• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (c) 2018, The Linux Foundation. All rights reserved.
4  * datasheet: https://www.ti.com/lit/ds/symlink/sn65dsi86.pdf
5  */
6 
7 #include <linux/atomic.h>
8 #include <linux/auxiliary_bus.h>
9 #include <linux/bitfield.h>
10 #include <linux/bits.h>
11 #include <linux/clk.h>
12 #include <linux/debugfs.h>
13 #include <linux/gpio/consumer.h>
14 #include <linux/gpio/driver.h>
15 #include <linux/i2c.h>
16 #include <linux/iopoll.h>
17 #include <linux/module.h>
18 #include <linux/of_graph.h>
19 #include <linux/pm_runtime.h>
20 #include <linux/pwm.h>
21 #include <linux/regmap.h>
22 #include <linux/regulator/consumer.h>
23 
24 #include <linux/unaligned.h>
25 
26 #include <drm/display/drm_dp_aux_bus.h>
27 #include <drm/display/drm_dp_helper.h>
28 #include <drm/drm_atomic.h>
29 #include <drm/drm_atomic_helper.h>
30 #include <drm/drm_bridge.h>
31 #include <drm/drm_bridge_connector.h>
32 #include <drm/drm_edid.h>
33 #include <drm/drm_mipi_dsi.h>
34 #include <drm/drm_of.h>
35 #include <drm/drm_panel.h>
36 #include <drm/drm_print.h>
37 #include <drm/drm_probe_helper.h>
38 
39 #define SN_DEVICE_REV_REG			0x08
40 #define SN_DPPLL_SRC_REG			0x0A
41 #define  DPPLL_CLK_SRC_DSICLK			BIT(0)
42 #define  REFCLK_FREQ_MASK			GENMASK(3, 1)
43 #define  REFCLK_FREQ(x)				((x) << 1)
44 #define  DPPLL_SRC_DP_PLL_LOCK			BIT(7)
45 #define SN_PLL_ENABLE_REG			0x0D
46 #define SN_DSI_LANES_REG			0x10
47 #define  CHA_DSI_LANES_MASK			GENMASK(4, 3)
48 #define  CHA_DSI_LANES(x)			((x) << 3)
49 #define SN_DSIA_CLK_FREQ_REG			0x12
50 #define SN_CHA_ACTIVE_LINE_LENGTH_LOW_REG	0x20
51 #define SN_CHA_VERTICAL_DISPLAY_SIZE_LOW_REG	0x24
52 #define SN_CHA_HSYNC_PULSE_WIDTH_LOW_REG	0x2C
53 #define SN_CHA_HSYNC_PULSE_WIDTH_HIGH_REG	0x2D
54 #define  CHA_HSYNC_POLARITY			BIT(7)
55 #define SN_CHA_VSYNC_PULSE_WIDTH_LOW_REG	0x30
56 #define SN_CHA_VSYNC_PULSE_WIDTH_HIGH_REG	0x31
57 #define  CHA_VSYNC_POLARITY			BIT(7)
58 #define SN_CHA_HORIZONTAL_BACK_PORCH_REG	0x34
59 #define SN_CHA_VERTICAL_BACK_PORCH_REG		0x36
60 #define SN_CHA_HORIZONTAL_FRONT_PORCH_REG	0x38
61 #define SN_CHA_VERTICAL_FRONT_PORCH_REG		0x3A
62 #define SN_LN_ASSIGN_REG			0x59
63 #define  LN_ASSIGN_WIDTH			2
64 #define SN_ENH_FRAME_REG			0x5A
65 #define  VSTREAM_ENABLE				BIT(3)
66 #define  LN_POLRS_OFFSET			4
67 #define  LN_POLRS_MASK				0xf0
68 #define SN_DATA_FORMAT_REG			0x5B
69 #define  BPP_18_RGB				BIT(0)
70 #define SN_HPD_DISABLE_REG			0x5C
71 #define  HPD_DISABLE				BIT(0)
72 #define  HPD_DEBOUNCED_STATE			BIT(4)
73 #define SN_GPIO_IO_REG				0x5E
74 #define  SN_GPIO_INPUT_SHIFT			4
75 #define  SN_GPIO_OUTPUT_SHIFT			0
76 #define SN_GPIO_CTRL_REG			0x5F
77 #define  SN_GPIO_MUX_INPUT			0
78 #define  SN_GPIO_MUX_OUTPUT			1
79 #define  SN_GPIO_MUX_SPECIAL			2
80 #define  SN_GPIO_MUX_MASK			0x3
81 #define SN_AUX_WDATA_REG(x)			(0x64 + (x))
82 #define SN_AUX_ADDR_19_16_REG			0x74
83 #define SN_AUX_ADDR_15_8_REG			0x75
84 #define SN_AUX_ADDR_7_0_REG			0x76
85 #define SN_AUX_ADDR_MASK			GENMASK(19, 0)
86 #define SN_AUX_LENGTH_REG			0x77
87 #define SN_AUX_CMD_REG				0x78
88 #define  AUX_CMD_SEND				BIT(0)
89 #define  AUX_CMD_REQ(x)				((x) << 4)
90 #define SN_AUX_RDATA_REG(x)			(0x79 + (x))
91 #define SN_SSC_CONFIG_REG			0x93
92 #define  DP_NUM_LANES_MASK			GENMASK(5, 4)
93 #define  DP_NUM_LANES(x)			((x) << 4)
94 #define SN_DATARATE_CONFIG_REG			0x94
95 #define  DP_DATARATE_MASK			GENMASK(7, 5)
96 #define  DP_DATARATE(x)				((x) << 5)
97 #define SN_TRAINING_SETTING_REG			0x95
98 #define  SCRAMBLE_DISABLE			BIT(4)
99 #define SN_ML_TX_MODE_REG			0x96
100 #define  ML_TX_MAIN_LINK_OFF			0
101 #define  ML_TX_NORMAL_MODE			BIT(0)
102 #define SN_PWM_PRE_DIV_REG			0xA0
103 #define SN_BACKLIGHT_SCALE_REG			0xA1
104 #define  BACKLIGHT_SCALE_MAX			0xFFFF
105 #define SN_BACKLIGHT_REG			0xA3
106 #define SN_PWM_EN_INV_REG			0xA5
107 #define  SN_PWM_INV_MASK			BIT(0)
108 #define  SN_PWM_EN_MASK				BIT(1)
109 #define SN_AUX_CMD_STATUS_REG			0xF4
110 #define  AUX_IRQ_STATUS_AUX_RPLY_TOUT		BIT(3)
111 #define  AUX_IRQ_STATUS_AUX_SHORT		BIT(5)
112 #define  AUX_IRQ_STATUS_NAT_I2C_FAIL		BIT(6)
113 
114 #define MIN_DSI_CLK_FREQ_MHZ	40
115 
116 /* fudge factor required to account for 8b/10b encoding */
117 #define DP_CLK_FUDGE_NUM	10
118 #define DP_CLK_FUDGE_DEN	8
119 
120 /* Matches DP_AUX_MAX_PAYLOAD_BYTES (for now) */
121 #define SN_AUX_MAX_PAYLOAD_BYTES	16
122 
123 #define SN_REGULATOR_SUPPLY_NUM		4
124 
125 #define SN_MAX_DP_LANES			4
126 #define SN_NUM_GPIOS			4
127 #define SN_GPIO_PHYSICAL_OFFSET		1
128 
129 #define SN_LINK_TRAINING_TRIES		10
130 
131 #define SN_PWM_GPIO_IDX			3 /* 4th GPIO */
132 
133 /**
134  * struct ti_sn65dsi86 - Platform data for ti-sn65dsi86 driver.
135  * @bridge_aux:   AUX-bus sub device for MIPI-to-eDP bridge functionality.
136  * @gpio_aux:     AUX-bus sub device for GPIO controller functionality.
137  * @aux_aux:      AUX-bus sub device for eDP AUX channel functionality.
138  * @pwm_aux:      AUX-bus sub device for PWM controller functionality.
139  *
140  * @dev:          Pointer to the top level (i2c) device.
141  * @regmap:       Regmap for accessing i2c.
142  * @aux:          Our aux channel.
143  * @bridge:       Our bridge.
144  * @connector:    Our connector.
145  * @host_node:    Remote DSI node.
146  * @dsi:          Our MIPI DSI source.
147  * @refclk:       Our reference clock.
148  * @next_bridge:  The bridge on the eDP side.
149  * @enable_gpio:  The GPIO we toggle to enable the bridge.
150  * @supplies:     Data for bulk enabling/disabling our regulators.
151  * @dp_lanes:     Count of dp_lanes we're using.
152  * @ln_assign:    Value to program to the LN_ASSIGN register.
153  * @ln_polrs:     Value for the 4-bit LN_POLRS field of SN_ENH_FRAME_REG.
154  * @comms_enabled: If true then communication over the aux channel is enabled.
155  * @comms_mutex:   Protects modification of comms_enabled.
156  *
157  * @gchip:        If we expose our GPIOs, this is used.
158  * @gchip_output: A cache of whether we've set GPIOs to output.  This
159  *                serves double-duty of keeping track of the direction and
160  *                also keeping track of whether we've incremented the
161  *                pm_runtime reference count for this pin, which we do
162  *                whenever a pin is configured as an output.  This is a
163  *                bitmap so we can do atomic ops on it without an extra
164  *                lock so concurrent users of our 4 GPIOs don't stomp on
165  *                each other's read-modify-write.
166  *
167  * @pchip:        pwm_chip if the PWM is exposed.
168  * @pwm_enabled:  Used to track if the PWM signal is currently enabled.
169  * @pwm_pin_busy: Track if GPIO4 is currently requested for GPIO or PWM.
170  * @pwm_refclk_freq: Cache for the reference clock input to the PWM.
171  */
172 struct ti_sn65dsi86 {
173 	struct auxiliary_device		*bridge_aux;
174 	struct auxiliary_device		*gpio_aux;
175 	struct auxiliary_device		*aux_aux;
176 	struct auxiliary_device		*pwm_aux;
177 
178 	struct device			*dev;
179 	struct regmap			*regmap;
180 	struct drm_dp_aux		aux;
181 	struct drm_bridge		bridge;
182 	struct drm_connector		*connector;
183 	struct device_node		*host_node;
184 	struct mipi_dsi_device		*dsi;
185 	struct clk			*refclk;
186 	struct drm_bridge		*next_bridge;
187 	struct gpio_desc		*enable_gpio;
188 	struct regulator_bulk_data	supplies[SN_REGULATOR_SUPPLY_NUM];
189 	int				dp_lanes;
190 	u8				ln_assign;
191 	u8				ln_polrs;
192 	bool				comms_enabled;
193 	struct mutex			comms_mutex;
194 
195 #if defined(CONFIG_OF_GPIO)
196 	struct gpio_chip		gchip;
197 	DECLARE_BITMAP(gchip_output, SN_NUM_GPIOS);
198 #endif
199 #if defined(CONFIG_PWM)
200 	struct pwm_chip			*pchip;
201 	bool				pwm_enabled;
202 	atomic_t			pwm_pin_busy;
203 #endif
204 	unsigned int			pwm_refclk_freq;
205 };
206 
207 static const struct regmap_range ti_sn65dsi86_volatile_ranges[] = {
208 	{ .range_min = 0, .range_max = 0xFF },
209 };
210 
211 static const struct regmap_access_table ti_sn_bridge_volatile_table = {
212 	.yes_ranges = ti_sn65dsi86_volatile_ranges,
213 	.n_yes_ranges = ARRAY_SIZE(ti_sn65dsi86_volatile_ranges),
214 };
215 
216 static const struct regmap_config ti_sn65dsi86_regmap_config = {
217 	.reg_bits = 8,
218 	.val_bits = 8,
219 	.volatile_table = &ti_sn_bridge_volatile_table,
220 	.cache_type = REGCACHE_NONE,
221 	.max_register = 0xFF,
222 };
223 
ti_sn65dsi86_read_u16(struct ti_sn65dsi86 * pdata,unsigned int reg,u16 * val)224 static int __maybe_unused ti_sn65dsi86_read_u16(struct ti_sn65dsi86 *pdata,
225 						unsigned int reg, u16 *val)
226 {
227 	u8 buf[2];
228 	int ret;
229 
230 	ret = regmap_bulk_read(pdata->regmap, reg, buf, ARRAY_SIZE(buf));
231 	if (ret)
232 		return ret;
233 
234 	*val = buf[0] | (buf[1] << 8);
235 
236 	return 0;
237 }
238 
ti_sn65dsi86_write_u16(struct ti_sn65dsi86 * pdata,unsigned int reg,u16 val)239 static void ti_sn65dsi86_write_u16(struct ti_sn65dsi86 *pdata,
240 				   unsigned int reg, u16 val)
241 {
242 	u8 buf[2] = { val & 0xff, val >> 8 };
243 
244 	regmap_bulk_write(pdata->regmap, reg, buf, ARRAY_SIZE(buf));
245 }
246 
ti_sn_bridge_get_dsi_freq(struct ti_sn65dsi86 * pdata)247 static u32 ti_sn_bridge_get_dsi_freq(struct ti_sn65dsi86 *pdata)
248 {
249 	u32 bit_rate_khz, clk_freq_khz;
250 	struct drm_display_mode *mode =
251 		&pdata->bridge.encoder->crtc->state->adjusted_mode;
252 
253 	bit_rate_khz = mode->clock *
254 			mipi_dsi_pixel_format_to_bpp(pdata->dsi->format);
255 	clk_freq_khz = bit_rate_khz / (pdata->dsi->lanes * 2);
256 
257 	return clk_freq_khz;
258 }
259 
260 /* clk frequencies supported by bridge in Hz in case derived from REFCLK pin */
261 static const u32 ti_sn_bridge_refclk_lut[] = {
262 	12000000,
263 	19200000,
264 	26000000,
265 	27000000,
266 	38400000,
267 };
268 
269 /* clk frequencies supported by bridge in Hz in case derived from DACP/N pin */
270 static const u32 ti_sn_bridge_dsiclk_lut[] = {
271 	468000000,
272 	384000000,
273 	416000000,
274 	486000000,
275 	460800000,
276 };
277 
ti_sn_bridge_set_refclk_freq(struct ti_sn65dsi86 * pdata)278 static void ti_sn_bridge_set_refclk_freq(struct ti_sn65dsi86 *pdata)
279 {
280 	int i;
281 	u32 refclk_rate;
282 	const u32 *refclk_lut;
283 	size_t refclk_lut_size;
284 
285 	if (pdata->refclk) {
286 		refclk_rate = clk_get_rate(pdata->refclk);
287 		refclk_lut = ti_sn_bridge_refclk_lut;
288 		refclk_lut_size = ARRAY_SIZE(ti_sn_bridge_refclk_lut);
289 		clk_prepare_enable(pdata->refclk);
290 	} else {
291 		refclk_rate = ti_sn_bridge_get_dsi_freq(pdata) * 1000;
292 		refclk_lut = ti_sn_bridge_dsiclk_lut;
293 		refclk_lut_size = ARRAY_SIZE(ti_sn_bridge_dsiclk_lut);
294 	}
295 
296 	/* for i equals to refclk_lut_size means default frequency */
297 	for (i = 0; i < refclk_lut_size; i++)
298 		if (refclk_lut[i] == refclk_rate)
299 			break;
300 
301 	/* avoid buffer overflow and "1" is the default rate in the datasheet. */
302 	if (i >= refclk_lut_size)
303 		i = 1;
304 
305 	regmap_update_bits(pdata->regmap, SN_DPPLL_SRC_REG, REFCLK_FREQ_MASK,
306 			   REFCLK_FREQ(i));
307 
308 	/*
309 	 * The PWM refclk is based on the value written to SN_DPPLL_SRC_REG,
310 	 * regardless of its actual sourcing.
311 	 */
312 	pdata->pwm_refclk_freq = ti_sn_bridge_refclk_lut[i];
313 }
314 
ti_sn65dsi86_enable_comms(struct ti_sn65dsi86 * pdata)315 static void ti_sn65dsi86_enable_comms(struct ti_sn65dsi86 *pdata)
316 {
317 	mutex_lock(&pdata->comms_mutex);
318 
319 	/* configure bridge ref_clk */
320 	ti_sn_bridge_set_refclk_freq(pdata);
321 
322 	/*
323 	 * HPD on this bridge chip is a bit useless.  This is an eDP bridge
324 	 * so the HPD is an internal signal that's only there to signal that
325 	 * the panel is done powering up.  ...but the bridge chip debounces
326 	 * this signal by between 100 ms and 400 ms (depending on process,
327 	 * voltage, and temperate--I measured it at about 200 ms).  One
328 	 * particular panel asserted HPD 84 ms after it was powered on meaning
329 	 * that we saw HPD 284 ms after power on.  ...but the same panel said
330 	 * that instead of looking at HPD you could just hardcode a delay of
331 	 * 200 ms.  We'll assume that the panel driver will have the hardcoded
332 	 * delay in its prepare and always disable HPD.
333 	 *
334 	 * For DisplayPort bridge type, we need HPD. So we use the bridge type
335 	 * to conditionally disable HPD.
336 	 * NOTE: The bridge type is set in ti_sn_bridge_probe() but enable_comms()
337 	 * can be called before. So for DisplayPort, HPD will be enabled once
338 	 * bridge type is set. We are using bridge type instead of "no-hpd"
339 	 * property because it is not used properly in devicetree description
340 	 * and hence is unreliable.
341 	 */
342 
343 	if (pdata->bridge.type != DRM_MODE_CONNECTOR_DisplayPort)
344 		regmap_update_bits(pdata->regmap, SN_HPD_DISABLE_REG, HPD_DISABLE,
345 				   HPD_DISABLE);
346 
347 	pdata->comms_enabled = true;
348 
349 	mutex_unlock(&pdata->comms_mutex);
350 }
351 
ti_sn65dsi86_disable_comms(struct ti_sn65dsi86 * pdata)352 static void ti_sn65dsi86_disable_comms(struct ti_sn65dsi86 *pdata)
353 {
354 	mutex_lock(&pdata->comms_mutex);
355 
356 	pdata->comms_enabled = false;
357 	clk_disable_unprepare(pdata->refclk);
358 
359 	mutex_unlock(&pdata->comms_mutex);
360 }
361 
ti_sn65dsi86_resume(struct device * dev)362 static int __maybe_unused ti_sn65dsi86_resume(struct device *dev)
363 {
364 	struct ti_sn65dsi86 *pdata = dev_get_drvdata(dev);
365 	int ret;
366 
367 	ret = regulator_bulk_enable(SN_REGULATOR_SUPPLY_NUM, pdata->supplies);
368 	if (ret) {
369 		DRM_ERROR("failed to enable supplies %d\n", ret);
370 		return ret;
371 	}
372 
373 	/* td2: min 100 us after regulators before enabling the GPIO */
374 	usleep_range(100, 110);
375 
376 	gpiod_set_value_cansleep(pdata->enable_gpio, 1);
377 
378 	/*
379 	 * After EN is deasserted and an external clock is detected, the bridge
380 	 * will sample GPIO3:1 to determine its frequency. The driver will
381 	 * overwrite this setting in ti_sn_bridge_set_refclk_freq(). But this is
382 	 * racy. Thus we have to wait a couple of us. According to the datasheet
383 	 * the GPIO lines has to be stable at least 5 us (td5) but it seems that
384 	 * is not enough and the refclk frequency value is still lost or
385 	 * overwritten by the bridge itself. Waiting for 20us seems to work.
386 	 */
387 	usleep_range(20, 30);
388 
389 	/*
390 	 * If we have a reference clock we can enable communication w/ the
391 	 * panel (including the aux channel) w/out any need for an input clock
392 	 * so we can do it in resume which lets us read the EDID before
393 	 * pre_enable(). Without a reference clock we need the MIPI reference
394 	 * clock so reading early doesn't work.
395 	 */
396 	if (pdata->refclk)
397 		ti_sn65dsi86_enable_comms(pdata);
398 
399 	return ret;
400 }
401 
ti_sn65dsi86_suspend(struct device * dev)402 static int __maybe_unused ti_sn65dsi86_suspend(struct device *dev)
403 {
404 	struct ti_sn65dsi86 *pdata = dev_get_drvdata(dev);
405 	int ret;
406 
407 	if (pdata->refclk)
408 		ti_sn65dsi86_disable_comms(pdata);
409 
410 	gpiod_set_value_cansleep(pdata->enable_gpio, 0);
411 
412 	ret = regulator_bulk_disable(SN_REGULATOR_SUPPLY_NUM, pdata->supplies);
413 	if (ret)
414 		DRM_ERROR("failed to disable supplies %d\n", ret);
415 
416 	return ret;
417 }
418 
419 static const struct dev_pm_ops ti_sn65dsi86_pm_ops = {
420 	SET_RUNTIME_PM_OPS(ti_sn65dsi86_suspend, ti_sn65dsi86_resume, NULL)
421 	SET_SYSTEM_SLEEP_PM_OPS(pm_runtime_force_suspend,
422 				pm_runtime_force_resume)
423 };
424 
status_show(struct seq_file * s,void * data)425 static int status_show(struct seq_file *s, void *data)
426 {
427 	struct ti_sn65dsi86 *pdata = s->private;
428 	unsigned int reg, val;
429 
430 	seq_puts(s, "STATUS REGISTERS:\n");
431 
432 	pm_runtime_get_sync(pdata->dev);
433 
434 	/* IRQ Status Registers, see Table 31 in datasheet */
435 	for (reg = 0xf0; reg <= 0xf8; reg++) {
436 		regmap_read(pdata->regmap, reg, &val);
437 		seq_printf(s, "[0x%02x] = 0x%08x\n", reg, val);
438 	}
439 
440 	pm_runtime_put_autosuspend(pdata->dev);
441 
442 	return 0;
443 }
444 DEFINE_SHOW_ATTRIBUTE(status);
445 
446 /* -----------------------------------------------------------------------------
447  * Auxiliary Devices (*not* AUX)
448  */
449 
ti_sn65dsi86_uninit_aux(void * data)450 static void ti_sn65dsi86_uninit_aux(void *data)
451 {
452 	auxiliary_device_uninit(data);
453 }
454 
ti_sn65dsi86_delete_aux(void * data)455 static void ti_sn65dsi86_delete_aux(void *data)
456 {
457 	auxiliary_device_delete(data);
458 }
459 
ti_sn65dsi86_aux_device_release(struct device * dev)460 static void ti_sn65dsi86_aux_device_release(struct device *dev)
461 {
462 	struct auxiliary_device *aux = container_of(dev, struct auxiliary_device, dev);
463 
464 	kfree(aux);
465 }
466 
ti_sn65dsi86_add_aux_device(struct ti_sn65dsi86 * pdata,struct auxiliary_device ** aux_out,const char * name)467 static int ti_sn65dsi86_add_aux_device(struct ti_sn65dsi86 *pdata,
468 				       struct auxiliary_device **aux_out,
469 				       const char *name)
470 {
471 	struct device *dev = pdata->dev;
472 	const struct i2c_client *client = to_i2c_client(dev);
473 	struct auxiliary_device *aux;
474 	int ret;
475 
476 	aux = kzalloc(sizeof(*aux), GFP_KERNEL);
477 	if (!aux)
478 		return -ENOMEM;
479 
480 	aux->name = name;
481 	aux->id = (client->adapter->nr << 10) | client->addr;
482 	aux->dev.parent = dev;
483 	aux->dev.release = ti_sn65dsi86_aux_device_release;
484 	device_set_of_node_from_dev(&aux->dev, dev);
485 	ret = auxiliary_device_init(aux);
486 	if (ret) {
487 		kfree(aux);
488 		return ret;
489 	}
490 	ret = devm_add_action_or_reset(dev, ti_sn65dsi86_uninit_aux, aux);
491 	if (ret)
492 		return ret;
493 
494 	ret = auxiliary_device_add(aux);
495 	if (ret)
496 		return ret;
497 	ret = devm_add_action_or_reset(dev, ti_sn65dsi86_delete_aux, aux);
498 	if (!ret)
499 		*aux_out = aux;
500 
501 	return ret;
502 }
503 
504 /* -----------------------------------------------------------------------------
505  * AUX Adapter
506  */
507 
aux_to_ti_sn65dsi86(struct drm_dp_aux * aux)508 static struct ti_sn65dsi86 *aux_to_ti_sn65dsi86(struct drm_dp_aux *aux)
509 {
510 	return container_of(aux, struct ti_sn65dsi86, aux);
511 }
512 
ti_sn_aux_transfer(struct drm_dp_aux * aux,struct drm_dp_aux_msg * msg)513 static ssize_t ti_sn_aux_transfer(struct drm_dp_aux *aux,
514 				  struct drm_dp_aux_msg *msg)
515 {
516 	struct ti_sn65dsi86 *pdata = aux_to_ti_sn65dsi86(aux);
517 	u32 request = msg->request & ~(DP_AUX_I2C_MOT | DP_AUX_I2C_WRITE_STATUS_UPDATE);
518 	u32 request_val = AUX_CMD_REQ(msg->request);
519 	u8 *buf = msg->buffer;
520 	unsigned int len = msg->size;
521 	unsigned int short_len;
522 	unsigned int val;
523 	int ret;
524 	u8 addr_len[SN_AUX_LENGTH_REG + 1 - SN_AUX_ADDR_19_16_REG];
525 
526 	if (len > SN_AUX_MAX_PAYLOAD_BYTES)
527 		return -EINVAL;
528 
529 	pm_runtime_get_sync(pdata->dev);
530 	mutex_lock(&pdata->comms_mutex);
531 
532 	/*
533 	 * If someone tries to do a DDC over AUX transaction before pre_enable()
534 	 * on a device without a dedicated reference clock then we just can't
535 	 * do it. Fail right away. This prevents non-refclk users from reading
536 	 * the EDID before enabling the panel but such is life.
537 	 */
538 	if (!pdata->comms_enabled) {
539 		ret = -EIO;
540 		goto exit;
541 	}
542 
543 	switch (request) {
544 	case DP_AUX_NATIVE_WRITE:
545 	case DP_AUX_I2C_WRITE:
546 	case DP_AUX_NATIVE_READ:
547 	case DP_AUX_I2C_READ:
548 		regmap_write(pdata->regmap, SN_AUX_CMD_REG, request_val);
549 		/* Assume it's good */
550 		msg->reply = 0;
551 		break;
552 	default:
553 		ret = -EINVAL;
554 		goto exit;
555 	}
556 
557 	BUILD_BUG_ON(sizeof(addr_len) != sizeof(__be32));
558 	put_unaligned_be32((msg->address & SN_AUX_ADDR_MASK) << 8 | len,
559 			   addr_len);
560 	regmap_bulk_write(pdata->regmap, SN_AUX_ADDR_19_16_REG, addr_len,
561 			  ARRAY_SIZE(addr_len));
562 
563 	if (request == DP_AUX_NATIVE_WRITE || request == DP_AUX_I2C_WRITE)
564 		regmap_bulk_write(pdata->regmap, SN_AUX_WDATA_REG(0), buf, len);
565 
566 	/* Clear old status bits before start so we don't get confused */
567 	regmap_write(pdata->regmap, SN_AUX_CMD_STATUS_REG,
568 		     AUX_IRQ_STATUS_NAT_I2C_FAIL |
569 		     AUX_IRQ_STATUS_AUX_RPLY_TOUT |
570 		     AUX_IRQ_STATUS_AUX_SHORT);
571 
572 	regmap_write(pdata->regmap, SN_AUX_CMD_REG, request_val | AUX_CMD_SEND);
573 
574 	/* Zero delay loop because i2c transactions are slow already */
575 	ret = regmap_read_poll_timeout(pdata->regmap, SN_AUX_CMD_REG, val,
576 				       !(val & AUX_CMD_SEND), 0, 50 * 1000);
577 	if (ret)
578 		goto exit;
579 
580 	ret = regmap_read(pdata->regmap, SN_AUX_CMD_STATUS_REG, &val);
581 	if (ret)
582 		goto exit;
583 
584 	if (val & AUX_IRQ_STATUS_AUX_RPLY_TOUT) {
585 		/*
586 		 * The hardware tried the message seven times per the DP spec
587 		 * but it hit a timeout. We ignore defers here because they're
588 		 * handled in hardware.
589 		 */
590 		ret = -ETIMEDOUT;
591 		goto exit;
592 	}
593 
594 	if (val & AUX_IRQ_STATUS_AUX_SHORT) {
595 		ret = regmap_read(pdata->regmap, SN_AUX_LENGTH_REG, &short_len);
596 		len = min(len, short_len);
597 		if (ret)
598 			goto exit;
599 	} else if (val & AUX_IRQ_STATUS_NAT_I2C_FAIL) {
600 		switch (request) {
601 		case DP_AUX_I2C_WRITE:
602 		case DP_AUX_I2C_READ:
603 			msg->reply |= DP_AUX_I2C_REPLY_NACK;
604 			break;
605 		case DP_AUX_NATIVE_READ:
606 		case DP_AUX_NATIVE_WRITE:
607 			msg->reply |= DP_AUX_NATIVE_REPLY_NACK;
608 			break;
609 		}
610 		len = 0;
611 		goto exit;
612 	}
613 
614 	if (request != DP_AUX_NATIVE_WRITE && request != DP_AUX_I2C_WRITE && len != 0)
615 		ret = regmap_bulk_read(pdata->regmap, SN_AUX_RDATA_REG(0), buf, len);
616 
617 exit:
618 	mutex_unlock(&pdata->comms_mutex);
619 	pm_runtime_mark_last_busy(pdata->dev);
620 	pm_runtime_put_autosuspend(pdata->dev);
621 
622 	if (ret)
623 		return ret;
624 	return len;
625 }
626 
ti_sn_aux_wait_hpd_asserted(struct drm_dp_aux * aux,unsigned long wait_us)627 static int ti_sn_aux_wait_hpd_asserted(struct drm_dp_aux *aux, unsigned long wait_us)
628 {
629 	/*
630 	 * The HPD in this chip is a bit useless (See comment in
631 	 * ti_sn65dsi86_enable_comms) so if our driver is expected to wait
632 	 * for HPD, we just assume it's asserted after the wait_us delay.
633 	 *
634 	 * In case we are asked to wait forever (wait_us=0) take conservative
635 	 * 500ms delay.
636 	 */
637 	if (wait_us == 0)
638 		wait_us = 500000;
639 
640 	usleep_range(wait_us, wait_us + 1000);
641 
642 	return 0;
643 }
644 
ti_sn_aux_probe(struct auxiliary_device * adev,const struct auxiliary_device_id * id)645 static int ti_sn_aux_probe(struct auxiliary_device *adev,
646 			   const struct auxiliary_device_id *id)
647 {
648 	struct ti_sn65dsi86 *pdata = dev_get_drvdata(adev->dev.parent);
649 	int ret;
650 
651 	pdata->aux.name = "ti-sn65dsi86-aux";
652 	pdata->aux.dev = &adev->dev;
653 	pdata->aux.transfer = ti_sn_aux_transfer;
654 	pdata->aux.wait_hpd_asserted = ti_sn_aux_wait_hpd_asserted;
655 	drm_dp_aux_init(&pdata->aux);
656 
657 	ret = devm_of_dp_aux_populate_ep_devices(&pdata->aux);
658 	if (ret)
659 		return ret;
660 
661 	/*
662 	 * The eDP to MIPI bridge parts don't work until the AUX channel is
663 	 * setup so we don't add it in the main driver probe, we add it now.
664 	 */
665 	return ti_sn65dsi86_add_aux_device(pdata, &pdata->bridge_aux, "bridge");
666 }
667 
668 static const struct auxiliary_device_id ti_sn_aux_id_table[] = {
669 	{ .name = "ti_sn65dsi86.aux", },
670 	{},
671 };
672 
673 static struct auxiliary_driver ti_sn_aux_driver = {
674 	.name = "aux",
675 	.probe = ti_sn_aux_probe,
676 	.id_table = ti_sn_aux_id_table,
677 };
678 
679 /*------------------------------------------------------------------------------
680  * DRM Bridge
681  */
682 
bridge_to_ti_sn65dsi86(struct drm_bridge * bridge)683 static struct ti_sn65dsi86 *bridge_to_ti_sn65dsi86(struct drm_bridge *bridge)
684 {
685 	return container_of(bridge, struct ti_sn65dsi86, bridge);
686 }
687 
ti_sn_attach_host(struct auxiliary_device * adev,struct ti_sn65dsi86 * pdata)688 static int ti_sn_attach_host(struct auxiliary_device *adev, struct ti_sn65dsi86 *pdata)
689 {
690 	int val;
691 	struct mipi_dsi_host *host;
692 	struct mipi_dsi_device *dsi;
693 	struct device *dev = pdata->dev;
694 	const struct mipi_dsi_device_info info = { .type = "ti_sn_bridge",
695 						   .channel = 0,
696 						   .node = NULL,
697 	};
698 
699 	host = of_find_mipi_dsi_host_by_node(pdata->host_node);
700 	if (!host)
701 		return -EPROBE_DEFER;
702 
703 	dsi = devm_mipi_dsi_device_register_full(&adev->dev, host, &info);
704 	if (IS_ERR(dsi))
705 		return PTR_ERR(dsi);
706 
707 	/* TODO: setting to 4 MIPI lanes always for now */
708 	dsi->lanes = 4;
709 	dsi->format = MIPI_DSI_FMT_RGB888;
710 	dsi->mode_flags = MIPI_DSI_MODE_VIDEO;
711 
712 	/* check if continuous dsi clock is required or not */
713 	pm_runtime_get_sync(dev);
714 	regmap_read(pdata->regmap, SN_DPPLL_SRC_REG, &val);
715 	pm_runtime_put_autosuspend(dev);
716 	if (!(val & DPPLL_CLK_SRC_DSICLK))
717 		dsi->mode_flags |= MIPI_DSI_CLOCK_NON_CONTINUOUS;
718 
719 	pdata->dsi = dsi;
720 
721 	return devm_mipi_dsi_attach(&adev->dev, dsi);
722 }
723 
ti_sn_bridge_attach(struct drm_bridge * bridge,enum drm_bridge_attach_flags flags)724 static int ti_sn_bridge_attach(struct drm_bridge *bridge,
725 			       enum drm_bridge_attach_flags flags)
726 {
727 	struct ti_sn65dsi86 *pdata = bridge_to_ti_sn65dsi86(bridge);
728 	int ret;
729 
730 	pdata->aux.drm_dev = bridge->dev;
731 	ret = drm_dp_aux_register(&pdata->aux);
732 	if (ret < 0) {
733 		drm_err(bridge->dev, "Failed to register DP AUX channel: %d\n", ret);
734 		return ret;
735 	}
736 
737 	/*
738 	 * Attach the next bridge.
739 	 * We never want the next bridge to *also* create a connector.
740 	 */
741 	ret = drm_bridge_attach(bridge->encoder, pdata->next_bridge,
742 				&pdata->bridge, flags | DRM_BRIDGE_ATTACH_NO_CONNECTOR);
743 	if (ret < 0)
744 		goto err_initted_aux;
745 
746 	if (flags & DRM_BRIDGE_ATTACH_NO_CONNECTOR)
747 		return 0;
748 
749 	pdata->connector = drm_bridge_connector_init(pdata->bridge.dev,
750 						     pdata->bridge.encoder);
751 	if (IS_ERR(pdata->connector)) {
752 		ret = PTR_ERR(pdata->connector);
753 		goto err_initted_aux;
754 	}
755 
756 	drm_connector_attach_encoder(pdata->connector, pdata->bridge.encoder);
757 
758 	return 0;
759 
760 err_initted_aux:
761 	drm_dp_aux_unregister(&pdata->aux);
762 	return ret;
763 }
764 
ti_sn_bridge_detach(struct drm_bridge * bridge)765 static void ti_sn_bridge_detach(struct drm_bridge *bridge)
766 {
767 	drm_dp_aux_unregister(&bridge_to_ti_sn65dsi86(bridge)->aux);
768 }
769 
770 static enum drm_mode_status
ti_sn_bridge_mode_valid(struct drm_bridge * bridge,const struct drm_display_info * info,const struct drm_display_mode * mode)771 ti_sn_bridge_mode_valid(struct drm_bridge *bridge,
772 			const struct drm_display_info *info,
773 			const struct drm_display_mode *mode)
774 {
775 	/* maximum supported resolution is 4K at 60 fps */
776 	if (mode->clock > 594000)
777 		return MODE_CLOCK_HIGH;
778 
779 	/*
780 	 * The front and back porch registers are 8 bits, and pulse width
781 	 * registers are 15 bits, so reject any modes with larger periods.
782 	 */
783 
784 	if ((mode->hsync_start - mode->hdisplay) > 0xff)
785 		return MODE_HBLANK_WIDE;
786 
787 	if ((mode->vsync_start - mode->vdisplay) > 0xff)
788 		return MODE_VBLANK_WIDE;
789 
790 	if ((mode->hsync_end - mode->hsync_start) > 0x7fff)
791 		return MODE_HSYNC_WIDE;
792 
793 	if ((mode->vsync_end - mode->vsync_start) > 0x7fff)
794 		return MODE_VSYNC_WIDE;
795 
796 	if ((mode->htotal - mode->hsync_end) > 0xff)
797 		return MODE_HBLANK_WIDE;
798 
799 	if ((mode->vtotal - mode->vsync_end) > 0xff)
800 		return MODE_VBLANK_WIDE;
801 
802 	return MODE_OK;
803 }
804 
ti_sn_bridge_atomic_disable(struct drm_bridge * bridge,struct drm_bridge_state * old_bridge_state)805 static void ti_sn_bridge_atomic_disable(struct drm_bridge *bridge,
806 					struct drm_bridge_state *old_bridge_state)
807 {
808 	struct ti_sn65dsi86 *pdata = bridge_to_ti_sn65dsi86(bridge);
809 
810 	/* disable video stream */
811 	regmap_update_bits(pdata->regmap, SN_ENH_FRAME_REG, VSTREAM_ENABLE, 0);
812 }
813 
ti_sn_bridge_set_dsi_rate(struct ti_sn65dsi86 * pdata)814 static void ti_sn_bridge_set_dsi_rate(struct ti_sn65dsi86 *pdata)
815 {
816 	unsigned int bit_rate_mhz, clk_freq_mhz;
817 	unsigned int val;
818 	struct drm_display_mode *mode =
819 		&pdata->bridge.encoder->crtc->state->adjusted_mode;
820 
821 	/* set DSIA clk frequency */
822 	bit_rate_mhz = (mode->clock / 1000) *
823 			mipi_dsi_pixel_format_to_bpp(pdata->dsi->format);
824 	clk_freq_mhz = bit_rate_mhz / (pdata->dsi->lanes * 2);
825 
826 	/* for each increment in val, frequency increases by 5MHz */
827 	val = (MIN_DSI_CLK_FREQ_MHZ / 5) +
828 		(((clk_freq_mhz - MIN_DSI_CLK_FREQ_MHZ) / 5) & 0xFF);
829 	regmap_write(pdata->regmap, SN_DSIA_CLK_FREQ_REG, val);
830 }
831 
ti_sn_bridge_get_bpp(struct drm_connector * connector)832 static unsigned int ti_sn_bridge_get_bpp(struct drm_connector *connector)
833 {
834 	if (connector->display_info.bpc <= 6)
835 		return 18;
836 	else
837 		return 24;
838 }
839 
840 /*
841  * LUT index corresponds to register value and
842  * LUT values corresponds to dp data rate supported
843  * by the bridge in Mbps unit.
844  */
845 static const unsigned int ti_sn_bridge_dp_rate_lut[] = {
846 	0, 1620, 2160, 2430, 2700, 3240, 4320, 5400
847 };
848 
ti_sn_bridge_calc_min_dp_rate_idx(struct ti_sn65dsi86 * pdata,unsigned int bpp)849 static int ti_sn_bridge_calc_min_dp_rate_idx(struct ti_sn65dsi86 *pdata, unsigned int bpp)
850 {
851 	unsigned int bit_rate_khz, dp_rate_mhz;
852 	unsigned int i;
853 	struct drm_display_mode *mode =
854 		&pdata->bridge.encoder->crtc->state->adjusted_mode;
855 
856 	/* Calculate minimum bit rate based on our pixel clock. */
857 	bit_rate_khz = mode->clock * bpp;
858 
859 	/* Calculate minimum DP data rate, taking 80% as per DP spec */
860 	dp_rate_mhz = DIV_ROUND_UP(bit_rate_khz * DP_CLK_FUDGE_NUM,
861 				   1000 * pdata->dp_lanes * DP_CLK_FUDGE_DEN);
862 
863 	for (i = 1; i < ARRAY_SIZE(ti_sn_bridge_dp_rate_lut) - 1; i++)
864 		if (ti_sn_bridge_dp_rate_lut[i] >= dp_rate_mhz)
865 			break;
866 
867 	return i;
868 }
869 
ti_sn_bridge_read_valid_rates(struct ti_sn65dsi86 * pdata)870 static unsigned int ti_sn_bridge_read_valid_rates(struct ti_sn65dsi86 *pdata)
871 {
872 	unsigned int valid_rates = 0;
873 	unsigned int rate_per_200khz;
874 	unsigned int rate_mhz;
875 	u8 dpcd_val;
876 	int ret;
877 	int i, j;
878 
879 	ret = drm_dp_dpcd_readb(&pdata->aux, DP_EDP_DPCD_REV, &dpcd_val);
880 	if (ret != 1) {
881 		DRM_DEV_ERROR(pdata->dev,
882 			      "Can't read eDP rev (%d), assuming 1.1\n", ret);
883 		dpcd_val = DP_EDP_11;
884 	}
885 
886 	if (dpcd_val >= DP_EDP_14) {
887 		/* eDP 1.4 devices must provide a custom table */
888 		__le16 sink_rates[DP_MAX_SUPPORTED_RATES];
889 
890 		ret = drm_dp_dpcd_read(&pdata->aux, DP_SUPPORTED_LINK_RATES,
891 				       sink_rates, sizeof(sink_rates));
892 
893 		if (ret != sizeof(sink_rates)) {
894 			DRM_DEV_ERROR(pdata->dev,
895 				"Can't read supported rate table (%d)\n", ret);
896 
897 			/* By zeroing we'll fall back to DP_MAX_LINK_RATE. */
898 			memset(sink_rates, 0, sizeof(sink_rates));
899 		}
900 
901 		for (i = 0; i < ARRAY_SIZE(sink_rates); i++) {
902 			rate_per_200khz = le16_to_cpu(sink_rates[i]);
903 
904 			if (!rate_per_200khz)
905 				break;
906 
907 			rate_mhz = rate_per_200khz * 200 / 1000;
908 			for (j = 0;
909 			     j < ARRAY_SIZE(ti_sn_bridge_dp_rate_lut);
910 			     j++) {
911 				if (ti_sn_bridge_dp_rate_lut[j] == rate_mhz)
912 					valid_rates |= BIT(j);
913 			}
914 		}
915 
916 		for (i = 0; i < ARRAY_SIZE(ti_sn_bridge_dp_rate_lut); i++) {
917 			if (valid_rates & BIT(i))
918 				return valid_rates;
919 		}
920 		DRM_DEV_ERROR(pdata->dev,
921 			      "No matching eDP rates in table; falling back\n");
922 	}
923 
924 	/* On older versions best we can do is use DP_MAX_LINK_RATE */
925 	ret = drm_dp_dpcd_readb(&pdata->aux, DP_MAX_LINK_RATE, &dpcd_val);
926 	if (ret != 1) {
927 		DRM_DEV_ERROR(pdata->dev,
928 			      "Can't read max rate (%d); assuming 5.4 GHz\n",
929 			      ret);
930 		dpcd_val = DP_LINK_BW_5_4;
931 	}
932 
933 	switch (dpcd_val) {
934 	default:
935 		DRM_DEV_ERROR(pdata->dev,
936 			      "Unexpected max rate (%#x); assuming 5.4 GHz\n",
937 			      (int)dpcd_val);
938 		fallthrough;
939 	case DP_LINK_BW_5_4:
940 		valid_rates |= BIT(7);
941 		fallthrough;
942 	case DP_LINK_BW_2_7:
943 		valid_rates |= BIT(4);
944 		fallthrough;
945 	case DP_LINK_BW_1_62:
946 		valid_rates |= BIT(1);
947 		break;
948 	}
949 
950 	return valid_rates;
951 }
952 
ti_sn_bridge_set_video_timings(struct ti_sn65dsi86 * pdata)953 static void ti_sn_bridge_set_video_timings(struct ti_sn65dsi86 *pdata)
954 {
955 	struct drm_display_mode *mode =
956 		&pdata->bridge.encoder->crtc->state->adjusted_mode;
957 	u8 hsync_polarity = 0, vsync_polarity = 0;
958 
959 	if (mode->flags & DRM_MODE_FLAG_NHSYNC)
960 		hsync_polarity = CHA_HSYNC_POLARITY;
961 	if (mode->flags & DRM_MODE_FLAG_NVSYNC)
962 		vsync_polarity = CHA_VSYNC_POLARITY;
963 
964 	ti_sn65dsi86_write_u16(pdata, SN_CHA_ACTIVE_LINE_LENGTH_LOW_REG,
965 			       mode->hdisplay);
966 	ti_sn65dsi86_write_u16(pdata, SN_CHA_VERTICAL_DISPLAY_SIZE_LOW_REG,
967 			       mode->vdisplay);
968 	regmap_write(pdata->regmap, SN_CHA_HSYNC_PULSE_WIDTH_LOW_REG,
969 		     (mode->hsync_end - mode->hsync_start) & 0xFF);
970 	regmap_write(pdata->regmap, SN_CHA_HSYNC_PULSE_WIDTH_HIGH_REG,
971 		     (((mode->hsync_end - mode->hsync_start) >> 8) & 0x7F) |
972 		     hsync_polarity);
973 	regmap_write(pdata->regmap, SN_CHA_VSYNC_PULSE_WIDTH_LOW_REG,
974 		     (mode->vsync_end - mode->vsync_start) & 0xFF);
975 	regmap_write(pdata->regmap, SN_CHA_VSYNC_PULSE_WIDTH_HIGH_REG,
976 		     (((mode->vsync_end - mode->vsync_start) >> 8) & 0x7F) |
977 		     vsync_polarity);
978 
979 	regmap_write(pdata->regmap, SN_CHA_HORIZONTAL_BACK_PORCH_REG,
980 		     (mode->htotal - mode->hsync_end) & 0xFF);
981 	regmap_write(pdata->regmap, SN_CHA_VERTICAL_BACK_PORCH_REG,
982 		     (mode->vtotal - mode->vsync_end) & 0xFF);
983 
984 	regmap_write(pdata->regmap, SN_CHA_HORIZONTAL_FRONT_PORCH_REG,
985 		     (mode->hsync_start - mode->hdisplay) & 0xFF);
986 	regmap_write(pdata->regmap, SN_CHA_VERTICAL_FRONT_PORCH_REG,
987 		     (mode->vsync_start - mode->vdisplay) & 0xFF);
988 
989 	usleep_range(10000, 10500); /* 10ms delay recommended by spec */
990 }
991 
ti_sn_get_max_lanes(struct ti_sn65dsi86 * pdata)992 static unsigned int ti_sn_get_max_lanes(struct ti_sn65dsi86 *pdata)
993 {
994 	u8 data;
995 	int ret;
996 
997 	ret = drm_dp_dpcd_readb(&pdata->aux, DP_MAX_LANE_COUNT, &data);
998 	if (ret != 1) {
999 		DRM_DEV_ERROR(pdata->dev,
1000 			      "Can't read lane count (%d); assuming 4\n", ret);
1001 		return 4;
1002 	}
1003 
1004 	return data & DP_LANE_COUNT_MASK;
1005 }
1006 
ti_sn_link_training(struct ti_sn65dsi86 * pdata,int dp_rate_idx,const char ** last_err_str)1007 static int ti_sn_link_training(struct ti_sn65dsi86 *pdata, int dp_rate_idx,
1008 			       const char **last_err_str)
1009 {
1010 	unsigned int val;
1011 	int ret;
1012 	int i;
1013 
1014 	/* set dp clk frequency value */
1015 	regmap_update_bits(pdata->regmap, SN_DATARATE_CONFIG_REG,
1016 			   DP_DATARATE_MASK, DP_DATARATE(dp_rate_idx));
1017 
1018 	/* enable DP PLL */
1019 	regmap_write(pdata->regmap, SN_PLL_ENABLE_REG, 1);
1020 
1021 	ret = regmap_read_poll_timeout(pdata->regmap, SN_DPPLL_SRC_REG, val,
1022 				       val & DPPLL_SRC_DP_PLL_LOCK, 1000,
1023 				       50 * 1000);
1024 	if (ret) {
1025 		*last_err_str = "DP_PLL_LOCK polling failed";
1026 		goto exit;
1027 	}
1028 
1029 	/*
1030 	 * We'll try to link train several times.  As part of link training
1031 	 * the bridge chip will write DP_SET_POWER_D0 to DP_SET_POWER.  If
1032 	 * the panel isn't ready quite it might respond NAK here which means
1033 	 * we need to try again.
1034 	 */
1035 	for (i = 0; i < SN_LINK_TRAINING_TRIES; i++) {
1036 		/* Semi auto link training mode */
1037 		regmap_write(pdata->regmap, SN_ML_TX_MODE_REG, 0x0A);
1038 		ret = regmap_read_poll_timeout(pdata->regmap, SN_ML_TX_MODE_REG, val,
1039 					       val == ML_TX_MAIN_LINK_OFF ||
1040 					       val == ML_TX_NORMAL_MODE, 1000,
1041 					       500 * 1000);
1042 		if (ret) {
1043 			*last_err_str = "Training complete polling failed";
1044 		} else if (val == ML_TX_MAIN_LINK_OFF) {
1045 			*last_err_str = "Link training failed, link is off";
1046 			ret = -EIO;
1047 			continue;
1048 		}
1049 
1050 		break;
1051 	}
1052 
1053 	/* If we saw quite a few retries, add a note about it */
1054 	if (!ret && i > SN_LINK_TRAINING_TRIES / 2)
1055 		DRM_DEV_INFO(pdata->dev, "Link training needed %d retries\n", i);
1056 
1057 exit:
1058 	/* Disable the PLL if we failed */
1059 	if (ret)
1060 		regmap_write(pdata->regmap, SN_PLL_ENABLE_REG, 0);
1061 
1062 	return ret;
1063 }
1064 
ti_sn_bridge_atomic_enable(struct drm_bridge * bridge,struct drm_bridge_state * old_bridge_state)1065 static void ti_sn_bridge_atomic_enable(struct drm_bridge *bridge,
1066 				       struct drm_bridge_state *old_bridge_state)
1067 {
1068 	struct ti_sn65dsi86 *pdata = bridge_to_ti_sn65dsi86(bridge);
1069 	struct drm_connector *connector;
1070 	const char *last_err_str = "No supported DP rate";
1071 	unsigned int valid_rates;
1072 	int dp_rate_idx;
1073 	unsigned int val;
1074 	int ret = -EINVAL;
1075 	int max_dp_lanes;
1076 	unsigned int bpp;
1077 
1078 	connector = drm_atomic_get_new_connector_for_encoder(old_bridge_state->base.state,
1079 							     bridge->encoder);
1080 	if (!connector) {
1081 		dev_err_ratelimited(pdata->dev, "Could not get the connector\n");
1082 		return;
1083 	}
1084 
1085 	max_dp_lanes = ti_sn_get_max_lanes(pdata);
1086 	pdata->dp_lanes = min(pdata->dp_lanes, max_dp_lanes);
1087 
1088 	/* DSI_A lane config */
1089 	val = CHA_DSI_LANES(SN_MAX_DP_LANES - pdata->dsi->lanes);
1090 	regmap_update_bits(pdata->regmap, SN_DSI_LANES_REG,
1091 			   CHA_DSI_LANES_MASK, val);
1092 
1093 	regmap_write(pdata->regmap, SN_LN_ASSIGN_REG, pdata->ln_assign);
1094 	regmap_update_bits(pdata->regmap, SN_ENH_FRAME_REG, LN_POLRS_MASK,
1095 			   pdata->ln_polrs << LN_POLRS_OFFSET);
1096 
1097 	/* set dsi clk frequency value */
1098 	ti_sn_bridge_set_dsi_rate(pdata);
1099 
1100 	/*
1101 	 * The SN65DSI86 only supports ASSR Display Authentication method and
1102 	 * this method is enabled for eDP panels. An eDP panel must support this
1103 	 * authentication method. We need to enable this method in the eDP panel
1104 	 * at DisplayPort address 0x0010A prior to link training.
1105 	 *
1106 	 * As only ASSR is supported by SN65DSI86, for full DisplayPort displays
1107 	 * we need to disable the scrambler.
1108 	 */
1109 	if (pdata->bridge.type == DRM_MODE_CONNECTOR_eDP) {
1110 		drm_dp_dpcd_writeb(&pdata->aux, DP_EDP_CONFIGURATION_SET,
1111 				   DP_ALTERNATE_SCRAMBLER_RESET_ENABLE);
1112 
1113 		regmap_update_bits(pdata->regmap, SN_TRAINING_SETTING_REG,
1114 				   SCRAMBLE_DISABLE, 0);
1115 	} else {
1116 		regmap_update_bits(pdata->regmap, SN_TRAINING_SETTING_REG,
1117 				   SCRAMBLE_DISABLE, SCRAMBLE_DISABLE);
1118 	}
1119 
1120 	bpp = ti_sn_bridge_get_bpp(connector);
1121 	/* Set the DP output format (18 bpp or 24 bpp) */
1122 	val = bpp == 18 ? BPP_18_RGB : 0;
1123 	regmap_update_bits(pdata->regmap, SN_DATA_FORMAT_REG, BPP_18_RGB, val);
1124 
1125 	/* DP lane config */
1126 	val = DP_NUM_LANES(min(pdata->dp_lanes, 3));
1127 	regmap_update_bits(pdata->regmap, SN_SSC_CONFIG_REG, DP_NUM_LANES_MASK,
1128 			   val);
1129 
1130 	valid_rates = ti_sn_bridge_read_valid_rates(pdata);
1131 
1132 	/* Train until we run out of rates */
1133 	for (dp_rate_idx = ti_sn_bridge_calc_min_dp_rate_idx(pdata, bpp);
1134 	     dp_rate_idx < ARRAY_SIZE(ti_sn_bridge_dp_rate_lut);
1135 	     dp_rate_idx++) {
1136 		if (!(valid_rates & BIT(dp_rate_idx)))
1137 			continue;
1138 
1139 		ret = ti_sn_link_training(pdata, dp_rate_idx, &last_err_str);
1140 		if (!ret)
1141 			break;
1142 	}
1143 	if (ret) {
1144 		DRM_DEV_ERROR(pdata->dev, "%s (%d)\n", last_err_str, ret);
1145 		return;
1146 	}
1147 
1148 	/* config video parameters */
1149 	ti_sn_bridge_set_video_timings(pdata);
1150 
1151 	/* enable video stream */
1152 	regmap_update_bits(pdata->regmap, SN_ENH_FRAME_REG, VSTREAM_ENABLE,
1153 			   VSTREAM_ENABLE);
1154 }
1155 
ti_sn_bridge_atomic_pre_enable(struct drm_bridge * bridge,struct drm_bridge_state * old_bridge_state)1156 static void ti_sn_bridge_atomic_pre_enable(struct drm_bridge *bridge,
1157 					   struct drm_bridge_state *old_bridge_state)
1158 {
1159 	struct ti_sn65dsi86 *pdata = bridge_to_ti_sn65dsi86(bridge);
1160 
1161 	pm_runtime_get_sync(pdata->dev);
1162 
1163 	if (!pdata->refclk)
1164 		ti_sn65dsi86_enable_comms(pdata);
1165 
1166 	/* td7: min 100 us after enable before DSI data */
1167 	usleep_range(100, 110);
1168 }
1169 
ti_sn_bridge_atomic_post_disable(struct drm_bridge * bridge,struct drm_bridge_state * old_bridge_state)1170 static void ti_sn_bridge_atomic_post_disable(struct drm_bridge *bridge,
1171 					     struct drm_bridge_state *old_bridge_state)
1172 {
1173 	struct ti_sn65dsi86 *pdata = bridge_to_ti_sn65dsi86(bridge);
1174 
1175 	/* semi auto link training mode OFF */
1176 	regmap_write(pdata->regmap, SN_ML_TX_MODE_REG, 0);
1177 	/* Num lanes to 0 as per power sequencing in data sheet */
1178 	regmap_update_bits(pdata->regmap, SN_SSC_CONFIG_REG, DP_NUM_LANES_MASK, 0);
1179 	/* disable DP PLL */
1180 	regmap_write(pdata->regmap, SN_PLL_ENABLE_REG, 0);
1181 
1182 	if (!pdata->refclk)
1183 		ti_sn65dsi86_disable_comms(pdata);
1184 
1185 	pm_runtime_put_sync(pdata->dev);
1186 }
1187 
ti_sn_bridge_detect(struct drm_bridge * bridge)1188 static enum drm_connector_status ti_sn_bridge_detect(struct drm_bridge *bridge)
1189 {
1190 	struct ti_sn65dsi86 *pdata = bridge_to_ti_sn65dsi86(bridge);
1191 	int val = 0;
1192 
1193 	/*
1194 	 * Runtime reference is grabbed in ti_sn_bridge_hpd_enable()
1195 	 * as the chip won't report HPD just after being powered on.
1196 	 * HPD_DEBOUNCED_STATE reflects correct state only after the
1197 	 * debounce time (~100-400 ms).
1198 	 */
1199 
1200 	regmap_read(pdata->regmap, SN_HPD_DISABLE_REG, &val);
1201 
1202 	return val & HPD_DEBOUNCED_STATE ? connector_status_connected
1203 					 : connector_status_disconnected;
1204 }
1205 
ti_sn_bridge_edid_read(struct drm_bridge * bridge,struct drm_connector * connector)1206 static const struct drm_edid *ti_sn_bridge_edid_read(struct drm_bridge *bridge,
1207 						     struct drm_connector *connector)
1208 {
1209 	struct ti_sn65dsi86 *pdata = bridge_to_ti_sn65dsi86(bridge);
1210 
1211 	return drm_edid_read_ddc(connector, &pdata->aux.ddc);
1212 }
1213 
ti_sn65dsi86_debugfs_init(struct drm_bridge * bridge,struct dentry * root)1214 static void ti_sn65dsi86_debugfs_init(struct drm_bridge *bridge, struct dentry *root)
1215 {
1216 	struct ti_sn65dsi86 *pdata = bridge_to_ti_sn65dsi86(bridge);
1217 	struct dentry *debugfs;
1218 
1219 	debugfs = debugfs_create_dir(dev_name(pdata->dev), root);
1220 	debugfs_create_file("status", 0600, debugfs, pdata, &status_fops);
1221 }
1222 
ti_sn_bridge_hpd_enable(struct drm_bridge * bridge)1223 static void ti_sn_bridge_hpd_enable(struct drm_bridge *bridge)
1224 {
1225 	struct ti_sn65dsi86 *pdata = bridge_to_ti_sn65dsi86(bridge);
1226 
1227 	/*
1228 	 * Device needs to be powered on before reading the HPD state
1229 	 * for reliable hpd detection in ti_sn_bridge_detect() due to
1230 	 * the high debounce time.
1231 	 */
1232 
1233 	pm_runtime_get_sync(pdata->dev);
1234 }
1235 
ti_sn_bridge_hpd_disable(struct drm_bridge * bridge)1236 static void ti_sn_bridge_hpd_disable(struct drm_bridge *bridge)
1237 {
1238 	struct ti_sn65dsi86 *pdata = bridge_to_ti_sn65dsi86(bridge);
1239 
1240 	pm_runtime_put_autosuspend(pdata->dev);
1241 }
1242 
1243 static const struct drm_bridge_funcs ti_sn_bridge_funcs = {
1244 	.attach = ti_sn_bridge_attach,
1245 	.detach = ti_sn_bridge_detach,
1246 	.mode_valid = ti_sn_bridge_mode_valid,
1247 	.edid_read = ti_sn_bridge_edid_read,
1248 	.detect = ti_sn_bridge_detect,
1249 	.atomic_pre_enable = ti_sn_bridge_atomic_pre_enable,
1250 	.atomic_enable = ti_sn_bridge_atomic_enable,
1251 	.atomic_disable = ti_sn_bridge_atomic_disable,
1252 	.atomic_post_disable = ti_sn_bridge_atomic_post_disable,
1253 	.atomic_reset = drm_atomic_helper_bridge_reset,
1254 	.atomic_duplicate_state = drm_atomic_helper_bridge_duplicate_state,
1255 	.atomic_destroy_state = drm_atomic_helper_bridge_destroy_state,
1256 	.debugfs_init = ti_sn65dsi86_debugfs_init,
1257 	.hpd_enable = ti_sn_bridge_hpd_enable,
1258 	.hpd_disable = ti_sn_bridge_hpd_disable,
1259 };
1260 
ti_sn_bridge_parse_lanes(struct ti_sn65dsi86 * pdata,struct device_node * np)1261 static void ti_sn_bridge_parse_lanes(struct ti_sn65dsi86 *pdata,
1262 				     struct device_node *np)
1263 {
1264 	u32 lane_assignments[SN_MAX_DP_LANES] = { 0, 1, 2, 3 };
1265 	u32 lane_polarities[SN_MAX_DP_LANES] = { };
1266 	struct device_node *endpoint;
1267 	u8 ln_assign = 0;
1268 	u8 ln_polrs = 0;
1269 	int dp_lanes;
1270 	int i;
1271 
1272 	/*
1273 	 * Read config from the device tree about lane remapping and lane
1274 	 * polarities.  These are optional and we assume identity map and
1275 	 * normal polarity if nothing is specified.  It's OK to specify just
1276 	 * data-lanes but not lane-polarities but not vice versa.
1277 	 *
1278 	 * Error checking is light (we just make sure we don't crash or
1279 	 * buffer overrun) and we assume dts is well formed and specifying
1280 	 * mappings that the hardware supports.
1281 	 */
1282 	endpoint = of_graph_get_endpoint_by_regs(np, 1, -1);
1283 	dp_lanes = drm_of_get_data_lanes_count(endpoint, 1, SN_MAX_DP_LANES);
1284 	if (dp_lanes > 0) {
1285 		of_property_read_u32_array(endpoint, "data-lanes",
1286 					   lane_assignments, dp_lanes);
1287 		of_property_read_u32_array(endpoint, "lane-polarities",
1288 					   lane_polarities, dp_lanes);
1289 	} else {
1290 		dp_lanes = SN_MAX_DP_LANES;
1291 	}
1292 	of_node_put(endpoint);
1293 
1294 	/*
1295 	 * Convert into register format.  Loop over all lanes even if
1296 	 * data-lanes had fewer elements so that we nicely initialize
1297 	 * the LN_ASSIGN register.
1298 	 */
1299 	for (i = SN_MAX_DP_LANES - 1; i >= 0; i--) {
1300 		ln_assign = ln_assign << LN_ASSIGN_WIDTH | lane_assignments[i];
1301 		ln_polrs = ln_polrs << 1 | lane_polarities[i];
1302 	}
1303 
1304 	/* Stash in our struct for when we power on */
1305 	pdata->dp_lanes = dp_lanes;
1306 	pdata->ln_assign = ln_assign;
1307 	pdata->ln_polrs = ln_polrs;
1308 }
1309 
ti_sn_bridge_parse_dsi_host(struct ti_sn65dsi86 * pdata)1310 static int ti_sn_bridge_parse_dsi_host(struct ti_sn65dsi86 *pdata)
1311 {
1312 	struct device_node *np = pdata->dev->of_node;
1313 
1314 	pdata->host_node = of_graph_get_remote_node(np, 0, 0);
1315 
1316 	if (!pdata->host_node) {
1317 		DRM_ERROR("remote dsi host node not found\n");
1318 		return -ENODEV;
1319 	}
1320 
1321 	return 0;
1322 }
1323 
ti_sn_bridge_probe(struct auxiliary_device * adev,const struct auxiliary_device_id * id)1324 static int ti_sn_bridge_probe(struct auxiliary_device *adev,
1325 			      const struct auxiliary_device_id *id)
1326 {
1327 	struct ti_sn65dsi86 *pdata = dev_get_drvdata(adev->dev.parent);
1328 	struct device_node *np = pdata->dev->of_node;
1329 	int ret;
1330 
1331 	pdata->next_bridge = devm_drm_of_get_bridge(&adev->dev, np, 1, 0);
1332 	if (IS_ERR(pdata->next_bridge))
1333 		return dev_err_probe(&adev->dev, PTR_ERR(pdata->next_bridge),
1334 				     "failed to create panel bridge\n");
1335 
1336 	ti_sn_bridge_parse_lanes(pdata, np);
1337 
1338 	ret = ti_sn_bridge_parse_dsi_host(pdata);
1339 	if (ret)
1340 		return ret;
1341 
1342 	pdata->bridge.funcs = &ti_sn_bridge_funcs;
1343 	pdata->bridge.of_node = np;
1344 	pdata->bridge.type = pdata->next_bridge->type == DRM_MODE_CONNECTOR_DisplayPort
1345 			   ? DRM_MODE_CONNECTOR_DisplayPort : DRM_MODE_CONNECTOR_eDP;
1346 
1347 	if (pdata->bridge.type == DRM_MODE_CONNECTOR_DisplayPort) {
1348 		pdata->bridge.ops = DRM_BRIDGE_OP_EDID | DRM_BRIDGE_OP_DETECT |
1349 				    DRM_BRIDGE_OP_HPD;
1350 		/*
1351 		 * If comms were already enabled they would have been enabled
1352 		 * with the wrong value of HPD_DISABLE. Update it now. Comms
1353 		 * could be enabled if anyone is holding a pm_runtime reference
1354 		 * (like if a GPIO is in use). Note that in most cases nobody
1355 		 * is doing AUX channel xfers before the bridge is added so
1356 		 * HPD doesn't _really_ matter then. The only exception is in
1357 		 * the eDP case where the panel wants to read the EDID before
1358 		 * the bridge is added. We always consistently have HPD disabled
1359 		 * for eDP.
1360 		 */
1361 		mutex_lock(&pdata->comms_mutex);
1362 		if (pdata->comms_enabled)
1363 			regmap_update_bits(pdata->regmap, SN_HPD_DISABLE_REG,
1364 					   HPD_DISABLE, 0);
1365 		mutex_unlock(&pdata->comms_mutex);
1366 	}
1367 
1368 	drm_bridge_add(&pdata->bridge);
1369 
1370 	ret = ti_sn_attach_host(adev, pdata);
1371 	if (ret) {
1372 		dev_err_probe(&adev->dev, ret, "failed to attach dsi host\n");
1373 		goto err_remove_bridge;
1374 	}
1375 
1376 	return 0;
1377 
1378 err_remove_bridge:
1379 	drm_bridge_remove(&pdata->bridge);
1380 	return ret;
1381 }
1382 
ti_sn_bridge_remove(struct auxiliary_device * adev)1383 static void ti_sn_bridge_remove(struct auxiliary_device *adev)
1384 {
1385 	struct ti_sn65dsi86 *pdata = dev_get_drvdata(adev->dev.parent);
1386 
1387 	if (!pdata)
1388 		return;
1389 
1390 	drm_bridge_remove(&pdata->bridge);
1391 
1392 	of_node_put(pdata->host_node);
1393 }
1394 
1395 static const struct auxiliary_device_id ti_sn_bridge_id_table[] = {
1396 	{ .name = "ti_sn65dsi86.bridge", },
1397 	{},
1398 };
1399 
1400 static struct auxiliary_driver ti_sn_bridge_driver = {
1401 	.name = "bridge",
1402 	.probe = ti_sn_bridge_probe,
1403 	.remove = ti_sn_bridge_remove,
1404 	.id_table = ti_sn_bridge_id_table,
1405 };
1406 
1407 /* -----------------------------------------------------------------------------
1408  * PWM Controller
1409  */
1410 #if defined(CONFIG_PWM)
ti_sn_pwm_pin_request(struct ti_sn65dsi86 * pdata)1411 static int ti_sn_pwm_pin_request(struct ti_sn65dsi86 *pdata)
1412 {
1413 	return atomic_xchg(&pdata->pwm_pin_busy, 1) ? -EBUSY : 0;
1414 }
1415 
ti_sn_pwm_pin_release(struct ti_sn65dsi86 * pdata)1416 static void ti_sn_pwm_pin_release(struct ti_sn65dsi86 *pdata)
1417 {
1418 	atomic_set(&pdata->pwm_pin_busy, 0);
1419 }
1420 
pwm_chip_to_ti_sn_bridge(struct pwm_chip * chip)1421 static struct ti_sn65dsi86 *pwm_chip_to_ti_sn_bridge(struct pwm_chip *chip)
1422 {
1423 	return pwmchip_get_drvdata(chip);
1424 }
1425 
ti_sn_pwm_request(struct pwm_chip * chip,struct pwm_device * pwm)1426 static int ti_sn_pwm_request(struct pwm_chip *chip, struct pwm_device *pwm)
1427 {
1428 	struct ti_sn65dsi86 *pdata = pwm_chip_to_ti_sn_bridge(chip);
1429 
1430 	return ti_sn_pwm_pin_request(pdata);
1431 }
1432 
ti_sn_pwm_free(struct pwm_chip * chip,struct pwm_device * pwm)1433 static void ti_sn_pwm_free(struct pwm_chip *chip, struct pwm_device *pwm)
1434 {
1435 	struct ti_sn65dsi86 *pdata = pwm_chip_to_ti_sn_bridge(chip);
1436 
1437 	ti_sn_pwm_pin_release(pdata);
1438 }
1439 
1440 /*
1441  * Limitations:
1442  * - The PWM signal is not driven when the chip is powered down, or in its
1443  *   reset state and the driver does not implement the "suspend state"
1444  *   described in the documentation. In order to save power, state->enabled is
1445  *   interpreted as denoting if the signal is expected to be valid, and is used
1446  *   to determine if the chip needs to be kept powered.
1447  * - Changing both period and duty_cycle is not done atomically, neither is the
1448  *   multi-byte register updates, so the output might briefly be undefined
1449  *   during update.
1450  */
ti_sn_pwm_apply(struct pwm_chip * chip,struct pwm_device * pwm,const struct pwm_state * state)1451 static int ti_sn_pwm_apply(struct pwm_chip *chip, struct pwm_device *pwm,
1452 			   const struct pwm_state *state)
1453 {
1454 	struct ti_sn65dsi86 *pdata = pwm_chip_to_ti_sn_bridge(chip);
1455 	unsigned int pwm_en_inv;
1456 	unsigned int backlight;
1457 	unsigned int pre_div;
1458 	unsigned int scale;
1459 	u64 period_max;
1460 	u64 period;
1461 	int ret;
1462 
1463 	if (!pdata->pwm_enabled) {
1464 		ret = pm_runtime_resume_and_get(pwmchip_parent(chip));
1465 		if (ret < 0)
1466 			return ret;
1467 	}
1468 
1469 	if (state->enabled) {
1470 		if (!pdata->pwm_enabled) {
1471 			/*
1472 			 * The chip might have been powered down while we
1473 			 * didn't hold a PM runtime reference, so mux in the
1474 			 * PWM function on the GPIO pin again.
1475 			 */
1476 			ret = regmap_update_bits(pdata->regmap, SN_GPIO_CTRL_REG,
1477 						 SN_GPIO_MUX_MASK << (2 * SN_PWM_GPIO_IDX),
1478 						 SN_GPIO_MUX_SPECIAL << (2 * SN_PWM_GPIO_IDX));
1479 			if (ret) {
1480 				dev_err(pwmchip_parent(chip), "failed to mux in PWM function\n");
1481 				goto out;
1482 			}
1483 		}
1484 
1485 		/*
1486 		 * Per the datasheet the PWM frequency is given by:
1487 		 *
1488 		 *                          REFCLK_FREQ
1489 		 *   PWM_FREQ = -----------------------------------
1490 		 *               PWM_PRE_DIV * BACKLIGHT_SCALE + 1
1491 		 *
1492 		 * However, after careful review the author is convinced that
1493 		 * the documentation has lost some parenthesis around
1494 		 * "BACKLIGHT_SCALE + 1".
1495 		 *
1496 		 * With the period T_pwm = 1/PWM_FREQ this can be written:
1497 		 *
1498 		 *   T_pwm * REFCLK_FREQ = PWM_PRE_DIV * (BACKLIGHT_SCALE + 1)
1499 		 *
1500 		 * In order to keep BACKLIGHT_SCALE within its 16 bits,
1501 		 * PWM_PRE_DIV must be:
1502 		 *
1503 		 *                     T_pwm * REFCLK_FREQ
1504 		 *   PWM_PRE_DIV >= -------------------------
1505 		 *                   BACKLIGHT_SCALE_MAX + 1
1506 		 *
1507 		 * To simplify the search and to favour higher resolution of
1508 		 * the duty cycle over accuracy of the period, the lowest
1509 		 * possible PWM_PRE_DIV is used. Finally the scale is
1510 		 * calculated as:
1511 		 *
1512 		 *                      T_pwm * REFCLK_FREQ
1513 		 *   BACKLIGHT_SCALE = ---------------------- - 1
1514 		 *                          PWM_PRE_DIV
1515 		 *
1516 		 * Here T_pwm is represented in seconds, so appropriate scaling
1517 		 * to nanoseconds is necessary.
1518 		 */
1519 
1520 		/* Minimum T_pwm is 1 / REFCLK_FREQ */
1521 		if (state->period <= NSEC_PER_SEC / pdata->pwm_refclk_freq) {
1522 			ret = -EINVAL;
1523 			goto out;
1524 		}
1525 
1526 		/*
1527 		 * Maximum T_pwm is 255 * (65535 + 1) / REFCLK_FREQ
1528 		 * Limit period to this to avoid overflows
1529 		 */
1530 		period_max = div_u64((u64)NSEC_PER_SEC * 255 * (65535 + 1),
1531 				     pdata->pwm_refclk_freq);
1532 		period = min(state->period, period_max);
1533 
1534 		pre_div = DIV64_U64_ROUND_UP(period * pdata->pwm_refclk_freq,
1535 					     (u64)NSEC_PER_SEC * (BACKLIGHT_SCALE_MAX + 1));
1536 		scale = div64_u64(period * pdata->pwm_refclk_freq, (u64)NSEC_PER_SEC * pre_div) - 1;
1537 
1538 		/*
1539 		 * The documentation has the duty ratio given as:
1540 		 *
1541 		 *     duty          BACKLIGHT
1542 		 *   ------- = ---------------------
1543 		 *    period    BACKLIGHT_SCALE + 1
1544 		 *
1545 		 * Solve for BACKLIGHT, substituting BACKLIGHT_SCALE according
1546 		 * to definition above and adjusting for nanosecond
1547 		 * representation of duty cycle gives us:
1548 		 */
1549 		backlight = div64_u64(state->duty_cycle * pdata->pwm_refclk_freq,
1550 				      (u64)NSEC_PER_SEC * pre_div);
1551 		if (backlight > scale)
1552 			backlight = scale;
1553 
1554 		ret = regmap_write(pdata->regmap, SN_PWM_PRE_DIV_REG, pre_div);
1555 		if (ret) {
1556 			dev_err(pwmchip_parent(chip), "failed to update PWM_PRE_DIV\n");
1557 			goto out;
1558 		}
1559 
1560 		ti_sn65dsi86_write_u16(pdata, SN_BACKLIGHT_SCALE_REG, scale);
1561 		ti_sn65dsi86_write_u16(pdata, SN_BACKLIGHT_REG, backlight);
1562 	}
1563 
1564 	pwm_en_inv = FIELD_PREP(SN_PWM_EN_MASK, state->enabled) |
1565 		     FIELD_PREP(SN_PWM_INV_MASK, state->polarity == PWM_POLARITY_INVERSED);
1566 	ret = regmap_write(pdata->regmap, SN_PWM_EN_INV_REG, pwm_en_inv);
1567 	if (ret) {
1568 		dev_err(pwmchip_parent(chip), "failed to update PWM_EN/PWM_INV\n");
1569 		goto out;
1570 	}
1571 
1572 	pdata->pwm_enabled = state->enabled;
1573 out:
1574 
1575 	if (!pdata->pwm_enabled)
1576 		pm_runtime_put_sync(pwmchip_parent(chip));
1577 
1578 	return ret;
1579 }
1580 
ti_sn_pwm_get_state(struct pwm_chip * chip,struct pwm_device * pwm,struct pwm_state * state)1581 static int ti_sn_pwm_get_state(struct pwm_chip *chip, struct pwm_device *pwm,
1582 			       struct pwm_state *state)
1583 {
1584 	struct ti_sn65dsi86 *pdata = pwm_chip_to_ti_sn_bridge(chip);
1585 	unsigned int pwm_en_inv;
1586 	unsigned int pre_div;
1587 	u16 backlight;
1588 	u16 scale;
1589 	int ret;
1590 
1591 	ret = regmap_read(pdata->regmap, SN_PWM_EN_INV_REG, &pwm_en_inv);
1592 	if (ret)
1593 		return ret;
1594 
1595 	ret = ti_sn65dsi86_read_u16(pdata, SN_BACKLIGHT_SCALE_REG, &scale);
1596 	if (ret)
1597 		return ret;
1598 
1599 	ret = ti_sn65dsi86_read_u16(pdata, SN_BACKLIGHT_REG, &backlight);
1600 	if (ret)
1601 		return ret;
1602 
1603 	ret = regmap_read(pdata->regmap, SN_PWM_PRE_DIV_REG, &pre_div);
1604 	if (ret)
1605 		return ret;
1606 
1607 	state->enabled = FIELD_GET(SN_PWM_EN_MASK, pwm_en_inv);
1608 	if (FIELD_GET(SN_PWM_INV_MASK, pwm_en_inv))
1609 		state->polarity = PWM_POLARITY_INVERSED;
1610 	else
1611 		state->polarity = PWM_POLARITY_NORMAL;
1612 
1613 	state->period = DIV_ROUND_UP_ULL((u64)NSEC_PER_SEC * pre_div * (scale + 1),
1614 					 pdata->pwm_refclk_freq);
1615 	state->duty_cycle = DIV_ROUND_UP_ULL((u64)NSEC_PER_SEC * pre_div * backlight,
1616 					     pdata->pwm_refclk_freq);
1617 
1618 	if (state->duty_cycle > state->period)
1619 		state->duty_cycle = state->period;
1620 
1621 	return 0;
1622 }
1623 
1624 static const struct pwm_ops ti_sn_pwm_ops = {
1625 	.request = ti_sn_pwm_request,
1626 	.free = ti_sn_pwm_free,
1627 	.apply = ti_sn_pwm_apply,
1628 	.get_state = ti_sn_pwm_get_state,
1629 };
1630 
ti_sn_pwm_probe(struct auxiliary_device * adev,const struct auxiliary_device_id * id)1631 static int ti_sn_pwm_probe(struct auxiliary_device *adev,
1632 			   const struct auxiliary_device_id *id)
1633 {
1634 	struct pwm_chip *chip;
1635 	struct ti_sn65dsi86 *pdata = dev_get_drvdata(adev->dev.parent);
1636 
1637 	pdata->pchip = chip = devm_pwmchip_alloc(&adev->dev, 1, 0);
1638 	if (IS_ERR(chip))
1639 		return PTR_ERR(chip);
1640 
1641 	pwmchip_set_drvdata(chip, pdata);
1642 
1643 	chip->ops = &ti_sn_pwm_ops;
1644 	chip->of_xlate = of_pwm_single_xlate;
1645 
1646 	devm_pm_runtime_enable(&adev->dev);
1647 
1648 	return pwmchip_add(chip);
1649 }
1650 
ti_sn_pwm_remove(struct auxiliary_device * adev)1651 static void ti_sn_pwm_remove(struct auxiliary_device *adev)
1652 {
1653 	struct ti_sn65dsi86 *pdata = dev_get_drvdata(adev->dev.parent);
1654 
1655 	pwmchip_remove(pdata->pchip);
1656 
1657 	if (pdata->pwm_enabled)
1658 		pm_runtime_put_sync(&adev->dev);
1659 }
1660 
1661 static const struct auxiliary_device_id ti_sn_pwm_id_table[] = {
1662 	{ .name = "ti_sn65dsi86.pwm", },
1663 	{},
1664 };
1665 
1666 static struct auxiliary_driver ti_sn_pwm_driver = {
1667 	.name = "pwm",
1668 	.probe = ti_sn_pwm_probe,
1669 	.remove = ti_sn_pwm_remove,
1670 	.id_table = ti_sn_pwm_id_table,
1671 };
1672 
ti_sn_pwm_register(void)1673 static int __init ti_sn_pwm_register(void)
1674 {
1675 	return auxiliary_driver_register(&ti_sn_pwm_driver);
1676 }
1677 
ti_sn_pwm_unregister(void)1678 static void ti_sn_pwm_unregister(void)
1679 {
1680 	auxiliary_driver_unregister(&ti_sn_pwm_driver);
1681 }
1682 
1683 #else
ti_sn_pwm_pin_request(struct ti_sn65dsi86 * pdata)1684 static inline int ti_sn_pwm_pin_request(struct ti_sn65dsi86 *pdata) { return 0; }
ti_sn_pwm_pin_release(struct ti_sn65dsi86 * pdata)1685 static inline void ti_sn_pwm_pin_release(struct ti_sn65dsi86 *pdata) {}
1686 
ti_sn_pwm_register(void)1687 static inline int ti_sn_pwm_register(void) { return 0; }
ti_sn_pwm_unregister(void)1688 static inline void ti_sn_pwm_unregister(void) {}
1689 #endif
1690 
1691 /* -----------------------------------------------------------------------------
1692  * GPIO Controller
1693  */
1694 #if defined(CONFIG_OF_GPIO)
1695 
tn_sn_bridge_of_xlate(struct gpio_chip * chip,const struct of_phandle_args * gpiospec,u32 * flags)1696 static int tn_sn_bridge_of_xlate(struct gpio_chip *chip,
1697 				 const struct of_phandle_args *gpiospec,
1698 				 u32 *flags)
1699 {
1700 	if (WARN_ON(gpiospec->args_count < chip->of_gpio_n_cells))
1701 		return -EINVAL;
1702 
1703 	if (gpiospec->args[0] > chip->ngpio || gpiospec->args[0] < 1)
1704 		return -EINVAL;
1705 
1706 	if (flags)
1707 		*flags = gpiospec->args[1];
1708 
1709 	return gpiospec->args[0] - SN_GPIO_PHYSICAL_OFFSET;
1710 }
1711 
ti_sn_bridge_gpio_get_direction(struct gpio_chip * chip,unsigned int offset)1712 static int ti_sn_bridge_gpio_get_direction(struct gpio_chip *chip,
1713 					   unsigned int offset)
1714 {
1715 	struct ti_sn65dsi86 *pdata = gpiochip_get_data(chip);
1716 
1717 	/*
1718 	 * We already have to keep track of the direction because we use
1719 	 * that to figure out whether we've powered the device.  We can
1720 	 * just return that rather than (maybe) powering up the device
1721 	 * to ask its direction.
1722 	 */
1723 	return test_bit(offset, pdata->gchip_output) ?
1724 		GPIO_LINE_DIRECTION_OUT : GPIO_LINE_DIRECTION_IN;
1725 }
1726 
ti_sn_bridge_gpio_get(struct gpio_chip * chip,unsigned int offset)1727 static int ti_sn_bridge_gpio_get(struct gpio_chip *chip, unsigned int offset)
1728 {
1729 	struct ti_sn65dsi86 *pdata = gpiochip_get_data(chip);
1730 	unsigned int val;
1731 	int ret;
1732 
1733 	/*
1734 	 * When the pin is an input we don't forcibly keep the bridge
1735 	 * powered--we just power it on to read the pin.  NOTE: part of
1736 	 * the reason this works is that the bridge defaults (when
1737 	 * powered back on) to all 4 GPIOs being configured as GPIO input.
1738 	 * Also note that if something else is keeping the chip powered the
1739 	 * pm_runtime functions are lightweight increments of a refcount.
1740 	 */
1741 	pm_runtime_get_sync(pdata->dev);
1742 	ret = regmap_read(pdata->regmap, SN_GPIO_IO_REG, &val);
1743 	pm_runtime_put_autosuspend(pdata->dev);
1744 
1745 	if (ret)
1746 		return ret;
1747 
1748 	return !!(val & BIT(SN_GPIO_INPUT_SHIFT + offset));
1749 }
1750 
ti_sn_bridge_gpio_set(struct gpio_chip * chip,unsigned int offset,int val)1751 static void ti_sn_bridge_gpio_set(struct gpio_chip *chip, unsigned int offset,
1752 				  int val)
1753 {
1754 	struct ti_sn65dsi86 *pdata = gpiochip_get_data(chip);
1755 	int ret;
1756 
1757 	if (!test_bit(offset, pdata->gchip_output)) {
1758 		dev_err(pdata->dev, "Ignoring GPIO set while input\n");
1759 		return;
1760 	}
1761 
1762 	val &= 1;
1763 	ret = regmap_update_bits(pdata->regmap, SN_GPIO_IO_REG,
1764 				 BIT(SN_GPIO_OUTPUT_SHIFT + offset),
1765 				 val << (SN_GPIO_OUTPUT_SHIFT + offset));
1766 	if (ret)
1767 		dev_warn(pdata->dev,
1768 			 "Failed to set bridge GPIO %u: %d\n", offset, ret);
1769 }
1770 
ti_sn_bridge_gpio_direction_input(struct gpio_chip * chip,unsigned int offset)1771 static int ti_sn_bridge_gpio_direction_input(struct gpio_chip *chip,
1772 					     unsigned int offset)
1773 {
1774 	struct ti_sn65dsi86 *pdata = gpiochip_get_data(chip);
1775 	int shift = offset * 2;
1776 	int ret;
1777 
1778 	if (!test_and_clear_bit(offset, pdata->gchip_output))
1779 		return 0;
1780 
1781 	ret = regmap_update_bits(pdata->regmap, SN_GPIO_CTRL_REG,
1782 				 SN_GPIO_MUX_MASK << shift,
1783 				 SN_GPIO_MUX_INPUT << shift);
1784 	if (ret) {
1785 		set_bit(offset, pdata->gchip_output);
1786 		return ret;
1787 	}
1788 
1789 	/*
1790 	 * NOTE: if nobody else is powering the device this may fully power
1791 	 * it off and when it comes back it will have lost all state, but
1792 	 * that's OK because the default is input and we're now an input.
1793 	 */
1794 	pm_runtime_put_autosuspend(pdata->dev);
1795 
1796 	return 0;
1797 }
1798 
ti_sn_bridge_gpio_direction_output(struct gpio_chip * chip,unsigned int offset,int val)1799 static int ti_sn_bridge_gpio_direction_output(struct gpio_chip *chip,
1800 					      unsigned int offset, int val)
1801 {
1802 	struct ti_sn65dsi86 *pdata = gpiochip_get_data(chip);
1803 	int shift = offset * 2;
1804 	int ret;
1805 
1806 	if (test_and_set_bit(offset, pdata->gchip_output))
1807 		return 0;
1808 
1809 	pm_runtime_get_sync(pdata->dev);
1810 
1811 	/* Set value first to avoid glitching */
1812 	ti_sn_bridge_gpio_set(chip, offset, val);
1813 
1814 	/* Set direction */
1815 	ret = regmap_update_bits(pdata->regmap, SN_GPIO_CTRL_REG,
1816 				 SN_GPIO_MUX_MASK << shift,
1817 				 SN_GPIO_MUX_OUTPUT << shift);
1818 	if (ret) {
1819 		clear_bit(offset, pdata->gchip_output);
1820 		pm_runtime_put_autosuspend(pdata->dev);
1821 	}
1822 
1823 	return ret;
1824 }
1825 
ti_sn_bridge_gpio_request(struct gpio_chip * chip,unsigned int offset)1826 static int ti_sn_bridge_gpio_request(struct gpio_chip *chip, unsigned int offset)
1827 {
1828 	struct ti_sn65dsi86 *pdata = gpiochip_get_data(chip);
1829 
1830 	if (offset == SN_PWM_GPIO_IDX)
1831 		return ti_sn_pwm_pin_request(pdata);
1832 
1833 	return 0;
1834 }
1835 
ti_sn_bridge_gpio_free(struct gpio_chip * chip,unsigned int offset)1836 static void ti_sn_bridge_gpio_free(struct gpio_chip *chip, unsigned int offset)
1837 {
1838 	struct ti_sn65dsi86 *pdata = gpiochip_get_data(chip);
1839 
1840 	/* We won't keep pm_runtime if we're input, so switch there on free */
1841 	ti_sn_bridge_gpio_direction_input(chip, offset);
1842 
1843 	if (offset == SN_PWM_GPIO_IDX)
1844 		ti_sn_pwm_pin_release(pdata);
1845 }
1846 
1847 static const char * const ti_sn_bridge_gpio_names[SN_NUM_GPIOS] = {
1848 	"GPIO1", "GPIO2", "GPIO3", "GPIO4"
1849 };
1850 
ti_sn_gpio_probe(struct auxiliary_device * adev,const struct auxiliary_device_id * id)1851 static int ti_sn_gpio_probe(struct auxiliary_device *adev,
1852 			    const struct auxiliary_device_id *id)
1853 {
1854 	struct ti_sn65dsi86 *pdata = dev_get_drvdata(adev->dev.parent);
1855 	int ret;
1856 
1857 	/* Only init if someone is going to use us as a GPIO controller */
1858 	if (!of_property_read_bool(pdata->dev->of_node, "gpio-controller"))
1859 		return 0;
1860 
1861 	pdata->gchip.label = dev_name(pdata->dev);
1862 	pdata->gchip.parent = pdata->dev;
1863 	pdata->gchip.owner = THIS_MODULE;
1864 	pdata->gchip.of_xlate = tn_sn_bridge_of_xlate;
1865 	pdata->gchip.of_gpio_n_cells = 2;
1866 	pdata->gchip.request = ti_sn_bridge_gpio_request;
1867 	pdata->gchip.free = ti_sn_bridge_gpio_free;
1868 	pdata->gchip.get_direction = ti_sn_bridge_gpio_get_direction;
1869 	pdata->gchip.direction_input = ti_sn_bridge_gpio_direction_input;
1870 	pdata->gchip.direction_output = ti_sn_bridge_gpio_direction_output;
1871 	pdata->gchip.get = ti_sn_bridge_gpio_get;
1872 	pdata->gchip.set = ti_sn_bridge_gpio_set;
1873 	pdata->gchip.can_sleep = true;
1874 	pdata->gchip.names = ti_sn_bridge_gpio_names;
1875 	pdata->gchip.ngpio = SN_NUM_GPIOS;
1876 	pdata->gchip.base = -1;
1877 	ret = devm_gpiochip_add_data(&adev->dev, &pdata->gchip, pdata);
1878 	if (ret)
1879 		dev_err(pdata->dev, "can't add gpio chip\n");
1880 
1881 	return ret;
1882 }
1883 
1884 static const struct auxiliary_device_id ti_sn_gpio_id_table[] = {
1885 	{ .name = "ti_sn65dsi86.gpio", },
1886 	{},
1887 };
1888 
1889 MODULE_DEVICE_TABLE(auxiliary, ti_sn_gpio_id_table);
1890 
1891 static struct auxiliary_driver ti_sn_gpio_driver = {
1892 	.name = "gpio",
1893 	.probe = ti_sn_gpio_probe,
1894 	.id_table = ti_sn_gpio_id_table,
1895 };
1896 
ti_sn_gpio_register(void)1897 static int __init ti_sn_gpio_register(void)
1898 {
1899 	return auxiliary_driver_register(&ti_sn_gpio_driver);
1900 }
1901 
ti_sn_gpio_unregister(void)1902 static void ti_sn_gpio_unregister(void)
1903 {
1904 	auxiliary_driver_unregister(&ti_sn_gpio_driver);
1905 }
1906 
1907 #else
1908 
ti_sn_gpio_register(void)1909 static inline int ti_sn_gpio_register(void) { return 0; }
ti_sn_gpio_unregister(void)1910 static inline void ti_sn_gpio_unregister(void) {}
1911 
1912 #endif
1913 
1914 /* -----------------------------------------------------------------------------
1915  * Probe & Remove
1916  */
1917 
ti_sn65dsi86_runtime_disable(void * data)1918 static void ti_sn65dsi86_runtime_disable(void *data)
1919 {
1920 	pm_runtime_dont_use_autosuspend(data);
1921 	pm_runtime_disable(data);
1922 }
1923 
ti_sn65dsi86_parse_regulators(struct ti_sn65dsi86 * pdata)1924 static int ti_sn65dsi86_parse_regulators(struct ti_sn65dsi86 *pdata)
1925 {
1926 	unsigned int i;
1927 	const char * const ti_sn_bridge_supply_names[] = {
1928 		"vcca", "vcc", "vccio", "vpll",
1929 	};
1930 
1931 	for (i = 0; i < SN_REGULATOR_SUPPLY_NUM; i++)
1932 		pdata->supplies[i].supply = ti_sn_bridge_supply_names[i];
1933 
1934 	return devm_regulator_bulk_get(pdata->dev, SN_REGULATOR_SUPPLY_NUM,
1935 				       pdata->supplies);
1936 }
1937 
ti_sn65dsi86_probe(struct i2c_client * client)1938 static int ti_sn65dsi86_probe(struct i2c_client *client)
1939 {
1940 	struct device *dev = &client->dev;
1941 	struct ti_sn65dsi86 *pdata;
1942 	int ret;
1943 
1944 	if (!i2c_check_functionality(client->adapter, I2C_FUNC_I2C)) {
1945 		DRM_ERROR("device doesn't support I2C\n");
1946 		return -ENODEV;
1947 	}
1948 
1949 	pdata = devm_kzalloc(dev, sizeof(struct ti_sn65dsi86), GFP_KERNEL);
1950 	if (!pdata)
1951 		return -ENOMEM;
1952 	dev_set_drvdata(dev, pdata);
1953 	pdata->dev = dev;
1954 
1955 	mutex_init(&pdata->comms_mutex);
1956 
1957 	pdata->regmap = devm_regmap_init_i2c(client,
1958 					     &ti_sn65dsi86_regmap_config);
1959 	if (IS_ERR(pdata->regmap))
1960 		return dev_err_probe(dev, PTR_ERR(pdata->regmap),
1961 				     "regmap i2c init failed\n");
1962 
1963 	pdata->enable_gpio = devm_gpiod_get_optional(dev, "enable",
1964 						     GPIOD_OUT_LOW);
1965 	if (IS_ERR(pdata->enable_gpio))
1966 		return dev_err_probe(dev, PTR_ERR(pdata->enable_gpio),
1967 				     "failed to get enable gpio from DT\n");
1968 
1969 	ret = ti_sn65dsi86_parse_regulators(pdata);
1970 	if (ret)
1971 		return dev_err_probe(dev, ret, "failed to parse regulators\n");
1972 
1973 	pdata->refclk = devm_clk_get_optional(dev, "refclk");
1974 	if (IS_ERR(pdata->refclk))
1975 		return dev_err_probe(dev, PTR_ERR(pdata->refclk),
1976 				     "failed to get reference clock\n");
1977 
1978 	pm_runtime_enable(dev);
1979 	pm_runtime_set_autosuspend_delay(pdata->dev, 500);
1980 	pm_runtime_use_autosuspend(pdata->dev);
1981 	ret = devm_add_action_or_reset(dev, ti_sn65dsi86_runtime_disable, dev);
1982 	if (ret)
1983 		return ret;
1984 
1985 	/*
1986 	 * Break ourselves up into a collection of aux devices. The only real
1987 	 * motiviation here is to solve the chicken-and-egg problem of probe
1988 	 * ordering. The bridge wants the panel to be there when it probes.
1989 	 * The panel wants its HPD GPIO (provided by sn65dsi86 on some boards)
1990 	 * when it probes. The panel and maybe backlight might want the DDC
1991 	 * bus or the pwm_chip. Having sub-devices allows the some sub devices
1992 	 * to finish probing even if others return -EPROBE_DEFER and gets us
1993 	 * around the problems.
1994 	 */
1995 
1996 	if (IS_ENABLED(CONFIG_OF_GPIO)) {
1997 		ret = ti_sn65dsi86_add_aux_device(pdata, &pdata->gpio_aux, "gpio");
1998 		if (ret)
1999 			return ret;
2000 	}
2001 
2002 	if (IS_ENABLED(CONFIG_PWM)) {
2003 		ret = ti_sn65dsi86_add_aux_device(pdata, &pdata->pwm_aux, "pwm");
2004 		if (ret)
2005 			return ret;
2006 	}
2007 
2008 	/*
2009 	 * NOTE: At the end of the AUX channel probe we'll add the aux device
2010 	 * for the bridge. This is because the bridge can't be used until the
2011 	 * AUX channel is there and this is a very simple solution to the
2012 	 * dependency problem.
2013 	 */
2014 	return ti_sn65dsi86_add_aux_device(pdata, &pdata->aux_aux, "aux");
2015 }
2016 
2017 static struct i2c_device_id ti_sn65dsi86_id[] = {
2018 	{ "ti,sn65dsi86", 0},
2019 	{},
2020 };
2021 MODULE_DEVICE_TABLE(i2c, ti_sn65dsi86_id);
2022 
2023 static const struct of_device_id ti_sn65dsi86_match_table[] = {
2024 	{.compatible = "ti,sn65dsi86"},
2025 	{},
2026 };
2027 MODULE_DEVICE_TABLE(of, ti_sn65dsi86_match_table);
2028 
2029 static struct i2c_driver ti_sn65dsi86_driver = {
2030 	.driver = {
2031 		.name = "ti_sn65dsi86",
2032 		.of_match_table = ti_sn65dsi86_match_table,
2033 		.pm = &ti_sn65dsi86_pm_ops,
2034 	},
2035 	.probe = ti_sn65dsi86_probe,
2036 	.id_table = ti_sn65dsi86_id,
2037 };
2038 
ti_sn65dsi86_init(void)2039 static int __init ti_sn65dsi86_init(void)
2040 {
2041 	int ret;
2042 
2043 	ret = i2c_add_driver(&ti_sn65dsi86_driver);
2044 	if (ret)
2045 		return ret;
2046 
2047 	ret = ti_sn_gpio_register();
2048 	if (ret)
2049 		goto err_main_was_registered;
2050 
2051 	ret = ti_sn_pwm_register();
2052 	if (ret)
2053 		goto err_gpio_was_registered;
2054 
2055 	ret = auxiliary_driver_register(&ti_sn_aux_driver);
2056 	if (ret)
2057 		goto err_pwm_was_registered;
2058 
2059 	ret = auxiliary_driver_register(&ti_sn_bridge_driver);
2060 	if (ret)
2061 		goto err_aux_was_registered;
2062 
2063 	return 0;
2064 
2065 err_aux_was_registered:
2066 	auxiliary_driver_unregister(&ti_sn_aux_driver);
2067 err_pwm_was_registered:
2068 	ti_sn_pwm_unregister();
2069 err_gpio_was_registered:
2070 	ti_sn_gpio_unregister();
2071 err_main_was_registered:
2072 	i2c_del_driver(&ti_sn65dsi86_driver);
2073 
2074 	return ret;
2075 }
2076 module_init(ti_sn65dsi86_init);
2077 
ti_sn65dsi86_exit(void)2078 static void __exit ti_sn65dsi86_exit(void)
2079 {
2080 	auxiliary_driver_unregister(&ti_sn_bridge_driver);
2081 	auxiliary_driver_unregister(&ti_sn_aux_driver);
2082 	ti_sn_pwm_unregister();
2083 	ti_sn_gpio_unregister();
2084 	i2c_del_driver(&ti_sn65dsi86_driver);
2085 }
2086 module_exit(ti_sn65dsi86_exit);
2087 
2088 MODULE_AUTHOR("Sandeep Panda <spanda@codeaurora.org>");
2089 MODULE_DESCRIPTION("sn65dsi86 DSI to eDP bridge driver");
2090 MODULE_LICENSE("GPL v2");
2091