• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright 2015 Advanced Micro Devices, Inc.
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice shall be included in
12  * all copies or substantial portions of the Software.
13  *
14  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
17  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20  * OTHER DEALINGS IN THE SOFTWARE.
21  *
22  * Authors: AMD
23  *
24  */
25 
26 #include "dm_services.h"
27 #include "dc.h"
28 #include "dc_bios_types.h"
29 #include "core_types.h"
30 #include "core_status.h"
31 #include "resource.h"
32 #include "dm_helpers.h"
33 #include "dce110_hwseq.h"
34 #include "dce110/dce110_timing_generator.h"
35 #include "dce/dce_hwseq.h"
36 #include "gpio_service_interface.h"
37 
38 #include "dce110/dce110_compressor.h"
39 
40 #include "bios/bios_parser_helper.h"
41 #include "timing_generator.h"
42 #include "mem_input.h"
43 #include "opp.h"
44 #include "ipp.h"
45 #include "transform.h"
46 #include "stream_encoder.h"
47 #include "link_encoder.h"
48 #include "link_enc_cfg.h"
49 #include "link_hwss.h"
50 #include "link.h"
51 #include "dccg.h"
52 #include "clock_source.h"
53 #include "clk_mgr.h"
54 #include "abm.h"
55 #include "audio.h"
56 #include "reg_helper.h"
57 #include "panel_cntl.h"
58 #include "dc_state_priv.h"
59 #include "dpcd_defs.h"
60 #include "dsc.h"
61 /* include DCE11 register header files */
62 #include "dce/dce_11_0_d.h"
63 #include "dce/dce_11_0_sh_mask.h"
64 #include "custom_float.h"
65 
66 #include "atomfirmware.h"
67 
68 #include "dcn10/dcn10_hwseq.h"
69 
70 #define GAMMA_HW_POINTS_NUM 256
71 
72 /*
73  * All values are in milliseconds;
74  * For eDP, after power-up/power/down,
75  * 300/500 msec max. delay from LCDVCC to black video generation
76  */
77 #define PANEL_POWER_UP_TIMEOUT 300
78 #define PANEL_POWER_DOWN_TIMEOUT 500
79 #define HPD_CHECK_INTERVAL 10
80 #define OLED_POST_T7_DELAY 100
81 #define OLED_PRE_T11_DELAY 150
82 
83 #define CTX \
84 	hws->ctx
85 
86 #define DC_LOGGER \
87 	ctx->logger
88 #define DC_LOGGER_INIT() \
89 	struct dc_context *ctx = dc->ctx
90 
91 #define REG(reg)\
92 	hws->regs->reg
93 
94 #undef FN
95 #define FN(reg_name, field_name) \
96 	hws->shifts->field_name, hws->masks->field_name
97 
98 struct dce110_hw_seq_reg_offsets {
99 	uint32_t crtc;
100 };
101 
102 static const struct dce110_hw_seq_reg_offsets reg_offsets[] = {
103 {
104 	.crtc = (mmCRTC0_CRTC_GSL_CONTROL - mmCRTC_GSL_CONTROL),
105 },
106 {
107 	.crtc = (mmCRTC1_CRTC_GSL_CONTROL - mmCRTC_GSL_CONTROL),
108 },
109 {
110 	.crtc = (mmCRTC2_CRTC_GSL_CONTROL - mmCRTC_GSL_CONTROL),
111 },
112 {
113 	.crtc = (mmCRTCV_GSL_CONTROL - mmCRTC_GSL_CONTROL),
114 }
115 };
116 
117 #define HW_REG_BLND(reg, id)\
118 	(reg + reg_offsets[id].blnd)
119 
120 #define HW_REG_CRTC(reg, id)\
121 	(reg + reg_offsets[id].crtc)
122 
123 #define MAX_WATERMARK 0xFFFF
124 #define SAFE_NBP_MARK 0x7FFF
125 
126 /*******************************************************************************
127  * Private definitions
128  ******************************************************************************/
129 /***************************PIPE_CONTROL***********************************/
dce110_init_pte(struct dc_context * ctx)130 static void dce110_init_pte(struct dc_context *ctx)
131 {
132 	uint32_t addr;
133 	uint32_t value = 0;
134 	uint32_t chunk_int = 0;
135 	uint32_t chunk_mul = 0;
136 
137 	addr = mmUNP_DVMM_PTE_CONTROL;
138 	value = dm_read_reg(ctx, addr);
139 
140 	set_reg_field_value(
141 		value,
142 		0,
143 		DVMM_PTE_CONTROL,
144 		DVMM_USE_SINGLE_PTE);
145 
146 	set_reg_field_value(
147 		value,
148 		1,
149 		DVMM_PTE_CONTROL,
150 		DVMM_PTE_BUFFER_MODE0);
151 
152 	set_reg_field_value(
153 		value,
154 		1,
155 		DVMM_PTE_CONTROL,
156 		DVMM_PTE_BUFFER_MODE1);
157 
158 	dm_write_reg(ctx, addr, value);
159 
160 	addr = mmDVMM_PTE_REQ;
161 	value = dm_read_reg(ctx, addr);
162 
163 	chunk_int = get_reg_field_value(
164 		value,
165 		DVMM_PTE_REQ,
166 		HFLIP_PTEREQ_PER_CHUNK_INT);
167 
168 	chunk_mul = get_reg_field_value(
169 		value,
170 		DVMM_PTE_REQ,
171 		HFLIP_PTEREQ_PER_CHUNK_MULTIPLIER);
172 
173 	if (chunk_int != 0x4 || chunk_mul != 0x4) {
174 
175 		set_reg_field_value(
176 			value,
177 			255,
178 			DVMM_PTE_REQ,
179 			MAX_PTEREQ_TO_ISSUE);
180 
181 		set_reg_field_value(
182 			value,
183 			4,
184 			DVMM_PTE_REQ,
185 			HFLIP_PTEREQ_PER_CHUNK_INT);
186 
187 		set_reg_field_value(
188 			value,
189 			4,
190 			DVMM_PTE_REQ,
191 			HFLIP_PTEREQ_PER_CHUNK_MULTIPLIER);
192 
193 		dm_write_reg(ctx, addr, value);
194 	}
195 }
196 /**************************************************************************/
197 
enable_display_pipe_clock_gating(struct dc_context * ctx,bool clock_gating)198 static void enable_display_pipe_clock_gating(
199 	struct dc_context *ctx,
200 	bool clock_gating)
201 {
202 	/*TODO*/
203 }
204 
dce110_enable_display_power_gating(struct dc * dc,uint8_t controller_id,struct dc_bios * dcb,enum pipe_gating_control power_gating)205 static bool dce110_enable_display_power_gating(
206 	struct dc *dc,
207 	uint8_t controller_id,
208 	struct dc_bios *dcb,
209 	enum pipe_gating_control power_gating)
210 {
211 	enum bp_result bp_result = BP_RESULT_OK;
212 	enum bp_pipe_control_action cntl;
213 	struct dc_context *ctx = dc->ctx;
214 	unsigned int underlay_idx = dc->res_pool->underlay_pipe_index;
215 
216 	if (power_gating == PIPE_GATING_CONTROL_INIT)
217 		cntl = ASIC_PIPE_INIT;
218 	else if (power_gating == PIPE_GATING_CONTROL_ENABLE)
219 		cntl = ASIC_PIPE_ENABLE;
220 	else
221 		cntl = ASIC_PIPE_DISABLE;
222 
223 	if (controller_id == underlay_idx)
224 		controller_id = CONTROLLER_ID_UNDERLAY0 - 1;
225 
226 	if (power_gating != PIPE_GATING_CONTROL_INIT || controller_id == 0) {
227 
228 		bp_result = dcb->funcs->enable_disp_power_gating(
229 						dcb, controller_id + 1, cntl);
230 
231 		/* Revert MASTER_UPDATE_MODE to 0 because bios sets it 2
232 		 * by default when command table is called
233 		 *
234 		 * Bios parser accepts controller_id = 6 as indicative of
235 		 * underlay pipe in dce110. But we do not support more
236 		 * than 3.
237 		 */
238 		if (controller_id < CONTROLLER_ID_MAX - 1)
239 			dm_write_reg(ctx,
240 				HW_REG_CRTC(mmCRTC_MASTER_UPDATE_MODE, controller_id),
241 				0);
242 	}
243 
244 	if (power_gating != PIPE_GATING_CONTROL_ENABLE)
245 		dce110_init_pte(ctx);
246 
247 	if (bp_result == BP_RESULT_OK)
248 		return true;
249 	else
250 		return false;
251 }
252 
dce110_prescale_params(struct ipp_prescale_params * prescale_params,const struct dc_plane_state * plane_state)253 static void dce110_prescale_params(struct ipp_prescale_params *prescale_params,
254 		const struct dc_plane_state *plane_state)
255 {
256 	prescale_params->mode = IPP_PRESCALE_MODE_FIXED_UNSIGNED;
257 
258 	switch (plane_state->format) {
259 	case SURFACE_PIXEL_FORMAT_GRPH_RGB565:
260 		prescale_params->scale = 0x2082;
261 		break;
262 	case SURFACE_PIXEL_FORMAT_GRPH_ARGB8888:
263 	case SURFACE_PIXEL_FORMAT_GRPH_ABGR8888:
264 		prescale_params->scale = 0x2020;
265 		break;
266 	case SURFACE_PIXEL_FORMAT_GRPH_ARGB2101010:
267 	case SURFACE_PIXEL_FORMAT_GRPH_ABGR2101010:
268 		prescale_params->scale = 0x2008;
269 		break;
270 	case SURFACE_PIXEL_FORMAT_GRPH_ARGB16161616:
271 	case SURFACE_PIXEL_FORMAT_GRPH_ABGR16161616:
272 	case SURFACE_PIXEL_FORMAT_GRPH_ABGR16161616F:
273 		prescale_params->scale = 0x2000;
274 		break;
275 	default:
276 		ASSERT(false);
277 		break;
278 	}
279 }
280 
281 static bool
dce110_set_input_transfer_func(struct dc * dc,struct pipe_ctx * pipe_ctx,const struct dc_plane_state * plane_state)282 dce110_set_input_transfer_func(struct dc *dc, struct pipe_ctx *pipe_ctx,
283 			       const struct dc_plane_state *plane_state)
284 {
285 	struct input_pixel_processor *ipp = pipe_ctx->plane_res.ipp;
286 	const struct dc_transfer_func *tf = NULL;
287 	struct ipp_prescale_params prescale_params = { 0 };
288 	bool result = true;
289 
290 	if (ipp == NULL)
291 		return false;
292 
293 	tf = &plane_state->in_transfer_func;
294 
295 	dce110_prescale_params(&prescale_params, plane_state);
296 	ipp->funcs->ipp_program_prescale(ipp, &prescale_params);
297 
298 	if (!plane_state->gamma_correction.is_identity &&
299 			dce_use_lut(plane_state->format))
300 		ipp->funcs->ipp_program_input_lut(ipp, &plane_state->gamma_correction);
301 
302 	if (tf->type == TF_TYPE_PREDEFINED) {
303 		switch (tf->tf) {
304 		case TRANSFER_FUNCTION_SRGB:
305 			ipp->funcs->ipp_set_degamma(ipp, IPP_DEGAMMA_MODE_HW_sRGB);
306 			break;
307 		case TRANSFER_FUNCTION_BT709:
308 			ipp->funcs->ipp_set_degamma(ipp, IPP_DEGAMMA_MODE_HW_xvYCC);
309 			break;
310 		case TRANSFER_FUNCTION_LINEAR:
311 			ipp->funcs->ipp_set_degamma(ipp, IPP_DEGAMMA_MODE_BYPASS);
312 			break;
313 		case TRANSFER_FUNCTION_PQ:
314 		default:
315 			result = false;
316 			break;
317 		}
318 	} else if (tf->type == TF_TYPE_BYPASS) {
319 		ipp->funcs->ipp_set_degamma(ipp, IPP_DEGAMMA_MODE_BYPASS);
320 	} else {
321 		/*TF_TYPE_DISTRIBUTED_POINTS - Not supported in DCE 11*/
322 		result = false;
323 	}
324 
325 	return result;
326 }
327 
convert_to_custom_float(struct pwl_result_data * rgb_resulted,struct curve_points * arr_points,uint32_t hw_points_num)328 static bool convert_to_custom_float(struct pwl_result_data *rgb_resulted,
329 				    struct curve_points *arr_points,
330 				    uint32_t hw_points_num)
331 {
332 	struct custom_float_format fmt;
333 
334 	struct pwl_result_data *rgb = rgb_resulted;
335 
336 	uint32_t i = 0;
337 
338 	fmt.exponenta_bits = 6;
339 	fmt.mantissa_bits = 12;
340 	fmt.sign = true;
341 
342 	if (!convert_to_custom_float_format(arr_points[0].x, &fmt,
343 					    &arr_points[0].custom_float_x)) {
344 		BREAK_TO_DEBUGGER();
345 		return false;
346 	}
347 
348 	if (!convert_to_custom_float_format(arr_points[0].offset, &fmt,
349 					    &arr_points[0].custom_float_offset)) {
350 		BREAK_TO_DEBUGGER();
351 		return false;
352 	}
353 
354 	if (!convert_to_custom_float_format(arr_points[0].slope, &fmt,
355 					    &arr_points[0].custom_float_slope)) {
356 		BREAK_TO_DEBUGGER();
357 		return false;
358 	}
359 
360 	fmt.mantissa_bits = 10;
361 	fmt.sign = false;
362 
363 	if (!convert_to_custom_float_format(arr_points[1].x, &fmt,
364 					    &arr_points[1].custom_float_x)) {
365 		BREAK_TO_DEBUGGER();
366 		return false;
367 	}
368 
369 	if (!convert_to_custom_float_format(arr_points[1].y, &fmt,
370 					    &arr_points[1].custom_float_y)) {
371 		BREAK_TO_DEBUGGER();
372 		return false;
373 	}
374 
375 	if (!convert_to_custom_float_format(arr_points[1].slope, &fmt,
376 					    &arr_points[1].custom_float_slope)) {
377 		BREAK_TO_DEBUGGER();
378 		return false;
379 	}
380 
381 	fmt.mantissa_bits = 12;
382 	fmt.sign = true;
383 
384 	while (i != hw_points_num) {
385 		if (!convert_to_custom_float_format(rgb->red, &fmt,
386 						    &rgb->red_reg)) {
387 			BREAK_TO_DEBUGGER();
388 			return false;
389 		}
390 
391 		if (!convert_to_custom_float_format(rgb->green, &fmt,
392 						    &rgb->green_reg)) {
393 			BREAK_TO_DEBUGGER();
394 			return false;
395 		}
396 
397 		if (!convert_to_custom_float_format(rgb->blue, &fmt,
398 						    &rgb->blue_reg)) {
399 			BREAK_TO_DEBUGGER();
400 			return false;
401 		}
402 
403 		if (!convert_to_custom_float_format(rgb->delta_red, &fmt,
404 						    &rgb->delta_red_reg)) {
405 			BREAK_TO_DEBUGGER();
406 			return false;
407 		}
408 
409 		if (!convert_to_custom_float_format(rgb->delta_green, &fmt,
410 						    &rgb->delta_green_reg)) {
411 			BREAK_TO_DEBUGGER();
412 			return false;
413 		}
414 
415 		if (!convert_to_custom_float_format(rgb->delta_blue, &fmt,
416 						    &rgb->delta_blue_reg)) {
417 			BREAK_TO_DEBUGGER();
418 			return false;
419 		}
420 
421 		++rgb;
422 		++i;
423 	}
424 
425 	return true;
426 }
427 
428 #define MAX_LOW_POINT      25
429 #define NUMBER_REGIONS     16
430 #define NUMBER_SW_SEGMENTS 16
431 
432 static bool
dce110_translate_regamma_to_hw_format(const struct dc_transfer_func * output_tf,struct pwl_params * regamma_params)433 dce110_translate_regamma_to_hw_format(const struct dc_transfer_func *output_tf,
434 				      struct pwl_params *regamma_params)
435 {
436 	struct curve_points *arr_points;
437 	struct pwl_result_data *rgb_resulted;
438 	struct pwl_result_data *rgb;
439 	struct pwl_result_data *rgb_plus_1;
440 	struct fixed31_32 y_r;
441 	struct fixed31_32 y_g;
442 	struct fixed31_32 y_b;
443 	struct fixed31_32 y1_min;
444 	struct fixed31_32 y3_max;
445 
446 	int32_t region_start, region_end;
447 	uint32_t i, j, k, seg_distr[NUMBER_REGIONS], increment, start_index, hw_points;
448 
449 	if (output_tf == NULL || regamma_params == NULL || output_tf->type == TF_TYPE_BYPASS)
450 		return false;
451 
452 	arr_points = regamma_params->arr_points;
453 	rgb_resulted = regamma_params->rgb_resulted;
454 	hw_points = 0;
455 
456 	memset(regamma_params, 0, sizeof(struct pwl_params));
457 
458 	if (output_tf->tf == TRANSFER_FUNCTION_PQ) {
459 		/* 16 segments
460 		 * segments are from 2^-11 to 2^5
461 		 */
462 		region_start = -11;
463 		region_end = region_start + NUMBER_REGIONS;
464 
465 		for (i = 0; i < NUMBER_REGIONS; i++)
466 			seg_distr[i] = 4;
467 
468 	} else {
469 		/* 10 segments
470 		 * segment is from 2^-10 to 2^1
471 		 * We include an extra segment for range [2^0, 2^1). This is to
472 		 * ensure that colors with normalized values of 1 don't miss the
473 		 * LUT.
474 		 */
475 		region_start = -10;
476 		region_end = 1;
477 
478 		seg_distr[0] = 4;
479 		seg_distr[1] = 4;
480 		seg_distr[2] = 4;
481 		seg_distr[3] = 4;
482 		seg_distr[4] = 4;
483 		seg_distr[5] = 4;
484 		seg_distr[6] = 4;
485 		seg_distr[7] = 4;
486 		seg_distr[8] = 4;
487 		seg_distr[9] = 4;
488 		seg_distr[10] = 0;
489 		seg_distr[11] = -1;
490 		seg_distr[12] = -1;
491 		seg_distr[13] = -1;
492 		seg_distr[14] = -1;
493 		seg_distr[15] = -1;
494 	}
495 
496 	for (k = 0; k < 16; k++) {
497 		if (seg_distr[k] != -1)
498 			hw_points += (1 << seg_distr[k]);
499 	}
500 
501 	j = 0;
502 	for (k = 0; k < (region_end - region_start); k++) {
503 		increment = NUMBER_SW_SEGMENTS / (1 << seg_distr[k]);
504 		start_index = (region_start + k + MAX_LOW_POINT) *
505 				NUMBER_SW_SEGMENTS;
506 		for (i = start_index; i < start_index + NUMBER_SW_SEGMENTS;
507 				i += increment) {
508 			if (j == hw_points - 1)
509 				break;
510 			rgb_resulted[j].red = output_tf->tf_pts.red[i];
511 			rgb_resulted[j].green = output_tf->tf_pts.green[i];
512 			rgb_resulted[j].blue = output_tf->tf_pts.blue[i];
513 			j++;
514 		}
515 	}
516 
517 	/* last point */
518 	start_index = (region_end + MAX_LOW_POINT) * NUMBER_SW_SEGMENTS;
519 	rgb_resulted[hw_points - 1].red = output_tf->tf_pts.red[start_index];
520 	rgb_resulted[hw_points - 1].green = output_tf->tf_pts.green[start_index];
521 	rgb_resulted[hw_points - 1].blue = output_tf->tf_pts.blue[start_index];
522 
523 	arr_points[0].x = dc_fixpt_pow(dc_fixpt_from_int(2),
524 					     dc_fixpt_from_int(region_start));
525 	arr_points[1].x = dc_fixpt_pow(dc_fixpt_from_int(2),
526 					     dc_fixpt_from_int(region_end));
527 
528 	y_r = rgb_resulted[0].red;
529 	y_g = rgb_resulted[0].green;
530 	y_b = rgb_resulted[0].blue;
531 
532 	y1_min = dc_fixpt_min(y_r, dc_fixpt_min(y_g, y_b));
533 
534 	arr_points[0].y = y1_min;
535 	arr_points[0].slope = dc_fixpt_div(arr_points[0].y,
536 						 arr_points[0].x);
537 
538 	y_r = rgb_resulted[hw_points - 1].red;
539 	y_g = rgb_resulted[hw_points - 1].green;
540 	y_b = rgb_resulted[hw_points - 1].blue;
541 
542 	/* see comment above, m_arrPoints[1].y should be the Y value for the
543 	 * region end (m_numOfHwPoints), not last HW point(m_numOfHwPoints - 1)
544 	 */
545 	y3_max = dc_fixpt_max(y_r, dc_fixpt_max(y_g, y_b));
546 
547 	arr_points[1].y = y3_max;
548 
549 	arr_points[1].slope = dc_fixpt_zero;
550 
551 	if (output_tf->tf == TRANSFER_FUNCTION_PQ) {
552 		/* for PQ, we want to have a straight line from last HW X point,
553 		 * and the slope to be such that we hit 1.0 at 10000 nits.
554 		 */
555 		const struct fixed31_32 end_value = dc_fixpt_from_int(125);
556 
557 		arr_points[1].slope = dc_fixpt_div(
558 				dc_fixpt_sub(dc_fixpt_one, arr_points[1].y),
559 				dc_fixpt_sub(end_value, arr_points[1].x));
560 	}
561 
562 	regamma_params->hw_points_num = hw_points;
563 
564 	k = 0;
565 	for (i = 1; i < 16; i++) {
566 		if (seg_distr[k] != -1) {
567 			regamma_params->arr_curve_points[k].segments_num = seg_distr[k];
568 			regamma_params->arr_curve_points[i].offset =
569 					regamma_params->arr_curve_points[k].offset + (1 << seg_distr[k]);
570 		}
571 		k++;
572 	}
573 
574 	if (seg_distr[k] != -1)
575 		regamma_params->arr_curve_points[k].segments_num = seg_distr[k];
576 
577 	rgb = rgb_resulted;
578 	rgb_plus_1 = rgb_resulted + 1;
579 
580 	i = 1;
581 
582 	while (i != hw_points + 1) {
583 		if (dc_fixpt_lt(rgb_plus_1->red, rgb->red))
584 			rgb_plus_1->red = rgb->red;
585 		if (dc_fixpt_lt(rgb_plus_1->green, rgb->green))
586 			rgb_plus_1->green = rgb->green;
587 		if (dc_fixpt_lt(rgb_plus_1->blue, rgb->blue))
588 			rgb_plus_1->blue = rgb->blue;
589 
590 		rgb->delta_red = dc_fixpt_sub(rgb_plus_1->red, rgb->red);
591 		rgb->delta_green = dc_fixpt_sub(rgb_plus_1->green, rgb->green);
592 		rgb->delta_blue = dc_fixpt_sub(rgb_plus_1->blue, rgb->blue);
593 
594 		++rgb_plus_1;
595 		++rgb;
596 		++i;
597 	}
598 
599 	convert_to_custom_float(rgb_resulted, arr_points, hw_points);
600 
601 	return true;
602 }
603 
604 static bool
dce110_set_output_transfer_func(struct dc * dc,struct pipe_ctx * pipe_ctx,const struct dc_stream_state * stream)605 dce110_set_output_transfer_func(struct dc *dc, struct pipe_ctx *pipe_ctx,
606 				const struct dc_stream_state *stream)
607 {
608 	struct transform *xfm = pipe_ctx->plane_res.xfm;
609 
610 	xfm->funcs->opp_power_on_regamma_lut(xfm, true);
611 	xfm->regamma_params.hw_points_num = GAMMA_HW_POINTS_NUM;
612 
613 	if (stream->out_transfer_func.type == TF_TYPE_PREDEFINED &&
614 	    stream->out_transfer_func.tf == TRANSFER_FUNCTION_SRGB) {
615 		xfm->funcs->opp_set_regamma_mode(xfm, OPP_REGAMMA_SRGB);
616 	} else if (dce110_translate_regamma_to_hw_format(&stream->out_transfer_func,
617 							 &xfm->regamma_params)) {
618 		xfm->funcs->opp_program_regamma_pwl(xfm, &xfm->regamma_params);
619 		xfm->funcs->opp_set_regamma_mode(xfm, OPP_REGAMMA_USER);
620 	} else {
621 		xfm->funcs->opp_set_regamma_mode(xfm, OPP_REGAMMA_BYPASS);
622 	}
623 
624 	xfm->funcs->opp_power_on_regamma_lut(xfm, false);
625 
626 	return true;
627 }
628 
dce110_update_info_frame(struct pipe_ctx * pipe_ctx)629 void dce110_update_info_frame(struct pipe_ctx *pipe_ctx)
630 {
631 	bool is_hdmi_tmds;
632 	bool is_dp;
633 
634 	ASSERT(pipe_ctx->stream);
635 
636 	if (pipe_ctx->stream_res.stream_enc == NULL)
637 		return;  /* this is not root pipe */
638 
639 	is_hdmi_tmds = dc_is_hdmi_tmds_signal(pipe_ctx->stream->signal);
640 	is_dp = dc_is_dp_signal(pipe_ctx->stream->signal);
641 
642 	if (!is_hdmi_tmds && !is_dp)
643 		return;
644 
645 	if (is_hdmi_tmds)
646 		pipe_ctx->stream_res.stream_enc->funcs->update_hdmi_info_packets(
647 			pipe_ctx->stream_res.stream_enc,
648 			&pipe_ctx->stream_res.encoder_info_frame);
649 	else {
650 		if (pipe_ctx->stream_res.stream_enc->funcs->update_dp_info_packets_sdp_line_num)
651 			pipe_ctx->stream_res.stream_enc->funcs->update_dp_info_packets_sdp_line_num(
652 				pipe_ctx->stream_res.stream_enc,
653 				&pipe_ctx->stream_res.encoder_info_frame);
654 
655 		pipe_ctx->stream_res.stream_enc->funcs->update_dp_info_packets(
656 			pipe_ctx->stream_res.stream_enc,
657 			&pipe_ctx->stream_res.encoder_info_frame);
658 	}
659 }
660 
dce110_enable_stream(struct pipe_ctx * pipe_ctx)661 void dce110_enable_stream(struct pipe_ctx *pipe_ctx)
662 {
663 	enum dc_lane_count lane_count =
664 		pipe_ctx->stream->link->cur_link_settings.lane_count;
665 	struct dc_crtc_timing *timing = &pipe_ctx->stream->timing;
666 	struct dc_link *link = pipe_ctx->stream->link;
667 	const struct dc *dc = link->dc;
668 	const struct link_hwss *link_hwss = get_link_hwss(link, &pipe_ctx->link_res);
669 	uint32_t active_total_with_borders;
670 	uint32_t early_control = 0;
671 	struct timing_generator *tg = pipe_ctx->stream_res.tg;
672 
673 	link_hwss->setup_stream_encoder(pipe_ctx);
674 
675 	dc->hwss.update_info_frame(pipe_ctx);
676 
677 	/* enable early control to avoid corruption on DP monitor*/
678 	active_total_with_borders =
679 			timing->h_addressable
680 				+ timing->h_border_left
681 				+ timing->h_border_right;
682 
683 	if (lane_count != 0)
684 		early_control = active_total_with_borders % lane_count;
685 
686 	if (early_control == 0)
687 		early_control = lane_count;
688 
689 	tg->funcs->set_early_control(tg, early_control);
690 }
691 
link_transmitter_control(struct dc_bios * bios,struct bp_transmitter_control * cntl)692 static enum bp_result link_transmitter_control(
693 		struct dc_bios *bios,
694 	struct bp_transmitter_control *cntl)
695 {
696 	enum bp_result result;
697 
698 	result = bios->funcs->transmitter_control(bios, cntl);
699 
700 	return result;
701 }
702 
703 /*
704  * @brief
705  * eDP only.
706  */
dce110_edp_wait_for_hpd_ready(struct dc_link * link,bool power_up)707 void dce110_edp_wait_for_hpd_ready(
708 		struct dc_link *link,
709 		bool power_up)
710 {
711 	struct dc_context *ctx = link->ctx;
712 	struct graphics_object_id connector = link->link_enc->connector;
713 	struct gpio *hpd;
714 	bool edp_hpd_high = false;
715 	uint32_t time_elapsed = 0;
716 	uint32_t timeout = power_up ?
717 		PANEL_POWER_UP_TIMEOUT : PANEL_POWER_DOWN_TIMEOUT;
718 
719 	if (dal_graphics_object_id_get_connector_id(connector)
720 			!= CONNECTOR_ID_EDP) {
721 		BREAK_TO_DEBUGGER();
722 		return;
723 	}
724 
725 	if (!power_up)
726 		/*
727 		 * From KV, we will not HPD low after turning off VCC -
728 		 * instead, we will check the SW timer in power_up().
729 		 */
730 		return;
731 
732 	/*
733 	 * When we power on/off the eDP panel,
734 	 * we need to wait until SENSE bit is high/low.
735 	 */
736 
737 	/* obtain HPD */
738 	/* TODO what to do with this? */
739 	hpd = ctx->dc->link_srv->get_hpd_gpio(ctx->dc_bios, connector, ctx->gpio_service);
740 
741 	if (!hpd) {
742 		BREAK_TO_DEBUGGER();
743 		return;
744 	}
745 
746 	if (link->panel_config.pps.extra_t3_ms > 0) {
747 		int extra_t3_in_ms = link->panel_config.pps.extra_t3_ms;
748 
749 		msleep(extra_t3_in_ms);
750 	}
751 
752 	dal_gpio_open(hpd, GPIO_MODE_INTERRUPT);
753 
754 	/* wait until timeout or panel detected */
755 
756 	do {
757 		uint32_t detected = 0;
758 
759 		dal_gpio_get_value(hpd, &detected);
760 
761 		if (!(detected ^ power_up)) {
762 			edp_hpd_high = true;
763 			break;
764 		}
765 
766 		msleep(HPD_CHECK_INTERVAL);
767 
768 		time_elapsed += HPD_CHECK_INTERVAL;
769 	} while (time_elapsed < timeout);
770 
771 	dal_gpio_close(hpd);
772 
773 	dal_gpio_destroy_irq(&hpd);
774 
775 	/* ensure that the panel is detected */
776 	if (!edp_hpd_high)
777 		DC_LOG_DC("%s: wait timed out!\n", __func__);
778 }
779 
dce110_edp_power_control(struct dc_link * link,bool power_up)780 void dce110_edp_power_control(
781 		struct dc_link *link,
782 		bool power_up)
783 {
784 	struct dc_context *ctx = link->ctx;
785 	struct bp_transmitter_control cntl = { 0 };
786 	enum bp_result bp_result;
787 	uint8_t pwrseq_instance;
788 
789 
790 	if (dal_graphics_object_id_get_connector_id(link->link_enc->connector)
791 			!= CONNECTOR_ID_EDP) {
792 		BREAK_TO_DEBUGGER();
793 		return;
794 	}
795 
796 	if (!link->panel_cntl)
797 		return;
798 	if (power_up !=
799 		link->panel_cntl->funcs->is_panel_powered_on(link->panel_cntl)) {
800 
801 		unsigned long long current_ts = dm_get_timestamp(ctx);
802 		unsigned long long time_since_edp_poweroff_ms =
803 				div64_u64(dm_get_elapse_time_in_ns(
804 						ctx,
805 						current_ts,
806 						ctx->dc->link_srv->dp_trace_get_edp_poweroff_timestamp(link)), 1000000);
807 		unsigned long long time_since_edp_poweron_ms =
808 				div64_u64(dm_get_elapse_time_in_ns(
809 						ctx,
810 						current_ts,
811 						ctx->dc->link_srv->dp_trace_get_edp_poweron_timestamp(link)), 1000000);
812 		DC_LOG_HW_RESUME_S3(
813 				"%s: transition: power_up=%d current_ts=%llu edp_poweroff=%llu edp_poweron=%llu time_since_edp_poweroff_ms=%llu time_since_edp_poweron_ms=%llu",
814 				__func__,
815 				power_up,
816 				current_ts,
817 				ctx->dc->link_srv->dp_trace_get_edp_poweroff_timestamp(link),
818 				ctx->dc->link_srv->dp_trace_get_edp_poweron_timestamp(link),
819 				time_since_edp_poweroff_ms,
820 				time_since_edp_poweron_ms);
821 
822 		/* Send VBIOS command to prompt eDP panel power */
823 		if (power_up) {
824 			/* edp requires a min of 500ms from LCDVDD off to on */
825 			unsigned long long remaining_min_edp_poweroff_time_ms = 500;
826 
827 			/* add time defined by a patch, if any (usually patch extra_t12_ms is 0) */
828 			if (link->local_sink != NULL)
829 				remaining_min_edp_poweroff_time_ms +=
830 					link->panel_config.pps.extra_t12_ms;
831 
832 			/* Adjust remaining_min_edp_poweroff_time_ms if this is not the first time. */
833 			if (ctx->dc->link_srv->dp_trace_get_edp_poweroff_timestamp(link) != 0) {
834 				if (time_since_edp_poweroff_ms < remaining_min_edp_poweroff_time_ms)
835 					remaining_min_edp_poweroff_time_ms =
836 						remaining_min_edp_poweroff_time_ms - time_since_edp_poweroff_ms;
837 				else
838 					remaining_min_edp_poweroff_time_ms = 0;
839 			}
840 
841 			if (remaining_min_edp_poweroff_time_ms) {
842 				DC_LOG_HW_RESUME_S3(
843 						"%s: remaining_min_edp_poweroff_time_ms=%llu: begin wait.\n",
844 						__func__, remaining_min_edp_poweroff_time_ms);
845 				msleep(remaining_min_edp_poweroff_time_ms);
846 				DC_LOG_HW_RESUME_S3(
847 						"%s: remaining_min_edp_poweroff_time_ms=%llu: end wait.\n",
848 						__func__, remaining_min_edp_poweroff_time_ms);
849 				dm_output_to_console("%s: wait %lld ms to power on eDP.\n",
850 						__func__, remaining_min_edp_poweroff_time_ms);
851 			} else {
852 				DC_LOG_HW_RESUME_S3(
853 						"%s: remaining_min_edp_poweroff_time_ms=%llu: no wait required.\n",
854 						__func__, remaining_min_edp_poweroff_time_ms);
855 			}
856 		}
857 
858 		DC_LOG_HW_RESUME_S3(
859 				"%s: BEGIN: Panel Power action: %s\n",
860 				__func__, (power_up ? "On":"Off"));
861 
862 		cntl.action = power_up ?
863 			TRANSMITTER_CONTROL_POWER_ON :
864 			TRANSMITTER_CONTROL_POWER_OFF;
865 		cntl.transmitter = link->link_enc->transmitter;
866 		cntl.connector_obj_id = link->link_enc->connector;
867 		cntl.coherent = false;
868 		cntl.lanes_number = LANE_COUNT_FOUR;
869 		cntl.hpd_sel = link->link_enc->hpd_source;
870 		pwrseq_instance = link->panel_cntl->pwrseq_inst;
871 
872 		if (ctx->dc->ctx->dmub_srv &&
873 				ctx->dc->debug.dmub_command_table) {
874 
875 			if (cntl.action == TRANSMITTER_CONTROL_POWER_ON) {
876 				bp_result = ctx->dc_bios->funcs->enable_lvtma_control(ctx->dc_bios,
877 						LVTMA_CONTROL_POWER_ON,
878 						pwrseq_instance, link->link_powered_externally);
879 			} else {
880 				bp_result = ctx->dc_bios->funcs->enable_lvtma_control(ctx->dc_bios,
881 						LVTMA_CONTROL_POWER_OFF,
882 						pwrseq_instance, link->link_powered_externally);
883 			}
884 		}
885 
886 		bp_result = link_transmitter_control(ctx->dc_bios, &cntl);
887 
888 		DC_LOG_HW_RESUME_S3(
889 				"%s: END: Panel Power action: %s bp_result=%u\n",
890 				__func__, (power_up ? "On":"Off"),
891 				bp_result);
892 
893 		ctx->dc->link_srv->dp_trace_set_edp_power_timestamp(link, power_up);
894 
895 		DC_LOG_HW_RESUME_S3(
896 				"%s: updated values: edp_poweroff=%llu edp_poweron=%llu\n",
897 				__func__,
898 				ctx->dc->link_srv->dp_trace_get_edp_poweroff_timestamp(link),
899 				ctx->dc->link_srv->dp_trace_get_edp_poweron_timestamp(link));
900 
901 		if (bp_result != BP_RESULT_OK)
902 			DC_LOG_ERROR(
903 					"%s: Panel Power bp_result: %d\n",
904 					__func__, bp_result);
905 	} else {
906 		DC_LOG_HW_RESUME_S3(
907 				"%s: Skipping Panel Power action: %s\n",
908 				__func__, (power_up ? "On":"Off"));
909 	}
910 }
911 
dce110_edp_wait_for_T12(struct dc_link * link)912 void dce110_edp_wait_for_T12(
913 		struct dc_link *link)
914 {
915 	struct dc_context *ctx = link->ctx;
916 
917 	if (dal_graphics_object_id_get_connector_id(link->link_enc->connector)
918 			!= CONNECTOR_ID_EDP) {
919 		BREAK_TO_DEBUGGER();
920 		return;
921 	}
922 
923 	if (!link->panel_cntl)
924 		return;
925 
926 	if (!link->panel_cntl->funcs->is_panel_powered_on(link->panel_cntl) &&
927 			ctx->dc->link_srv->dp_trace_get_edp_poweroff_timestamp(link) != 0) {
928 		unsigned int t12_duration = 500; // Default T12 as per spec
929 		unsigned long long current_ts = dm_get_timestamp(ctx);
930 		unsigned long long time_since_edp_poweroff_ms =
931 				div64_u64(dm_get_elapse_time_in_ns(
932 						ctx,
933 						current_ts,
934 						ctx->dc->link_srv->dp_trace_get_edp_poweroff_timestamp(link)), 1000000);
935 
936 		t12_duration += link->panel_config.pps.extra_t12_ms; // Add extra T12
937 
938 		if (time_since_edp_poweroff_ms < t12_duration)
939 			msleep(t12_duration - time_since_edp_poweroff_ms);
940 	}
941 }
942 /*todo: cloned in stream enc, fix*/
943 /*
944  * @brief
945  * eDP only. Control the backlight of the eDP panel
946  */
dce110_edp_backlight_control(struct dc_link * link,bool enable)947 void dce110_edp_backlight_control(
948 		struct dc_link *link,
949 		bool enable)
950 {
951 	struct dc_context *ctx = link->ctx;
952 	struct bp_transmitter_control cntl = { 0 };
953 	uint8_t pwrseq_instance = 0;
954 	unsigned int pre_T11_delay = (link->dpcd_sink_ext_caps.bits.oled ? OLED_PRE_T11_DELAY : 0);
955 	unsigned int post_T7_delay = (link->dpcd_sink_ext_caps.bits.oled ? OLED_POST_T7_DELAY : 0);
956 
957 	if (dal_graphics_object_id_get_connector_id(link->link_enc->connector)
958 		!= CONNECTOR_ID_EDP) {
959 		BREAK_TO_DEBUGGER();
960 		return;
961 	}
962 
963 	if (link->panel_cntl && !(link->dpcd_sink_ext_caps.bits.oled ||
964 		link->dpcd_sink_ext_caps.bits.hdr_aux_backlight_control == 1 ||
965 		link->dpcd_sink_ext_caps.bits.sdr_aux_backlight_control == 1)) {
966 		bool is_backlight_on = link->panel_cntl->funcs->is_panel_backlight_on(link->panel_cntl);
967 
968 		if ((enable && is_backlight_on) || (!enable && !is_backlight_on)) {
969 			DC_LOG_HW_RESUME_S3(
970 				"%s: panel already powered up/off. Do nothing.\n",
971 				__func__);
972 			return;
973 		}
974 	}
975 
976 	/* Send VBIOS command to control eDP panel backlight */
977 
978 	DC_LOG_HW_RESUME_S3(
979 			"%s: backlight action: %s\n",
980 			__func__, (enable ? "On":"Off"));
981 
982 	cntl.action = enable ?
983 		TRANSMITTER_CONTROL_BACKLIGHT_ON :
984 		TRANSMITTER_CONTROL_BACKLIGHT_OFF;
985 
986 	/*cntl.engine_id = ctx->engine;*/
987 	cntl.transmitter = link->link_enc->transmitter;
988 	cntl.connector_obj_id = link->link_enc->connector;
989 	/*todo: unhardcode*/
990 	cntl.lanes_number = LANE_COUNT_FOUR;
991 	cntl.hpd_sel = link->link_enc->hpd_source;
992 	cntl.signal = SIGNAL_TYPE_EDP;
993 
994 	/* For eDP, the following delays might need to be considered
995 	 * after link training completed:
996 	 * idle period - min. accounts for required BS-Idle pattern,
997 	 * max. allows for source frame synchronization);
998 	 * 50 msec max. delay from valid video data from source
999 	 * to video on dislpay or backlight enable.
1000 	 *
1001 	 * Disable the delay for now.
1002 	 * Enable it in the future if necessary.
1003 	 */
1004 	/* dc_service_sleep_in_milliseconds(50); */
1005 		/*edp 1.2*/
1006 	if (link->panel_cntl)
1007 		pwrseq_instance = link->panel_cntl->pwrseq_inst;
1008 
1009 	if (cntl.action == TRANSMITTER_CONTROL_BACKLIGHT_ON) {
1010 		if (!link->dc->config.edp_no_power_sequencing)
1011 		/*
1012 		 * Sometimes, DP receiver chip power-controlled externally by an
1013 		 * Embedded Controller could be treated and used as eDP,
1014 		 * if it drives mobile display. In this case,
1015 		 * we shouldn't be doing power-sequencing, hence we can skip
1016 		 * waiting for T7-ready.
1017 		 */
1018 			ctx->dc->link_srv->edp_receiver_ready_T7(link);
1019 		else
1020 			DC_LOG_DC("edp_receiver_ready_T7 skipped\n");
1021 	}
1022 
1023 	/* Setting link_powered_externally will bypass delays in the backlight
1024 	 * as they are not required if the link is being powered by a different
1025 	 * source.
1026 	 */
1027 	if (ctx->dc->ctx->dmub_srv &&
1028 			ctx->dc->debug.dmub_command_table) {
1029 		if (cntl.action == TRANSMITTER_CONTROL_BACKLIGHT_ON)
1030 			ctx->dc_bios->funcs->enable_lvtma_control(ctx->dc_bios,
1031 					LVTMA_CONTROL_LCD_BLON,
1032 					pwrseq_instance, link->link_powered_externally);
1033 		else
1034 			ctx->dc_bios->funcs->enable_lvtma_control(ctx->dc_bios,
1035 					LVTMA_CONTROL_LCD_BLOFF,
1036 					pwrseq_instance, link->link_powered_externally);
1037 	}
1038 
1039 	link_transmitter_control(ctx->dc_bios, &cntl);
1040 
1041 	if (enable && link->dpcd_sink_ext_caps.bits.oled &&
1042 	    !link->dc->config.edp_no_power_sequencing) {
1043 		post_T7_delay += link->panel_config.pps.extra_post_t7_ms;
1044 		msleep(post_T7_delay);
1045 	}
1046 
1047 	if (link->dpcd_sink_ext_caps.bits.oled ||
1048 		link->dpcd_sink_ext_caps.bits.hdr_aux_backlight_control == 1 ||
1049 		link->dpcd_sink_ext_caps.bits.sdr_aux_backlight_control == 1)
1050 		ctx->dc->link_srv->edp_backlight_enable_aux(link, enable);
1051 
1052 	/*edp 1.2*/
1053 	if (cntl.action == TRANSMITTER_CONTROL_BACKLIGHT_OFF) {
1054 		if (!link->dc->config.edp_no_power_sequencing)
1055 		/*
1056 		 * Sometimes, DP receiver chip power-controlled externally by an
1057 		 * Embedded Controller could be treated and used as eDP,
1058 		 * if it drives mobile display. In this case,
1059 		 * we shouldn't be doing power-sequencing, hence we can skip
1060 		 * waiting for T9-ready.
1061 		 */
1062 			ctx->dc->link_srv->edp_add_delay_for_T9(link);
1063 		else
1064 			DC_LOG_DC("edp_receiver_ready_T9 skipped\n");
1065 	}
1066 
1067 	if (!enable) {
1068 		/*follow oem panel config's requirement*/
1069 		pre_T11_delay += link->panel_config.pps.extra_pre_t11_ms;
1070 		if (pre_T11_delay)
1071 			msleep(pre_T11_delay);
1072 	}
1073 }
1074 
dce110_enable_audio_stream(struct pipe_ctx * pipe_ctx)1075 void dce110_enable_audio_stream(struct pipe_ctx *pipe_ctx)
1076 {
1077 	/* notify audio driver for audio modes of monitor */
1078 	struct dc *dc;
1079 	struct clk_mgr *clk_mgr;
1080 	unsigned int i, num_audio = 1;
1081 	const struct link_hwss *link_hwss;
1082 
1083 	if (!pipe_ctx->stream)
1084 		return;
1085 
1086 	dc = pipe_ctx->stream->ctx->dc;
1087 	clk_mgr = dc->clk_mgr;
1088 	link_hwss = get_link_hwss(pipe_ctx->stream->link, &pipe_ctx->link_res);
1089 
1090 	if (pipe_ctx->stream_res.audio && pipe_ctx->stream_res.audio->enabled == true)
1091 		return;
1092 
1093 	if (pipe_ctx->stream_res.audio) {
1094 		for (i = 0; i < MAX_PIPES; i++) {
1095 			/*current_state not updated yet*/
1096 			if (dc->current_state->res_ctx.pipe_ctx[i].stream_res.audio != NULL)
1097 				num_audio++;
1098 		}
1099 
1100 		pipe_ctx->stream_res.audio->funcs->az_enable(pipe_ctx->stream_res.audio);
1101 
1102 		if (num_audio >= 1 && clk_mgr->funcs->enable_pme_wa)
1103 			/*this is the first audio. apply the PME w/a in order to wake AZ from D3*/
1104 			clk_mgr->funcs->enable_pme_wa(clk_mgr);
1105 
1106 		link_hwss->enable_audio_packet(pipe_ctx);
1107 
1108 		if (pipe_ctx->stream_res.audio)
1109 			pipe_ctx->stream_res.audio->enabled = true;
1110 	}
1111 }
1112 
dce110_disable_audio_stream(struct pipe_ctx * pipe_ctx)1113 void dce110_disable_audio_stream(struct pipe_ctx *pipe_ctx)
1114 {
1115 	struct dc *dc;
1116 	struct clk_mgr *clk_mgr;
1117 	const struct link_hwss *link_hwss;
1118 
1119 	if (!pipe_ctx || !pipe_ctx->stream)
1120 		return;
1121 
1122 	dc = pipe_ctx->stream->ctx->dc;
1123 	clk_mgr = dc->clk_mgr;
1124 	link_hwss = get_link_hwss(pipe_ctx->stream->link, &pipe_ctx->link_res);
1125 
1126 	if (pipe_ctx->stream_res.audio && pipe_ctx->stream_res.audio->enabled == false)
1127 		return;
1128 
1129 	link_hwss->disable_audio_packet(pipe_ctx);
1130 
1131 	if (pipe_ctx->stream_res.audio) {
1132 		pipe_ctx->stream_res.audio->enabled = false;
1133 
1134 		if (clk_mgr->funcs->enable_pme_wa)
1135 			/*this is the first audio. apply the PME w/a in order to wake AZ from D3*/
1136 			clk_mgr->funcs->enable_pme_wa(clk_mgr);
1137 
1138 		/* TODO: notify audio driver for if audio modes list changed
1139 		 * add audio mode list change flag */
1140 		/* dal_audio_disable_azalia_audio_jack_presence(stream->audio,
1141 		 * stream->stream_engine_id);
1142 		 */
1143 	}
1144 }
1145 
dce110_disable_stream(struct pipe_ctx * pipe_ctx)1146 void dce110_disable_stream(struct pipe_ctx *pipe_ctx)
1147 {
1148 	struct dc_stream_state *stream = pipe_ctx->stream;
1149 	struct dc_link *link = stream->link;
1150 	struct dc *dc = pipe_ctx->stream->ctx->dc;
1151 	const struct link_hwss *link_hwss = get_link_hwss(link, &pipe_ctx->link_res);
1152 	struct dccg *dccg = dc->res_pool->dccg;
1153 	struct timing_generator *tg = pipe_ctx->stream_res.tg;
1154 	struct dtbclk_dto_params dto_params = {0};
1155 	int dp_hpo_inst;
1156 	struct link_encoder *link_enc = link_enc_cfg_get_link_enc(pipe_ctx->stream->link);
1157 	struct stream_encoder *stream_enc = pipe_ctx->stream_res.stream_enc;
1158 
1159 	if (dc_is_hdmi_tmds_signal(pipe_ctx->stream->signal)) {
1160 		pipe_ctx->stream_res.stream_enc->funcs->stop_hdmi_info_packets(
1161 			pipe_ctx->stream_res.stream_enc);
1162 		pipe_ctx->stream_res.stream_enc->funcs->hdmi_reset_stream_attribute(
1163 			pipe_ctx->stream_res.stream_enc);
1164 	}
1165 
1166 	if (dc->link_srv->dp_is_128b_132b_signal(pipe_ctx)) {
1167 		pipe_ctx->stream_res.hpo_dp_stream_enc->funcs->stop_dp_info_packets(
1168 					pipe_ctx->stream_res.hpo_dp_stream_enc);
1169 	} else if (dc_is_dp_signal(pipe_ctx->stream->signal))
1170 		pipe_ctx->stream_res.stream_enc->funcs->stop_dp_info_packets(
1171 			pipe_ctx->stream_res.stream_enc);
1172 
1173 	dc->hwss.disable_audio_stream(pipe_ctx);
1174 
1175 	link_hwss->reset_stream_encoder(pipe_ctx);
1176 
1177 	if (dc->link_srv->dp_is_128b_132b_signal(pipe_ctx) && dccg) {
1178 		dto_params.otg_inst = tg->inst;
1179 		dto_params.timing = &pipe_ctx->stream->timing;
1180 		dp_hpo_inst = pipe_ctx->stream_res.hpo_dp_stream_enc->inst;
1181 		if (dccg) {
1182 			dccg->funcs->disable_symclk32_se(dccg, dp_hpo_inst);
1183 			dccg->funcs->set_dpstreamclk(dccg, REFCLK, tg->inst, dp_hpo_inst);
1184 			if (dccg && dccg->funcs->set_dtbclk_dto)
1185 				dccg->funcs->set_dtbclk_dto(dccg, &dto_params);
1186 		}
1187 	} else if (dccg && dccg->funcs->disable_symclk_se) {
1188 		dccg->funcs->disable_symclk_se(dccg, stream_enc->stream_enc_inst,
1189 					       link_enc->transmitter - TRANSMITTER_UNIPHY_A);
1190 	}
1191 }
1192 
dce110_unblank_stream(struct pipe_ctx * pipe_ctx,struct dc_link_settings * link_settings)1193 void dce110_unblank_stream(struct pipe_ctx *pipe_ctx,
1194 		struct dc_link_settings *link_settings)
1195 {
1196 	struct encoder_unblank_param params = { { 0 } };
1197 	struct dc_stream_state *stream = pipe_ctx->stream;
1198 	struct dc_link *link = stream->link;
1199 	struct dce_hwseq *hws = link->dc->hwseq;
1200 
1201 	/* only 3 items below are used by unblank */
1202 	params.timing = pipe_ctx->stream->timing;
1203 	params.link_settings.link_rate = link_settings->link_rate;
1204 
1205 	if (dc_is_dp_signal(pipe_ctx->stream->signal))
1206 		pipe_ctx->stream_res.stream_enc->funcs->dp_unblank(link, pipe_ctx->stream_res.stream_enc, &params);
1207 
1208 	if (link->local_sink && link->local_sink->sink_signal == SIGNAL_TYPE_EDP) {
1209 		hws->funcs.edp_backlight_control(link, true);
1210 	}
1211 }
1212 
dce110_blank_stream(struct pipe_ctx * pipe_ctx)1213 void dce110_blank_stream(struct pipe_ctx *pipe_ctx)
1214 {
1215 	struct dc_stream_state *stream = pipe_ctx->stream;
1216 	struct dc_link *link = stream->link;
1217 	struct dce_hwseq *hws = link->dc->hwseq;
1218 
1219 	if (link->local_sink && link->local_sink->sink_signal == SIGNAL_TYPE_EDP) {
1220 		if (!link->skip_implict_edp_power_control && hws)
1221 			hws->funcs.edp_backlight_control(link, false);
1222 		link->dc->hwss.set_abm_immediate_disable(pipe_ctx);
1223 	}
1224 
1225 	if (link->dc->link_srv->dp_is_128b_132b_signal(pipe_ctx)) {
1226 		/* TODO - DP2.0 HW: Set ODM mode in dp hpo encoder here */
1227 		pipe_ctx->stream_res.hpo_dp_stream_enc->funcs->dp_blank(
1228 				pipe_ctx->stream_res.hpo_dp_stream_enc);
1229 	} else if (dc_is_dp_signal(pipe_ctx->stream->signal)) {
1230 		pipe_ctx->stream_res.stream_enc->funcs->dp_blank(link, pipe_ctx->stream_res.stream_enc);
1231 
1232 		if (!dc_is_embedded_signal(pipe_ctx->stream->signal)) {
1233 			/*
1234 			 * After output is idle pattern some sinks need time to recognize the stream
1235 			 * has changed or they enter protection state and hang.
1236 			 */
1237 			msleep(60);
1238 		}
1239 	}
1240 
1241 	if (pipe_ctx->stream->signal == SIGNAL_TYPE_EDP &&
1242 	    !link->dc->config.edp_no_power_sequencing) {
1243 			/*
1244 			 * Sometimes, DP receiver chip power-controlled externally by an
1245 			 * Embedded Controller could be treated and used as eDP,
1246 			 * if it drives mobile display. In this case,
1247 			 * we shouldn't be doing power-sequencing, hence we can skip
1248 			 * waiting for T9-ready.
1249 			 */
1250 		link->dc->link_srv->edp_receiver_ready_T9(link);
1251 	}
1252 
1253 }
1254 
1255 
dce110_set_avmute(struct pipe_ctx * pipe_ctx,bool enable)1256 void dce110_set_avmute(struct pipe_ctx *pipe_ctx, bool enable)
1257 {
1258 	if (pipe_ctx != NULL && pipe_ctx->stream_res.stream_enc != NULL)
1259 		pipe_ctx->stream_res.stream_enc->funcs->set_avmute(pipe_ctx->stream_res.stream_enc, enable);
1260 }
1261 
translate_to_dto_source(enum controller_id crtc_id)1262 static enum audio_dto_source translate_to_dto_source(enum controller_id crtc_id)
1263 {
1264 	switch (crtc_id) {
1265 	case CONTROLLER_ID_D0:
1266 		return DTO_SOURCE_ID0;
1267 	case CONTROLLER_ID_D1:
1268 		return DTO_SOURCE_ID1;
1269 	case CONTROLLER_ID_D2:
1270 		return DTO_SOURCE_ID2;
1271 	case CONTROLLER_ID_D3:
1272 		return DTO_SOURCE_ID3;
1273 	case CONTROLLER_ID_D4:
1274 		return DTO_SOURCE_ID4;
1275 	case CONTROLLER_ID_D5:
1276 		return DTO_SOURCE_ID5;
1277 	default:
1278 		return DTO_SOURCE_UNKNOWN;
1279 	}
1280 }
1281 
populate_audio_dp_link_info(const struct pipe_ctx * pipe_ctx,struct audio_dp_link_info * dp_link_info)1282 static void populate_audio_dp_link_info(
1283 	const struct pipe_ctx *pipe_ctx,
1284 	struct audio_dp_link_info *dp_link_info)
1285 {
1286 	const struct dc_stream_state *stream = pipe_ctx->stream;
1287 	const struct dc_link *link = stream->link;
1288 	struct fixed31_32 link_bw_kbps;
1289 
1290 	dp_link_info->encoding = link->dc->link_srv->dp_get_encoding_format(
1291 				&pipe_ctx->link_config.dp_link_settings);
1292 	dp_link_info->is_mst = (stream->signal == SIGNAL_TYPE_DISPLAY_PORT_MST);
1293 	dp_link_info->lane_count = pipe_ctx->link_config.dp_link_settings.lane_count;
1294 	dp_link_info->link_rate = pipe_ctx->link_config.dp_link_settings.link_rate;
1295 
1296 	link_bw_kbps = dc_fixpt_from_int(dc_link_bandwidth_kbps(link,
1297 			&pipe_ctx->link_config.dp_link_settings));
1298 
1299 	/* For audio stream calculations, the video stream should not include FEC or SSC
1300 	 * in order to get the most pessimistic values.
1301 	 */
1302 	if (dp_link_info->encoding == DP_8b_10b_ENCODING &&
1303 			link->dc->link_srv->dp_is_fec_supported(link)) {
1304 		link_bw_kbps = dc_fixpt_mul(link_bw_kbps,
1305 				dc_fixpt_from_fraction(100, DATA_EFFICIENCY_8b_10b_FEC_EFFICIENCY_x100));
1306 	} else if (dp_link_info->encoding == DP_128b_132b_ENCODING) {
1307 		link_bw_kbps = dc_fixpt_mul(link_bw_kbps,
1308 				dc_fixpt_from_fraction(10000, 9975)); /* 99.75% SSC overhead*/
1309 	}
1310 
1311 	dp_link_info->link_bandwidth_kbps = dc_fixpt_floor(link_bw_kbps);
1312 
1313 	/* Calculates hblank_min_symbol_width for 128b/132b
1314 	 * Corresponding HBLANK_MIN_SYMBOL_WIDTH register is calculated as:
1315 	 *   floor(h_blank * bits_per_pixel / 128)
1316 	 */
1317 	if (dp_link_info->encoding == DP_128b_132b_ENCODING) {
1318 		struct dc_crtc_timing *crtc_timing = &pipe_ctx->stream->timing;
1319 
1320 		uint32_t h_active = crtc_timing->h_addressable + crtc_timing->h_border_left
1321 				+ crtc_timing->h_border_right;
1322 		uint32_t h_blank = crtc_timing->h_total - h_active;
1323 
1324 		uint32_t bpp;
1325 
1326 		if (crtc_timing->flags.DSC) {
1327 			bpp = crtc_timing->dsc_cfg.bits_per_pixel;
1328 		} else {
1329 			/* When the timing is using DSC, dsc_cfg.bits_per_pixel is in 16th bits.
1330 			 * The bpp in this path is scaled to 16th bits so the final calculation
1331 			 * is correct for both cases.
1332 			 */
1333 			bpp = 16;
1334 			switch (crtc_timing->display_color_depth) {
1335 			case COLOR_DEPTH_666:
1336 				bpp *= 18;
1337 				break;
1338 			case COLOR_DEPTH_888:
1339 				bpp *= 24;
1340 				break;
1341 			case COLOR_DEPTH_101010:
1342 				bpp *= 30;
1343 				break;
1344 			case COLOR_DEPTH_121212:
1345 				bpp *= 36;
1346 				break;
1347 			default:
1348 				bpp = 0;
1349 				break;
1350 			}
1351 
1352 			switch (crtc_timing->pixel_encoding) {
1353 			case PIXEL_ENCODING_YCBCR422:
1354 				bpp = bpp * 2 / 3;
1355 				break;
1356 			case PIXEL_ENCODING_YCBCR420:
1357 				bpp /= 2;
1358 				break;
1359 			default:
1360 				break;
1361 			}
1362 		}
1363 
1364 		/* Min symbol width = floor(h_blank * (bpp/16) / 128) */
1365 		dp_link_info->hblank_min_symbol_width = dc_fixpt_floor(
1366 				dc_fixpt_div(dc_fixpt_from_int(h_blank * bpp),
1367 						dc_fixpt_from_int(128 / 16)));
1368 
1369 	} else {
1370 		dp_link_info->hblank_min_symbol_width = 0;
1371 	}
1372 }
1373 
build_audio_output(struct dc_state * state,const struct pipe_ctx * pipe_ctx,struct audio_output * audio_output)1374 static void build_audio_output(
1375 	struct dc_state *state,
1376 	const struct pipe_ctx *pipe_ctx,
1377 	struct audio_output *audio_output)
1378 {
1379 	const struct dc_stream_state *stream = pipe_ctx->stream;
1380 	audio_output->engine_id = pipe_ctx->stream_res.stream_enc->id;
1381 
1382 	audio_output->signal = pipe_ctx->stream->signal;
1383 
1384 	/* audio_crtc_info  */
1385 
1386 	audio_output->crtc_info.h_total =
1387 		stream->timing.h_total;
1388 
1389 	/*
1390 	 * Audio packets are sent during actual CRTC blank physical signal, we
1391 	 * need to specify actual active signal portion
1392 	 */
1393 	audio_output->crtc_info.h_active =
1394 			stream->timing.h_addressable
1395 			+ stream->timing.h_border_left
1396 			+ stream->timing.h_border_right;
1397 
1398 	audio_output->crtc_info.v_active =
1399 			stream->timing.v_addressable
1400 			+ stream->timing.v_border_top
1401 			+ stream->timing.v_border_bottom;
1402 
1403 	audio_output->crtc_info.pixel_repetition = 1;
1404 
1405 	audio_output->crtc_info.interlaced =
1406 			stream->timing.flags.INTERLACE;
1407 
1408 	audio_output->crtc_info.refresh_rate =
1409 		(stream->timing.pix_clk_100hz*100)/
1410 		(stream->timing.h_total*stream->timing.v_total);
1411 
1412 	audio_output->crtc_info.color_depth =
1413 		stream->timing.display_color_depth;
1414 
1415 	audio_output->crtc_info.requested_pixel_clock_100Hz =
1416 			pipe_ctx->stream_res.pix_clk_params.requested_pix_clk_100hz;
1417 
1418 	audio_output->crtc_info.calculated_pixel_clock_100Hz =
1419 			pipe_ctx->stream_res.pix_clk_params.requested_pix_clk_100hz;
1420 
1421 	audio_output->crtc_info.pixel_encoding =
1422 		stream->timing.pixel_encoding;
1423 
1424 	audio_output->crtc_info.dsc_bits_per_pixel =
1425 			stream->timing.dsc_cfg.bits_per_pixel;
1426 
1427 	audio_output->crtc_info.dsc_num_slices =
1428 			stream->timing.dsc_cfg.num_slices_h;
1429 
1430 /*for HDMI, audio ACR is with deep color ratio factor*/
1431 	if (dc_is_hdmi_tmds_signal(pipe_ctx->stream->signal) &&
1432 		audio_output->crtc_info.requested_pixel_clock_100Hz ==
1433 				(stream->timing.pix_clk_100hz)) {
1434 		if (pipe_ctx->stream_res.pix_clk_params.pixel_encoding == PIXEL_ENCODING_YCBCR420) {
1435 			audio_output->crtc_info.requested_pixel_clock_100Hz =
1436 					audio_output->crtc_info.requested_pixel_clock_100Hz/2;
1437 			audio_output->crtc_info.calculated_pixel_clock_100Hz =
1438 					pipe_ctx->stream_res.pix_clk_params.requested_pix_clk_100hz/2;
1439 
1440 		}
1441 	}
1442 
1443 	if (state->clk_mgr &&
1444 		(pipe_ctx->stream->signal == SIGNAL_TYPE_DISPLAY_PORT ||
1445 			pipe_ctx->stream->signal == SIGNAL_TYPE_DISPLAY_PORT_MST)) {
1446 		audio_output->pll_info.audio_dto_source_clock_in_khz =
1447 				state->clk_mgr->funcs->get_dp_ref_clk_frequency(
1448 						state->clk_mgr);
1449 	}
1450 
1451 	audio_output->pll_info.feed_back_divider =
1452 			pipe_ctx->pll_settings.feedback_divider;
1453 
1454 	audio_output->pll_info.dto_source =
1455 		translate_to_dto_source(
1456 			pipe_ctx->stream_res.tg->inst + 1);
1457 
1458 	/* TODO hard code to enable for now. Need get from stream */
1459 	audio_output->pll_info.ss_enabled = true;
1460 
1461 	audio_output->pll_info.ss_percentage =
1462 			pipe_ctx->pll_settings.ss_percentage;
1463 
1464 	if (dc_is_dp_signal(pipe_ctx->stream->signal)) {
1465 		populate_audio_dp_link_info(pipe_ctx, &audio_output->dp_link_info);
1466 	}
1467 }
1468 
program_scaler(const struct dc * dc,const struct pipe_ctx * pipe_ctx)1469 static void program_scaler(const struct dc *dc,
1470 		const struct pipe_ctx *pipe_ctx)
1471 {
1472 	struct tg_color color = {0};
1473 
1474 	/* TOFPGA */
1475 	if (pipe_ctx->plane_res.xfm->funcs->transform_set_pixel_storage_depth == NULL)
1476 		return;
1477 
1478 	if (dc->debug.visual_confirm == VISUAL_CONFIRM_SURFACE)
1479 		get_surface_visual_confirm_color(pipe_ctx, &color);
1480 	else
1481 		color_space_to_black_color(dc,
1482 				pipe_ctx->stream->output_color_space,
1483 				&color);
1484 
1485 	pipe_ctx->plane_res.xfm->funcs->transform_set_pixel_storage_depth(
1486 		pipe_ctx->plane_res.xfm,
1487 		pipe_ctx->plane_res.scl_data.lb_params.depth,
1488 		&pipe_ctx->stream->bit_depth_params);
1489 
1490 	if (pipe_ctx->stream_res.tg->funcs->set_overscan_blank_color) {
1491 		/*
1492 		 * The way 420 is packed, 2 channels carry Y component, 1 channel
1493 		 * alternate between Cb and Cr, so both channels need the pixel
1494 		 * value for Y
1495 		 */
1496 		if (pipe_ctx->stream->timing.pixel_encoding == PIXEL_ENCODING_YCBCR420)
1497 			color.color_r_cr = color.color_g_y;
1498 
1499 		pipe_ctx->stream_res.tg->funcs->set_overscan_blank_color(
1500 				pipe_ctx->stream_res.tg,
1501 				&color);
1502 	}
1503 
1504 	pipe_ctx->plane_res.xfm->funcs->transform_set_scaler(pipe_ctx->plane_res.xfm,
1505 		&pipe_ctx->plane_res.scl_data);
1506 }
1507 
dce110_enable_stream_timing(struct pipe_ctx * pipe_ctx,struct dc_state * context,struct dc * dc)1508 static enum dc_status dce110_enable_stream_timing(
1509 		struct pipe_ctx *pipe_ctx,
1510 		struct dc_state *context,
1511 		struct dc *dc)
1512 {
1513 	struct dc_stream_state *stream = pipe_ctx->stream;
1514 	struct pipe_ctx *pipe_ctx_old = &dc->current_state->res_ctx.
1515 			pipe_ctx[pipe_ctx->pipe_idx];
1516 	struct tg_color black_color = {0};
1517 
1518 	if (!pipe_ctx_old->stream) {
1519 
1520 		/* program blank color */
1521 		color_space_to_black_color(dc,
1522 				stream->output_color_space, &black_color);
1523 		pipe_ctx->stream_res.tg->funcs->set_blank_color(
1524 				pipe_ctx->stream_res.tg,
1525 				&black_color);
1526 
1527 		/*
1528 		 * Must blank CRTC after disabling power gating and before any
1529 		 * programming, otherwise CRTC will be hung in bad state
1530 		 */
1531 		pipe_ctx->stream_res.tg->funcs->set_blank(pipe_ctx->stream_res.tg, true);
1532 
1533 		if (false == pipe_ctx->clock_source->funcs->program_pix_clk(
1534 				pipe_ctx->clock_source,
1535 				&pipe_ctx->stream_res.pix_clk_params,
1536 				dc->link_srv->dp_get_encoding_format(&pipe_ctx->link_config.dp_link_settings),
1537 				&pipe_ctx->pll_settings)) {
1538 			BREAK_TO_DEBUGGER();
1539 			return DC_ERROR_UNEXPECTED;
1540 		}
1541 
1542 		if (dc_is_hdmi_tmds_signal(stream->signal)) {
1543 			stream->link->phy_state.symclk_ref_cnts.otg = 1;
1544 			if (stream->link->phy_state.symclk_state == SYMCLK_OFF_TX_OFF)
1545 				stream->link->phy_state.symclk_state = SYMCLK_ON_TX_OFF;
1546 			else
1547 				stream->link->phy_state.symclk_state = SYMCLK_ON_TX_ON;
1548 		}
1549 
1550 		pipe_ctx->stream_res.tg->funcs->program_timing(
1551 				pipe_ctx->stream_res.tg,
1552 				&stream->timing,
1553 				0,
1554 				0,
1555 				0,
1556 				0,
1557 				0,
1558 				pipe_ctx->stream->signal,
1559 				true);
1560 	}
1561 
1562 	if (!pipe_ctx_old->stream) {
1563 		if (false == pipe_ctx->stream_res.tg->funcs->enable_crtc(
1564 				pipe_ctx->stream_res.tg)) {
1565 			BREAK_TO_DEBUGGER();
1566 			return DC_ERROR_UNEXPECTED;
1567 		}
1568 	}
1569 
1570 	return DC_OK;
1571 }
1572 
dce110_apply_single_controller_ctx_to_hw(struct pipe_ctx * pipe_ctx,struct dc_state * context,struct dc * dc)1573 enum dc_status dce110_apply_single_controller_ctx_to_hw(
1574 		struct pipe_ctx *pipe_ctx,
1575 		struct dc_state *context,
1576 		struct dc *dc)
1577 {
1578 	struct dc_stream_state *stream = pipe_ctx->stream;
1579 	struct dc_link *link = stream->link;
1580 	struct drr_params params = {0};
1581 	unsigned int event_triggers = 0;
1582 	struct pipe_ctx *odm_pipe = pipe_ctx->next_odm_pipe;
1583 	struct dce_hwseq *hws = dc->hwseq;
1584 	const struct link_hwss *link_hwss = get_link_hwss(
1585 			link, &pipe_ctx->link_res);
1586 
1587 
1588 	if (hws->funcs.disable_stream_gating) {
1589 		hws->funcs.disable_stream_gating(dc, pipe_ctx);
1590 	}
1591 
1592 	if (pipe_ctx->stream_res.audio != NULL) {
1593 		struct audio_output audio_output = {0};
1594 
1595 		build_audio_output(context, pipe_ctx, &audio_output);
1596 
1597 		link_hwss->setup_audio_output(pipe_ctx, &audio_output,
1598 				pipe_ctx->stream_res.audio->inst);
1599 
1600 		pipe_ctx->stream_res.audio->funcs->az_configure(
1601 				pipe_ctx->stream_res.audio,
1602 				pipe_ctx->stream->signal,
1603 				&audio_output.crtc_info,
1604 				&pipe_ctx->stream->audio_info,
1605 				&audio_output.dp_link_info);
1606 
1607 		if (dc->config.disable_hbr_audio_dp2)
1608 			if (pipe_ctx->stream_res.audio->funcs->az_disable_hbr_audio &&
1609 					dc->link_srv->dp_is_128b_132b_signal(pipe_ctx))
1610 				pipe_ctx->stream_res.audio->funcs->az_disable_hbr_audio(pipe_ctx->stream_res.audio);
1611 	}
1612 
1613 	/* make sure no pipes syncd to the pipe being enabled */
1614 	if (!pipe_ctx->stream->apply_seamless_boot_optimization && dc->config.use_pipe_ctx_sync_logic)
1615 		check_syncd_pipes_for_disabled_master_pipe(dc, context, pipe_ctx->pipe_idx);
1616 
1617 	pipe_ctx->stream_res.opp->funcs->opp_program_fmt(
1618 		pipe_ctx->stream_res.opp,
1619 		&stream->bit_depth_params,
1620 		&stream->clamping);
1621 
1622 	pipe_ctx->stream_res.opp->funcs->opp_set_dyn_expansion(
1623 			pipe_ctx->stream_res.opp,
1624 			COLOR_SPACE_YCBCR601,
1625 			stream->timing.display_color_depth,
1626 			stream->signal);
1627 
1628 	while (odm_pipe) {
1629 		odm_pipe->stream_res.opp->funcs->opp_set_dyn_expansion(
1630 				odm_pipe->stream_res.opp,
1631 				COLOR_SPACE_YCBCR601,
1632 				stream->timing.display_color_depth,
1633 				stream->signal);
1634 
1635 		odm_pipe->stream_res.opp->funcs->opp_program_fmt(
1636 				odm_pipe->stream_res.opp,
1637 				&stream->bit_depth_params,
1638 				&stream->clamping);
1639 		odm_pipe = odm_pipe->next_odm_pipe;
1640 	}
1641 
1642 	/* DCN3.1 FPGA Workaround
1643 	 * Need to enable HPO DP Stream Encoder before setting OTG master enable.
1644 	 * To do so, move calling function enable_stream_timing to only be done AFTER calling
1645 	 * function core_link_enable_stream
1646 	 */
1647 	if (!(hws->wa.dp_hpo_and_otg_sequence && dc->link_srv->dp_is_128b_132b_signal(pipe_ctx)))
1648 		/*  */
1649 		/* Do not touch stream timing on seamless boot optimization. */
1650 		if (!pipe_ctx->stream->apply_seamless_boot_optimization)
1651 			hws->funcs.enable_stream_timing(pipe_ctx, context, dc);
1652 
1653 	if (hws->funcs.setup_vupdate_interrupt)
1654 		hws->funcs.setup_vupdate_interrupt(dc, pipe_ctx);
1655 
1656 	params.vertical_total_min = stream->adjust.v_total_min;
1657 	params.vertical_total_max = stream->adjust.v_total_max;
1658 	set_drr_and_clear_adjust_pending(pipe_ctx, stream, &params);
1659 
1660 	// DRR should set trigger event to monitor surface update event
1661 	if (stream->adjust.v_total_min != 0 && stream->adjust.v_total_max != 0)
1662 		event_triggers = 0x80;
1663 	/* Event triggers and num frames initialized for DRR, but can be
1664 	 * later updated for PSR use. Note DRR trigger events are generated
1665 	 * regardless of whether num frames met.
1666 	 */
1667 	if (pipe_ctx->stream_res.tg->funcs->set_static_screen_control)
1668 		pipe_ctx->stream_res.tg->funcs->set_static_screen_control(
1669 				pipe_ctx->stream_res.tg, event_triggers, 2);
1670 
1671 	if (!dc_is_virtual_signal(pipe_ctx->stream->signal))
1672 		pipe_ctx->stream_res.stream_enc->funcs->dig_connect_to_otg(
1673 			pipe_ctx->stream_res.stream_enc,
1674 			pipe_ctx->stream_res.tg->inst);
1675 
1676 	if (dc_is_dp_signal(pipe_ctx->stream->signal))
1677 		dc->link_srv->dp_trace_source_sequence(link, DPCD_SOURCE_SEQ_AFTER_CONNECT_DIG_FE_OTG);
1678 
1679 	if (!stream->dpms_off)
1680 		dc->link_srv->set_dpms_on(context, pipe_ctx);
1681 
1682 	/* DCN3.1 FPGA Workaround
1683 	 * Need to enable HPO DP Stream Encoder before setting OTG master enable.
1684 	 * To do so, move calling function enable_stream_timing to only be done AFTER calling
1685 	 * function core_link_enable_stream
1686 	 */
1687 	if (hws->wa.dp_hpo_and_otg_sequence && dc->link_srv->dp_is_128b_132b_signal(pipe_ctx)) {
1688 		if (!pipe_ctx->stream->apply_seamless_boot_optimization)
1689 			hws->funcs.enable_stream_timing(pipe_ctx, context, dc);
1690 	}
1691 
1692 	pipe_ctx->plane_res.scl_data.lb_params.alpha_en = pipe_ctx->bottom_pipe != NULL;
1693 
1694 	/* Phantom and main stream share the same link (because the stream
1695 	 * is constructed with the same sink). Make sure not to override
1696 	 * and link programming on the main.
1697 	 */
1698 	if (dc_state_get_pipe_subvp_type(context, pipe_ctx) != SUBVP_PHANTOM) {
1699 		pipe_ctx->stream->link->psr_settings.psr_feature_enabled = false;
1700 		pipe_ctx->stream->link->replay_settings.replay_feature_enabled = false;
1701 	}
1702 	return DC_OK;
1703 }
1704 
1705 /******************************************************************************/
1706 
power_down_encoders(struct dc * dc)1707 static void power_down_encoders(struct dc *dc)
1708 {
1709 	int i;
1710 
1711 	for (i = 0; i < dc->link_count; i++) {
1712 		enum signal_type signal = dc->links[i]->connector_signal;
1713 
1714 		dc->link_srv->blank_dp_stream(dc->links[i], false);
1715 
1716 		if (signal != SIGNAL_TYPE_EDP)
1717 			signal = SIGNAL_TYPE_NONE;
1718 
1719 		if (dc->links[i]->ep_type == DISPLAY_ENDPOINT_PHY)
1720 			dc->links[i]->link_enc->funcs->disable_output(
1721 					dc->links[i]->link_enc, signal);
1722 
1723 		dc->links[i]->link_status.link_active = false;
1724 		memset(&dc->links[i]->cur_link_settings, 0,
1725 				sizeof(dc->links[i]->cur_link_settings));
1726 	}
1727 }
1728 
power_down_controllers(struct dc * dc)1729 static void power_down_controllers(struct dc *dc)
1730 {
1731 	int i;
1732 
1733 	for (i = 0; i < dc->res_pool->timing_generator_count; i++) {
1734 		dc->res_pool->timing_generators[i]->funcs->disable_crtc(
1735 				dc->res_pool->timing_generators[i]);
1736 	}
1737 }
1738 
power_down_clock_sources(struct dc * dc)1739 static void power_down_clock_sources(struct dc *dc)
1740 {
1741 	int i;
1742 
1743 	if (dc->res_pool->dp_clock_source->funcs->cs_power_down(
1744 		dc->res_pool->dp_clock_source) == false)
1745 		dm_error("Failed to power down pll! (dp clk src)\n");
1746 
1747 	for (i = 0; i < dc->res_pool->clk_src_count; i++) {
1748 		if (dc->res_pool->clock_sources[i]->funcs->cs_power_down(
1749 				dc->res_pool->clock_sources[i]) == false)
1750 			dm_error("Failed to power down pll! (clk src index=%d)\n", i);
1751 	}
1752 }
1753 
power_down_all_hw_blocks(struct dc * dc)1754 static void power_down_all_hw_blocks(struct dc *dc)
1755 {
1756 	power_down_encoders(dc);
1757 
1758 	power_down_controllers(dc);
1759 
1760 	power_down_clock_sources(dc);
1761 
1762 	if (dc->fbc_compressor)
1763 		dc->fbc_compressor->funcs->disable_fbc(dc->fbc_compressor);
1764 }
1765 
disable_vga_and_power_gate_all_controllers(struct dc * dc)1766 static void disable_vga_and_power_gate_all_controllers(
1767 		struct dc *dc)
1768 {
1769 	int i;
1770 	struct timing_generator *tg;
1771 	struct dc_context *ctx = dc->ctx;
1772 
1773 	for (i = 0; i < dc->res_pool->timing_generator_count; i++) {
1774 		tg = dc->res_pool->timing_generators[i];
1775 
1776 		if (tg->funcs->disable_vga)
1777 			tg->funcs->disable_vga(tg);
1778 	}
1779 	for (i = 0; i < dc->res_pool->pipe_count; i++) {
1780 		/* Enable CLOCK gating for each pipe BEFORE controller
1781 		 * powergating. */
1782 		enable_display_pipe_clock_gating(ctx,
1783 				true);
1784 
1785 		dc->current_state->res_ctx.pipe_ctx[i].pipe_idx = i;
1786 		dc->hwss.disable_plane(dc, dc->current_state,
1787 			&dc->current_state->res_ctx.pipe_ctx[i]);
1788 	}
1789 }
1790 
1791 
get_edp_streams(struct dc_state * context,struct dc_stream_state ** edp_streams,int * edp_stream_num)1792 static void get_edp_streams(struct dc_state *context,
1793 		struct dc_stream_state **edp_streams,
1794 		int *edp_stream_num)
1795 {
1796 	int i;
1797 
1798 	*edp_stream_num = 0;
1799 	for (i = 0; i < context->stream_count; i++) {
1800 		if (context->streams[i]->signal == SIGNAL_TYPE_EDP) {
1801 			edp_streams[*edp_stream_num] = context->streams[i];
1802 			if (++(*edp_stream_num) == MAX_NUM_EDP)
1803 				return;
1804 		}
1805 	}
1806 }
1807 
get_edp_links_with_sink(struct dc * dc,struct dc_link ** edp_links_with_sink,int * edp_with_sink_num)1808 static void get_edp_links_with_sink(
1809 		struct dc *dc,
1810 		struct dc_link **edp_links_with_sink,
1811 		int *edp_with_sink_num)
1812 {
1813 	int i;
1814 
1815 	/* check if there is an eDP panel not in use */
1816 	*edp_with_sink_num = 0;
1817 	for (i = 0; i < dc->link_count; i++) {
1818 		if (dc->links[i]->local_sink &&
1819 			dc->links[i]->local_sink->sink_signal == SIGNAL_TYPE_EDP) {
1820 			edp_links_with_sink[*edp_with_sink_num] = dc->links[i];
1821 			if (++(*edp_with_sink_num) == MAX_NUM_EDP)
1822 				return;
1823 		}
1824 	}
1825 }
1826 
clean_up_dsc_blocks(struct dc * dc)1827 static void clean_up_dsc_blocks(struct dc *dc)
1828 {
1829 	struct display_stream_compressor *dsc = NULL;
1830 	struct timing_generator *tg = NULL;
1831 	struct stream_encoder *se = NULL;
1832 	struct dccg *dccg = dc->res_pool->dccg;
1833 	struct pg_cntl *pg_cntl = dc->res_pool->pg_cntl;
1834 	int i;
1835 
1836 	if (dc->ctx->dce_version != DCN_VERSION_3_5 &&
1837 		dc->ctx->dce_version != DCN_VERSION_3_51)
1838 		return;
1839 
1840 	for (i = 0; i < dc->res_pool->res_cap->num_dsc; i++) {
1841 		struct dcn_dsc_state s  = {0};
1842 
1843 		dsc = dc->res_pool->dscs[i];
1844 		dsc->funcs->dsc_read_state(dsc, &s);
1845 		if (s.dsc_fw_en) {
1846 			/* disable DSC in OPTC */
1847 			if (i < dc->res_pool->timing_generator_count) {
1848 				tg = dc->res_pool->timing_generators[i];
1849 				tg->funcs->set_dsc_config(tg, OPTC_DSC_DISABLED, 0, 0);
1850 			}
1851 			/* disable DSC in stream encoder */
1852 			if (i < dc->res_pool->stream_enc_count) {
1853 				se = dc->res_pool->stream_enc[i];
1854 				se->funcs->dp_set_dsc_config(se, OPTC_DSC_DISABLED, 0, 0);
1855 				se->funcs->dp_set_dsc_pps_info_packet(se, false, NULL, true);
1856 			}
1857 			/* disable DSC block */
1858 			if (dccg->funcs->set_ref_dscclk)
1859 				dccg->funcs->set_ref_dscclk(dccg, dsc->inst);
1860 			dsc->funcs->dsc_disable(dsc);
1861 
1862 			/* power down DSC */
1863 			if (pg_cntl != NULL)
1864 				pg_cntl->funcs->dsc_pg_control(pg_cntl, dsc->inst, false);
1865 		}
1866 	}
1867 }
1868 
1869 /*
1870  * When ASIC goes from VBIOS/VGA mode to driver/accelerated mode we need:
1871  *  1. Power down all DC HW blocks
1872  *  2. Disable VGA engine on all controllers
1873  *  3. Enable power gating for controller
1874  *  4. Set acc_mode_change bit (VBIOS will clear this bit when going to FSDOS)
1875  */
dce110_enable_accelerated_mode(struct dc * dc,struct dc_state * context)1876 void dce110_enable_accelerated_mode(struct dc *dc, struct dc_state *context)
1877 {
1878 	struct dc_link *edp_links_with_sink[MAX_NUM_EDP];
1879 	struct dc_link *edp_links[MAX_NUM_EDP];
1880 	struct dc_stream_state *edp_streams[MAX_NUM_EDP];
1881 	struct dc_link *edp_link_with_sink = NULL;
1882 	struct dc_link *edp_link = NULL;
1883 	struct pipe_ctx *pipe_ctx = NULL;
1884 	struct dce_hwseq *hws = dc->hwseq;
1885 	int edp_with_sink_num;
1886 	int edp_num;
1887 	int edp_stream_num;
1888 	int i;
1889 	bool can_apply_edp_fast_boot = false;
1890 	bool can_apply_seamless_boot = false;
1891 	bool keep_edp_vdd_on = false;
1892 	struct dc_bios *dcb = dc->ctx->dc_bios;
1893 	DC_LOGGER_INIT();
1894 
1895 
1896 	get_edp_links_with_sink(dc, edp_links_with_sink, &edp_with_sink_num);
1897 	dc_get_edp_links(dc, edp_links, &edp_num);
1898 
1899 	if (hws->funcs.init_pipes)
1900 		hws->funcs.init_pipes(dc, context);
1901 
1902 	get_edp_streams(context, edp_streams, &edp_stream_num);
1903 
1904 	// Check fastboot support, disable on DCE8 because of blank screens
1905 	if (edp_num && edp_stream_num && dc->ctx->dce_version != DCE_VERSION_8_0 &&
1906 		    dc->ctx->dce_version != DCE_VERSION_8_1 &&
1907 		    dc->ctx->dce_version != DCE_VERSION_8_3) {
1908 		for (i = 0; i < edp_num; i++) {
1909 			edp_link = edp_links[i];
1910 			if (edp_link != edp_streams[0]->link)
1911 				continue;
1912 			// enable fastboot if backend is enabled on eDP
1913 			if (edp_link->link_enc->funcs->is_dig_enabled &&
1914 			    edp_link->link_enc->funcs->is_dig_enabled(edp_link->link_enc) &&
1915 			    edp_link->link_status.link_active) {
1916 				struct dc_stream_state *edp_stream = edp_streams[0];
1917 
1918 				can_apply_edp_fast_boot = dc_validate_boot_timing(dc,
1919 					edp_stream->sink, &edp_stream->timing);
1920 				edp_stream->apply_edp_fast_boot_optimization = can_apply_edp_fast_boot;
1921 				if (can_apply_edp_fast_boot) {
1922 					DC_LOG_EVENT_LINK_TRAINING("eDP fast boot Enable\n");
1923 
1924 					// Vbios & Driver support different pixel rate div policy.
1925 					pipe_ctx = resource_get_otg_master_for_stream(&context->res_ctx, edp_stream);
1926 					if (pipe_ctx &&
1927 						hws->funcs.is_dp_dig_pixel_rate_div_policy &&
1928 						hws->funcs.is_dp_dig_pixel_rate_div_policy(pipe_ctx)) {
1929 						// Get Vbios div factor from register
1930 						dc->res_pool->dccg->funcs->get_pixel_rate_div(
1931 							dc->res_pool->dccg,
1932 							pipe_ctx->stream_res.tg->inst,
1933 							&pipe_ctx->pixel_rate_divider.div_factor1,
1934 							&pipe_ctx->pixel_rate_divider.div_factor2);
1935 
1936 						// VBios doesn't support pixel rate div, so force it.
1937 						// If VBios supports it, we check it from reigster or other flags.
1938 						pipe_ctx->stream_res.pix_clk_params.dio_se_pix_per_cycle = 1;
1939 					}
1940 				}
1941 				break;
1942 			}
1943 		}
1944 		// We are trying to enable eDP, don't power down VDD
1945 		if (can_apply_edp_fast_boot)
1946 			keep_edp_vdd_on = true;
1947 	}
1948 
1949 	// Check seamless boot support
1950 	for (i = 0; i < context->stream_count; i++) {
1951 		if (context->streams[i]->apply_seamless_boot_optimization) {
1952 			can_apply_seamless_boot = true;
1953 			break;
1954 		}
1955 	}
1956 
1957 	/* eDP should not have stream in resume from S4 and so even with VBios post
1958 	 * it should get turned off
1959 	 */
1960 	if (edp_with_sink_num)
1961 		edp_link_with_sink = edp_links_with_sink[0];
1962 
1963 	if (!can_apply_edp_fast_boot && !can_apply_seamless_boot) {
1964 		if (edp_link_with_sink && !keep_edp_vdd_on) {
1965 			/*turn off backlight before DP_blank and encoder powered down*/
1966 			hws->funcs.edp_backlight_control(edp_link_with_sink, false);
1967 		}
1968 		/*resume from S3, no vbios posting, no need to power down again*/
1969 		if (dcb && dcb->funcs && !dcb->funcs->is_accelerated_mode(dcb))
1970 			clk_mgr_exit_optimized_pwr_state(dc, dc->clk_mgr);
1971 
1972 		power_down_all_hw_blocks(dc);
1973 
1974 		/* DSC could be enabled on eDP during VBIOS post.
1975 		 * To clean up dsc blocks if eDP is in link but not active.
1976 		 */
1977 		if (edp_link_with_sink && (edp_stream_num == 0))
1978 			clean_up_dsc_blocks(dc);
1979 
1980 		disable_vga_and_power_gate_all_controllers(dc);
1981 		if (edp_link_with_sink && !keep_edp_vdd_on)
1982 			dc->hwss.edp_power_control(edp_link_with_sink, false);
1983 		if (dcb && dcb->funcs && !dcb->funcs->is_accelerated_mode(dcb))
1984 			clk_mgr_optimize_pwr_state(dc, dc->clk_mgr);
1985 	}
1986 	bios_set_scratch_acc_mode_change(dc->ctx->dc_bios, 1);
1987 }
1988 
compute_pstate_blackout_duration(struct bw_fixed blackout_duration,const struct dc_stream_state * stream)1989 static uint32_t compute_pstate_blackout_duration(
1990 	struct bw_fixed blackout_duration,
1991 	const struct dc_stream_state *stream)
1992 {
1993 	uint32_t total_dest_line_time_ns;
1994 	uint32_t pstate_blackout_duration_ns;
1995 
1996 	pstate_blackout_duration_ns = 1000 * blackout_duration.value >> 24;
1997 
1998 	total_dest_line_time_ns = 1000000UL *
1999 		(stream->timing.h_total * 10) /
2000 		stream->timing.pix_clk_100hz +
2001 		pstate_blackout_duration_ns;
2002 
2003 	return total_dest_line_time_ns;
2004 }
2005 
dce110_set_displaymarks(const struct dc * dc,struct dc_state * context)2006 static void dce110_set_displaymarks(
2007 	const struct dc *dc,
2008 	struct dc_state *context)
2009 {
2010 	uint8_t i, num_pipes;
2011 	unsigned int underlay_idx = dc->res_pool->underlay_pipe_index;
2012 
2013 	for (i = 0, num_pipes = 0; i < MAX_PIPES; i++) {
2014 		struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[i];
2015 		uint32_t total_dest_line_time_ns;
2016 
2017 		if (pipe_ctx->stream == NULL)
2018 			continue;
2019 
2020 		total_dest_line_time_ns = compute_pstate_blackout_duration(
2021 			dc->bw_vbios->blackout_duration, pipe_ctx->stream);
2022 		pipe_ctx->plane_res.mi->funcs->mem_input_program_display_marks(
2023 			pipe_ctx->plane_res.mi,
2024 			context->bw_ctx.bw.dce.nbp_state_change_wm_ns[num_pipes],
2025 			context->bw_ctx.bw.dce.stutter_exit_wm_ns[num_pipes],
2026 			context->bw_ctx.bw.dce.stutter_entry_wm_ns[num_pipes],
2027 			context->bw_ctx.bw.dce.urgent_wm_ns[num_pipes],
2028 			total_dest_line_time_ns);
2029 		if (i == underlay_idx) {
2030 			num_pipes++;
2031 			pipe_ctx->plane_res.mi->funcs->mem_input_program_chroma_display_marks(
2032 				pipe_ctx->plane_res.mi,
2033 				context->bw_ctx.bw.dce.nbp_state_change_wm_ns[num_pipes],
2034 				context->bw_ctx.bw.dce.stutter_exit_wm_ns[num_pipes],
2035 				context->bw_ctx.bw.dce.urgent_wm_ns[num_pipes],
2036 				total_dest_line_time_ns);
2037 		}
2038 		num_pipes++;
2039 	}
2040 }
2041 
dce110_set_safe_displaymarks(struct resource_context * res_ctx,const struct resource_pool * pool)2042 void dce110_set_safe_displaymarks(
2043 		struct resource_context *res_ctx,
2044 		const struct resource_pool *pool)
2045 {
2046 	int i;
2047 	int underlay_idx = pool->underlay_pipe_index;
2048 	struct dce_watermarks max_marks = {
2049 		MAX_WATERMARK, MAX_WATERMARK, MAX_WATERMARK, MAX_WATERMARK };
2050 	struct dce_watermarks nbp_marks = {
2051 		SAFE_NBP_MARK, SAFE_NBP_MARK, SAFE_NBP_MARK, SAFE_NBP_MARK };
2052 	struct dce_watermarks min_marks = { 0, 0, 0, 0};
2053 
2054 	for (i = 0; i < MAX_PIPES; i++) {
2055 		if (res_ctx->pipe_ctx[i].stream == NULL || res_ctx->pipe_ctx[i].plane_res.mi == NULL)
2056 			continue;
2057 
2058 		res_ctx->pipe_ctx[i].plane_res.mi->funcs->mem_input_program_display_marks(
2059 				res_ctx->pipe_ctx[i].plane_res.mi,
2060 				nbp_marks,
2061 				max_marks,
2062 				min_marks,
2063 				max_marks,
2064 				MAX_WATERMARK);
2065 
2066 		if (i == underlay_idx)
2067 			res_ctx->pipe_ctx[i].plane_res.mi->funcs->mem_input_program_chroma_display_marks(
2068 				res_ctx->pipe_ctx[i].plane_res.mi,
2069 				nbp_marks,
2070 				max_marks,
2071 				max_marks,
2072 				MAX_WATERMARK);
2073 
2074 	}
2075 }
2076 
2077 /*******************************************************************************
2078  * Public functions
2079  ******************************************************************************/
2080 
set_drr(struct pipe_ctx ** pipe_ctx,int num_pipes,struct dc_crtc_timing_adjust adjust)2081 static void set_drr(struct pipe_ctx **pipe_ctx,
2082 		int num_pipes, struct dc_crtc_timing_adjust adjust)
2083 {
2084 	int i = 0;
2085 	struct drr_params params = {0};
2086 	// DRR should set trigger event to monitor surface update event
2087 	unsigned int event_triggers = 0x80;
2088 	// Note DRR trigger events are generated regardless of whether num frames met.
2089 	unsigned int num_frames = 2;
2090 
2091 	params.vertical_total_max = adjust.v_total_max;
2092 	params.vertical_total_min = adjust.v_total_min;
2093 
2094 	/* TODO: If multiple pipes are to be supported, you need
2095 	 * some GSL stuff. Static screen triggers may be programmed differently
2096 	 * as well.
2097 	 */
2098 	for (i = 0; i < num_pipes; i++) {
2099 		/* dc_state_destruct() might null the stream resources, so fetch tg
2100 		 * here first to avoid a race condition. The lifetime of the pointee
2101 		 * itself (the timing_generator object) is not a problem here.
2102 		 */
2103 		struct timing_generator *tg = pipe_ctx[i]->stream_res.tg;
2104 
2105 		if ((tg != NULL) && tg->funcs) {
2106 			set_drr_and_clear_adjust_pending(pipe_ctx[i], pipe_ctx[i]->stream, &params);
2107 			if (adjust.v_total_max != 0 && adjust.v_total_min != 0)
2108 				if (tg->funcs->set_static_screen_control)
2109 					tg->funcs->set_static_screen_control(
2110 						tg, event_triggers, num_frames);
2111 		}
2112 	}
2113 }
2114 
get_position(struct pipe_ctx ** pipe_ctx,int num_pipes,struct crtc_position * position)2115 static void get_position(struct pipe_ctx **pipe_ctx,
2116 		int num_pipes,
2117 		struct crtc_position *position)
2118 {
2119 	int i = 0;
2120 
2121 	/* TODO: handle pipes > 1
2122 	 */
2123 	for (i = 0; i < num_pipes; i++)
2124 		pipe_ctx[i]->stream_res.tg->funcs->get_position(pipe_ctx[i]->stream_res.tg, position);
2125 }
2126 
set_static_screen_control(struct pipe_ctx ** pipe_ctx,int num_pipes,const struct dc_static_screen_params * params)2127 static void set_static_screen_control(struct pipe_ctx **pipe_ctx,
2128 		int num_pipes, const struct dc_static_screen_params *params)
2129 {
2130 	unsigned int i;
2131 	unsigned int triggers = 0;
2132 
2133 	if (params->triggers.overlay_update)
2134 		triggers |= 0x100;
2135 	if (params->triggers.surface_update)
2136 		triggers |= 0x80;
2137 	if (params->triggers.cursor_update)
2138 		triggers |= 0x2;
2139 	if (params->triggers.force_trigger)
2140 		triggers |= 0x1;
2141 
2142 	if (num_pipes) {
2143 		struct dc *dc = pipe_ctx[0]->stream->ctx->dc;
2144 
2145 		if (dc->fbc_compressor)
2146 			triggers |= 0x84;
2147 	}
2148 
2149 	for (i = 0; i < num_pipes; i++)
2150 		pipe_ctx[i]->stream_res.tg->funcs->
2151 			set_static_screen_control(pipe_ctx[i]->stream_res.tg,
2152 					triggers, params->num_frames);
2153 }
2154 
2155 /*
2156  *  Check if FBC can be enabled
2157  */
should_enable_fbc(struct dc * dc,struct dc_state * context,uint32_t * pipe_idx)2158 static bool should_enable_fbc(struct dc *dc,
2159 		struct dc_state *context,
2160 		uint32_t *pipe_idx)
2161 {
2162 	uint32_t i;
2163 	struct pipe_ctx *pipe_ctx = NULL;
2164 	struct resource_context *res_ctx = &context->res_ctx;
2165 	unsigned int underlay_idx = dc->res_pool->underlay_pipe_index;
2166 
2167 
2168 	ASSERT(dc->fbc_compressor);
2169 
2170 	/* FBC memory should be allocated */
2171 	if (!dc->ctx->fbc_gpu_addr)
2172 		return false;
2173 
2174 	/* Only supports single display */
2175 	if (context->stream_count != 1)
2176 		return false;
2177 
2178 	for (i = 0; i < dc->res_pool->pipe_count; i++) {
2179 		if (res_ctx->pipe_ctx[i].stream) {
2180 
2181 			pipe_ctx = &res_ctx->pipe_ctx[i];
2182 
2183 			/* fbc not applicable on underlay pipe */
2184 			if (pipe_ctx->pipe_idx != underlay_idx) {
2185 				*pipe_idx = i;
2186 				break;
2187 			}
2188 		}
2189 	}
2190 
2191 	if (i == dc->res_pool->pipe_count)
2192 		return false;
2193 
2194 	if (!pipe_ctx->stream->link)
2195 		return false;
2196 
2197 	/* Only supports eDP */
2198 	if (pipe_ctx->stream->link->connector_signal != SIGNAL_TYPE_EDP)
2199 		return false;
2200 
2201 	/* PSR should not be enabled */
2202 	if (pipe_ctx->stream->link->psr_settings.psr_feature_enabled)
2203 		return false;
2204 
2205 	/* Replay should not be enabled */
2206 	if (pipe_ctx->stream->link->replay_settings.replay_feature_enabled)
2207 		return false;
2208 
2209 	/* Nothing to compress */
2210 	if (!pipe_ctx->plane_state)
2211 		return false;
2212 
2213 	/* Only for non-linear tiling */
2214 	if (pipe_ctx->plane_state->tiling_info.gfx8.array_mode == DC_ARRAY_LINEAR_GENERAL)
2215 		return false;
2216 
2217 	return true;
2218 }
2219 
2220 /*
2221  *  Enable FBC
2222  */
enable_fbc(struct dc * dc,struct dc_state * context)2223 static void enable_fbc(
2224 		struct dc *dc,
2225 		struct dc_state *context)
2226 {
2227 	uint32_t pipe_idx = 0;
2228 
2229 	if (should_enable_fbc(dc, context, &pipe_idx)) {
2230 		/* Program GRPH COMPRESSED ADDRESS and PITCH */
2231 		struct compr_addr_and_pitch_params params = {0, 0, 0};
2232 		struct compressor *compr = dc->fbc_compressor;
2233 		struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[pipe_idx];
2234 
2235 		params.source_view_width = pipe_ctx->stream->timing.h_addressable;
2236 		params.source_view_height = pipe_ctx->stream->timing.v_addressable;
2237 		params.inst = pipe_ctx->stream_res.tg->inst;
2238 		compr->compr_surface_address.quad_part = dc->ctx->fbc_gpu_addr;
2239 
2240 		compr->funcs->surface_address_and_pitch(compr, &params);
2241 		compr->funcs->set_fbc_invalidation_triggers(compr, 1);
2242 
2243 		compr->funcs->enable_fbc(compr, &params);
2244 	}
2245 }
2246 
dce110_reset_hw_ctx_wrap(struct dc * dc,struct dc_state * context)2247 static void dce110_reset_hw_ctx_wrap(
2248 		struct dc *dc,
2249 		struct dc_state *context)
2250 {
2251 	int i;
2252 
2253 	/* Reset old context */
2254 	/* look up the targets that have been removed since last commit */
2255 	for (i = 0; i < MAX_PIPES; i++) {
2256 		struct pipe_ctx *pipe_ctx_old =
2257 			&dc->current_state->res_ctx.pipe_ctx[i];
2258 		struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[i];
2259 
2260 		/* Note: We need to disable output if clock sources change,
2261 		 * since bios does optimization and doesn't apply if changing
2262 		 * PHY when not already disabled.
2263 		 */
2264 
2265 		/* Skip underlay pipe since it will be handled in commit surface*/
2266 		if (!pipe_ctx_old->stream || pipe_ctx_old->top_pipe)
2267 			continue;
2268 
2269 		if (!pipe_ctx->stream ||
2270 				pipe_need_reprogram(pipe_ctx_old, pipe_ctx)) {
2271 			struct clock_source *old_clk = pipe_ctx_old->clock_source;
2272 
2273 			/* Disable if new stream is null. O/w, if stream is
2274 			 * disabled already, no need to disable again.
2275 			 */
2276 			if (!pipe_ctx->stream || !pipe_ctx->stream->dpms_off) {
2277 				dc->link_srv->set_dpms_off(pipe_ctx_old);
2278 
2279 				/* free acquired resources*/
2280 				if (pipe_ctx_old->stream_res.audio) {
2281 					/*disable az_endpoint*/
2282 					pipe_ctx_old->stream_res.audio->funcs->
2283 							az_disable(pipe_ctx_old->stream_res.audio);
2284 
2285 					/*free audio*/
2286 					if (dc->caps.dynamic_audio == true) {
2287 						/*we have to dynamic arbitrate the audio endpoints*/
2288 						/*we free the resource, need reset is_audio_acquired*/
2289 						update_audio_usage(&dc->current_state->res_ctx, dc->res_pool,
2290 								pipe_ctx_old->stream_res.audio, false);
2291 						pipe_ctx_old->stream_res.audio = NULL;
2292 					}
2293 				}
2294 			}
2295 
2296 			pipe_ctx_old->stream_res.tg->funcs->set_blank(pipe_ctx_old->stream_res.tg, true);
2297 			if (!hwss_wait_for_blank_complete(pipe_ctx_old->stream_res.tg)) {
2298 				dm_error("DC: failed to blank crtc!\n");
2299 				BREAK_TO_DEBUGGER();
2300 			}
2301 			pipe_ctx_old->stream_res.tg->funcs->disable_crtc(pipe_ctx_old->stream_res.tg);
2302 			if (dc_is_hdmi_tmds_signal(pipe_ctx_old->stream->signal))
2303 				pipe_ctx_old->stream->link->phy_state.symclk_ref_cnts.otg = 0;
2304 			pipe_ctx_old->plane_res.mi->funcs->free_mem_input(
2305 					pipe_ctx_old->plane_res.mi, dc->current_state->stream_count);
2306 
2307 			if (old_clk && 0 == resource_get_clock_source_reference(&context->res_ctx,
2308 										dc->res_pool,
2309 										old_clk))
2310 				old_clk->funcs->cs_power_down(old_clk);
2311 
2312 			dc->hwss.disable_plane(dc, dc->current_state, pipe_ctx_old);
2313 
2314 			pipe_ctx_old->stream = NULL;
2315 		}
2316 	}
2317 }
2318 
dce110_setup_audio_dto(struct dc * dc,struct dc_state * context)2319 static void dce110_setup_audio_dto(
2320 		struct dc *dc,
2321 		struct dc_state *context)
2322 {
2323 	unsigned int i;
2324 
2325 	/* program audio wall clock. use HDMI as clock source if HDMI
2326 	 * audio active. Otherwise, use DP as clock source
2327 	 * first, loop to find any HDMI audio, if not, loop find DP audio
2328 	 */
2329 	/* Setup audio rate clock source */
2330 	/* Issue:
2331 	* Audio lag happened on DP monitor when unplug a HDMI monitor
2332 	*
2333 	* Cause:
2334 	* In case of DP and HDMI connected or HDMI only, DCCG_AUDIO_DTO_SEL
2335 	* is set to either dto0 or dto1, audio should work fine.
2336 	* In case of DP connected only, DCCG_AUDIO_DTO_SEL should be dto1,
2337 	* set to dto0 will cause audio lag.
2338 	*
2339 	* Solution:
2340 	* Not optimized audio wall dto setup. When mode set, iterate pipe_ctx,
2341 	* find first available pipe with audio, setup audio wall DTO per topology
2342 	* instead of per pipe.
2343 	*/
2344 	for (i = 0; i < dc->res_pool->pipe_count; i++) {
2345 		struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[i];
2346 
2347 		if (pipe_ctx->stream == NULL)
2348 			continue;
2349 
2350 		if (pipe_ctx->top_pipe)
2351 			continue;
2352 		if (pipe_ctx->stream->signal != SIGNAL_TYPE_HDMI_TYPE_A)
2353 			continue;
2354 		if (pipe_ctx->stream_res.audio != NULL) {
2355 			struct audio_output audio_output;
2356 
2357 			build_audio_output(context, pipe_ctx, &audio_output);
2358 
2359 			if (dc->res_pool->dccg && dc->res_pool->dccg->funcs->set_audio_dtbclk_dto) {
2360 				struct dtbclk_dto_params dto_params = {0};
2361 
2362 				dc->res_pool->dccg->funcs->set_audio_dtbclk_dto(
2363 					dc->res_pool->dccg, &dto_params);
2364 
2365 				pipe_ctx->stream_res.audio->funcs->wall_dto_setup(
2366 						pipe_ctx->stream_res.audio,
2367 						pipe_ctx->stream->signal,
2368 						&audio_output.crtc_info,
2369 						&audio_output.pll_info);
2370 			} else
2371 				pipe_ctx->stream_res.audio->funcs->wall_dto_setup(
2372 					pipe_ctx->stream_res.audio,
2373 					pipe_ctx->stream->signal,
2374 					&audio_output.crtc_info,
2375 					&audio_output.pll_info);
2376 			break;
2377 		}
2378 	}
2379 
2380 	/* no HDMI audio is found, try DP audio */
2381 	if (i == dc->res_pool->pipe_count) {
2382 		for (i = 0; i < dc->res_pool->pipe_count; i++) {
2383 			struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[i];
2384 
2385 			if (pipe_ctx->stream == NULL)
2386 				continue;
2387 
2388 			if (pipe_ctx->top_pipe)
2389 				continue;
2390 
2391 			if (!dc_is_dp_signal(pipe_ctx->stream->signal))
2392 				continue;
2393 
2394 			if (pipe_ctx->stream_res.audio != NULL) {
2395 				struct audio_output audio_output = {0};
2396 
2397 				build_audio_output(context, pipe_ctx, &audio_output);
2398 
2399 				pipe_ctx->stream_res.audio->funcs->wall_dto_setup(
2400 					pipe_ctx->stream_res.audio,
2401 					pipe_ctx->stream->signal,
2402 					&audio_output.crtc_info,
2403 					&audio_output.pll_info);
2404 				break;
2405 			}
2406 		}
2407 	}
2408 }
2409 
dce110_apply_ctx_to_hw(struct dc * dc,struct dc_state * context)2410 enum dc_status dce110_apply_ctx_to_hw(
2411 		struct dc *dc,
2412 		struct dc_state *context)
2413 {
2414 	struct dce_hwseq *hws = dc->hwseq;
2415 	struct dc_bios *dcb = dc->ctx->dc_bios;
2416 	enum dc_status status;
2417 	int i;
2418 	bool was_hpo_acquired = resource_is_hpo_acquired(dc->current_state);
2419 	bool is_hpo_acquired = resource_is_hpo_acquired(context);
2420 
2421 	/* reset syncd pipes from disabled pipes */
2422 	if (dc->config.use_pipe_ctx_sync_logic)
2423 		reset_syncd_pipes_from_disabled_pipes(dc, context);
2424 
2425 	/* Reset old context */
2426 	/* look up the targets that have been removed since last commit */
2427 	hws->funcs.reset_hw_ctx_wrap(dc, context);
2428 
2429 	/* Skip applying if no targets */
2430 	if (context->stream_count <= 0)
2431 		return DC_OK;
2432 
2433 	/* Apply new context */
2434 	dcb->funcs->set_scratch_critical_state(dcb, true);
2435 
2436 	/* below is for real asic only */
2437 	for (i = 0; i < dc->res_pool->pipe_count; i++) {
2438 		struct pipe_ctx *pipe_ctx_old =
2439 					&dc->current_state->res_ctx.pipe_ctx[i];
2440 		struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[i];
2441 
2442 		if (pipe_ctx->stream == NULL || pipe_ctx->top_pipe)
2443 			continue;
2444 
2445 		if (pipe_ctx->stream == pipe_ctx_old->stream) {
2446 			if (pipe_ctx_old->clock_source != pipe_ctx->clock_source)
2447 				dce_crtc_switch_to_clk_src(dc->hwseq,
2448 						pipe_ctx->clock_source, i);
2449 			continue;
2450 		}
2451 
2452 		hws->funcs.enable_display_power_gating(
2453 				dc, i, dc->ctx->dc_bios,
2454 				PIPE_GATING_CONTROL_DISABLE);
2455 	}
2456 
2457 	if (dc->fbc_compressor)
2458 		dc->fbc_compressor->funcs->disable_fbc(dc->fbc_compressor);
2459 
2460 	dce110_setup_audio_dto(dc, context);
2461 
2462 	if (dc->hwseq->funcs.setup_hpo_hw_control && was_hpo_acquired != is_hpo_acquired) {
2463 		dc->hwseq->funcs.setup_hpo_hw_control(dc->hwseq, is_hpo_acquired);
2464 	}
2465 
2466 	for (i = 0; i < dc->res_pool->pipe_count; i++) {
2467 		struct pipe_ctx *pipe_ctx_old =
2468 					&dc->current_state->res_ctx.pipe_ctx[i];
2469 		struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[i];
2470 
2471 		if (pipe_ctx->stream == NULL)
2472 			continue;
2473 
2474 		if (pipe_ctx->stream == pipe_ctx_old->stream &&
2475 			pipe_ctx->stream->link->link_state_valid) {
2476 			continue;
2477 		}
2478 
2479 		if (pipe_ctx_old->stream && !pipe_need_reprogram(pipe_ctx_old, pipe_ctx))
2480 			continue;
2481 
2482 		if (pipe_ctx->top_pipe || pipe_ctx->prev_odm_pipe)
2483 			continue;
2484 
2485 		status = dce110_apply_single_controller_ctx_to_hw(
2486 				pipe_ctx,
2487 				context,
2488 				dc);
2489 
2490 		if (DC_OK != status)
2491 			return status;
2492 
2493 #ifdef CONFIG_DRM_AMD_DC_FP
2494 		if (hws->funcs.resync_fifo_dccg_dio)
2495 			hws->funcs.resync_fifo_dccg_dio(hws, dc, context, i);
2496 #endif
2497 	}
2498 
2499 	if (dc->fbc_compressor)
2500 		enable_fbc(dc, dc->current_state);
2501 
2502 	dcb->funcs->set_scratch_critical_state(dcb, false);
2503 
2504 	return DC_OK;
2505 }
2506 
2507 /*******************************************************************************
2508  * Front End programming
2509  ******************************************************************************/
set_default_colors(struct pipe_ctx * pipe_ctx)2510 static void set_default_colors(struct pipe_ctx *pipe_ctx)
2511 {
2512 	struct default_adjustment default_adjust = { 0 };
2513 
2514 	default_adjust.force_hw_default = false;
2515 	default_adjust.in_color_space = pipe_ctx->plane_state->color_space;
2516 	default_adjust.out_color_space = pipe_ctx->stream->output_color_space;
2517 	default_adjust.csc_adjust_type = GRAPHICS_CSC_ADJUST_TYPE_SW;
2518 	default_adjust.surface_pixel_format = pipe_ctx->plane_res.scl_data.format;
2519 
2520 	/* display color depth */
2521 	default_adjust.color_depth =
2522 		pipe_ctx->stream->timing.display_color_depth;
2523 
2524 	/* Lb color depth */
2525 	default_adjust.lb_color_depth = pipe_ctx->plane_res.scl_data.lb_params.depth;
2526 
2527 	pipe_ctx->plane_res.xfm->funcs->opp_set_csc_default(
2528 					pipe_ctx->plane_res.xfm, &default_adjust);
2529 }
2530 
2531 
2532 /*******************************************************************************
2533  * In order to turn on/off specific surface we will program
2534  * Blender + CRTC
2535  *
2536  * In case that we have two surfaces and they have a different visibility
2537  * we can't turn off the CRTC since it will turn off the entire display
2538  *
2539  * |----------------------------------------------- |
2540  * |bottom pipe|curr pipe  |              |         |
2541  * |Surface    |Surface    | Blender      |  CRCT   |
2542  * |visibility |visibility | Configuration|         |
2543  * |------------------------------------------------|
2544  * |   off     |    off    | CURRENT_PIPE | blank   |
2545  * |   off     |    on     | CURRENT_PIPE | unblank |
2546  * |   on      |    off    | OTHER_PIPE   | unblank |
2547  * |   on      |    on     | BLENDING     | unblank |
2548  * -------------------------------------------------|
2549  *
2550  ******************************************************************************/
program_surface_visibility(const struct dc * dc,struct pipe_ctx * pipe_ctx)2551 static void program_surface_visibility(const struct dc *dc,
2552 		struct pipe_ctx *pipe_ctx)
2553 {
2554 	enum blnd_mode blender_mode = BLND_MODE_CURRENT_PIPE;
2555 	bool blank_target = false;
2556 
2557 	if (pipe_ctx->bottom_pipe) {
2558 
2559 		/* For now we are supporting only two pipes */
2560 		ASSERT(pipe_ctx->bottom_pipe->bottom_pipe == NULL);
2561 
2562 		if (pipe_ctx->bottom_pipe->plane_state->visible) {
2563 			if (pipe_ctx->plane_state->visible)
2564 				blender_mode = BLND_MODE_BLENDING;
2565 			else
2566 				blender_mode = BLND_MODE_OTHER_PIPE;
2567 
2568 		} else if (!pipe_ctx->plane_state->visible)
2569 			blank_target = true;
2570 
2571 	} else if (!pipe_ctx->plane_state->visible)
2572 		blank_target = true;
2573 
2574 	dce_set_blender_mode(dc->hwseq, pipe_ctx->stream_res.tg->inst, blender_mode);
2575 	pipe_ctx->stream_res.tg->funcs->set_blank(pipe_ctx->stream_res.tg, blank_target);
2576 
2577 }
2578 
program_gamut_remap(struct pipe_ctx * pipe_ctx)2579 static void program_gamut_remap(struct pipe_ctx *pipe_ctx)
2580 {
2581 	int i = 0;
2582 	struct xfm_grph_csc_adjustment adjust;
2583 	memset(&adjust, 0, sizeof(adjust));
2584 	adjust.gamut_adjust_type = GRAPHICS_GAMUT_ADJUST_TYPE_BYPASS;
2585 
2586 
2587 	if (pipe_ctx->stream->gamut_remap_matrix.enable_remap == true) {
2588 		adjust.gamut_adjust_type = GRAPHICS_GAMUT_ADJUST_TYPE_SW;
2589 
2590 		for (i = 0; i < CSC_TEMPERATURE_MATRIX_SIZE; i++)
2591 			adjust.temperature_matrix[i] =
2592 				pipe_ctx->stream->gamut_remap_matrix.matrix[i];
2593 	}
2594 
2595 	pipe_ctx->plane_res.xfm->funcs->transform_set_gamut_remap(pipe_ctx->plane_res.xfm, &adjust);
2596 }
update_plane_addr(const struct dc * dc,struct pipe_ctx * pipe_ctx)2597 static void update_plane_addr(const struct dc *dc,
2598 		struct pipe_ctx *pipe_ctx)
2599 {
2600 	struct dc_plane_state *plane_state = pipe_ctx->plane_state;
2601 
2602 	if (plane_state == NULL)
2603 		return;
2604 
2605 	pipe_ctx->plane_res.mi->funcs->mem_input_program_surface_flip_and_addr(
2606 			pipe_ctx->plane_res.mi,
2607 			&plane_state->address,
2608 			plane_state->flip_immediate);
2609 
2610 	plane_state->status.requested_address = plane_state->address;
2611 }
2612 
dce110_update_pending_status(struct pipe_ctx * pipe_ctx)2613 static void dce110_update_pending_status(struct pipe_ctx *pipe_ctx)
2614 {
2615 	struct dc_plane_state *plane_state = pipe_ctx->plane_state;
2616 
2617 	if (plane_state == NULL)
2618 		return;
2619 
2620 	plane_state->status.is_flip_pending =
2621 			pipe_ctx->plane_res.mi->funcs->mem_input_is_flip_pending(
2622 					pipe_ctx->plane_res.mi);
2623 
2624 	if (plane_state->status.is_flip_pending && !plane_state->visible)
2625 		pipe_ctx->plane_res.mi->current_address = pipe_ctx->plane_res.mi->request_address;
2626 
2627 	plane_state->status.current_address = pipe_ctx->plane_res.mi->current_address;
2628 	if (pipe_ctx->plane_res.mi->current_address.type == PLN_ADDR_TYPE_GRPH_STEREO &&
2629 			pipe_ctx->stream_res.tg->funcs->is_stereo_left_eye) {
2630 		plane_state->status.is_right_eye =\
2631 				!pipe_ctx->stream_res.tg->funcs->is_stereo_left_eye(pipe_ctx->stream_res.tg);
2632 	}
2633 }
2634 
dce110_power_down(struct dc * dc)2635 void dce110_power_down(struct dc *dc)
2636 {
2637 	power_down_all_hw_blocks(dc);
2638 	disable_vga_and_power_gate_all_controllers(dc);
2639 }
2640 
wait_for_reset_trigger_to_occur(struct dc_context * dc_ctx,struct timing_generator * tg)2641 static bool wait_for_reset_trigger_to_occur(
2642 	struct dc_context *dc_ctx,
2643 	struct timing_generator *tg)
2644 {
2645 	struct dc_context *ctx = dc_ctx;
2646 	bool rc = false;
2647 
2648 	/* To avoid endless loop we wait at most
2649 	 * frames_to_wait_on_triggered_reset frames for the reset to occur. */
2650 	const uint32_t frames_to_wait_on_triggered_reset = 10;
2651 	uint32_t i;
2652 
2653 	for (i = 0; i < frames_to_wait_on_triggered_reset; i++) {
2654 
2655 		if (!tg->funcs->is_counter_moving(tg)) {
2656 			DC_ERROR("TG counter is not moving!\n");
2657 			break;
2658 		}
2659 
2660 		if (tg->funcs->did_triggered_reset_occur(tg)) {
2661 			rc = true;
2662 			/* usually occurs at i=1 */
2663 			DC_SYNC_INFO("GSL: reset occurred at wait count: %d\n",
2664 					i);
2665 			break;
2666 		}
2667 
2668 		/* Wait for one frame. */
2669 		tg->funcs->wait_for_state(tg, CRTC_STATE_VACTIVE);
2670 		tg->funcs->wait_for_state(tg, CRTC_STATE_VBLANK);
2671 	}
2672 
2673 	if (false == rc)
2674 		DC_ERROR("GSL: Timeout on reset trigger!\n");
2675 
2676 	return rc;
2677 }
2678 
2679 /* Enable timing synchronization for a group of Timing Generators. */
dce110_enable_timing_synchronization(struct dc * dc,struct dc_state * state,int group_index,int group_size,struct pipe_ctx * grouped_pipes[])2680 static void dce110_enable_timing_synchronization(
2681 		struct dc *dc,
2682 		struct dc_state *state,
2683 		int group_index,
2684 		int group_size,
2685 		struct pipe_ctx *grouped_pipes[])
2686 {
2687 	struct dc_context *dc_ctx = dc->ctx;
2688 	struct dcp_gsl_params gsl_params = { 0 };
2689 	int i;
2690 	DC_LOGGER_INIT();
2691 
2692 	DC_SYNC_INFO("GSL: Setting-up...\n");
2693 
2694 	/* Designate a single TG in the group as a master.
2695 	 * Since HW doesn't care which one, we always assign
2696 	 * the 1st one in the group. */
2697 	gsl_params.gsl_group = 0;
2698 	gsl_params.gsl_master = grouped_pipes[0]->stream_res.tg->inst;
2699 
2700 	for (i = 0; i < group_size; i++)
2701 		grouped_pipes[i]->stream_res.tg->funcs->setup_global_swap_lock(
2702 					grouped_pipes[i]->stream_res.tg, &gsl_params);
2703 
2704 	/* Reset slave controllers on master VSync */
2705 	DC_SYNC_INFO("GSL: enabling trigger-reset\n");
2706 
2707 	for (i = 1 /* skip the master */; i < group_size; i++)
2708 		grouped_pipes[i]->stream_res.tg->funcs->enable_reset_trigger(
2709 				grouped_pipes[i]->stream_res.tg,
2710 				gsl_params.gsl_group);
2711 
2712 	for (i = 1 /* skip the master */; i < group_size; i++) {
2713 		DC_SYNC_INFO("GSL: waiting for reset to occur.\n");
2714 		wait_for_reset_trigger_to_occur(dc_ctx, grouped_pipes[i]->stream_res.tg);
2715 		grouped_pipes[i]->stream_res.tg->funcs->disable_reset_trigger(
2716 				grouped_pipes[i]->stream_res.tg);
2717 	}
2718 
2719 	/* GSL Vblank synchronization is a one time sync mechanism, assumption
2720 	 * is that the sync'ed displays will not drift out of sync over time*/
2721 	DC_SYNC_INFO("GSL: Restoring register states.\n");
2722 	for (i = 0; i < group_size; i++)
2723 		grouped_pipes[i]->stream_res.tg->funcs->tear_down_global_swap_lock(grouped_pipes[i]->stream_res.tg);
2724 
2725 	DC_SYNC_INFO("GSL: Set-up complete.\n");
2726 }
2727 
dce110_enable_per_frame_crtc_position_reset(struct dc * dc,int group_size,struct pipe_ctx * grouped_pipes[])2728 static void dce110_enable_per_frame_crtc_position_reset(
2729 		struct dc *dc,
2730 		int group_size,
2731 		struct pipe_ctx *grouped_pipes[])
2732 {
2733 	struct dc_context *dc_ctx = dc->ctx;
2734 	struct dcp_gsl_params gsl_params = { 0 };
2735 	int i;
2736 	DC_LOGGER_INIT();
2737 
2738 	gsl_params.gsl_group = 0;
2739 	gsl_params.gsl_master = 0;
2740 
2741 	for (i = 0; i < group_size; i++)
2742 		grouped_pipes[i]->stream_res.tg->funcs->setup_global_swap_lock(
2743 					grouped_pipes[i]->stream_res.tg, &gsl_params);
2744 
2745 	DC_SYNC_INFO("GSL: enabling trigger-reset\n");
2746 
2747 	for (i = 1; i < group_size; i++)
2748 		grouped_pipes[i]->stream_res.tg->funcs->enable_crtc_reset(
2749 				grouped_pipes[i]->stream_res.tg,
2750 				gsl_params.gsl_master,
2751 				&grouped_pipes[i]->stream->triggered_crtc_reset);
2752 
2753 	DC_SYNC_INFO("GSL: waiting for reset to occur.\n");
2754 	for (i = 1; i < group_size; i++)
2755 		wait_for_reset_trigger_to_occur(dc_ctx, grouped_pipes[i]->stream_res.tg);
2756 
2757 	for (i = 0; i < group_size; i++)
2758 		grouped_pipes[i]->stream_res.tg->funcs->tear_down_global_swap_lock(grouped_pipes[i]->stream_res.tg);
2759 
2760 }
2761 
init_pipes(struct dc * dc,struct dc_state * context)2762 static void init_pipes(struct dc *dc, struct dc_state *context)
2763 {
2764 	// Do nothing
2765 }
2766 
init_hw(struct dc * dc)2767 static void init_hw(struct dc *dc)
2768 {
2769 	int i;
2770 	struct dc_bios *bp;
2771 	struct transform *xfm;
2772 	struct abm *abm;
2773 	struct dmcu *dmcu;
2774 	struct dce_hwseq *hws = dc->hwseq;
2775 	uint32_t backlight = MAX_BACKLIGHT_LEVEL;
2776 	uint32_t user_level = MAX_BACKLIGHT_LEVEL;
2777 
2778 	bp = dc->ctx->dc_bios;
2779 	for (i = 0; i < dc->res_pool->pipe_count; i++) {
2780 		xfm = dc->res_pool->transforms[i];
2781 		xfm->funcs->transform_reset(xfm);
2782 
2783 		hws->funcs.enable_display_power_gating(
2784 				dc, i, bp,
2785 				PIPE_GATING_CONTROL_INIT);
2786 		hws->funcs.enable_display_power_gating(
2787 				dc, i, bp,
2788 				PIPE_GATING_CONTROL_DISABLE);
2789 		hws->funcs.enable_display_pipe_clock_gating(
2790 			dc->ctx,
2791 			true);
2792 	}
2793 
2794 	dce_clock_gating_power_up(dc->hwseq, false);
2795 	/***************************************/
2796 
2797 	for (i = 0; i < dc->link_count; i++) {
2798 		/****************************************/
2799 		/* Power up AND update implementation according to the
2800 		 * required signal (which may be different from the
2801 		 * default signal on connector). */
2802 		struct dc_link *link = dc->links[i];
2803 
2804 		link->link_enc->funcs->hw_init(link->link_enc);
2805 	}
2806 
2807 	for (i = 0; i < dc->res_pool->pipe_count; i++) {
2808 		struct timing_generator *tg = dc->res_pool->timing_generators[i];
2809 
2810 		tg->funcs->disable_vga(tg);
2811 
2812 		/* Blank controller using driver code instead of
2813 		 * command table. */
2814 		tg->funcs->set_blank(tg, true);
2815 		hwss_wait_for_blank_complete(tg);
2816 	}
2817 
2818 	for (i = 0; i < dc->res_pool->audio_count; i++) {
2819 		struct audio *audio = dc->res_pool->audios[i];
2820 		audio->funcs->hw_init(audio);
2821 	}
2822 
2823 	for (i = 0; i < dc->link_count; i++) {
2824 		struct dc_link *link = dc->links[i];
2825 
2826 		if (link->panel_cntl) {
2827 			backlight = link->panel_cntl->funcs->hw_init(link->panel_cntl);
2828 			user_level = link->panel_cntl->stored_backlight_registers.USER_LEVEL;
2829 		}
2830 	}
2831 
2832 	abm = dc->res_pool->abm;
2833 	if (abm != NULL)
2834 		abm->funcs->abm_init(abm, backlight, user_level);
2835 
2836 	dmcu = dc->res_pool->dmcu;
2837 	if (dmcu != NULL && abm != NULL)
2838 		abm->dmcu_is_running = dmcu->funcs->is_dmcu_initialized(dmcu);
2839 
2840 	if (dc->fbc_compressor)
2841 		dc->fbc_compressor->funcs->power_up_fbc(dc->fbc_compressor);
2842 
2843 }
2844 
2845 
dce110_prepare_bandwidth(struct dc * dc,struct dc_state * context)2846 void dce110_prepare_bandwidth(
2847 		struct dc *dc,
2848 		struct dc_state *context)
2849 {
2850 	struct clk_mgr *dccg = dc->clk_mgr;
2851 
2852 	dce110_set_safe_displaymarks(&context->res_ctx, dc->res_pool);
2853 	if (dccg)
2854 		dccg->funcs->update_clocks(
2855 				dccg,
2856 				context,
2857 				false);
2858 }
2859 
dce110_optimize_bandwidth(struct dc * dc,struct dc_state * context)2860 void dce110_optimize_bandwidth(
2861 		struct dc *dc,
2862 		struct dc_state *context)
2863 {
2864 	struct clk_mgr *dccg = dc->clk_mgr;
2865 
2866 	dce110_set_displaymarks(dc, context);
2867 
2868 	if (dccg)
2869 		dccg->funcs->update_clocks(
2870 				dccg,
2871 				context,
2872 				true);
2873 }
2874 
dce110_program_front_end_for_pipe(struct dc * dc,struct pipe_ctx * pipe_ctx)2875 static void dce110_program_front_end_for_pipe(
2876 		struct dc *dc, struct pipe_ctx *pipe_ctx)
2877 {
2878 	struct mem_input *mi = pipe_ctx->plane_res.mi;
2879 	struct dc_plane_state *plane_state = pipe_ctx->plane_state;
2880 	struct xfm_grph_csc_adjustment adjust;
2881 	struct out_csc_color_matrix tbl_entry;
2882 	unsigned int i;
2883 	struct dce_hwseq *hws = dc->hwseq;
2884 
2885 	memset(&tbl_entry, 0, sizeof(tbl_entry));
2886 
2887 	memset(&adjust, 0, sizeof(adjust));
2888 	adjust.gamut_adjust_type = GRAPHICS_GAMUT_ADJUST_TYPE_BYPASS;
2889 
2890 	dce_enable_fe_clock(dc->hwseq, mi->inst, true);
2891 
2892 	set_default_colors(pipe_ctx);
2893 	if (pipe_ctx->stream->csc_color_matrix.enable_adjustment
2894 			== true) {
2895 		tbl_entry.color_space =
2896 			pipe_ctx->stream->output_color_space;
2897 
2898 		for (i = 0; i < 12; i++)
2899 			tbl_entry.regval[i] =
2900 			pipe_ctx->stream->csc_color_matrix.matrix[i];
2901 
2902 		pipe_ctx->plane_res.xfm->funcs->opp_set_csc_adjustment
2903 				(pipe_ctx->plane_res.xfm, &tbl_entry);
2904 	}
2905 
2906 	if (pipe_ctx->stream->gamut_remap_matrix.enable_remap == true) {
2907 		adjust.gamut_adjust_type = GRAPHICS_GAMUT_ADJUST_TYPE_SW;
2908 
2909 		for (i = 0; i < CSC_TEMPERATURE_MATRIX_SIZE; i++)
2910 			adjust.temperature_matrix[i] =
2911 				pipe_ctx->stream->gamut_remap_matrix.matrix[i];
2912 	}
2913 
2914 	pipe_ctx->plane_res.xfm->funcs->transform_set_gamut_remap(pipe_ctx->plane_res.xfm, &adjust);
2915 
2916 	pipe_ctx->plane_res.scl_data.lb_params.alpha_en = pipe_ctx->bottom_pipe != NULL;
2917 
2918 	program_scaler(dc, pipe_ctx);
2919 
2920 	mi->funcs->mem_input_program_surface_config(
2921 			mi,
2922 			plane_state->format,
2923 			&plane_state->tiling_info,
2924 			&plane_state->plane_size,
2925 			plane_state->rotation,
2926 			NULL,
2927 			false);
2928 	if (mi->funcs->set_blank)
2929 		mi->funcs->set_blank(mi, pipe_ctx->plane_state->visible);
2930 
2931 	if (dc->config.gpu_vm_support)
2932 		mi->funcs->mem_input_program_pte_vm(
2933 				pipe_ctx->plane_res.mi,
2934 				plane_state->format,
2935 				&plane_state->tiling_info,
2936 				plane_state->rotation);
2937 
2938 	/* Moved programming gamma from dc to hwss */
2939 	if (pipe_ctx->plane_state->update_flags.bits.full_update ||
2940 			pipe_ctx->plane_state->update_flags.bits.in_transfer_func_change ||
2941 			pipe_ctx->plane_state->update_flags.bits.gamma_change)
2942 		hws->funcs.set_input_transfer_func(dc, pipe_ctx, pipe_ctx->plane_state);
2943 
2944 	if (pipe_ctx->plane_state->update_flags.bits.full_update)
2945 		hws->funcs.set_output_transfer_func(dc, pipe_ctx, pipe_ctx->stream);
2946 
2947 	DC_LOG_SURFACE(
2948 			"Pipe:%d %p: addr hi:0x%x, "
2949 			"addr low:0x%x, "
2950 			"src: %d, %d, %d,"
2951 			" %d; dst: %d, %d, %d, %d;"
2952 			"clip: %d, %d, %d, %d\n",
2953 			pipe_ctx->pipe_idx,
2954 			(void *) pipe_ctx->plane_state,
2955 			pipe_ctx->plane_state->address.grph.addr.high_part,
2956 			pipe_ctx->plane_state->address.grph.addr.low_part,
2957 			pipe_ctx->plane_state->src_rect.x,
2958 			pipe_ctx->plane_state->src_rect.y,
2959 			pipe_ctx->plane_state->src_rect.width,
2960 			pipe_ctx->plane_state->src_rect.height,
2961 			pipe_ctx->plane_state->dst_rect.x,
2962 			pipe_ctx->plane_state->dst_rect.y,
2963 			pipe_ctx->plane_state->dst_rect.width,
2964 			pipe_ctx->plane_state->dst_rect.height,
2965 			pipe_ctx->plane_state->clip_rect.x,
2966 			pipe_ctx->plane_state->clip_rect.y,
2967 			pipe_ctx->plane_state->clip_rect.width,
2968 			pipe_ctx->plane_state->clip_rect.height);
2969 
2970 	DC_LOG_SURFACE(
2971 			"Pipe %d: width, height, x, y\n"
2972 			"viewport:%d, %d, %d, %d\n"
2973 			"recout:  %d, %d, %d, %d\n",
2974 			pipe_ctx->pipe_idx,
2975 			pipe_ctx->plane_res.scl_data.viewport.width,
2976 			pipe_ctx->plane_res.scl_data.viewport.height,
2977 			pipe_ctx->plane_res.scl_data.viewport.x,
2978 			pipe_ctx->plane_res.scl_data.viewport.y,
2979 			pipe_ctx->plane_res.scl_data.recout.width,
2980 			pipe_ctx->plane_res.scl_data.recout.height,
2981 			pipe_ctx->plane_res.scl_data.recout.x,
2982 			pipe_ctx->plane_res.scl_data.recout.y);
2983 }
2984 
dce110_apply_ctx_for_surface(struct dc * dc,const struct dc_stream_state * stream,int num_planes,struct dc_state * context)2985 static void dce110_apply_ctx_for_surface(
2986 		struct dc *dc,
2987 		const struct dc_stream_state *stream,
2988 		int num_planes,
2989 		struct dc_state *context)
2990 {
2991 	int i;
2992 
2993 	if (num_planes == 0)
2994 		return;
2995 
2996 	if (dc->fbc_compressor)
2997 		dc->fbc_compressor->funcs->disable_fbc(dc->fbc_compressor);
2998 
2999 	for (i = 0; i < dc->res_pool->pipe_count; i++) {
3000 		struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[i];
3001 
3002 		if (pipe_ctx->stream != stream)
3003 			continue;
3004 
3005 		/* Need to allocate mem before program front end for Fiji */
3006 		pipe_ctx->plane_res.mi->funcs->allocate_mem_input(
3007 				pipe_ctx->plane_res.mi,
3008 				pipe_ctx->stream->timing.h_total,
3009 				pipe_ctx->stream->timing.v_total,
3010 				pipe_ctx->stream->timing.pix_clk_100hz / 10,
3011 				context->stream_count);
3012 
3013 		dce110_program_front_end_for_pipe(dc, pipe_ctx);
3014 
3015 		dc->hwss.update_plane_addr(dc, pipe_ctx);
3016 
3017 		program_surface_visibility(dc, pipe_ctx);
3018 
3019 	}
3020 
3021 	if (dc->fbc_compressor)
3022 		enable_fbc(dc, context);
3023 }
3024 
dce110_post_unlock_program_front_end(struct dc * dc,struct dc_state * context)3025 static void dce110_post_unlock_program_front_end(
3026 		struct dc *dc,
3027 		struct dc_state *context)
3028 {
3029 }
3030 
dce110_power_down_fe(struct dc * dc,struct dc_state * state,struct pipe_ctx * pipe_ctx)3031 static void dce110_power_down_fe(struct dc *dc, struct dc_state *state, struct pipe_ctx *pipe_ctx)
3032 {
3033 	struct dce_hwseq *hws = dc->hwseq;
3034 	int fe_idx = pipe_ctx->plane_res.mi ?
3035 		pipe_ctx->plane_res.mi->inst : pipe_ctx->pipe_idx;
3036 
3037 	/* Do not power down fe when stream is active on dce*/
3038 	if (dc->current_state->res_ctx.pipe_ctx[fe_idx].stream)
3039 		return;
3040 
3041 	hws->funcs.enable_display_power_gating(
3042 		dc, fe_idx, dc->ctx->dc_bios, PIPE_GATING_CONTROL_ENABLE);
3043 
3044 	dc->res_pool->transforms[fe_idx]->funcs->transform_reset(
3045 				dc->res_pool->transforms[fe_idx]);
3046 }
3047 
dce110_wait_for_mpcc_disconnect(struct dc * dc,struct resource_pool * res_pool,struct pipe_ctx * pipe_ctx)3048 static void dce110_wait_for_mpcc_disconnect(
3049 		struct dc *dc,
3050 		struct resource_pool *res_pool,
3051 		struct pipe_ctx *pipe_ctx)
3052 {
3053 	/* do nothing*/
3054 }
3055 
program_output_csc(struct dc * dc,struct pipe_ctx * pipe_ctx,enum dc_color_space colorspace,uint16_t * matrix,int opp_id)3056 static void program_output_csc(struct dc *dc,
3057 		struct pipe_ctx *pipe_ctx,
3058 		enum dc_color_space colorspace,
3059 		uint16_t *matrix,
3060 		int opp_id)
3061 {
3062 	int i;
3063 	struct out_csc_color_matrix tbl_entry;
3064 
3065 	if (pipe_ctx->stream->csc_color_matrix.enable_adjustment == true) {
3066 		enum dc_color_space color_space = pipe_ctx->stream->output_color_space;
3067 
3068 		for (i = 0; i < 12; i++)
3069 			tbl_entry.regval[i] = pipe_ctx->stream->csc_color_matrix.matrix[i];
3070 
3071 		tbl_entry.color_space = color_space;
3072 
3073 		pipe_ctx->plane_res.xfm->funcs->opp_set_csc_adjustment(
3074 				pipe_ctx->plane_res.xfm, &tbl_entry);
3075 	}
3076 }
3077 
dce110_set_cursor_position(struct pipe_ctx * pipe_ctx)3078 static void dce110_set_cursor_position(struct pipe_ctx *pipe_ctx)
3079 {
3080 	struct dc_cursor_position pos_cpy = pipe_ctx->stream->cursor_position;
3081 	struct input_pixel_processor *ipp = pipe_ctx->plane_res.ipp;
3082 	struct mem_input *mi = pipe_ctx->plane_res.mi;
3083 	struct dc_cursor_mi_param param = {
3084 		.pixel_clk_khz = pipe_ctx->stream->timing.pix_clk_100hz / 10,
3085 		.ref_clk_khz = pipe_ctx->stream->ctx->dc->res_pool->ref_clocks.xtalin_clock_inKhz,
3086 		.viewport = pipe_ctx->plane_res.scl_data.viewport,
3087 		.h_scale_ratio = pipe_ctx->plane_res.scl_data.ratios.horz,
3088 		.v_scale_ratio = pipe_ctx->plane_res.scl_data.ratios.vert,
3089 		.rotation = pipe_ctx->plane_state->rotation,
3090 		.mirror = pipe_ctx->plane_state->horizontal_mirror
3091 	};
3092 
3093 	/**
3094 	 * If the cursor's source viewport is clipped then we need to
3095 	 * translate the cursor to appear in the correct position on
3096 	 * the screen.
3097 	 *
3098 	 * This translation isn't affected by scaling so it needs to be
3099 	 * done *after* we adjust the position for the scale factor.
3100 	 *
3101 	 * This is only done by opt-in for now since there are still
3102 	 * some usecases like tiled display that might enable the
3103 	 * cursor on both streams while expecting dc to clip it.
3104 	 */
3105 	if (pos_cpy.translate_by_source) {
3106 		pos_cpy.x += pipe_ctx->plane_state->src_rect.x;
3107 		pos_cpy.y += pipe_ctx->plane_state->src_rect.y;
3108 	}
3109 
3110 	if (pipe_ctx->plane_state->address.type
3111 			== PLN_ADDR_TYPE_VIDEO_PROGRESSIVE)
3112 		pos_cpy.enable = false;
3113 
3114 	if (pipe_ctx->top_pipe && pipe_ctx->plane_state != pipe_ctx->top_pipe->plane_state)
3115 		pos_cpy.enable = false;
3116 
3117 	if (ipp->funcs->ipp_cursor_set_position)
3118 		ipp->funcs->ipp_cursor_set_position(ipp, &pos_cpy, &param);
3119 	if (mi->funcs->set_cursor_position)
3120 		mi->funcs->set_cursor_position(mi, &pos_cpy, &param);
3121 }
3122 
dce110_set_cursor_attribute(struct pipe_ctx * pipe_ctx)3123 static void dce110_set_cursor_attribute(struct pipe_ctx *pipe_ctx)
3124 {
3125 	struct dc_cursor_attributes *attributes = &pipe_ctx->stream->cursor_attributes;
3126 
3127 	if (pipe_ctx->plane_res.ipp &&
3128 	    pipe_ctx->plane_res.ipp->funcs->ipp_cursor_set_attributes)
3129 		pipe_ctx->plane_res.ipp->funcs->ipp_cursor_set_attributes(
3130 				pipe_ctx->plane_res.ipp, attributes);
3131 
3132 	if (pipe_ctx->plane_res.mi &&
3133 	    pipe_ctx->plane_res.mi->funcs->set_cursor_attributes)
3134 		pipe_ctx->plane_res.mi->funcs->set_cursor_attributes(
3135 				pipe_ctx->plane_res.mi, attributes);
3136 
3137 	if (pipe_ctx->plane_res.xfm &&
3138 	    pipe_ctx->plane_res.xfm->funcs->set_cursor_attributes)
3139 		pipe_ctx->plane_res.xfm->funcs->set_cursor_attributes(
3140 				pipe_ctx->plane_res.xfm, attributes);
3141 }
3142 
dce110_set_backlight_level(struct pipe_ctx * pipe_ctx,uint32_t backlight_pwm_u16_16,uint32_t frame_ramp)3143 bool dce110_set_backlight_level(struct pipe_ctx *pipe_ctx,
3144 		uint32_t backlight_pwm_u16_16,
3145 		uint32_t frame_ramp)
3146 {
3147 	struct dc_link *link = pipe_ctx->stream->link;
3148 	struct dc  *dc = link->ctx->dc;
3149 	struct abm *abm = pipe_ctx->stream_res.abm;
3150 	struct panel_cntl *panel_cntl = link->panel_cntl;
3151 	struct dmcu *dmcu = dc->res_pool->dmcu;
3152 	bool fw_set_brightness = true;
3153 	/* DMCU -1 for all controller id values,
3154 	 * therefore +1 here
3155 	 */
3156 	uint32_t controller_id = pipe_ctx->stream_res.tg->inst + 1;
3157 
3158 	if (abm == NULL || panel_cntl == NULL || (abm->funcs->set_backlight_level_pwm == NULL))
3159 		return false;
3160 
3161 	if (dmcu)
3162 		fw_set_brightness = dmcu->funcs->is_dmcu_initialized(dmcu);
3163 
3164 	if (!fw_set_brightness && panel_cntl->funcs->driver_set_backlight)
3165 		panel_cntl->funcs->driver_set_backlight(panel_cntl, backlight_pwm_u16_16);
3166 	else
3167 		abm->funcs->set_backlight_level_pwm(
3168 				abm,
3169 				backlight_pwm_u16_16,
3170 				frame_ramp,
3171 				controller_id,
3172 				link->panel_cntl->inst);
3173 
3174 	return true;
3175 }
3176 
dce110_set_abm_immediate_disable(struct pipe_ctx * pipe_ctx)3177 void dce110_set_abm_immediate_disable(struct pipe_ctx *pipe_ctx)
3178 {
3179 	struct abm *abm = pipe_ctx->stream_res.abm;
3180 	struct panel_cntl *panel_cntl = pipe_ctx->stream->link->panel_cntl;
3181 
3182 	if (abm)
3183 		abm->funcs->set_abm_immediate_disable(abm,
3184 				pipe_ctx->stream->link->panel_cntl->inst);
3185 
3186 	if (panel_cntl)
3187 		panel_cntl->funcs->store_backlight_level(panel_cntl);
3188 }
3189 
dce110_set_pipe(struct pipe_ctx * pipe_ctx)3190 void dce110_set_pipe(struct pipe_ctx *pipe_ctx)
3191 {
3192 	struct abm *abm = pipe_ctx->stream_res.abm;
3193 	struct panel_cntl *panel_cntl = pipe_ctx->stream->link->panel_cntl;
3194 	uint32_t otg_inst = pipe_ctx->stream_res.tg->inst + 1;
3195 
3196 	if (abm && panel_cntl)
3197 		abm->funcs->set_pipe(abm, otg_inst, panel_cntl->inst);
3198 }
3199 
dce110_enable_lvds_link_output(struct dc_link * link,const struct link_resource * link_res,enum clock_source_id clock_source,uint32_t pixel_clock)3200 void dce110_enable_lvds_link_output(struct dc_link *link,
3201 		const struct link_resource *link_res,
3202 		enum clock_source_id clock_source,
3203 		uint32_t pixel_clock)
3204 {
3205 	link->link_enc->funcs->enable_lvds_output(
3206 			link->link_enc,
3207 			clock_source,
3208 			pixel_clock);
3209 	link->phy_state.symclk_state = SYMCLK_ON_TX_ON;
3210 }
3211 
dce110_enable_tmds_link_output(struct dc_link * link,const struct link_resource * link_res,enum signal_type signal,enum clock_source_id clock_source,enum dc_color_depth color_depth,uint32_t pixel_clock)3212 void dce110_enable_tmds_link_output(struct dc_link *link,
3213 		const struct link_resource *link_res,
3214 		enum signal_type signal,
3215 		enum clock_source_id clock_source,
3216 		enum dc_color_depth color_depth,
3217 		uint32_t pixel_clock)
3218 {
3219 	link->link_enc->funcs->enable_tmds_output(
3220 			link->link_enc,
3221 			clock_source,
3222 			color_depth,
3223 			signal,
3224 			pixel_clock);
3225 	link->phy_state.symclk_state = SYMCLK_ON_TX_ON;
3226 }
3227 
dce110_enable_dp_link_output(struct dc_link * link,const struct link_resource * link_res,enum signal_type signal,enum clock_source_id clock_source,const struct dc_link_settings * link_settings)3228 void dce110_enable_dp_link_output(
3229 		struct dc_link *link,
3230 		const struct link_resource *link_res,
3231 		enum signal_type signal,
3232 		enum clock_source_id clock_source,
3233 		const struct dc_link_settings *link_settings)
3234 {
3235 	struct dc  *dc = link->ctx->dc;
3236 	struct dmcu *dmcu = dc->res_pool->dmcu;
3237 	struct pipe_ctx *pipes =
3238 			link->dc->current_state->res_ctx.pipe_ctx;
3239 	struct clock_source *dp_cs =
3240 			link->dc->res_pool->dp_clock_source;
3241 	const struct link_hwss *link_hwss = get_link_hwss(link, link_res);
3242 	unsigned int i;
3243 
3244 	/*
3245 	 * Add the logic to extract BOTH power up and power down sequences
3246 	 * from enable/disable link output and only call edp panel control
3247 	 * in enable_link_dp and disable_link_dp once.
3248 	 */
3249 	if (link->connector_signal == SIGNAL_TYPE_EDP) {
3250 		link->dc->hwss.edp_wait_for_hpd_ready(link, true);
3251 	}
3252 
3253 	/* If the current pixel clock source is not DTO(happens after
3254 	 * switching from HDMI passive dongle to DP on the same connector),
3255 	 * switch the pixel clock source to DTO.
3256 	 */
3257 
3258 	for (i = 0; i < MAX_PIPES; i++) {
3259 		if (pipes[i].stream != NULL &&
3260 				pipes[i].stream->link == link) {
3261 			if (pipes[i].clock_source != NULL &&
3262 					pipes[i].clock_source->id != CLOCK_SOURCE_ID_DP_DTO) {
3263 				pipes[i].clock_source = dp_cs;
3264 				pipes[i].stream_res.pix_clk_params.requested_pix_clk_100hz =
3265 						pipes[i].stream->timing.pix_clk_100hz;
3266 				pipes[i].clock_source->funcs->program_pix_clk(
3267 						pipes[i].clock_source,
3268 						&pipes[i].stream_res.pix_clk_params,
3269 						dc->link_srv->dp_get_encoding_format(link_settings),
3270 						&pipes[i].pll_settings);
3271 			}
3272 		}
3273 	}
3274 
3275 	if (dc->link_srv->dp_get_encoding_format(link_settings) == DP_8b_10b_ENCODING) {
3276 		if (dc->clk_mgr->funcs->notify_link_rate_change)
3277 			dc->clk_mgr->funcs->notify_link_rate_change(dc->clk_mgr, link);
3278 	}
3279 
3280 	if (dmcu != NULL && dmcu->funcs->lock_phy)
3281 		dmcu->funcs->lock_phy(dmcu);
3282 
3283 	if (link_hwss->ext.enable_dp_link_output)
3284 		link_hwss->ext.enable_dp_link_output(link, link_res, signal,
3285 				clock_source, link_settings);
3286 
3287 	link->phy_state.symclk_state = SYMCLK_ON_TX_ON;
3288 
3289 	if (dmcu != NULL && dmcu->funcs->unlock_phy)
3290 		dmcu->funcs->unlock_phy(dmcu);
3291 
3292 	dc->link_srv->dp_trace_source_sequence(link, DPCD_SOURCE_SEQ_AFTER_ENABLE_LINK_PHY);
3293 }
3294 
dce110_disable_link_output(struct dc_link * link,const struct link_resource * link_res,enum signal_type signal)3295 void dce110_disable_link_output(struct dc_link *link,
3296 		const struct link_resource *link_res,
3297 		enum signal_type signal)
3298 {
3299 	struct dc *dc = link->ctx->dc;
3300 	const struct link_hwss *link_hwss = get_link_hwss(link, link_res);
3301 	struct dmcu *dmcu = dc->res_pool->dmcu;
3302 
3303 	if (signal == SIGNAL_TYPE_EDP &&
3304 			link->dc->hwss.edp_backlight_control &&
3305 			!link->skip_implict_edp_power_control)
3306 		link->dc->hwss.edp_backlight_control(link, false);
3307 	else if (dmcu != NULL && dmcu->funcs->lock_phy)
3308 		dmcu->funcs->lock_phy(dmcu);
3309 
3310 	link_hwss->disable_link_output(link, link_res, signal);
3311 	link->phy_state.symclk_state = SYMCLK_OFF_TX_OFF;
3312 	/*
3313 	 * Add the logic to extract BOTH power up and power down sequences
3314 	 * from enable/disable link output and only call edp panel control
3315 	 * in enable_link_dp and disable_link_dp once.
3316 	 */
3317 	if (dmcu != NULL && dmcu->funcs->lock_phy)
3318 		dmcu->funcs->unlock_phy(dmcu);
3319 	dc->link_srv->dp_trace_source_sequence(link, DPCD_SOURCE_SEQ_AFTER_DISABLE_LINK_PHY);
3320 }
3321 
3322 static const struct hw_sequencer_funcs dce110_funcs = {
3323 	.program_gamut_remap = program_gamut_remap,
3324 	.program_output_csc = program_output_csc,
3325 	.init_hw = init_hw,
3326 	.apply_ctx_to_hw = dce110_apply_ctx_to_hw,
3327 	.apply_ctx_for_surface = dce110_apply_ctx_for_surface,
3328 	.post_unlock_program_front_end = dce110_post_unlock_program_front_end,
3329 	.update_plane_addr = update_plane_addr,
3330 	.update_pending_status = dce110_update_pending_status,
3331 	.enable_accelerated_mode = dce110_enable_accelerated_mode,
3332 	.enable_timing_synchronization = dce110_enable_timing_synchronization,
3333 	.enable_per_frame_crtc_position_reset = dce110_enable_per_frame_crtc_position_reset,
3334 	.update_info_frame = dce110_update_info_frame,
3335 	.enable_stream = dce110_enable_stream,
3336 	.disable_stream = dce110_disable_stream,
3337 	.unblank_stream = dce110_unblank_stream,
3338 	.blank_stream = dce110_blank_stream,
3339 	.enable_audio_stream = dce110_enable_audio_stream,
3340 	.disable_audio_stream = dce110_disable_audio_stream,
3341 	.disable_plane = dce110_power_down_fe,
3342 	.pipe_control_lock = dce_pipe_control_lock,
3343 	.interdependent_update_lock = NULL,
3344 	.cursor_lock = dce_pipe_control_lock,
3345 	.prepare_bandwidth = dce110_prepare_bandwidth,
3346 	.optimize_bandwidth = dce110_optimize_bandwidth,
3347 	.set_drr = set_drr,
3348 	.get_position = get_position,
3349 	.set_static_screen_control = set_static_screen_control,
3350 	.setup_stereo = NULL,
3351 	.set_avmute = dce110_set_avmute,
3352 	.wait_for_mpcc_disconnect = dce110_wait_for_mpcc_disconnect,
3353 	.edp_backlight_control = dce110_edp_backlight_control,
3354 	.edp_power_control = dce110_edp_power_control,
3355 	.edp_wait_for_hpd_ready = dce110_edp_wait_for_hpd_ready,
3356 	.set_cursor_position = dce110_set_cursor_position,
3357 	.set_cursor_attribute = dce110_set_cursor_attribute,
3358 	.set_backlight_level = dce110_set_backlight_level,
3359 	.set_abm_immediate_disable = dce110_set_abm_immediate_disable,
3360 	.set_pipe = dce110_set_pipe,
3361 	.enable_lvds_link_output = dce110_enable_lvds_link_output,
3362 	.enable_tmds_link_output = dce110_enable_tmds_link_output,
3363 	.enable_dp_link_output = dce110_enable_dp_link_output,
3364 	.disable_link_output = dce110_disable_link_output,
3365 };
3366 
3367 static const struct hwseq_private_funcs dce110_private_funcs = {
3368 	.init_pipes = init_pipes,
3369 	.set_input_transfer_func = dce110_set_input_transfer_func,
3370 	.set_output_transfer_func = dce110_set_output_transfer_func,
3371 	.power_down = dce110_power_down,
3372 	.enable_display_pipe_clock_gating = enable_display_pipe_clock_gating,
3373 	.enable_display_power_gating = dce110_enable_display_power_gating,
3374 	.reset_hw_ctx_wrap = dce110_reset_hw_ctx_wrap,
3375 	.enable_stream_timing = dce110_enable_stream_timing,
3376 	.disable_stream_gating = NULL,
3377 	.enable_stream_gating = NULL,
3378 	.edp_backlight_control = dce110_edp_backlight_control,
3379 };
3380 
dce110_hw_sequencer_construct(struct dc * dc)3381 void dce110_hw_sequencer_construct(struct dc *dc)
3382 {
3383 	dc->hwss = dce110_funcs;
3384 	dc->hwseq->funcs = dce110_private_funcs;
3385 }
3386 
3387