struct dc_crtc_timing *crtc_timing)
1663 {
1664 struct timing_generator *tg;
1665 struct stream_encoder *se = NULL;
1666
1667 struct dc_crtc_timing hw_crtc_timing = {0};
1668
1669 struct dc_link *link = sink->link;
1670 unsigned int i, enc_inst, tg_inst = 0;
1671
1672 /* Support seamless boot on EDP displays only */
1673 if (sink->sink_signal != SIGNAL_TYPE_EDP) {
1674 return false;
1675 }
1676
1677 if (dc->debug.force_odm_combine)
1678 return false;
1679
1680 /* Check for enabled DIG to identify enabled display */
1681 if (!link->link_enc->funcs->is_dig_enabled(link->link_enc))
1682 return false;
1683
1684 enc_inst = link->link_enc->funcs->get_dig_frontend(link->link_enc);
1685
1686 if (enc_inst == ENGINE_ID_UNKNOWN)
1687 return false;
1688
1689 for (i = 0; i < dc->res_pool->stream_enc_count; i++) {
1690 if (dc->res_pool->stream_enc[i]->id == enc_inst) {
1691
1692 se = dc->res_pool->stream_enc[i];
1693
1694 tg_inst = dc->res_pool->stream_enc[i]->funcs->dig_source_otg(
1695 dc->res_pool->stream_enc[i]);
1696 break;
1697 }
1698 }
1699
1700 // tg_inst not found
1701 if (i == dc->res_pool->stream_enc_count)
1702 return false;
1703
1704 if (tg_inst >= dc->res_pool->timing_generator_count)
1705 return false;
1706
1707 if (tg_inst != link->link_enc->preferred_engine)
1708 return false;
1709
1710 tg = dc->res_pool->timing_generators[tg_inst];
1711
1712 if (!tg->funcs->get_hw_timing)
1713 return false;
1714
1715 if (!tg->funcs->get_hw_timing(tg, &hw_crtc_timing))
1716 return false;
1717
1718 if (crtc_timing->h_total != hw_crtc_timing.h_total)
1719 return false;
1720
1721 if (crtc_timing->h_border_left != hw_crtc_timing.h_border_left)
1722 return false;
1723
1724 if (crtc_timing->h_addressable != hw_crtc_timing.h_addressable)
1725 return false;
1726
1727 if (crtc_timing->h_border_right != hw_crtc_timing.h_border_right)
1728 return false;
1729
1730 if (crtc_timing->h_front_porch != hw_crtc_timing.h_front_porch)
1731 return false;
1732
1733 if (crtc_timing->h_sync_width != hw_crtc_timing.h_sync_width)
1734 return false;
1735
1736 if (crtc_timing->v_total != hw_crtc_timing.v_total)
1737 return false;
1738
1739 if (crtc_timing->v_border_top != hw_crtc_timing.v_border_top)
1740 return false;
1741
1742 if (crtc_timing->v_addressable != hw_crtc_timing.v_addressable)
1743 return false;
1744
1745 if (crtc_timing->v_border_bottom != hw_crtc_timing.v_border_bottom)
1746 return false;
1747
1748 if (crtc_timing->v_front_porch != hw_crtc_timing.v_front_porch)
1749 return false;
1750
1751 if (crtc_timing->v_sync_width != hw_crtc_timing.v_sync_width)
1752 return false;
1753
1754 /* block DSC for now, as VBIOS does not currently support DSC timings */
1755 if (crtc_timing->flags.DSC)
1756 return false;
1757
1758 if (dc_is_dp_signal(link->connector_signal)) {
1759 unsigned int pix_clk_100hz = 0;
1760 uint32_t numOdmPipes = 1;
1761 uint32_t id_src[4] = {0};
1762
1763 dc->res_pool->dp_clock_source->funcs->get_pixel_clk_frequency_100hz(
1764 dc->res_pool->dp_clock_source,
1765 tg_inst, &pix_clk_100hz);
1766
1767 if (tg->funcs->get_optc_source)
1768 tg->funcs->get_optc_source(tg,
1769 &numOdmPipes, &id_src[0], &id_src[1]);
1770
1771 if (numOdmPipes == 2) {
1772 pix_clk_100hz *= 2;
1773 } else if (numOdmPipes == 4) {
1774 pix_clk_100hz *= 4;
1775 } else if (se && se->funcs->get_pixels_per_cycle) {
1776 uint32_t pixels_per_cycle = se->funcs->get_pixels_per_cycle(se);
1777
1778 if (pixels_per_cycle != 1 && !dc->debug.enable_dp_dig_pixel_rate_div_policy)
1779 return false;
1780
1781 pix_clk_100hz *= pixels_per_cycle;
1782 }
1783
1784 // Note: In rare cases, HW pixclk may differ from crtc's pixclk
1785 // slightly due to rounding issues in 10 kHz units.
1786 if (crtc_timing->pix_clk_100hz != pix_clk_100hz)
1787 return false;
1788
1789 if (!se || !se->funcs->dp_get_pixel_format)
1790 return false;
1791
1792 if (!se->funcs->dp_get_pixel_format(
1793 se,
1794 &hw_crtc_timing.pixel_encoding,
1795 &hw_crtc_timing.display_color_depth))
1796 return false;
1797
1798 if (hw_crtc_timing.display_color_depth != crtc_timing->display_color_depth)
1799 return false;
1800
1801 if (hw_crtc_timing.pixel_encoding != crtc_timing->pixel_encoding)
1802 return false;
1803 }
1804
1805 if (link->dpcd_caps.dprx_feature.bits.VSC_SDP_COLORIMETRY_SUPPORTED) {
1806 return false;
1807 }
1808
1809 if (link->dpcd_caps.channel_coding_cap.bits.DP_128b_132b_SUPPORTED)
1810 return false;
1811
1812 if (dc->link_srv->edp_is_ilr_optimization_required(link, crtc_timing)) {
1813 DC_LOG_EVENT_LINK_TRAINING("Seamless boot disabled to optimize eDP link rate\n");
1814 return false;
1815 }
1816
1817 return true;
1818 }
1819
should_update_pipe_for_stream(struct dc_state * context,struct pipe_ctx * pipe_ctx,struct dc_stream_state * stream)1820 static inline bool should_update_pipe_for_stream(
1821 struct dc_state *context,
1822 struct pipe_ctx *pipe_ctx,
1823 struct dc_stream_state *stream)
1824 {
1825 return (pipe_ctx->stream && pipe_ctx->stream == stream);
1826 }
1827
should_update_pipe_for_plane(struct dc_state * context,struct pipe_ctx * pipe_ctx,struct dc_plane_state * plane_state)1828 static inline bool should_update_pipe_for_plane(
1829 struct dc_state *context,
1830 struct pipe_ctx *pipe_ctx,
1831 struct dc_plane_state *plane_state)
1832 {
1833 return (pipe_ctx->plane_state == plane_state);
1834 }
1835
dc_enable_stereo(struct dc * dc,struct dc_state * context,struct dc_stream_state * streams[],uint8_t stream_count)1836 void dc_enable_stereo(
1837 struct dc *dc,
1838 struct dc_state *context,
1839 struct dc_stream_state *streams[],
1840 uint8_t stream_count)
1841 {
1842 int i, j;
1843 struct pipe_ctx *pipe;
1844
1845 dc_exit_ips_for_hw_access(dc);
1846
1847 for (i = 0; i < MAX_PIPES; i++) {
1848 if (context != NULL) {
1849 pipe = &context->res_ctx.pipe_ctx[i];
1850 } else {
1851 context = dc->current_state;
1852 pipe = &dc->current_state->res_ctx.pipe_ctx[i];
1853 }
1854
1855 for (j = 0; pipe && j < stream_count; j++) {
1856 if (should_update_pipe_for_stream(context, pipe, streams[j]) &&
1857 dc->hwss.setup_stereo)
1858 dc->hwss.setup_stereo(pipe, dc);
1859 }
1860 }
1861 }
1862
dc_trigger_sync(struct dc * dc,struct dc_state * context)1863 void dc_trigger_sync(struct dc *dc, struct dc_state *context)
1864 {
1865 if (context->stream_count > 1 && !dc->debug.disable_timing_sync) {
1866 dc_exit_ips_for_hw_access(dc);
1867
1868 enable_timing_multisync(dc, context);
1869 program_timing_sync(dc, context);
1870 }
1871 }
1872
get_stream_mask(struct dc * dc,struct dc_state * context)1873 static uint8_t get_stream_mask(struct dc *dc, struct dc_state *context)
1874 {
1875 int i;
1876 unsigned int stream_mask = 0;
1877
1878 for (i = 0; i < dc->res_pool->pipe_count; i++) {
1879 if (context->res_ctx.pipe_ctx[i].stream)
1880 stream_mask |= 1 << i;
1881 }
1882
1883 return stream_mask;
1884 }
1885
dc_z10_restore(const struct dc * dc)1886 void dc_z10_restore(const struct dc *dc)
1887 {
1888 if (dc->hwss.z10_restore)
1889 dc->hwss.z10_restore(dc);
1890 }
1891
dc_z10_save_init(struct dc * dc)1892 void dc_z10_save_init(struct dc *dc)
1893 {
1894 if (dc->hwss.z10_save_init)
1895 dc->hwss.z10_save_init(dc);
1896 }
1897
1898 /**
1899 * dc_commit_state_no_check - Apply context to the hardware
1900 *
1901 * @dc: DC object with the current status to be updated
1902 * @context: New state that will become the current status at the end of this function
1903 *
1904 * Applies given context to the hardware and copy it into current context.
1905 * It's up to the user to release the src context afterwards.
1906 *
1907 * Return: an enum dc_status result code for the operation
1908 */
dc_commit_state_no_check(struct dc * dc,struct dc_state * context)1909 static enum dc_status dc_commit_state_no_check(struct dc *dc, struct dc_state *context)
1910 {
1911 struct dc_bios *dcb = dc->ctx->dc_bios;
1912 enum dc_status result = DC_ERROR_UNEXPECTED;
1913 struct pipe_ctx *pipe;
1914 int i, k, l;
1915 struct dc_stream_state *dc_streams[MAX_STREAMS] = {0};
1916 struct dc_state *old_state;
1917 bool subvp_prev_use = false;
1918
1919 dc_z10_restore(dc);
1920 dc_allow_idle_optimizations(dc, false);
1921
1922 for (i = 0; i < dc->res_pool->pipe_count; i++) {
1923 struct pipe_ctx *old_pipe = &dc->current_state->res_ctx.pipe_ctx[i];
1924
1925 /* Check old context for SubVP */
1926 subvp_prev_use |= (dc_state_get_pipe_subvp_type(dc->current_state, old_pipe) == SUBVP_PHANTOM);
1927 if (subvp_prev_use)
1928 break;
1929 }
1930
1931 for (i = 0; i < context->stream_count; i++)
1932 dc_streams[i] = context->streams[i];
1933
1934 if (!dcb->funcs->is_accelerated_mode(dcb)) {
1935 disable_vbios_mode_if_required(dc, context);
1936 dc->hwss.enable_accelerated_mode(dc, context);
1937 }
1938
1939 if (context->stream_count > get_seamless_boot_stream_count(context) ||
1940 context->stream_count == 0)
1941 dc->hwss.prepare_bandwidth(dc, context);
1942
1943 /* When SubVP is active, all HW programming must be done while
1944 * SubVP lock is acquired
1945 */
1946 if (dc->hwss.subvp_pipe_control_lock)
1947 dc->hwss.subvp_pipe_control_lock(dc, context, true, true, NULL, subvp_prev_use);
1948 if (dc->hwss.fams2_global_control_lock)
1949 dc->hwss.fams2_global_control_lock(dc, context, true);
1950
1951 if (dc->hwss.update_dsc_pg)
1952 dc->hwss.update_dsc_pg(dc, context, false);
1953
1954 disable_dangling_plane(dc, context);
1955 /* re-program planes for existing stream, in case we need to
1956 * free up plane resource for later use
1957 */
1958 if (dc->hwss.apply_ctx_for_surface) {
1959 for (i = 0; i < context->stream_count; i++) {
1960 if (context->streams[i]->mode_changed)
1961 continue;
1962 apply_ctx_interdependent_lock(dc, context, context->streams[i], true);
1963 dc->hwss.apply_ctx_for_surface(
1964 dc, context->streams[i],
1965 context->stream_status[i].plane_count,
1966 context); /* use new pipe config in new context */
1967 apply_ctx_interdependent_lock(dc, context, context->streams[i], false);
1968 dc->hwss.post_unlock_program_front_end(dc, context);
1969 }
1970 }
1971
1972 /* Program hardware */
1973 for (i = 0; i < dc->res_pool->pipe_count; i++) {
1974 pipe = &context->res_ctx.pipe_ctx[i];
1975 dc->hwss.wait_for_mpcc_disconnect(dc, dc->res_pool, pipe);
1976 }
1977
1978 result = dc->hwss.apply_ctx_to_hw(dc, context);
1979
1980 if (result != DC_OK) {
1981 /* Application of dc_state to hardware stopped. */
1982 dc->current_state->res_ctx.link_enc_cfg_ctx.mode = LINK_ENC_CFG_STEADY;
1983 return result;
1984 }
1985
1986 dc_trigger_sync(dc, context);
1987
1988 /* Full update should unconditionally be triggered when dc_commit_state_no_check is called */
1989 for (i = 0; i < context->stream_count; i++) {
1990 uint32_t prev_dsc_changed = context->streams[i]->update_flags.bits.dsc_changed;
1991
1992 context->streams[i]->update_flags.raw = 0xFFFFFFFF;
1993 context->streams[i]->update_flags.bits.dsc_changed = prev_dsc_changed;
1994 }
1995
1996 /* Program all planes within new context*/
1997 if (dc->res_pool->funcs->prepare_mcache_programming)
1998 dc->res_pool->funcs->prepare_mcache_programming(dc, context);
1999 if (dc->hwss.program_front_end_for_ctx) {
2000 dc->hwss.interdependent_update_lock(dc, context, true);
2001 dc->hwss.program_front_end_for_ctx(dc, context);
2002 dc->hwss.interdependent_update_lock(dc, context, false);
2003 dc->hwss.post_unlock_program_front_end(dc, context);
2004 }
2005
2006 if (dc->hwss.commit_subvp_config)
2007 dc->hwss.commit_subvp_config(dc, context);
2008 if (dc->hwss.subvp_pipe_control_lock)
2009 dc->hwss.subvp_pipe_control_lock(dc, context, false, true, NULL, subvp_prev_use);
2010 if (dc->hwss.fams2_global_control_lock)
2011 dc->hwss.fams2_global_control_lock(dc, context, false);
2012
2013 for (i = 0; i < context->stream_count; i++) {
2014 const struct dc_link *link = context->streams[i]->link;
2015
2016 if (!context->streams[i]->mode_changed)
2017 continue;
2018
2019 if (dc->hwss.apply_ctx_for_surface) {
2020 apply_ctx_interdependent_lock(dc, context, context->streams[i], true);
2021 dc->hwss.apply_ctx_for_surface(
2022 dc, context->streams[i],
2023 context->stream_status[i].plane_count,
2024 context);
2025 apply_ctx_interdependent_lock(dc, context, context->streams[i], false);
2026 dc->hwss.post_unlock_program_front_end(dc, context);
2027 }
2028
2029 /*
2030 * enable stereo
2031 * TODO rework dc_enable_stereo call to work with validation sets?
2032 */
2033 for (k = 0; k < MAX_PIPES; k++) {
2034 pipe = &context->res_ctx.pipe_ctx[k];
2035
2036 for (l = 0 ; pipe && l < context->stream_count; l++) {
2037 if (context->streams[l] &&
2038 context->streams[l] == pipe->stream &&
2039 dc->hwss.setup_stereo)
2040 dc->hwss.setup_stereo(pipe, dc);
2041 }
2042 }
2043
2044 CONN_MSG_MODE(link, "{%dx%d, %dx%d@%dKhz}",
2045 context->streams[i]->timing.h_addressable,
2046 context->streams[i]->timing.v_addressable,
2047 context->streams[i]->timing.h_total,
2048 context->streams[i]->timing.v_total,
2049 context->streams[i]->timing.pix_clk_100hz / 10);
2050 }
2051
2052 dc_enable_stereo(dc, context, dc_streams, context->stream_count);
2053
2054 if (get_seamless_boot_stream_count(context) == 0 ||
2055 context->stream_count == 0) {
2056 /* Must wait for no flips to be pending before doing optimize bw */
2057 hwss_wait_for_no_pipes_pending(dc, context);
2058 /*
2059 * optimized dispclk depends on ODM setup. Need to wait for ODM
2060 * update pending complete before optimizing bandwidth.
2061 */
2062 hwss_wait_for_odm_update_pending_complete(dc, context);
2063 /* pplib is notified if disp_num changed */
2064 dc->hwss.optimize_bandwidth(dc, context);
2065 /* Need to do otg sync again as otg could be out of sync due to otg
2066 * workaround applied during clock update
2067 */
2068 dc_trigger_sync(dc, context);
2069 }
2070
2071 if (dc->hwss.update_dsc_pg)
2072 dc->hwss.update_dsc_pg(dc, context, true);
2073
2074 if (dc->ctx->dce_version >= DCE_VERSION_MAX)
2075 TRACE_DCN_CLOCK_STATE(&context->bw_ctx.bw.dcn.clk);
2076 else
2077 TRACE_DCE_CLOCK_STATE(&context->bw_ctx.bw.dce);
2078
2079 context->stream_mask = get_stream_mask(dc, context);
2080
2081 if (context->stream_mask != dc->current_state->stream_mask)
2082 dc_dmub_srv_notify_stream_mask(dc->ctx->dmub_srv, context->stream_mask);
2083
2084 for (i = 0; i < context->stream_count; i++)
2085 context->streams[i]->mode_changed = false;
2086
2087 /* Clear update flags that were set earlier to avoid redundant programming */
2088 for (i = 0; i < context->stream_count; i++) {
2089 context->streams[i]->update_flags.raw = 0x0;
2090 }
2091
2092 old_state = dc->current_state;
2093 dc->current_state = context;
2094
2095 dc_state_release(old_state);
2096
2097 dc_state_retain(dc->current_state);
2098
2099 return result;
2100 }
2101
2102 static bool commit_minimal_transition_state(struct dc *dc,
2103 struct dc_state *transition_base_context);
2104
2105 /**
2106 * dc_commit_streams - Commit current stream state
2107 *
2108 * @dc: DC object with the commit state to be configured in the hardware
2109 * @params: Parameters for the commit, including the streams to be committed
2110 *
2111 * Function responsible for commit streams change to the hardware.
2112 *
2113 * Return:
2114 * Return DC_OK if everything work as expected, otherwise, return a dc_status
2115 * code.
2116 */
dc_commit_streams(struct dc * dc,struct dc_commit_streams_params * params)2117 enum dc_status dc_commit_streams(struct dc *dc, struct dc_commit_streams_params *params)
2118 {
2119 int i, j;
2120 struct dc_state *context;
2121 enum dc_status res = DC_OK;
2122 struct dc_validation_set set[MAX_STREAMS] = {0};
2123 struct pipe_ctx *pipe;
2124 bool handle_exit_odm2to1 = false;
2125
2126 if (!params)
2127 return DC_ERROR_UNEXPECTED;
2128
2129 if (dc->ctx->dce_environment == DCE_ENV_VIRTUAL_HW)
2130 return res;
2131
2132 if (!streams_changed(dc, params->streams, params->stream_count) &&
2133 dc->current_state->power_source == params->power_source)
2134 return res;
2135
2136 dc_exit_ips_for_hw_access(dc);
2137
2138 DC_LOG_DC("%s: %d streams\n", __func__, params->stream_count);
2139
2140 for (i = 0; i < params->stream_count; i++) {
2141 struct dc_stream_state *stream = params->streams[i];
2142 struct dc_stream_status *status = dc_stream_get_status(stream);
2143
2144 dc_stream_log(dc, stream);
2145
2146 set[i].stream = stream;
2147
2148 if (status) {
2149 set[i].plane_count = status->plane_count;
2150 for (j = 0; j < status->plane_count; j++)
2151 set[i].plane_states[j] = status->plane_states[j];
2152 }
2153 }
2154
2155 /* ODM Combine 2:1 power optimization is only applied for single stream
2156 * scenario, it uses extra pipes than needed to reduce power consumption
2157 * We need to switch off this feature to make room for new streams.
2158 */
2159 if (params->stream_count > dc->current_state->stream_count &&
2160 dc->current_state->stream_count == 1) {
2161 for (i = 0; i < dc->res_pool->pipe_count; i++) {
2162 pipe = &dc->current_state->res_ctx.pipe_ctx[i];
2163 if (pipe->next_odm_pipe)
2164 handle_exit_odm2to1 = true;
2165 }
2166 }
2167
2168 if (handle_exit_odm2to1)
2169 res = commit_minimal_transition_state(dc, dc->current_state);
2170
2171 context = dc_state_create_current_copy(dc);
2172 if (!context)
2173 goto context_alloc_fail;
2174
2175 context->power_source = params->power_source;
2176
2177 res = dc_validate_with_context(dc, set, params->stream_count, context, false);
2178 if (res != DC_OK) {
2179 BREAK_TO_DEBUGGER();
2180 goto fail;
2181 }
2182
2183 res = dc_commit_state_no_check(dc, context);
2184
2185 for (i = 0; i < params->stream_count; i++) {
2186 for (j = 0; j < context->stream_count; j++) {
2187 if (params->streams[i]->stream_id == context->streams[j]->stream_id)
2188 params->streams[i]->out.otg_offset = context->stream_status[j].primary_otg_inst;
2189
2190 if (dc_is_embedded_signal(params->streams[i]->signal)) {
2191 struct dc_stream_status *status = dc_state_get_stream_status(context, params->streams[i]);
2192
2193 if (!status)
2194 continue;
2195
2196 if (dc->hwss.is_abm_supported)
2197 status->is_abm_supported = dc->hwss.is_abm_supported(dc, context, params->streams[i]);
2198 else
2199 status->is_abm_supported = true;
2200 }
2201 }
2202 }
2203
2204 fail:
2205 dc_state_release(context);
2206
2207 context_alloc_fail:
2208
2209 DC_LOG_DC("%s Finished.\n", __func__);
2210
2211 return res;
2212 }
2213
dc_acquire_release_mpc_3dlut(struct dc * dc,bool acquire,struct dc_stream_state * stream,struct dc_3dlut ** lut,struct dc_transfer_func ** shaper)2214 bool dc_acquire_release_mpc_3dlut(
2215 struct dc *dc, bool acquire,
2216 struct dc_stream_state *stream,
2217 struct dc_3dlut **lut,
2218 struct dc_transfer_func **shaper)
2219 {
2220 int pipe_idx;
2221 bool ret = false;
2222 bool found_pipe_idx = false;
2223 const struct resource_pool *pool = dc->res_pool;
2224 struct resource_context *res_ctx = &dc->current_state->res_ctx;
2225 int mpcc_id = 0;
2226
2227 if (pool && res_ctx) {
2228 if (acquire) {
2229 /*find pipe idx for the given stream*/
2230 for (pipe_idx = 0; pipe_idx < pool->pipe_count; pipe_idx++) {
2231 if (res_ctx->pipe_ctx[pipe_idx].stream == stream) {
2232 found_pipe_idx = true;
2233 mpcc_id = res_ctx->pipe_ctx[pipe_idx].plane_res.hubp->inst;
2234 break;
2235 }
2236 }
2237 } else
2238 found_pipe_idx = true;/*for release pipe_idx is not required*/
2239
2240 if (found_pipe_idx) {
2241 if (acquire && pool->funcs->acquire_post_bldn_3dlut)
2242 ret = pool->funcs->acquire_post_bldn_3dlut(res_ctx, pool, mpcc_id, lut, shaper);
2243 else if (!acquire && pool->funcs->release_post_bldn_3dlut)
2244 ret = pool->funcs->release_post_bldn_3dlut(res_ctx, pool, lut, shaper);
2245 }
2246 }
2247 return ret;
2248 }
2249
is_flip_pending_in_pipes(struct dc * dc,struct dc_state * context)2250 static bool is_flip_pending_in_pipes(struct dc *dc, struct dc_state *context)
2251 {
2252 int i;
2253 struct pipe_ctx *pipe;
2254
2255 for (i = 0; i < MAX_PIPES; i++) {
2256 pipe = &context->res_ctx.pipe_ctx[i];
2257
2258 // Don't check flip pending on phantom pipes
2259 if (!pipe->plane_state || (dc_state_get_pipe_subvp_type(context, pipe) == SUBVP_PHANTOM))
2260 continue;
2261
2262 /* Must set to false to start with, due to OR in update function */
2263 pipe->plane_state->status.is_flip_pending = false;
2264 dc->hwss.update_pending_status(pipe);
2265 if (pipe->plane_state->status.is_flip_pending)
2266 return true;
2267 }
2268 return false;
2269 }
2270
2271 /* Perform updates here which need to be deferred until next vupdate
2272 *
2273 * i.e. blnd lut, 3dlut, and shaper lut bypass regs are double buffered
2274 * but forcing lut memory to shutdown state is immediate. This causes
2275 * single frame corruption as lut gets disabled mid-frame unless shutdown
2276 * is deferred until after entering bypass.
2277 */
process_deferred_updates(struct dc * dc)2278 static void process_deferred_updates(struct dc *dc)
2279 {
2280 int i = 0;
2281
2282 if (dc->debug.enable_mem_low_power.bits.cm) {
2283 ASSERT(dc->dcn_ip->max_num_dpp);
2284 for (i = 0; i < dc->dcn_ip->max_num_dpp; i++)
2285 if (dc->res_pool->dpps[i]->funcs->dpp_deferred_update)
2286 dc->res_pool->dpps[i]->funcs->dpp_deferred_update(dc->res_pool->dpps[i]);
2287 }
2288 }
2289
dc_post_update_surfaces_to_stream(struct dc * dc)2290 void dc_post_update_surfaces_to_stream(struct dc *dc)
2291 {
2292 int i;
2293 struct dc_state *context = dc->current_state;
2294
2295 if ((!dc->optimized_required) || get_seamless_boot_stream_count(context) > 0)
2296 return;
2297
2298 post_surface_trace(dc);
2299
2300 /*
2301 * Only relevant for DCN behavior where we can guarantee the optimization
2302 * is safe to apply - retain the legacy behavior for DCE.
2303 */
2304
2305 if (dc->ctx->dce_version < DCE_VERSION_MAX)
2306 TRACE_DCE_CLOCK_STATE(&context->bw_ctx.bw.dce);
2307 else {
2308 TRACE_DCN_CLOCK_STATE(&context->bw_ctx.bw.dcn.clk);
2309
2310 if (is_flip_pending_in_pipes(dc, context))
2311 return;
2312
2313 for (i = 0; i < dc->res_pool->pipe_count; i++)
2314 if (context->res_ctx.pipe_ctx[i].stream == NULL ||
2315 context->res_ctx.pipe_ctx[i].plane_state == NULL) {
2316 context->res_ctx.pipe_ctx[i].pipe_idx = i;
2317 dc->hwss.disable_plane(dc, context, &context->res_ctx.pipe_ctx[i]);
2318 }
2319
2320 process_deferred_updates(dc);
2321
2322 dc->hwss.optimize_bandwidth(dc, context);
2323
2324 if (dc->hwss.update_dsc_pg)
2325 dc->hwss.update_dsc_pg(dc, context, true);
2326 }
2327
2328 dc->optimized_required = false;
2329 dc->wm_optimized_required = false;
2330 }
2331
dc_set_generic_gpio_for_stereo(bool enable,struct gpio_service * gpio_service)2332 bool dc_set_generic_gpio_for_stereo(bool enable,
2333 struct gpio_service *gpio_service)
2334 {
2335 enum gpio_result gpio_result = GPIO_RESULT_NON_SPECIFIC_ERROR;
2336 struct gpio_pin_info pin_info;
2337 struct gpio *generic;
2338 struct gpio_generic_mux_config *config = kzalloc(sizeof(struct gpio_generic_mux_config),
2339 GFP_KERNEL);
2340
2341 if (!config)
2342 return false;
2343 pin_info = dal_gpio_get_generic_pin_info(gpio_service, GPIO_ID_GENERIC, 0);
2344
2345 if (pin_info.mask == 0xFFFFFFFF || pin_info.offset == 0xFFFFFFFF) {
2346 kfree(config);
2347 return false;
2348 } else {
2349 generic = dal_gpio_service_create_generic_mux(
2350 gpio_service,
2351 pin_info.offset,
2352 pin_info.mask);
2353 }
2354
2355 if (!generic) {
2356 kfree(config);
2357 return false;
2358 }
2359
2360 gpio_result = dal_gpio_open(generic, GPIO_MODE_OUTPUT);
2361
2362 config->enable_output_from_mux = enable;
2363 config->mux_select = GPIO_SIGNAL_SOURCE_PASS_THROUGH_STEREO_SYNC;
2364
2365 if (gpio_result == GPIO_RESULT_OK)
2366 gpio_result = dal_mux_setup_config(generic, config);
2367
2368 if (gpio_result == GPIO_RESULT_OK) {
2369 dal_gpio_close(generic);
2370 dal_gpio_destroy_generic_mux(&generic);
2371 kfree(config);
2372 return true;
2373 } else {
2374 dal_gpio_close(generic);
2375 dal_gpio_destroy_generic_mux(&generic);
2376 kfree(config);
2377 return false;
2378 }
2379 }
2380
is_surface_in_context(const struct dc_state * context,const struct dc_plane_state * plane_state)2381 static bool is_surface_in_context(
2382 const struct dc_state *context,
2383 const struct dc_plane_state *plane_state)
2384 {
2385 int j;
2386
2387 for (j = 0; j < MAX_PIPES; j++) {
2388 const struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[j];
2389
2390 if (plane_state == pipe_ctx->plane_state) {
2391 return true;
2392 }
2393 }
2394
2395 return false;
2396 }
2397
get_plane_info_update_type(const struct dc * dc,const struct dc_surface_update * u)2398 static enum surface_update_type get_plane_info_update_type(const struct dc *dc, const struct dc_surface_update *u)
2399 {
2400 union surface_update_flags *update_flags = &u->surface->update_flags;
2401 enum surface_update_type update_type = UPDATE_TYPE_FAST;
2402
2403 if (!u->plane_info)
2404 return UPDATE_TYPE_FAST;
2405
2406 if (u->plane_info->color_space != u->surface->color_space) {
2407 update_flags->bits.color_space_change = 1;
2408 elevate_update_type(&update_type, UPDATE_TYPE_MED);
2409 }
2410
2411 if (u->plane_info->horizontal_mirror != u->surface->horizontal_mirror) {
2412 update_flags->bits.horizontal_mirror_change = 1;
2413 elevate_update_type(&update_type, UPDATE_TYPE_MED);
2414 }
2415
2416 if (u->plane_info->rotation != u->surface->rotation) {
2417 update_flags->bits.rotation_change = 1;
2418 elevate_update_type(&update_type, UPDATE_TYPE_FULL);
2419 }
2420
2421 if (u->plane_info->format != u->surface->format) {
2422 update_flags->bits.pixel_format_change = 1;
2423 elevate_update_type(&update_type, UPDATE_TYPE_FULL);
2424 }
2425
2426 if (u->plane_info->stereo_format != u->surface->stereo_format) {
2427 update_flags->bits.stereo_format_change = 1;
2428 elevate_update_type(&update_type, UPDATE_TYPE_FULL);
2429 }
2430
2431 if (u->plane_info->per_pixel_alpha != u->surface->per_pixel_alpha) {
2432 update_flags->bits.per_pixel_alpha_change = 1;
2433 elevate_update_type(&update_type, UPDATE_TYPE_MED);
2434 }
2435
2436 if (u->plane_info->global_alpha_value != u->surface->global_alpha_value) {
2437 update_flags->bits.global_alpha_change = 1;
2438 elevate_update_type(&update_type, UPDATE_TYPE_MED);
2439 }
2440
2441 if (u->plane_info->dcc.enable != u->surface->dcc.enable
2442 || u->plane_info->dcc.dcc_ind_blk != u->surface->dcc.dcc_ind_blk
2443 || u->plane_info->dcc.meta_pitch != u->surface->dcc.meta_pitch) {
2444 /* During DCC on/off, stutter period is calculated before
2445 * DCC has fully transitioned. This results in incorrect
2446 * stutter period calculation. Triggering a full update will
2447 * recalculate stutter period.
2448 */
2449 update_flags->bits.dcc_change = 1;
2450 elevate_update_type(&update_type, UPDATE_TYPE_FULL);
2451 }
2452
2453 if (resource_pixel_format_to_bpp(u->plane_info->format) !=
2454 resource_pixel_format_to_bpp(u->surface->format)) {
2455 /* different bytes per element will require full bandwidth
2456 * and DML calculation
2457 */
2458 update_flags->bits.bpp_change = 1;
2459 elevate_update_type(&update_type, UPDATE_TYPE_FULL);
2460 }
2461
2462 if (u->plane_info->plane_size.surface_pitch != u->surface->plane_size.surface_pitch
2463 || u->plane_info->plane_size.chroma_pitch != u->surface->plane_size.chroma_pitch) {
2464 update_flags->bits.plane_size_change = 1;
2465 elevate_update_type(&update_type, UPDATE_TYPE_MED);
2466 }
2467
2468
2469 if (memcmp(&u->plane_info->tiling_info, &u->surface->tiling_info,
2470 sizeof(union dc_tiling_info)) != 0) {
2471 update_flags->bits.swizzle_change = 1;
2472 elevate_update_type(&update_type, UPDATE_TYPE_MED);
2473
2474 /* todo: below are HW dependent, we should add a hook to
2475 * DCE/N resource and validated there.
2476 */
2477 if (!dc->debug.skip_full_updated_if_possible) {
2478 /* swizzled mode requires RQ to be setup properly,
2479 * thus need to run DML to calculate RQ settings
2480 */
2481 update_flags->bits.bandwidth_change = 1;
2482 elevate_update_type(&update_type, UPDATE_TYPE_FULL);
2483 }
2484 }
2485
2486 /* This should be UPDATE_TYPE_FAST if nothing has changed. */
2487 return update_type;
2488 }
2489
get_scaling_info_update_type(const struct dc * dc,const struct dc_surface_update * u)2490 static enum surface_update_type get_scaling_info_update_type(
2491 const struct dc *dc,
2492 const struct dc_surface_update *u)
2493 {
2494 union surface_update_flags *update_flags = &u->surface->update_flags;
2495
2496 if (!u->scaling_info)
2497 return UPDATE_TYPE_FAST;
2498
2499 if (u->scaling_info->dst_rect.width != u->surface->dst_rect.width
2500 || u->scaling_info->dst_rect.height != u->surface->dst_rect.height
2501 || u->scaling_info->scaling_quality.integer_scaling !=
2502 u->surface->scaling_quality.integer_scaling
2503 ) {
2504 update_flags->bits.scaling_change = 1;
2505
2506 if ((u->scaling_info->dst_rect.width < u->surface->dst_rect.width
2507 || u->scaling_info->dst_rect.height < u->surface->dst_rect.height)
2508 && (u->scaling_info->dst_rect.width < u->surface->src_rect.width
2509 || u->scaling_info->dst_rect.height < u->surface->src_rect.height))
2510 /* Making dst rect smaller requires a bandwidth change */
2511 update_flags->bits.bandwidth_change = 1;
2512 }
2513
2514 if (u->scaling_info->src_rect.width != u->surface->src_rect.width
2515 || u->scaling_info->src_rect.height != u->surface->src_rect.height) {
2516
2517 update_flags->bits.scaling_change = 1;
2518 if (u->scaling_info->src_rect.width > u->surface->src_rect.width
2519 || u->scaling_info->src_rect.height > u->surface->src_rect.height)
2520 /* Making src rect bigger requires a bandwidth change */
2521 update_flags->bits.clock_change = 1;
2522 }
2523
2524 if (u->scaling_info->src_rect.width > dc->caps.max_optimizable_video_width &&
2525 (u->scaling_info->clip_rect.width > u->surface->clip_rect.width ||
2526 u->scaling_info->clip_rect.height > u->surface->clip_rect.height))
2527 /* Changing clip size of a large surface may result in MPC slice count change */
2528 update_flags->bits.bandwidth_change = 1;
2529
2530 if (u->scaling_info->clip_rect.width != u->surface->clip_rect.width ||
2531 u->scaling_info->clip_rect.height != u->surface->clip_rect.height)
2532 update_flags->bits.clip_size_change = 1;
2533
2534 if (u->scaling_info->src_rect.x != u->surface->src_rect.x
2535 || u->scaling_info->src_rect.y != u->surface->src_rect.y
2536 || u->scaling_info->clip_rect.x != u->surface->clip_rect.x
2537 || u->scaling_info->clip_rect.y != u->surface->clip_rect.y
2538 || u->scaling_info->dst_rect.x != u->surface->dst_rect.x
2539 || u->scaling_info->dst_rect.y != u->surface->dst_rect.y)
2540 update_flags->bits.position_change = 1;
2541
2542 if (update_flags->bits.clock_change
2543 || update_flags->bits.bandwidth_change
2544 || update_flags->bits.scaling_change)
2545 return UPDATE_TYPE_FULL;
2546
2547 if (update_flags->bits.position_change ||
2548 update_flags->bits.clip_size_change)
2549 return UPDATE_TYPE_MED;
2550
2551 return UPDATE_TYPE_FAST;
2552 }
2553
det_surface_update(const struct dc * dc,const struct dc_surface_update * u)2554 static enum surface_update_type det_surface_update(const struct dc *dc,
2555 const struct dc_surface_update *u)
2556 {
2557 const struct dc_state *context = dc->current_state;
2558 enum surface_update_type type;
2559 enum surface_update_type overall_type = UPDATE_TYPE_FAST;
2560 union surface_update_flags *update_flags = &u->surface->update_flags;
2561
2562 if (!is_surface_in_context(context, u->surface) || u->surface->force_full_update) {
2563 update_flags->raw = 0xFFFFFFFF;
2564 return UPDATE_TYPE_FULL;
2565 }
2566
2567 update_flags->raw = 0; // Reset all flags
2568
2569 type = get_plane_info_update_type(dc, u);
2570 elevate_update_type(&overall_type, type);
2571
2572 type = get_scaling_info_update_type(dc, u);
2573 elevate_update_type(&overall_type, type);
2574
2575 if (u->flip_addr) {
2576 update_flags->bits.addr_update = 1;
2577 if (u->flip_addr->address.tmz_surface != u->surface->address.tmz_surface) {
2578 update_flags->bits.tmz_changed = 1;
2579 elevate_update_type(&overall_type, UPDATE_TYPE_FULL);
2580 }
2581 }
2582 if (u->in_transfer_func)
2583 update_flags->bits.in_transfer_func_change = 1;
2584
2585 if (u->input_csc_color_matrix)
2586 update_flags->bits.input_csc_change = 1;
2587
2588 if (u->coeff_reduction_factor)
2589 update_flags->bits.coeff_reduction_change = 1;
2590
2591 if (u->gamut_remap_matrix)
2592 update_flags->bits.gamut_remap_change = 1;
2593
2594 if (u->blend_tf)
2595 update_flags->bits.gamma_change = 1;
2596
2597 if (u->gamma) {
2598 enum surface_pixel_format format = SURFACE_PIXEL_FORMAT_GRPH_BEGIN;
2599
2600 if (u->plane_info)
2601 format = u->plane_info->format;
2602 else
2603 format = u->surface->format;
2604
2605 if (dce_use_lut(format))
2606 update_flags->bits.gamma_change = 1;
2607 }
2608
2609 if (u->lut3d_func || u->func_shaper)
2610 update_flags->bits.lut_3d = 1;
2611
2612 if (u->hdr_mult.value)
2613 if (u->hdr_mult.value != u->surface->hdr_mult.value) {
2614 update_flags->bits.hdr_mult = 1;
2615 elevate_update_type(&overall_type, UPDATE_TYPE_MED);
2616 }
2617
2618 if (u->sdr_white_level_nits)
2619 if (u->sdr_white_level_nits != u->surface->sdr_white_level_nits) {
2620 update_flags->bits.sdr_white_level_nits = 1;
2621 elevate_update_type(&overall_type, UPDATE_TYPE_FULL);
2622 }
2623
2624 if (u->cm2_params) {
2625 if ((u->cm2_params->component_settings.shaper_3dlut_setting
2626 != u->surface->mcm_shaper_3dlut_setting)
2627 || (u->cm2_params->component_settings.lut1d_enable
2628 != u->surface->mcm_lut1d_enable))
2629 update_flags->bits.mcm_transfer_function_enable_change = 1;
2630 if (u->cm2_params->cm2_luts.lut3d_data.lut3d_src
2631 != u->surface->mcm_luts.lut3d_data.lut3d_src)
2632 update_flags->bits.mcm_transfer_function_enable_change = 1;
2633 }
2634 if (update_flags->bits.in_transfer_func_change) {
2635 type = UPDATE_TYPE_MED;
2636 elevate_update_type(&overall_type, type);
2637 }
2638
2639 if (update_flags->bits.lut_3d) {
2640 type = UPDATE_TYPE_FULL;
2641 elevate_update_type(&overall_type, type);
2642 }
2643 if (update_flags->bits.mcm_transfer_function_enable_change) {
2644 type = UPDATE_TYPE_FULL;
2645 elevate_update_type(&overall_type, type);
2646 }
2647
2648 if (dc->debug.enable_legacy_fast_update &&
2649 (update_flags->bits.gamma_change ||
2650 update_flags->bits.gamut_remap_change ||
2651 update_flags->bits.input_csc_change ||
2652 update_flags->bits.coeff_reduction_change)) {
2653 type = UPDATE_TYPE_FULL;
2654 elevate_update_type(&overall_type, type);
2655 }
2656 return overall_type;
2657 }
2658
check_update_surfaces_for_stream(struct dc * dc,struct dc_surface_update * updates,int surface_count,struct dc_stream_update * stream_update,const struct dc_stream_status * stream_status)2659 static enum surface_update_type check_update_surfaces_for_stream(
2660 struct dc *dc,
2661 struct dc_surface_update *updates,
2662 int surface_count,
2663 struct dc_stream_update *stream_update,
2664 const struct dc_stream_status *stream_status)
2665 {
2666 int i;
2667 enum surface_update_type overall_type = UPDATE_TYPE_FAST;
2668
2669 if (dc->idle_optimizations_allowed)
2670 overall_type = UPDATE_TYPE_FULL;
2671
2672 if (stream_status == NULL || stream_status->plane_count != surface_count)
2673 overall_type = UPDATE_TYPE_FULL;
2674
2675 if (stream_update && stream_update->pending_test_pattern) {
2676 overall_type = UPDATE_TYPE_FULL;
2677 }
2678
2679 if (stream_update && stream_update->hw_cursor_req) {
2680 overall_type = UPDATE_TYPE_FULL;
2681 }
2682
2683 /* some stream updates require passive update */
2684 if (stream_update) {
2685 union stream_update_flags *su_flags = &stream_update->stream->update_flags;
2686
2687 if ((stream_update->src.height != 0 && stream_update->src.width != 0) ||
2688 (stream_update->dst.height != 0 && stream_update->dst.width != 0) ||
2689 stream_update->integer_scaling_update)
2690 su_flags->bits.scaling = 1;
2691
2692 if (dc->debug.enable_legacy_fast_update && stream_update->out_transfer_func)
2693 su_flags->bits.out_tf = 1;
2694
2695 if (stream_update->abm_level)
2696 su_flags->bits.abm_level = 1;
2697
2698 if (stream_update->dpms_off)
2699 su_flags->bits.dpms_off = 1;
2700
2701 if (stream_update->gamut_remap)
2702 su_flags->bits.gamut_remap = 1;
2703
2704 if (stream_update->wb_update)
2705 su_flags->bits.wb_update = 1;
2706
2707 if (stream_update->dsc_config)
2708 su_flags->bits.dsc_changed = 1;
2709
2710 if (stream_update->mst_bw_update)
2711 su_flags->bits.mst_bw = 1;
2712
2713 if (stream_update->stream->freesync_on_desktop &&
2714 (stream_update->vrr_infopacket || stream_update->allow_freesync ||
2715 stream_update->vrr_active_variable || stream_update->vrr_active_fixed))
2716 su_flags->bits.fams_changed = 1;
2717
2718 if (stream_update->scaler_sharpener_update)
2719 su_flags->bits.scaler_sharpener = 1;
2720
2721 if (su_flags->raw != 0)
2722 overall_type = UPDATE_TYPE_FULL;
2723
2724 if (stream_update->output_csc_transform || stream_update->output_color_space)
2725 su_flags->bits.out_csc = 1;
2726
2727 /* Output transfer function changes do not require bandwidth recalculation,
2728 * so don't trigger a full update
2729 */
2730 if (!dc->debug.enable_legacy_fast_update && stream_update->out_transfer_func)
2731 su_flags->bits.out_tf = 1;
2732 }
2733
2734 for (i = 0 ; i < surface_count; i++) {
2735 enum surface_update_type type =
2736 det_surface_update(dc, &updates[i]);
2737
2738 elevate_update_type(&overall_type, type);
2739 }
2740
2741 return overall_type;
2742 }
2743
2744 /*
2745 * dc_check_update_surfaces_for_stream() - Determine update type (fast, med, or full)
2746 *
2747 * See :c:type:`enum surface_update_type <surface_update_type>` for explanation of update types
2748 */
dc_check_update_surfaces_for_stream(struct dc * dc,struct dc_surface_update * updates,int surface_count,struct dc_stream_update * stream_update,const struct dc_stream_status * stream_status)2749 enum surface_update_type dc_check_update_surfaces_for_stream(
2750 struct dc *dc,
2751 struct dc_surface_update *updates,
2752 int surface_count,
2753 struct dc_stream_update *stream_update,
2754 const struct dc_stream_status *stream_status)
2755 {
2756 int i;
2757 enum surface_update_type type;
2758
2759 if (stream_update)
2760 stream_update->stream->update_flags.raw = 0;
2761 for (i = 0; i < surface_count; i++)
2762 updates[i].surface->update_flags.raw = 0;
2763
2764 type = check_update_surfaces_for_stream(dc, updates, surface_count, stream_update, stream_status);
2765 if (type == UPDATE_TYPE_FULL) {
2766 if (stream_update) {
2767 uint32_t dsc_changed = stream_update->stream->update_flags.bits.dsc_changed;
2768 stream_update->stream->update_flags.raw = 0xFFFFFFFF;
2769 stream_update->stream->update_flags.bits.dsc_changed = dsc_changed;
2770 }
2771 for (i = 0; i < surface_count; i++)
2772 updates[i].surface->update_flags.raw = 0xFFFFFFFF;
2773 }
2774
2775 if (type == UPDATE_TYPE_FAST) {
2776 // If there's an available clock comparator, we use that.
2777 if (dc->clk_mgr->funcs->are_clock_states_equal) {
2778 if (!dc->clk_mgr->funcs->are_clock_states_equal(&dc->clk_mgr->clks, &dc->current_state->bw_ctx.bw.dcn.clk))
2779 dc->optimized_required = true;
2780 // Else we fallback to mem compare.
2781 } else if (memcmp(&dc->current_state->bw_ctx.bw.dcn.clk, &dc->clk_mgr->clks, offsetof(struct dc_clocks, prev_p_state_change_support)) != 0) {
2782 dc->optimized_required = true;
2783 }
2784
2785 dc->optimized_required |= dc->wm_optimized_required;
2786 }
2787
2788 return type;
2789 }
2790
stream_get_status(struct dc_state * ctx,struct dc_stream_state * stream)2791 static struct dc_stream_status *stream_get_status(
2792 struct dc_state *ctx,
2793 struct dc_stream_state *stream)
2794 {
2795 uint8_t i;
2796
2797 for (i = 0; i < ctx->stream_count; i++) {
2798 if (stream == ctx->streams[i]) {
2799 return &ctx->stream_status[i];
2800 }
2801 }
2802
2803 return NULL;
2804 }
2805
2806 static const enum surface_update_type update_surface_trace_level = UPDATE_TYPE_FULL;
2807
copy_surface_update_to_plane(struct dc_plane_state * surface,struct dc_surface_update * srf_update)2808 static void copy_surface_update_to_plane(
2809 struct dc_plane_state *surface,
2810 struct dc_surface_update *srf_update)
2811 {
2812 if (srf_update->flip_addr) {
2813 surface->address = srf_update->flip_addr->address;
2814 surface->flip_immediate =
2815 srf_update->flip_addr->flip_immediate;
2816 surface->time.time_elapsed_in_us[surface->time.index] =
2817 srf_update->flip_addr->flip_timestamp_in_us -
2818 surface->time.prev_update_time_in_us;
2819 surface->time.prev_update_time_in_us =
2820 srf_update->flip_addr->flip_timestamp_in_us;
2821 surface->time.index++;
2822 if (surface->time.index >= DC_PLANE_UPDATE_TIMES_MAX)
2823 surface->time.index = 0;
2824
2825 surface->triplebuffer_flips = srf_update->flip_addr->triplebuffer_flips;
2826 }
2827
2828 if (srf_update->scaling_info) {
2829 surface->scaling_quality =
2830 srf_update->scaling_info->scaling_quality;
2831 surface->dst_rect =
2832 srf_update->scaling_info->dst_rect;
2833 surface->src_rect =
2834 srf_update->scaling_info->src_rect;
2835 surface->clip_rect =
2836 srf_update->scaling_info->clip_rect;
2837 }
2838
2839 if (srf_update->plane_info) {
2840 surface->color_space =
2841 srf_update->plane_info->color_space;
2842 surface->format =
2843 srf_update->plane_info->format;
2844 surface->plane_size =
2845 srf_update->plane_info->plane_size;
2846 surface->rotation =
2847 srf_update->plane_info->rotation;
2848 surface->horizontal_mirror =
2849 srf_update->plane_info->horizontal_mirror;
2850 surface->stereo_format =
2851 srf_update->plane_info->stereo_format;
2852 surface->tiling_info =
2853 srf_update->plane_info->tiling_info;
2854 surface->visible =
2855 srf_update->plane_info->visible;
2856 surface->per_pixel_alpha =
2857 srf_update->plane_info->per_pixel_alpha;
2858 surface->global_alpha =
2859 srf_update->plane_info->global_alpha;
2860 surface->global_alpha_value =
2861 srf_update->plane_info->global_alpha_value;
2862 surface->dcc =
2863 srf_update->plane_info->dcc;
2864 surface->layer_index =
2865 srf_update->plane_info->layer_index;
2866 }
2867
2868 if (srf_update->gamma) {
2869 memcpy(&surface->gamma_correction.entries,
2870 &srf_update->gamma->entries,
2871 sizeof(struct dc_gamma_entries));
2872 surface->gamma_correction.is_identity =
2873 srf_update->gamma->is_identity;
2874 surface->gamma_correction.num_entries =
2875 srf_update->gamma->num_entries;
2876 surface->gamma_correction.type =
2877 srf_update->gamma->type;
2878 }
2879
2880 if (srf_update->in_transfer_func) {
2881 surface->in_transfer_func.sdr_ref_white_level =
2882 srf_update->in_transfer_func->sdr_ref_white_level;
2883 surface->in_transfer_func.tf =
2884 srf_update->in_transfer_func->tf;
2885 surface->in_transfer_func.type =
2886 srf_update->in_transfer_func->type;
2887 memcpy(&surface->in_transfer_func.tf_pts,
2888 &srf_update->in_transfer_func->tf_pts,
2889 sizeof(struct dc_transfer_func_distributed_points));
2890 }
2891
2892 if (srf_update->func_shaper)
2893 memcpy(&surface->in_shaper_func, srf_update->func_shaper,
2894 sizeof(surface->in_shaper_func));
2895
2896 if (srf_update->lut3d_func)
2897 memcpy(&surface->lut3d_func, srf_update->lut3d_func,
2898 sizeof(surface->lut3d_func));
2899
2900 if (srf_update->hdr_mult.value)
2901 surface->hdr_mult =
2902 srf_update->hdr_mult;
2903
2904 if (srf_update->sdr_white_level_nits)
2905 surface->sdr_white_level_nits =
2906 srf_update->sdr_white_level_nits;
2907
2908 if (srf_update->blend_tf)
2909 memcpy(&surface->blend_tf, srf_update->blend_tf,
2910 sizeof(surface->blend_tf));
2911
2912 if (srf_update->input_csc_color_matrix)
2913 surface->input_csc_color_matrix =
2914 *srf_update->input_csc_color_matrix;
2915
2916 if (srf_update->coeff_reduction_factor)
2917 surface->coeff_reduction_factor =
2918 *srf_update->coeff_reduction_factor;
2919
2920 if (srf_update->gamut_remap_matrix)
2921 surface->gamut_remap_matrix =
2922 *srf_update->gamut_remap_matrix;
2923 if (srf_update->cm2_params) {
2924 surface->mcm_shaper_3dlut_setting = srf_update->cm2_params->component_settings.shaper_3dlut_setting;
2925 surface->mcm_lut1d_enable = srf_update->cm2_params->component_settings.lut1d_enable;
2926 surface->mcm_luts = srf_update->cm2_params->cm2_luts;
2927 }
2928 if (srf_update->cursor_csc_color_matrix)
2929 surface->cursor_csc_color_matrix =
2930 *srf_update->cursor_csc_color_matrix;
2931 }
2932
copy_stream_update_to_stream(struct dc * dc,struct dc_state * context,struct dc_stream_state * stream,struct dc_stream_update * update)2933 static void copy_stream_update_to_stream(struct dc *dc,
2934 struct dc_state *context,
2935 struct dc_stream_state *stream,
2936 struct dc_stream_update *update)
2937 {
2938 struct dc_context *dc_ctx = dc->ctx;
2939
2940 if (update == NULL || stream == NULL)
2941 return;
2942
2943 if (update->src.height && update->src.width)
2944 stream->src = update->src;
2945
2946 if (update->dst.height && update->dst.width)
2947 stream->dst = update->dst;
2948
2949 if (update->out_transfer_func) {
2950 stream->out_transfer_func.sdr_ref_white_level =
2951 update->out_transfer_func->sdr_ref_white_level;
2952 stream->out_transfer_func.tf = update->out_transfer_func->tf;
2953 stream->out_transfer_func.type =
2954 update->out_transfer_func->type;
2955 memcpy(&stream->out_transfer_func.tf_pts,
2956 &update->out_transfer_func->tf_pts,
2957 sizeof(struct dc_transfer_func_distributed_points));
2958 }
2959
2960 if (update->hdr_static_metadata)
2961 stream->hdr_static_metadata = *update->hdr_static_metadata;
2962
2963 if (update->abm_level)
2964 stream->abm_level = *update->abm_level;
2965
2966 if (update->periodic_interrupt)
2967 stream->periodic_interrupt = *update->periodic_interrupt;
2968
2969 if (update->gamut_remap)
2970 stream->gamut_remap_matrix = *update->gamut_remap;
2971
2972 /* Note: this being updated after mode set is currently not a use case
2973 * however if it arises OCSC would need to be reprogrammed at the
2974 * minimum
2975 */
2976 if (update->output_color_space)
2977 stream->output_color_space = *update->output_color_space;
2978
2979 if (update->output_csc_transform)
2980 stream->csc_color_matrix = *update->output_csc_transform;
2981
2982 if (update->vrr_infopacket)
2983 stream->vrr_infopacket = *update->vrr_infopacket;
2984
2985 if (update->hw_cursor_req)
2986 stream->hw_cursor_req = *update->hw_cursor_req;
2987
2988 if (update->allow_freesync)
2989 stream->allow_freesync = *update->allow_freesync;
2990
2991 if (update->vrr_active_variable)
2992 stream->vrr_active_variable = *update->vrr_active_variable;
2993
2994 if (update->vrr_active_fixed)
2995 stream->vrr_active_fixed = *update->vrr_active_fixed;
2996
2997 if (update->crtc_timing_adjust) {
2998 if (stream->adjust.v_total_min != update->crtc_timing_adjust->v_total_min ||
2999 stream->adjust.v_total_max != update->crtc_timing_adjust->v_total_max ||
3000 stream->adjust.timing_adjust_pending)
3001 update->crtc_timing_adjust->timing_adjust_pending = true;
3002 stream->adjust = *update->crtc_timing_adjust;
3003 update->crtc_timing_adjust->timing_adjust_pending = false;
3004 }
3005
3006 if (update->dpms_off)
3007 stream->dpms_off = *update->dpms_off;
3008
3009 if (update->hfvsif_infopacket)
3010 stream->hfvsif_infopacket = *update->hfvsif_infopacket;
3011
3012 if (update->vtem_infopacket)
3013 stream->vtem_infopacket = *update->vtem_infopacket;
3014
3015 if (update->vsc_infopacket)
3016 stream->vsc_infopacket = *update->vsc_infopacket;
3017
3018 if (update->vsp_infopacket)
3019 stream->vsp_infopacket = *update->vsp_infopacket;
3020
3021 if (update->adaptive_sync_infopacket)
3022 stream->adaptive_sync_infopacket = *update->adaptive_sync_infopacket;
3023
3024 if (update->dither_option)
3025 stream->dither_option = *update->dither_option;
3026
3027 if (update->pending_test_pattern)
3028 stream->test_pattern = *update->pending_test_pattern;
3029 /* update current stream with writeback info */
3030 if (update->wb_update) {
3031 int i;
3032
3033 stream->num_wb_info = update->wb_update->num_wb_info;
3034 ASSERT(stream->num_wb_info <= MAX_DWB_PIPES);
3035 for (i = 0; i < stream->num_wb_info; i++)
3036 stream->writeback_info[i] =
3037 update->wb_update->writeback_info[i];
3038 }
3039 if (update->dsc_config) {
3040 struct dc_dsc_config old_dsc_cfg = stream->timing.dsc_cfg;
3041 uint32_t old_dsc_enabled = stream->timing.flags.DSC;
3042 uint32_t enable_dsc = (update->dsc_config->num_slices_h != 0 &&
3043 update->dsc_config->num_slices_v != 0);
3044
3045 /* Use temporarry context for validating new DSC config */
3046 struct dc_state *dsc_validate_context = dc_state_create_copy(dc->current_state);
3047
3048 if (dsc_validate_context) {
3049 stream->timing.dsc_cfg = *update->dsc_config;
3050 stream->timing.flags.DSC = enable_dsc;
3051 if (!dc->res_pool->funcs->validate_bandwidth(dc, dsc_validate_context, true)) {
3052 stream->timing.dsc_cfg = old_dsc_cfg;
3053 stream->timing.flags.DSC = old_dsc_enabled;
3054 update->dsc_config = NULL;
3055 }
3056
3057 dc_state_release(dsc_validate_context);
3058 } else {
3059 DC_ERROR("Failed to allocate new validate context for DSC change\n");
3060 update->dsc_config = NULL;
3061 }
3062 }
3063 if (update->scaler_sharpener_update)
3064 stream->scaler_sharpener_update = *update->scaler_sharpener_update;
3065 }
3066
backup_planes_and_stream_state(struct dc_scratch_space * scratch,struct dc_stream_state * stream)3067 static void backup_planes_and_stream_state(
3068 struct dc_scratch_space *scratch,
3069 struct dc_stream_state *stream)
3070 {
3071 int i;
3072 struct dc_stream_status *status = dc_stream_get_status(stream);
3073
3074 if (!status)
3075 return;
3076
3077 for (i = 0; i < status->plane_count; i++) {
3078 scratch->plane_states[i] = *status->plane_states[i];
3079 }
3080 scratch->stream_state = *stream;
3081 }
3082
restore_planes_and_stream_state(struct dc_scratch_space * scratch,struct dc_stream_state * stream)3083 static void restore_planes_and_stream_state(
3084 struct dc_scratch_space *scratch,
3085 struct dc_stream_state *stream)
3086 {
3087 int i;
3088 struct dc_stream_status *status = dc_stream_get_status(stream);
3089
3090 if (!status)
3091 return;
3092
3093 for (i = 0; i < status->plane_count; i++) {
3094 /* refcount will always be valid, restore everything else */
3095 struct kref refcount = status->plane_states[i]->refcount;
3096 *status->plane_states[i] = scratch->plane_states[i];
3097 status->plane_states[i]->refcount = refcount;
3098 }
3099 *stream = scratch->stream_state;
3100 }
3101
3102 /**
3103 * update_seamless_boot_flags() - Helper function for updating seamless boot flags
3104 *
3105 * @dc: Current DC state
3106 * @context: New DC state to be programmed
3107 * @surface_count: Number of surfaces that have an updated
3108 * @stream: Corresponding stream to be updated in the current flip
3109 *
3110 * Updating seamless boot flags do not need to be part of the commit sequence. This
3111 * helper function will update the seamless boot flags on each flip (if required)
3112 * outside of the HW commit sequence (fast or slow).
3113 *
3114 * Return: void
3115 */
update_seamless_boot_flags(struct dc * dc,struct dc_state * context,int surface_count,struct dc_stream_state * stream)3116 static void update_seamless_boot_flags(struct dc *dc,
3117 struct dc_state *context,
3118 int surface_count,
3119 struct dc_stream_state *stream)
3120 {
3121 if (get_seamless_boot_stream_count(context) > 0 && surface_count > 0) {
3122 /* Optimize seamless boot flag keeps clocks and watermarks high until
3123 * first flip. After first flip, optimization is required to lower
3124 * bandwidth. Important to note that it is expected UEFI will
3125 * only light up a single display on POST, therefore we only expect
3126 * one stream with seamless boot flag set.
3127 */
3128 if (stream->apply_seamless_boot_optimization) {
3129 stream->apply_seamless_boot_optimization = false;
3130
3131 if (get_seamless_boot_stream_count(context) == 0)
3132 dc->optimized_required = true;
3133 }
3134 }
3135 }
3136
3137 /**
3138 * update_planes_and_stream_state() - The function takes planes and stream
3139 * updates as inputs and determines the appropriate update type. If update type
3140 * is FULL, the function allocates a new context, populates and validates it.
3141 * Otherwise, it updates current dc context. The function will return both
3142 * new_context and new_update_type back to the caller. The function also backs
3143 * up both current and new contexts into corresponding dc state scratch memory.
3144 * TODO: The function does too many things, and even conditionally allocates dc
3145 * context memory implicitly. We should consider to break it down.
3146 *
3147 * @dc: Current DC state
3148 * @srf_updates: an array of surface updates
3149 * @surface_count: surface update count
3150 * @stream: Corresponding stream to be updated
3151 * @stream_update: stream update
3152 * @new_update_type: [out] determined update type by the function
3153 * @new_context: [out] new context allocated and validated if update type is
3154 * FULL, reference to current context if update type is less than FULL.
3155 *
3156 * Return: true if a valid update is populated into new_context, false
3157 * otherwise.
3158 */
update_planes_and_stream_state(struct dc * dc,struct dc_surface_update * srf_updates,int surface_count,struct dc_stream_state * stream,struct dc_stream_update * stream_update,enum surface_update_type * new_update_type,struct dc_state ** new_context)3159 static bool update_planes_and_stream_state(struct dc *dc,
3160 struct dc_surface_update *srf_updates, int surface_count,
3161 struct dc_stream_state *stream,
3162 struct dc_stream_update *stream_update,
3163 enum surface_update_type *new_update_type,
3164 struct dc_state **new_context)
3165 {
3166 struct dc_state *context;
3167 int i, j;
3168 enum surface_update_type update_type;
3169 const struct dc_stream_status *stream_status;
3170 struct dc_context *dc_ctx = dc->ctx;
3171
3172 stream_status = dc_stream_get_status(stream);
3173
3174 if (!stream_status) {
3175 if (surface_count) /* Only an error condition if surf_count non-zero*/
3176 ASSERT(false);
3177
3178 return false; /* Cannot commit surface to stream that is not committed */
3179 }
3180
3181 context = dc->current_state;
3182 update_type = dc_check_update_surfaces_for_stream(
3183 dc, srf_updates, surface_count, stream_update, stream_status);
3184 if (update_type == UPDATE_TYPE_FULL)
3185 backup_planes_and_stream_state(&dc->scratch.current_state, stream);
3186
3187 /* update current stream with the new updates */
3188 copy_stream_update_to_stream(dc, context, stream, stream_update);
3189
3190 /* do not perform surface update if surface has invalid dimensions
3191 * (all zero) and no scaling_info is provided
3192 */
3193 if (surface_count > 0) {
3194 for (i = 0; i < surface_count; i++) {
3195 if ((srf_updates[i].surface->src_rect.width == 0 ||
3196 srf_updates[i].surface->src_rect.height == 0 ||
3197 srf_updates[i].surface->dst_rect.width == 0 ||
3198 srf_updates[i].surface->dst_rect.height == 0) &&
3199 (!srf_updates[i].scaling_info ||
3200 srf_updates[i].scaling_info->src_rect.width == 0 ||
3201 srf_updates[i].scaling_info->src_rect.height == 0 ||
3202 srf_updates[i].scaling_info->dst_rect.width == 0 ||
3203 srf_updates[i].scaling_info->dst_rect.height == 0)) {
3204 DC_ERROR("Invalid src/dst rects in surface update!\n");
3205 return false;
3206 }
3207 }
3208 }
3209
3210 if (update_type >= update_surface_trace_level)
3211 update_surface_trace(dc, srf_updates, surface_count);
3212
3213 for (i = 0; i < surface_count; i++)
3214 copy_surface_update_to_plane(srf_updates[i].surface, &srf_updates[i]);
3215
3216 if (update_type >= UPDATE_TYPE_FULL) {
3217 struct dc_plane_state *new_planes[MAX_SURFACES] = {0};
3218
3219 for (i = 0; i < surface_count; i++)
3220 new_planes[i] = srf_updates[i].surface;
3221
3222 /* initialize scratch memory for building context */
3223 context = dc_state_create_copy(dc->current_state);
3224 if (context == NULL) {
3225 DC_ERROR("Failed to allocate new validate context!\n");
3226 return false;
3227 }
3228
3229 /* For each full update, remove all existing phantom pipes first.
3230 * Ensures that we have enough pipes for newly added MPO planes
3231 */
3232 dc_state_remove_phantom_streams_and_planes(dc, context);
3233 dc_state_release_phantom_streams_and_planes(dc, context);
3234
3235 /*remove old surfaces from context */
3236 if (!dc_state_rem_all_planes_for_stream(dc, stream, context)) {
3237
3238 BREAK_TO_DEBUGGER();
3239 goto fail;
3240 }
3241
3242 /* add surface to context */
3243 if (!dc_state_add_all_planes_for_stream(dc, stream, new_planes, surface_count, context)) {
3244
3245 BREAK_TO_DEBUGGER();
3246 goto fail;
3247 }
3248 }
3249
3250 /* save update parameters into surface */
3251 for (i = 0; i < surface_count; i++) {
3252 struct dc_plane_state *surface = srf_updates[i].surface;
3253
3254 if (update_type != UPDATE_TYPE_MED)
3255 continue;
3256 if (surface->update_flags.bits.clip_size_change ||
3257 surface->update_flags.bits.position_change) {
3258 for (j = 0; j < dc->res_pool->pipe_count; j++) {
3259 struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[j];
3260
3261 if (pipe_ctx->plane_state != surface)
3262 continue;
3263
3264 resource_build_scaling_params(pipe_ctx);
3265 }
3266 }
3267 }
3268
3269 if (update_type == UPDATE_TYPE_FULL) {
3270 if (!dc->res_pool->funcs->validate_bandwidth(dc, context, false)) {
3271 BREAK_TO_DEBUGGER();
3272 goto fail;
3273 }
3274 }
3275 update_seamless_boot_flags(dc, context, surface_count, stream);
3276
3277 *new_context = context;
3278 *new_update_type = update_type;
3279 if (update_type == UPDATE_TYPE_FULL)
3280 backup_planes_and_stream_state(&dc->scratch.new_state, stream);
3281
3282 return true;
3283
3284 fail:
3285 dc_state_release(context);
3286
3287 return false;
3288
3289 }
3290
commit_planes_do_stream_update(struct dc * dc,struct dc_stream_state * stream,struct dc_stream_update * stream_update,enum surface_update_type update_type,struct dc_state * context)3291 static void commit_planes_do_stream_update(struct dc *dc,
3292 struct dc_stream_state *stream,
3293 struct dc_stream_update *stream_update,
3294 enum surface_update_type update_type,
3295 struct dc_state *context)
3296 {
3297 int j;
3298
3299 // Stream updates
3300 for (j = 0; j < dc->res_pool->pipe_count; j++) {
3301 struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[j];
3302
3303 if (resource_is_pipe_type(pipe_ctx, OTG_MASTER) && pipe_ctx->stream == stream) {
3304
3305 if (stream_update->periodic_interrupt && dc->hwss.setup_periodic_interrupt)
3306 dc->hwss.setup_periodic_interrupt(dc, pipe_ctx);
3307
3308 if ((stream_update->hdr_static_metadata && !stream->use_dynamic_meta) ||
3309 stream_update->vrr_infopacket ||
3310 stream_update->vsc_infopacket ||
3311 stream_update->vsp_infopacket ||
3312 stream_update->hfvsif_infopacket ||
3313 stream_update->adaptive_sync_infopacket ||
3314 stream_update->vtem_infopacket) {
3315 resource_build_info_frame(pipe_ctx);
3316 dc->hwss.update_info_frame(pipe_ctx);
3317
3318 if (dc_is_dp_signal(pipe_ctx->stream->signal))
3319 dc->link_srv->dp_trace_source_sequence(
3320 pipe_ctx->stream->link,
3321 DPCD_SOURCE_SEQ_AFTER_UPDATE_INFO_FRAME);
3322 }
3323
3324 if (stream_update->hdr_static_metadata &&
3325 stream->use_dynamic_meta &&
3326 dc->hwss.set_dmdata_attributes &&
3327 pipe_ctx->stream->dmdata_address.quad_part != 0)
3328 dc->hwss.set_dmdata_attributes(pipe_ctx);
3329
3330 if (stream_update->gamut_remap)
3331 dc_stream_set_gamut_remap(dc, stream);
3332
3333 if (stream_update->output_csc_transform)
3334 dc_stream_program_csc_matrix(dc, stream);
3335
3336 if (stream_update->dither_option) {
3337 struct pipe_ctx *odm_pipe = pipe_ctx->next_odm_pipe;
3338 resource_build_bit_depth_reduction_params(pipe_ctx->stream,
3339 &pipe_ctx->stream->bit_depth_params);
3340 pipe_ctx->stream_res.opp->funcs->opp_program_fmt(pipe_ctx->stream_res.opp,
3341 &stream->bit_depth_params,
3342 &stream->clamping);
3343 while (odm_pipe) {
3344 odm_pipe->stream_res.opp->funcs->opp_program_fmt(odm_pipe->stream_res.opp,
3345 &stream->bit_depth_params,
3346 &stream->clamping);
3347 odm_pipe = odm_pipe->next_odm_pipe;
3348 }
3349 }
3350
3351 if (stream_update->cursor_attributes)
3352 program_cursor_attributes(dc, stream);
3353
3354 if (stream_update->cursor_position)
3355 program_cursor_position(dc, stream);
3356
3357 /* Full fe update*/
3358 if (update_type == UPDATE_TYPE_FAST)
3359 continue;
3360
3361 if (stream_update->dsc_config)
3362 dc->link_srv->update_dsc_config(pipe_ctx);
3363
3364 if (stream_update->mst_bw_update) {
3365 if (stream_update->mst_bw_update->is_increase)
3366 dc->link_srv->increase_mst_payload(pipe_ctx,
3367 stream_update->mst_bw_update->mst_stream_bw);
3368 else
3369 dc->link_srv->reduce_mst_payload(pipe_ctx,
3370 stream_update->mst_bw_update->mst_stream_bw);
3371 }
3372
3373 if (stream_update->pending_test_pattern) {
3374 /*
3375 * test pattern params depends on ODM topology
3376 * changes that we could be applying to front
3377 * end. Since at the current stage front end
3378 * changes are not yet applied. We can only
3379 * apply test pattern in hw based on current
3380 * state and populate the final test pattern
3381 * params in new state. If current and new test
3382 * pattern params are different as result of
3383 * different ODM topology being used, it will be
3384 * detected and handle during front end
3385 * programming update.
3386 */
3387 dc->link_srv->dp_set_test_pattern(stream->link,
3388 stream->test_pattern.type,
3389 stream->test_pattern.color_space,
3390 stream->test_pattern.p_link_settings,
3391 stream->test_pattern.p_custom_pattern,
3392 stream->test_pattern.cust_pattern_size);
3393 resource_build_test_pattern_params(&context->res_ctx, pipe_ctx);
3394 }
3395
3396 if (stream_update->dpms_off) {
3397 if (*stream_update->dpms_off) {
3398 dc->link_srv->set_dpms_off(pipe_ctx);
3399 /* for dpms, keep acquired resources*/
3400 if (pipe_ctx->stream_res.audio && !dc->debug.az_endpoint_mute_only)
3401 pipe_ctx->stream_res.audio->funcs->az_disable(pipe_ctx->stream_res.audio);
3402
3403 dc->optimized_required = true;
3404
3405 } else {
3406 if (get_seamless_boot_stream_count(context) == 0)
3407 dc->hwss.prepare_bandwidth(dc, dc->current_state);
3408 dc->link_srv->set_dpms_on(dc->current_state, pipe_ctx);
3409 }
3410 } else if (pipe_ctx->stream->link->wa_flags.blank_stream_on_ocs_change && stream_update->output_color_space
3411 && !stream->dpms_off && dc_is_dp_signal(pipe_ctx->stream->signal)) {
3412 /*
3413 * Workaround for firmware issue in some receivers where they don't pick up
3414 * correct output color space unless DP link is disabled/re-enabled
3415 */
3416 dc->link_srv->set_dpms_on(dc->current_state, pipe_ctx);
3417 }
3418
3419 if (stream_update->abm_level && pipe_ctx->stream_res.abm) {
3420 bool should_program_abm = true;
3421
3422 // if otg funcs defined check if blanked before programming
3423 if (pipe_ctx->stream_res.tg->funcs->is_blanked)
3424 if (pipe_ctx->stream_res.tg->funcs->is_blanked(pipe_ctx->stream_res.tg))
3425 should_program_abm = false;
3426
3427 if (should_program_abm) {
3428 if (*stream_update->abm_level == ABM_LEVEL_IMMEDIATE_DISABLE) {
3429 dc->hwss.set_abm_immediate_disable(pipe_ctx);
3430 } else {
3431 pipe_ctx->stream_res.abm->funcs->set_abm_level(
3432 pipe_ctx->stream_res.abm, stream->abm_level);
3433 }
3434 }
3435 }
3436 }
3437 }
3438 }
3439
dc_dmub_should_send_dirty_rect_cmd(struct dc * dc,struct dc_stream_state * stream)3440 static bool dc_dmub_should_send_dirty_rect_cmd(struct dc *dc, struct dc_stream_state *stream)
3441 {
3442 if ((stream->link->psr_settings.psr_version == DC_PSR_VERSION_SU_1
3443 || stream->link->psr_settings.psr_version == DC_PSR_VERSION_1)
3444 && stream->ctx->dce_version >= DCN_VERSION_3_1)
3445 return true;
3446
3447 if (stream->link->replay_settings.config.replay_supported)
3448 return true;
3449
3450 if (stream->ctx->dce_version >= DCN_VERSION_3_5 && stream->abm_level)
3451 return true;
3452
3453 return false;
3454 }
3455
dc_dmub_update_dirty_rect(struct dc * dc,int surface_count,struct dc_stream_state * stream,struct dc_surface_update * srf_updates,struct dc_state * context)3456 void dc_dmub_update_dirty_rect(struct dc *dc,
3457 int surface_count,
3458 struct dc_stream_state *stream,
3459 struct dc_surface_update *srf_updates,
3460 struct dc_state *context)
3461 {
3462 union dmub_rb_cmd cmd;
3463 struct dmub_cmd_update_dirty_rect_data *update_dirty_rect;
3464 unsigned int i, j;
3465 unsigned int panel_inst = 0;
3466
3467 if (!dc_dmub_should_send_dirty_rect_cmd(dc, stream))
3468 return;
3469
3470 if (!dc_get_edp_link_panel_inst(dc, stream->link, &panel_inst))
3471 return;
3472
3473 memset(&cmd, 0x0, sizeof(cmd));
3474 cmd.update_dirty_rect.header.type = DMUB_CMD__UPDATE_DIRTY_RECT;
3475 cmd.update_dirty_rect.header.sub_type = 0;
3476 cmd.update_dirty_rect.header.payload_bytes =
3477 sizeof(cmd.update_dirty_rect) -
3478 sizeof(cmd.update_dirty_rect.header);
3479 update_dirty_rect = &cmd.update_dirty_rect.update_dirty_rect_data;
3480 for (i = 0; i < surface_count; i++) {
3481 struct dc_plane_state *plane_state = srf_updates[i].surface;
3482 const struct dc_flip_addrs *flip_addr = srf_updates[i].flip_addr;
3483
3484 if (!srf_updates[i].surface || !flip_addr)
3485 continue;
3486 /* Do not send in immediate flip mode */
3487 if (srf_updates[i].surface->flip_immediate)
3488 continue;
3489
3490 update_dirty_rect->cmd_version = DMUB_CMD_PSR_CONTROL_VERSION_1;
3491 update_dirty_rect->dirty_rect_count = flip_addr->dirty_rect_count;
3492 memcpy(update_dirty_rect->src_dirty_rects, flip_addr->dirty_rects,
3493 sizeof(flip_addr->dirty_rects));
3494 for (j = 0; j < dc->res_pool->pipe_count; j++) {
3495 struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[j];
3496
3497 if (pipe_ctx->stream != stream)
3498 continue;
3499 if (pipe_ctx->plane_state != plane_state)
3500 continue;
3501
3502 update_dirty_rect->panel_inst = panel_inst;
3503 update_dirty_rect->pipe_idx = j;
3504 dc_wake_and_execute_dmub_cmd(dc->ctx, &cmd, DM_DMUB_WAIT_TYPE_NO_WAIT);
3505 }
3506 }
3507 }
3508
build_dmub_update_dirty_rect(struct dc * dc,int surface_count,struct dc_stream_state * stream,struct dc_surface_update * srf_updates,struct dc_state * context,struct dc_dmub_cmd dc_dmub_cmd[],unsigned int * dmub_cmd_count)3509 static void build_dmub_update_dirty_rect(
3510 struct dc *dc,
3511 int surface_count,
3512 struct dc_stream_state *stream,
3513 struct dc_surface_update *srf_updates,
3514 struct dc_state *context,
3515 struct dc_dmub_cmd dc_dmub_cmd[],
3516 unsigned int *dmub_cmd_count)
3517 {
3518 union dmub_rb_cmd cmd;
3519 struct dmub_cmd_update_dirty_rect_data *update_dirty_rect;
3520 unsigned int i, j;
3521 unsigned int panel_inst = 0;
3522
3523 if (!dc_dmub_should_send_dirty_rect_cmd(dc, stream))
3524 return;
3525
3526 if (!dc_get_edp_link_panel_inst(dc, stream->link, &panel_inst))
3527 return;
3528
3529 memset(&cmd, 0x0, sizeof(cmd));
3530 cmd.update_dirty_rect.header.type = DMUB_CMD__UPDATE_DIRTY_RECT;
3531 cmd.update_dirty_rect.header.sub_type = 0;
3532 cmd.update_dirty_rect.header.payload_bytes =
3533 sizeof(cmd.update_dirty_rect) -
3534 sizeof(cmd.update_dirty_rect.header);
3535 update_dirty_rect = &cmd.update_dirty_rect.update_dirty_rect_data;
3536 for (i = 0; i < surface_count; i++) {
3537 struct dc_plane_state *plane_state = srf_updates[i].surface;
3538 const struct dc_flip_addrs *flip_addr = srf_updates[i].flip_addr;
3539
3540 if (!srf_updates[i].surface || !flip_addr)
3541 continue;
3542 /* Do not send in immediate flip mode */
3543 if (srf_updates[i].surface->flip_immediate)
3544 continue;
3545 update_dirty_rect->cmd_version = DMUB_CMD_PSR_CONTROL_VERSION_1;
3546 update_dirty_rect->dirty_rect_count = flip_addr->dirty_rect_count;
3547 memcpy(update_dirty_rect->src_dirty_rects, flip_addr->dirty_rects,
3548 sizeof(flip_addr->dirty_rects));
3549 for (j = 0; j < dc->res_pool->pipe_count; j++) {
3550 struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[j];
3551
3552 if (pipe_ctx->stream != stream)
3553 continue;
3554 if (pipe_ctx->plane_state != plane_state)
3555 continue;
3556 update_dirty_rect->panel_inst = panel_inst;
3557 update_dirty_rect->pipe_idx = j;
3558 dc_dmub_cmd[*dmub_cmd_count].dmub_cmd = cmd;
3559 dc_dmub_cmd[*dmub_cmd_count].wait_type = DM_DMUB_WAIT_TYPE_NO_WAIT;
3560 (*dmub_cmd_count)++;
3561 }
3562 }
3563 }
3564
check_address_only_update(union surface_update_flags update_flags)3565 static bool check_address_only_update(union surface_update_flags update_flags)
3566 {
3567 union surface_update_flags addr_only_update_flags;
3568 addr_only_update_flags.raw = 0;
3569 addr_only_update_flags.bits.addr_update = 1;
3570
3571 return update_flags.bits.addr_update &&
3572 !(update_flags.raw & ~addr_only_update_flags.raw);
3573 }
3574
3575 /**
3576 * build_dmub_cmd_list() - Build an array of DMCUB commands to be sent to DMCUB
3577 *
3578 * @dc: Current DC state
3579 * @srf_updates: Array of surface updates
3580 * @surface_count: Number of surfaces that have an updated
3581 * @stream: Corresponding stream to be updated in the current flip
3582 * @context: New DC state to be programmed
3583 *
3584 * @dc_dmub_cmd: Array of DMCUB commands to be sent to DMCUB
3585 * @dmub_cmd_count: Count indicating the number of DMCUB commands in dc_dmub_cmd array
3586 *
3587 * This function builds an array of DMCUB commands to be sent to DMCUB. This function is required
3588 * to build an array of commands and have them sent while the OTG lock is acquired.
3589 *
3590 * Return: void
3591 */
build_dmub_cmd_list(struct dc * dc,struct dc_surface_update * srf_updates,int surface_count,struct dc_stream_state * stream,struct dc_state * context,struct dc_dmub_cmd dc_dmub_cmd[],unsigned int * dmub_cmd_count)3592 static void build_dmub_cmd_list(struct dc *dc,
3593 struct dc_surface_update *srf_updates,
3594 int surface_count,
3595 struct dc_stream_state *stream,
3596 struct dc_state *context,
3597 struct dc_dmub_cmd dc_dmub_cmd[],
3598 unsigned int *dmub_cmd_count)
3599 {
3600 // Initialize cmd count to 0
3601 *dmub_cmd_count = 0;
3602 build_dmub_update_dirty_rect(dc, surface_count, stream, srf_updates, context, dc_dmub_cmd, dmub_cmd_count);
3603 }
3604
commit_plane_for_stream_offload_fams2_flip(struct dc * dc,struct dc_surface_update * srf_updates,int surface_count,struct dc_stream_state * stream,struct dc_state * context)3605 static void commit_plane_for_stream_offload_fams2_flip(struct dc *dc,
3606 struct dc_surface_update *srf_updates,
3607 int surface_count,
3608 struct dc_stream_state *stream,
3609 struct dc_state *context)
3610 {
3611 int i, j;
3612
3613 /* update dirty rect for PSR */
3614 dc_dmub_update_dirty_rect(dc, surface_count, stream,
3615 srf_updates, context);
3616
3617 /* Perform requested Updates */
3618 for (i = 0; i < surface_count; i++) {
3619 struct dc_plane_state *plane_state = srf_updates[i].surface;
3620
3621 for (j = 0; j < dc->res_pool->pipe_count; j++) {
3622 struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[j];
3623
3624 if (!should_update_pipe_for_stream(context, pipe_ctx, stream))
3625 continue;
3626
3627 if (!should_update_pipe_for_plane(context, pipe_ctx, plane_state))
3628 continue;
3629
3630 /* update pipe context for plane */
3631 if (pipe_ctx->plane_state->update_flags.bits.addr_update)
3632 dc->hwss.update_plane_addr(dc, pipe_ctx);
3633 }
3634 }
3635
3636 /* Send commands to DMCUB */
3637 dc_dmub_srv_fams2_passthrough_flip(dc,
3638 context,
3639 stream,
3640 srf_updates,
3641 surface_count);
3642 }
3643
commit_planes_for_stream_fast(struct dc * dc,struct dc_surface_update * srf_updates,int surface_count,struct dc_stream_state * stream,struct dc_stream_update * stream_update,enum surface_update_type update_type,struct dc_state * context)3644 static void commit_planes_for_stream_fast(struct dc *dc,
3645 struct dc_surface_update *srf_updates,
3646 int surface_count,
3647 struct dc_stream_state *stream,
3648 struct dc_stream_update *stream_update,
3649 enum surface_update_type update_type,
3650 struct dc_state *context)
3651 {
3652 int i, j;
3653 struct pipe_ctx *top_pipe_to_program = NULL;
3654 struct dc_stream_status *stream_status = NULL;
3655 bool should_offload_fams2_flip = false;
3656
3657 if (dc->debug.fams2_config.bits.enable &&
3658 dc->debug.fams2_config.bits.enable_offload_flip &&
3659 dc_state_is_fams2_in_use(dc, context)) {
3660 /* if not offloading to HWFQ, offload to FAMS2 if needed */
3661 should_offload_fams2_flip = true;
3662 for (i = 0; i < surface_count; i++) {
3663 if (srf_updates[i].surface &&
3664 srf_updates[i].surface->update_flags.raw &&
3665 !check_address_only_update(srf_updates[i].surface->update_flags)) {
3666 /* more than address update, need to acquire FAMS2 lock */
3667 should_offload_fams2_flip = false;
3668 break;
3669 }
3670 }
3671 if (stream_update) {
3672 /* more than address update, need to acquire FAMS2 lock */
3673 should_offload_fams2_flip = false;
3674 }
3675 }
3676
3677 dc_exit_ips_for_hw_access(dc);
3678
3679 dc_z10_restore(dc);
3680
3681 top_pipe_to_program = resource_get_otg_master_for_stream(
3682 &context->res_ctx,
3683 stream);
3684
3685 if (!top_pipe_to_program)
3686 return;
3687
3688 for (i = 0; i < dc->res_pool->pipe_count; i++) {
3689 struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i];
3690
3691 if (pipe->stream && pipe->plane_state) {
3692 if (!dc->debug.using_dml2)
3693 set_p_state_switch_method(dc, context, pipe);
3694
3695 if (dc->debug.visual_confirm)
3696 dc_update_visual_confirm_color(dc, context, pipe);
3697 }
3698 }
3699
3700 for (i = 0; i < surface_count; i++) {
3701 struct dc_plane_state *plane_state = srf_updates[i].surface;
3702 /*set logical flag for lock/unlock use*/
3703 for (j = 0; j < dc->res_pool->pipe_count; j++) {
3704 struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[j];
3705
3706 if (!pipe_ctx->plane_state)
3707 continue;
3708 if (should_update_pipe_for_plane(context, pipe_ctx, plane_state))
3709 continue;
3710 pipe_ctx->plane_state->triplebuffer_flips = false;
3711 if (update_type == UPDATE_TYPE_FAST &&
3712 dc->hwss.program_triplebuffer != NULL &&
3713 !pipe_ctx->plane_state->flip_immediate && dc->debug.enable_tri_buf) {
3714 /*triple buffer for VUpdate only*/
3715 pipe_ctx->plane_state->triplebuffer_flips = true;
3716 }
3717 }
3718 }
3719
3720 stream_status = dc_state_get_stream_status(context, stream);
3721
3722 if (should_offload_fams2_flip) {
3723 commit_plane_for_stream_offload_fams2_flip(dc,
3724 srf_updates,
3725 surface_count,
3726 stream,
3727 context);
3728 } else if (stream_status) {
3729 build_dmub_cmd_list(dc,
3730 srf_updates,
3731 surface_count,
3732 stream,
3733 context,
3734 context->dc_dmub_cmd,
3735 &(context->dmub_cmd_count));
3736 hwss_build_fast_sequence(dc,
3737 context->dc_dmub_cmd,
3738 context->dmub_cmd_count,
3739 context->block_sequence,
3740 &(context->block_sequence_steps),
3741 top_pipe_to_program,
3742 stream_status,
3743 context);
3744 hwss_execute_sequence(dc,
3745 context->block_sequence,
3746 context->block_sequence_steps);
3747 }
3748
3749 /* Clear update flags so next flip doesn't have redundant programming
3750 * (if there's no stream update, the update flags are not cleared).
3751 * Surface updates are cleared unconditionally at the beginning of each flip,
3752 * so no need to clear here.
3753 */
3754 if (top_pipe_to_program->stream)
3755 top_pipe_to_program->stream->update_flags.raw = 0;
3756 }
3757
commit_planes_for_stream(struct dc * dc,struct dc_surface_update * srf_updates,int surface_count,struct dc_stream_state * stream,struct dc_stream_update * stream_update,enum surface_update_type update_type,struct dc_state * context)3758 static void commit_planes_for_stream(struct dc *dc,
3759 struct dc_surface_update *srf_updates,
3760 int surface_count,
3761 struct dc_stream_state *stream,
3762 struct dc_stream_update *stream_update,
3763 enum surface_update_type update_type,
3764 struct dc_state *context)
3765 {
3766 int i, j;
3767 struct pipe_ctx *top_pipe_to_program = NULL;
3768 bool should_lock_all_pipes = (update_type != UPDATE_TYPE_FAST);
3769 bool subvp_prev_use = false;
3770 bool subvp_curr_use = false;
3771 uint8_t current_stream_mask = 0;
3772
3773 // Once we apply the new subvp context to hardware it won't be in the
3774 // dc->current_state anymore, so we have to cache it before we apply
3775 // the new SubVP context
3776 subvp_prev_use = false;
3777 dc_exit_ips_for_hw_access(dc);
3778
3779 dc_z10_restore(dc);
3780 if (update_type == UPDATE_TYPE_FULL)
3781 hwss_process_outstanding_hw_updates(dc, dc->current_state);
3782
3783 for (i = 0; i < dc->res_pool->pipe_count; i++) {
3784 struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i];
3785
3786 if (pipe->stream && pipe->plane_state) {
3787 if (!dc->debug.using_dml2)
3788 set_p_state_switch_method(dc, context, pipe);
3789
3790 if (dc->debug.visual_confirm)
3791 dc_update_visual_confirm_color(dc, context, pipe);
3792 }
3793 }
3794
3795 if (update_type == UPDATE_TYPE_FULL) {
3796 dc_allow_idle_optimizations(dc, false);
3797
3798 if (get_seamless_boot_stream_count(context) == 0)
3799 dc->hwss.prepare_bandwidth(dc, context);
3800
3801 if (dc->hwss.update_dsc_pg)
3802 dc->hwss.update_dsc_pg(dc, context, false);
3803
3804 context_clock_trace(dc, context);
3805 }
3806
3807 top_pipe_to_program = resource_get_otg_master_for_stream(
3808 &context->res_ctx,
3809 stream);
3810 ASSERT(top_pipe_to_program != NULL);
3811 for (i = 0; i < dc->res_pool->pipe_count; i++) {
3812 struct pipe_ctx *old_pipe = &dc->current_state->res_ctx.pipe_ctx[i];
3813
3814 // Check old context for SubVP
3815 subvp_prev_use |= (dc_state_get_pipe_subvp_type(dc->current_state, old_pipe) == SUBVP_PHANTOM);
3816 if (subvp_prev_use)
3817 break;
3818 }
3819
3820 for (i = 0; i < dc->res_pool->pipe_count; i++) {
3821 struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i];
3822
3823 if (dc_state_get_pipe_subvp_type(context, pipe) == SUBVP_PHANTOM) {
3824 subvp_curr_use = true;
3825 break;
3826 }
3827 }
3828
3829 if (stream->test_pattern.type != DP_TEST_PATTERN_VIDEO_MODE) {
3830 struct pipe_ctx *mpcc_pipe;
3831 struct pipe_ctx *odm_pipe;
3832
3833 for (mpcc_pipe = top_pipe_to_program; mpcc_pipe; mpcc_pipe = mpcc_pipe->bottom_pipe)
3834 for (odm_pipe = mpcc_pipe; odm_pipe; odm_pipe = odm_pipe->next_odm_pipe)
3835 odm_pipe->ttu_regs.min_ttu_vblank = MAX_TTU;
3836 }
3837
3838 if (update_type != UPDATE_TYPE_FAST && dc->res_pool->funcs->prepare_mcache_programming)
3839 dc->res_pool->funcs->prepare_mcache_programming(dc, context);
3840
3841 if ((update_type != UPDATE_TYPE_FAST) && stream->update_flags.bits.dsc_changed)
3842 if (top_pipe_to_program &&
3843 top_pipe_to_program->stream_res.tg->funcs->lock_doublebuffer_enable) {
3844 if (should_use_dmub_lock(stream->link)) {
3845 union dmub_hw_lock_flags hw_locks = { 0 };
3846 struct dmub_hw_lock_inst_flags inst_flags = { 0 };
3847
3848 hw_locks.bits.lock_dig = 1;
3849 inst_flags.dig_inst = top_pipe_to_program->stream_res.tg->inst;
3850
3851 dmub_hw_lock_mgr_cmd(dc->ctx->dmub_srv,
3852 true,
3853 &hw_locks,
3854 &inst_flags);
3855 } else
3856 top_pipe_to_program->stream_res.tg->funcs->lock_doublebuffer_enable(
3857 top_pipe_to_program->stream_res.tg);
3858 }
3859
3860 if (dc->hwss.wait_for_dcc_meta_propagation) {
3861 dc->hwss.wait_for_dcc_meta_propagation(dc, top_pipe_to_program);
3862 }
3863
3864 if (should_lock_all_pipes && dc->hwss.interdependent_update_lock) {
3865 if (dc->hwss.subvp_pipe_control_lock)
3866 dc->hwss.subvp_pipe_control_lock(dc, context, true, should_lock_all_pipes, NULL, subvp_prev_use);
3867
3868 if (dc->hwss.fams2_global_control_lock)
3869 dc->hwss.fams2_global_control_lock(dc, context, true);
3870
3871 dc->hwss.interdependent_update_lock(dc, context, true);
3872 } else {
3873 if (dc->hwss.subvp_pipe_control_lock)
3874 dc->hwss.subvp_pipe_control_lock(dc, context, true, should_lock_all_pipes, top_pipe_to_program, subvp_prev_use);
3875
3876 if (dc->hwss.fams2_global_control_lock)
3877 dc->hwss.fams2_global_control_lock(dc, context, true);
3878
3879 /* Lock the top pipe while updating plane addrs, since freesync requires
3880 * plane addr update event triggers to be synchronized.
3881 * top_pipe_to_program is expected to never be NULL
3882 */
3883 dc->hwss.pipe_control_lock(dc, top_pipe_to_program, true);
3884 }
3885
3886 dc_dmub_update_dirty_rect(dc, surface_count, stream, srf_updates, context);
3887
3888 // Stream updates
3889 if (stream_update)
3890 commit_planes_do_stream_update(dc, stream, stream_update, update_type, context);
3891
3892 if (surface_count == 0) {
3893 /*
3894 * In case of turning off screen, no need to program front end a second time.
3895 * just return after program blank.
3896 */
3897 if (dc->hwss.apply_ctx_for_surface)
3898 dc->hwss.apply_ctx_for_surface(dc, stream, 0, context);
3899 if (dc->hwss.program_front_end_for_ctx)
3900 dc->hwss.program_front_end_for_ctx(dc, context);
3901
3902 if (should_lock_all_pipes && dc->hwss.interdependent_update_lock) {
3903 dc->hwss.interdependent_update_lock(dc, context, false);
3904 } else {
3905 dc->hwss.pipe_control_lock(dc, top_pipe_to_program, false);
3906 }
3907 dc->hwss.post_unlock_program_front_end(dc, context);
3908
3909 if (update_type != UPDATE_TYPE_FAST)
3910 if (dc->hwss.commit_subvp_config)
3911 dc->hwss.commit_subvp_config(dc, context);
3912
3913 /* Since phantom pipe programming is moved to post_unlock_program_front_end,
3914 * move the SubVP lock to after the phantom pipes have been setup
3915 */
3916 if (dc->hwss.subvp_pipe_control_lock)
3917 dc->hwss.subvp_pipe_control_lock(dc, context, false, should_lock_all_pipes,
3918 NULL, subvp_prev_use);
3919
3920 if (dc->hwss.fams2_global_control_lock)
3921 dc->hwss.fams2_global_control_lock(dc, context, false);
3922
3923 return;
3924 }
3925
3926 if (update_type != UPDATE_TYPE_FAST) {
3927 for (j = 0; j < dc->res_pool->pipe_count; j++) {
3928 struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[j];
3929
3930 if ((dc->debug.visual_confirm == VISUAL_CONFIRM_SUBVP ||
3931 dc->debug.visual_confirm == VISUAL_CONFIRM_MCLK_SWITCH) &&
3932 pipe_ctx->stream && pipe_ctx->plane_state) {
3933 /* Only update visual confirm for SUBVP and Mclk switching here.
3934 * The bar appears on all pipes, so we need to update the bar on all displays,
3935 * so the information doesn't get stale.
3936 */
3937 dc->hwss.update_visual_confirm_color(dc, pipe_ctx,
3938 pipe_ctx->plane_res.hubp->inst);
3939 }
3940 }
3941 }
3942
3943 for (i = 0; i < surface_count; i++) {
3944 struct dc_plane_state *plane_state = srf_updates[i].surface;
3945
3946 /*set logical flag for lock/unlock use*/
3947 for (j = 0; j < dc->res_pool->pipe_count; j++) {
3948 struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[j];
3949 if (!pipe_ctx->plane_state)
3950 continue;
3951 if (should_update_pipe_for_plane(context, pipe_ctx, plane_state))
3952 continue;
3953 pipe_ctx->plane_state->triplebuffer_flips = false;
3954 if (update_type == UPDATE_TYPE_FAST &&
3955 dc->hwss.program_triplebuffer != NULL &&
3956 !pipe_ctx->plane_state->flip_immediate && dc->debug.enable_tri_buf) {
3957 /*triple buffer for VUpdate only*/
3958 pipe_ctx->plane_state->triplebuffer_flips = true;
3959 }
3960 }
3961 if (update_type == UPDATE_TYPE_FULL) {
3962 /* force vsync flip when reconfiguring pipes to prevent underflow */
3963 plane_state->flip_immediate = false;
3964 }
3965 }
3966
3967 // Update Type FULL, Surface updates
3968 for (j = 0; j < dc->res_pool->pipe_count; j++) {
3969 struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[j];
3970
3971 if (!pipe_ctx->top_pipe &&
3972 !pipe_ctx->prev_odm_pipe &&
3973 should_update_pipe_for_stream(context, pipe_ctx, stream)) {
3974 struct dc_stream_status *stream_status = NULL;
3975
3976 if (!pipe_ctx->plane_state)
3977 continue;
3978
3979 /* Full fe update*/
3980 if (update_type == UPDATE_TYPE_FAST)
3981 continue;
3982
3983 ASSERT(!pipe_ctx->plane_state->triplebuffer_flips);
3984
3985 if (dc->hwss.program_triplebuffer != NULL && dc->debug.enable_tri_buf) {
3986 /*turn off triple buffer for full update*/
3987 dc->hwss.program_triplebuffer(
3988 dc, pipe_ctx, pipe_ctx->plane_state->triplebuffer_flips);
3989 }
3990 stream_status =
3991 stream_get_status(context, pipe_ctx->stream);
3992
3993 if (dc->hwss.apply_ctx_for_surface && stream_status)
3994 dc->hwss.apply_ctx_for_surface(
3995 dc, pipe_ctx->stream, stream_status->plane_count, context);
3996 }
3997 }
3998 if (dc->hwss.program_front_end_for_ctx && update_type != UPDATE_TYPE_FAST) {
3999 dc->hwss.program_front_end_for_ctx(dc, context);
4000 if (dc->debug.validate_dml_output) {
4001 for (i = 0; i < dc->res_pool->pipe_count; i++) {
4002 struct pipe_ctx *cur_pipe = &context->res_ctx.pipe_ctx[i];
4003 if (cur_pipe->stream == NULL)
4004 continue;
4005
4006 cur_pipe->plane_res.hubp->funcs->validate_dml_output(
4007 cur_pipe->plane_res.hubp, dc->ctx,
4008 &context->res_ctx.pipe_ctx[i].rq_regs,
4009 &context->res_ctx.pipe_ctx[i].dlg_regs,
4010 &context->res_ctx.pipe_ctx[i].ttu_regs);
4011 }
4012 }
4013 }
4014
4015 // Update Type FAST, Surface updates
4016 if (update_type == UPDATE_TYPE_FAST) {
4017 if (dc->hwss.set_flip_control_gsl)
4018 for (i = 0; i < surface_count; i++) {
4019 struct dc_plane_state *plane_state = srf_updates[i].surface;
4020
4021 for (j = 0; j < dc->res_pool->pipe_count; j++) {
4022 struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[j];
4023
4024 if (!should_update_pipe_for_stream(context, pipe_ctx, stream))
4025 continue;
4026
4027 if (!should_update_pipe_for_plane(context, pipe_ctx, plane_state))
4028 continue;
4029
4030 // GSL has to be used for flip immediate
4031 dc->hwss.set_flip_control_gsl(pipe_ctx,
4032 pipe_ctx->plane_state->flip_immediate);
4033 }
4034 }
4035
4036 /* Perform requested Updates */
4037 for (i = 0; i < surface_count; i++) {
4038 struct dc_plane_state *plane_state = srf_updates[i].surface;
4039
4040 for (j = 0; j < dc->res_pool->pipe_count; j++) {
4041 struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[j];
4042
4043 if (!should_update_pipe_for_stream(context, pipe_ctx, stream))
4044 continue;
4045
4046 if (!should_update_pipe_for_plane(context, pipe_ctx, plane_state))
4047 continue;
4048
4049 if (srf_updates[i].cm2_params &&
4050 srf_updates[i].cm2_params->cm2_luts.lut3d_data.lut3d_src ==
4051 DC_CM2_TRANSFER_FUNC_SOURCE_VIDMEM &&
4052 srf_updates[i].cm2_params->component_settings.shaper_3dlut_setting ==
4053 DC_CM2_SHAPER_3DLUT_SETTING_ENABLE_SHAPER_3DLUT &&
4054 dc->hwss.trigger_3dlut_dma_load)
4055 dc->hwss.trigger_3dlut_dma_load(dc, pipe_ctx);
4056
4057 /*program triple buffer after lock based on flip type*/
4058 if (dc->hwss.program_triplebuffer != NULL && dc->debug.enable_tri_buf) {
4059 /*only enable triplebuffer for fast_update*/
4060 dc->hwss.program_triplebuffer(
4061 dc, pipe_ctx, pipe_ctx->plane_state->triplebuffer_flips);
4062 }
4063 if (pipe_ctx->plane_state->update_flags.bits.addr_update)
4064 dc->hwss.update_plane_addr(dc, pipe_ctx);
4065 }
4066 }
4067 }
4068
4069 if (should_lock_all_pipes && dc->hwss.interdependent_update_lock) {
4070 dc->hwss.interdependent_update_lock(dc, context, false);
4071 } else {
4072 dc->hwss.pipe_control_lock(dc, top_pipe_to_program, false);
4073 }
4074
4075 if ((update_type != UPDATE_TYPE_FAST) && stream->update_flags.bits.dsc_changed)
4076 if (top_pipe_to_program &&
4077 top_pipe_to_program->stream_res.tg->funcs->lock_doublebuffer_enable) {
4078 top_pipe_to_program->stream_res.tg->funcs->wait_for_state(
4079 top_pipe_to_program->stream_res.tg,
4080 CRTC_STATE_VACTIVE);
4081 top_pipe_to_program->stream_res.tg->funcs->wait_for_state(
4082 top_pipe_to_program->stream_res.tg,
4083 CRTC_STATE_VBLANK);
4084 top_pipe_to_program->stream_res.tg->funcs->wait_for_state(
4085 top_pipe_to_program->stream_res.tg,
4086 CRTC_STATE_VACTIVE);
4087
4088 if (should_use_dmub_lock(stream->link)) {
4089 union dmub_hw_lock_flags hw_locks = { 0 };
4090 struct dmub_hw_lock_inst_flags inst_flags = { 0 };
4091
4092 hw_locks.bits.lock_dig = 1;
4093 inst_flags.dig_inst = top_pipe_to_program->stream_res.tg->inst;
4094
4095 dmub_hw_lock_mgr_cmd(dc->ctx->dmub_srv,
4096 false,
4097 &hw_locks,
4098 &inst_flags);
4099 } else
4100 top_pipe_to_program->stream_res.tg->funcs->lock_doublebuffer_disable(
4101 top_pipe_to_program->stream_res.tg);
4102 }
4103
4104 if (subvp_curr_use) {
4105 /* If enabling subvp or transitioning from subvp->subvp, enable the
4106 * phantom streams before we program front end for the phantom pipes.
4107 */
4108 if (update_type != UPDATE_TYPE_FAST) {
4109 if (dc->hwss.enable_phantom_streams)
4110 dc->hwss.enable_phantom_streams(dc, context);
4111 }
4112 }
4113
4114 if (update_type != UPDATE_TYPE_FAST)
4115 dc->hwss.post_unlock_program_front_end(dc, context);
4116
4117 if (subvp_prev_use && !subvp_curr_use) {
4118 /* If disabling subvp, disable phantom streams after front end
4119 * programming has completed (we turn on phantom OTG in order
4120 * to complete the plane disable for phantom pipes).
4121 */
4122
4123 if (dc->hwss.disable_phantom_streams)
4124 dc->hwss.disable_phantom_streams(dc, context);
4125 }
4126
4127 if (update_type != UPDATE_TYPE_FAST)
4128 if (dc->hwss.commit_subvp_config)
4129 dc->hwss.commit_subvp_config(dc, context);
4130 /* Since phantom pipe programming is moved to post_unlock_program_front_end,
4131 * move the SubVP lock to after the phantom pipes have been setup
4132 */
4133 if (should_lock_all_pipes && dc->hwss.interdependent_update_lock) {
4134 if (dc->hwss.subvp_pipe_control_lock)
4135 dc->hwss.subvp_pipe_control_lock(dc, context, false, should_lock_all_pipes, NULL, subvp_prev_use);
4136 if (dc->hwss.fams2_global_control_lock)
4137 dc->hwss.fams2_global_control_lock(dc, context, false);
4138 } else {
4139 if (dc->hwss.subvp_pipe_control_lock)
4140 dc->hwss.subvp_pipe_control_lock(dc, context, false, should_lock_all_pipes, top_pipe_to_program, subvp_prev_use);
4141 if (dc->hwss.fams2_global_control_lock)
4142 dc->hwss.fams2_global_control_lock(dc, context, false);
4143 }
4144
4145 // Fire manual trigger only when bottom plane is flipped
4146 for (j = 0; j < dc->res_pool->pipe_count; j++) {
4147 struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[j];
4148
4149 if (!pipe_ctx->plane_state)
4150 continue;
4151
4152 if (pipe_ctx->bottom_pipe || pipe_ctx->next_odm_pipe ||
4153 !pipe_ctx->stream || !should_update_pipe_for_stream(context, pipe_ctx, stream) ||
4154 !pipe_ctx->plane_state->update_flags.bits.addr_update ||
4155 pipe_ctx->plane_state->skip_manual_trigger)
4156 continue;
4157
4158 if (pipe_ctx->stream_res.tg->funcs->program_manual_trigger)
4159 pipe_ctx->stream_res.tg->funcs->program_manual_trigger(pipe_ctx->stream_res.tg);
4160 }
4161
4162 current_stream_mask = get_stream_mask(dc, context);
4163 if (current_stream_mask != context->stream_mask) {
4164 context->stream_mask = current_stream_mask;
4165 dc_dmub_srv_notify_stream_mask(dc->ctx->dmub_srv, current_stream_mask);
4166 }
4167 }
4168
4169 /**
4170 * could_mpcc_tree_change_for_active_pipes - Check if an OPP associated with MPCC might change
4171 *
4172 * @dc: Used to get the current state status
4173 * @stream: Target stream, which we want to remove the attached planes
4174 * @srf_updates: Array of surface updates
4175 * @surface_count: Number of surface update
4176 * @is_plane_addition: [in] Fill out with true if it is a plane addition case
4177 *
4178 * DCN32x and newer support a feature named Dynamic ODM which can conflict with
4179 * the MPO if used simultaneously in some specific configurations (e.g.,
4180 * 4k@144). This function checks if the incoming context requires applying a
4181 * transition state with unnecessary pipe splitting and ODM disabled to
4182 * circumvent our hardware limitations to prevent this edge case. If the OPP
4183 * associated with an MPCC might change due to plane additions, this function
4184 * returns true.
4185 *
4186 * Return:
4187 * Return true if OPP and MPCC might change, otherwise, return false.
4188 */
could_mpcc_tree_change_for_active_pipes(struct dc * dc,struct dc_stream_state * stream,struct dc_surface_update * srf_updates,int surface_count,bool * is_plane_addition)4189 static bool could_mpcc_tree_change_for_active_pipes(struct dc *dc,
4190 struct dc_stream_state *stream,
4191 struct dc_surface_update *srf_updates,
4192 int surface_count,
4193 bool *is_plane_addition)
4194 {
4195
4196 struct dc_stream_status *cur_stream_status = stream_get_status(dc->current_state, stream);
4197 bool force_minimal_pipe_splitting = false;
4198 bool subvp_active = false;
4199 uint32_t i;
4200
4201 *is_plane_addition = false;
4202
4203 if (cur_stream_status &&
4204 dc->current_state->stream_count > 0 &&
4205 dc->debug.pipe_split_policy != MPC_SPLIT_AVOID) {
4206 /* determine if minimal transition is required due to MPC*/
4207 if (surface_count > 0) {
4208 if (cur_stream_status->plane_count > surface_count) {
4209 force_minimal_pipe_splitting = true;
4210 } else if (cur_stream_status->plane_count < surface_count) {
4211 force_minimal_pipe_splitting = true;
4212 *is_plane_addition = true;
4213 }
4214 }
4215 }
4216
4217 if (cur_stream_status &&
4218 dc->current_state->stream_count == 1 &&
4219 dc->debug.enable_single_display_2to1_odm_policy) {
4220 /* determine if minimal transition is required due to dynamic ODM*/
4221 if (surface_count > 0) {
4222 if (cur_stream_status->plane_count > 2 && cur_stream_status->plane_count > surface_count) {
4223 force_minimal_pipe_splitting = true;
4224 } else if (surface_count > 2 && cur_stream_status->plane_count < surface_count) {
4225 force_minimal_pipe_splitting = true;
4226 *is_plane_addition = true;
4227 }
4228 }
4229 }
4230
4231 for (i = 0; i < dc->res_pool->pipe_count; i++) {
4232 struct pipe_ctx *pipe = &dc->current_state->res_ctx.pipe_ctx[i];
4233
4234 if (dc_state_get_pipe_subvp_type(dc->current_state, pipe) != SUBVP_NONE) {
4235 subvp_active = true;
4236 break;
4237 }
4238 }
4239
4240 /* For SubVP when adding or removing planes we need to add a minimal transition
4241 * (even when disabling all planes). Whenever disabling a phantom pipe, we
4242 * must use the minimal transition path to disable the pipe correctly.
4243 *
4244 * We want to use the minimal transition whenever subvp is active, not only if
4245 * a plane is being added / removed from a subvp stream (MPO plane can be added
4246 * to a DRR pipe of SubVP + DRR config, in which case we still want to run through
4247 * a min transition to disable subvp.
4248 */
4249 if (cur_stream_status && subvp_active) {
4250 /* determine if minimal transition is required due to SubVP*/
4251 if (cur_stream_status->plane_count > surface_count) {
4252 force_minimal_pipe_splitting = true;
4253 } else if (cur_stream_status->plane_count < surface_count) {
4254 force_minimal_pipe_splitting = true;
4255 *is_plane_addition = true;
4256 }
4257 }
4258
4259 return force_minimal_pipe_splitting;
4260 }
4261
4262 struct pipe_split_policy_backup {
4263 bool dynamic_odm_policy;
4264 bool subvp_policy;
4265 enum pipe_split_policy mpc_policy;
4266 char force_odm[MAX_PIPES];
4267 };
4268
backup_and_set_minimal_pipe_split_policy(struct dc * dc,struct dc_state * context,struct pipe_split_policy_backup * policy)4269 static void backup_and_set_minimal_pipe_split_policy(struct dc *dc,
4270 struct dc_state *context,
4271 struct pipe_split_policy_backup *policy)
4272 {
4273 int i;
4274
4275 if (!dc->config.is_vmin_only_asic) {
4276 policy->mpc_policy = dc->debug.pipe_split_policy;
4277 dc->debug.pipe_split_policy = MPC_SPLIT_AVOID;
4278 }
4279 policy->dynamic_odm_policy = dc->debug.enable_single_display_2to1_odm_policy;
4280 dc->debug.enable_single_display_2to1_odm_policy = false;
4281 policy->subvp_policy = dc->debug.force_disable_subvp;
4282 dc->debug.force_disable_subvp = true;
4283 for (i = 0; i < context->stream_count; i++) {
4284 policy->force_odm[i] = context->streams[i]->debug.force_odm_combine_segments;
4285 if (context->streams[i]->debug.allow_transition_for_forced_odm)
4286 context->streams[i]->debug.force_odm_combine_segments = 0;
4287 }
4288 }
4289
restore_minimal_pipe_split_policy(struct dc * dc,struct dc_state * context,struct pipe_split_policy_backup * policy)4290 static void restore_minimal_pipe_split_policy(struct dc *dc,
4291 struct dc_state *context,
4292 struct pipe_split_policy_backup *policy)
4293 {
4294 uint8_t i;
4295
4296 if (!dc->config.is_vmin_only_asic)
4297 dc->debug.pipe_split_policy = policy->mpc_policy;
4298 dc->debug.enable_single_display_2to1_odm_policy =
4299 policy->dynamic_odm_policy;
4300 dc->debug.force_disable_subvp = policy->subvp_policy;
4301 for (i = 0; i < context->stream_count; i++)
4302 context->streams[i]->debug.force_odm_combine_segments = policy->force_odm[i];
4303 }
4304
release_minimal_transition_state(struct dc * dc,struct dc_state * minimal_transition_context,struct dc_state * base_context,struct pipe_split_policy_backup * policy)4305 static void release_minimal_transition_state(struct dc *dc,
4306 struct dc_state *minimal_transition_context,
4307 struct dc_state *base_context,
4308 struct pipe_split_policy_backup *policy)
4309 {
4310 restore_minimal_pipe_split_policy(dc, base_context, policy);
4311 dc_state_release(minimal_transition_context);
4312 }
4313
force_vsync_flip_in_minimal_transition_context(struct dc_state * context)4314 static void force_vsync_flip_in_minimal_transition_context(struct dc_state *context)
4315 {
4316 uint8_t i;
4317 int j;
4318 struct dc_stream_status *stream_status;
4319
4320 for (i = 0; i < context->stream_count; i++) {
4321 stream_status = &context->stream_status[i];
4322
4323 for (j = 0; j < stream_status->plane_count; j++)
4324 stream_status->plane_states[j]->flip_immediate = false;
4325 }
4326 }
4327
create_minimal_transition_state(struct dc * dc,struct dc_state * base_context,struct pipe_split_policy_backup * policy)4328 static struct dc_state *create_minimal_transition_state(struct dc *dc,
4329 struct dc_state *base_context, struct pipe_split_policy_backup *policy)
4330 {
4331 struct dc_state *minimal_transition_context = NULL;
4332
4333 minimal_transition_context = dc_state_create_copy(base_context);
4334 if (!minimal_transition_context)
4335 return NULL;
4336
4337 backup_and_set_minimal_pipe_split_policy(dc, base_context, policy);
4338 /* commit minimal state */
4339 if (dc->res_pool->funcs->validate_bandwidth(dc, minimal_transition_context, false)) {
4340 /* prevent underflow and corruption when reconfiguring pipes */
4341 force_vsync_flip_in_minimal_transition_context(minimal_transition_context);
4342 } else {
4343 /*
4344 * This should never happen, minimal transition state should
4345 * always be validated first before adding pipe split features.
4346 */
4347 release_minimal_transition_state(dc, minimal_transition_context, base_context, policy);
4348 BREAK_TO_DEBUGGER();
4349 minimal_transition_context = NULL;
4350 }
4351 return minimal_transition_context;
4352 }
4353
is_pipe_topology_transition_seamless_with_intermediate_step(struct dc * dc,struct dc_state * initial_state,struct dc_state * intermediate_state,struct dc_state * final_state)4354 static bool is_pipe_topology_transition_seamless_with_intermediate_step(
4355 struct dc *dc,
4356 struct dc_state *initial_state,
4357 struct dc_state *intermediate_state,
4358 struct dc_state *final_state)
4359 {
4360 return dc->hwss.is_pipe_topology_transition_seamless(dc, initial_state,
4361 intermediate_state) &&
4362 dc->hwss.is_pipe_topology_transition_seamless(dc,
4363 intermediate_state, final_state);
4364 }
4365
swap_and_release_current_context(struct dc * dc,struct dc_state * new_context,struct dc_stream_state * stream)4366 static void swap_and_release_current_context(struct dc *dc,
4367 struct dc_state *new_context, struct dc_stream_state *stream)
4368 {
4369
4370 int i;
4371 struct dc_state *old = dc->current_state;
4372 struct pipe_ctx *pipe_ctx;
4373
4374 /* Since memory free requires elevated IRQ, an interrupt
4375 * request is generated by mem free. If this happens
4376 * between freeing and reassigning the context, our vsync
4377 * interrupt will call into dc and cause a memory
4378 * corruption. Hence, we first reassign the context,
4379 * then free the old context.
4380 */
4381 dc->current_state = new_context;
4382 dc_state_release(old);
4383
4384 // clear any forced full updates
4385 for (i = 0; i < dc->res_pool->pipe_count; i++) {
4386 pipe_ctx = &new_context->res_ctx.pipe_ctx[i];
4387
4388 if (pipe_ctx->plane_state && pipe_ctx->stream == stream)
4389 pipe_ctx->plane_state->force_full_update = false;
4390 }
4391 }
4392
initialize_empty_surface_updates(struct dc_stream_state * stream,struct dc_surface_update * srf_updates)4393 static int initialize_empty_surface_updates(
4394 struct dc_stream_state *stream,
4395 struct dc_surface_update *srf_updates)
4396 {
4397 struct dc_stream_status *status = dc_stream_get_status(stream);
4398 int i;
4399
4400 if (!status)
4401 return 0;
4402
4403 for (i = 0; i < status->plane_count; i++)
4404 srf_updates[i].surface = status->plane_states[i];
4405
4406 return status->plane_count;
4407 }
4408
commit_minimal_transition_based_on_new_context(struct dc * dc,struct dc_state * new_context,struct dc_stream_state * stream,struct dc_surface_update * srf_updates,int surface_count)4409 static bool commit_minimal_transition_based_on_new_context(struct dc *dc,
4410 struct dc_state *new_context,
4411 struct dc_stream_state *stream,
4412 struct dc_surface_update *srf_updates,
4413 int surface_count)
4414 {
4415 bool success = false;
4416 struct pipe_split_policy_backup policy;
4417 struct dc_state *intermediate_context =
4418 create_minimal_transition_state(dc, new_context,
4419 &policy);
4420
4421 if (intermediate_context) {
4422 if (is_pipe_topology_transition_seamless_with_intermediate_step(
4423 dc,
4424 dc->current_state,
4425 intermediate_context,
4426 new_context)) {
4427 DC_LOG_DC("commit minimal transition state: base = new state\n");
4428 commit_planes_for_stream(dc, srf_updates,
4429 surface_count, stream, NULL,
4430 UPDATE_TYPE_FULL, intermediate_context);
4431 swap_and_release_current_context(
4432 dc, intermediate_context, stream);
4433 dc_state_retain(dc->current_state);
4434 success = true;
4435 }
4436 release_minimal_transition_state(
4437 dc, intermediate_context, new_context, &policy);
4438 }
4439 return success;
4440 }
4441
commit_minimal_transition_based_on_current_context(struct dc * dc,struct dc_state * new_context,struct dc_stream_state * stream)4442 static bool commit_minimal_transition_based_on_current_context(struct dc *dc,
4443 struct dc_state *new_context, struct dc_stream_state *stream)
4444 {
4445 bool success = false;
4446 struct pipe_split_policy_backup policy;
4447 struct dc_state *intermediate_context;
4448 struct dc_state *old_current_state = dc->current_state;
4449 struct dc_surface_update srf_updates[MAX_SURFACES] = {0};
4450 int surface_count;
4451
4452 /*
4453 * Both current and new contexts share the same stream and plane state
4454 * pointers. When new context is validated, stream and planes get
4455 * populated with new updates such as new plane addresses. This makes
4456 * the current context no longer valid because stream and planes are
4457 * modified from the original. We backup current stream and plane states
4458 * into scratch space whenever we are populating new context. So we can
4459 * restore the original values back by calling the restore function now.
4460 * This restores back the original stream and plane states associated
4461 * with the current state.
4462 */
4463 restore_planes_and_stream_state(&dc->scratch.current_state, stream);
4464 dc_state_retain(old_current_state);
4465 intermediate_context = create_minimal_transition_state(dc,
4466 old_current_state, &policy);
4467
4468 if (intermediate_context) {
4469 if (is_pipe_topology_transition_seamless_with_intermediate_step(
4470 dc,
4471 dc->current_state,
4472 intermediate_context,
4473 new_context)) {
4474 DC_LOG_DC("commit minimal transition state: base = current state\n");
4475 surface_count = initialize_empty_surface_updates(
4476 stream, srf_updates);
4477 commit_planes_for_stream(dc, srf_updates,
4478 surface_count, stream, NULL,
4479 UPDATE_TYPE_FULL, intermediate_context);
4480 swap_and_release_current_context(
4481 dc, intermediate_context, stream);
4482 dc_state_retain(dc->current_state);
4483 success = true;
4484 }
4485 release_minimal_transition_state(dc, intermediate_context,
4486 old_current_state, &policy);
4487 }
4488 dc_state_release(old_current_state);
4489 /*
4490 * Restore stream and plane states back to the values associated with
4491 * new context.
4492 */
4493 restore_planes_and_stream_state(&dc->scratch.new_state, stream);
4494 return success;
4495 }
4496
4497 /**
4498 * commit_minimal_transition_state_in_dc_update - Commit a minimal state based
4499 * on current or new context
4500 *
4501 * @dc: DC structure, used to get the current state
4502 * @new_context: New context
4503 * @stream: Stream getting the update for the flip
4504 * @srf_updates: Surface updates
4505 * @surface_count: Number of surfaces
4506 *
4507 * The function takes in current state and new state and determine a minimal
4508 * transition state as the intermediate step which could make the transition
4509 * between current and new states seamless. If found, it will commit the minimal
4510 * transition state and update current state to this minimal transition state
4511 * and return true, if not, it will return false.
4512 *
4513 * Return:
4514 * Return True if the minimal transition succeeded, false otherwise
4515 */
commit_minimal_transition_state_in_dc_update(struct dc * dc,struct dc_state * new_context,struct dc_stream_state * stream,struct dc_surface_update * srf_updates,int surface_count)4516 static bool commit_minimal_transition_state_in_dc_update(struct dc *dc,
4517 struct dc_state *new_context,
4518 struct dc_stream_state *stream,
4519 struct dc_surface_update *srf_updates,
4520 int surface_count)
4521 {
4522 bool success = commit_minimal_transition_based_on_new_context(
4523 dc, new_context, stream, srf_updates,
4524 surface_count);
4525 if (!success)
4526 success = commit_minimal_transition_based_on_current_context(dc,
4527 new_context, stream);
4528 if (!success)
4529 DC_LOG_ERROR("Fail to commit a seamless minimal transition state between current and new states.\nThis pipe topology update is non-seamless!\n");
4530 return success;
4531 }
4532
4533 /**
4534 * commit_minimal_transition_state - Create a transition pipe split state
4535 *
4536 * @dc: Used to get the current state status
4537 * @transition_base_context: New transition state
4538 *
4539 * In some specific configurations, such as pipe split on multi-display with
4540 * MPO and/or Dynamic ODM, removing a plane may cause unsupported pipe
4541 * programming when moving to new planes. To mitigate those types of problems,
4542 * this function adds a transition state that minimizes pipe usage before
4543 * programming the new configuration. When adding a new plane, the current
4544 * state requires the least pipes, so it is applied without splitting. When
4545 * removing a plane, the new state requires the least pipes, so it is applied
4546 * without splitting.
4547 *
4548 * Return:
4549 * Return false if something is wrong in the transition state.
4550 */
commit_minimal_transition_state(struct dc * dc,struct dc_state * transition_base_context)4551 static bool commit_minimal_transition_state(struct dc *dc,
4552 struct dc_state *transition_base_context)
4553 {
4554 struct dc_state *transition_context;
4555 struct pipe_split_policy_backup policy;
4556 enum dc_status ret = DC_ERROR_UNEXPECTED;
4557 unsigned int i, j;
4558 unsigned int pipe_in_use = 0;
4559 bool subvp_in_use = false;
4560 bool odm_in_use = false;
4561
4562 /* check current pipes in use*/
4563 for (i = 0; i < dc->res_pool->pipe_count; i++) {
4564 struct pipe_ctx *pipe = &transition_base_context->res_ctx.pipe_ctx[i];
4565
4566 if (pipe->plane_state)
4567 pipe_in_use++;
4568 }
4569
4570 /* If SubVP is enabled and we are adding or removing planes from any main subvp
4571 * pipe, we must use the minimal transition.
4572 */
4573 for (i = 0; i < dc->res_pool->pipe_count; i++) {
4574 struct pipe_ctx *pipe = &dc->current_state->res_ctx.pipe_ctx[i];
4575
4576 if (pipe->stream && dc_state_get_pipe_subvp_type(dc->current_state, pipe) == SUBVP_PHANTOM) {
4577 subvp_in_use = true;
4578 break;
4579 }
4580 }
4581
4582 /* If ODM is enabled and we are adding or removing planes from any ODM
4583 * pipe, we must use the minimal transition.
4584 */
4585 for (i = 0; i < dc->res_pool->pipe_count; i++) {
4586 struct pipe_ctx *pipe = &transition_base_context->res_ctx.pipe_ctx[i];
4587
4588 if (resource_is_pipe_type(pipe, OTG_MASTER)) {
4589 odm_in_use = resource_get_odm_slice_count(pipe) > 1;
4590 break;
4591 }
4592 }
4593
4594 /* When the OS add a new surface if we have been used all of pipes with odm combine
4595 * and mpc split feature, it need use commit_minimal_transition_state to transition safely.
4596 * After OS exit MPO, it will back to use odm and mpc split with all of pipes, we need
4597 * call it again. Otherwise return true to skip.
4598 *
4599 * Reduce the scenarios to use dc_commit_state_no_check in the stage of flip. Especially
4600 * enter/exit MPO when DCN still have enough resources.
4601 */
4602 if (pipe_in_use != dc->res_pool->pipe_count && !subvp_in_use && !odm_in_use)
4603 return true;
4604
4605 DC_LOG_DC("%s base = %s state, reason = %s\n", __func__,
4606 dc->current_state == transition_base_context ? "current" : "new",
4607 subvp_in_use ? "Subvp In Use" :
4608 odm_in_use ? "ODM in Use" :
4609 dc->debug.pipe_split_policy != MPC_SPLIT_AVOID ? "MPC in Use" :
4610 "Unknown");
4611
4612 dc_state_retain(transition_base_context);
4613 transition_context = create_minimal_transition_state(dc,
4614 transition_base_context, &policy);
4615 if (transition_context) {
4616 ret = dc_commit_state_no_check(dc, transition_context);
4617 release_minimal_transition_state(dc, transition_context, transition_base_context, &policy);
4618 }
4619 dc_state_release(transition_base_context);
4620
4621 if (ret != DC_OK) {
4622 /* this should never happen */
4623 BREAK_TO_DEBUGGER();
4624 return false;
4625 }
4626
4627 /* force full surface update */
4628 for (i = 0; i < dc->current_state->stream_count; i++) {
4629 for (j = 0; j < dc->current_state->stream_status[i].plane_count; j++) {
4630 dc->current_state->stream_status[i].plane_states[j]->update_flags.raw = 0xFFFFFFFF;
4631 }
4632 }
4633
4634 return true;
4635 }
4636
populate_fast_updates(struct dc_fast_update * fast_update,struct dc_surface_update * srf_updates,int surface_count,struct dc_stream_update * stream_update)4637 void populate_fast_updates(struct dc_fast_update *fast_update,
4638 struct dc_surface_update *srf_updates,
4639 int surface_count,
4640 struct dc_stream_update *stream_update)
4641 {
4642 int i = 0;
4643
4644 if (stream_update) {
4645 fast_update[0].out_transfer_func = stream_update->out_transfer_func;
4646 fast_update[0].output_csc_transform = stream_update->output_csc_transform;
4647 } else {
4648 fast_update[0].out_transfer_func = NULL;
4649 fast_update[0].output_csc_transform = NULL;
4650 }
4651
4652 for (i = 0; i < surface_count; i++) {
4653 fast_update[i].flip_addr = srf_updates[i].flip_addr;
4654 fast_update[i].gamma = srf_updates[i].gamma;
4655 fast_update[i].gamut_remap_matrix = srf_updates[i].gamut_remap_matrix;
4656 fast_update[i].input_csc_color_matrix = srf_updates[i].input_csc_color_matrix;
4657 fast_update[i].coeff_reduction_factor = srf_updates[i].coeff_reduction_factor;
4658 fast_update[i].cursor_csc_color_matrix = srf_updates[i].cursor_csc_color_matrix;
4659 }
4660 }
4661
fast_updates_exist(struct dc_fast_update * fast_update,int surface_count)4662 static bool fast_updates_exist(struct dc_fast_update *fast_update, int surface_count)
4663 {
4664 int i;
4665
4666 if (fast_update[0].out_transfer_func ||
4667 fast_update[0].output_csc_transform)
4668 return true;
4669
4670 for (i = 0; i < surface_count; i++) {
4671 if (fast_update[i].flip_addr ||
4672 fast_update[i].gamma ||
4673 fast_update[i].gamut_remap_matrix ||
4674 fast_update[i].input_csc_color_matrix ||
4675 fast_update[i].cursor_csc_color_matrix ||
4676 fast_update[i].coeff_reduction_factor)
4677 return true;
4678 }
4679
4680 return false;
4681 }
4682
fast_nonaddr_updates_exist(struct dc_fast_update * fast_update,int surface_count)4683 bool fast_nonaddr_updates_exist(struct dc_fast_update *fast_update, int surface_count)
4684 {
4685 int i;
4686
4687 if (fast_update[0].out_transfer_func ||
4688 fast_update[0].output_csc_transform)
4689 return true;
4690
4691 for (i = 0; i < surface_count; i++) {
4692 if (fast_update[i].input_csc_color_matrix ||
4693 fast_update[i].gamma ||
4694 fast_update[i].gamut_remap_matrix ||
4695 fast_update[i].coeff_reduction_factor ||
4696 fast_update[i].cursor_csc_color_matrix)
4697 return true;
4698 }
4699
4700 return false;
4701 }
4702
full_update_required(struct dc * dc,struct dc_surface_update * srf_updates,int surface_count,struct dc_stream_update * stream_update,struct dc_stream_state * stream)4703 static bool full_update_required(struct dc *dc,
4704 struct dc_surface_update *srf_updates,
4705 int surface_count,
4706 struct dc_stream_update *stream_update,
4707 struct dc_stream_state *stream)
4708 {
4709
4710 int i;
4711 struct dc_stream_status *stream_status;
4712 const struct dc_state *context = dc->current_state;
4713
4714 for (i = 0; i < surface_count; i++) {
4715 if (srf_updates &&
4716 (srf_updates[i].plane_info ||
4717 srf_updates[i].scaling_info ||
4718 (srf_updates[i].hdr_mult.value &&
4719 srf_updates[i].hdr_mult.value != srf_updates->surface->hdr_mult.value) ||
4720 (srf_updates[i].sdr_white_level_nits &&
4721 srf_updates[i].sdr_white_level_nits != srf_updates->surface->sdr_white_level_nits) ||
4722 srf_updates[i].in_transfer_func ||
4723 srf_updates[i].func_shaper ||
4724 srf_updates[i].lut3d_func ||
4725 srf_updates[i].surface->force_full_update ||
4726 (srf_updates[i].flip_addr &&
4727 srf_updates[i].flip_addr->address.tmz_surface != srf_updates[i].surface->address.tmz_surface) ||
4728 (srf_updates[i].cm2_params &&
4729 (srf_updates[i].cm2_params->component_settings.shaper_3dlut_setting != srf_updates[i].surface->mcm_shaper_3dlut_setting ||
4730 srf_updates[i].cm2_params->component_settings.lut1d_enable != srf_updates[i].surface->mcm_lut1d_enable)) ||
4731 !is_surface_in_context(context, srf_updates[i].surface)))
4732 return true;
4733 }
4734
4735 if (stream_update &&
4736 (((stream_update->src.height != 0 && stream_update->src.width != 0) ||
4737 (stream_update->dst.height != 0 && stream_update->dst.width != 0) ||
4738 stream_update->integer_scaling_update) ||
4739 stream_update->hdr_static_metadata ||
4740 stream_update->abm_level ||
4741 stream_update->periodic_interrupt ||
4742 stream_update->vrr_infopacket ||
4743 stream_update->vsc_infopacket ||
4744 stream_update->vsp_infopacket ||
4745 stream_update->hfvsif_infopacket ||
4746 stream_update->vtem_infopacket ||
4747 stream_update->adaptive_sync_infopacket ||
4748 stream_update->dpms_off ||
4749 stream_update->allow_freesync ||
4750 stream_update->vrr_active_variable ||
4751 stream_update->vrr_active_fixed ||
4752 stream_update->gamut_remap ||
4753 stream_update->output_color_space ||
4754 stream_update->dither_option ||
4755 stream_update->wb_update ||
4756 stream_update->dsc_config ||
4757 stream_update->mst_bw_update ||
4758 stream_update->func_shaper ||
4759 stream_update->lut3d_func ||
4760 stream_update->pending_test_pattern ||
4761 stream_update->crtc_timing_adjust ||
4762 stream_update->scaler_sharpener_update ||
4763 stream_update->hw_cursor_req))
4764 return true;
4765
4766 if (stream) {
4767 stream_status = dc_stream_get_status(stream);
4768 if (stream_status == NULL || stream_status->plane_count != surface_count)
4769 return true;
4770 }
4771 if (dc->idle_optimizations_allowed)
4772 return true;
4773
4774 return false;
4775 }
4776
fast_update_only(struct dc * dc,struct dc_fast_update * fast_update,struct dc_surface_update * srf_updates,int surface_count,struct dc_stream_update * stream_update,struct dc_stream_state * stream)4777 static bool fast_update_only(struct dc *dc,
4778 struct dc_fast_update *fast_update,
4779 struct dc_surface_update *srf_updates,
4780 int surface_count,
4781 struct dc_stream_update *stream_update,
4782 struct dc_stream_state *stream)
4783 {
4784 return fast_updates_exist(fast_update, surface_count)
4785 && !full_update_required(dc, srf_updates, surface_count, stream_update, stream);
4786 }
4787
update_planes_and_stream_v1(struct dc * dc,struct dc_surface_update * srf_updates,int surface_count,struct dc_stream_state * stream,struct dc_stream_update * stream_update,struct dc_state * state)4788 static bool update_planes_and_stream_v1(struct dc *dc,
4789 struct dc_surface_update *srf_updates, int surface_count,
4790 struct dc_stream_state *stream,
4791 struct dc_stream_update *stream_update,
4792 struct dc_state *state)
4793 {
4794 const struct dc_stream_status *stream_status;
4795 enum surface_update_type update_type;
4796 struct dc_state *context;
4797 struct dc_context *dc_ctx = dc->ctx;
4798 int i, j;
4799 struct dc_fast_update fast_update[MAX_SURFACES] = {0};
4800
4801 dc_exit_ips_for_hw_access(dc);
4802
4803 populate_fast_updates(fast_update, srf_updates, surface_count, stream_update);
4804 stream_status = dc_stream_get_status(stream);
4805 context = dc->current_state;
4806
4807 update_type = dc_check_update_surfaces_for_stream(
4808 dc, srf_updates, surface_count, stream_update, stream_status);
4809
4810 if (update_type >= UPDATE_TYPE_FULL) {
4811
4812 /* initialize scratch memory for building context */
4813 context = dc_state_create_copy(state);
4814 if (context == NULL) {
4815 DC_ERROR("Failed to allocate new validate context!\n");
4816 return false;
4817 }
4818
4819 for (i = 0; i < dc->res_pool->pipe_count; i++) {
4820 struct pipe_ctx *new_pipe = &context->res_ctx.pipe_ctx[i];
4821 struct pipe_ctx *old_pipe = &dc->current_state->res_ctx.pipe_ctx[i];
4822
4823 if (new_pipe->plane_state && new_pipe->plane_state != old_pipe->plane_state)
4824 new_pipe->plane_state->force_full_update = true;
4825 }
4826 } else if (update_type == UPDATE_TYPE_FAST) {
4827 /*
4828 * Previous frame finished and HW is ready for optimization.
4829 */
4830 dc_post_update_surfaces_to_stream(dc);
4831 }
4832
4833 for (i = 0; i < surface_count; i++) {
4834 struct dc_plane_state *surface = srf_updates[i].surface;
4835
4836 copy_surface_update_to_plane(surface, &srf_updates[i]);
4837
4838 if (update_type >= UPDATE_TYPE_MED) {
4839 for (j = 0; j < dc->res_pool->pipe_count; j++) {
4840 struct pipe_ctx *pipe_ctx =
4841 &context->res_ctx.pipe_ctx[j];
4842
4843 if (pipe_ctx->plane_state != surface)
4844 continue;
4845
4846 resource_build_scaling_params(pipe_ctx);
4847 }
4848 }
4849 }
4850
4851 copy_stream_update_to_stream(dc, context, stream, stream_update);
4852
4853 if (update_type >= UPDATE_TYPE_FULL) {
4854 if (!dc->res_pool->funcs->validate_bandwidth(dc, context, false)) {
4855 DC_ERROR("Mode validation failed for stream update!\n");
4856 dc_state_release(context);
4857 return false;
4858 }
4859 }
4860
4861 TRACE_DC_PIPE_STATE(pipe_ctx, i, MAX_PIPES);
4862
4863 if (fast_update_only(dc, fast_update, srf_updates, surface_count, stream_update, stream) &&
4864 !dc->debug.enable_legacy_fast_update) {
4865 commit_planes_for_stream_fast(dc,
4866 srf_updates,
4867 surface_count,
4868 stream,
4869 stream_update,
4870 update_type,
4871 context);
4872 } else {
4873 commit_planes_for_stream(
4874 dc,
4875 srf_updates,
4876 surface_count,
4877 stream,
4878 stream_update,
4879 update_type,
4880 context);
4881 }
4882 /*update current_State*/
4883 if (dc->current_state != context) {
4884
4885 struct dc_state *old = dc->current_state;
4886
4887 dc->current_state = context;
4888 dc_state_release(old);
4889
4890 for (i = 0; i < dc->res_pool->pipe_count; i++) {
4891 struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[i];
4892
4893 if (pipe_ctx->plane_state && pipe_ctx->stream == stream)
4894 pipe_ctx->plane_state->force_full_update = false;
4895 }
4896 }
4897
4898 /* Legacy optimization path for DCE. */
4899 if (update_type >= UPDATE_TYPE_FULL && dc_ctx->dce_version < DCE_VERSION_MAX) {
4900 dc_post_update_surfaces_to_stream(dc);
4901 TRACE_DCE_CLOCK_STATE(&context->bw_ctx.bw.dce);
4902 }
4903 return true;
4904 }
4905
update_planes_and_stream_v2(struct dc * dc,struct dc_surface_update * srf_updates,int surface_count,struct dc_stream_state * stream,struct dc_stream_update * stream_update)4906 static bool update_planes_and_stream_v2(struct dc *dc,
4907 struct dc_surface_update *srf_updates, int surface_count,
4908 struct dc_stream_state *stream,
4909 struct dc_stream_update *stream_update)
4910 {
4911 struct dc_state *context;
4912 enum surface_update_type update_type;
4913 struct dc_fast_update fast_update[MAX_SURFACES] = {0};
4914
4915 /* In cases where MPO and split or ODM are used transitions can
4916 * cause underflow. Apply stream configuration with minimal pipe
4917 * split first to avoid unsupported transitions for active pipes.
4918 */
4919 bool force_minimal_pipe_splitting = 0;
4920 bool is_plane_addition = 0;
4921 bool is_fast_update_only;
4922
4923 populate_fast_updates(fast_update, srf_updates, surface_count, stream_update);
4924 is_fast_update_only = fast_update_only(dc, fast_update, srf_updates,
4925 surface_count, stream_update, stream);
4926 force_minimal_pipe_splitting = could_mpcc_tree_change_for_active_pipes(
4927 dc,
4928 stream,
4929 srf_updates,
4930 surface_count,
4931 &is_plane_addition);
4932
4933 /* on plane addition, minimal state is the current one */
4934 if (force_minimal_pipe_splitting && is_plane_addition &&
4935 !commit_minimal_transition_state(dc, dc->current_state))
4936 return false;
4937
4938 if (!update_planes_and_stream_state(
4939 dc,
4940 srf_updates,
4941 surface_count,
4942 stream,
4943 stream_update,
4944 &update_type,
4945 &context))
4946 return false;
4947
4948 /* on plane removal, minimal state is the new one */
4949 if (force_minimal_pipe_splitting && !is_plane_addition) {
4950 if (!commit_minimal_transition_state(dc, context)) {
4951 dc_state_release(context);
4952 return false;
4953 }
4954 update_type = UPDATE_TYPE_FULL;
4955 }
4956
4957 if (dc->hwss.is_pipe_topology_transition_seamless &&
4958 !dc->hwss.is_pipe_topology_transition_seamless(
4959 dc, dc->current_state, context))
4960 commit_minimal_transition_state_in_dc_update(dc, context, stream,
4961 srf_updates, surface_count);
4962
4963 if (is_fast_update_only && !dc->debug.enable_legacy_fast_update) {
4964 commit_planes_for_stream_fast(dc,
4965 srf_updates,
4966 surface_count,
4967 stream,
4968 stream_update,
4969 update_type,
4970 context);
4971 } else {
4972 if (!stream_update &&
4973 dc->hwss.is_pipe_topology_transition_seamless &&
4974 !dc->hwss.is_pipe_topology_transition_seamless(
4975 dc, dc->current_state, context)) {
4976 DC_LOG_ERROR("performing non-seamless pipe topology transition with surface only update!\n");
4977 BREAK_TO_DEBUGGER();
4978 }
4979 commit_planes_for_stream(
4980 dc,
4981 srf_updates,
4982 surface_count,
4983 stream,
4984 stream_update,
4985 update_type,
4986 context);
4987 }
4988 if (dc->current_state != context)
4989 swap_and_release_current_context(dc, context, stream);
4990 return true;
4991 }
4992
commit_planes_and_stream_update_on_current_context(struct dc * dc,struct dc_surface_update * srf_updates,int surface_count,struct dc_stream_state * stream,struct dc_stream_update * stream_update,enum surface_update_type update_type)4993 static void commit_planes_and_stream_update_on_current_context(struct dc *dc,
4994 struct dc_surface_update *srf_updates, int surface_count,
4995 struct dc_stream_state *stream,
4996 struct dc_stream_update *stream_update,
4997 enum surface_update_type update_type)
4998 {
4999 struct dc_fast_update fast_update[MAX_SURFACES] = {0};
5000
5001 ASSERT(update_type < UPDATE_TYPE_FULL);
5002 populate_fast_updates(fast_update, srf_updates, surface_count,
5003 stream_update);
5004 if (fast_update_only(dc, fast_update, srf_updates, surface_count,
5005 stream_update, stream) &&
5006 !dc->debug.enable_legacy_fast_update)
5007 commit_planes_for_stream_fast(dc,
5008 srf_updates,
5009 surface_count,
5010 stream,
5011 stream_update,
5012 update_type,
5013 dc->current_state);
5014 else
5015 commit_planes_for_stream(
5016 dc,
5017 srf_updates,
5018 surface_count,
5019 stream,
5020 stream_update,
5021 update_type,
5022 dc->current_state);
5023 }
5024
commit_planes_and_stream_update_with_new_context(struct dc * dc,struct dc_surface_update * srf_updates,int surface_count,struct dc_stream_state * stream,struct dc_stream_update * stream_update,enum surface_update_type update_type,struct dc_state * new_context)5025 static void commit_planes_and_stream_update_with_new_context(struct dc *dc,
5026 struct dc_surface_update *srf_updates, int surface_count,
5027 struct dc_stream_state *stream,
5028 struct dc_stream_update *stream_update,
5029 enum surface_update_type update_type,
5030 struct dc_state *new_context)
5031 {
5032 ASSERT(update_type >= UPDATE_TYPE_FULL);
5033 if (!dc->hwss.is_pipe_topology_transition_seamless(dc,
5034 dc->current_state, new_context))
5035 /*
5036 * It is required by the feature design that all pipe topologies
5037 * using extra free pipes for power saving purposes such as
5038 * dynamic ODM or SubVp shall only be enabled when it can be
5039 * transitioned seamlessly to AND from its minimal transition
5040 * state. A minimal transition state is defined as the same dc
5041 * state but with all power saving features disabled. So it uses
5042 * the minimum pipe topology. When we can't seamlessly
5043 * transition from state A to state B, we will insert the
5044 * minimal transition state A' or B' in between so seamless
5045 * transition between A and B can be made possible.
5046 */
5047 commit_minimal_transition_state_in_dc_update(dc, new_context,
5048 stream, srf_updates, surface_count);
5049
5050 commit_planes_for_stream(
5051 dc,
5052 srf_updates,
5053 surface_count,
5054 stream,
5055 stream_update,
5056 update_type,
5057 new_context);
5058 }
5059
update_planes_and_stream_v3(struct dc * dc,struct dc_surface_update * srf_updates,int surface_count,struct dc_stream_state * stream,struct dc_stream_update * stream_update)5060 static bool update_planes_and_stream_v3(struct dc *dc,
5061 struct dc_surface_update *srf_updates, int surface_count,
5062 struct dc_stream_state *stream,
5063 struct dc_stream_update *stream_update)
5064 {
5065 struct dc_state *new_context;
5066 enum surface_update_type update_type;
5067
5068 /*
5069 * When this function returns true and new_context is not equal to
5070 * current state, the function allocates and validates a new dc state
5071 * and assigns it to new_context. The function expects that the caller
5072 * is responsible to free this memory when new_context is no longer
5073 * used. We swap current with new context and free current instead. So
5074 * new_context's memory will live until the next full update after it is
5075 * replaced by a newer context. Refer to the use of
5076 * swap_and_free_current_context below.
5077 */
5078 if (!update_planes_and_stream_state(dc, srf_updates, surface_count,
5079 stream, stream_update, &update_type,
5080 &new_context))
5081 return false;
5082
5083 if (new_context == dc->current_state) {
5084 commit_planes_and_stream_update_on_current_context(dc,
5085 srf_updates, surface_count, stream,
5086 stream_update, update_type);
5087 } else {
5088 commit_planes_and_stream_update_with_new_context(dc,
5089 srf_updates, surface_count, stream,
5090 stream_update, update_type, new_context);
5091 swap_and_release_current_context(dc, new_context, stream);
5092 }
5093
5094 return true;
5095 }
5096
clear_update_flags(struct dc_surface_update * srf_updates,int surface_count,struct dc_stream_state * stream)5097 static void clear_update_flags(struct dc_surface_update *srf_updates,
5098 int surface_count, struct dc_stream_state *stream)
5099 {
5100 int i;
5101
5102 if (stream)
5103 stream->update_flags.raw = 0;
5104
5105 for (i = 0; i < surface_count; i++)
5106 if (srf_updates[i].surface)
5107 srf_updates[i].surface->update_flags.raw = 0;
5108 }
5109
dc_update_planes_and_stream(struct dc * dc,struct dc_surface_update * srf_updates,int surface_count,struct dc_stream_state * stream,struct dc_stream_update * stream_update)5110 bool dc_update_planes_and_stream(struct dc *dc,
5111 struct dc_surface_update *srf_updates, int surface_count,
5112 struct dc_stream_state *stream,
5113 struct dc_stream_update *stream_update)
5114 {
5115 bool ret = false;
5116
5117 dc_exit_ips_for_hw_access(dc);
5118 /*
5119 * update planes and stream version 3 separates FULL and FAST updates
5120 * to their own sequences. It aims to clean up frequent checks for
5121 * update type resulting unnecessary branching in logic flow. It also
5122 * adds a new commit minimal transition sequence, which detects the need
5123 * for minimal transition based on the actual comparison of current and
5124 * new states instead of "predicting" it based on per feature software
5125 * policy.i.e could_mpcc_tree_change_for_active_pipes. The new commit
5126 * minimal transition sequence is made universal to any power saving
5127 * features that would use extra free pipes such as Dynamic ODM/MPC
5128 * Combine, MPO or SubVp. Therefore there is no longer a need to
5129 * specially handle compatibility problems with transitions among those
5130 * features as they are now transparent to the new sequence.
5131 */
5132 if (dc->ctx->dce_version >= DCN_VERSION_4_01)
5133 ret = update_planes_and_stream_v3(dc, srf_updates,
5134 surface_count, stream, stream_update);
5135 else
5136 ret = update_planes_and_stream_v2(dc, srf_updates,
5137 surface_count, stream, stream_update);
5138 if (ret && (dc->ctx->dce_version >= DCN_VERSION_3_2 ||
5139 dc->ctx->dce_version == DCN_VERSION_3_01))
5140 clear_update_flags(srf_updates, surface_count, stream);
5141
5142 return ret;
5143 }
5144
dc_commit_updates_for_stream(struct dc * dc,struct dc_surface_update * srf_updates,int surface_count,struct dc_stream_state * stream,struct dc_stream_update * stream_update,struct dc_state * state)5145 void dc_commit_updates_for_stream(struct dc *dc,
5146 struct dc_surface_update *srf_updates,
5147 int surface_count,
5148 struct dc_stream_state *stream,
5149 struct dc_stream_update *stream_update,
5150 struct dc_state *state)
5151 {
5152 bool ret = false;
5153
5154 dc_exit_ips_for_hw_access(dc);
5155 /* TODO: Since change commit sequence can have a huge impact,
5156 * we decided to only enable it for DCN3x. However, as soon as
5157 * we get more confident about this change we'll need to enable
5158 * the new sequence for all ASICs.
5159 */
5160 if (dc->ctx->dce_version >= DCN_VERSION_4_01) {
5161 ret = update_planes_and_stream_v3(dc, srf_updates, surface_count,
5162 stream, stream_update);
5163 } else if (dc->ctx->dce_version >= DCN_VERSION_3_2) {
5164 ret = update_planes_and_stream_v2(dc, srf_updates, surface_count,
5165 stream, stream_update);
5166 } else
5167 ret = update_planes_and_stream_v1(dc, srf_updates, surface_count, stream,
5168 stream_update, state);
5169
5170 if (ret && dc->ctx->dce_version >= DCN_VERSION_3_2)
5171 clear_update_flags(srf_updates, surface_count, stream);
5172 }
5173
dc_get_current_stream_count(struct dc * dc)5174 uint8_t dc_get_current_stream_count(struct dc *dc)
5175 {
5176 return dc->current_state->stream_count;
5177 }
5178
dc_get_stream_at_index(struct dc * dc,uint8_t i)5179 struct dc_stream_state *dc_get_stream_at_index(struct dc *dc, uint8_t i)
5180 {
5181 if (i < dc->current_state->stream_count)
5182 return dc->current_state->streams[i];
5183 return NULL;
5184 }
5185
dc_interrupt_to_irq_source(struct dc * dc,uint32_t src_id,uint32_t ext_id)5186 enum dc_irq_source dc_interrupt_to_irq_source(
5187 struct dc *dc,
5188 uint32_t src_id,
5189 uint32_t ext_id)
5190 {
5191 return dal_irq_service_to_irq_source(dc->res_pool->irqs, src_id, ext_id);
5192 }
5193
5194 /*
5195 * dc_interrupt_set() - Enable/disable an AMD hw interrupt source
5196 */
dc_interrupt_set(struct dc * dc,enum dc_irq_source src,bool enable)5197 bool dc_interrupt_set(struct dc *dc, enum dc_irq_source src, bool enable)
5198 {
5199
5200 if (dc == NULL)
5201 return false;
5202
5203 return dal_irq_service_set(dc->res_pool->irqs, src, enable);
5204 }
5205
dc_interrupt_ack(struct dc * dc,enum dc_irq_source src)5206 void dc_interrupt_ack(struct dc *dc, enum dc_irq_source src)
5207 {
5208 dal_irq_service_ack(dc->res_pool->irqs, src);
5209 }
5210
dc_power_down_on_boot(struct dc * dc)5211 void dc_power_down_on_boot(struct dc *dc)
5212 {
5213 if (dc->ctx->dce_environment != DCE_ENV_VIRTUAL_HW &&
5214 dc->hwss.power_down_on_boot) {
5215 if (dc->caps.ips_support)
5216 dc_exit_ips_for_hw_access(dc);
5217 dc->hwss.power_down_on_boot(dc);
5218 }
5219 }
5220
dc_set_power_state(struct dc * dc,enum dc_acpi_cm_power_state power_state)5221 void dc_set_power_state(struct dc *dc, enum dc_acpi_cm_power_state power_state)
5222 {
5223 if (!dc->current_state)
5224 return;
5225
5226 switch (power_state) {
5227 case DC_ACPI_CM_POWER_STATE_D0:
5228 dc_state_construct(dc, dc->current_state);
5229
5230 dc_exit_ips_for_hw_access(dc);
5231
5232 dc_z10_restore(dc);
5233
5234 dc_dmub_srv_notify_fw_dc_power_state(dc->ctx->dmub_srv, power_state);
5235
5236 dc->hwss.init_hw(dc);
5237
5238 if (dc->hwss.init_sys_ctx != NULL &&
5239 dc->vm_pa_config.valid) {
5240 dc->hwss.init_sys_ctx(dc->hwseq, dc, &dc->vm_pa_config);
5241 }
5242
5243 break;
5244 default:
5245 ASSERT(dc->current_state->stream_count == 0);
5246
5247 dc_dmub_srv_notify_fw_dc_power_state(dc->ctx->dmub_srv, power_state);
5248
5249 dc_state_destruct(dc->current_state);
5250
5251 break;
5252 }
5253 }
5254
dc_resume(struct dc * dc)5255 void dc_resume(struct dc *dc)
5256 {
5257 uint32_t i;
5258
5259 for (i = 0; i < dc->link_count; i++)
5260 dc->link_srv->resume(dc->links[i]);
5261 }
5262
dc_is_dmcu_initialized(struct dc * dc)5263 bool dc_is_dmcu_initialized(struct dc *dc)
5264 {
5265 struct dmcu *dmcu = dc->res_pool->dmcu;
5266
5267 if (dmcu)
5268 return dmcu->funcs->is_dmcu_initialized(dmcu);
5269 return false;
5270 }
5271
get_clock_requirements_for_state(struct dc_state * state,struct AsicStateEx * info)5272 void get_clock_requirements_for_state(struct dc_state *state, struct AsicStateEx *info)
5273 {
5274 info->displayClock = (unsigned int)state->bw_ctx.bw.dcn.clk.dispclk_khz;
5275 info->engineClock = (unsigned int)state->bw_ctx.bw.dcn.clk.dcfclk_khz;
5276 info->memoryClock = (unsigned int)state->bw_ctx.bw.dcn.clk.dramclk_khz;
5277 info->maxSupportedDppClock = (unsigned int)state->bw_ctx.bw.dcn.clk.max_supported_dppclk_khz;
5278 info->dppClock = (unsigned int)state->bw_ctx.bw.dcn.clk.dppclk_khz;
5279 info->socClock = (unsigned int)state->bw_ctx.bw.dcn.clk.socclk_khz;
5280 info->dcfClockDeepSleep = (unsigned int)state->bw_ctx.bw.dcn.clk.dcfclk_deep_sleep_khz;
5281 info->fClock = (unsigned int)state->bw_ctx.bw.dcn.clk.fclk_khz;
5282 info->phyClock = (unsigned int)state->bw_ctx.bw.dcn.clk.phyclk_khz;
5283 }
dc_set_clock(struct dc * dc,enum dc_clock_type clock_type,uint32_t clk_khz,uint32_t stepping)5284 enum dc_status dc_set_clock(struct dc *dc, enum dc_clock_type clock_type, uint32_t clk_khz, uint32_t stepping)
5285 {
5286 if (dc->hwss.set_clock)
5287 return dc->hwss.set_clock(dc, clock_type, clk_khz, stepping);
5288 return DC_ERROR_UNEXPECTED;
5289 }
dc_get_clock(struct dc * dc,enum dc_clock_type clock_type,struct dc_clock_config * clock_cfg)5290 void dc_get_clock(struct dc *dc, enum dc_clock_type clock_type, struct dc_clock_config *clock_cfg)
5291 {
5292 if (dc->hwss.get_clock)
5293 dc->hwss.get_clock(dc, clock_type, clock_cfg);
5294 }
5295
5296 /* enable/disable eDP PSR without specify stream for eDP */
dc_set_psr_allow_active(struct dc * dc,bool enable)5297 bool dc_set_psr_allow_active(struct dc *dc, bool enable)
5298 {
5299 int i;
5300 bool allow_active;
5301
5302 for (i = 0; i < dc->current_state->stream_count ; i++) {
5303 struct dc_link *link;
5304 struct dc_stream_state *stream = dc->current_state->streams[i];
5305
5306 link = stream->link;
5307 if (!link)
5308 continue;
5309
5310 if (link->psr_settings.psr_feature_enabled) {
5311 if (enable && !link->psr_settings.psr_allow_active) {
5312 allow_active = true;
5313 if (!dc_link_set_psr_allow_active(link, &allow_active, false, false, NULL))
5314 return false;
5315 } else if (!enable && link->psr_settings.psr_allow_active) {
5316 allow_active = false;
5317 if (!dc_link_set_psr_allow_active(link, &allow_active, true, false, NULL))
5318 return false;
5319 }
5320 }
5321 }
5322
5323 return true;
5324 }
5325
5326 /* enable/disable eDP Replay without specify stream for eDP */
dc_set_replay_allow_active(struct dc * dc,bool active)5327 bool dc_set_replay_allow_active(struct dc *dc, bool active)
5328 {
5329 int i;
5330 bool allow_active;
5331
5332 for (i = 0; i < dc->current_state->stream_count; i++) {
5333 struct dc_link *link;
5334 struct dc_stream_state *stream = dc->current_state->streams[i];
5335
5336 link = stream->link;
5337 if (!link)
5338 continue;
5339
5340 if (link->replay_settings.replay_feature_enabled) {
5341 if (active && !link->replay_settings.replay_allow_active) {
5342 allow_active = true;
5343 if (!dc_link_set_replay_allow_active(link, &allow_active,
5344 false, false, NULL))
5345 return false;
5346 } else if (!active && link->replay_settings.replay_allow_active) {
5347 allow_active = false;
5348 if (!dc_link_set_replay_allow_active(link, &allow_active,
5349 true, false, NULL))
5350 return false;
5351 }
5352 }
5353 }
5354
5355 return true;
5356 }
5357
5358 /* set IPS disable state */
dc_set_ips_disable(struct dc * dc,unsigned int disable_ips)5359 bool dc_set_ips_disable(struct dc *dc, unsigned int disable_ips)
5360 {
5361 dc_exit_ips_for_hw_access(dc);
5362
5363 dc->config.disable_ips = disable_ips;
5364
5365 return true;
5366 }
5367
dc_allow_idle_optimizations_internal(struct dc * dc,bool allow,char const * caller_name)5368 void dc_allow_idle_optimizations_internal(struct dc *dc, bool allow, char const *caller_name)
5369 {
5370 if (dc->debug.disable_idle_power_optimizations)
5371 return;
5372
5373 if (allow != dc->idle_optimizations_allowed)
5374 DC_LOG_IPS("%s: allow_idle old=%d new=%d (caller=%s)\n", __func__,
5375 dc->idle_optimizations_allowed, allow, caller_name);
5376
5377 if (dc->caps.ips_support && (dc->config.disable_ips == DMUB_IPS_DISABLE_ALL))
5378 return;
5379
5380 if (dc->clk_mgr != NULL && dc->clk_mgr->funcs->is_smu_present)
5381 if (!dc->clk_mgr->funcs->is_smu_present(dc->clk_mgr))
5382 return;
5383
5384 if (allow == dc->idle_optimizations_allowed)
5385 return;
5386
5387 if (dc->hwss.apply_idle_power_optimizations && dc->clk_mgr != NULL &&
5388 dc->hwss.apply_idle_power_optimizations(dc, allow))
5389 dc->idle_optimizations_allowed = allow;
5390 }
5391
dc_exit_ips_for_hw_access_internal(struct dc * dc,const char * caller_name)5392 void dc_exit_ips_for_hw_access_internal(struct dc *dc, const char *caller_name)
5393 {
5394 if (dc->caps.ips_support)
5395 dc_allow_idle_optimizations_internal(dc, false, caller_name);
5396 }
5397
dc_dmub_is_ips_idle_state(struct dc * dc)5398 bool dc_dmub_is_ips_idle_state(struct dc *dc)
5399 {
5400 if (dc->debug.disable_idle_power_optimizations)
5401 return false;
5402
5403 if (!dc->caps.ips_support || (dc->config.disable_ips == DMUB_IPS_DISABLE_ALL))
5404 return false;
5405
5406 if (!dc->ctx->dmub_srv)
5407 return false;
5408
5409 return dc->ctx->dmub_srv->idle_allowed;
5410 }
5411
5412 /* set min and max memory clock to lowest and highest DPM level, respectively */
dc_unlock_memory_clock_frequency(struct dc * dc)5413 void dc_unlock_memory_clock_frequency(struct dc *dc)
5414 {
5415 if (dc->clk_mgr->funcs->set_hard_min_memclk)
5416 dc->clk_mgr->funcs->set_hard_min_memclk(dc->clk_mgr, false);
5417
5418 if (dc->clk_mgr->funcs->set_hard_max_memclk)
5419 dc->clk_mgr->funcs->set_hard_max_memclk(dc->clk_mgr);
5420 }
5421
5422 /* set min memory clock to the min required for current mode, max to maxDPM */
dc_lock_memory_clock_frequency(struct dc * dc)5423 void dc_lock_memory_clock_frequency(struct dc *dc)
5424 {
5425 if (dc->clk_mgr->funcs->get_memclk_states_from_smu)
5426 dc->clk_mgr->funcs->get_memclk_states_from_smu(dc->clk_mgr);
5427
5428 if (dc->clk_mgr->funcs->set_hard_min_memclk)
5429 dc->clk_mgr->funcs->set_hard_min_memclk(dc->clk_mgr, true);
5430
5431 if (dc->clk_mgr->funcs->set_hard_max_memclk)
5432 dc->clk_mgr->funcs->set_hard_max_memclk(dc->clk_mgr);
5433 }
5434
blank_and_force_memclk(struct dc * dc,bool apply,unsigned int memclk_mhz)5435 static void blank_and_force_memclk(struct dc *dc, bool apply, unsigned int memclk_mhz)
5436 {
5437 struct dc_state *context = dc->current_state;
5438 struct hubp *hubp;
5439 struct pipe_ctx *pipe;
5440 int i;
5441
5442 for (i = 0; i < dc->res_pool->pipe_count; i++) {
5443 pipe = &context->res_ctx.pipe_ctx[i];
5444
5445 if (pipe->stream != NULL) {
5446 dc->hwss.disable_pixel_data(dc, pipe, true);
5447
5448 // wait for double buffer
5449 pipe->stream_res.tg->funcs->wait_for_state(pipe->stream_res.tg, CRTC_STATE_VACTIVE);
5450 pipe->stream_res.tg->funcs->wait_for_state(pipe->stream_res.tg, CRTC_STATE_VBLANK);
5451 pipe->stream_res.tg->funcs->wait_for_state(pipe->stream_res.tg, CRTC_STATE_VACTIVE);
5452
5453 hubp = pipe->plane_res.hubp;
5454 hubp->funcs->set_blank_regs(hubp, true);
5455 }
5456 }
5457 if (dc->clk_mgr->funcs->set_max_memclk)
5458 dc->clk_mgr->funcs->set_max_memclk(dc->clk_mgr, memclk_mhz);
5459 if (dc->clk_mgr->funcs->set_min_memclk)
5460 dc->clk_mgr->funcs->set_min_memclk(dc->clk_mgr, memclk_mhz);
5461
5462 for (i = 0; i < dc->res_pool->pipe_count; i++) {
5463 pipe = &context->res_ctx.pipe_ctx[i];
5464
5465 if (pipe->stream != NULL) {
5466 dc->hwss.disable_pixel_data(dc, pipe, false);
5467
5468 hubp = pipe->plane_res.hubp;
5469 hubp->funcs->set_blank_regs(hubp, false);
5470 }
5471 }
5472 }
5473
5474
5475 /**
5476 * dc_enable_dcmode_clk_limit() - lower clocks in dc (battery) mode
5477 * @dc: pointer to dc of the dm calling this
5478 * @enable: True = transition to DC mode, false = transition back to AC mode
5479 *
5480 * Some SoCs define additional clock limits when in DC mode, DM should
5481 * invoke this function when the platform undergoes a power source transition
5482 * so DC can apply/unapply the limit. This interface may be disruptive to
5483 * the onscreen content.
5484 *
5485 * Context: Triggered by OS through DM interface, or manually by escape calls.
5486 * Need to hold a dclock when doing so.
5487 *
5488 * Return: none (void function)
5489 *
5490 */
dc_enable_dcmode_clk_limit(struct dc * dc,bool enable)5491 void dc_enable_dcmode_clk_limit(struct dc *dc, bool enable)
5492 {
5493 unsigned int softMax = 0, maxDPM = 0, funcMin = 0, i;
5494 bool p_state_change_support;
5495
5496 if (!dc->config.dc_mode_clk_limit_support)
5497 return;
5498
5499 softMax = dc->clk_mgr->bw_params->dc_mode_softmax_memclk;
5500 for (i = 0; i < dc->clk_mgr->bw_params->clk_table.num_entries; i++) {
5501 if (dc->clk_mgr->bw_params->clk_table.entries[i].memclk_mhz > maxDPM)
5502 maxDPM = dc->clk_mgr->bw_params->clk_table.entries[i].memclk_mhz;
5503 }
5504 funcMin = (dc->clk_mgr->clks.dramclk_khz + 999) / 1000;
5505 p_state_change_support = dc->clk_mgr->clks.p_state_change_support;
5506
5507 if (enable && !dc->clk_mgr->dc_mode_softmax_enabled) {
5508 if (p_state_change_support) {
5509 if (funcMin <= softMax && dc->clk_mgr->funcs->set_max_memclk)
5510 dc->clk_mgr->funcs->set_max_memclk(dc->clk_mgr, softMax);
5511 // else: No-Op
5512 } else {
5513 if (funcMin <= softMax)
5514 blank_and_force_memclk(dc, true, softMax);
5515 // else: No-Op
5516 }
5517 } else if (!enable && dc->clk_mgr->dc_mode_softmax_enabled) {
5518 if (p_state_change_support) {
5519 if (funcMin <= softMax && dc->clk_mgr->funcs->set_max_memclk)
5520 dc->clk_mgr->funcs->set_max_memclk(dc->clk_mgr, maxDPM);
5521 // else: No-Op
5522 } else {
5523 if (funcMin <= softMax)
5524 blank_and_force_memclk(dc, true, maxDPM);
5525 // else: No-Op
5526 }
5527 }
5528 dc->clk_mgr->dc_mode_softmax_enabled = enable;
5529 }
dc_is_plane_eligible_for_idle_optimizations(struct dc * dc,unsigned int pitch,unsigned int height,enum surface_pixel_format format,struct dc_cursor_attributes * cursor_attr)5530 bool dc_is_plane_eligible_for_idle_optimizations(struct dc *dc,
5531 unsigned int pitch,
5532 unsigned int height,
5533 enum surface_pixel_format format,
5534 struct dc_cursor_attributes *cursor_attr)
5535 {
5536 if (dc->hwss.does_plane_fit_in_mall && dc->hwss.does_plane_fit_in_mall(dc, pitch, height, format, cursor_attr))
5537 return true;
5538 return false;
5539 }
5540
5541 /* cleanup on driver unload */
dc_hardware_release(struct dc * dc)5542 void dc_hardware_release(struct dc *dc)
5543 {
5544 dc_mclk_switch_using_fw_based_vblank_stretch_shut_down(dc);
5545
5546 if (dc->hwss.hardware_release)
5547 dc->hwss.hardware_release(dc);
5548 }
5549
dc_mclk_switch_using_fw_based_vblank_stretch_shut_down(struct dc * dc)5550 void dc_mclk_switch_using_fw_based_vblank_stretch_shut_down(struct dc *dc)
5551 {
5552 if (dc->current_state)
5553 dc->current_state->bw_ctx.bw.dcn.clk.fw_based_mclk_switching_shut_down = true;
5554 }
5555
5556 /**
5557 * dc_is_dmub_outbox_supported - Check if DMUB firmware support outbox notification
5558 *
5559 * @dc: [in] dc structure
5560 *
5561 * Checks whether DMUB FW supports outbox notifications, if supported DM
5562 * should register outbox interrupt prior to actually enabling interrupts
5563 * via dc_enable_dmub_outbox
5564 *
5565 * Return:
5566 * True if DMUB FW supports outbox notifications, False otherwise
5567 */
dc_is_dmub_outbox_supported(struct dc * dc)5568 bool dc_is_dmub_outbox_supported(struct dc *dc)
5569 {
5570 if (!dc->caps.dmcub_support)
5571 return false;
5572
5573 switch (dc->ctx->asic_id.chip_family) {
5574
5575 case FAMILY_YELLOW_CARP:
5576 /* DCN31 B0 USB4 DPIA needs dmub notifications for interrupts */
5577 if (dc->ctx->asic_id.hw_internal_rev == YELLOW_CARP_B0 &&
5578 !dc->debug.dpia_debug.bits.disable_dpia)
5579 return true;
5580 break;
5581
5582 case AMDGPU_FAMILY_GC_11_0_1:
5583 case AMDGPU_FAMILY_GC_11_5_0:
5584 if (!dc->debug.dpia_debug.bits.disable_dpia)
5585 return true;
5586 break;
5587
5588 default:
5589 break;
5590 }
5591
5592 /* dmub aux needs dmub notifications to be enabled */
5593 return dc->debug.enable_dmub_aux_for_legacy_ddc;
5594
5595 }
5596
5597 /**
5598 * dc_enable_dmub_notifications - Check if dmub fw supports outbox
5599 *
5600 * @dc: [in] dc structure
5601 *
5602 * Calls dc_is_dmub_outbox_supported to check if dmub fw supports outbox
5603 * notifications. All DMs shall switch to dc_is_dmub_outbox_supported. This
5604 * API shall be removed after switching.
5605 *
5606 * Return:
5607 * True if DMUB FW supports outbox notifications, False otherwise
5608 */
dc_enable_dmub_notifications(struct dc * dc)5609 bool dc_enable_dmub_notifications(struct dc *dc)
5610 {
5611 return dc_is_dmub_outbox_supported(dc);
5612 }
5613
5614 /**
5615 * dc_enable_dmub_outbox - Enables DMUB unsolicited notification
5616 *
5617 * @dc: [in] dc structure
5618 *
5619 * Enables DMUB unsolicited notifications to x86 via outbox.
5620 */
dc_enable_dmub_outbox(struct dc * dc)5621 void dc_enable_dmub_outbox(struct dc *dc)
5622 {
5623 struct dc_context *dc_ctx = dc->ctx;
5624
5625 dmub_enable_outbox_notification(dc_ctx->dmub_srv);
5626 DC_LOG_DC("%s: dmub outbox notifications enabled\n", __func__);
5627 }
5628
5629 /**
5630 * dc_process_dmub_aux_transfer_async - Submits aux command to dmub via inbox message
5631 * Sets port index appropriately for legacy DDC
5632 * @dc: dc structure
5633 * @link_index: link index
5634 * @payload: aux payload
5635 *
5636 * Returns: True if successful, False if failure
5637 */
dc_process_dmub_aux_transfer_async(struct dc * dc,uint32_t link_index,struct aux_payload * payload)5638 bool dc_process_dmub_aux_transfer_async(struct dc *dc,
5639 uint32_t link_index,
5640 struct aux_payload *payload)
5641 {
5642 uint8_t action;
5643 union dmub_rb_cmd cmd = {0};
5644
5645 ASSERT(payload->length <= 16);
5646
5647 cmd.dp_aux_access.header.type = DMUB_CMD__DP_AUX_ACCESS;
5648 cmd.dp_aux_access.header.payload_bytes = 0;
5649 /* For dpia, ddc_pin is set to NULL */
5650 if (!dc->links[link_index]->ddc->ddc_pin)
5651 cmd.dp_aux_access.aux_control.type = AUX_CHANNEL_DPIA;
5652 else
5653 cmd.dp_aux_access.aux_control.type = AUX_CHANNEL_LEGACY_DDC;
5654
5655 cmd.dp_aux_access.aux_control.instance = dc->links[link_index]->ddc_hw_inst;
5656 cmd.dp_aux_access.aux_control.sw_crc_enabled = 0;
5657 cmd.dp_aux_access.aux_control.timeout = 0;
5658 cmd.dp_aux_access.aux_control.dpaux.address = payload->address;
5659 cmd.dp_aux_access.aux_control.dpaux.is_i2c_over_aux = payload->i2c_over_aux;
5660 cmd.dp_aux_access.aux_control.dpaux.length = payload->length;
5661
5662 /* set aux action */
5663 if (payload->i2c_over_aux) {
5664 if (payload->write) {
5665 if (payload->mot)
5666 action = DP_AUX_REQ_ACTION_I2C_WRITE_MOT;
5667 else
5668 action = DP_AUX_REQ_ACTION_I2C_WRITE;
5669 } else {
5670 if (payload->mot)
5671 action = DP_AUX_REQ_ACTION_I2C_READ_MOT;
5672 else
5673 action = DP_AUX_REQ_ACTION_I2C_READ;
5674 }
5675 } else {
5676 if (payload->write)
5677 action = DP_AUX_REQ_ACTION_DPCD_WRITE;
5678 else
5679 action = DP_AUX_REQ_ACTION_DPCD_READ;
5680 }
5681
5682 cmd.dp_aux_access.aux_control.dpaux.action = action;
5683
5684 if (payload->length && payload->write) {
5685 memcpy(cmd.dp_aux_access.aux_control.dpaux.data,
5686 payload->data,
5687 payload->length
5688 );
5689 }
5690
5691 dc_wake_and_execute_dmub_cmd(dc->ctx, &cmd, DM_DMUB_WAIT_TYPE_WAIT);
5692
5693 return true;
5694 }
5695
get_link_index_from_dpia_port_index(const struct dc * dc,uint8_t dpia_port_index)5696 uint8_t get_link_index_from_dpia_port_index(const struct dc *dc,
5697 uint8_t dpia_port_index)
5698 {
5699 uint8_t index, link_index = 0xFF;
5700
5701 for (index = 0; index < dc->link_count; index++) {
5702 /* ddc_hw_inst has dpia port index for dpia links
5703 * and ddc instance for legacy links
5704 */
5705 if (!dc->links[index]->ddc->ddc_pin) {
5706 if (dc->links[index]->ddc_hw_inst == dpia_port_index) {
5707 link_index = index;
5708 break;
5709 }
5710 }
5711 }
5712 ASSERT(link_index != 0xFF);
5713 return link_index;
5714 }
5715
5716 /**
5717 * dc_process_dmub_set_config_async - Submits set_config command
5718 *
5719 * @dc: [in] dc structure
5720 * @link_index: [in] link_index: link index
5721 * @payload: [in] aux payload
5722 * @notify: [out] set_config immediate reply
5723 *
5724 * Submits set_config command to dmub via inbox message.
5725 *
5726 * Return:
5727 * True if successful, False if failure
5728 */
dc_process_dmub_set_config_async(struct dc * dc,uint32_t link_index,struct set_config_cmd_payload * payload,struct dmub_notification * notify)5729 bool dc_process_dmub_set_config_async(struct dc *dc,
5730 uint32_t link_index,
5731 struct set_config_cmd_payload *payload,
5732 struct dmub_notification *notify)
5733 {
5734 union dmub_rb_cmd cmd = {0};
5735 bool is_cmd_complete = true;
5736
5737 /* prepare SET_CONFIG command */
5738 cmd.set_config_access.header.type = DMUB_CMD__DPIA;
5739 cmd.set_config_access.header.sub_type = DMUB_CMD__DPIA_SET_CONFIG_ACCESS;
5740
5741 cmd.set_config_access.set_config_control.instance = dc->links[link_index]->ddc_hw_inst;
5742 cmd.set_config_access.set_config_control.cmd_pkt.msg_type = payload->msg_type;
5743 cmd.set_config_access.set_config_control.cmd_pkt.msg_data = payload->msg_data;
5744
5745 if (!dc_wake_and_execute_dmub_cmd(dc->ctx, &cmd, DM_DMUB_WAIT_TYPE_WAIT_WITH_REPLY)) {
5746 /* command is not processed by dmub */
5747 notify->sc_status = SET_CONFIG_UNKNOWN_ERROR;
5748 return is_cmd_complete;
5749 }
5750
5751 /* command processed by dmub, if ret_status is 1, it is completed instantly */
5752 if (cmd.set_config_access.header.ret_status == 1)
5753 notify->sc_status = cmd.set_config_access.set_config_control.immed_status;
5754 else
5755 /* cmd pending, will receive notification via outbox */
5756 is_cmd_complete = false;
5757
5758 return is_cmd_complete;
5759 }
5760
5761 /**
5762 * dc_process_dmub_set_mst_slots - Submits MST solt allocation
5763 *
5764 * @dc: [in] dc structure
5765 * @link_index: [in] link index
5766 * @mst_alloc_slots: [in] mst slots to be allotted
5767 * @mst_slots_in_use: [out] mst slots in use returned in failure case
5768 *
5769 * Submits mst slot allocation command to dmub via inbox message
5770 *
5771 * Return:
5772 * DC_OK if successful, DC_ERROR if failure
5773 */
dc_process_dmub_set_mst_slots(const struct dc * dc,uint32_t link_index,uint8_t mst_alloc_slots,uint8_t * mst_slots_in_use)5774 enum dc_status dc_process_dmub_set_mst_slots(const struct dc *dc,
5775 uint32_t link_index,
5776 uint8_t mst_alloc_slots,
5777 uint8_t *mst_slots_in_use)
5778 {
5779 union dmub_rb_cmd cmd = {0};
5780
5781 /* prepare MST_ALLOC_SLOTS command */
5782 cmd.set_mst_alloc_slots.header.type = DMUB_CMD__DPIA;
5783 cmd.set_mst_alloc_slots.header.sub_type = DMUB_CMD__DPIA_MST_ALLOC_SLOTS;
5784
5785 cmd.set_mst_alloc_slots.mst_slots_control.instance = dc->links[link_index]->ddc_hw_inst;
5786 cmd.set_mst_alloc_slots.mst_slots_control.mst_alloc_slots = mst_alloc_slots;
5787
5788 if (!dc_wake_and_execute_dmub_cmd(dc->ctx, &cmd, DM_DMUB_WAIT_TYPE_WAIT_WITH_REPLY))
5789 /* command is not processed by dmub */
5790 return DC_ERROR_UNEXPECTED;
5791
5792 /* command processed by dmub, if ret_status is 1 */
5793 if (cmd.set_config_access.header.ret_status != 1)
5794 /* command processing error */
5795 return DC_ERROR_UNEXPECTED;
5796
5797 /* command processed and we have a status of 2, mst not enabled in dpia */
5798 if (cmd.set_mst_alloc_slots.mst_slots_control.immed_status == 2)
5799 return DC_FAIL_UNSUPPORTED_1;
5800
5801 /* previously configured mst alloc and used slots did not match */
5802 if (cmd.set_mst_alloc_slots.mst_slots_control.immed_status == 3) {
5803 *mst_slots_in_use = cmd.set_mst_alloc_slots.mst_slots_control.mst_slots_in_use;
5804 return DC_NOT_SUPPORTED;
5805 }
5806
5807 return DC_OK;
5808 }
5809
5810 /**
5811 * dc_process_dmub_dpia_set_tps_notification - Submits tps notification
5812 *
5813 * @dc: [in] dc structure
5814 * @link_index: [in] link index
5815 * @tps: [in] request tps
5816 *
5817 * Submits set_tps_notification command to dmub via inbox message
5818 */
dc_process_dmub_dpia_set_tps_notification(const struct dc * dc,uint32_t link_index,uint8_t tps)5819 void dc_process_dmub_dpia_set_tps_notification(const struct dc *dc, uint32_t link_index, uint8_t tps)
5820 {
5821 union dmub_rb_cmd cmd = {0};
5822
5823 cmd.set_tps_notification.header.type = DMUB_CMD__DPIA;
5824 cmd.set_tps_notification.header.sub_type = DMUB_CMD__DPIA_SET_TPS_NOTIFICATION;
5825 cmd.set_tps_notification.tps_notification.instance = dc->links[link_index]->ddc_hw_inst;
5826 cmd.set_tps_notification.tps_notification.tps = tps;
5827
5828 dc_wake_and_execute_dmub_cmd(dc->ctx, &cmd, DM_DMUB_WAIT_TYPE_WAIT);
5829 }
5830
5831 /**
5832 * dc_process_dmub_dpia_hpd_int_enable - Submits DPIA DPD interruption
5833 *
5834 * @dc: [in] dc structure
5835 * @hpd_int_enable: [in] 1 for hpd int enable, 0 to disable
5836 *
5837 * Submits dpia hpd int enable command to dmub via inbox message
5838 */
dc_process_dmub_dpia_hpd_int_enable(const struct dc * dc,uint32_t hpd_int_enable)5839 void dc_process_dmub_dpia_hpd_int_enable(const struct dc *dc,
5840 uint32_t hpd_int_enable)
5841 {
5842 union dmub_rb_cmd cmd = {0};
5843
5844 cmd.dpia_hpd_int_enable.header.type = DMUB_CMD__DPIA_HPD_INT_ENABLE;
5845 cmd.dpia_hpd_int_enable.enable = hpd_int_enable;
5846
5847 dc_wake_and_execute_dmub_cmd(dc->ctx, &cmd, DM_DMUB_WAIT_TYPE_WAIT);
5848
5849 DC_LOG_DEBUG("%s: hpd_int_enable(%d)\n", __func__, hpd_int_enable);
5850 }
5851
5852 /**
5853 * dc_print_dmub_diagnostic_data - Print DMUB diagnostic data for debugging
5854 *
5855 * @dc: [in] dc structure
5856 *
5857 *
5858 */
dc_print_dmub_diagnostic_data(const struct dc * dc)5859 void dc_print_dmub_diagnostic_data(const struct dc *dc)
5860 {
5861 dc_dmub_srv_log_diagnostic_data(dc->ctx->dmub_srv);
5862 }
5863
5864 /**
5865 * dc_disable_accelerated_mode - disable accelerated mode
5866 * @dc: dc structure
5867 */
dc_disable_accelerated_mode(struct dc * dc)5868 void dc_disable_accelerated_mode(struct dc *dc)
5869 {
5870 bios_set_scratch_acc_mode_change(dc->ctx->dc_bios, 0);
5871 }
5872
5873
5874 /**
5875 * dc_notify_vsync_int_state - notifies vsync enable/disable state
5876 * @dc: dc structure
5877 * @stream: stream where vsync int state changed
5878 * @enable: whether vsync is enabled or disabled
5879 *
5880 * Called when vsync is enabled/disabled Will notify DMUB to start/stop ABM
5881 * interrupts after steady state is reached.
5882 */
dc_notify_vsync_int_state(struct dc * dc,struct dc_stream_state * stream,bool enable)5883 void dc_notify_vsync_int_state(struct dc *dc, struct dc_stream_state *stream, bool enable)
5884 {
5885 int i;
5886 int edp_num;
5887 struct pipe_ctx *pipe = NULL;
5888 struct dc_link *link = stream->sink->link;
5889 struct dc_link *edp_links[MAX_NUM_EDP];
5890
5891
5892 if (link->psr_settings.psr_feature_enabled)
5893 return;
5894
5895 if (link->replay_settings.replay_feature_enabled)
5896 return;
5897
5898 /*find primary pipe associated with stream*/
5899 for (i = 0; i < MAX_PIPES; i++) {
5900 pipe = &dc->current_state->res_ctx.pipe_ctx[i];
5901
5902 if (pipe->stream == stream && pipe->stream_res.tg)
5903 break;
5904 }
5905
5906 if (i == MAX_PIPES) {
5907 ASSERT(0);
5908 return;
5909 }
5910
5911 dc_get_edp_links(dc, edp_links, &edp_num);
5912
5913 /* Determine panel inst */
5914 for (i = 0; i < edp_num; i++) {
5915 if (edp_links[i] == link)
5916 break;
5917 }
5918
5919 if (i == edp_num) {
5920 return;
5921 }
5922
5923 if (pipe->stream_res.abm && pipe->stream_res.abm->funcs->set_abm_pause)
5924 pipe->stream_res.abm->funcs->set_abm_pause(pipe->stream_res.abm, !enable, i, pipe->stream_res.tg->inst);
5925 }
5926
5927 /*****************************************************************************
5928 * dc_abm_save_restore() - Interface to DC for save+pause and restore+un-pause
5929 * ABM
5930 * @dc: dc structure
5931 * @stream: stream where vsync int state changed
5932 * @pData: abm hw states
5933 *
5934 ****************************************************************************/
dc_abm_save_restore(struct dc * dc,struct dc_stream_state * stream,struct abm_save_restore * pData)5935 bool dc_abm_save_restore(
5936 struct dc *dc,
5937 struct dc_stream_state *stream,
5938 struct abm_save_restore *pData)
5939 {
5940 int i;
5941 int edp_num;
5942 struct pipe_ctx *pipe = NULL;
5943 struct dc_link *link = stream->sink->link;
5944 struct dc_link *edp_links[MAX_NUM_EDP];
5945
5946 if (link->replay_settings.replay_feature_enabled)
5947 return false;
5948
5949 /*find primary pipe associated with stream*/
5950 for (i = 0; i < MAX_PIPES; i++) {
5951 pipe = &dc->current_state->res_ctx.pipe_ctx[i];
5952
5953 if (pipe->stream == stream && pipe->stream_res.tg)
5954 break;
5955 }
5956
5957 if (i == MAX_PIPES) {
5958 ASSERT(0);
5959 return false;
5960 }
5961
5962 dc_get_edp_links(dc, edp_links, &edp_num);
5963
5964 /* Determine panel inst */
5965 for (i = 0; i < edp_num; i++)
5966 if (edp_links[i] == link)
5967 break;
5968
5969 if (i == edp_num)
5970 return false;
5971
5972 if (pipe->stream_res.abm &&
5973 pipe->stream_res.abm->funcs->save_restore)
5974 return pipe->stream_res.abm->funcs->save_restore(
5975 pipe->stream_res.abm,
5976 i,
5977 pData);
5978 return false;
5979 }
5980
dc_query_current_properties(struct dc * dc,struct dc_current_properties * properties)5981 void dc_query_current_properties(struct dc *dc, struct dc_current_properties *properties)
5982 {
5983 unsigned int i;
5984 bool subvp_sw_cursor_req = false;
5985
5986 for (i = 0; i < dc->current_state->stream_count; i++) {
5987 if (check_subvp_sw_cursor_fallback_req(dc, dc->current_state->streams[i])) {
5988 subvp_sw_cursor_req = true;
5989 break;
5990 }
5991 }
5992 properties->cursor_size_limit = subvp_sw_cursor_req ? 64 : dc->caps.max_cursor_size;
5993 }
5994
5995 /**
5996 * dc_set_edp_power() - DM controls eDP power to be ON/OFF
5997 *
5998 * Called when DM wants to power on/off eDP.
5999 * Only work on links with flag skip_implict_edp_power_control is set.
6000 *
6001 * @dc: Current DC state
6002 * @edp_link: a link with eDP connector signal type
6003 * @powerOn: power on/off eDP
6004 *
6005 * Return: void
6006 */
dc_set_edp_power(const struct dc * dc,struct dc_link * edp_link,bool powerOn)6007 void dc_set_edp_power(const struct dc *dc, struct dc_link *edp_link,
6008 bool powerOn)
6009 {
6010 if (edp_link->connector_signal != SIGNAL_TYPE_EDP)
6011 return;
6012
6013 if (edp_link->skip_implict_edp_power_control == false)
6014 return;
6015
6016 edp_link->dc->link_srv->edp_set_panel_power(edp_link, powerOn);
6017 }
6018
6019 /*
6020 *****************************************************************************
6021 * dc_get_power_profile_for_dc_state() - extracts power profile from dc state
6022 *
6023 * Called when DM wants to make power policy decisions based on dc_state
6024 *
6025 *****************************************************************************
6026 */
dc_get_power_profile_for_dc_state(const struct dc_state * context)6027 struct dc_power_profile dc_get_power_profile_for_dc_state(const struct dc_state *context)
6028 {
6029 struct dc_power_profile profile = { 0 };
6030
6031 profile.power_level += !context->bw_ctx.bw.dcn.clk.p_state_change_support;
6032
6033 return profile;
6034 }
6035
6036 /*
6037 **********************************************************************************
6038 * dc_get_det_buffer_size_from_state() - extracts detile buffer size from dc state
6039 *
6040 * Called when DM wants to log detile buffer size from dc_state
6041 *
6042 **********************************************************************************
6043 */
dc_get_det_buffer_size_from_state(const struct dc_state * context)6044 unsigned int dc_get_det_buffer_size_from_state(const struct dc_state *context)
6045 {
6046 struct dc *dc = context->clk_mgr->ctx->dc;
6047
6048 if (dc->res_pool->funcs->get_det_buffer_size)
6049 return dc->res_pool->funcs->get_det_buffer_size(context);
6050 else
6051 return 0;
6052 }
6053