1 /*
2 * Copyright © 2014-2016 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21 * DEALINGS IN THE SOFTWARE.
22 */
23
24 #include "bxt_dpio_phy_regs.h"
25 #include "i915_reg.h"
26 #include "intel_ddi.h"
27 #include "intel_ddi_buf_trans.h"
28 #include "intel_de.h"
29 #include "intel_display_power_well.h"
30 #include "intel_display_types.h"
31 #include "intel_dp.h"
32 #include "intel_dpio_phy.h"
33 #include "vlv_dpio_phy_regs.h"
34 #include "vlv_sideband.h"
35
36 /**
37 * DOC: DPIO
38 *
39 * VLV, CHV and BXT have slightly peculiar display PHYs for driving DP/HDMI
40 * ports. DPIO is the name given to such a display PHY. These PHYs
41 * don't follow the standard programming model using direct MMIO
42 * registers, and instead their registers must be accessed trough IOSF
43 * sideband. VLV has one such PHY for driving ports B and C, and CHV
44 * adds another PHY for driving port D. Each PHY responds to specific
45 * IOSF-SB port.
46 *
47 * Each display PHY is made up of one or two channels. Each channel
48 * houses a common lane part which contains the PLL and other common
49 * logic. CH0 common lane also contains the IOSF-SB logic for the
50 * Common Register Interface (CRI) ie. the DPIO registers. CRI clock
51 * must be running when any DPIO registers are accessed.
52 *
53 * In addition to having their own registers, the PHYs are also
54 * controlled through some dedicated signals from the display
55 * controller. These include PLL reference clock enable, PLL enable,
56 * and CRI clock selection, for example.
57 *
58 * Eeach channel also has two splines (also called data lanes), and
59 * each spline is made up of one Physical Access Coding Sub-Layer
60 * (PCS) block and two TX lanes. So each channel has two PCS blocks
61 * and four TX lanes. The TX lanes are used as DP lanes or TMDS
62 * data/clock pairs depending on the output type.
63 *
64 * Additionally the PHY also contains an AUX lane with AUX blocks
65 * for each channel. This is used for DP AUX communication, but
66 * this fact isn't really relevant for the driver since AUX is
67 * controlled from the display controller side. No DPIO registers
68 * need to be accessed during AUX communication,
69 *
70 * Generally on VLV/CHV the common lane corresponds to the pipe and
71 * the spline (PCS/TX) corresponds to the port.
72 *
73 * For dual channel PHY (VLV/CHV):
74 *
75 * pipe A == CMN/PLL/REF CH0
76 *
77 * pipe B == CMN/PLL/REF CH1
78 *
79 * port B == PCS/TX CH0
80 *
81 * port C == PCS/TX CH1
82 *
83 * This is especially important when we cross the streams
84 * ie. drive port B with pipe B, or port C with pipe A.
85 *
86 * For single channel PHY (CHV):
87 *
88 * pipe C == CMN/PLL/REF CH0
89 *
90 * port D == PCS/TX CH0
91 *
92 * On BXT the entire PHY channel corresponds to the port. That means
93 * the PLL is also now associated with the port rather than the pipe,
94 * and so the clock needs to be routed to the appropriate transcoder.
95 * Port A PLL is directly connected to transcoder EDP and port B/C
96 * PLLs can be routed to any transcoder A/B/C.
97 *
98 * Note: DDI0 is digital port B, DD1 is digital port C, and DDI2 is
99 * digital port D (CHV) or port A (BXT). ::
100 *
101 *
102 * Dual channel PHY (VLV/CHV/BXT)
103 * ---------------------------------
104 * | CH0 | CH1 |
105 * | CMN/PLL/REF | CMN/PLL/REF |
106 * |---------------|---------------| Display PHY
107 * | PCS01 | PCS23 | PCS01 | PCS23 |
108 * |-------|-------|-------|-------|
109 * |TX0|TX1|TX2|TX3|TX0|TX1|TX2|TX3|
110 * ---------------------------------
111 * | DDI0 | DDI1 | DP/HDMI ports
112 * ---------------------------------
113 *
114 * Single channel PHY (CHV/BXT)
115 * -----------------
116 * | CH0 |
117 * | CMN/PLL/REF |
118 * |---------------| Display PHY
119 * | PCS01 | PCS23 |
120 * |-------|-------|
121 * |TX0|TX1|TX2|TX3|
122 * -----------------
123 * | DDI2 | DP/HDMI port
124 * -----------------
125 */
126
127 /**
128 * struct bxt_dpio_phy_info - Hold info for a broxton DDI phy
129 */
130 struct bxt_dpio_phy_info {
131 /**
132 * @dual_channel: true if this phy has a second channel.
133 */
134 bool dual_channel;
135
136 /**
137 * @rcomp_phy: If -1, indicates this phy has its own rcomp resistor.
138 * Otherwise the GRC value will be copied from the phy indicated by
139 * this field.
140 */
141 enum dpio_phy rcomp_phy;
142
143 /**
144 * @reset_delay: delay in us to wait before setting the common reset
145 * bit in BXT_PHY_CTL_FAMILY, which effectively enables the phy.
146 */
147 int reset_delay;
148
149 /**
150 * @pwron_mask: Mask with the appropriate bit set that would cause the
151 * punit to power this phy if written to BXT_P_CR_GT_DISP_PWRON.
152 */
153 u32 pwron_mask;
154
155 /**
156 * @channel: struct containing per channel information.
157 */
158 struct {
159 /**
160 * @channel.port: which port maps to this channel.
161 */
162 enum port port;
163 } channel[2];
164 };
165
166 static const struct bxt_dpio_phy_info bxt_dpio_phy_info[] = {
167 [DPIO_PHY0] = {
168 .dual_channel = true,
169 .rcomp_phy = DPIO_PHY1,
170 .pwron_mask = BIT(0),
171
172 .channel = {
173 [DPIO_CH0] = { .port = PORT_B },
174 [DPIO_CH1] = { .port = PORT_C },
175 }
176 },
177 [DPIO_PHY1] = {
178 .dual_channel = false,
179 .rcomp_phy = -1,
180 .pwron_mask = BIT(1),
181
182 .channel = {
183 [DPIO_CH0] = { .port = PORT_A },
184 }
185 },
186 };
187
188 static const struct bxt_dpio_phy_info glk_dpio_phy_info[] = {
189 [DPIO_PHY0] = {
190 .dual_channel = false,
191 .rcomp_phy = DPIO_PHY1,
192 .pwron_mask = BIT(0),
193 .reset_delay = 20,
194
195 .channel = {
196 [DPIO_CH0] = { .port = PORT_B },
197 }
198 },
199 [DPIO_PHY1] = {
200 .dual_channel = false,
201 .rcomp_phy = -1,
202 .pwron_mask = BIT(3),
203 .reset_delay = 20,
204
205 .channel = {
206 [DPIO_CH0] = { .port = PORT_A },
207 }
208 },
209 [DPIO_PHY2] = {
210 .dual_channel = false,
211 .rcomp_phy = DPIO_PHY1,
212 .pwron_mask = BIT(1),
213 .reset_delay = 20,
214
215 .channel = {
216 [DPIO_CH0] = { .port = PORT_C },
217 }
218 },
219 };
220
221 static const struct bxt_dpio_phy_info *
bxt_get_phy_list(struct drm_i915_private * dev_priv,int * count)222 bxt_get_phy_list(struct drm_i915_private *dev_priv, int *count)
223 {
224 if (IS_GEMINILAKE(dev_priv)) {
225 *count = ARRAY_SIZE(glk_dpio_phy_info);
226 return glk_dpio_phy_info;
227 } else {
228 *count = ARRAY_SIZE(bxt_dpio_phy_info);
229 return bxt_dpio_phy_info;
230 }
231 }
232
233 static const struct bxt_dpio_phy_info *
bxt_get_phy_info(struct drm_i915_private * dev_priv,enum dpio_phy phy)234 bxt_get_phy_info(struct drm_i915_private *dev_priv, enum dpio_phy phy)
235 {
236 int count;
237 const struct bxt_dpio_phy_info *phy_list =
238 bxt_get_phy_list(dev_priv, &count);
239
240 return &phy_list[phy];
241 }
242
bxt_port_to_phy_channel(struct drm_i915_private * dev_priv,enum port port,enum dpio_phy * phy,enum dpio_channel * ch)243 void bxt_port_to_phy_channel(struct drm_i915_private *dev_priv, enum port port,
244 enum dpio_phy *phy, enum dpio_channel *ch)
245 {
246 const struct bxt_dpio_phy_info *phy_info, *phys;
247 int i, count;
248
249 phys = bxt_get_phy_list(dev_priv, &count);
250
251 for (i = 0; i < count; i++) {
252 phy_info = &phys[i];
253
254 if (port == phy_info->channel[DPIO_CH0].port) {
255 *phy = i;
256 *ch = DPIO_CH0;
257 return;
258 }
259
260 if (phy_info->dual_channel &&
261 port == phy_info->channel[DPIO_CH1].port) {
262 *phy = i;
263 *ch = DPIO_CH1;
264 return;
265 }
266 }
267
268 drm_WARN(&dev_priv->drm, 1, "PHY not found for PORT %c",
269 port_name(port));
270 *phy = DPIO_PHY0;
271 *ch = DPIO_CH0;
272 }
273
274 /*
275 * Like intel_de_rmw() but reads from a single per-lane register and
276 * writes to the group register to write the same value to all the lanes.
277 */
bxt_dpio_phy_rmw_grp(struct drm_i915_private * i915,i915_reg_t reg_single,i915_reg_t reg_group,u32 clear,u32 set)278 static u32 bxt_dpio_phy_rmw_grp(struct drm_i915_private *i915,
279 i915_reg_t reg_single,
280 i915_reg_t reg_group,
281 u32 clear, u32 set)
282 {
283 u32 old, val;
284
285 old = intel_de_read(i915, reg_single);
286 val = (old & ~clear) | set;
287 intel_de_write(i915, reg_group, val);
288
289 return old;
290 }
291
bxt_dpio_phy_set_signal_levels(struct intel_encoder * encoder,const struct intel_crtc_state * crtc_state)292 void bxt_dpio_phy_set_signal_levels(struct intel_encoder *encoder,
293 const struct intel_crtc_state *crtc_state)
294 {
295 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
296 const struct intel_ddi_buf_trans *trans;
297 enum dpio_channel ch;
298 enum dpio_phy phy;
299 int lane, n_entries;
300
301 trans = encoder->get_buf_trans(encoder, crtc_state, &n_entries);
302 if (drm_WARN_ON_ONCE(&dev_priv->drm, !trans))
303 return;
304
305 bxt_port_to_phy_channel(dev_priv, encoder->port, &phy, &ch);
306
307 /*
308 * While we write to the group register to program all lanes at once we
309 * can read only lane registers and we pick lanes 0/1 for that.
310 */
311 bxt_dpio_phy_rmw_grp(dev_priv, BXT_PORT_PCS_DW10_LN01(phy, ch),
312 BXT_PORT_PCS_DW10_GRP(phy, ch),
313 TX2_SWING_CALC_INIT | TX1_SWING_CALC_INIT, 0);
314
315 for (lane = 0; lane < crtc_state->lane_count; lane++) {
316 int level = intel_ddi_level(encoder, crtc_state, lane);
317
318 intel_de_rmw(dev_priv, BXT_PORT_TX_DW2_LN(phy, ch, lane),
319 MARGIN_000_MASK | UNIQ_TRANS_SCALE_MASK,
320 MARGIN_000(trans->entries[level].bxt.margin) |
321 UNIQ_TRANS_SCALE(trans->entries[level].bxt.scale));
322 }
323
324 for (lane = 0; lane < crtc_state->lane_count; lane++) {
325 int level = intel_ddi_level(encoder, crtc_state, lane);
326 u32 val;
327
328 intel_de_rmw(dev_priv, BXT_PORT_TX_DW3_LN(phy, ch, lane),
329 SCALE_DCOMP_METHOD,
330 trans->entries[level].bxt.enable ?
331 SCALE_DCOMP_METHOD : 0);
332
333 val = intel_de_read(dev_priv, BXT_PORT_TX_DW3_LN(phy, ch, lane));
334 if ((val & UNIQUE_TRANGE_EN_METHOD) && !(val & SCALE_DCOMP_METHOD))
335 drm_err(&dev_priv->drm,
336 "Disabled scaling while ouniqetrangenmethod was set");
337 }
338
339 for (lane = 0; lane < crtc_state->lane_count; lane++) {
340 int level = intel_ddi_level(encoder, crtc_state, lane);
341
342 intel_de_rmw(dev_priv, BXT_PORT_TX_DW4_LN(phy, ch, lane),
343 DE_EMPHASIS_MASK,
344 DE_EMPHASIS(trans->entries[level].bxt.deemphasis));
345 }
346
347 bxt_dpio_phy_rmw_grp(dev_priv, BXT_PORT_PCS_DW10_LN01(phy, ch),
348 BXT_PORT_PCS_DW10_GRP(phy, ch),
349 0, TX2_SWING_CALC_INIT | TX1_SWING_CALC_INIT);
350 }
351
bxt_dpio_phy_is_enabled(struct drm_i915_private * dev_priv,enum dpio_phy phy)352 bool bxt_dpio_phy_is_enabled(struct drm_i915_private *dev_priv,
353 enum dpio_phy phy)
354 {
355 const struct bxt_dpio_phy_info *phy_info;
356
357 phy_info = bxt_get_phy_info(dev_priv, phy);
358
359 if (!(intel_de_read(dev_priv, BXT_P_CR_GT_DISP_PWRON) & phy_info->pwron_mask))
360 return false;
361
362 if ((intel_de_read(dev_priv, BXT_PORT_CL1CM_DW0(phy)) &
363 (PHY_POWER_GOOD | PHY_RESERVED)) != PHY_POWER_GOOD) {
364 drm_dbg(&dev_priv->drm,
365 "DDI PHY %d powered, but power hasn't settled\n", phy);
366
367 return false;
368 }
369
370 if (!(intel_de_read(dev_priv, BXT_PHY_CTL_FAMILY(phy)) & COMMON_RESET_DIS)) {
371 drm_dbg(&dev_priv->drm,
372 "DDI PHY %d powered, but still in reset\n", phy);
373
374 return false;
375 }
376
377 return true;
378 }
379
bxt_get_grc(struct drm_i915_private * dev_priv,enum dpio_phy phy)380 static u32 bxt_get_grc(struct drm_i915_private *dev_priv, enum dpio_phy phy)
381 {
382 u32 val = intel_de_read(dev_priv, BXT_PORT_REF_DW6(phy));
383
384 return REG_FIELD_GET(GRC_CODE_MASK, val);
385 }
386
bxt_phy_wait_grc_done(struct drm_i915_private * dev_priv,enum dpio_phy phy)387 static void bxt_phy_wait_grc_done(struct drm_i915_private *dev_priv,
388 enum dpio_phy phy)
389 {
390 if (intel_de_wait_for_set(dev_priv, BXT_PORT_REF_DW3(phy),
391 GRC_DONE, 10))
392 drm_err(&dev_priv->drm, "timeout waiting for PHY%d GRC\n",
393 phy);
394 }
395
_bxt_dpio_phy_init(struct drm_i915_private * dev_priv,enum dpio_phy phy)396 static void _bxt_dpio_phy_init(struct drm_i915_private *dev_priv,
397 enum dpio_phy phy)
398 {
399 const struct bxt_dpio_phy_info *phy_info;
400 u32 val;
401
402 phy_info = bxt_get_phy_info(dev_priv, phy);
403
404 if (bxt_dpio_phy_is_enabled(dev_priv, phy)) {
405 /* Still read out the GRC value for state verification */
406 if (phy_info->rcomp_phy != -1)
407 dev_priv->display.state.bxt_phy_grc = bxt_get_grc(dev_priv, phy);
408
409 if (bxt_dpio_phy_verify_state(dev_priv, phy)) {
410 drm_dbg(&dev_priv->drm, "DDI PHY %d already enabled, "
411 "won't reprogram it\n", phy);
412 return;
413 }
414
415 drm_dbg(&dev_priv->drm,
416 "DDI PHY %d enabled with invalid state, "
417 "force reprogramming it\n", phy);
418 }
419
420 intel_de_rmw(dev_priv, BXT_P_CR_GT_DISP_PWRON, 0, phy_info->pwron_mask);
421
422 /*
423 * The PHY registers start out inaccessible and respond to reads with
424 * all 1s. Eventually they become accessible as they power up, then
425 * the reserved bit will give the default 0. Poll on the reserved bit
426 * becoming 0 to find when the PHY is accessible.
427 * The flag should get set in 100us according to the HW team, but
428 * use 1ms due to occasional timeouts observed with that.
429 */
430 if (intel_de_wait_fw(dev_priv, BXT_PORT_CL1CM_DW0(phy),
431 PHY_RESERVED | PHY_POWER_GOOD, PHY_POWER_GOOD, 1))
432 drm_err(&dev_priv->drm, "timeout during PHY%d power on\n",
433 phy);
434
435 /* Program PLL Rcomp code offset */
436 intel_de_rmw(dev_priv, BXT_PORT_CL1CM_DW9(phy),
437 IREF0RC_OFFSET_MASK, IREF0RC_OFFSET(0xE4));
438
439 intel_de_rmw(dev_priv, BXT_PORT_CL1CM_DW10(phy),
440 IREF1RC_OFFSET_MASK, IREF1RC_OFFSET(0xE4));
441
442 /* Program power gating */
443 intel_de_rmw(dev_priv, BXT_PORT_CL1CM_DW28(phy), 0,
444 OCL1_POWER_DOWN_EN | DW28_OLDO_DYN_PWR_DOWN_EN | SUS_CLK_CONFIG);
445
446 if (phy_info->dual_channel)
447 intel_de_rmw(dev_priv, BXT_PORT_CL2CM_DW6(phy), 0,
448 DW6_OLDO_DYN_PWR_DOWN_EN);
449
450 if (phy_info->rcomp_phy != -1) {
451 u32 grc_code;
452
453 bxt_phy_wait_grc_done(dev_priv, phy_info->rcomp_phy);
454
455 /*
456 * PHY0 isn't connected to an RCOMP resistor so copy over
457 * the corresponding calibrated value from PHY1, and disable
458 * the automatic calibration on PHY0.
459 */
460 val = bxt_get_grc(dev_priv, phy_info->rcomp_phy);
461 dev_priv->display.state.bxt_phy_grc = val;
462
463 grc_code = GRC_CODE_FAST(val) |
464 GRC_CODE_SLOW(val) |
465 GRC_CODE_NOM(val);
466 intel_de_write(dev_priv, BXT_PORT_REF_DW6(phy), grc_code);
467 intel_de_rmw(dev_priv, BXT_PORT_REF_DW8(phy),
468 0, GRC_DIS | GRC_RDY_OVRD);
469 }
470
471 if (phy_info->reset_delay)
472 udelay(phy_info->reset_delay);
473
474 intel_de_rmw(dev_priv, BXT_PHY_CTL_FAMILY(phy), 0, COMMON_RESET_DIS);
475 }
476
bxt_dpio_phy_uninit(struct drm_i915_private * dev_priv,enum dpio_phy phy)477 void bxt_dpio_phy_uninit(struct drm_i915_private *dev_priv, enum dpio_phy phy)
478 {
479 const struct bxt_dpio_phy_info *phy_info;
480
481 phy_info = bxt_get_phy_info(dev_priv, phy);
482
483 intel_de_rmw(dev_priv, BXT_PHY_CTL_FAMILY(phy), COMMON_RESET_DIS, 0);
484
485 intel_de_rmw(dev_priv, BXT_P_CR_GT_DISP_PWRON, phy_info->pwron_mask, 0);
486 }
487
bxt_dpio_phy_init(struct drm_i915_private * dev_priv,enum dpio_phy phy)488 void bxt_dpio_phy_init(struct drm_i915_private *dev_priv, enum dpio_phy phy)
489 {
490 const struct bxt_dpio_phy_info *phy_info =
491 bxt_get_phy_info(dev_priv, phy);
492 enum dpio_phy rcomp_phy = phy_info->rcomp_phy;
493 bool was_enabled;
494
495 lockdep_assert_held(&dev_priv->display.power.domains.lock);
496
497 was_enabled = true;
498 if (rcomp_phy != -1)
499 was_enabled = bxt_dpio_phy_is_enabled(dev_priv, rcomp_phy);
500
501 /*
502 * We need to copy the GRC calibration value from rcomp_phy,
503 * so make sure it's powered up.
504 */
505 if (!was_enabled)
506 _bxt_dpio_phy_init(dev_priv, rcomp_phy);
507
508 _bxt_dpio_phy_init(dev_priv, phy);
509
510 if (!was_enabled)
511 bxt_dpio_phy_uninit(dev_priv, rcomp_phy);
512 }
513
514 static bool __printf(6, 7)
__phy_reg_verify_state(struct drm_i915_private * dev_priv,enum dpio_phy phy,i915_reg_t reg,u32 mask,u32 expected,const char * reg_fmt,...)515 __phy_reg_verify_state(struct drm_i915_private *dev_priv, enum dpio_phy phy,
516 i915_reg_t reg, u32 mask, u32 expected,
517 const char *reg_fmt, ...)
518 {
519 struct va_format vaf;
520 va_list args;
521 u32 val;
522
523 val = intel_de_read(dev_priv, reg);
524 if ((val & mask) == expected)
525 return true;
526
527 va_start(args, reg_fmt);
528 vaf.fmt = reg_fmt;
529 vaf.va = &args;
530
531 drm_dbg(&dev_priv->drm, "DDI PHY %d reg %pV [%08x] state mismatch: "
532 "current %08x, expected %08x (mask %08x)\n",
533 phy, &vaf, reg.reg, val, (val & ~mask) | expected,
534 mask);
535
536 va_end(args);
537
538 return false;
539 }
540
bxt_dpio_phy_verify_state(struct drm_i915_private * dev_priv,enum dpio_phy phy)541 bool bxt_dpio_phy_verify_state(struct drm_i915_private *dev_priv,
542 enum dpio_phy phy)
543 {
544 const struct bxt_dpio_phy_info *phy_info;
545 u32 mask;
546 bool ok;
547
548 phy_info = bxt_get_phy_info(dev_priv, phy);
549
550 #define _CHK(reg, mask, exp, fmt, ...) \
551 __phy_reg_verify_state(dev_priv, phy, reg, mask, exp, fmt, \
552 ## __VA_ARGS__)
553
554 if (!bxt_dpio_phy_is_enabled(dev_priv, phy))
555 return false;
556
557 ok = true;
558
559 /* PLL Rcomp code offset */
560 ok &= _CHK(BXT_PORT_CL1CM_DW9(phy),
561 IREF0RC_OFFSET_MASK, IREF0RC_OFFSET(0xe4),
562 "BXT_PORT_CL1CM_DW9(%d)", phy);
563 ok &= _CHK(BXT_PORT_CL1CM_DW10(phy),
564 IREF1RC_OFFSET_MASK, IREF1RC_OFFSET(0xe4),
565 "BXT_PORT_CL1CM_DW10(%d)", phy);
566
567 /* Power gating */
568 mask = OCL1_POWER_DOWN_EN | DW28_OLDO_DYN_PWR_DOWN_EN | SUS_CLK_CONFIG;
569 ok &= _CHK(BXT_PORT_CL1CM_DW28(phy), mask, mask,
570 "BXT_PORT_CL1CM_DW28(%d)", phy);
571
572 if (phy_info->dual_channel)
573 ok &= _CHK(BXT_PORT_CL2CM_DW6(phy),
574 DW6_OLDO_DYN_PWR_DOWN_EN, DW6_OLDO_DYN_PWR_DOWN_EN,
575 "BXT_PORT_CL2CM_DW6(%d)", phy);
576
577 if (phy_info->rcomp_phy != -1) {
578 u32 grc_code = dev_priv->display.state.bxt_phy_grc;
579
580 grc_code = GRC_CODE_FAST(grc_code) |
581 GRC_CODE_SLOW(grc_code) |
582 GRC_CODE_NOM(grc_code);
583 mask = GRC_CODE_FAST_MASK | GRC_CODE_SLOW_MASK |
584 GRC_CODE_NOM_MASK;
585 ok &= _CHK(BXT_PORT_REF_DW6(phy), mask, grc_code,
586 "BXT_PORT_REF_DW6(%d)", phy);
587
588 mask = GRC_DIS | GRC_RDY_OVRD;
589 ok &= _CHK(BXT_PORT_REF_DW8(phy), mask, mask,
590 "BXT_PORT_REF_DW8(%d)", phy);
591 }
592
593 return ok;
594 #undef _CHK
595 }
596
597 u8
bxt_dpio_phy_calc_lane_lat_optim_mask(u8 lane_count)598 bxt_dpio_phy_calc_lane_lat_optim_mask(u8 lane_count)
599 {
600 switch (lane_count) {
601 case 1:
602 return 0;
603 case 2:
604 return BIT(2) | BIT(0);
605 case 4:
606 return BIT(3) | BIT(2) | BIT(0);
607 default:
608 MISSING_CASE(lane_count);
609
610 return 0;
611 }
612 }
613
bxt_dpio_phy_set_lane_optim_mask(struct intel_encoder * encoder,u8 lane_lat_optim_mask)614 void bxt_dpio_phy_set_lane_optim_mask(struct intel_encoder *encoder,
615 u8 lane_lat_optim_mask)
616 {
617 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
618 enum port port = encoder->port;
619 enum dpio_phy phy;
620 enum dpio_channel ch;
621 int lane;
622
623 bxt_port_to_phy_channel(dev_priv, port, &phy, &ch);
624
625 for (lane = 0; lane < 4; lane++) {
626 /*
627 * Note that on CHV this flag is called UPAR, but has
628 * the same function.
629 */
630 intel_de_rmw(dev_priv, BXT_PORT_TX_DW14_LN(phy, ch, lane),
631 LATENCY_OPTIM,
632 lane_lat_optim_mask & BIT(lane) ? LATENCY_OPTIM : 0);
633 }
634 }
635
636 u8
bxt_dpio_phy_get_lane_lat_optim_mask(struct intel_encoder * encoder)637 bxt_dpio_phy_get_lane_lat_optim_mask(struct intel_encoder *encoder)
638 {
639 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
640 enum port port = encoder->port;
641 enum dpio_phy phy;
642 enum dpio_channel ch;
643 int lane;
644 u8 mask;
645
646 bxt_port_to_phy_channel(dev_priv, port, &phy, &ch);
647
648 mask = 0;
649 for (lane = 0; lane < 4; lane++) {
650 u32 val = intel_de_read(dev_priv,
651 BXT_PORT_TX_DW14_LN(phy, ch, lane));
652
653 if (val & LATENCY_OPTIM)
654 mask |= BIT(lane);
655 }
656
657 return mask;
658 }
659
vlv_dig_port_to_channel(struct intel_digital_port * dig_port)660 enum dpio_channel vlv_dig_port_to_channel(struct intel_digital_port *dig_port)
661 {
662 switch (dig_port->base.port) {
663 default:
664 MISSING_CASE(dig_port->base.port);
665 fallthrough;
666 case PORT_B:
667 case PORT_D:
668 return DPIO_CH0;
669 case PORT_C:
670 return DPIO_CH1;
671 }
672 }
673
vlv_dig_port_to_phy(struct intel_digital_port * dig_port)674 enum dpio_phy vlv_dig_port_to_phy(struct intel_digital_port *dig_port)
675 {
676 switch (dig_port->base.port) {
677 default:
678 MISSING_CASE(dig_port->base.port);
679 fallthrough;
680 case PORT_B:
681 case PORT_C:
682 return DPIO_PHY0;
683 case PORT_D:
684 return DPIO_PHY1;
685 }
686 }
687
vlv_pipe_to_phy(enum pipe pipe)688 enum dpio_phy vlv_pipe_to_phy(enum pipe pipe)
689 {
690 switch (pipe) {
691 default:
692 MISSING_CASE(pipe);
693 fallthrough;
694 case PIPE_A:
695 case PIPE_B:
696 return DPIO_PHY0;
697 case PIPE_C:
698 return DPIO_PHY1;
699 }
700 }
701
vlv_pipe_to_channel(enum pipe pipe)702 enum dpio_channel vlv_pipe_to_channel(enum pipe pipe)
703 {
704 switch (pipe) {
705 default:
706 MISSING_CASE(pipe);
707 fallthrough;
708 case PIPE_A:
709 case PIPE_C:
710 return DPIO_CH0;
711 case PIPE_B:
712 return DPIO_CH1;
713 }
714 }
715
chv_set_phy_signal_level(struct intel_encoder * encoder,const struct intel_crtc_state * crtc_state,u32 deemph_reg_value,u32 margin_reg_value,bool uniq_trans_scale)716 void chv_set_phy_signal_level(struct intel_encoder *encoder,
717 const struct intel_crtc_state *crtc_state,
718 u32 deemph_reg_value, u32 margin_reg_value,
719 bool uniq_trans_scale)
720 {
721 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
722 struct intel_digital_port *dig_port = enc_to_dig_port(encoder);
723 enum dpio_channel ch = vlv_dig_port_to_channel(dig_port);
724 enum dpio_phy phy = vlv_dig_port_to_phy(dig_port);
725 u32 val;
726 int i;
727
728 vlv_dpio_get(dev_priv);
729
730 /* Clear calc init */
731 val = vlv_dpio_read(dev_priv, phy, VLV_PCS01_DW10(ch));
732 val &= ~(DPIO_PCS_SWING_CALC_TX0_TX2 | DPIO_PCS_SWING_CALC_TX1_TX3);
733 val &= ~(DPIO_PCS_TX1DEEMP_MASK | DPIO_PCS_TX2DEEMP_MASK);
734 val |= DPIO_PCS_TX1DEEMP_9P5 | DPIO_PCS_TX2DEEMP_9P5;
735 vlv_dpio_write(dev_priv, phy, VLV_PCS01_DW10(ch), val);
736
737 if (crtc_state->lane_count > 2) {
738 val = vlv_dpio_read(dev_priv, phy, VLV_PCS23_DW10(ch));
739 val &= ~(DPIO_PCS_SWING_CALC_TX0_TX2 | DPIO_PCS_SWING_CALC_TX1_TX3);
740 val &= ~(DPIO_PCS_TX1DEEMP_MASK | DPIO_PCS_TX2DEEMP_MASK);
741 val |= DPIO_PCS_TX1DEEMP_9P5 | DPIO_PCS_TX2DEEMP_9P5;
742 vlv_dpio_write(dev_priv, phy, VLV_PCS23_DW10(ch), val);
743 }
744
745 val = vlv_dpio_read(dev_priv, phy, VLV_PCS01_DW9(ch));
746 val &= ~(DPIO_PCS_TX1MARGIN_MASK | DPIO_PCS_TX2MARGIN_MASK);
747 val |= DPIO_PCS_TX1MARGIN_000 | DPIO_PCS_TX2MARGIN_000;
748 vlv_dpio_write(dev_priv, phy, VLV_PCS01_DW9(ch), val);
749
750 if (crtc_state->lane_count > 2) {
751 val = vlv_dpio_read(dev_priv, phy, VLV_PCS23_DW9(ch));
752 val &= ~(DPIO_PCS_TX1MARGIN_MASK | DPIO_PCS_TX2MARGIN_MASK);
753 val |= DPIO_PCS_TX1MARGIN_000 | DPIO_PCS_TX2MARGIN_000;
754 vlv_dpio_write(dev_priv, phy, VLV_PCS23_DW9(ch), val);
755 }
756
757 /* Program swing deemph */
758 for (i = 0; i < crtc_state->lane_count; i++) {
759 val = vlv_dpio_read(dev_priv, phy, CHV_TX_DW4(ch, i));
760 val &= ~DPIO_SWING_DEEMPH9P5_MASK;
761 val |= DPIO_SWING_DEEMPH9P5(deemph_reg_value);
762 vlv_dpio_write(dev_priv, phy, CHV_TX_DW4(ch, i), val);
763 }
764
765 /* Program swing margin */
766 for (i = 0; i < crtc_state->lane_count; i++) {
767 val = vlv_dpio_read(dev_priv, phy, CHV_TX_DW2(ch, i));
768
769 val &= ~DPIO_SWING_MARGIN000_MASK;
770 val |= DPIO_SWING_MARGIN000(margin_reg_value);
771
772 /*
773 * Supposedly this value shouldn't matter when unique transition
774 * scale is disabled, but in fact it does matter. Let's just
775 * always program the same value and hope it's OK.
776 */
777 val &= ~DPIO_UNIQ_TRANS_SCALE_MASK;
778 val |= DPIO_UNIQ_TRANS_SCALE(0x9a);
779
780 vlv_dpio_write(dev_priv, phy, CHV_TX_DW2(ch, i), val);
781 }
782
783 /*
784 * The document said it needs to set bit 27 for ch0 and bit 26
785 * for ch1. Might be a typo in the doc.
786 * For now, for this unique transition scale selection, set bit
787 * 27 for ch0 and ch1.
788 */
789 for (i = 0; i < crtc_state->lane_count; i++) {
790 val = vlv_dpio_read(dev_priv, phy, CHV_TX_DW3(ch, i));
791 if (uniq_trans_scale)
792 val |= DPIO_TX_UNIQ_TRANS_SCALE_EN;
793 else
794 val &= ~DPIO_TX_UNIQ_TRANS_SCALE_EN;
795 vlv_dpio_write(dev_priv, phy, CHV_TX_DW3(ch, i), val);
796 }
797
798 /* Start swing calculation */
799 val = vlv_dpio_read(dev_priv, phy, VLV_PCS01_DW10(ch));
800 val |= DPIO_PCS_SWING_CALC_TX0_TX2 | DPIO_PCS_SWING_CALC_TX1_TX3;
801 vlv_dpio_write(dev_priv, phy, VLV_PCS01_DW10(ch), val);
802
803 if (crtc_state->lane_count > 2) {
804 val = vlv_dpio_read(dev_priv, phy, VLV_PCS23_DW10(ch));
805 val |= DPIO_PCS_SWING_CALC_TX0_TX2 | DPIO_PCS_SWING_CALC_TX1_TX3;
806 vlv_dpio_write(dev_priv, phy, VLV_PCS23_DW10(ch), val);
807 }
808
809 vlv_dpio_put(dev_priv);
810 }
811
chv_data_lane_soft_reset(struct intel_encoder * encoder,const struct intel_crtc_state * crtc_state,bool reset)812 void chv_data_lane_soft_reset(struct intel_encoder *encoder,
813 const struct intel_crtc_state *crtc_state,
814 bool reset)
815 {
816 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
817 struct intel_digital_port *dig_port = enc_to_dig_port(encoder);
818 enum dpio_channel ch = vlv_dig_port_to_channel(dig_port);
819 enum dpio_phy phy = vlv_dig_port_to_phy(dig_port);
820 u32 val;
821
822 val = vlv_dpio_read(dev_priv, phy, VLV_PCS01_DW0(ch));
823 if (reset)
824 val &= ~(DPIO_PCS_TX_LANE2_RESET | DPIO_PCS_TX_LANE1_RESET);
825 else
826 val |= DPIO_PCS_TX_LANE2_RESET | DPIO_PCS_TX_LANE1_RESET;
827 vlv_dpio_write(dev_priv, phy, VLV_PCS01_DW0(ch), val);
828
829 if (crtc_state->lane_count > 2) {
830 val = vlv_dpio_read(dev_priv, phy, VLV_PCS23_DW0(ch));
831 if (reset)
832 val &= ~(DPIO_PCS_TX_LANE2_RESET | DPIO_PCS_TX_LANE1_RESET);
833 else
834 val |= DPIO_PCS_TX_LANE2_RESET | DPIO_PCS_TX_LANE1_RESET;
835 vlv_dpio_write(dev_priv, phy, VLV_PCS23_DW0(ch), val);
836 }
837
838 val = vlv_dpio_read(dev_priv, phy, VLV_PCS01_DW1(ch));
839 val |= CHV_PCS_REQ_SOFTRESET_EN;
840 if (reset)
841 val &= ~DPIO_PCS_CLK_SOFT_RESET;
842 else
843 val |= DPIO_PCS_CLK_SOFT_RESET;
844 vlv_dpio_write(dev_priv, phy, VLV_PCS01_DW1(ch), val);
845
846 if (crtc_state->lane_count > 2) {
847 val = vlv_dpio_read(dev_priv, phy, VLV_PCS23_DW1(ch));
848 val |= CHV_PCS_REQ_SOFTRESET_EN;
849 if (reset)
850 val &= ~DPIO_PCS_CLK_SOFT_RESET;
851 else
852 val |= DPIO_PCS_CLK_SOFT_RESET;
853 vlv_dpio_write(dev_priv, phy, VLV_PCS23_DW1(ch), val);
854 }
855 }
856
chv_phy_pre_pll_enable(struct intel_encoder * encoder,const struct intel_crtc_state * crtc_state)857 void chv_phy_pre_pll_enable(struct intel_encoder *encoder,
858 const struct intel_crtc_state *crtc_state)
859 {
860 struct intel_digital_port *dig_port = enc_to_dig_port(encoder);
861 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
862 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
863 enum dpio_channel ch = vlv_dig_port_to_channel(dig_port);
864 enum dpio_phy phy = vlv_dig_port_to_phy(dig_port);
865 enum pipe pipe = crtc->pipe;
866 unsigned int lane_mask =
867 intel_dp_unused_lane_mask(crtc_state->lane_count);
868 u32 val;
869
870 /*
871 * Must trick the second common lane into life.
872 * Otherwise we can't even access the PLL.
873 */
874 if (ch == DPIO_CH0 && pipe == PIPE_B)
875 dig_port->release_cl2_override =
876 !chv_phy_powergate_ch(dev_priv, DPIO_PHY0, DPIO_CH1, true);
877
878 chv_phy_powergate_lanes(encoder, true, lane_mask);
879
880 vlv_dpio_get(dev_priv);
881
882 /* Assert data lane reset */
883 chv_data_lane_soft_reset(encoder, crtc_state, true);
884
885 /* program left/right clock distribution */
886 if (pipe != PIPE_B) {
887 val = vlv_dpio_read(dev_priv, phy, CHV_CMN_DW5_CH0);
888 val &= ~(CHV_BUFLEFTENA1_MASK | CHV_BUFRIGHTENA1_MASK);
889 if (ch == DPIO_CH0)
890 val |= CHV_BUFLEFTENA1_FORCE;
891 if (ch == DPIO_CH1)
892 val |= CHV_BUFRIGHTENA1_FORCE;
893 vlv_dpio_write(dev_priv, phy, CHV_CMN_DW5_CH0, val);
894 } else {
895 val = vlv_dpio_read(dev_priv, phy, CHV_CMN_DW1_CH1);
896 val &= ~(CHV_BUFLEFTENA2_MASK | CHV_BUFRIGHTENA2_MASK);
897 if (ch == DPIO_CH0)
898 val |= CHV_BUFLEFTENA2_FORCE;
899 if (ch == DPIO_CH1)
900 val |= CHV_BUFRIGHTENA2_FORCE;
901 vlv_dpio_write(dev_priv, phy, CHV_CMN_DW1_CH1, val);
902 }
903
904 /* program clock channel usage */
905 val = vlv_dpio_read(dev_priv, phy, VLV_PCS01_DW8(ch));
906 val |= DPIO_PCS_USEDCLKCHANNEL_OVRRIDE;
907 if (pipe == PIPE_B)
908 val |= DPIO_PCS_USEDCLKCHANNEL;
909 else
910 val &= ~DPIO_PCS_USEDCLKCHANNEL;
911 vlv_dpio_write(dev_priv, phy, VLV_PCS01_DW8(ch), val);
912
913 if (crtc_state->lane_count > 2) {
914 val = vlv_dpio_read(dev_priv, phy, VLV_PCS23_DW8(ch));
915 val |= DPIO_PCS_USEDCLKCHANNEL_OVRRIDE;
916 if (pipe == PIPE_B)
917 val |= DPIO_PCS_USEDCLKCHANNEL;
918 else
919 val &= ~DPIO_PCS_USEDCLKCHANNEL;
920 vlv_dpio_write(dev_priv, phy, VLV_PCS23_DW8(ch), val);
921 }
922
923 /*
924 * This a a bit weird since generally CL
925 * matches the pipe, but here we need to
926 * pick the CL based on the port.
927 */
928 val = vlv_dpio_read(dev_priv, phy, CHV_CMN_DW19(ch));
929 if (pipe == PIPE_B)
930 val |= CHV_CMN_USEDCLKCHANNEL;
931 else
932 val &= ~CHV_CMN_USEDCLKCHANNEL;
933 vlv_dpio_write(dev_priv, phy, CHV_CMN_DW19(ch), val);
934
935 vlv_dpio_put(dev_priv);
936 }
937
chv_phy_pre_encoder_enable(struct intel_encoder * encoder,const struct intel_crtc_state * crtc_state)938 void chv_phy_pre_encoder_enable(struct intel_encoder *encoder,
939 const struct intel_crtc_state *crtc_state)
940 {
941 struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
942 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
943 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
944 enum dpio_channel ch = vlv_dig_port_to_channel(dig_port);
945 enum dpio_phy phy = vlv_dig_port_to_phy(dig_port);
946 int data, i, stagger;
947 u32 val;
948
949 vlv_dpio_get(dev_priv);
950
951 /* allow hardware to manage TX FIFO reset source */
952 val = vlv_dpio_read(dev_priv, phy, VLV_PCS01_DW11(ch));
953 val &= ~DPIO_LANEDESKEW_STRAP_OVRD;
954 vlv_dpio_write(dev_priv, phy, VLV_PCS01_DW11(ch), val);
955
956 if (crtc_state->lane_count > 2) {
957 val = vlv_dpio_read(dev_priv, phy, VLV_PCS23_DW11(ch));
958 val &= ~DPIO_LANEDESKEW_STRAP_OVRD;
959 vlv_dpio_write(dev_priv, phy, VLV_PCS23_DW11(ch), val);
960 }
961
962 /* Program Tx lane latency optimal setting*/
963 for (i = 0; i < crtc_state->lane_count; i++) {
964 /* Set the upar bit */
965 if (crtc_state->lane_count == 1)
966 data = 0;
967 else
968 data = (i == 1) ? 0 : DPIO_UPAR;
969 vlv_dpio_write(dev_priv, phy, CHV_TX_DW14(ch, i), data);
970 }
971
972 /* Data lane stagger programming */
973 if (crtc_state->port_clock > 270000)
974 stagger = 0x18;
975 else if (crtc_state->port_clock > 135000)
976 stagger = 0xd;
977 else if (crtc_state->port_clock > 67500)
978 stagger = 0x7;
979 else if (crtc_state->port_clock > 33750)
980 stagger = 0x4;
981 else
982 stagger = 0x2;
983
984 val = vlv_dpio_read(dev_priv, phy, VLV_PCS01_DW11(ch));
985 val |= DPIO_TX2_STAGGER_MASK(0x1f);
986 vlv_dpio_write(dev_priv, phy, VLV_PCS01_DW11(ch), val);
987
988 if (crtc_state->lane_count > 2) {
989 val = vlv_dpio_read(dev_priv, phy, VLV_PCS23_DW11(ch));
990 val |= DPIO_TX2_STAGGER_MASK(0x1f);
991 vlv_dpio_write(dev_priv, phy, VLV_PCS23_DW11(ch), val);
992 }
993
994 vlv_dpio_write(dev_priv, phy, VLV_PCS01_DW12(ch),
995 DPIO_LANESTAGGER_STRAP(stagger) |
996 DPIO_LANESTAGGER_STRAP_OVRD |
997 DPIO_TX1_STAGGER_MASK(0x1f) |
998 DPIO_TX1_STAGGER_MULT(6) |
999 DPIO_TX2_STAGGER_MULT(0));
1000
1001 if (crtc_state->lane_count > 2) {
1002 vlv_dpio_write(dev_priv, phy, VLV_PCS23_DW12(ch),
1003 DPIO_LANESTAGGER_STRAP(stagger) |
1004 DPIO_LANESTAGGER_STRAP_OVRD |
1005 DPIO_TX1_STAGGER_MASK(0x1f) |
1006 DPIO_TX1_STAGGER_MULT(7) |
1007 DPIO_TX2_STAGGER_MULT(5));
1008 }
1009
1010 /* Deassert data lane reset */
1011 chv_data_lane_soft_reset(encoder, crtc_state, false);
1012
1013 vlv_dpio_put(dev_priv);
1014 }
1015
chv_phy_release_cl2_override(struct intel_encoder * encoder)1016 void chv_phy_release_cl2_override(struct intel_encoder *encoder)
1017 {
1018 struct intel_digital_port *dig_port = enc_to_dig_port(encoder);
1019 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
1020
1021 if (dig_port->release_cl2_override) {
1022 chv_phy_powergate_ch(dev_priv, DPIO_PHY0, DPIO_CH1, false);
1023 dig_port->release_cl2_override = false;
1024 }
1025 }
1026
chv_phy_post_pll_disable(struct intel_encoder * encoder,const struct intel_crtc_state * old_crtc_state)1027 void chv_phy_post_pll_disable(struct intel_encoder *encoder,
1028 const struct intel_crtc_state *old_crtc_state)
1029 {
1030 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
1031 enum dpio_phy phy = vlv_dig_port_to_phy(enc_to_dig_port(encoder));
1032 enum pipe pipe = to_intel_crtc(old_crtc_state->uapi.crtc)->pipe;
1033 u32 val;
1034
1035 vlv_dpio_get(dev_priv);
1036
1037 /* disable left/right clock distribution */
1038 if (pipe != PIPE_B) {
1039 val = vlv_dpio_read(dev_priv, phy, CHV_CMN_DW5_CH0);
1040 val &= ~(CHV_BUFLEFTENA1_MASK | CHV_BUFRIGHTENA1_MASK);
1041 vlv_dpio_write(dev_priv, phy, CHV_CMN_DW5_CH0, val);
1042 } else {
1043 val = vlv_dpio_read(dev_priv, phy, CHV_CMN_DW1_CH1);
1044 val &= ~(CHV_BUFLEFTENA2_MASK | CHV_BUFRIGHTENA2_MASK);
1045 vlv_dpio_write(dev_priv, phy, CHV_CMN_DW1_CH1, val);
1046 }
1047
1048 vlv_dpio_put(dev_priv);
1049
1050 /*
1051 * Leave the power down bit cleared for at least one
1052 * lane so that chv_powergate_phy_ch() will power
1053 * on something when the channel is otherwise unused.
1054 * When the port is off and the override is removed
1055 * the lanes power down anyway, so otherwise it doesn't
1056 * really matter what the state of power down bits is
1057 * after this.
1058 */
1059 chv_phy_powergate_lanes(encoder, false, 0x0);
1060 }
1061
vlv_set_phy_signal_level(struct intel_encoder * encoder,const struct intel_crtc_state * crtc_state,u32 demph_reg_value,u32 preemph_reg_value,u32 uniqtranscale_reg_value,u32 tx3_demph)1062 void vlv_set_phy_signal_level(struct intel_encoder *encoder,
1063 const struct intel_crtc_state *crtc_state,
1064 u32 demph_reg_value, u32 preemph_reg_value,
1065 u32 uniqtranscale_reg_value, u32 tx3_demph)
1066 {
1067 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
1068 struct intel_digital_port *dig_port = enc_to_dig_port(encoder);
1069 enum dpio_channel ch = vlv_dig_port_to_channel(dig_port);
1070 enum dpio_phy phy = vlv_dig_port_to_phy(dig_port);
1071
1072 vlv_dpio_get(dev_priv);
1073
1074 vlv_dpio_write(dev_priv, phy, VLV_TX_DW5_GRP(ch), 0x00000000);
1075 vlv_dpio_write(dev_priv, phy, VLV_TX_DW4_GRP(ch), demph_reg_value);
1076 vlv_dpio_write(dev_priv, phy, VLV_TX_DW2_GRP(ch),
1077 uniqtranscale_reg_value);
1078 vlv_dpio_write(dev_priv, phy, VLV_TX_DW3_GRP(ch), 0x0C782040);
1079
1080 if (tx3_demph)
1081 vlv_dpio_write(dev_priv, phy, VLV_TX_DW4(ch, 3), tx3_demph);
1082
1083 vlv_dpio_write(dev_priv, phy, VLV_PCS_DW11_GRP(ch), 0x00030000);
1084 vlv_dpio_write(dev_priv, phy, VLV_PCS_DW9_GRP(ch), preemph_reg_value);
1085 vlv_dpio_write(dev_priv, phy, VLV_TX_DW5_GRP(ch), DPIO_TX_OCALINIT_EN);
1086
1087 vlv_dpio_put(dev_priv);
1088 }
1089
vlv_phy_pre_pll_enable(struct intel_encoder * encoder,const struct intel_crtc_state * crtc_state)1090 void vlv_phy_pre_pll_enable(struct intel_encoder *encoder,
1091 const struct intel_crtc_state *crtc_state)
1092 {
1093 struct intel_digital_port *dig_port = enc_to_dig_port(encoder);
1094 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
1095 enum dpio_channel ch = vlv_dig_port_to_channel(dig_port);
1096 enum dpio_phy phy = vlv_dig_port_to_phy(dig_port);
1097
1098 /* Program Tx lane resets to default */
1099 vlv_dpio_get(dev_priv);
1100
1101 vlv_dpio_write(dev_priv, phy, VLV_PCS_DW0_GRP(ch),
1102 DPIO_PCS_TX_LANE2_RESET |
1103 DPIO_PCS_TX_LANE1_RESET);
1104 vlv_dpio_write(dev_priv, phy, VLV_PCS_DW1_GRP(ch),
1105 DPIO_PCS_CLK_CRI_RXEB_EIOS_EN |
1106 DPIO_PCS_CLK_CRI_RXDIGFILTSG_EN |
1107 DPIO_PCS_CLK_DATAWIDTH_8_10 |
1108 DPIO_PCS_CLK_SOFT_RESET);
1109
1110 /* Fix up inter-pair skew failure */
1111 vlv_dpio_write(dev_priv, phy, VLV_PCS_DW12_GRP(ch), 0x00750f00);
1112 vlv_dpio_write(dev_priv, phy, VLV_TX_DW11_GRP(ch), 0x00001500);
1113 vlv_dpio_write(dev_priv, phy, VLV_TX_DW14_GRP(ch), 0x40400000);
1114
1115 vlv_dpio_put(dev_priv);
1116 }
1117
vlv_phy_pre_encoder_enable(struct intel_encoder * encoder,const struct intel_crtc_state * crtc_state)1118 void vlv_phy_pre_encoder_enable(struct intel_encoder *encoder,
1119 const struct intel_crtc_state *crtc_state)
1120 {
1121 struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
1122 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
1123 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
1124 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
1125 enum dpio_channel ch = vlv_dig_port_to_channel(dig_port);
1126 enum dpio_phy phy = vlv_dig_port_to_phy(dig_port);
1127 enum pipe pipe = crtc->pipe;
1128 u32 val;
1129
1130 vlv_dpio_get(dev_priv);
1131
1132 /* Enable clock channels for this port */
1133 val = DPIO_PCS_USEDCLKCHANNEL_OVRRIDE;
1134 if (pipe == PIPE_B)
1135 val |= DPIO_PCS_USEDCLKCHANNEL;
1136 val |= 0xc4;
1137 vlv_dpio_write(dev_priv, phy, VLV_PCS_DW8_GRP(ch), val);
1138
1139 /* Program lane clock */
1140 vlv_dpio_write(dev_priv, phy, VLV_PCS_DW14_GRP(ch), 0x00760018);
1141 vlv_dpio_write(dev_priv, phy, VLV_PCS_DW23_GRP(ch), 0x00400888);
1142
1143 vlv_dpio_put(dev_priv);
1144 }
1145
vlv_phy_reset_lanes(struct intel_encoder * encoder,const struct intel_crtc_state * old_crtc_state)1146 void vlv_phy_reset_lanes(struct intel_encoder *encoder,
1147 const struct intel_crtc_state *old_crtc_state)
1148 {
1149 struct intel_digital_port *dig_port = enc_to_dig_port(encoder);
1150 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
1151 enum dpio_channel ch = vlv_dig_port_to_channel(dig_port);
1152 enum dpio_phy phy = vlv_dig_port_to_phy(dig_port);
1153
1154 vlv_dpio_get(dev_priv);
1155 vlv_dpio_write(dev_priv, phy, VLV_PCS_DW0_GRP(ch), 0x00000000);
1156 vlv_dpio_write(dev_priv, phy, VLV_PCS_DW1_GRP(ch), 0x00e00060);
1157 vlv_dpio_put(dev_priv);
1158 }
1159