1 // SPDX-License-Identifier: MIT
2 /*
3 * Copyright © 2014 Intel Corporation
4 */
5
6 #include <linux/circ_buf.h>
7
8 #include "gem/i915_gem_context.h"
9 #include "gem/i915_gem_lmem.h"
10 #include "gt/gen8_engine_cs.h"
11 #include "gt/intel_breadcrumbs.h"
12 #include "gt/intel_context.h"
13 #include "gt/intel_engine_heartbeat.h"
14 #include "gt/intel_engine_pm.h"
15 #include "gt/intel_engine_regs.h"
16 #include "gt/intel_gpu_commands.h"
17 #include "gt/intel_gt.h"
18 #include "gt/intel_gt_clock_utils.h"
19 #include "gt/intel_gt_irq.h"
20 #include "gt/intel_gt_pm.h"
21 #include "gt/intel_gt_regs.h"
22 #include "gt/intel_gt_requests.h"
23 #include "gt/intel_lrc.h"
24 #include "gt/intel_lrc_reg.h"
25 #include "gt/intel_mocs.h"
26 #include "gt/intel_ring.h"
27
28 #include "intel_guc_ads.h"
29 #include "intel_guc_capture.h"
30 #include "intel_guc_print.h"
31 #include "intel_guc_submission.h"
32
33 #include "i915_drv.h"
34 #include "i915_reg.h"
35 #include "i915_irq.h"
36 #include "i915_trace.h"
37
38 /**
39 * DOC: GuC-based command submission
40 *
41 * The Scratch registers:
42 * There are 16 MMIO-based registers start from 0xC180. The kernel driver writes
43 * a value to the action register (SOFT_SCRATCH_0) along with any data. It then
44 * triggers an interrupt on the GuC via another register write (0xC4C8).
45 * Firmware writes a success/fail code back to the action register after
46 * processes the request. The kernel driver polls waiting for this update and
47 * then proceeds.
48 *
49 * Command Transport buffers (CTBs):
50 * Covered in detail in other sections but CTBs (Host to GuC - H2G, GuC to Host
51 * - G2H) are a message interface between the i915 and GuC.
52 *
53 * Context registration:
54 * Before a context can be submitted it must be registered with the GuC via a
55 * H2G. A unique guc_id is associated with each context. The context is either
56 * registered at request creation time (normal operation) or at submission time
57 * (abnormal operation, e.g. after a reset).
58 *
59 * Context submission:
60 * The i915 updates the LRC tail value in memory. The i915 must enable the
61 * scheduling of the context within the GuC for the GuC to actually consider it.
62 * Therefore, the first time a disabled context is submitted we use a schedule
63 * enable H2G, while follow up submissions are done via the context submit H2G,
64 * which informs the GuC that a previously enabled context has new work
65 * available.
66 *
67 * Context unpin:
68 * To unpin a context a H2G is used to disable scheduling. When the
69 * corresponding G2H returns indicating the scheduling disable operation has
70 * completed it is safe to unpin the context. While a disable is in flight it
71 * isn't safe to resubmit the context so a fence is used to stall all future
72 * requests of that context until the G2H is returned. Because this interaction
73 * with the GuC takes a non-zero amount of time we delay the disabling of
74 * scheduling after the pin count goes to zero by a configurable period of time
75 * (see SCHED_DISABLE_DELAY_MS). The thought is this gives the user a window of
76 * time to resubmit something on the context before doing this costly operation.
77 * This delay is only done if the context isn't closed and the guc_id usage is
78 * less than a threshold (see NUM_SCHED_DISABLE_GUC_IDS_THRESHOLD).
79 *
80 * Context deregistration:
81 * Before a context can be destroyed or if we steal its guc_id we must
82 * deregister the context with the GuC via H2G. If stealing the guc_id it isn't
83 * safe to submit anything to this guc_id until the deregister completes so a
84 * fence is used to stall all requests associated with this guc_id until the
85 * corresponding G2H returns indicating the guc_id has been deregistered.
86 *
87 * submission_state.guc_ids:
88 * Unique number associated with private GuC context data passed in during
89 * context registration / submission / deregistration. 64k available. Simple ida
90 * is used for allocation.
91 *
92 * Stealing guc_ids:
93 * If no guc_ids are available they can be stolen from another context at
94 * request creation time if that context is unpinned. If a guc_id can't be found
95 * we punt this problem to the user as we believe this is near impossible to hit
96 * during normal use cases.
97 *
98 * Locking:
99 * In the GuC submission code we have 3 basic spin locks which protect
100 * everything. Details about each below.
101 *
102 * sched_engine->lock
103 * This is the submission lock for all contexts that share an i915 schedule
104 * engine (sched_engine), thus only one of the contexts which share a
105 * sched_engine can be submitting at a time. Currently only one sched_engine is
106 * used for all of GuC submission but that could change in the future.
107 *
108 * guc->submission_state.lock
109 * Global lock for GuC submission state. Protects guc_ids and destroyed contexts
110 * list.
111 *
112 * ce->guc_state.lock
113 * Protects everything under ce->guc_state. Ensures that a context is in the
114 * correct state before issuing a H2G. e.g. We don't issue a schedule disable
115 * on a disabled context (bad idea), we don't issue a schedule enable when a
116 * schedule disable is in flight, etc... Also protects list of inflight requests
117 * on the context and the priority management state. Lock is individual to each
118 * context.
119 *
120 * Lock ordering rules:
121 * sched_engine->lock -> ce->guc_state.lock
122 * guc->submission_state.lock -> ce->guc_state.lock
123 *
124 * Reset races:
125 * When a full GT reset is triggered it is assumed that some G2H responses to
126 * H2Gs can be lost as the GuC is also reset. Losing these G2H can prove to be
127 * fatal as we do certain operations upon receiving a G2H (e.g. destroy
128 * contexts, release guc_ids, etc...). When this occurs we can scrub the
129 * context state and cleanup appropriately, however this is quite racey.
130 * To avoid races, the reset code must disable submission before scrubbing for
131 * the missing G2H, while the submission code must check for submission being
132 * disabled and skip sending H2Gs and updating context states when it is. Both
133 * sides must also make sure to hold the relevant locks.
134 */
135
136 /* GuC Virtual Engine */
137 struct guc_virtual_engine {
138 struct intel_engine_cs base;
139 struct intel_context context;
140 };
141
142 static struct intel_context *
143 guc_create_virtual(struct intel_engine_cs **siblings, unsigned int count,
144 unsigned long flags);
145
146 static struct intel_context *
147 guc_create_parallel(struct intel_engine_cs **engines,
148 unsigned int num_siblings,
149 unsigned int width);
150
151 #define GUC_REQUEST_SIZE 64 /* bytes */
152
153 /*
154 * We reserve 1/16 of the guc_ids for multi-lrc as these need to be contiguous
155 * per the GuC submission interface. A different allocation algorithm is used
156 * (bitmap vs. ida) between multi-lrc and single-lrc hence the reason to
157 * partition the guc_id space. We believe the number of multi-lrc contexts in
158 * use should be low and 1/16 should be sufficient. Minimum of 32 guc_ids for
159 * multi-lrc.
160 */
161 #define NUMBER_MULTI_LRC_GUC_ID(guc) \
162 ((guc)->submission_state.num_guc_ids / 16)
163
164 /*
165 * Below is a set of functions which control the GuC scheduling state which
166 * require a lock.
167 */
168 #define SCHED_STATE_WAIT_FOR_DEREGISTER_TO_REGISTER BIT(0)
169 #define SCHED_STATE_DESTROYED BIT(1)
170 #define SCHED_STATE_PENDING_DISABLE BIT(2)
171 #define SCHED_STATE_BANNED BIT(3)
172 #define SCHED_STATE_ENABLED BIT(4)
173 #define SCHED_STATE_PENDING_ENABLE BIT(5)
174 #define SCHED_STATE_REGISTERED BIT(6)
175 #define SCHED_STATE_POLICY_REQUIRED BIT(7)
176 #define SCHED_STATE_CLOSED BIT(8)
177 #define SCHED_STATE_BLOCKED_SHIFT 9
178 #define SCHED_STATE_BLOCKED BIT(SCHED_STATE_BLOCKED_SHIFT)
179 #define SCHED_STATE_BLOCKED_MASK (0xfff << SCHED_STATE_BLOCKED_SHIFT)
180
init_sched_state(struct intel_context * ce)181 static inline void init_sched_state(struct intel_context *ce)
182 {
183 lockdep_assert_held(&ce->guc_state.lock);
184 ce->guc_state.sched_state &= SCHED_STATE_BLOCKED_MASK;
185 }
186
187 /*
188 * Kernel contexts can have SCHED_STATE_REGISTERED after suspend.
189 * A context close can race with the submission path, so SCHED_STATE_CLOSED
190 * can be set immediately before we try to register.
191 */
192 #define SCHED_STATE_VALID_INIT \
193 (SCHED_STATE_BLOCKED_MASK | \
194 SCHED_STATE_CLOSED | \
195 SCHED_STATE_REGISTERED)
196
197 __maybe_unused
sched_state_is_init(struct intel_context * ce)198 static bool sched_state_is_init(struct intel_context *ce)
199 {
200 return !(ce->guc_state.sched_state & ~SCHED_STATE_VALID_INIT);
201 }
202
203 static inline bool
context_wait_for_deregister_to_register(struct intel_context * ce)204 context_wait_for_deregister_to_register(struct intel_context *ce)
205 {
206 return ce->guc_state.sched_state &
207 SCHED_STATE_WAIT_FOR_DEREGISTER_TO_REGISTER;
208 }
209
210 static inline void
set_context_wait_for_deregister_to_register(struct intel_context * ce)211 set_context_wait_for_deregister_to_register(struct intel_context *ce)
212 {
213 lockdep_assert_held(&ce->guc_state.lock);
214 ce->guc_state.sched_state |=
215 SCHED_STATE_WAIT_FOR_DEREGISTER_TO_REGISTER;
216 }
217
218 static inline void
clr_context_wait_for_deregister_to_register(struct intel_context * ce)219 clr_context_wait_for_deregister_to_register(struct intel_context *ce)
220 {
221 lockdep_assert_held(&ce->guc_state.lock);
222 ce->guc_state.sched_state &=
223 ~SCHED_STATE_WAIT_FOR_DEREGISTER_TO_REGISTER;
224 }
225
226 static inline bool
context_destroyed(struct intel_context * ce)227 context_destroyed(struct intel_context *ce)
228 {
229 return ce->guc_state.sched_state & SCHED_STATE_DESTROYED;
230 }
231
232 static inline void
set_context_destroyed(struct intel_context * ce)233 set_context_destroyed(struct intel_context *ce)
234 {
235 lockdep_assert_held(&ce->guc_state.lock);
236 ce->guc_state.sched_state |= SCHED_STATE_DESTROYED;
237 }
238
239 static inline void
clr_context_destroyed(struct intel_context * ce)240 clr_context_destroyed(struct intel_context *ce)
241 {
242 lockdep_assert_held(&ce->guc_state.lock);
243 ce->guc_state.sched_state &= ~SCHED_STATE_DESTROYED;
244 }
245
context_pending_disable(struct intel_context * ce)246 static inline bool context_pending_disable(struct intel_context *ce)
247 {
248 return ce->guc_state.sched_state & SCHED_STATE_PENDING_DISABLE;
249 }
250
set_context_pending_disable(struct intel_context * ce)251 static inline void set_context_pending_disable(struct intel_context *ce)
252 {
253 lockdep_assert_held(&ce->guc_state.lock);
254 ce->guc_state.sched_state |= SCHED_STATE_PENDING_DISABLE;
255 }
256
clr_context_pending_disable(struct intel_context * ce)257 static inline void clr_context_pending_disable(struct intel_context *ce)
258 {
259 lockdep_assert_held(&ce->guc_state.lock);
260 ce->guc_state.sched_state &= ~SCHED_STATE_PENDING_DISABLE;
261 }
262
context_banned(struct intel_context * ce)263 static inline bool context_banned(struct intel_context *ce)
264 {
265 return ce->guc_state.sched_state & SCHED_STATE_BANNED;
266 }
267
set_context_banned(struct intel_context * ce)268 static inline void set_context_banned(struct intel_context *ce)
269 {
270 lockdep_assert_held(&ce->guc_state.lock);
271 ce->guc_state.sched_state |= SCHED_STATE_BANNED;
272 }
273
clr_context_banned(struct intel_context * ce)274 static inline void clr_context_banned(struct intel_context *ce)
275 {
276 lockdep_assert_held(&ce->guc_state.lock);
277 ce->guc_state.sched_state &= ~SCHED_STATE_BANNED;
278 }
279
context_enabled(struct intel_context * ce)280 static inline bool context_enabled(struct intel_context *ce)
281 {
282 return ce->guc_state.sched_state & SCHED_STATE_ENABLED;
283 }
284
set_context_enabled(struct intel_context * ce)285 static inline void set_context_enabled(struct intel_context *ce)
286 {
287 lockdep_assert_held(&ce->guc_state.lock);
288 ce->guc_state.sched_state |= SCHED_STATE_ENABLED;
289 }
290
clr_context_enabled(struct intel_context * ce)291 static inline void clr_context_enabled(struct intel_context *ce)
292 {
293 lockdep_assert_held(&ce->guc_state.lock);
294 ce->guc_state.sched_state &= ~SCHED_STATE_ENABLED;
295 }
296
context_pending_enable(struct intel_context * ce)297 static inline bool context_pending_enable(struct intel_context *ce)
298 {
299 return ce->guc_state.sched_state & SCHED_STATE_PENDING_ENABLE;
300 }
301
set_context_pending_enable(struct intel_context * ce)302 static inline void set_context_pending_enable(struct intel_context *ce)
303 {
304 lockdep_assert_held(&ce->guc_state.lock);
305 ce->guc_state.sched_state |= SCHED_STATE_PENDING_ENABLE;
306 }
307
clr_context_pending_enable(struct intel_context * ce)308 static inline void clr_context_pending_enable(struct intel_context *ce)
309 {
310 lockdep_assert_held(&ce->guc_state.lock);
311 ce->guc_state.sched_state &= ~SCHED_STATE_PENDING_ENABLE;
312 }
313
context_registered(struct intel_context * ce)314 static inline bool context_registered(struct intel_context *ce)
315 {
316 return ce->guc_state.sched_state & SCHED_STATE_REGISTERED;
317 }
318
set_context_registered(struct intel_context * ce)319 static inline void set_context_registered(struct intel_context *ce)
320 {
321 lockdep_assert_held(&ce->guc_state.lock);
322 ce->guc_state.sched_state |= SCHED_STATE_REGISTERED;
323 }
324
clr_context_registered(struct intel_context * ce)325 static inline void clr_context_registered(struct intel_context *ce)
326 {
327 lockdep_assert_held(&ce->guc_state.lock);
328 ce->guc_state.sched_state &= ~SCHED_STATE_REGISTERED;
329 }
330
context_policy_required(struct intel_context * ce)331 static inline bool context_policy_required(struct intel_context *ce)
332 {
333 return ce->guc_state.sched_state & SCHED_STATE_POLICY_REQUIRED;
334 }
335
set_context_policy_required(struct intel_context * ce)336 static inline void set_context_policy_required(struct intel_context *ce)
337 {
338 lockdep_assert_held(&ce->guc_state.lock);
339 ce->guc_state.sched_state |= SCHED_STATE_POLICY_REQUIRED;
340 }
341
clr_context_policy_required(struct intel_context * ce)342 static inline void clr_context_policy_required(struct intel_context *ce)
343 {
344 lockdep_assert_held(&ce->guc_state.lock);
345 ce->guc_state.sched_state &= ~SCHED_STATE_POLICY_REQUIRED;
346 }
347
context_close_done(struct intel_context * ce)348 static inline bool context_close_done(struct intel_context *ce)
349 {
350 return ce->guc_state.sched_state & SCHED_STATE_CLOSED;
351 }
352
set_context_close_done(struct intel_context * ce)353 static inline void set_context_close_done(struct intel_context *ce)
354 {
355 lockdep_assert_held(&ce->guc_state.lock);
356 ce->guc_state.sched_state |= SCHED_STATE_CLOSED;
357 }
358
context_blocked(struct intel_context * ce)359 static inline u32 context_blocked(struct intel_context *ce)
360 {
361 return (ce->guc_state.sched_state & SCHED_STATE_BLOCKED_MASK) >>
362 SCHED_STATE_BLOCKED_SHIFT;
363 }
364
incr_context_blocked(struct intel_context * ce)365 static inline void incr_context_blocked(struct intel_context *ce)
366 {
367 lockdep_assert_held(&ce->guc_state.lock);
368
369 ce->guc_state.sched_state += SCHED_STATE_BLOCKED;
370
371 GEM_BUG_ON(!context_blocked(ce)); /* Overflow check */
372 }
373
decr_context_blocked(struct intel_context * ce)374 static inline void decr_context_blocked(struct intel_context *ce)
375 {
376 lockdep_assert_held(&ce->guc_state.lock);
377
378 GEM_BUG_ON(!context_blocked(ce)); /* Underflow check */
379
380 ce->guc_state.sched_state -= SCHED_STATE_BLOCKED;
381 }
382
383 static struct intel_context *
request_to_scheduling_context(struct i915_request * rq)384 request_to_scheduling_context(struct i915_request *rq)
385 {
386 return intel_context_to_parent(rq->context);
387 }
388
context_guc_id_invalid(struct intel_context * ce)389 static inline bool context_guc_id_invalid(struct intel_context *ce)
390 {
391 return ce->guc_id.id == GUC_INVALID_CONTEXT_ID;
392 }
393
set_context_guc_id_invalid(struct intel_context * ce)394 static inline void set_context_guc_id_invalid(struct intel_context *ce)
395 {
396 ce->guc_id.id = GUC_INVALID_CONTEXT_ID;
397 }
398
ce_to_guc(struct intel_context * ce)399 static inline struct intel_guc *ce_to_guc(struct intel_context *ce)
400 {
401 return gt_to_guc(ce->engine->gt);
402 }
403
to_priolist(struct rb_node * rb)404 static inline struct i915_priolist *to_priolist(struct rb_node *rb)
405 {
406 return rb_entry(rb, struct i915_priolist, node);
407 }
408
409 /*
410 * When using multi-lrc submission a scratch memory area is reserved in the
411 * parent's context state for the process descriptor, work queue, and handshake
412 * between the parent + children contexts to insert safe preemption points
413 * between each of the BBs. Currently the scratch area is sized to a page.
414 *
415 * The layout of this scratch area is below:
416 * 0 guc_process_desc
417 * + sizeof(struct guc_process_desc) child go
418 * + CACHELINE_BYTES child join[0]
419 * ...
420 * + CACHELINE_BYTES child join[n - 1]
421 * ... unused
422 * PARENT_SCRATCH_SIZE / 2 work queue start
423 * ... work queue
424 * PARENT_SCRATCH_SIZE - 1 work queue end
425 */
426 #define WQ_SIZE (PARENT_SCRATCH_SIZE / 2)
427 #define WQ_OFFSET (PARENT_SCRATCH_SIZE - WQ_SIZE)
428
429 struct sync_semaphore {
430 u32 semaphore;
431 u8 unused[CACHELINE_BYTES - sizeof(u32)];
432 };
433
434 struct parent_scratch {
435 union guc_descs {
436 struct guc_sched_wq_desc wq_desc;
437 struct guc_process_desc_v69 pdesc;
438 } descs;
439
440 struct sync_semaphore go;
441 struct sync_semaphore join[MAX_ENGINE_INSTANCE + 1];
442
443 u8 unused[WQ_OFFSET - sizeof(union guc_descs) -
444 sizeof(struct sync_semaphore) * (MAX_ENGINE_INSTANCE + 2)];
445
446 u32 wq[WQ_SIZE / sizeof(u32)];
447 };
448
__get_parent_scratch_offset(struct intel_context * ce)449 static u32 __get_parent_scratch_offset(struct intel_context *ce)
450 {
451 GEM_BUG_ON(!ce->parallel.guc.parent_page);
452
453 return ce->parallel.guc.parent_page * PAGE_SIZE;
454 }
455
__get_wq_offset(struct intel_context * ce)456 static u32 __get_wq_offset(struct intel_context *ce)
457 {
458 BUILD_BUG_ON(offsetof(struct parent_scratch, wq) != WQ_OFFSET);
459
460 return __get_parent_scratch_offset(ce) + WQ_OFFSET;
461 }
462
463 static struct parent_scratch *
__get_parent_scratch(struct intel_context * ce)464 __get_parent_scratch(struct intel_context *ce)
465 {
466 BUILD_BUG_ON(sizeof(struct parent_scratch) != PARENT_SCRATCH_SIZE);
467 BUILD_BUG_ON(sizeof(struct sync_semaphore) != CACHELINE_BYTES);
468
469 /*
470 * Need to subtract LRC_STATE_OFFSET here as the
471 * parallel.guc.parent_page is the offset into ce->state while
472 * ce->lrc_reg_reg is ce->state + LRC_STATE_OFFSET.
473 */
474 return (struct parent_scratch *)
475 (ce->lrc_reg_state +
476 ((__get_parent_scratch_offset(ce) -
477 LRC_STATE_OFFSET) / sizeof(u32)));
478 }
479
480 static struct guc_process_desc_v69 *
__get_process_desc_v69(struct intel_context * ce)481 __get_process_desc_v69(struct intel_context *ce)
482 {
483 struct parent_scratch *ps = __get_parent_scratch(ce);
484
485 return &ps->descs.pdesc;
486 }
487
488 static struct guc_sched_wq_desc *
__get_wq_desc_v70(struct intel_context * ce)489 __get_wq_desc_v70(struct intel_context *ce)
490 {
491 struct parent_scratch *ps = __get_parent_scratch(ce);
492
493 return &ps->descs.wq_desc;
494 }
495
get_wq_pointer(struct intel_context * ce,u32 wqi_size)496 static u32 *get_wq_pointer(struct intel_context *ce, u32 wqi_size)
497 {
498 /*
499 * Check for space in work queue. Caching a value of head pointer in
500 * intel_context structure in order reduce the number accesses to shared
501 * GPU memory which may be across a PCIe bus.
502 */
503 #define AVAILABLE_SPACE \
504 CIRC_SPACE(ce->parallel.guc.wqi_tail, ce->parallel.guc.wqi_head, WQ_SIZE)
505 if (wqi_size > AVAILABLE_SPACE) {
506 ce->parallel.guc.wqi_head = READ_ONCE(*ce->parallel.guc.wq_head);
507
508 if (wqi_size > AVAILABLE_SPACE)
509 return NULL;
510 }
511 #undef AVAILABLE_SPACE
512
513 return &__get_parent_scratch(ce)->wq[ce->parallel.guc.wqi_tail / sizeof(u32)];
514 }
515
__get_context(struct intel_guc * guc,u32 id)516 static inline struct intel_context *__get_context(struct intel_guc *guc, u32 id)
517 {
518 struct intel_context *ce = xa_load(&guc->context_lookup, id);
519
520 GEM_BUG_ON(id >= GUC_MAX_CONTEXT_ID);
521
522 return ce;
523 }
524
__get_lrc_desc_v69(struct intel_guc * guc,u32 index)525 static struct guc_lrc_desc_v69 *__get_lrc_desc_v69(struct intel_guc *guc, u32 index)
526 {
527 struct guc_lrc_desc_v69 *base = guc->lrc_desc_pool_vaddr_v69;
528
529 if (!base)
530 return NULL;
531
532 GEM_BUG_ON(index >= GUC_MAX_CONTEXT_ID);
533
534 return &base[index];
535 }
536
guc_lrc_desc_pool_create_v69(struct intel_guc * guc)537 static int guc_lrc_desc_pool_create_v69(struct intel_guc *guc)
538 {
539 u32 size;
540 int ret;
541
542 size = PAGE_ALIGN(sizeof(struct guc_lrc_desc_v69) *
543 GUC_MAX_CONTEXT_ID);
544 ret = intel_guc_allocate_and_map_vma(guc, size, &guc->lrc_desc_pool_v69,
545 (void **)&guc->lrc_desc_pool_vaddr_v69);
546 if (ret)
547 return ret;
548
549 return 0;
550 }
551
guc_lrc_desc_pool_destroy_v69(struct intel_guc * guc)552 static void guc_lrc_desc_pool_destroy_v69(struct intel_guc *guc)
553 {
554 if (!guc->lrc_desc_pool_vaddr_v69)
555 return;
556
557 guc->lrc_desc_pool_vaddr_v69 = NULL;
558 i915_vma_unpin_and_release(&guc->lrc_desc_pool_v69, I915_VMA_RELEASE_MAP);
559 }
560
guc_submission_initialized(struct intel_guc * guc)561 static inline bool guc_submission_initialized(struct intel_guc *guc)
562 {
563 return guc->submission_initialized;
564 }
565
_reset_lrc_desc_v69(struct intel_guc * guc,u32 id)566 static inline void _reset_lrc_desc_v69(struct intel_guc *guc, u32 id)
567 {
568 struct guc_lrc_desc_v69 *desc = __get_lrc_desc_v69(guc, id);
569
570 if (desc)
571 memset(desc, 0, sizeof(*desc));
572 }
573
ctx_id_mapped(struct intel_guc * guc,u32 id)574 static inline bool ctx_id_mapped(struct intel_guc *guc, u32 id)
575 {
576 return __get_context(guc, id);
577 }
578
set_ctx_id_mapping(struct intel_guc * guc,u32 id,struct intel_context * ce)579 static inline void set_ctx_id_mapping(struct intel_guc *guc, u32 id,
580 struct intel_context *ce)
581 {
582 unsigned long flags;
583
584 /*
585 * xarray API doesn't have xa_save_irqsave wrapper, so calling the
586 * lower level functions directly.
587 */
588 xa_lock_irqsave(&guc->context_lookup, flags);
589 __xa_store(&guc->context_lookup, id, ce, GFP_ATOMIC);
590 xa_unlock_irqrestore(&guc->context_lookup, flags);
591 }
592
clr_ctx_id_mapping(struct intel_guc * guc,u32 id)593 static inline void clr_ctx_id_mapping(struct intel_guc *guc, u32 id)
594 {
595 unsigned long flags;
596
597 if (unlikely(!guc_submission_initialized(guc)))
598 return;
599
600 _reset_lrc_desc_v69(guc, id);
601
602 /*
603 * xarray API doesn't have xa_erase_irqsave wrapper, so calling
604 * the lower level functions directly.
605 */
606 xa_lock_irqsave(&guc->context_lookup, flags);
607 __xa_erase(&guc->context_lookup, id);
608 xa_unlock_irqrestore(&guc->context_lookup, flags);
609 }
610
decr_outstanding_submission_g2h(struct intel_guc * guc)611 static void decr_outstanding_submission_g2h(struct intel_guc *guc)
612 {
613 if (atomic_dec_and_test(&guc->outstanding_submission_g2h))
614 wake_up_all(&guc->ct.wq);
615 }
616
guc_submission_send_busy_loop(struct intel_guc * guc,const u32 * action,u32 len,u32 g2h_len_dw,bool loop)617 static int guc_submission_send_busy_loop(struct intel_guc *guc,
618 const u32 *action,
619 u32 len,
620 u32 g2h_len_dw,
621 bool loop)
622 {
623 int ret;
624
625 /*
626 * We always loop when a send requires a reply (i.e. g2h_len_dw > 0),
627 * so we don't handle the case where we don't get a reply because we
628 * aborted the send due to the channel being busy.
629 */
630 GEM_BUG_ON(g2h_len_dw && !loop);
631
632 if (g2h_len_dw)
633 atomic_inc(&guc->outstanding_submission_g2h);
634
635 ret = intel_guc_send_busy_loop(guc, action, len, g2h_len_dw, loop);
636 if (ret && g2h_len_dw)
637 atomic_dec(&guc->outstanding_submission_g2h);
638
639 return ret;
640 }
641
intel_guc_wait_for_pending_msg(struct intel_guc * guc,atomic_t * wait_var,bool interruptible,long timeout)642 int intel_guc_wait_for_pending_msg(struct intel_guc *guc,
643 atomic_t *wait_var,
644 bool interruptible,
645 long timeout)
646 {
647 const int state = interruptible ?
648 TASK_INTERRUPTIBLE : TASK_UNINTERRUPTIBLE;
649 DEFINE_WAIT(wait);
650
651 might_sleep();
652 GEM_BUG_ON(timeout < 0);
653
654 if (!atomic_read(wait_var))
655 return 0;
656
657 if (!timeout)
658 return -ETIME;
659
660 for (;;) {
661 prepare_to_wait(&guc->ct.wq, &wait, state);
662
663 if (!atomic_read(wait_var))
664 break;
665
666 if (signal_pending_state(state, current)) {
667 timeout = -EINTR;
668 break;
669 }
670
671 if (!timeout) {
672 timeout = -ETIME;
673 break;
674 }
675
676 timeout = io_schedule_timeout(timeout);
677 }
678 finish_wait(&guc->ct.wq, &wait);
679
680 return (timeout < 0) ? timeout : 0;
681 }
682
intel_guc_wait_for_idle(struct intel_guc * guc,long timeout)683 int intel_guc_wait_for_idle(struct intel_guc *guc, long timeout)
684 {
685 if (!intel_uc_uses_guc_submission(&guc_to_gt(guc)->uc))
686 return 0;
687
688 return intel_guc_wait_for_pending_msg(guc,
689 &guc->outstanding_submission_g2h,
690 true, timeout);
691 }
692
693 static int guc_context_policy_init_v70(struct intel_context *ce, bool loop);
694 static int try_context_registration(struct intel_context *ce, bool loop);
695
__guc_add_request(struct intel_guc * guc,struct i915_request * rq)696 static int __guc_add_request(struct intel_guc *guc, struct i915_request *rq)
697 {
698 int err = 0;
699 struct intel_context *ce = request_to_scheduling_context(rq);
700 u32 action[3];
701 int len = 0;
702 u32 g2h_len_dw = 0;
703 bool enabled;
704
705 lockdep_assert_held(&rq->engine->sched_engine->lock);
706
707 /*
708 * Corner case where requests were sitting in the priority list or a
709 * request resubmitted after the context was banned.
710 */
711 if (unlikely(!intel_context_is_schedulable(ce))) {
712 i915_request_put(i915_request_mark_eio(rq));
713 intel_engine_signal_breadcrumbs(ce->engine);
714 return 0;
715 }
716
717 GEM_BUG_ON(!atomic_read(&ce->guc_id.ref));
718 GEM_BUG_ON(context_guc_id_invalid(ce));
719
720 if (context_policy_required(ce)) {
721 err = guc_context_policy_init_v70(ce, false);
722 if (err)
723 return err;
724 }
725
726 spin_lock(&ce->guc_state.lock);
727
728 /*
729 * The request / context will be run on the hardware when scheduling
730 * gets enabled in the unblock. For multi-lrc we still submit the
731 * context to move the LRC tails.
732 */
733 if (unlikely(context_blocked(ce) && !intel_context_is_parent(ce)))
734 goto out;
735
736 enabled = context_enabled(ce) || context_blocked(ce);
737
738 if (!enabled) {
739 action[len++] = INTEL_GUC_ACTION_SCHED_CONTEXT_MODE_SET;
740 action[len++] = ce->guc_id.id;
741 action[len++] = GUC_CONTEXT_ENABLE;
742 set_context_pending_enable(ce);
743 intel_context_get(ce);
744 g2h_len_dw = G2H_LEN_DW_SCHED_CONTEXT_MODE_SET;
745 } else {
746 action[len++] = INTEL_GUC_ACTION_SCHED_CONTEXT;
747 action[len++] = ce->guc_id.id;
748 }
749
750 err = intel_guc_send_nb(guc, action, len, g2h_len_dw);
751 if (!enabled && !err) {
752 trace_intel_context_sched_enable(ce);
753 atomic_inc(&guc->outstanding_submission_g2h);
754 set_context_enabled(ce);
755
756 /*
757 * Without multi-lrc KMD does the submission step (moving the
758 * lrc tail) so enabling scheduling is sufficient to submit the
759 * context. This isn't the case in multi-lrc submission as the
760 * GuC needs to move the tails, hence the need for another H2G
761 * to submit a multi-lrc context after enabling scheduling.
762 */
763 if (intel_context_is_parent(ce)) {
764 action[0] = INTEL_GUC_ACTION_SCHED_CONTEXT;
765 err = intel_guc_send_nb(guc, action, len - 1, 0);
766 }
767 } else if (!enabled) {
768 clr_context_pending_enable(ce);
769 intel_context_put(ce);
770 }
771 if (likely(!err))
772 trace_i915_request_guc_submit(rq);
773
774 out:
775 spin_unlock(&ce->guc_state.lock);
776 return err;
777 }
778
guc_add_request(struct intel_guc * guc,struct i915_request * rq)779 static int guc_add_request(struct intel_guc *guc, struct i915_request *rq)
780 {
781 int ret = __guc_add_request(guc, rq);
782
783 if (unlikely(ret == -EBUSY)) {
784 guc->stalled_request = rq;
785 guc->submission_stall_reason = STALL_ADD_REQUEST;
786 }
787
788 return ret;
789 }
790
guc_set_lrc_tail(struct i915_request * rq)791 static inline void guc_set_lrc_tail(struct i915_request *rq)
792 {
793 rq->context->lrc_reg_state[CTX_RING_TAIL] =
794 intel_ring_set_tail(rq->ring, rq->tail);
795 }
796
rq_prio(const struct i915_request * rq)797 static inline int rq_prio(const struct i915_request *rq)
798 {
799 return rq->sched.attr.priority;
800 }
801
is_multi_lrc_rq(struct i915_request * rq)802 static bool is_multi_lrc_rq(struct i915_request *rq)
803 {
804 return intel_context_is_parallel(rq->context);
805 }
806
can_merge_rq(struct i915_request * rq,struct i915_request * last)807 static bool can_merge_rq(struct i915_request *rq,
808 struct i915_request *last)
809 {
810 return request_to_scheduling_context(rq) ==
811 request_to_scheduling_context(last);
812 }
813
wq_space_until_wrap(struct intel_context * ce)814 static u32 wq_space_until_wrap(struct intel_context *ce)
815 {
816 return (WQ_SIZE - ce->parallel.guc.wqi_tail);
817 }
818
write_wqi(struct intel_context * ce,u32 wqi_size)819 static void write_wqi(struct intel_context *ce, u32 wqi_size)
820 {
821 BUILD_BUG_ON(!is_power_of_2(WQ_SIZE));
822
823 /*
824 * Ensure WQI are visible before updating tail
825 */
826 intel_guc_write_barrier(ce_to_guc(ce));
827
828 ce->parallel.guc.wqi_tail = (ce->parallel.guc.wqi_tail + wqi_size) &
829 (WQ_SIZE - 1);
830 WRITE_ONCE(*ce->parallel.guc.wq_tail, ce->parallel.guc.wqi_tail);
831 }
832
guc_wq_noop_append(struct intel_context * ce)833 static int guc_wq_noop_append(struct intel_context *ce)
834 {
835 u32 *wqi = get_wq_pointer(ce, wq_space_until_wrap(ce));
836 u32 len_dw = wq_space_until_wrap(ce) / sizeof(u32) - 1;
837
838 if (!wqi)
839 return -EBUSY;
840
841 GEM_BUG_ON(!FIELD_FIT(WQ_LEN_MASK, len_dw));
842
843 *wqi = FIELD_PREP(WQ_TYPE_MASK, WQ_TYPE_NOOP) |
844 FIELD_PREP(WQ_LEN_MASK, len_dw);
845 ce->parallel.guc.wqi_tail = 0;
846
847 return 0;
848 }
849
__guc_wq_item_append(struct i915_request * rq)850 static int __guc_wq_item_append(struct i915_request *rq)
851 {
852 struct intel_context *ce = request_to_scheduling_context(rq);
853 struct intel_context *child;
854 unsigned int wqi_size = (ce->parallel.number_children + 4) *
855 sizeof(u32);
856 u32 *wqi;
857 u32 len_dw = (wqi_size / sizeof(u32)) - 1;
858 int ret;
859
860 /* Ensure context is in correct state updating work queue */
861 GEM_BUG_ON(!atomic_read(&ce->guc_id.ref));
862 GEM_BUG_ON(context_guc_id_invalid(ce));
863 GEM_BUG_ON(context_wait_for_deregister_to_register(ce));
864 GEM_BUG_ON(!ctx_id_mapped(ce_to_guc(ce), ce->guc_id.id));
865
866 /* Insert NOOP if this work queue item will wrap the tail pointer. */
867 if (wqi_size > wq_space_until_wrap(ce)) {
868 ret = guc_wq_noop_append(ce);
869 if (ret)
870 return ret;
871 }
872
873 wqi = get_wq_pointer(ce, wqi_size);
874 if (!wqi)
875 return -EBUSY;
876
877 GEM_BUG_ON(!FIELD_FIT(WQ_LEN_MASK, len_dw));
878
879 *wqi++ = FIELD_PREP(WQ_TYPE_MASK, WQ_TYPE_MULTI_LRC) |
880 FIELD_PREP(WQ_LEN_MASK, len_dw);
881 *wqi++ = ce->lrc.lrca;
882 *wqi++ = FIELD_PREP(WQ_GUC_ID_MASK, ce->guc_id.id) |
883 FIELD_PREP(WQ_RING_TAIL_MASK, ce->ring->tail / sizeof(u64));
884 *wqi++ = 0; /* fence_id */
885 for_each_child(ce, child)
886 *wqi++ = child->ring->tail / sizeof(u64);
887
888 write_wqi(ce, wqi_size);
889
890 return 0;
891 }
892
guc_wq_item_append(struct intel_guc * guc,struct i915_request * rq)893 static int guc_wq_item_append(struct intel_guc *guc,
894 struct i915_request *rq)
895 {
896 struct intel_context *ce = request_to_scheduling_context(rq);
897 int ret;
898
899 if (unlikely(!intel_context_is_schedulable(ce)))
900 return 0;
901
902 ret = __guc_wq_item_append(rq);
903 if (unlikely(ret == -EBUSY)) {
904 guc->stalled_request = rq;
905 guc->submission_stall_reason = STALL_MOVE_LRC_TAIL;
906 }
907
908 return ret;
909 }
910
multi_lrc_submit(struct i915_request * rq)911 static bool multi_lrc_submit(struct i915_request *rq)
912 {
913 struct intel_context *ce = request_to_scheduling_context(rq);
914
915 intel_ring_set_tail(rq->ring, rq->tail);
916
917 /*
918 * We expect the front end (execbuf IOCTL) to set this flag on the last
919 * request generated from a multi-BB submission. This indicates to the
920 * backend (GuC interface) that we should submit this context thus
921 * submitting all the requests generated in parallel.
922 */
923 return test_bit(I915_FENCE_FLAG_SUBMIT_PARALLEL, &rq->fence.flags) ||
924 !intel_context_is_schedulable(ce);
925 }
926
guc_dequeue_one_context(struct intel_guc * guc)927 static int guc_dequeue_one_context(struct intel_guc *guc)
928 {
929 struct i915_sched_engine * const sched_engine = guc->sched_engine;
930 struct i915_request *last = NULL;
931 bool submit = false;
932 struct rb_node *rb;
933 int ret;
934
935 lockdep_assert_held(&sched_engine->lock);
936
937 if (guc->stalled_request) {
938 submit = true;
939 last = guc->stalled_request;
940
941 switch (guc->submission_stall_reason) {
942 case STALL_REGISTER_CONTEXT:
943 goto register_context;
944 case STALL_MOVE_LRC_TAIL:
945 goto move_lrc_tail;
946 case STALL_ADD_REQUEST:
947 goto add_request;
948 default:
949 MISSING_CASE(guc->submission_stall_reason);
950 }
951 }
952
953 while ((rb = rb_first_cached(&sched_engine->queue))) {
954 struct i915_priolist *p = to_priolist(rb);
955 struct i915_request *rq, *rn;
956
957 priolist_for_each_request_consume(rq, rn, p) {
958 if (last && !can_merge_rq(rq, last))
959 goto register_context;
960
961 list_del_init(&rq->sched.link);
962
963 __i915_request_submit(rq);
964
965 trace_i915_request_in(rq, 0);
966 last = rq;
967
968 if (is_multi_lrc_rq(rq)) {
969 /*
970 * We need to coalesce all multi-lrc requests in
971 * a relationship into a single H2G. We are
972 * guaranteed that all of these requests will be
973 * submitted sequentially.
974 */
975 if (multi_lrc_submit(rq)) {
976 submit = true;
977 goto register_context;
978 }
979 } else {
980 submit = true;
981 }
982 }
983
984 rb_erase_cached(&p->node, &sched_engine->queue);
985 i915_priolist_free(p);
986 }
987
988 register_context:
989 if (submit) {
990 struct intel_context *ce = request_to_scheduling_context(last);
991
992 if (unlikely(!ctx_id_mapped(guc, ce->guc_id.id) &&
993 intel_context_is_schedulable(ce))) {
994 ret = try_context_registration(ce, false);
995 if (unlikely(ret == -EPIPE)) {
996 goto deadlk;
997 } else if (ret == -EBUSY) {
998 guc->stalled_request = last;
999 guc->submission_stall_reason =
1000 STALL_REGISTER_CONTEXT;
1001 goto schedule_tasklet;
1002 } else if (ret != 0) {
1003 GEM_WARN_ON(ret); /* Unexpected */
1004 goto deadlk;
1005 }
1006 }
1007
1008 move_lrc_tail:
1009 if (is_multi_lrc_rq(last)) {
1010 ret = guc_wq_item_append(guc, last);
1011 if (ret == -EBUSY) {
1012 goto schedule_tasklet;
1013 } else if (ret != 0) {
1014 GEM_WARN_ON(ret); /* Unexpected */
1015 goto deadlk;
1016 }
1017 } else {
1018 guc_set_lrc_tail(last);
1019 }
1020
1021 add_request:
1022 ret = guc_add_request(guc, last);
1023 if (unlikely(ret == -EPIPE)) {
1024 goto deadlk;
1025 } else if (ret == -EBUSY) {
1026 goto schedule_tasklet;
1027 } else if (ret != 0) {
1028 GEM_WARN_ON(ret); /* Unexpected */
1029 goto deadlk;
1030 }
1031 }
1032
1033 guc->stalled_request = NULL;
1034 guc->submission_stall_reason = STALL_NONE;
1035 return submit;
1036
1037 deadlk:
1038 sched_engine->tasklet.callback = NULL;
1039 tasklet_disable_nosync(&sched_engine->tasklet);
1040 return false;
1041
1042 schedule_tasklet:
1043 tasklet_schedule(&sched_engine->tasklet);
1044 return false;
1045 }
1046
guc_submission_tasklet(struct tasklet_struct * t)1047 static void guc_submission_tasklet(struct tasklet_struct *t)
1048 {
1049 struct i915_sched_engine *sched_engine =
1050 from_tasklet(sched_engine, t, tasklet);
1051 unsigned long flags;
1052 bool loop;
1053
1054 spin_lock_irqsave(&sched_engine->lock, flags);
1055
1056 do {
1057 loop = guc_dequeue_one_context(sched_engine->private_data);
1058 } while (loop);
1059
1060 i915_sched_engine_reset_on_empty(sched_engine);
1061
1062 spin_unlock_irqrestore(&sched_engine->lock, flags);
1063 }
1064
cs_irq_handler(struct intel_engine_cs * engine,u16 iir)1065 static void cs_irq_handler(struct intel_engine_cs *engine, u16 iir)
1066 {
1067 if (iir & GT_RENDER_USER_INTERRUPT)
1068 intel_engine_signal_breadcrumbs(engine);
1069 }
1070
1071 static void __guc_context_destroy(struct intel_context *ce);
1072 static void release_guc_id(struct intel_guc *guc, struct intel_context *ce);
1073 static void guc_signal_context_fence(struct intel_context *ce);
1074 static void guc_cancel_context_requests(struct intel_context *ce);
1075 static void guc_blocked_fence_complete(struct intel_context *ce);
1076
scrub_guc_desc_for_outstanding_g2h(struct intel_guc * guc)1077 static void scrub_guc_desc_for_outstanding_g2h(struct intel_guc *guc)
1078 {
1079 struct intel_context *ce;
1080 unsigned long index, flags;
1081 bool pending_disable, pending_enable, deregister, destroyed, banned;
1082
1083 xa_lock_irqsave(&guc->context_lookup, flags);
1084 xa_for_each(&guc->context_lookup, index, ce) {
1085 /*
1086 * Corner case where the ref count on the object is zero but and
1087 * deregister G2H was lost. In this case we don't touch the ref
1088 * count and finish the destroy of the context.
1089 */
1090 bool do_put = kref_get_unless_zero(&ce->ref);
1091
1092 xa_unlock(&guc->context_lookup);
1093
1094 if (test_bit(CONTEXT_GUC_INIT, &ce->flags) &&
1095 (cancel_delayed_work(&ce->guc_state.sched_disable_delay_work))) {
1096 /* successful cancel so jump straight to close it */
1097 intel_context_sched_disable_unpin(ce);
1098 }
1099
1100 spin_lock(&ce->guc_state.lock);
1101
1102 /*
1103 * Once we are at this point submission_disabled() is guaranteed
1104 * to be visible to all callers who set the below flags (see above
1105 * flush and flushes in reset_prepare). If submission_disabled()
1106 * is set, the caller shouldn't set these flags.
1107 */
1108
1109 destroyed = context_destroyed(ce);
1110 pending_enable = context_pending_enable(ce);
1111 pending_disable = context_pending_disable(ce);
1112 deregister = context_wait_for_deregister_to_register(ce);
1113 banned = context_banned(ce);
1114 init_sched_state(ce);
1115
1116 spin_unlock(&ce->guc_state.lock);
1117
1118 if (pending_enable || destroyed || deregister) {
1119 decr_outstanding_submission_g2h(guc);
1120 if (deregister)
1121 guc_signal_context_fence(ce);
1122 if (destroyed) {
1123 intel_gt_pm_put_async_untracked(guc_to_gt(guc));
1124 release_guc_id(guc, ce);
1125 __guc_context_destroy(ce);
1126 }
1127 if (pending_enable || deregister)
1128 intel_context_put(ce);
1129 }
1130
1131 /* Not mutualy exclusive with above if statement. */
1132 if (pending_disable) {
1133 guc_signal_context_fence(ce);
1134 if (banned) {
1135 guc_cancel_context_requests(ce);
1136 intel_engine_signal_breadcrumbs(ce->engine);
1137 }
1138 intel_context_sched_disable_unpin(ce);
1139 decr_outstanding_submission_g2h(guc);
1140
1141 spin_lock(&ce->guc_state.lock);
1142 guc_blocked_fence_complete(ce);
1143 spin_unlock(&ce->guc_state.lock);
1144
1145 intel_context_put(ce);
1146 }
1147
1148 if (do_put)
1149 intel_context_put(ce);
1150 xa_lock(&guc->context_lookup);
1151 }
1152 xa_unlock_irqrestore(&guc->context_lookup, flags);
1153 }
1154
1155 /*
1156 * GuC stores busyness stats for each engine at context in/out boundaries. A
1157 * context 'in' logs execution start time, 'out' adds in -> out delta to total.
1158 * i915/kmd accesses 'start', 'total' and 'context id' from memory shared with
1159 * GuC.
1160 *
1161 * __i915_pmu_event_read samples engine busyness. When sampling, if context id
1162 * is valid (!= ~0) and start is non-zero, the engine is considered to be
1163 * active. For an active engine total busyness = total + (now - start), where
1164 * 'now' is the time at which the busyness is sampled. For inactive engine,
1165 * total busyness = total.
1166 *
1167 * All times are captured from GUCPMTIMESTAMP reg and are in gt clock domain.
1168 *
1169 * The start and total values provided by GuC are 32 bits and wrap around in a
1170 * few minutes. Since perf pmu provides busyness as 64 bit monotonically
1171 * increasing ns values, there is a need for this implementation to account for
1172 * overflows and extend the GuC provided values to 64 bits before returning
1173 * busyness to the user. In order to do that, a worker runs periodically at
1174 * frequency = 1/8th the time it takes for the timestamp to wrap (i.e. once in
1175 * 27 seconds for a gt clock frequency of 19.2 MHz).
1176 */
1177
1178 #define WRAP_TIME_CLKS U32_MAX
1179 #define POLL_TIME_CLKS (WRAP_TIME_CLKS >> 3)
1180
1181 static void
__extend_last_switch(struct intel_guc * guc,u64 * prev_start,u32 new_start)1182 __extend_last_switch(struct intel_guc *guc, u64 *prev_start, u32 new_start)
1183 {
1184 u32 gt_stamp_hi = upper_32_bits(guc->timestamp.gt_stamp);
1185 u32 gt_stamp_last = lower_32_bits(guc->timestamp.gt_stamp);
1186
1187 if (new_start == lower_32_bits(*prev_start))
1188 return;
1189
1190 /*
1191 * When gt is unparked, we update the gt timestamp and start the ping
1192 * worker that updates the gt_stamp every POLL_TIME_CLKS. As long as gt
1193 * is unparked, all switched in contexts will have a start time that is
1194 * within +/- POLL_TIME_CLKS of the most recent gt_stamp.
1195 *
1196 * If neither gt_stamp nor new_start has rolled over, then the
1197 * gt_stamp_hi does not need to be adjusted, however if one of them has
1198 * rolled over, we need to adjust gt_stamp_hi accordingly.
1199 *
1200 * The below conditions address the cases of new_start rollover and
1201 * gt_stamp_last rollover respectively.
1202 */
1203 if (new_start < gt_stamp_last &&
1204 (new_start - gt_stamp_last) <= POLL_TIME_CLKS)
1205 gt_stamp_hi++;
1206
1207 if (new_start > gt_stamp_last &&
1208 (gt_stamp_last - new_start) <= POLL_TIME_CLKS && gt_stamp_hi)
1209 gt_stamp_hi--;
1210
1211 *prev_start = ((u64)gt_stamp_hi << 32) | new_start;
1212 }
1213
1214 #define record_read(map_, field_) \
1215 iosys_map_rd_field(map_, 0, struct guc_engine_usage_record, field_)
1216
1217 /*
1218 * GuC updates shared memory and KMD reads it. Since this is not synchronized,
1219 * we run into a race where the value read is inconsistent. Sometimes the
1220 * inconsistency is in reading the upper MSB bytes of the last_in value when
1221 * this race occurs. 2 types of cases are seen - upper 8 bits are zero and upper
1222 * 24 bits are zero. Since these are non-zero values, it is non-trivial to
1223 * determine validity of these values. Instead we read the values multiple times
1224 * until they are consistent. In test runs, 3 attempts results in consistent
1225 * values. The upper bound is set to 6 attempts and may need to be tuned as per
1226 * any new occurences.
1227 */
__get_engine_usage_record(struct intel_engine_cs * engine,u32 * last_in,u32 * id,u32 * total)1228 static void __get_engine_usage_record(struct intel_engine_cs *engine,
1229 u32 *last_in, u32 *id, u32 *total)
1230 {
1231 struct iosys_map rec_map = intel_guc_engine_usage_record_map(engine);
1232 int i = 0;
1233
1234 do {
1235 *last_in = record_read(&rec_map, last_switch_in_stamp);
1236 *id = record_read(&rec_map, current_context_index);
1237 *total = record_read(&rec_map, total_runtime);
1238
1239 if (record_read(&rec_map, last_switch_in_stamp) == *last_in &&
1240 record_read(&rec_map, current_context_index) == *id &&
1241 record_read(&rec_map, total_runtime) == *total)
1242 break;
1243 } while (++i < 6);
1244 }
1245
__set_engine_usage_record(struct intel_engine_cs * engine,u32 last_in,u32 id,u32 total)1246 static void __set_engine_usage_record(struct intel_engine_cs *engine,
1247 u32 last_in, u32 id, u32 total)
1248 {
1249 struct iosys_map rec_map = intel_guc_engine_usage_record_map(engine);
1250
1251 #define record_write(map_, field_, val_) \
1252 iosys_map_wr_field(map_, 0, struct guc_engine_usage_record, field_, val_)
1253
1254 record_write(&rec_map, last_switch_in_stamp, last_in);
1255 record_write(&rec_map, current_context_index, id);
1256 record_write(&rec_map, total_runtime, total);
1257
1258 #undef record_write
1259 }
1260
guc_update_engine_gt_clks(struct intel_engine_cs * engine)1261 static void guc_update_engine_gt_clks(struct intel_engine_cs *engine)
1262 {
1263 struct intel_engine_guc_stats *stats = &engine->stats.guc;
1264 struct intel_guc *guc = gt_to_guc(engine->gt);
1265 u32 last_switch, ctx_id, total;
1266
1267 lockdep_assert_held(&guc->timestamp.lock);
1268
1269 __get_engine_usage_record(engine, &last_switch, &ctx_id, &total);
1270
1271 stats->running = ctx_id != ~0U && last_switch;
1272 if (stats->running)
1273 __extend_last_switch(guc, &stats->start_gt_clk, last_switch);
1274
1275 /*
1276 * Instead of adjusting the total for overflow, just add the
1277 * difference from previous sample stats->total_gt_clks
1278 */
1279 if (total && total != ~0U) {
1280 stats->total_gt_clks += (u32)(total - stats->prev_total);
1281 stats->prev_total = total;
1282 }
1283 }
1284
gpm_timestamp_shift(struct intel_gt * gt)1285 static u32 gpm_timestamp_shift(struct intel_gt *gt)
1286 {
1287 intel_wakeref_t wakeref;
1288 u32 reg, shift;
1289
1290 with_intel_runtime_pm(gt->uncore->rpm, wakeref)
1291 reg = intel_uncore_read(gt->uncore, RPM_CONFIG0);
1292
1293 shift = (reg & GEN10_RPM_CONFIG0_CTC_SHIFT_PARAMETER_MASK) >>
1294 GEN10_RPM_CONFIG0_CTC_SHIFT_PARAMETER_SHIFT;
1295
1296 return 3 - shift;
1297 }
1298
guc_update_pm_timestamp(struct intel_guc * guc,ktime_t * now)1299 static void guc_update_pm_timestamp(struct intel_guc *guc, ktime_t *now)
1300 {
1301 struct intel_gt *gt = guc_to_gt(guc);
1302 u32 gt_stamp_lo, gt_stamp_hi;
1303 u64 gpm_ts;
1304
1305 lockdep_assert_held(&guc->timestamp.lock);
1306
1307 gt_stamp_hi = upper_32_bits(guc->timestamp.gt_stamp);
1308 gpm_ts = intel_uncore_read64_2x32(gt->uncore, MISC_STATUS0,
1309 MISC_STATUS1) >> guc->timestamp.shift;
1310 gt_stamp_lo = lower_32_bits(gpm_ts);
1311 *now = ktime_get();
1312
1313 if (gt_stamp_lo < lower_32_bits(guc->timestamp.gt_stamp))
1314 gt_stamp_hi++;
1315
1316 guc->timestamp.gt_stamp = ((u64)gt_stamp_hi << 32) | gt_stamp_lo;
1317 }
1318
1319 /*
1320 * Unlike the execlist mode of submission total and active times are in terms of
1321 * gt clocks. The *now parameter is retained to return the cpu time at which the
1322 * busyness was sampled.
1323 */
guc_engine_busyness(struct intel_engine_cs * engine,ktime_t * now)1324 static ktime_t guc_engine_busyness(struct intel_engine_cs *engine, ktime_t *now)
1325 {
1326 struct intel_engine_guc_stats stats_saved, *stats = &engine->stats.guc;
1327 struct i915_gpu_error *gpu_error = &engine->i915->gpu_error;
1328 struct intel_gt *gt = engine->gt;
1329 struct intel_guc *guc = gt_to_guc(gt);
1330 u64 total, gt_stamp_saved;
1331 unsigned long flags;
1332 u32 reset_count;
1333 bool in_reset;
1334 intel_wakeref_t wakeref;
1335
1336 spin_lock_irqsave(&guc->timestamp.lock, flags);
1337
1338 /*
1339 * If a reset happened, we risk reading partially updated engine
1340 * busyness from GuC, so we just use the driver stored copy of busyness.
1341 * Synchronize with gt reset using reset_count and the
1342 * I915_RESET_BACKOFF flag. Note that reset flow updates the reset_count
1343 * after I915_RESET_BACKOFF flag, so ensure that the reset_count is
1344 * usable by checking the flag afterwards.
1345 */
1346 reset_count = i915_reset_count(gpu_error);
1347 in_reset = test_bit(I915_RESET_BACKOFF, >->reset.flags);
1348
1349 *now = ktime_get();
1350
1351 /*
1352 * The active busyness depends on start_gt_clk and gt_stamp.
1353 * gt_stamp is updated by i915 only when gt is awake and the
1354 * start_gt_clk is derived from GuC state. To get a consistent
1355 * view of activity, we query the GuC state only if gt is awake.
1356 */
1357 wakeref = in_reset ? 0 : intel_gt_pm_get_if_awake(gt);
1358 if (wakeref) {
1359 stats_saved = *stats;
1360 gt_stamp_saved = guc->timestamp.gt_stamp;
1361 /*
1362 * Update gt_clks, then gt timestamp to simplify the 'gt_stamp -
1363 * start_gt_clk' calculation below for active engines.
1364 */
1365 guc_update_engine_gt_clks(engine);
1366 guc_update_pm_timestamp(guc, now);
1367 intel_gt_pm_put_async(gt, wakeref);
1368 if (i915_reset_count(gpu_error) != reset_count) {
1369 *stats = stats_saved;
1370 guc->timestamp.gt_stamp = gt_stamp_saved;
1371 }
1372 }
1373
1374 total = intel_gt_clock_interval_to_ns(gt, stats->total_gt_clks);
1375 if (stats->running) {
1376 u64 clk = guc->timestamp.gt_stamp - stats->start_gt_clk;
1377
1378 total += intel_gt_clock_interval_to_ns(gt, clk);
1379 }
1380
1381 if (total > stats->total)
1382 stats->total = total;
1383
1384 spin_unlock_irqrestore(&guc->timestamp.lock, flags);
1385
1386 return ns_to_ktime(stats->total);
1387 }
1388
guc_enable_busyness_worker(struct intel_guc * guc)1389 static void guc_enable_busyness_worker(struct intel_guc *guc)
1390 {
1391 mod_delayed_work(system_highpri_wq, &guc->timestamp.work, guc->timestamp.ping_delay);
1392 }
1393
guc_cancel_busyness_worker(struct intel_guc * guc)1394 static void guc_cancel_busyness_worker(struct intel_guc *guc)
1395 {
1396 /*
1397 * There are many different call stacks that can get here. Some of them
1398 * hold the reset mutex. The busyness worker also attempts to acquire the
1399 * reset mutex. Synchronously flushing a worker thread requires acquiring
1400 * the worker mutex. Lockdep sees this as a conflict. It thinks that the
1401 * flush can deadlock because it holds the worker mutex while waiting for
1402 * the reset mutex, but another thread is holding the reset mutex and might
1403 * attempt to use other worker functions.
1404 *
1405 * In practice, this scenario does not exist because the busyness worker
1406 * does not block waiting for the reset mutex. It does a try-lock on it and
1407 * immediately exits if the lock is already held. Unfortunately, the mutex
1408 * in question (I915_RESET_BACKOFF) is an i915 implementation which has lockdep
1409 * annotation but not to the extent of explaining the 'might lock' is also a
1410 * 'does not need to lock'. So one option would be to add more complex lockdep
1411 * annotations to ignore the issue (if at all possible). A simpler option is to
1412 * just not flush synchronously when a rest in progress. Given that the worker
1413 * will just early exit and re-schedule itself anyway, there is no advantage
1414 * to running it immediately.
1415 *
1416 * If a reset is not in progress, then the synchronous flush may be required.
1417 * As noted many call stacks lead here, some during suspend and driver unload
1418 * which do require a synchronous flush to make sure the worker is stopped
1419 * before memory is freed.
1420 *
1421 * Trying to pass a 'need_sync' or 'in_reset' flag all the way down through
1422 * every possible call stack is unfeasible. It would be too intrusive to many
1423 * areas that really don't care about the GuC backend. However, there is the
1424 * I915_RESET_BACKOFF flag and the gt->reset.mutex can be tested for is_locked.
1425 * So just use those. Note that testing both is required due to the hideously
1426 * complex nature of the i915 driver's reset code paths.
1427 *
1428 * And note that in the case of a reset occurring during driver unload
1429 * (wedged_on_fini), skipping the cancel in reset_prepare/reset_fini (when the
1430 * reset flag/mutex are set) is fine because there is another explicit cancel in
1431 * intel_guc_submission_fini (when the reset flag/mutex are not).
1432 */
1433 if (mutex_is_locked(&guc_to_gt(guc)->reset.mutex) ||
1434 test_bit(I915_RESET_BACKOFF, &guc_to_gt(guc)->reset.flags))
1435 cancel_delayed_work(&guc->timestamp.work);
1436 else
1437 cancel_delayed_work_sync(&guc->timestamp.work);
1438 }
1439
__reset_guc_busyness_stats(struct intel_guc * guc)1440 static void __reset_guc_busyness_stats(struct intel_guc *guc)
1441 {
1442 struct intel_gt *gt = guc_to_gt(guc);
1443 struct intel_engine_cs *engine;
1444 enum intel_engine_id id;
1445 unsigned long flags;
1446 ktime_t unused;
1447
1448 spin_lock_irqsave(&guc->timestamp.lock, flags);
1449
1450 guc_update_pm_timestamp(guc, &unused);
1451 for_each_engine(engine, gt, id) {
1452 struct intel_engine_guc_stats *stats = &engine->stats.guc;
1453
1454 guc_update_engine_gt_clks(engine);
1455
1456 /*
1457 * If resetting a running context, accumulate the active
1458 * time as well since there will be no context switch.
1459 */
1460 if (stats->running) {
1461 u64 clk = guc->timestamp.gt_stamp - stats->start_gt_clk;
1462
1463 stats->total_gt_clks += clk;
1464 }
1465 stats->prev_total = 0;
1466 stats->running = 0;
1467 }
1468
1469 spin_unlock_irqrestore(&guc->timestamp.lock, flags);
1470 }
1471
__update_guc_busyness_running_state(struct intel_guc * guc)1472 static void __update_guc_busyness_running_state(struct intel_guc *guc)
1473 {
1474 struct intel_gt *gt = guc_to_gt(guc);
1475 struct intel_engine_cs *engine;
1476 enum intel_engine_id id;
1477 unsigned long flags;
1478
1479 spin_lock_irqsave(&guc->timestamp.lock, flags);
1480 for_each_engine(engine, gt, id)
1481 engine->stats.guc.running = false;
1482 spin_unlock_irqrestore(&guc->timestamp.lock, flags);
1483 }
1484
__update_guc_busyness_stats(struct intel_guc * guc)1485 static void __update_guc_busyness_stats(struct intel_guc *guc)
1486 {
1487 struct intel_gt *gt = guc_to_gt(guc);
1488 struct intel_engine_cs *engine;
1489 enum intel_engine_id id;
1490 unsigned long flags;
1491 ktime_t unused;
1492
1493 guc->timestamp.last_stat_jiffies = jiffies;
1494
1495 spin_lock_irqsave(&guc->timestamp.lock, flags);
1496
1497 guc_update_pm_timestamp(guc, &unused);
1498 for_each_engine(engine, gt, id)
1499 guc_update_engine_gt_clks(engine);
1500
1501 spin_unlock_irqrestore(&guc->timestamp.lock, flags);
1502 }
1503
__guc_context_update_stats(struct intel_context * ce)1504 static void __guc_context_update_stats(struct intel_context *ce)
1505 {
1506 struct intel_guc *guc = ce_to_guc(ce);
1507 unsigned long flags;
1508
1509 spin_lock_irqsave(&guc->timestamp.lock, flags);
1510 lrc_update_runtime(ce);
1511 spin_unlock_irqrestore(&guc->timestamp.lock, flags);
1512 }
1513
guc_context_update_stats(struct intel_context * ce)1514 static void guc_context_update_stats(struct intel_context *ce)
1515 {
1516 if (!intel_context_pin_if_active(ce))
1517 return;
1518
1519 __guc_context_update_stats(ce);
1520 intel_context_unpin(ce);
1521 }
1522
guc_timestamp_ping(struct work_struct * wrk)1523 static void guc_timestamp_ping(struct work_struct *wrk)
1524 {
1525 struct intel_guc *guc = container_of(wrk, typeof(*guc),
1526 timestamp.work.work);
1527 struct intel_uc *uc = container_of(guc, typeof(*uc), guc);
1528 struct intel_gt *gt = guc_to_gt(guc);
1529 struct intel_context *ce;
1530 intel_wakeref_t wakeref;
1531 unsigned long index;
1532 int srcu, ret;
1533
1534 /*
1535 * Ideally the busyness worker should take a gt pm wakeref because the
1536 * worker only needs to be active while gt is awake. However, the
1537 * gt_park path cancels the worker synchronously and this complicates
1538 * the flow if the worker is also running at the same time. The cancel
1539 * waits for the worker and when the worker releases the wakeref, that
1540 * would call gt_park and would lead to a deadlock.
1541 *
1542 * The resolution is to take the global pm wakeref if runtime pm is
1543 * already active. If not, we don't need to update the busyness stats as
1544 * the stats would already be updated when the gt was parked.
1545 *
1546 * Note:
1547 * - We do not requeue the worker if we cannot take a reference to runtime
1548 * pm since intel_guc_busyness_unpark would requeue the worker in the
1549 * resume path.
1550 *
1551 * - If the gt was parked longer than time taken for GT timestamp to roll
1552 * over, we ignore those rollovers since we don't care about tracking
1553 * the exact GT time. We only care about roll overs when the gt is
1554 * active and running workloads.
1555 *
1556 * - There is a window of time between gt_park and runtime suspend,
1557 * where the worker may run. This is acceptable since the worker will
1558 * not find any new data to update busyness.
1559 */
1560 wakeref = intel_runtime_pm_get_if_active(>->i915->runtime_pm);
1561 if (!wakeref)
1562 return;
1563
1564 /*
1565 * Synchronize with gt reset to make sure the worker does not
1566 * corrupt the engine/guc stats. NB: can't actually block waiting
1567 * for a reset to complete as the reset requires flushing out
1568 * this worker thread if started. So waiting would deadlock.
1569 */
1570 ret = intel_gt_reset_trylock(gt, &srcu);
1571 if (ret)
1572 goto err_trylock;
1573
1574 __update_guc_busyness_stats(guc);
1575
1576 /* adjust context stats for overflow */
1577 xa_for_each(&guc->context_lookup, index, ce)
1578 guc_context_update_stats(ce);
1579
1580 intel_gt_reset_unlock(gt, srcu);
1581
1582 guc_enable_busyness_worker(guc);
1583
1584 err_trylock:
1585 intel_runtime_pm_put(>->i915->runtime_pm, wakeref);
1586 }
1587
guc_action_enable_usage_stats(struct intel_guc * guc)1588 static int guc_action_enable_usage_stats(struct intel_guc *guc)
1589 {
1590 struct intel_gt *gt = guc_to_gt(guc);
1591 struct intel_engine_cs *engine;
1592 enum intel_engine_id id;
1593 u32 offset = intel_guc_engine_usage_offset(guc);
1594 u32 action[] = {
1595 INTEL_GUC_ACTION_SET_ENG_UTIL_BUFF,
1596 offset,
1597 0,
1598 };
1599
1600 for_each_engine(engine, gt, id)
1601 __set_engine_usage_record(engine, 0, 0xffffffff, 0);
1602
1603 return intel_guc_send(guc, action, ARRAY_SIZE(action));
1604 }
1605
guc_init_engine_stats(struct intel_guc * guc)1606 static int guc_init_engine_stats(struct intel_guc *guc)
1607 {
1608 struct intel_gt *gt = guc_to_gt(guc);
1609 intel_wakeref_t wakeref;
1610 int ret;
1611
1612 with_intel_runtime_pm(>->i915->runtime_pm, wakeref)
1613 ret = guc_action_enable_usage_stats(guc);
1614
1615 if (ret)
1616 guc_err(guc, "Failed to enable usage stats: %pe\n", ERR_PTR(ret));
1617 else
1618 guc_enable_busyness_worker(guc);
1619
1620 return ret;
1621 }
1622
guc_fini_engine_stats(struct intel_guc * guc)1623 static void guc_fini_engine_stats(struct intel_guc *guc)
1624 {
1625 guc_cancel_busyness_worker(guc);
1626 }
1627
intel_guc_busyness_park(struct intel_gt * gt)1628 void intel_guc_busyness_park(struct intel_gt *gt)
1629 {
1630 struct intel_guc *guc = gt_to_guc(gt);
1631
1632 if (!guc_submission_initialized(guc))
1633 return;
1634
1635 /* Assume no engines are running and set running state to false */
1636 __update_guc_busyness_running_state(guc);
1637
1638 /*
1639 * There is a race with suspend flow where the worker runs after suspend
1640 * and causes an unclaimed register access warning. Cancel the worker
1641 * synchronously here.
1642 */
1643 guc_cancel_busyness_worker(guc);
1644
1645 /*
1646 * Before parking, we should sample engine busyness stats if we need to.
1647 * We can skip it if we are less than half a ping from the last time we
1648 * sampled the busyness stats.
1649 */
1650 if (guc->timestamp.last_stat_jiffies &&
1651 !time_after(jiffies, guc->timestamp.last_stat_jiffies +
1652 (guc->timestamp.ping_delay / 2)))
1653 return;
1654
1655 __update_guc_busyness_stats(guc);
1656 }
1657
intel_guc_busyness_unpark(struct intel_gt * gt)1658 void intel_guc_busyness_unpark(struct intel_gt *gt)
1659 {
1660 struct intel_guc *guc = gt_to_guc(gt);
1661 unsigned long flags;
1662 ktime_t unused;
1663
1664 if (!guc_submission_initialized(guc))
1665 return;
1666
1667 spin_lock_irqsave(&guc->timestamp.lock, flags);
1668 guc_update_pm_timestamp(guc, &unused);
1669 spin_unlock_irqrestore(&guc->timestamp.lock, flags);
1670 guc_enable_busyness_worker(guc);
1671 }
1672
1673 static inline bool
submission_disabled(struct intel_guc * guc)1674 submission_disabled(struct intel_guc *guc)
1675 {
1676 struct i915_sched_engine * const sched_engine = guc->sched_engine;
1677
1678 return unlikely(!sched_engine ||
1679 !__tasklet_is_enabled(&sched_engine->tasklet) ||
1680 intel_gt_is_wedged(guc_to_gt(guc)));
1681 }
1682
disable_submission(struct intel_guc * guc)1683 static void disable_submission(struct intel_guc *guc)
1684 {
1685 struct i915_sched_engine * const sched_engine = guc->sched_engine;
1686
1687 if (__tasklet_is_enabled(&sched_engine->tasklet)) {
1688 GEM_BUG_ON(!guc->ct.enabled);
1689 __tasklet_disable_sync_once(&sched_engine->tasklet);
1690 sched_engine->tasklet.callback = NULL;
1691 }
1692 }
1693
enable_submission(struct intel_guc * guc)1694 static void enable_submission(struct intel_guc *guc)
1695 {
1696 struct i915_sched_engine * const sched_engine = guc->sched_engine;
1697 unsigned long flags;
1698
1699 spin_lock_irqsave(&guc->sched_engine->lock, flags);
1700 sched_engine->tasklet.callback = guc_submission_tasklet;
1701 wmb(); /* Make sure callback visible */
1702 if (!__tasklet_is_enabled(&sched_engine->tasklet) &&
1703 __tasklet_enable(&sched_engine->tasklet)) {
1704 GEM_BUG_ON(!guc->ct.enabled);
1705
1706 /* And kick in case we missed a new request submission. */
1707 tasklet_hi_schedule(&sched_engine->tasklet);
1708 }
1709 spin_unlock_irqrestore(&guc->sched_engine->lock, flags);
1710 }
1711
guc_flush_submissions(struct intel_guc * guc)1712 static void guc_flush_submissions(struct intel_guc *guc)
1713 {
1714 struct i915_sched_engine * const sched_engine = guc->sched_engine;
1715 unsigned long flags;
1716
1717 spin_lock_irqsave(&sched_engine->lock, flags);
1718 spin_unlock_irqrestore(&sched_engine->lock, flags);
1719 }
1720
intel_guc_submission_flush_work(struct intel_guc * guc)1721 void intel_guc_submission_flush_work(struct intel_guc *guc)
1722 {
1723 flush_work(&guc->submission_state.destroyed_worker);
1724 }
1725
1726 static void guc_flush_destroyed_contexts(struct intel_guc *guc);
1727
intel_guc_submission_reset_prepare(struct intel_guc * guc)1728 void intel_guc_submission_reset_prepare(struct intel_guc *guc)
1729 {
1730 if (unlikely(!guc_submission_initialized(guc))) {
1731 /* Reset called during driver load? GuC not yet initialised! */
1732 return;
1733 }
1734
1735 intel_gt_park_heartbeats(guc_to_gt(guc));
1736 disable_submission(guc);
1737 guc->interrupts.disable(guc);
1738 __reset_guc_busyness_stats(guc);
1739
1740 /* Flush IRQ handler */
1741 spin_lock_irq(guc_to_gt(guc)->irq_lock);
1742 spin_unlock_irq(guc_to_gt(guc)->irq_lock);
1743
1744 guc_flush_submissions(guc);
1745 guc_flush_destroyed_contexts(guc);
1746 flush_work(&guc->ct.requests.worker);
1747
1748 scrub_guc_desc_for_outstanding_g2h(guc);
1749 }
1750
1751 static struct intel_engine_cs *
guc_virtual_get_sibling(struct intel_engine_cs * ve,unsigned int sibling)1752 guc_virtual_get_sibling(struct intel_engine_cs *ve, unsigned int sibling)
1753 {
1754 struct intel_engine_cs *engine;
1755 intel_engine_mask_t tmp, mask = ve->mask;
1756 unsigned int num_siblings = 0;
1757
1758 for_each_engine_masked(engine, ve->gt, mask, tmp)
1759 if (num_siblings++ == sibling)
1760 return engine;
1761
1762 return NULL;
1763 }
1764
1765 static inline struct intel_engine_cs *
__context_to_physical_engine(struct intel_context * ce)1766 __context_to_physical_engine(struct intel_context *ce)
1767 {
1768 struct intel_engine_cs *engine = ce->engine;
1769
1770 if (intel_engine_is_virtual(engine))
1771 engine = guc_virtual_get_sibling(engine, 0);
1772
1773 return engine;
1774 }
1775
guc_reset_state(struct intel_context * ce,u32 head,bool scrub)1776 static void guc_reset_state(struct intel_context *ce, u32 head, bool scrub)
1777 {
1778 struct intel_engine_cs *engine = __context_to_physical_engine(ce);
1779
1780 if (!intel_context_is_schedulable(ce))
1781 return;
1782
1783 GEM_BUG_ON(!intel_context_is_pinned(ce));
1784
1785 /*
1786 * We want a simple context + ring to execute the breadcrumb update.
1787 * We cannot rely on the context being intact across the GPU hang,
1788 * so clear it and rebuild just what we need for the breadcrumb.
1789 * All pending requests for this context will be zapped, and any
1790 * future request will be after userspace has had the opportunity
1791 * to recreate its own state.
1792 */
1793 if (scrub)
1794 lrc_init_regs(ce, engine, true);
1795
1796 /* Rerun the request; its payload has been neutered (if guilty). */
1797 lrc_update_regs(ce, engine, head);
1798 }
1799
guc_engine_reset_prepare(struct intel_engine_cs * engine)1800 static void guc_engine_reset_prepare(struct intel_engine_cs *engine)
1801 {
1802 /*
1803 * Wa_22011802037: In addition to stopping the cs, we need
1804 * to wait for any pending mi force wakeups
1805 */
1806 if (intel_engine_reset_needs_wa_22011802037(engine->gt)) {
1807 intel_engine_stop_cs(engine);
1808 intel_engine_wait_for_pending_mi_fw(engine);
1809 }
1810 }
1811
guc_reset_nop(struct intel_engine_cs * engine)1812 static void guc_reset_nop(struct intel_engine_cs *engine)
1813 {
1814 }
1815
guc_rewind_nop(struct intel_engine_cs * engine,bool stalled)1816 static void guc_rewind_nop(struct intel_engine_cs *engine, bool stalled)
1817 {
1818 }
1819
1820 static void
__unwind_incomplete_requests(struct intel_context * ce)1821 __unwind_incomplete_requests(struct intel_context *ce)
1822 {
1823 struct i915_request *rq, *rn;
1824 struct list_head *pl;
1825 int prio = I915_PRIORITY_INVALID;
1826 struct i915_sched_engine * const sched_engine =
1827 ce->engine->sched_engine;
1828 unsigned long flags;
1829
1830 spin_lock_irqsave(&sched_engine->lock, flags);
1831 spin_lock(&ce->guc_state.lock);
1832 list_for_each_entry_safe_reverse(rq, rn,
1833 &ce->guc_state.requests,
1834 sched.link) {
1835 if (i915_request_completed(rq))
1836 continue;
1837
1838 list_del_init(&rq->sched.link);
1839 __i915_request_unsubmit(rq);
1840
1841 /* Push the request back into the queue for later resubmission. */
1842 GEM_BUG_ON(rq_prio(rq) == I915_PRIORITY_INVALID);
1843 if (rq_prio(rq) != prio) {
1844 prio = rq_prio(rq);
1845 pl = i915_sched_lookup_priolist(sched_engine, prio);
1846 }
1847 GEM_BUG_ON(i915_sched_engine_is_empty(sched_engine));
1848
1849 list_add(&rq->sched.link, pl);
1850 set_bit(I915_FENCE_FLAG_PQUEUE, &rq->fence.flags);
1851 }
1852 spin_unlock(&ce->guc_state.lock);
1853 spin_unlock_irqrestore(&sched_engine->lock, flags);
1854 }
1855
__guc_reset_context(struct intel_context * ce,intel_engine_mask_t stalled)1856 static void __guc_reset_context(struct intel_context *ce, intel_engine_mask_t stalled)
1857 {
1858 bool guilty;
1859 struct i915_request *rq;
1860 unsigned long flags;
1861 u32 head;
1862 int i, number_children = ce->parallel.number_children;
1863 struct intel_context *parent = ce;
1864
1865 GEM_BUG_ON(intel_context_is_child(ce));
1866
1867 intel_context_get(ce);
1868
1869 /*
1870 * GuC will implicitly mark the context as non-schedulable when it sends
1871 * the reset notification. Make sure our state reflects this change. The
1872 * context will be marked enabled on resubmission.
1873 */
1874 spin_lock_irqsave(&ce->guc_state.lock, flags);
1875 clr_context_enabled(ce);
1876 spin_unlock_irqrestore(&ce->guc_state.lock, flags);
1877
1878 /*
1879 * For each context in the relationship find the hanging request
1880 * resetting each context / request as needed
1881 */
1882 for (i = 0; i < number_children + 1; ++i) {
1883 if (!intel_context_is_pinned(ce))
1884 goto next_context;
1885
1886 guilty = false;
1887 rq = intel_context_get_active_request(ce);
1888 if (!rq) {
1889 head = ce->ring->tail;
1890 goto out_replay;
1891 }
1892
1893 if (i915_request_started(rq))
1894 guilty = stalled & ce->engine->mask;
1895
1896 GEM_BUG_ON(i915_active_is_idle(&ce->active));
1897 head = intel_ring_wrap(ce->ring, rq->head);
1898
1899 __i915_request_reset(rq, guilty);
1900 i915_request_put(rq);
1901 out_replay:
1902 guc_reset_state(ce, head, guilty);
1903 next_context:
1904 if (i != number_children)
1905 ce = list_next_entry(ce, parallel.child_link);
1906 }
1907
1908 __unwind_incomplete_requests(parent);
1909 intel_context_put(parent);
1910 }
1911
wake_up_all_tlb_invalidate(struct intel_guc * guc)1912 void wake_up_all_tlb_invalidate(struct intel_guc *guc)
1913 {
1914 struct intel_guc_tlb_wait *wait;
1915 unsigned long i;
1916
1917 if (!intel_guc_tlb_invalidation_is_available(guc))
1918 return;
1919
1920 xa_lock_irq(&guc->tlb_lookup);
1921 xa_for_each(&guc->tlb_lookup, i, wait)
1922 wake_up(&wait->wq);
1923 xa_unlock_irq(&guc->tlb_lookup);
1924 }
1925
intel_guc_submission_reset(struct intel_guc * guc,intel_engine_mask_t stalled)1926 void intel_guc_submission_reset(struct intel_guc *guc, intel_engine_mask_t stalled)
1927 {
1928 struct intel_context *ce;
1929 unsigned long index;
1930 unsigned long flags;
1931
1932 if (unlikely(!guc_submission_initialized(guc))) {
1933 /* Reset called during driver load? GuC not yet initialised! */
1934 return;
1935 }
1936
1937 xa_lock_irqsave(&guc->context_lookup, flags);
1938 xa_for_each(&guc->context_lookup, index, ce) {
1939 if (!kref_get_unless_zero(&ce->ref))
1940 continue;
1941
1942 xa_unlock(&guc->context_lookup);
1943
1944 if (intel_context_is_pinned(ce) &&
1945 !intel_context_is_child(ce))
1946 __guc_reset_context(ce, stalled);
1947
1948 intel_context_put(ce);
1949
1950 xa_lock(&guc->context_lookup);
1951 }
1952 xa_unlock_irqrestore(&guc->context_lookup, flags);
1953
1954 /* GuC is blown away, drop all references to contexts */
1955 xa_destroy(&guc->context_lookup);
1956 }
1957
guc_cancel_context_requests(struct intel_context * ce)1958 static void guc_cancel_context_requests(struct intel_context *ce)
1959 {
1960 struct i915_sched_engine *sched_engine = ce_to_guc(ce)->sched_engine;
1961 struct i915_request *rq;
1962 unsigned long flags;
1963
1964 /* Mark all executing requests as skipped. */
1965 spin_lock_irqsave(&sched_engine->lock, flags);
1966 spin_lock(&ce->guc_state.lock);
1967 list_for_each_entry(rq, &ce->guc_state.requests, sched.link)
1968 i915_request_put(i915_request_mark_eio(rq));
1969 spin_unlock(&ce->guc_state.lock);
1970 spin_unlock_irqrestore(&sched_engine->lock, flags);
1971 }
1972
1973 static void
guc_cancel_sched_engine_requests(struct i915_sched_engine * sched_engine)1974 guc_cancel_sched_engine_requests(struct i915_sched_engine *sched_engine)
1975 {
1976 struct i915_request *rq, *rn;
1977 struct rb_node *rb;
1978 unsigned long flags;
1979
1980 /* Can be called during boot if GuC fails to load */
1981 if (!sched_engine)
1982 return;
1983
1984 /*
1985 * Before we call engine->cancel_requests(), we should have exclusive
1986 * access to the submission state. This is arranged for us by the
1987 * caller disabling the interrupt generation, the tasklet and other
1988 * threads that may then access the same state, giving us a free hand
1989 * to reset state. However, we still need to let lockdep be aware that
1990 * we know this state may be accessed in hardirq context, so we
1991 * disable the irq around this manipulation and we want to keep
1992 * the spinlock focused on its duties and not accidentally conflate
1993 * coverage to the submission's irq state. (Similarly, although we
1994 * shouldn't need to disable irq around the manipulation of the
1995 * submission's irq state, we also wish to remind ourselves that
1996 * it is irq state.)
1997 */
1998 spin_lock_irqsave(&sched_engine->lock, flags);
1999
2000 /* Flush the queued requests to the timeline list (for retiring). */
2001 while ((rb = rb_first_cached(&sched_engine->queue))) {
2002 struct i915_priolist *p = to_priolist(rb);
2003
2004 priolist_for_each_request_consume(rq, rn, p) {
2005 list_del_init(&rq->sched.link);
2006
2007 __i915_request_submit(rq);
2008
2009 i915_request_put(i915_request_mark_eio(rq));
2010 }
2011
2012 rb_erase_cached(&p->node, &sched_engine->queue);
2013 i915_priolist_free(p);
2014 }
2015
2016 /* Remaining _unready_ requests will be nop'ed when submitted */
2017
2018 sched_engine->queue_priority_hint = INT_MIN;
2019 sched_engine->queue = RB_ROOT_CACHED;
2020
2021 spin_unlock_irqrestore(&sched_engine->lock, flags);
2022 }
2023
intel_guc_submission_cancel_requests(struct intel_guc * guc)2024 void intel_guc_submission_cancel_requests(struct intel_guc *guc)
2025 {
2026 struct intel_context *ce;
2027 unsigned long index;
2028 unsigned long flags;
2029
2030 xa_lock_irqsave(&guc->context_lookup, flags);
2031 xa_for_each(&guc->context_lookup, index, ce) {
2032 if (!kref_get_unless_zero(&ce->ref))
2033 continue;
2034
2035 xa_unlock(&guc->context_lookup);
2036
2037 if (intel_context_is_pinned(ce) &&
2038 !intel_context_is_child(ce))
2039 guc_cancel_context_requests(ce);
2040
2041 intel_context_put(ce);
2042
2043 xa_lock(&guc->context_lookup);
2044 }
2045 xa_unlock_irqrestore(&guc->context_lookup, flags);
2046
2047 guc_cancel_sched_engine_requests(guc->sched_engine);
2048
2049 /* GuC is blown away, drop all references to contexts */
2050 xa_destroy(&guc->context_lookup);
2051
2052 /*
2053 * Wedged GT won't respond to any TLB invalidation request. Simply
2054 * release all the blocked waiters.
2055 */
2056 wake_up_all_tlb_invalidate(guc);
2057 }
2058
intel_guc_submission_reset_finish(struct intel_guc * guc)2059 void intel_guc_submission_reset_finish(struct intel_guc *guc)
2060 {
2061 /* Reset called during driver load or during wedge? */
2062 if (unlikely(!guc_submission_initialized(guc) ||
2063 !intel_guc_is_fw_running(guc) ||
2064 intel_gt_is_wedged(guc_to_gt(guc)))) {
2065 return;
2066 }
2067
2068 /*
2069 * Technically possible for either of these values to be non-zero here,
2070 * but very unlikely + harmless. Regardless let's add an error so we can
2071 * see in CI if this happens frequently / a precursor to taking down the
2072 * machine.
2073 */
2074 if (atomic_read(&guc->outstanding_submission_g2h))
2075 guc_err(guc, "Unexpected outstanding GuC to Host in reset finish\n");
2076 atomic_set(&guc->outstanding_submission_g2h, 0);
2077
2078 intel_guc_global_policies_update(guc);
2079 enable_submission(guc);
2080 intel_gt_unpark_heartbeats(guc_to_gt(guc));
2081
2082 /*
2083 * The full GT reset will have cleared the TLB caches and flushed the
2084 * G2H message queue; we can release all the blocked waiters.
2085 */
2086 wake_up_all_tlb_invalidate(guc);
2087 }
2088
2089 static void destroyed_worker_func(struct work_struct *w);
2090 static void reset_fail_worker_func(struct work_struct *w);
2091
intel_guc_tlb_invalidation_is_available(struct intel_guc * guc)2092 bool intel_guc_tlb_invalidation_is_available(struct intel_guc *guc)
2093 {
2094 return HAS_GUC_TLB_INVALIDATION(guc_to_gt(guc)->i915) &&
2095 intel_guc_is_ready(guc);
2096 }
2097
init_tlb_lookup(struct intel_guc * guc)2098 static int init_tlb_lookup(struct intel_guc *guc)
2099 {
2100 struct intel_guc_tlb_wait *wait;
2101 int err;
2102
2103 if (!HAS_GUC_TLB_INVALIDATION(guc_to_gt(guc)->i915))
2104 return 0;
2105
2106 xa_init_flags(&guc->tlb_lookup, XA_FLAGS_ALLOC);
2107
2108 wait = kzalloc(sizeof(*wait), GFP_KERNEL);
2109 if (!wait)
2110 return -ENOMEM;
2111
2112 init_waitqueue_head(&wait->wq);
2113
2114 /* Preallocate a shared id for use under memory pressure. */
2115 err = xa_alloc_cyclic_irq(&guc->tlb_lookup, &guc->serial_slot, wait,
2116 xa_limit_32b, &guc->next_seqno, GFP_KERNEL);
2117 if (err < 0) {
2118 kfree(wait);
2119 return err;
2120 }
2121
2122 return 0;
2123 }
2124
fini_tlb_lookup(struct intel_guc * guc)2125 static void fini_tlb_lookup(struct intel_guc *guc)
2126 {
2127 struct intel_guc_tlb_wait *wait;
2128
2129 if (!HAS_GUC_TLB_INVALIDATION(guc_to_gt(guc)->i915))
2130 return;
2131
2132 wait = xa_load(&guc->tlb_lookup, guc->serial_slot);
2133 if (wait && wait->busy)
2134 guc_err(guc, "Unexpected busy item in tlb_lookup on fini\n");
2135 kfree(wait);
2136
2137 xa_destroy(&guc->tlb_lookup);
2138 }
2139
2140 /*
2141 * Set up the memory resources to be shared with the GuC (via the GGTT)
2142 * at firmware loading time.
2143 */
intel_guc_submission_init(struct intel_guc * guc)2144 int intel_guc_submission_init(struct intel_guc *guc)
2145 {
2146 struct intel_gt *gt = guc_to_gt(guc);
2147 int ret;
2148
2149 if (guc->submission_initialized)
2150 return 0;
2151
2152 if (GUC_SUBMIT_VER(guc) < MAKE_GUC_VER(1, 0, 0)) {
2153 ret = guc_lrc_desc_pool_create_v69(guc);
2154 if (ret)
2155 return ret;
2156 }
2157
2158 ret = init_tlb_lookup(guc);
2159 if (ret)
2160 goto destroy_pool;
2161
2162 guc->submission_state.guc_ids_bitmap =
2163 bitmap_zalloc(NUMBER_MULTI_LRC_GUC_ID(guc), GFP_KERNEL);
2164 if (!guc->submission_state.guc_ids_bitmap) {
2165 ret = -ENOMEM;
2166 goto destroy_tlb;
2167 }
2168
2169 guc->timestamp.ping_delay = (POLL_TIME_CLKS / gt->clock_frequency + 1) * HZ;
2170 guc->timestamp.shift = gpm_timestamp_shift(gt);
2171 guc->submission_initialized = true;
2172
2173 return 0;
2174
2175 destroy_tlb:
2176 fini_tlb_lookup(guc);
2177 destroy_pool:
2178 guc_lrc_desc_pool_destroy_v69(guc);
2179 return ret;
2180 }
2181
intel_guc_submission_fini(struct intel_guc * guc)2182 void intel_guc_submission_fini(struct intel_guc *guc)
2183 {
2184 if (!guc->submission_initialized)
2185 return;
2186
2187 guc_fini_engine_stats(guc);
2188 guc_flush_destroyed_contexts(guc);
2189 guc_lrc_desc_pool_destroy_v69(guc);
2190 i915_sched_engine_put(guc->sched_engine);
2191 bitmap_free(guc->submission_state.guc_ids_bitmap);
2192 fini_tlb_lookup(guc);
2193 guc->submission_initialized = false;
2194 }
2195
queue_request(struct i915_sched_engine * sched_engine,struct i915_request * rq,int prio)2196 static inline void queue_request(struct i915_sched_engine *sched_engine,
2197 struct i915_request *rq,
2198 int prio)
2199 {
2200 GEM_BUG_ON(!list_empty(&rq->sched.link));
2201 list_add_tail(&rq->sched.link,
2202 i915_sched_lookup_priolist(sched_engine, prio));
2203 set_bit(I915_FENCE_FLAG_PQUEUE, &rq->fence.flags);
2204 tasklet_hi_schedule(&sched_engine->tasklet);
2205 }
2206
guc_bypass_tasklet_submit(struct intel_guc * guc,struct i915_request * rq)2207 static int guc_bypass_tasklet_submit(struct intel_guc *guc,
2208 struct i915_request *rq)
2209 {
2210 int ret = 0;
2211
2212 __i915_request_submit(rq);
2213
2214 trace_i915_request_in(rq, 0);
2215
2216 if (is_multi_lrc_rq(rq)) {
2217 if (multi_lrc_submit(rq)) {
2218 ret = guc_wq_item_append(guc, rq);
2219 if (!ret)
2220 ret = guc_add_request(guc, rq);
2221 }
2222 } else {
2223 guc_set_lrc_tail(rq);
2224 ret = guc_add_request(guc, rq);
2225 }
2226
2227 if (unlikely(ret == -EPIPE))
2228 disable_submission(guc);
2229
2230 return ret;
2231 }
2232
need_tasklet(struct intel_guc * guc,struct i915_request * rq)2233 static bool need_tasklet(struct intel_guc *guc, struct i915_request *rq)
2234 {
2235 struct i915_sched_engine *sched_engine = rq->engine->sched_engine;
2236 struct intel_context *ce = request_to_scheduling_context(rq);
2237
2238 return submission_disabled(guc) || guc->stalled_request ||
2239 !i915_sched_engine_is_empty(sched_engine) ||
2240 !ctx_id_mapped(guc, ce->guc_id.id);
2241 }
2242
guc_submit_request(struct i915_request * rq)2243 static void guc_submit_request(struct i915_request *rq)
2244 {
2245 struct i915_sched_engine *sched_engine = rq->engine->sched_engine;
2246 struct intel_guc *guc = gt_to_guc(rq->engine->gt);
2247 unsigned long flags;
2248
2249 /* Will be called from irq-context when using foreign fences. */
2250 spin_lock_irqsave(&sched_engine->lock, flags);
2251
2252 if (need_tasklet(guc, rq))
2253 queue_request(sched_engine, rq, rq_prio(rq));
2254 else if (guc_bypass_tasklet_submit(guc, rq) == -EBUSY)
2255 tasklet_hi_schedule(&sched_engine->tasklet);
2256
2257 spin_unlock_irqrestore(&sched_engine->lock, flags);
2258 }
2259
new_guc_id(struct intel_guc * guc,struct intel_context * ce)2260 static int new_guc_id(struct intel_guc *guc, struct intel_context *ce)
2261 {
2262 int ret;
2263
2264 GEM_BUG_ON(intel_context_is_child(ce));
2265
2266 if (intel_context_is_parent(ce))
2267 ret = bitmap_find_free_region(guc->submission_state.guc_ids_bitmap,
2268 NUMBER_MULTI_LRC_GUC_ID(guc),
2269 order_base_2(ce->parallel.number_children
2270 + 1));
2271 else
2272 ret = ida_alloc_range(&guc->submission_state.guc_ids,
2273 NUMBER_MULTI_LRC_GUC_ID(guc),
2274 guc->submission_state.num_guc_ids - 1,
2275 GFP_KERNEL | __GFP_RETRY_MAYFAIL | __GFP_NOWARN);
2276 if (unlikely(ret < 0))
2277 return ret;
2278
2279 if (!intel_context_is_parent(ce))
2280 ++guc->submission_state.guc_ids_in_use;
2281
2282 ce->guc_id.id = ret;
2283 return 0;
2284 }
2285
__release_guc_id(struct intel_guc * guc,struct intel_context * ce)2286 static void __release_guc_id(struct intel_guc *guc, struct intel_context *ce)
2287 {
2288 GEM_BUG_ON(intel_context_is_child(ce));
2289
2290 if (!context_guc_id_invalid(ce)) {
2291 if (intel_context_is_parent(ce)) {
2292 bitmap_release_region(guc->submission_state.guc_ids_bitmap,
2293 ce->guc_id.id,
2294 order_base_2(ce->parallel.number_children
2295 + 1));
2296 } else {
2297 --guc->submission_state.guc_ids_in_use;
2298 ida_free(&guc->submission_state.guc_ids,
2299 ce->guc_id.id);
2300 }
2301 clr_ctx_id_mapping(guc, ce->guc_id.id);
2302 set_context_guc_id_invalid(ce);
2303 }
2304 if (!list_empty(&ce->guc_id.link))
2305 list_del_init(&ce->guc_id.link);
2306 }
2307
release_guc_id(struct intel_guc * guc,struct intel_context * ce)2308 static void release_guc_id(struct intel_guc *guc, struct intel_context *ce)
2309 {
2310 unsigned long flags;
2311
2312 spin_lock_irqsave(&guc->submission_state.lock, flags);
2313 __release_guc_id(guc, ce);
2314 spin_unlock_irqrestore(&guc->submission_state.lock, flags);
2315 }
2316
steal_guc_id(struct intel_guc * guc,struct intel_context * ce)2317 static int steal_guc_id(struct intel_guc *guc, struct intel_context *ce)
2318 {
2319 struct intel_context *cn;
2320
2321 lockdep_assert_held(&guc->submission_state.lock);
2322 GEM_BUG_ON(intel_context_is_child(ce));
2323 GEM_BUG_ON(intel_context_is_parent(ce));
2324
2325 if (!list_empty(&guc->submission_state.guc_id_list)) {
2326 cn = list_first_entry(&guc->submission_state.guc_id_list,
2327 struct intel_context,
2328 guc_id.link);
2329
2330 GEM_BUG_ON(atomic_read(&cn->guc_id.ref));
2331 GEM_BUG_ON(context_guc_id_invalid(cn));
2332 GEM_BUG_ON(intel_context_is_child(cn));
2333 GEM_BUG_ON(intel_context_is_parent(cn));
2334
2335 list_del_init(&cn->guc_id.link);
2336 ce->guc_id.id = cn->guc_id.id;
2337
2338 spin_lock(&cn->guc_state.lock);
2339 clr_context_registered(cn);
2340 spin_unlock(&cn->guc_state.lock);
2341
2342 set_context_guc_id_invalid(cn);
2343
2344 #ifdef CONFIG_DRM_I915_SELFTEST
2345 guc->number_guc_id_stolen++;
2346 #endif
2347
2348 return 0;
2349 } else {
2350 return -EAGAIN;
2351 }
2352 }
2353
assign_guc_id(struct intel_guc * guc,struct intel_context * ce)2354 static int assign_guc_id(struct intel_guc *guc, struct intel_context *ce)
2355 {
2356 int ret;
2357
2358 lockdep_assert_held(&guc->submission_state.lock);
2359 GEM_BUG_ON(intel_context_is_child(ce));
2360
2361 ret = new_guc_id(guc, ce);
2362 if (unlikely(ret < 0)) {
2363 if (intel_context_is_parent(ce))
2364 return -ENOSPC;
2365
2366 ret = steal_guc_id(guc, ce);
2367 if (ret < 0)
2368 return ret;
2369 }
2370
2371 if (intel_context_is_parent(ce)) {
2372 struct intel_context *child;
2373 int i = 1;
2374
2375 for_each_child(ce, child)
2376 child->guc_id.id = ce->guc_id.id + i++;
2377 }
2378
2379 return 0;
2380 }
2381
2382 #define PIN_GUC_ID_TRIES 4
pin_guc_id(struct intel_guc * guc,struct intel_context * ce)2383 static int pin_guc_id(struct intel_guc *guc, struct intel_context *ce)
2384 {
2385 int ret = 0;
2386 unsigned long flags, tries = PIN_GUC_ID_TRIES;
2387
2388 GEM_BUG_ON(atomic_read(&ce->guc_id.ref));
2389
2390 try_again:
2391 spin_lock_irqsave(&guc->submission_state.lock, flags);
2392
2393 might_lock(&ce->guc_state.lock);
2394
2395 if (context_guc_id_invalid(ce)) {
2396 ret = assign_guc_id(guc, ce);
2397 if (ret)
2398 goto out_unlock;
2399 ret = 1; /* Indidcates newly assigned guc_id */
2400 }
2401 if (!list_empty(&ce->guc_id.link))
2402 list_del_init(&ce->guc_id.link);
2403 atomic_inc(&ce->guc_id.ref);
2404
2405 out_unlock:
2406 spin_unlock_irqrestore(&guc->submission_state.lock, flags);
2407
2408 /*
2409 * -EAGAIN indicates no guc_id are available, let's retire any
2410 * outstanding requests to see if that frees up a guc_id. If the first
2411 * retire didn't help, insert a sleep with the timeslice duration before
2412 * attempting to retire more requests. Double the sleep period each
2413 * subsequent pass before finally giving up. The sleep period has max of
2414 * 100ms and minimum of 1ms.
2415 */
2416 if (ret == -EAGAIN && --tries) {
2417 if (PIN_GUC_ID_TRIES - tries > 1) {
2418 unsigned int timeslice_shifted =
2419 ce->engine->props.timeslice_duration_ms <<
2420 (PIN_GUC_ID_TRIES - tries - 2);
2421 unsigned int max = min_t(unsigned int, 100,
2422 timeslice_shifted);
2423
2424 msleep(max_t(unsigned int, max, 1));
2425 }
2426 intel_gt_retire_requests(guc_to_gt(guc));
2427 goto try_again;
2428 }
2429
2430 return ret;
2431 }
2432
unpin_guc_id(struct intel_guc * guc,struct intel_context * ce)2433 static void unpin_guc_id(struct intel_guc *guc, struct intel_context *ce)
2434 {
2435 unsigned long flags;
2436
2437 GEM_BUG_ON(atomic_read(&ce->guc_id.ref) < 0);
2438 GEM_BUG_ON(intel_context_is_child(ce));
2439
2440 if (unlikely(context_guc_id_invalid(ce) ||
2441 intel_context_is_parent(ce)))
2442 return;
2443
2444 spin_lock_irqsave(&guc->submission_state.lock, flags);
2445 if (!context_guc_id_invalid(ce) && list_empty(&ce->guc_id.link) &&
2446 !atomic_read(&ce->guc_id.ref))
2447 list_add_tail(&ce->guc_id.link,
2448 &guc->submission_state.guc_id_list);
2449 spin_unlock_irqrestore(&guc->submission_state.lock, flags);
2450 }
2451
__guc_action_register_multi_lrc_v69(struct intel_guc * guc,struct intel_context * ce,u32 guc_id,u32 offset,bool loop)2452 static int __guc_action_register_multi_lrc_v69(struct intel_guc *guc,
2453 struct intel_context *ce,
2454 u32 guc_id,
2455 u32 offset,
2456 bool loop)
2457 {
2458 struct intel_context *child;
2459 u32 action[4 + MAX_ENGINE_INSTANCE];
2460 int len = 0;
2461
2462 GEM_BUG_ON(ce->parallel.number_children > MAX_ENGINE_INSTANCE);
2463
2464 action[len++] = INTEL_GUC_ACTION_REGISTER_CONTEXT_MULTI_LRC;
2465 action[len++] = guc_id;
2466 action[len++] = ce->parallel.number_children + 1;
2467 action[len++] = offset;
2468 for_each_child(ce, child) {
2469 offset += sizeof(struct guc_lrc_desc_v69);
2470 action[len++] = offset;
2471 }
2472
2473 return guc_submission_send_busy_loop(guc, action, len, 0, loop);
2474 }
2475
__guc_action_register_multi_lrc_v70(struct intel_guc * guc,struct intel_context * ce,struct guc_ctxt_registration_info * info,bool loop)2476 static int __guc_action_register_multi_lrc_v70(struct intel_guc *guc,
2477 struct intel_context *ce,
2478 struct guc_ctxt_registration_info *info,
2479 bool loop)
2480 {
2481 struct intel_context *child;
2482 u32 action[13 + (MAX_ENGINE_INSTANCE * 2)];
2483 int len = 0;
2484 u32 next_id;
2485
2486 GEM_BUG_ON(ce->parallel.number_children > MAX_ENGINE_INSTANCE);
2487
2488 action[len++] = INTEL_GUC_ACTION_REGISTER_CONTEXT_MULTI_LRC;
2489 action[len++] = info->flags;
2490 action[len++] = info->context_idx;
2491 action[len++] = info->engine_class;
2492 action[len++] = info->engine_submit_mask;
2493 action[len++] = info->wq_desc_lo;
2494 action[len++] = info->wq_desc_hi;
2495 action[len++] = info->wq_base_lo;
2496 action[len++] = info->wq_base_hi;
2497 action[len++] = info->wq_size;
2498 action[len++] = ce->parallel.number_children + 1;
2499 action[len++] = info->hwlrca_lo;
2500 action[len++] = info->hwlrca_hi;
2501
2502 next_id = info->context_idx + 1;
2503 for_each_child(ce, child) {
2504 GEM_BUG_ON(next_id++ != child->guc_id.id);
2505
2506 /*
2507 * NB: GuC interface supports 64 bit LRCA even though i915/HW
2508 * only supports 32 bit currently.
2509 */
2510 action[len++] = lower_32_bits(child->lrc.lrca);
2511 action[len++] = upper_32_bits(child->lrc.lrca);
2512 }
2513
2514 GEM_BUG_ON(len > ARRAY_SIZE(action));
2515
2516 return guc_submission_send_busy_loop(guc, action, len, 0, loop);
2517 }
2518
__guc_action_register_context_v69(struct intel_guc * guc,u32 guc_id,u32 offset,bool loop)2519 static int __guc_action_register_context_v69(struct intel_guc *guc,
2520 u32 guc_id,
2521 u32 offset,
2522 bool loop)
2523 {
2524 u32 action[] = {
2525 INTEL_GUC_ACTION_REGISTER_CONTEXT,
2526 guc_id,
2527 offset,
2528 };
2529
2530 return guc_submission_send_busy_loop(guc, action, ARRAY_SIZE(action),
2531 0, loop);
2532 }
2533
__guc_action_register_context_v70(struct intel_guc * guc,struct guc_ctxt_registration_info * info,bool loop)2534 static int __guc_action_register_context_v70(struct intel_guc *guc,
2535 struct guc_ctxt_registration_info *info,
2536 bool loop)
2537 {
2538 u32 action[] = {
2539 INTEL_GUC_ACTION_REGISTER_CONTEXT,
2540 info->flags,
2541 info->context_idx,
2542 info->engine_class,
2543 info->engine_submit_mask,
2544 info->wq_desc_lo,
2545 info->wq_desc_hi,
2546 info->wq_base_lo,
2547 info->wq_base_hi,
2548 info->wq_size,
2549 info->hwlrca_lo,
2550 info->hwlrca_hi,
2551 };
2552
2553 return guc_submission_send_busy_loop(guc, action, ARRAY_SIZE(action),
2554 0, loop);
2555 }
2556
2557 static void prepare_context_registration_info_v69(struct intel_context *ce);
2558 static void prepare_context_registration_info_v70(struct intel_context *ce,
2559 struct guc_ctxt_registration_info *info);
2560
2561 static int
register_context_v69(struct intel_guc * guc,struct intel_context * ce,bool loop)2562 register_context_v69(struct intel_guc *guc, struct intel_context *ce, bool loop)
2563 {
2564 u32 offset = intel_guc_ggtt_offset(guc, guc->lrc_desc_pool_v69) +
2565 ce->guc_id.id * sizeof(struct guc_lrc_desc_v69);
2566
2567 prepare_context_registration_info_v69(ce);
2568
2569 if (intel_context_is_parent(ce))
2570 return __guc_action_register_multi_lrc_v69(guc, ce, ce->guc_id.id,
2571 offset, loop);
2572 else
2573 return __guc_action_register_context_v69(guc, ce->guc_id.id,
2574 offset, loop);
2575 }
2576
2577 static int
register_context_v70(struct intel_guc * guc,struct intel_context * ce,bool loop)2578 register_context_v70(struct intel_guc *guc, struct intel_context *ce, bool loop)
2579 {
2580 struct guc_ctxt_registration_info info;
2581
2582 prepare_context_registration_info_v70(ce, &info);
2583
2584 if (intel_context_is_parent(ce))
2585 return __guc_action_register_multi_lrc_v70(guc, ce, &info, loop);
2586 else
2587 return __guc_action_register_context_v70(guc, &info, loop);
2588 }
2589
register_context(struct intel_context * ce,bool loop)2590 static int register_context(struct intel_context *ce, bool loop)
2591 {
2592 struct intel_guc *guc = ce_to_guc(ce);
2593 int ret;
2594
2595 GEM_BUG_ON(intel_context_is_child(ce));
2596 trace_intel_context_register(ce);
2597
2598 if (GUC_SUBMIT_VER(guc) >= MAKE_GUC_VER(1, 0, 0))
2599 ret = register_context_v70(guc, ce, loop);
2600 else
2601 ret = register_context_v69(guc, ce, loop);
2602
2603 if (likely(!ret)) {
2604 unsigned long flags;
2605
2606 spin_lock_irqsave(&ce->guc_state.lock, flags);
2607 set_context_registered(ce);
2608 spin_unlock_irqrestore(&ce->guc_state.lock, flags);
2609
2610 if (GUC_SUBMIT_VER(guc) >= MAKE_GUC_VER(1, 0, 0))
2611 guc_context_policy_init_v70(ce, loop);
2612 }
2613
2614 return ret;
2615 }
2616
__guc_action_deregister_context(struct intel_guc * guc,u32 guc_id)2617 static int __guc_action_deregister_context(struct intel_guc *guc,
2618 u32 guc_id)
2619 {
2620 u32 action[] = {
2621 INTEL_GUC_ACTION_DEREGISTER_CONTEXT,
2622 guc_id,
2623 };
2624
2625 return guc_submission_send_busy_loop(guc, action, ARRAY_SIZE(action),
2626 G2H_LEN_DW_DEREGISTER_CONTEXT,
2627 true);
2628 }
2629
deregister_context(struct intel_context * ce,u32 guc_id)2630 static int deregister_context(struct intel_context *ce, u32 guc_id)
2631 {
2632 struct intel_guc *guc = ce_to_guc(ce);
2633
2634 GEM_BUG_ON(intel_context_is_child(ce));
2635 trace_intel_context_deregister(ce);
2636
2637 return __guc_action_deregister_context(guc, guc_id);
2638 }
2639
clear_children_join_go_memory(struct intel_context * ce)2640 static inline void clear_children_join_go_memory(struct intel_context *ce)
2641 {
2642 struct parent_scratch *ps = __get_parent_scratch(ce);
2643 int i;
2644
2645 ps->go.semaphore = 0;
2646 for (i = 0; i < ce->parallel.number_children + 1; ++i)
2647 ps->join[i].semaphore = 0;
2648 }
2649
get_children_go_value(struct intel_context * ce)2650 static inline u32 get_children_go_value(struct intel_context *ce)
2651 {
2652 return __get_parent_scratch(ce)->go.semaphore;
2653 }
2654
get_children_join_value(struct intel_context * ce,u8 child_index)2655 static inline u32 get_children_join_value(struct intel_context *ce,
2656 u8 child_index)
2657 {
2658 return __get_parent_scratch(ce)->join[child_index].semaphore;
2659 }
2660
2661 struct context_policy {
2662 u32 count;
2663 struct guc_update_context_policy h2g;
2664 };
2665
__guc_context_policy_action_size(struct context_policy * policy)2666 static u32 __guc_context_policy_action_size(struct context_policy *policy)
2667 {
2668 size_t bytes = sizeof(policy->h2g.header) +
2669 (sizeof(policy->h2g.klv[0]) * policy->count);
2670
2671 return bytes / sizeof(u32);
2672 }
2673
__guc_context_policy_start_klv(struct context_policy * policy,u16 guc_id)2674 static void __guc_context_policy_start_klv(struct context_policy *policy, u16 guc_id)
2675 {
2676 policy->h2g.header.action = INTEL_GUC_ACTION_HOST2GUC_UPDATE_CONTEXT_POLICIES;
2677 policy->h2g.header.ctx_id = guc_id;
2678 policy->count = 0;
2679 }
2680
2681 #define MAKE_CONTEXT_POLICY_ADD(func, id) \
2682 static void __guc_context_policy_add_##func(struct context_policy *policy, u32 data) \
2683 { \
2684 GEM_BUG_ON(policy->count >= GUC_CONTEXT_POLICIES_KLV_NUM_IDS); \
2685 policy->h2g.klv[policy->count].kl = \
2686 FIELD_PREP(GUC_KLV_0_KEY, GUC_CONTEXT_POLICIES_KLV_ID_##id) | \
2687 FIELD_PREP(GUC_KLV_0_LEN, 1); \
2688 policy->h2g.klv[policy->count].value = data; \
2689 policy->count++; \
2690 }
2691
MAKE_CONTEXT_POLICY_ADD(execution_quantum,EXECUTION_QUANTUM)2692 MAKE_CONTEXT_POLICY_ADD(execution_quantum, EXECUTION_QUANTUM)
2693 MAKE_CONTEXT_POLICY_ADD(preemption_timeout, PREEMPTION_TIMEOUT)
2694 MAKE_CONTEXT_POLICY_ADD(priority, SCHEDULING_PRIORITY)
2695 MAKE_CONTEXT_POLICY_ADD(preempt_to_idle, PREEMPT_TO_IDLE_ON_QUANTUM_EXPIRY)
2696 MAKE_CONTEXT_POLICY_ADD(slpc_ctx_freq_req, SLPM_GT_FREQUENCY)
2697
2698 #undef MAKE_CONTEXT_POLICY_ADD
2699
2700 static int __guc_context_set_context_policies(struct intel_guc *guc,
2701 struct context_policy *policy,
2702 bool loop)
2703 {
2704 return guc_submission_send_busy_loop(guc, (u32 *)&policy->h2g,
2705 __guc_context_policy_action_size(policy),
2706 0, loop);
2707 }
2708
guc_context_policy_init_v70(struct intel_context * ce,bool loop)2709 static int guc_context_policy_init_v70(struct intel_context *ce, bool loop)
2710 {
2711 struct intel_engine_cs *engine = ce->engine;
2712 struct intel_guc *guc = gt_to_guc(engine->gt);
2713 struct context_policy policy;
2714 u32 execution_quantum;
2715 u32 preemption_timeout;
2716 u32 slpc_ctx_freq_req = 0;
2717 unsigned long flags;
2718 int ret;
2719
2720 /* NB: For both of these, zero means disabled. */
2721 GEM_BUG_ON(overflows_type(engine->props.timeslice_duration_ms * 1000,
2722 execution_quantum));
2723 GEM_BUG_ON(overflows_type(engine->props.preempt_timeout_ms * 1000,
2724 preemption_timeout));
2725 execution_quantum = engine->props.timeslice_duration_ms * 1000;
2726 preemption_timeout = engine->props.preempt_timeout_ms * 1000;
2727
2728 if (ce->flags & BIT(CONTEXT_LOW_LATENCY))
2729 slpc_ctx_freq_req |= SLPC_CTX_FREQ_REQ_IS_COMPUTE;
2730
2731 __guc_context_policy_start_klv(&policy, ce->guc_id.id);
2732
2733 __guc_context_policy_add_priority(&policy, ce->guc_state.prio);
2734 __guc_context_policy_add_execution_quantum(&policy, execution_quantum);
2735 __guc_context_policy_add_preemption_timeout(&policy, preemption_timeout);
2736 __guc_context_policy_add_slpc_ctx_freq_req(&policy, slpc_ctx_freq_req);
2737
2738 if (engine->flags & I915_ENGINE_WANT_FORCED_PREEMPTION)
2739 __guc_context_policy_add_preempt_to_idle(&policy, 1);
2740
2741 ret = __guc_context_set_context_policies(guc, &policy, loop);
2742
2743 spin_lock_irqsave(&ce->guc_state.lock, flags);
2744 if (ret != 0)
2745 set_context_policy_required(ce);
2746 else
2747 clr_context_policy_required(ce);
2748 spin_unlock_irqrestore(&ce->guc_state.lock, flags);
2749
2750 return ret;
2751 }
2752
guc_context_policy_init_v69(struct intel_engine_cs * engine,struct guc_lrc_desc_v69 * desc)2753 static void guc_context_policy_init_v69(struct intel_engine_cs *engine,
2754 struct guc_lrc_desc_v69 *desc)
2755 {
2756 desc->policy_flags = 0;
2757
2758 if (engine->flags & I915_ENGINE_WANT_FORCED_PREEMPTION)
2759 desc->policy_flags |= CONTEXT_POLICY_FLAG_PREEMPT_TO_IDLE_V69;
2760
2761 /* NB: For both of these, zero means disabled. */
2762 GEM_BUG_ON(overflows_type(engine->props.timeslice_duration_ms * 1000,
2763 desc->execution_quantum));
2764 GEM_BUG_ON(overflows_type(engine->props.preempt_timeout_ms * 1000,
2765 desc->preemption_timeout));
2766 desc->execution_quantum = engine->props.timeslice_duration_ms * 1000;
2767 desc->preemption_timeout = engine->props.preempt_timeout_ms * 1000;
2768 }
2769
map_guc_prio_to_lrc_desc_prio(u8 prio)2770 static u32 map_guc_prio_to_lrc_desc_prio(u8 prio)
2771 {
2772 /*
2773 * this matches the mapping we do in map_i915_prio_to_guc_prio()
2774 * (e.g. prio < I915_PRIORITY_NORMAL maps to GUC_CLIENT_PRIORITY_NORMAL)
2775 */
2776 switch (prio) {
2777 default:
2778 MISSING_CASE(prio);
2779 fallthrough;
2780 case GUC_CLIENT_PRIORITY_KMD_NORMAL:
2781 return GEN12_CTX_PRIORITY_NORMAL;
2782 case GUC_CLIENT_PRIORITY_NORMAL:
2783 return GEN12_CTX_PRIORITY_LOW;
2784 case GUC_CLIENT_PRIORITY_HIGH:
2785 case GUC_CLIENT_PRIORITY_KMD_HIGH:
2786 return GEN12_CTX_PRIORITY_HIGH;
2787 }
2788 }
2789
prepare_context_registration_info_v69(struct intel_context * ce)2790 static void prepare_context_registration_info_v69(struct intel_context *ce)
2791 {
2792 struct intel_engine_cs *engine = ce->engine;
2793 struct intel_guc *guc = gt_to_guc(engine->gt);
2794 u32 ctx_id = ce->guc_id.id;
2795 struct guc_lrc_desc_v69 *desc;
2796 struct intel_context *child;
2797
2798 GEM_BUG_ON(!engine->mask);
2799
2800 /*
2801 * Ensure LRC + CT vmas are is same region as write barrier is done
2802 * based on CT vma region.
2803 */
2804 GEM_BUG_ON(i915_gem_object_is_lmem(guc->ct.vma->obj) !=
2805 i915_gem_object_is_lmem(ce->ring->vma->obj));
2806
2807 desc = __get_lrc_desc_v69(guc, ctx_id);
2808 GEM_BUG_ON(!desc);
2809 desc->engine_class = engine_class_to_guc_class(engine->class);
2810 desc->engine_submit_mask = engine->logical_mask;
2811 desc->hw_context_desc = ce->lrc.lrca;
2812 desc->priority = ce->guc_state.prio;
2813 desc->context_flags = CONTEXT_REGISTRATION_FLAG_KMD;
2814 guc_context_policy_init_v69(engine, desc);
2815
2816 /*
2817 * If context is a parent, we need to register a process descriptor
2818 * describing a work queue and register all child contexts.
2819 */
2820 if (intel_context_is_parent(ce)) {
2821 struct guc_process_desc_v69 *pdesc;
2822
2823 ce->parallel.guc.wqi_tail = 0;
2824 ce->parallel.guc.wqi_head = 0;
2825
2826 desc->process_desc = i915_ggtt_offset(ce->state) +
2827 __get_parent_scratch_offset(ce);
2828 desc->wq_addr = i915_ggtt_offset(ce->state) +
2829 __get_wq_offset(ce);
2830 desc->wq_size = WQ_SIZE;
2831
2832 pdesc = __get_process_desc_v69(ce);
2833 memset(pdesc, 0, sizeof(*(pdesc)));
2834 pdesc->stage_id = ce->guc_id.id;
2835 pdesc->wq_base_addr = desc->wq_addr;
2836 pdesc->wq_size_bytes = desc->wq_size;
2837 pdesc->wq_status = WQ_STATUS_ACTIVE;
2838
2839 ce->parallel.guc.wq_head = &pdesc->head;
2840 ce->parallel.guc.wq_tail = &pdesc->tail;
2841 ce->parallel.guc.wq_status = &pdesc->wq_status;
2842
2843 for_each_child(ce, child) {
2844 desc = __get_lrc_desc_v69(guc, child->guc_id.id);
2845
2846 desc->engine_class =
2847 engine_class_to_guc_class(engine->class);
2848 desc->hw_context_desc = child->lrc.lrca;
2849 desc->priority = ce->guc_state.prio;
2850 desc->context_flags = CONTEXT_REGISTRATION_FLAG_KMD;
2851 guc_context_policy_init_v69(engine, desc);
2852 }
2853
2854 clear_children_join_go_memory(ce);
2855 }
2856 }
2857
prepare_context_registration_info_v70(struct intel_context * ce,struct guc_ctxt_registration_info * info)2858 static void prepare_context_registration_info_v70(struct intel_context *ce,
2859 struct guc_ctxt_registration_info *info)
2860 {
2861 struct intel_engine_cs *engine = ce->engine;
2862 struct intel_guc *guc = gt_to_guc(engine->gt);
2863 u32 ctx_id = ce->guc_id.id;
2864
2865 GEM_BUG_ON(!engine->mask);
2866
2867 /*
2868 * Ensure LRC + CT vmas are is same region as write barrier is done
2869 * based on CT vma region.
2870 */
2871 GEM_BUG_ON(i915_gem_object_is_lmem(guc->ct.vma->obj) !=
2872 i915_gem_object_is_lmem(ce->ring->vma->obj));
2873
2874 memset(info, 0, sizeof(*info));
2875 info->context_idx = ctx_id;
2876 info->engine_class = engine_class_to_guc_class(engine->class);
2877 info->engine_submit_mask = engine->logical_mask;
2878 /*
2879 * NB: GuC interface supports 64 bit LRCA even though i915/HW
2880 * only supports 32 bit currently.
2881 */
2882 info->hwlrca_lo = lower_32_bits(ce->lrc.lrca);
2883 info->hwlrca_hi = upper_32_bits(ce->lrc.lrca);
2884 if (engine->flags & I915_ENGINE_HAS_EU_PRIORITY)
2885 info->hwlrca_lo |= map_guc_prio_to_lrc_desc_prio(ce->guc_state.prio);
2886 info->flags = CONTEXT_REGISTRATION_FLAG_KMD;
2887
2888 /*
2889 * If context is a parent, we need to register a process descriptor
2890 * describing a work queue and register all child contexts.
2891 */
2892 if (intel_context_is_parent(ce)) {
2893 struct guc_sched_wq_desc *wq_desc;
2894 u64 wq_desc_offset, wq_base_offset;
2895
2896 ce->parallel.guc.wqi_tail = 0;
2897 ce->parallel.guc.wqi_head = 0;
2898
2899 wq_desc_offset = (u64)i915_ggtt_offset(ce->state) +
2900 __get_parent_scratch_offset(ce);
2901 wq_base_offset = (u64)i915_ggtt_offset(ce->state) +
2902 __get_wq_offset(ce);
2903 info->wq_desc_lo = lower_32_bits(wq_desc_offset);
2904 info->wq_desc_hi = upper_32_bits(wq_desc_offset);
2905 info->wq_base_lo = lower_32_bits(wq_base_offset);
2906 info->wq_base_hi = upper_32_bits(wq_base_offset);
2907 info->wq_size = WQ_SIZE;
2908
2909 wq_desc = __get_wq_desc_v70(ce);
2910 memset(wq_desc, 0, sizeof(*wq_desc));
2911 wq_desc->wq_status = WQ_STATUS_ACTIVE;
2912
2913 ce->parallel.guc.wq_head = &wq_desc->head;
2914 ce->parallel.guc.wq_tail = &wq_desc->tail;
2915 ce->parallel.guc.wq_status = &wq_desc->wq_status;
2916
2917 clear_children_join_go_memory(ce);
2918 }
2919 }
2920
try_context_registration(struct intel_context * ce,bool loop)2921 static int try_context_registration(struct intel_context *ce, bool loop)
2922 {
2923 struct intel_engine_cs *engine = ce->engine;
2924 struct intel_runtime_pm *runtime_pm = engine->uncore->rpm;
2925 struct intel_guc *guc = gt_to_guc(engine->gt);
2926 intel_wakeref_t wakeref;
2927 u32 ctx_id = ce->guc_id.id;
2928 bool context_registered;
2929 int ret = 0;
2930
2931 GEM_BUG_ON(!sched_state_is_init(ce));
2932
2933 context_registered = ctx_id_mapped(guc, ctx_id);
2934
2935 clr_ctx_id_mapping(guc, ctx_id);
2936 set_ctx_id_mapping(guc, ctx_id, ce);
2937
2938 /*
2939 * The context_lookup xarray is used to determine if the hardware
2940 * context is currently registered. There are two cases in which it
2941 * could be registered either the guc_id has been stolen from another
2942 * context or the lrc descriptor address of this context has changed. In
2943 * either case the context needs to be deregistered with the GuC before
2944 * registering this context.
2945 */
2946 if (context_registered) {
2947 bool disabled;
2948 unsigned long flags;
2949
2950 trace_intel_context_steal_guc_id(ce);
2951 GEM_BUG_ON(!loop);
2952
2953 /* Seal race with Reset */
2954 spin_lock_irqsave(&ce->guc_state.lock, flags);
2955 disabled = submission_disabled(guc);
2956 if (likely(!disabled)) {
2957 set_context_wait_for_deregister_to_register(ce);
2958 intel_context_get(ce);
2959 }
2960 spin_unlock_irqrestore(&ce->guc_state.lock, flags);
2961 if (unlikely(disabled)) {
2962 clr_ctx_id_mapping(guc, ctx_id);
2963 return 0; /* Will get registered later */
2964 }
2965
2966 /*
2967 * If stealing the guc_id, this ce has the same guc_id as the
2968 * context whose guc_id was stolen.
2969 */
2970 with_intel_runtime_pm(runtime_pm, wakeref)
2971 ret = deregister_context(ce, ce->guc_id.id);
2972 if (unlikely(ret == -ENODEV))
2973 ret = 0; /* Will get registered later */
2974 } else {
2975 with_intel_runtime_pm(runtime_pm, wakeref)
2976 ret = register_context(ce, loop);
2977 if (unlikely(ret == -EBUSY)) {
2978 clr_ctx_id_mapping(guc, ctx_id);
2979 } else if (unlikely(ret == -ENODEV)) {
2980 clr_ctx_id_mapping(guc, ctx_id);
2981 ret = 0; /* Will get registered later */
2982 }
2983 }
2984
2985 return ret;
2986 }
2987
__guc_context_pre_pin(struct intel_context * ce,struct intel_engine_cs * engine,struct i915_gem_ww_ctx * ww,void ** vaddr)2988 static int __guc_context_pre_pin(struct intel_context *ce,
2989 struct intel_engine_cs *engine,
2990 struct i915_gem_ww_ctx *ww,
2991 void **vaddr)
2992 {
2993 return lrc_pre_pin(ce, engine, ww, vaddr);
2994 }
2995
__guc_context_pin(struct intel_context * ce,struct intel_engine_cs * engine,void * vaddr)2996 static int __guc_context_pin(struct intel_context *ce,
2997 struct intel_engine_cs *engine,
2998 void *vaddr)
2999 {
3000 if (i915_ggtt_offset(ce->state) !=
3001 (ce->lrc.lrca & CTX_GTT_ADDRESS_MASK))
3002 set_bit(CONTEXT_LRCA_DIRTY, &ce->flags);
3003
3004 /*
3005 * GuC context gets pinned in guc_request_alloc. See that function for
3006 * explaination of why.
3007 */
3008
3009 return lrc_pin(ce, engine, vaddr);
3010 }
3011
guc_context_pre_pin(struct intel_context * ce,struct i915_gem_ww_ctx * ww,void ** vaddr)3012 static int guc_context_pre_pin(struct intel_context *ce,
3013 struct i915_gem_ww_ctx *ww,
3014 void **vaddr)
3015 {
3016 return __guc_context_pre_pin(ce, ce->engine, ww, vaddr);
3017 }
3018
guc_context_pin(struct intel_context * ce,void * vaddr)3019 static int guc_context_pin(struct intel_context *ce, void *vaddr)
3020 {
3021 int ret = __guc_context_pin(ce, ce->engine, vaddr);
3022
3023 if (likely(!ret && !intel_context_is_barrier(ce)))
3024 intel_engine_pm_get(ce->engine);
3025
3026 return ret;
3027 }
3028
guc_context_unpin(struct intel_context * ce)3029 static void guc_context_unpin(struct intel_context *ce)
3030 {
3031 struct intel_guc *guc = ce_to_guc(ce);
3032
3033 __guc_context_update_stats(ce);
3034 unpin_guc_id(guc, ce);
3035 lrc_unpin(ce);
3036
3037 if (likely(!intel_context_is_barrier(ce)))
3038 intel_engine_pm_put_async(ce->engine);
3039 }
3040
guc_context_post_unpin(struct intel_context * ce)3041 static void guc_context_post_unpin(struct intel_context *ce)
3042 {
3043 lrc_post_unpin(ce);
3044 }
3045
__guc_context_sched_enable(struct intel_guc * guc,struct intel_context * ce)3046 static void __guc_context_sched_enable(struct intel_guc *guc,
3047 struct intel_context *ce)
3048 {
3049 u32 action[] = {
3050 INTEL_GUC_ACTION_SCHED_CONTEXT_MODE_SET,
3051 ce->guc_id.id,
3052 GUC_CONTEXT_ENABLE
3053 };
3054
3055 trace_intel_context_sched_enable(ce);
3056
3057 guc_submission_send_busy_loop(guc, action, ARRAY_SIZE(action),
3058 G2H_LEN_DW_SCHED_CONTEXT_MODE_SET, true);
3059 }
3060
__guc_context_sched_disable(struct intel_guc * guc,struct intel_context * ce,u16 guc_id)3061 static void __guc_context_sched_disable(struct intel_guc *guc,
3062 struct intel_context *ce,
3063 u16 guc_id)
3064 {
3065 u32 action[] = {
3066 INTEL_GUC_ACTION_SCHED_CONTEXT_MODE_SET,
3067 guc_id, /* ce->guc_id.id not stable */
3068 GUC_CONTEXT_DISABLE
3069 };
3070
3071 GEM_BUG_ON(guc_id == GUC_INVALID_CONTEXT_ID);
3072
3073 GEM_BUG_ON(intel_context_is_child(ce));
3074 trace_intel_context_sched_disable(ce);
3075
3076 guc_submission_send_busy_loop(guc, action, ARRAY_SIZE(action),
3077 G2H_LEN_DW_SCHED_CONTEXT_MODE_SET, true);
3078 }
3079
guc_blocked_fence_complete(struct intel_context * ce)3080 static void guc_blocked_fence_complete(struct intel_context *ce)
3081 {
3082 lockdep_assert_held(&ce->guc_state.lock);
3083
3084 if (!i915_sw_fence_done(&ce->guc_state.blocked))
3085 i915_sw_fence_complete(&ce->guc_state.blocked);
3086 }
3087
guc_blocked_fence_reinit(struct intel_context * ce)3088 static void guc_blocked_fence_reinit(struct intel_context *ce)
3089 {
3090 lockdep_assert_held(&ce->guc_state.lock);
3091 GEM_BUG_ON(!i915_sw_fence_done(&ce->guc_state.blocked));
3092
3093 /*
3094 * This fence is always complete unless a pending schedule disable is
3095 * outstanding. We arm the fence here and complete it when we receive
3096 * the pending schedule disable complete message.
3097 */
3098 i915_sw_fence_fini(&ce->guc_state.blocked);
3099 i915_sw_fence_reinit(&ce->guc_state.blocked);
3100 i915_sw_fence_await(&ce->guc_state.blocked);
3101 i915_sw_fence_commit(&ce->guc_state.blocked);
3102 }
3103
prep_context_pending_disable(struct intel_context * ce)3104 static u16 prep_context_pending_disable(struct intel_context *ce)
3105 {
3106 lockdep_assert_held(&ce->guc_state.lock);
3107
3108 set_context_pending_disable(ce);
3109 clr_context_enabled(ce);
3110 guc_blocked_fence_reinit(ce);
3111 intel_context_get(ce);
3112
3113 return ce->guc_id.id;
3114 }
3115
guc_context_block(struct intel_context * ce)3116 static struct i915_sw_fence *guc_context_block(struct intel_context *ce)
3117 {
3118 struct intel_guc *guc = ce_to_guc(ce);
3119 unsigned long flags;
3120 struct intel_runtime_pm *runtime_pm = ce->engine->uncore->rpm;
3121 intel_wakeref_t wakeref;
3122 u16 guc_id;
3123 bool enabled;
3124
3125 GEM_BUG_ON(intel_context_is_child(ce));
3126
3127 spin_lock_irqsave(&ce->guc_state.lock, flags);
3128
3129 incr_context_blocked(ce);
3130
3131 enabled = context_enabled(ce);
3132 if (unlikely(!enabled || submission_disabled(guc))) {
3133 if (enabled)
3134 clr_context_enabled(ce);
3135 spin_unlock_irqrestore(&ce->guc_state.lock, flags);
3136 return &ce->guc_state.blocked;
3137 }
3138
3139 /*
3140 * We add +2 here as the schedule disable complete CTB handler calls
3141 * intel_context_sched_disable_unpin (-2 to pin_count).
3142 */
3143 atomic_add(2, &ce->pin_count);
3144
3145 guc_id = prep_context_pending_disable(ce);
3146
3147 spin_unlock_irqrestore(&ce->guc_state.lock, flags);
3148
3149 with_intel_runtime_pm(runtime_pm, wakeref)
3150 __guc_context_sched_disable(guc, ce, guc_id);
3151
3152 return &ce->guc_state.blocked;
3153 }
3154
3155 #define SCHED_STATE_MULTI_BLOCKED_MASK \
3156 (SCHED_STATE_BLOCKED_MASK & ~SCHED_STATE_BLOCKED)
3157 #define SCHED_STATE_NO_UNBLOCK \
3158 (SCHED_STATE_MULTI_BLOCKED_MASK | \
3159 SCHED_STATE_PENDING_DISABLE | \
3160 SCHED_STATE_BANNED)
3161
context_cant_unblock(struct intel_context * ce)3162 static bool context_cant_unblock(struct intel_context *ce)
3163 {
3164 lockdep_assert_held(&ce->guc_state.lock);
3165
3166 return (ce->guc_state.sched_state & SCHED_STATE_NO_UNBLOCK) ||
3167 context_guc_id_invalid(ce) ||
3168 !ctx_id_mapped(ce_to_guc(ce), ce->guc_id.id) ||
3169 !intel_context_is_pinned(ce);
3170 }
3171
guc_context_unblock(struct intel_context * ce)3172 static void guc_context_unblock(struct intel_context *ce)
3173 {
3174 struct intel_guc *guc = ce_to_guc(ce);
3175 unsigned long flags;
3176 struct intel_runtime_pm *runtime_pm = ce->engine->uncore->rpm;
3177 intel_wakeref_t wakeref;
3178 bool enable;
3179
3180 GEM_BUG_ON(context_enabled(ce));
3181 GEM_BUG_ON(intel_context_is_child(ce));
3182
3183 spin_lock_irqsave(&ce->guc_state.lock, flags);
3184
3185 if (unlikely(submission_disabled(guc) ||
3186 context_cant_unblock(ce))) {
3187 enable = false;
3188 } else {
3189 enable = true;
3190 set_context_pending_enable(ce);
3191 set_context_enabled(ce);
3192 intel_context_get(ce);
3193 }
3194
3195 decr_context_blocked(ce);
3196
3197 spin_unlock_irqrestore(&ce->guc_state.lock, flags);
3198
3199 if (enable) {
3200 with_intel_runtime_pm(runtime_pm, wakeref)
3201 __guc_context_sched_enable(guc, ce);
3202 }
3203 }
3204
guc_context_cancel_request(struct intel_context * ce,struct i915_request * rq)3205 static void guc_context_cancel_request(struct intel_context *ce,
3206 struct i915_request *rq)
3207 {
3208 struct intel_context *block_context =
3209 request_to_scheduling_context(rq);
3210
3211 if (i915_sw_fence_signaled(&rq->submit)) {
3212 struct i915_sw_fence *fence;
3213
3214 intel_context_get(ce);
3215 fence = guc_context_block(block_context);
3216 i915_sw_fence_wait(fence);
3217 if (!i915_request_completed(rq)) {
3218 __i915_request_skip(rq);
3219 guc_reset_state(ce, intel_ring_wrap(ce->ring, rq->head),
3220 true);
3221 }
3222
3223 guc_context_unblock(block_context);
3224 intel_context_put(ce);
3225 }
3226 }
3227
__guc_context_set_preemption_timeout(struct intel_guc * guc,u16 guc_id,u32 preemption_timeout)3228 static void __guc_context_set_preemption_timeout(struct intel_guc *guc,
3229 u16 guc_id,
3230 u32 preemption_timeout)
3231 {
3232 if (GUC_SUBMIT_VER(guc) >= MAKE_GUC_VER(1, 0, 0)) {
3233 struct context_policy policy;
3234
3235 __guc_context_policy_start_klv(&policy, guc_id);
3236 __guc_context_policy_add_preemption_timeout(&policy, preemption_timeout);
3237 __guc_context_set_context_policies(guc, &policy, true);
3238 } else {
3239 u32 action[] = {
3240 INTEL_GUC_ACTION_V69_SET_CONTEXT_PREEMPTION_TIMEOUT,
3241 guc_id,
3242 preemption_timeout
3243 };
3244
3245 intel_guc_send_busy_loop(guc, action, ARRAY_SIZE(action), 0, true);
3246 }
3247 }
3248
3249 static void
guc_context_revoke(struct intel_context * ce,struct i915_request * rq,unsigned int preempt_timeout_ms)3250 guc_context_revoke(struct intel_context *ce, struct i915_request *rq,
3251 unsigned int preempt_timeout_ms)
3252 {
3253 struct intel_guc *guc = ce_to_guc(ce);
3254 struct intel_runtime_pm *runtime_pm =
3255 &ce->engine->gt->i915->runtime_pm;
3256 intel_wakeref_t wakeref;
3257 unsigned long flags;
3258
3259 GEM_BUG_ON(intel_context_is_child(ce));
3260
3261 guc_flush_submissions(guc);
3262
3263 spin_lock_irqsave(&ce->guc_state.lock, flags);
3264 set_context_banned(ce);
3265
3266 if (submission_disabled(guc) ||
3267 (!context_enabled(ce) && !context_pending_disable(ce))) {
3268 spin_unlock_irqrestore(&ce->guc_state.lock, flags);
3269
3270 guc_cancel_context_requests(ce);
3271 intel_engine_signal_breadcrumbs(ce->engine);
3272 } else if (!context_pending_disable(ce)) {
3273 u16 guc_id;
3274
3275 /*
3276 * We add +2 here as the schedule disable complete CTB handler
3277 * calls intel_context_sched_disable_unpin (-2 to pin_count).
3278 */
3279 atomic_add(2, &ce->pin_count);
3280
3281 guc_id = prep_context_pending_disable(ce);
3282 spin_unlock_irqrestore(&ce->guc_state.lock, flags);
3283
3284 /*
3285 * In addition to disabling scheduling, set the preemption
3286 * timeout to the minimum value (1 us) so the banned context
3287 * gets kicked off the HW ASAP.
3288 */
3289 with_intel_runtime_pm(runtime_pm, wakeref) {
3290 __guc_context_set_preemption_timeout(guc, guc_id,
3291 preempt_timeout_ms);
3292 __guc_context_sched_disable(guc, ce, guc_id);
3293 }
3294 } else {
3295 if (!context_guc_id_invalid(ce))
3296 with_intel_runtime_pm(runtime_pm, wakeref)
3297 __guc_context_set_preemption_timeout(guc,
3298 ce->guc_id.id,
3299 preempt_timeout_ms);
3300 spin_unlock_irqrestore(&ce->guc_state.lock, flags);
3301 }
3302 }
3303
do_sched_disable(struct intel_guc * guc,struct intel_context * ce,unsigned long flags)3304 static void do_sched_disable(struct intel_guc *guc, struct intel_context *ce,
3305 unsigned long flags)
3306 __releases(ce->guc_state.lock)
3307 {
3308 struct intel_runtime_pm *runtime_pm = &ce->engine->gt->i915->runtime_pm;
3309 intel_wakeref_t wakeref;
3310 u16 guc_id;
3311
3312 lockdep_assert_held(&ce->guc_state.lock);
3313 guc_id = prep_context_pending_disable(ce);
3314
3315 spin_unlock_irqrestore(&ce->guc_state.lock, flags);
3316
3317 with_intel_runtime_pm(runtime_pm, wakeref)
3318 __guc_context_sched_disable(guc, ce, guc_id);
3319 }
3320
bypass_sched_disable(struct intel_guc * guc,struct intel_context * ce)3321 static bool bypass_sched_disable(struct intel_guc *guc,
3322 struct intel_context *ce)
3323 {
3324 lockdep_assert_held(&ce->guc_state.lock);
3325 GEM_BUG_ON(intel_context_is_child(ce));
3326
3327 if (submission_disabled(guc) || context_guc_id_invalid(ce) ||
3328 !ctx_id_mapped(guc, ce->guc_id.id)) {
3329 clr_context_enabled(ce);
3330 return true;
3331 }
3332
3333 return !context_enabled(ce);
3334 }
3335
__delay_sched_disable(struct work_struct * wrk)3336 static void __delay_sched_disable(struct work_struct *wrk)
3337 {
3338 struct intel_context *ce =
3339 container_of(wrk, typeof(*ce), guc_state.sched_disable_delay_work.work);
3340 struct intel_guc *guc = ce_to_guc(ce);
3341 unsigned long flags;
3342
3343 spin_lock_irqsave(&ce->guc_state.lock, flags);
3344
3345 if (bypass_sched_disable(guc, ce)) {
3346 spin_unlock_irqrestore(&ce->guc_state.lock, flags);
3347 intel_context_sched_disable_unpin(ce);
3348 } else {
3349 do_sched_disable(guc, ce, flags);
3350 }
3351 }
3352
guc_id_pressure(struct intel_guc * guc,struct intel_context * ce)3353 static bool guc_id_pressure(struct intel_guc *guc, struct intel_context *ce)
3354 {
3355 /*
3356 * parent contexts are perma-pinned, if we are unpinning do schedule
3357 * disable immediately.
3358 */
3359 if (intel_context_is_parent(ce))
3360 return true;
3361
3362 /*
3363 * If we are beyond the threshold for avail guc_ids, do schedule disable immediately.
3364 */
3365 return guc->submission_state.guc_ids_in_use >
3366 guc->submission_state.sched_disable_gucid_threshold;
3367 }
3368
guc_context_sched_disable(struct intel_context * ce)3369 static void guc_context_sched_disable(struct intel_context *ce)
3370 {
3371 struct intel_guc *guc = ce_to_guc(ce);
3372 u64 delay = guc->submission_state.sched_disable_delay_ms;
3373 unsigned long flags;
3374
3375 spin_lock_irqsave(&ce->guc_state.lock, flags);
3376
3377 if (bypass_sched_disable(guc, ce)) {
3378 spin_unlock_irqrestore(&ce->guc_state.lock, flags);
3379 intel_context_sched_disable_unpin(ce);
3380 } else if (!intel_context_is_closed(ce) && !guc_id_pressure(guc, ce) &&
3381 delay) {
3382 spin_unlock_irqrestore(&ce->guc_state.lock, flags);
3383 mod_delayed_work(system_unbound_wq,
3384 &ce->guc_state.sched_disable_delay_work,
3385 msecs_to_jiffies(delay));
3386 } else {
3387 do_sched_disable(guc, ce, flags);
3388 }
3389 }
3390
guc_context_close(struct intel_context * ce)3391 static void guc_context_close(struct intel_context *ce)
3392 {
3393 unsigned long flags;
3394
3395 if (test_bit(CONTEXT_GUC_INIT, &ce->flags) &&
3396 cancel_delayed_work(&ce->guc_state.sched_disable_delay_work))
3397 __delay_sched_disable(&ce->guc_state.sched_disable_delay_work.work);
3398
3399 spin_lock_irqsave(&ce->guc_state.lock, flags);
3400 set_context_close_done(ce);
3401 spin_unlock_irqrestore(&ce->guc_state.lock, flags);
3402 }
3403
guc_lrc_desc_unpin(struct intel_context * ce)3404 static inline int guc_lrc_desc_unpin(struct intel_context *ce)
3405 {
3406 struct intel_guc *guc = ce_to_guc(ce);
3407 struct intel_gt *gt = guc_to_gt(guc);
3408 unsigned long flags;
3409 bool disabled;
3410 int ret;
3411
3412 GEM_BUG_ON(!intel_gt_pm_is_awake(gt));
3413 GEM_BUG_ON(!ctx_id_mapped(guc, ce->guc_id.id));
3414 GEM_BUG_ON(ce != __get_context(guc, ce->guc_id.id));
3415 GEM_BUG_ON(context_enabled(ce));
3416
3417 /* Seal race with Reset */
3418 spin_lock_irqsave(&ce->guc_state.lock, flags);
3419 disabled = submission_disabled(guc);
3420 if (likely(!disabled)) {
3421 /*
3422 * Take a gt-pm ref and change context state to be destroyed.
3423 * NOTE: a G2H IRQ that comes after will put this gt-pm ref back
3424 */
3425 __intel_gt_pm_get(gt);
3426 set_context_destroyed(ce);
3427 clr_context_registered(ce);
3428 }
3429 spin_unlock_irqrestore(&ce->guc_state.lock, flags);
3430
3431 if (unlikely(disabled)) {
3432 release_guc_id(guc, ce);
3433 __guc_context_destroy(ce);
3434 return 0;
3435 }
3436
3437 /*
3438 * GuC is active, lets destroy this context, but at this point we can still be racing
3439 * with suspend, so we undo everything if the H2G fails in deregister_context so
3440 * that GuC reset will find this context during clean up.
3441 *
3442 * There is a race condition where the reset code could have altered
3443 * this context's state and done a wakeref put before we try to
3444 * deregister it here. So check if the context is still set to be
3445 * destroyed before undoing earlier changes, to avoid two wakeref puts
3446 * on the same context.
3447 */
3448 ret = deregister_context(ce, ce->guc_id.id);
3449 if (ret) {
3450 bool pending_destroyed;
3451 spin_lock_irqsave(&ce->guc_state.lock, flags);
3452 pending_destroyed = context_destroyed(ce);
3453 if (pending_destroyed) {
3454 set_context_registered(ce);
3455 clr_context_destroyed(ce);
3456 }
3457 spin_unlock_irqrestore(&ce->guc_state.lock, flags);
3458 /*
3459 * As gt-pm is awake at function entry, intel_wakeref_put_async merely decrements
3460 * the wakeref immediately but per function spec usage call this after unlock.
3461 */
3462 if (pending_destroyed)
3463 intel_wakeref_put_async(>->wakeref);
3464 }
3465
3466 return ret;
3467 }
3468
__guc_context_destroy(struct intel_context * ce)3469 static void __guc_context_destroy(struct intel_context *ce)
3470 {
3471 GEM_BUG_ON(ce->guc_state.prio_count[GUC_CLIENT_PRIORITY_KMD_HIGH] ||
3472 ce->guc_state.prio_count[GUC_CLIENT_PRIORITY_HIGH] ||
3473 ce->guc_state.prio_count[GUC_CLIENT_PRIORITY_KMD_NORMAL] ||
3474 ce->guc_state.prio_count[GUC_CLIENT_PRIORITY_NORMAL]);
3475
3476 lrc_fini(ce);
3477 intel_context_fini(ce);
3478
3479 if (intel_engine_is_virtual(ce->engine)) {
3480 struct guc_virtual_engine *ve =
3481 container_of(ce, typeof(*ve), context);
3482
3483 if (ve->base.breadcrumbs)
3484 intel_breadcrumbs_put(ve->base.breadcrumbs);
3485
3486 kfree(ve);
3487 } else {
3488 intel_context_free(ce);
3489 }
3490 }
3491
guc_flush_destroyed_contexts(struct intel_guc * guc)3492 static void guc_flush_destroyed_contexts(struct intel_guc *guc)
3493 {
3494 struct intel_context *ce;
3495 unsigned long flags;
3496
3497 GEM_BUG_ON(!submission_disabled(guc) &&
3498 guc_submission_initialized(guc));
3499
3500 while (!list_empty(&guc->submission_state.destroyed_contexts)) {
3501 spin_lock_irqsave(&guc->submission_state.lock, flags);
3502 ce = list_first_entry_or_null(&guc->submission_state.destroyed_contexts,
3503 struct intel_context,
3504 destroyed_link);
3505 if (ce)
3506 list_del_init(&ce->destroyed_link);
3507 spin_unlock_irqrestore(&guc->submission_state.lock, flags);
3508
3509 if (!ce)
3510 break;
3511
3512 release_guc_id(guc, ce);
3513 __guc_context_destroy(ce);
3514 }
3515 }
3516
deregister_destroyed_contexts(struct intel_guc * guc)3517 static void deregister_destroyed_contexts(struct intel_guc *guc)
3518 {
3519 struct intel_context *ce;
3520 unsigned long flags;
3521
3522 while (!list_empty(&guc->submission_state.destroyed_contexts)) {
3523 spin_lock_irqsave(&guc->submission_state.lock, flags);
3524 ce = list_first_entry_or_null(&guc->submission_state.destroyed_contexts,
3525 struct intel_context,
3526 destroyed_link);
3527 if (ce)
3528 list_del_init(&ce->destroyed_link);
3529 spin_unlock_irqrestore(&guc->submission_state.lock, flags);
3530
3531 if (!ce)
3532 break;
3533
3534 if (guc_lrc_desc_unpin(ce)) {
3535 /*
3536 * This means GuC's CT link severed mid-way which could happen
3537 * in suspend-resume corner cases. In this case, put the
3538 * context back into the destroyed_contexts list which will
3539 * get picked up on the next context deregistration event or
3540 * purged in a GuC sanitization event (reset/unload/wedged/...).
3541 */
3542 spin_lock_irqsave(&guc->submission_state.lock, flags);
3543 list_add_tail(&ce->destroyed_link,
3544 &guc->submission_state.destroyed_contexts);
3545 spin_unlock_irqrestore(&guc->submission_state.lock, flags);
3546 /* Bail now since the list might never be emptied if h2gs fail */
3547 break;
3548 }
3549
3550 }
3551 }
3552
destroyed_worker_func(struct work_struct * w)3553 static void destroyed_worker_func(struct work_struct *w)
3554 {
3555 struct intel_guc *guc = container_of(w, struct intel_guc,
3556 submission_state.destroyed_worker);
3557 struct intel_gt *gt = guc_to_gt(guc);
3558 intel_wakeref_t wakeref;
3559
3560 /*
3561 * In rare cases we can get here via async context-free fence-signals that
3562 * come very late in suspend flow or very early in resume flows. In these
3563 * cases, GuC won't be ready but just skipping it here is fine as these
3564 * pending-destroy-contexts get destroyed totally at GuC reset time at the
3565 * end of suspend.. OR.. this worker can be picked up later on the next
3566 * context destruction trigger after resume-completes
3567 */
3568 if (!intel_guc_is_ready(guc))
3569 return;
3570
3571 with_intel_gt_pm(gt, wakeref)
3572 deregister_destroyed_contexts(guc);
3573 }
3574
guc_context_destroy(struct kref * kref)3575 static void guc_context_destroy(struct kref *kref)
3576 {
3577 struct intel_context *ce = container_of(kref, typeof(*ce), ref);
3578 struct intel_guc *guc = ce_to_guc(ce);
3579 unsigned long flags;
3580 bool destroy;
3581
3582 /*
3583 * If the guc_id is invalid this context has been stolen and we can free
3584 * it immediately. Also can be freed immediately if the context is not
3585 * registered with the GuC or the GuC is in the middle of a reset.
3586 */
3587 spin_lock_irqsave(&guc->submission_state.lock, flags);
3588 destroy = submission_disabled(guc) || context_guc_id_invalid(ce) ||
3589 !ctx_id_mapped(guc, ce->guc_id.id);
3590 if (likely(!destroy)) {
3591 if (!list_empty(&ce->guc_id.link))
3592 list_del_init(&ce->guc_id.link);
3593 list_add_tail(&ce->destroyed_link,
3594 &guc->submission_state.destroyed_contexts);
3595 } else {
3596 __release_guc_id(guc, ce);
3597 }
3598 spin_unlock_irqrestore(&guc->submission_state.lock, flags);
3599 if (unlikely(destroy)) {
3600 __guc_context_destroy(ce);
3601 return;
3602 }
3603
3604 /*
3605 * We use a worker to issue the H2G to deregister the context as we can
3606 * take the GT PM for the first time which isn't allowed from an atomic
3607 * context.
3608 */
3609 queue_work(system_unbound_wq, &guc->submission_state.destroyed_worker);
3610 }
3611
guc_context_alloc(struct intel_context * ce)3612 static int guc_context_alloc(struct intel_context *ce)
3613 {
3614 return lrc_alloc(ce, ce->engine);
3615 }
3616
__guc_context_set_prio(struct intel_guc * guc,struct intel_context * ce)3617 static void __guc_context_set_prio(struct intel_guc *guc,
3618 struct intel_context *ce)
3619 {
3620 if (GUC_SUBMIT_VER(guc) >= MAKE_GUC_VER(1, 0, 0)) {
3621 struct context_policy policy;
3622
3623 __guc_context_policy_start_klv(&policy, ce->guc_id.id);
3624 __guc_context_policy_add_priority(&policy, ce->guc_state.prio);
3625 __guc_context_set_context_policies(guc, &policy, true);
3626 } else {
3627 u32 action[] = {
3628 INTEL_GUC_ACTION_V69_SET_CONTEXT_PRIORITY,
3629 ce->guc_id.id,
3630 ce->guc_state.prio,
3631 };
3632
3633 guc_submission_send_busy_loop(guc, action, ARRAY_SIZE(action), 0, true);
3634 }
3635 }
3636
guc_context_set_prio(struct intel_guc * guc,struct intel_context * ce,u8 prio)3637 static void guc_context_set_prio(struct intel_guc *guc,
3638 struct intel_context *ce,
3639 u8 prio)
3640 {
3641 GEM_BUG_ON(prio < GUC_CLIENT_PRIORITY_KMD_HIGH ||
3642 prio > GUC_CLIENT_PRIORITY_NORMAL);
3643 lockdep_assert_held(&ce->guc_state.lock);
3644
3645 if (ce->guc_state.prio == prio || submission_disabled(guc) ||
3646 !context_registered(ce)) {
3647 ce->guc_state.prio = prio;
3648 return;
3649 }
3650
3651 ce->guc_state.prio = prio;
3652 __guc_context_set_prio(guc, ce);
3653
3654 trace_intel_context_set_prio(ce);
3655 }
3656
map_i915_prio_to_guc_prio(int prio)3657 static inline u8 map_i915_prio_to_guc_prio(int prio)
3658 {
3659 if (prio == I915_PRIORITY_NORMAL)
3660 return GUC_CLIENT_PRIORITY_KMD_NORMAL;
3661 else if (prio < I915_PRIORITY_NORMAL)
3662 return GUC_CLIENT_PRIORITY_NORMAL;
3663 else if (prio < I915_PRIORITY_DISPLAY)
3664 return GUC_CLIENT_PRIORITY_HIGH;
3665 else
3666 return GUC_CLIENT_PRIORITY_KMD_HIGH;
3667 }
3668
add_context_inflight_prio(struct intel_context * ce,u8 guc_prio)3669 static inline void add_context_inflight_prio(struct intel_context *ce,
3670 u8 guc_prio)
3671 {
3672 lockdep_assert_held(&ce->guc_state.lock);
3673 GEM_BUG_ON(guc_prio >= ARRAY_SIZE(ce->guc_state.prio_count));
3674
3675 ++ce->guc_state.prio_count[guc_prio];
3676
3677 /* Overflow protection */
3678 GEM_WARN_ON(!ce->guc_state.prio_count[guc_prio]);
3679 }
3680
sub_context_inflight_prio(struct intel_context * ce,u8 guc_prio)3681 static inline void sub_context_inflight_prio(struct intel_context *ce,
3682 u8 guc_prio)
3683 {
3684 lockdep_assert_held(&ce->guc_state.lock);
3685 GEM_BUG_ON(guc_prio >= ARRAY_SIZE(ce->guc_state.prio_count));
3686
3687 /* Underflow protection */
3688 GEM_WARN_ON(!ce->guc_state.prio_count[guc_prio]);
3689
3690 --ce->guc_state.prio_count[guc_prio];
3691 }
3692
update_context_prio(struct intel_context * ce)3693 static inline void update_context_prio(struct intel_context *ce)
3694 {
3695 struct intel_guc *guc = &ce->engine->gt->uc.guc;
3696 int i;
3697
3698 BUILD_BUG_ON(GUC_CLIENT_PRIORITY_KMD_HIGH != 0);
3699 BUILD_BUG_ON(GUC_CLIENT_PRIORITY_KMD_HIGH > GUC_CLIENT_PRIORITY_NORMAL);
3700
3701 lockdep_assert_held(&ce->guc_state.lock);
3702
3703 for (i = 0; i < ARRAY_SIZE(ce->guc_state.prio_count); ++i) {
3704 if (ce->guc_state.prio_count[i]) {
3705 guc_context_set_prio(guc, ce, i);
3706 break;
3707 }
3708 }
3709 }
3710
new_guc_prio_higher(u8 old_guc_prio,u8 new_guc_prio)3711 static inline bool new_guc_prio_higher(u8 old_guc_prio, u8 new_guc_prio)
3712 {
3713 /* Lower value is higher priority */
3714 return new_guc_prio < old_guc_prio;
3715 }
3716
add_to_context(struct i915_request * rq)3717 static void add_to_context(struct i915_request *rq)
3718 {
3719 struct intel_context *ce = request_to_scheduling_context(rq);
3720 u8 new_guc_prio = map_i915_prio_to_guc_prio(rq_prio(rq));
3721
3722 GEM_BUG_ON(intel_context_is_child(ce));
3723 GEM_BUG_ON(rq->guc_prio == GUC_PRIO_FINI);
3724
3725 spin_lock(&ce->guc_state.lock);
3726 list_move_tail(&rq->sched.link, &ce->guc_state.requests);
3727
3728 if (rq->guc_prio == GUC_PRIO_INIT) {
3729 rq->guc_prio = new_guc_prio;
3730 add_context_inflight_prio(ce, rq->guc_prio);
3731 } else if (new_guc_prio_higher(rq->guc_prio, new_guc_prio)) {
3732 sub_context_inflight_prio(ce, rq->guc_prio);
3733 rq->guc_prio = new_guc_prio;
3734 add_context_inflight_prio(ce, rq->guc_prio);
3735 }
3736 update_context_prio(ce);
3737
3738 spin_unlock(&ce->guc_state.lock);
3739 }
3740
guc_prio_fini(struct i915_request * rq,struct intel_context * ce)3741 static void guc_prio_fini(struct i915_request *rq, struct intel_context *ce)
3742 {
3743 lockdep_assert_held(&ce->guc_state.lock);
3744
3745 if (rq->guc_prio != GUC_PRIO_INIT &&
3746 rq->guc_prio != GUC_PRIO_FINI) {
3747 sub_context_inflight_prio(ce, rq->guc_prio);
3748 update_context_prio(ce);
3749 }
3750 rq->guc_prio = GUC_PRIO_FINI;
3751 }
3752
remove_from_context(struct i915_request * rq)3753 static void remove_from_context(struct i915_request *rq)
3754 {
3755 struct intel_context *ce = request_to_scheduling_context(rq);
3756
3757 GEM_BUG_ON(intel_context_is_child(ce));
3758
3759 spin_lock_irq(&ce->guc_state.lock);
3760
3761 list_del_init(&rq->sched.link);
3762 clear_bit(I915_FENCE_FLAG_PQUEUE, &rq->fence.flags);
3763
3764 /* Prevent further __await_execution() registering a cb, then flush */
3765 set_bit(I915_FENCE_FLAG_ACTIVE, &rq->fence.flags);
3766
3767 guc_prio_fini(rq, ce);
3768
3769 spin_unlock_irq(&ce->guc_state.lock);
3770
3771 atomic_dec(&ce->guc_id.ref);
3772 i915_request_notify_execute_cb_imm(rq);
3773 }
3774
3775 static const struct intel_context_ops guc_context_ops = {
3776 .flags = COPS_RUNTIME_CYCLES,
3777 .alloc = guc_context_alloc,
3778
3779 .close = guc_context_close,
3780
3781 .pre_pin = guc_context_pre_pin,
3782 .pin = guc_context_pin,
3783 .unpin = guc_context_unpin,
3784 .post_unpin = guc_context_post_unpin,
3785
3786 .revoke = guc_context_revoke,
3787
3788 .cancel_request = guc_context_cancel_request,
3789
3790 .enter = intel_context_enter_engine,
3791 .exit = intel_context_exit_engine,
3792
3793 .sched_disable = guc_context_sched_disable,
3794
3795 .update_stats = guc_context_update_stats,
3796
3797 .reset = lrc_reset,
3798 .destroy = guc_context_destroy,
3799
3800 .create_virtual = guc_create_virtual,
3801 .create_parallel = guc_create_parallel,
3802 };
3803
submit_work_cb(struct irq_work * wrk)3804 static void submit_work_cb(struct irq_work *wrk)
3805 {
3806 struct i915_request *rq = container_of(wrk, typeof(*rq), submit_work);
3807
3808 might_lock(&rq->engine->sched_engine->lock);
3809 i915_sw_fence_complete(&rq->submit);
3810 }
3811
__guc_signal_context_fence(struct intel_context * ce)3812 static void __guc_signal_context_fence(struct intel_context *ce)
3813 {
3814 struct i915_request *rq, *rn;
3815
3816 lockdep_assert_held(&ce->guc_state.lock);
3817
3818 if (!list_empty(&ce->guc_state.fences))
3819 trace_intel_context_fence_release(ce);
3820
3821 /*
3822 * Use an IRQ to ensure locking order of sched_engine->lock ->
3823 * ce->guc_state.lock is preserved.
3824 */
3825 list_for_each_entry_safe(rq, rn, &ce->guc_state.fences,
3826 guc_fence_link) {
3827 list_del(&rq->guc_fence_link);
3828 irq_work_queue(&rq->submit_work);
3829 }
3830
3831 INIT_LIST_HEAD(&ce->guc_state.fences);
3832 }
3833
guc_signal_context_fence(struct intel_context * ce)3834 static void guc_signal_context_fence(struct intel_context *ce)
3835 {
3836 unsigned long flags;
3837
3838 GEM_BUG_ON(intel_context_is_child(ce));
3839
3840 spin_lock_irqsave(&ce->guc_state.lock, flags);
3841 clr_context_wait_for_deregister_to_register(ce);
3842 __guc_signal_context_fence(ce);
3843 spin_unlock_irqrestore(&ce->guc_state.lock, flags);
3844 }
3845
context_needs_register(struct intel_context * ce,bool new_guc_id)3846 static bool context_needs_register(struct intel_context *ce, bool new_guc_id)
3847 {
3848 return (new_guc_id || test_bit(CONTEXT_LRCA_DIRTY, &ce->flags) ||
3849 !ctx_id_mapped(ce_to_guc(ce), ce->guc_id.id)) &&
3850 !submission_disabled(ce_to_guc(ce));
3851 }
3852
guc_context_init(struct intel_context * ce)3853 static void guc_context_init(struct intel_context *ce)
3854 {
3855 const struct i915_gem_context *ctx;
3856 int prio = I915_CONTEXT_DEFAULT_PRIORITY;
3857
3858 rcu_read_lock();
3859 ctx = rcu_dereference(ce->gem_context);
3860 if (ctx)
3861 prio = ctx->sched.priority;
3862 rcu_read_unlock();
3863
3864 ce->guc_state.prio = map_i915_prio_to_guc_prio(prio);
3865
3866 INIT_DELAYED_WORK(&ce->guc_state.sched_disable_delay_work,
3867 __delay_sched_disable);
3868
3869 set_bit(CONTEXT_GUC_INIT, &ce->flags);
3870 }
3871
guc_request_alloc(struct i915_request * rq)3872 static int guc_request_alloc(struct i915_request *rq)
3873 {
3874 struct intel_context *ce = request_to_scheduling_context(rq);
3875 struct intel_guc *guc = ce_to_guc(ce);
3876 unsigned long flags;
3877 int ret;
3878
3879 GEM_BUG_ON(!intel_context_is_pinned(rq->context));
3880
3881 /*
3882 * Flush enough space to reduce the likelihood of waiting after
3883 * we start building the request - in which case we will just
3884 * have to repeat work.
3885 */
3886 rq->reserved_space += GUC_REQUEST_SIZE;
3887
3888 /*
3889 * Note that after this point, we have committed to using
3890 * this request as it is being used to both track the
3891 * state of engine initialisation and liveness of the
3892 * golden renderstate above. Think twice before you try
3893 * to cancel/unwind this request now.
3894 */
3895
3896 /* Unconditionally invalidate GPU caches and TLBs. */
3897 ret = rq->engine->emit_flush(rq, EMIT_INVALIDATE);
3898 if (ret)
3899 return ret;
3900
3901 rq->reserved_space -= GUC_REQUEST_SIZE;
3902
3903 if (unlikely(!test_bit(CONTEXT_GUC_INIT, &ce->flags)))
3904 guc_context_init(ce);
3905
3906 /*
3907 * If the context gets closed while the execbuf is ongoing, the context
3908 * close code will race with the below code to cancel the delayed work.
3909 * If the context close wins the race and cancels the work, it will
3910 * immediately call the sched disable (see guc_context_close), so there
3911 * is a chance we can get past this check while the sched_disable code
3912 * is being executed. To make sure that code completes before we check
3913 * the status further down, we wait for the close process to complete.
3914 * Else, this code path could send a request down thinking that the
3915 * context is still in a schedule-enable mode while the GuC ends up
3916 * dropping the request completely because the disable did go from the
3917 * context_close path right to GuC just prior. In the event the CT is
3918 * full, we could potentially need to wait up to 1.5 seconds.
3919 */
3920 if (cancel_delayed_work_sync(&ce->guc_state.sched_disable_delay_work))
3921 intel_context_sched_disable_unpin(ce);
3922 else if (intel_context_is_closed(ce))
3923 if (wait_for(context_close_done(ce), 1500))
3924 guc_warn(guc, "timed out waiting on context sched close before realloc\n");
3925 /*
3926 * Call pin_guc_id here rather than in the pinning step as with
3927 * dma_resv, contexts can be repeatedly pinned / unpinned trashing the
3928 * guc_id and creating horrible race conditions. This is especially bad
3929 * when guc_id are being stolen due to over subscription. By the time
3930 * this function is reached, it is guaranteed that the guc_id will be
3931 * persistent until the generated request is retired. Thus, sealing these
3932 * race conditions. It is still safe to fail here if guc_id are
3933 * exhausted and return -EAGAIN to the user indicating that they can try
3934 * again in the future.
3935 *
3936 * There is no need for a lock here as the timeline mutex ensures at
3937 * most one context can be executing this code path at once. The
3938 * guc_id_ref is incremented once for every request in flight and
3939 * decremented on each retire. When it is zero, a lock around the
3940 * increment (in pin_guc_id) is needed to seal a race with unpin_guc_id.
3941 */
3942 if (atomic_add_unless(&ce->guc_id.ref, 1, 0))
3943 goto out;
3944
3945 ret = pin_guc_id(guc, ce); /* returns 1 if new guc_id assigned */
3946 if (unlikely(ret < 0))
3947 return ret;
3948 if (context_needs_register(ce, !!ret)) {
3949 ret = try_context_registration(ce, true);
3950 if (unlikely(ret)) { /* unwind */
3951 if (ret == -EPIPE) {
3952 disable_submission(guc);
3953 goto out; /* GPU will be reset */
3954 }
3955 atomic_dec(&ce->guc_id.ref);
3956 unpin_guc_id(guc, ce);
3957 return ret;
3958 }
3959 }
3960
3961 clear_bit(CONTEXT_LRCA_DIRTY, &ce->flags);
3962
3963 out:
3964 /*
3965 * We block all requests on this context if a G2H is pending for a
3966 * schedule disable or context deregistration as the GuC will fail a
3967 * schedule enable or context registration if either G2H is pending
3968 * respectfully. Once a G2H returns, the fence is released that is
3969 * blocking these requests (see guc_signal_context_fence).
3970 */
3971 spin_lock_irqsave(&ce->guc_state.lock, flags);
3972 if (context_wait_for_deregister_to_register(ce) ||
3973 context_pending_disable(ce)) {
3974 init_irq_work(&rq->submit_work, submit_work_cb);
3975 i915_sw_fence_await(&rq->submit);
3976
3977 list_add_tail(&rq->guc_fence_link, &ce->guc_state.fences);
3978 }
3979 spin_unlock_irqrestore(&ce->guc_state.lock, flags);
3980
3981 return 0;
3982 }
3983
guc_virtual_context_pre_pin(struct intel_context * ce,struct i915_gem_ww_ctx * ww,void ** vaddr)3984 static int guc_virtual_context_pre_pin(struct intel_context *ce,
3985 struct i915_gem_ww_ctx *ww,
3986 void **vaddr)
3987 {
3988 struct intel_engine_cs *engine = guc_virtual_get_sibling(ce->engine, 0);
3989
3990 return __guc_context_pre_pin(ce, engine, ww, vaddr);
3991 }
3992
guc_virtual_context_pin(struct intel_context * ce,void * vaddr)3993 static int guc_virtual_context_pin(struct intel_context *ce, void *vaddr)
3994 {
3995 struct intel_engine_cs *engine = guc_virtual_get_sibling(ce->engine, 0);
3996 int ret = __guc_context_pin(ce, engine, vaddr);
3997 intel_engine_mask_t tmp, mask = ce->engine->mask;
3998
3999 if (likely(!ret))
4000 for_each_engine_masked(engine, ce->engine->gt, mask, tmp)
4001 intel_engine_pm_get(engine);
4002
4003 return ret;
4004 }
4005
guc_virtual_context_unpin(struct intel_context * ce)4006 static void guc_virtual_context_unpin(struct intel_context *ce)
4007 {
4008 intel_engine_mask_t tmp, mask = ce->engine->mask;
4009 struct intel_engine_cs *engine;
4010 struct intel_guc *guc = ce_to_guc(ce);
4011
4012 GEM_BUG_ON(context_enabled(ce));
4013 GEM_BUG_ON(intel_context_is_barrier(ce));
4014
4015 unpin_guc_id(guc, ce);
4016 lrc_unpin(ce);
4017
4018 for_each_engine_masked(engine, ce->engine->gt, mask, tmp)
4019 intel_engine_pm_put_async(engine);
4020 }
4021
guc_virtual_context_enter(struct intel_context * ce)4022 static void guc_virtual_context_enter(struct intel_context *ce)
4023 {
4024 intel_engine_mask_t tmp, mask = ce->engine->mask;
4025 struct intel_engine_cs *engine;
4026
4027 for_each_engine_masked(engine, ce->engine->gt, mask, tmp)
4028 intel_engine_pm_get(engine);
4029
4030 intel_timeline_enter(ce->timeline);
4031 }
4032
guc_virtual_context_exit(struct intel_context * ce)4033 static void guc_virtual_context_exit(struct intel_context *ce)
4034 {
4035 intel_engine_mask_t tmp, mask = ce->engine->mask;
4036 struct intel_engine_cs *engine;
4037
4038 for_each_engine_masked(engine, ce->engine->gt, mask, tmp)
4039 intel_engine_pm_put(engine);
4040
4041 intel_timeline_exit(ce->timeline);
4042 }
4043
guc_virtual_context_alloc(struct intel_context * ce)4044 static int guc_virtual_context_alloc(struct intel_context *ce)
4045 {
4046 struct intel_engine_cs *engine = guc_virtual_get_sibling(ce->engine, 0);
4047
4048 return lrc_alloc(ce, engine);
4049 }
4050
4051 static const struct intel_context_ops virtual_guc_context_ops = {
4052 .flags = COPS_RUNTIME_CYCLES,
4053 .alloc = guc_virtual_context_alloc,
4054
4055 .close = guc_context_close,
4056
4057 .pre_pin = guc_virtual_context_pre_pin,
4058 .pin = guc_virtual_context_pin,
4059 .unpin = guc_virtual_context_unpin,
4060 .post_unpin = guc_context_post_unpin,
4061
4062 .revoke = guc_context_revoke,
4063
4064 .cancel_request = guc_context_cancel_request,
4065
4066 .enter = guc_virtual_context_enter,
4067 .exit = guc_virtual_context_exit,
4068
4069 .sched_disable = guc_context_sched_disable,
4070 .update_stats = guc_context_update_stats,
4071
4072 .destroy = guc_context_destroy,
4073
4074 .get_sibling = guc_virtual_get_sibling,
4075 };
4076
guc_parent_context_pin(struct intel_context * ce,void * vaddr)4077 static int guc_parent_context_pin(struct intel_context *ce, void *vaddr)
4078 {
4079 struct intel_engine_cs *engine = guc_virtual_get_sibling(ce->engine, 0);
4080 struct intel_guc *guc = ce_to_guc(ce);
4081 int ret;
4082
4083 GEM_BUG_ON(!intel_context_is_parent(ce));
4084 GEM_BUG_ON(!intel_engine_is_virtual(ce->engine));
4085
4086 ret = pin_guc_id(guc, ce);
4087 if (unlikely(ret < 0))
4088 return ret;
4089
4090 return __guc_context_pin(ce, engine, vaddr);
4091 }
4092
guc_child_context_pin(struct intel_context * ce,void * vaddr)4093 static int guc_child_context_pin(struct intel_context *ce, void *vaddr)
4094 {
4095 struct intel_engine_cs *engine = guc_virtual_get_sibling(ce->engine, 0);
4096
4097 GEM_BUG_ON(!intel_context_is_child(ce));
4098 GEM_BUG_ON(!intel_engine_is_virtual(ce->engine));
4099
4100 __intel_context_pin(ce->parallel.parent);
4101 return __guc_context_pin(ce, engine, vaddr);
4102 }
4103
guc_parent_context_unpin(struct intel_context * ce)4104 static void guc_parent_context_unpin(struct intel_context *ce)
4105 {
4106 struct intel_guc *guc = ce_to_guc(ce);
4107
4108 GEM_BUG_ON(context_enabled(ce));
4109 GEM_BUG_ON(intel_context_is_barrier(ce));
4110 GEM_BUG_ON(!intel_context_is_parent(ce));
4111 GEM_BUG_ON(!intel_engine_is_virtual(ce->engine));
4112
4113 unpin_guc_id(guc, ce);
4114 lrc_unpin(ce);
4115 }
4116
guc_child_context_unpin(struct intel_context * ce)4117 static void guc_child_context_unpin(struct intel_context *ce)
4118 {
4119 GEM_BUG_ON(context_enabled(ce));
4120 GEM_BUG_ON(intel_context_is_barrier(ce));
4121 GEM_BUG_ON(!intel_context_is_child(ce));
4122 GEM_BUG_ON(!intel_engine_is_virtual(ce->engine));
4123
4124 lrc_unpin(ce);
4125 }
4126
guc_child_context_post_unpin(struct intel_context * ce)4127 static void guc_child_context_post_unpin(struct intel_context *ce)
4128 {
4129 GEM_BUG_ON(!intel_context_is_child(ce));
4130 GEM_BUG_ON(!intel_context_is_pinned(ce->parallel.parent));
4131 GEM_BUG_ON(!intel_engine_is_virtual(ce->engine));
4132
4133 lrc_post_unpin(ce);
4134 intel_context_unpin(ce->parallel.parent);
4135 }
4136
guc_child_context_destroy(struct kref * kref)4137 static void guc_child_context_destroy(struct kref *kref)
4138 {
4139 struct intel_context *ce = container_of(kref, typeof(*ce), ref);
4140
4141 __guc_context_destroy(ce);
4142 }
4143
4144 static const struct intel_context_ops virtual_parent_context_ops = {
4145 .alloc = guc_virtual_context_alloc,
4146
4147 .close = guc_context_close,
4148
4149 .pre_pin = guc_context_pre_pin,
4150 .pin = guc_parent_context_pin,
4151 .unpin = guc_parent_context_unpin,
4152 .post_unpin = guc_context_post_unpin,
4153
4154 .revoke = guc_context_revoke,
4155
4156 .cancel_request = guc_context_cancel_request,
4157
4158 .enter = guc_virtual_context_enter,
4159 .exit = guc_virtual_context_exit,
4160
4161 .sched_disable = guc_context_sched_disable,
4162
4163 .destroy = guc_context_destroy,
4164
4165 .get_sibling = guc_virtual_get_sibling,
4166 };
4167
4168 static const struct intel_context_ops virtual_child_context_ops = {
4169 .alloc = guc_virtual_context_alloc,
4170
4171 .pre_pin = guc_context_pre_pin,
4172 .pin = guc_child_context_pin,
4173 .unpin = guc_child_context_unpin,
4174 .post_unpin = guc_child_context_post_unpin,
4175
4176 .cancel_request = guc_context_cancel_request,
4177
4178 .enter = guc_virtual_context_enter,
4179 .exit = guc_virtual_context_exit,
4180
4181 .destroy = guc_child_context_destroy,
4182
4183 .get_sibling = guc_virtual_get_sibling,
4184 };
4185
4186 /*
4187 * The below override of the breadcrumbs is enabled when the user configures a
4188 * context for parallel submission (multi-lrc, parent-child).
4189 *
4190 * The overridden breadcrumbs implements an algorithm which allows the GuC to
4191 * safely preempt all the hw contexts configured for parallel submission
4192 * between each BB. The contract between the i915 and GuC is if the parent
4193 * context can be preempted, all the children can be preempted, and the GuC will
4194 * always try to preempt the parent before the children. A handshake between the
4195 * parent / children breadcrumbs ensures the i915 holds up its end of the deal
4196 * creating a window to preempt between each set of BBs.
4197 */
4198 static int emit_bb_start_parent_no_preempt_mid_batch(struct i915_request *rq,
4199 u64 offset, u32 len,
4200 const unsigned int flags);
4201 static int emit_bb_start_child_no_preempt_mid_batch(struct i915_request *rq,
4202 u64 offset, u32 len,
4203 const unsigned int flags);
4204 static u32 *
4205 emit_fini_breadcrumb_parent_no_preempt_mid_batch(struct i915_request *rq,
4206 u32 *cs);
4207 static u32 *
4208 emit_fini_breadcrumb_child_no_preempt_mid_batch(struct i915_request *rq,
4209 u32 *cs);
4210
4211 static struct intel_context *
guc_create_parallel(struct intel_engine_cs ** engines,unsigned int num_siblings,unsigned int width)4212 guc_create_parallel(struct intel_engine_cs **engines,
4213 unsigned int num_siblings,
4214 unsigned int width)
4215 {
4216 struct intel_engine_cs **siblings = NULL;
4217 struct intel_context *parent = NULL, *ce, *err;
4218 int i, j;
4219
4220 siblings = kmalloc_array(num_siblings,
4221 sizeof(*siblings),
4222 GFP_KERNEL);
4223 if (!siblings)
4224 return ERR_PTR(-ENOMEM);
4225
4226 for (i = 0; i < width; ++i) {
4227 for (j = 0; j < num_siblings; ++j)
4228 siblings[j] = engines[i * num_siblings + j];
4229
4230 ce = intel_engine_create_virtual(siblings, num_siblings,
4231 FORCE_VIRTUAL);
4232 if (IS_ERR(ce)) {
4233 err = ERR_CAST(ce);
4234 goto unwind;
4235 }
4236
4237 if (i == 0) {
4238 parent = ce;
4239 parent->ops = &virtual_parent_context_ops;
4240 } else {
4241 ce->ops = &virtual_child_context_ops;
4242 intel_context_bind_parent_child(parent, ce);
4243 }
4244 }
4245
4246 parent->parallel.fence_context = dma_fence_context_alloc(1);
4247
4248 parent->engine->emit_bb_start =
4249 emit_bb_start_parent_no_preempt_mid_batch;
4250 parent->engine->emit_fini_breadcrumb =
4251 emit_fini_breadcrumb_parent_no_preempt_mid_batch;
4252 parent->engine->emit_fini_breadcrumb_dw =
4253 12 + 4 * parent->parallel.number_children;
4254 for_each_child(parent, ce) {
4255 ce->engine->emit_bb_start =
4256 emit_bb_start_child_no_preempt_mid_batch;
4257 ce->engine->emit_fini_breadcrumb =
4258 emit_fini_breadcrumb_child_no_preempt_mid_batch;
4259 ce->engine->emit_fini_breadcrumb_dw = 16;
4260 }
4261
4262 kfree(siblings);
4263 return parent;
4264
4265 unwind:
4266 if (parent)
4267 intel_context_put(parent);
4268 kfree(siblings);
4269 return err;
4270 }
4271
4272 static bool
guc_irq_enable_breadcrumbs(struct intel_breadcrumbs * b)4273 guc_irq_enable_breadcrumbs(struct intel_breadcrumbs *b)
4274 {
4275 struct intel_engine_cs *sibling;
4276 intel_engine_mask_t tmp, mask = b->engine_mask;
4277 bool result = false;
4278
4279 for_each_engine_masked(sibling, b->irq_engine->gt, mask, tmp)
4280 result |= intel_engine_irq_enable(sibling);
4281
4282 return result;
4283 }
4284
4285 static void
guc_irq_disable_breadcrumbs(struct intel_breadcrumbs * b)4286 guc_irq_disable_breadcrumbs(struct intel_breadcrumbs *b)
4287 {
4288 struct intel_engine_cs *sibling;
4289 intel_engine_mask_t tmp, mask = b->engine_mask;
4290
4291 for_each_engine_masked(sibling, b->irq_engine->gt, mask, tmp)
4292 intel_engine_irq_disable(sibling);
4293 }
4294
guc_init_breadcrumbs(struct intel_engine_cs * engine)4295 static void guc_init_breadcrumbs(struct intel_engine_cs *engine)
4296 {
4297 int i;
4298
4299 /*
4300 * In GuC submission mode we do not know which physical engine a request
4301 * will be scheduled on, this creates a problem because the breadcrumb
4302 * interrupt is per physical engine. To work around this we attach
4303 * requests and direct all breadcrumb interrupts to the first instance
4304 * of an engine per class. In addition all breadcrumb interrupts are
4305 * enabled / disabled across an engine class in unison.
4306 */
4307 for (i = 0; i < MAX_ENGINE_INSTANCE; ++i) {
4308 struct intel_engine_cs *sibling =
4309 engine->gt->engine_class[engine->class][i];
4310
4311 if (sibling) {
4312 if (engine->breadcrumbs != sibling->breadcrumbs) {
4313 intel_breadcrumbs_put(engine->breadcrumbs);
4314 engine->breadcrumbs =
4315 intel_breadcrumbs_get(sibling->breadcrumbs);
4316 }
4317 break;
4318 }
4319 }
4320
4321 if (engine->breadcrumbs) {
4322 engine->breadcrumbs->engine_mask |= engine->mask;
4323 engine->breadcrumbs->irq_enable = guc_irq_enable_breadcrumbs;
4324 engine->breadcrumbs->irq_disable = guc_irq_disable_breadcrumbs;
4325 }
4326 }
4327
guc_bump_inflight_request_prio(struct i915_request * rq,int prio)4328 static void guc_bump_inflight_request_prio(struct i915_request *rq,
4329 int prio)
4330 {
4331 struct intel_context *ce = request_to_scheduling_context(rq);
4332 u8 new_guc_prio = map_i915_prio_to_guc_prio(prio);
4333
4334 /* Short circuit function */
4335 if (prio < I915_PRIORITY_NORMAL)
4336 return;
4337
4338 spin_lock(&ce->guc_state.lock);
4339
4340 if (rq->guc_prio == GUC_PRIO_FINI)
4341 goto exit;
4342
4343 if (!new_guc_prio_higher(rq->guc_prio, new_guc_prio))
4344 goto exit;
4345
4346 if (rq->guc_prio != GUC_PRIO_INIT)
4347 sub_context_inflight_prio(ce, rq->guc_prio);
4348
4349 rq->guc_prio = new_guc_prio;
4350 add_context_inflight_prio(ce, rq->guc_prio);
4351 update_context_prio(ce);
4352
4353 exit:
4354 spin_unlock(&ce->guc_state.lock);
4355 }
4356
guc_retire_inflight_request_prio(struct i915_request * rq)4357 static void guc_retire_inflight_request_prio(struct i915_request *rq)
4358 {
4359 struct intel_context *ce = request_to_scheduling_context(rq);
4360
4361 spin_lock(&ce->guc_state.lock);
4362 guc_prio_fini(rq, ce);
4363 spin_unlock(&ce->guc_state.lock);
4364 }
4365
sanitize_hwsp(struct intel_engine_cs * engine)4366 static void sanitize_hwsp(struct intel_engine_cs *engine)
4367 {
4368 struct intel_timeline *tl;
4369
4370 list_for_each_entry(tl, &engine->status_page.timelines, engine_link)
4371 intel_timeline_reset_seqno(tl);
4372 }
4373
guc_sanitize(struct intel_engine_cs * engine)4374 static void guc_sanitize(struct intel_engine_cs *engine)
4375 {
4376 /*
4377 * Poison residual state on resume, in case the suspend didn't!
4378 *
4379 * We have to assume that across suspend/resume (or other loss
4380 * of control) that the contents of our pinned buffers has been
4381 * lost, replaced by garbage. Since this doesn't always happen,
4382 * let's poison such state so that we more quickly spot when
4383 * we falsely assume it has been preserved.
4384 */
4385 if (IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM))
4386 memset(engine->status_page.addr, POISON_INUSE, PAGE_SIZE);
4387
4388 /*
4389 * The kernel_context HWSP is stored in the status_page. As above,
4390 * that may be lost on resume/initialisation, and so we need to
4391 * reset the value in the HWSP.
4392 */
4393 sanitize_hwsp(engine);
4394
4395 /* And scrub the dirty cachelines for the HWSP */
4396 drm_clflush_virt_range(engine->status_page.addr, PAGE_SIZE);
4397
4398 intel_engine_reset_pinned_contexts(engine);
4399 }
4400
setup_hwsp(struct intel_engine_cs * engine)4401 static void setup_hwsp(struct intel_engine_cs *engine)
4402 {
4403 intel_engine_set_hwsp_writemask(engine, ~0u); /* HWSTAM */
4404
4405 ENGINE_WRITE_FW(engine,
4406 RING_HWS_PGA,
4407 i915_ggtt_offset(engine->status_page.vma));
4408 }
4409
start_engine(struct intel_engine_cs * engine)4410 static void start_engine(struct intel_engine_cs *engine)
4411 {
4412 ENGINE_WRITE_FW(engine,
4413 RING_MODE_GEN7,
4414 _MASKED_BIT_ENABLE(GEN11_GFX_DISABLE_LEGACY_MODE));
4415
4416 ENGINE_WRITE_FW(engine, RING_MI_MODE, _MASKED_BIT_DISABLE(STOP_RING));
4417 ENGINE_POSTING_READ(engine, RING_MI_MODE);
4418 }
4419
guc_resume(struct intel_engine_cs * engine)4420 static int guc_resume(struct intel_engine_cs *engine)
4421 {
4422 assert_forcewakes_active(engine->uncore, FORCEWAKE_ALL);
4423
4424 intel_mocs_init_engine(engine);
4425
4426 intel_breadcrumbs_reset(engine->breadcrumbs);
4427
4428 setup_hwsp(engine);
4429 start_engine(engine);
4430
4431 if (engine->flags & I915_ENGINE_FIRST_RENDER_COMPUTE)
4432 xehp_enable_ccs_engines(engine);
4433
4434 return 0;
4435 }
4436
guc_sched_engine_disabled(struct i915_sched_engine * sched_engine)4437 static bool guc_sched_engine_disabled(struct i915_sched_engine *sched_engine)
4438 {
4439 return !sched_engine->tasklet.callback;
4440 }
4441
guc_set_default_submission(struct intel_engine_cs * engine)4442 static void guc_set_default_submission(struct intel_engine_cs *engine)
4443 {
4444 engine->submit_request = guc_submit_request;
4445 }
4446
guc_kernel_context_pin(struct intel_guc * guc,struct intel_context * ce)4447 static inline int guc_kernel_context_pin(struct intel_guc *guc,
4448 struct intel_context *ce)
4449 {
4450 int ret;
4451
4452 /*
4453 * Note: we purposefully do not check the returns below because
4454 * the registration can only fail if a reset is just starting.
4455 * This is called at the end of reset so presumably another reset
4456 * isn't happening and even it did this code would be run again.
4457 */
4458
4459 if (context_guc_id_invalid(ce)) {
4460 ret = pin_guc_id(guc, ce);
4461
4462 if (ret < 0)
4463 return ret;
4464 }
4465
4466 if (!test_bit(CONTEXT_GUC_INIT, &ce->flags))
4467 guc_context_init(ce);
4468
4469 ret = try_context_registration(ce, true);
4470 if (ret)
4471 unpin_guc_id(guc, ce);
4472
4473 return ret;
4474 }
4475
guc_init_submission(struct intel_guc * guc)4476 static inline int guc_init_submission(struct intel_guc *guc)
4477 {
4478 struct intel_gt *gt = guc_to_gt(guc);
4479 struct intel_engine_cs *engine;
4480 enum intel_engine_id id;
4481
4482 /* make sure all descriptors are clean... */
4483 xa_destroy(&guc->context_lookup);
4484
4485 /*
4486 * A reset might have occurred while we had a pending stalled request,
4487 * so make sure we clean that up.
4488 */
4489 guc->stalled_request = NULL;
4490 guc->submission_stall_reason = STALL_NONE;
4491
4492 /*
4493 * Some contexts might have been pinned before we enabled GuC
4494 * submission, so we need to add them to the GuC bookeeping.
4495 * Also, after a reset the of the GuC we want to make sure that the
4496 * information shared with GuC is properly reset. The kernel LRCs are
4497 * not attached to the gem_context, so they need to be added separately.
4498 */
4499 for_each_engine(engine, gt, id) {
4500 struct intel_context *ce;
4501
4502 list_for_each_entry(ce, &engine->pinned_contexts_list,
4503 pinned_contexts_link) {
4504 int ret = guc_kernel_context_pin(guc, ce);
4505
4506 if (ret) {
4507 /* No point in trying to clean up as i915 will wedge on failure */
4508 return ret;
4509 }
4510 }
4511 }
4512
4513 return 0;
4514 }
4515
guc_release(struct intel_engine_cs * engine)4516 static void guc_release(struct intel_engine_cs *engine)
4517 {
4518 engine->sanitize = NULL; /* no longer in control, nothing to sanitize */
4519
4520 intel_engine_cleanup_common(engine);
4521 lrc_fini_wa_ctx(engine);
4522 }
4523
virtual_guc_bump_serial(struct intel_engine_cs * engine)4524 static void virtual_guc_bump_serial(struct intel_engine_cs *engine)
4525 {
4526 struct intel_engine_cs *e;
4527 intel_engine_mask_t tmp, mask = engine->mask;
4528
4529 for_each_engine_masked(e, engine->gt, mask, tmp)
4530 e->serial++;
4531 }
4532
guc_default_vfuncs(struct intel_engine_cs * engine)4533 static void guc_default_vfuncs(struct intel_engine_cs *engine)
4534 {
4535 /* Default vfuncs which can be overridden by each engine. */
4536
4537 engine->resume = guc_resume;
4538
4539 engine->cops = &guc_context_ops;
4540 engine->request_alloc = guc_request_alloc;
4541 engine->add_active_request = add_to_context;
4542 engine->remove_active_request = remove_from_context;
4543
4544 engine->sched_engine->schedule = i915_schedule;
4545
4546 engine->reset.prepare = guc_engine_reset_prepare;
4547 engine->reset.rewind = guc_rewind_nop;
4548 engine->reset.cancel = guc_reset_nop;
4549 engine->reset.finish = guc_reset_nop;
4550
4551 engine->emit_flush = gen8_emit_flush_xcs;
4552 engine->emit_init_breadcrumb = gen8_emit_init_breadcrumb;
4553 engine->emit_fini_breadcrumb = gen8_emit_fini_breadcrumb_xcs;
4554 if (GRAPHICS_VER(engine->i915) >= 12) {
4555 engine->emit_fini_breadcrumb = gen12_emit_fini_breadcrumb_xcs;
4556 engine->emit_flush = gen12_emit_flush_xcs;
4557 }
4558 engine->set_default_submission = guc_set_default_submission;
4559 engine->busyness = guc_engine_busyness;
4560
4561 engine->flags |= I915_ENGINE_SUPPORTS_STATS;
4562 engine->flags |= I915_ENGINE_HAS_PREEMPTION;
4563 engine->flags |= I915_ENGINE_HAS_TIMESLICES;
4564
4565 /* Wa_14014475959:dg2 */
4566 if (engine->class == COMPUTE_CLASS)
4567 if (IS_GFX_GT_IP_STEP(engine->gt, IP_VER(12, 70), STEP_A0, STEP_B0) ||
4568 IS_DG2(engine->i915))
4569 engine->flags |= I915_ENGINE_USES_WA_HOLD_SWITCHOUT;
4570
4571 /* Wa_16019325821 */
4572 /* Wa_14019159160 */
4573 if ((engine->class == COMPUTE_CLASS || engine->class == RENDER_CLASS) &&
4574 IS_GFX_GT_IP_RANGE(engine->gt, IP_VER(12, 70), IP_VER(12, 74)))
4575 engine->flags |= I915_ENGINE_USES_WA_HOLD_SWITCHOUT;
4576
4577 /*
4578 * TODO: GuC supports timeslicing and semaphores as well, but they're
4579 * handled by the firmware so some minor tweaks are required before
4580 * enabling.
4581 *
4582 * engine->flags |= I915_ENGINE_HAS_SEMAPHORES;
4583 */
4584
4585 engine->emit_bb_start = gen8_emit_bb_start;
4586 if (GRAPHICS_VER_FULL(engine->i915) >= IP_VER(12, 55))
4587 engine->emit_bb_start = xehp_emit_bb_start;
4588 }
4589
rcs_submission_override(struct intel_engine_cs * engine)4590 static void rcs_submission_override(struct intel_engine_cs *engine)
4591 {
4592 switch (GRAPHICS_VER(engine->i915)) {
4593 case 12:
4594 engine->emit_flush = gen12_emit_flush_rcs;
4595 engine->emit_fini_breadcrumb = gen12_emit_fini_breadcrumb_rcs;
4596 break;
4597 case 11:
4598 engine->emit_flush = gen11_emit_flush_rcs;
4599 engine->emit_fini_breadcrumb = gen11_emit_fini_breadcrumb_rcs;
4600 break;
4601 default:
4602 engine->emit_flush = gen8_emit_flush_rcs;
4603 engine->emit_fini_breadcrumb = gen8_emit_fini_breadcrumb_rcs;
4604 break;
4605 }
4606 }
4607
guc_default_irqs(struct intel_engine_cs * engine)4608 static inline void guc_default_irqs(struct intel_engine_cs *engine)
4609 {
4610 engine->irq_keep_mask = GT_RENDER_USER_INTERRUPT;
4611 intel_engine_set_irq_handler(engine, cs_irq_handler);
4612 }
4613
guc_sched_engine_destroy(struct kref * kref)4614 static void guc_sched_engine_destroy(struct kref *kref)
4615 {
4616 struct i915_sched_engine *sched_engine =
4617 container_of(kref, typeof(*sched_engine), ref);
4618 struct intel_guc *guc = sched_engine->private_data;
4619
4620 guc->sched_engine = NULL;
4621 tasklet_kill(&sched_engine->tasklet); /* flush the callback */
4622 kfree(sched_engine);
4623 }
4624
intel_guc_submission_setup(struct intel_engine_cs * engine)4625 int intel_guc_submission_setup(struct intel_engine_cs *engine)
4626 {
4627 struct drm_i915_private *i915 = engine->i915;
4628 struct intel_guc *guc = gt_to_guc(engine->gt);
4629
4630 /*
4631 * The setup relies on several assumptions (e.g. irqs always enabled)
4632 * that are only valid on gen11+
4633 */
4634 GEM_BUG_ON(GRAPHICS_VER(i915) < 11);
4635
4636 if (!guc->sched_engine) {
4637 guc->sched_engine = i915_sched_engine_create(ENGINE_VIRTUAL);
4638 if (!guc->sched_engine)
4639 return -ENOMEM;
4640
4641 guc->sched_engine->schedule = i915_schedule;
4642 guc->sched_engine->disabled = guc_sched_engine_disabled;
4643 guc->sched_engine->private_data = guc;
4644 guc->sched_engine->destroy = guc_sched_engine_destroy;
4645 guc->sched_engine->bump_inflight_request_prio =
4646 guc_bump_inflight_request_prio;
4647 guc->sched_engine->retire_inflight_request_prio =
4648 guc_retire_inflight_request_prio;
4649 tasklet_setup(&guc->sched_engine->tasklet,
4650 guc_submission_tasklet);
4651 }
4652 i915_sched_engine_put(engine->sched_engine);
4653 engine->sched_engine = i915_sched_engine_get(guc->sched_engine);
4654
4655 guc_default_vfuncs(engine);
4656 guc_default_irqs(engine);
4657 guc_init_breadcrumbs(engine);
4658
4659 if (engine->flags & I915_ENGINE_HAS_RCS_REG_STATE)
4660 rcs_submission_override(engine);
4661
4662 lrc_init_wa_ctx(engine);
4663
4664 /* Finally, take ownership and responsibility for cleanup! */
4665 engine->sanitize = guc_sanitize;
4666 engine->release = guc_release;
4667
4668 return 0;
4669 }
4670
4671 struct scheduling_policy {
4672 /* internal data */
4673 u32 max_words, num_words;
4674 u32 count;
4675 /* API data */
4676 struct guc_update_scheduling_policy h2g;
4677 };
4678
__guc_scheduling_policy_action_size(struct scheduling_policy * policy)4679 static u32 __guc_scheduling_policy_action_size(struct scheduling_policy *policy)
4680 {
4681 u32 *start = (void *)&policy->h2g;
4682 u32 *end = policy->h2g.data + policy->num_words;
4683 size_t delta = end - start;
4684
4685 return delta;
4686 }
4687
__guc_scheduling_policy_start_klv(struct scheduling_policy * policy)4688 static struct scheduling_policy *__guc_scheduling_policy_start_klv(struct scheduling_policy *policy)
4689 {
4690 policy->h2g.header.action = INTEL_GUC_ACTION_UPDATE_SCHEDULING_POLICIES_KLV;
4691 policy->max_words = ARRAY_SIZE(policy->h2g.data);
4692 policy->num_words = 0;
4693 policy->count = 0;
4694
4695 return policy;
4696 }
4697
__guc_scheduling_policy_add_klv(struct scheduling_policy * policy,u32 action,u32 * data,u32 len)4698 static void __guc_scheduling_policy_add_klv(struct scheduling_policy *policy,
4699 u32 action, u32 *data, u32 len)
4700 {
4701 u32 *klv_ptr = policy->h2g.data + policy->num_words;
4702
4703 GEM_BUG_ON((policy->num_words + 1 + len) > policy->max_words);
4704 *(klv_ptr++) = FIELD_PREP(GUC_KLV_0_KEY, action) |
4705 FIELD_PREP(GUC_KLV_0_LEN, len);
4706 memcpy(klv_ptr, data, sizeof(u32) * len);
4707 policy->num_words += 1 + len;
4708 policy->count++;
4709 }
4710
__guc_action_set_scheduling_policies(struct intel_guc * guc,struct scheduling_policy * policy)4711 static int __guc_action_set_scheduling_policies(struct intel_guc *guc,
4712 struct scheduling_policy *policy)
4713 {
4714 int ret;
4715
4716 ret = intel_guc_send(guc, (u32 *)&policy->h2g,
4717 __guc_scheduling_policy_action_size(policy));
4718 if (ret < 0) {
4719 guc_probe_error(guc, "Failed to configure global scheduling policies: %pe!\n",
4720 ERR_PTR(ret));
4721 return ret;
4722 }
4723
4724 if (ret != policy->count) {
4725 guc_warn(guc, "global scheduler policy processed %d of %d KLVs!",
4726 ret, policy->count);
4727 if (ret > policy->count)
4728 return -EPROTO;
4729 }
4730
4731 return 0;
4732 }
4733
guc_init_global_schedule_policy(struct intel_guc * guc)4734 static int guc_init_global_schedule_policy(struct intel_guc *guc)
4735 {
4736 struct scheduling_policy policy;
4737 struct intel_gt *gt = guc_to_gt(guc);
4738 intel_wakeref_t wakeref;
4739 int ret;
4740
4741 if (GUC_SUBMIT_VER(guc) < MAKE_GUC_VER(1, 1, 0))
4742 return 0;
4743
4744 __guc_scheduling_policy_start_klv(&policy);
4745
4746 with_intel_runtime_pm(>->i915->runtime_pm, wakeref) {
4747 u32 yield[] = {
4748 GLOBAL_SCHEDULE_POLICY_RC_YIELD_DURATION,
4749 GLOBAL_SCHEDULE_POLICY_RC_YIELD_RATIO,
4750 };
4751
4752 __guc_scheduling_policy_add_klv(&policy,
4753 GUC_SCHEDULING_POLICIES_KLV_ID_RENDER_COMPUTE_YIELD,
4754 yield, ARRAY_SIZE(yield));
4755
4756 ret = __guc_action_set_scheduling_policies(guc, &policy);
4757 }
4758
4759 return ret;
4760 }
4761
guc_route_semaphores(struct intel_guc * guc,bool to_guc)4762 static void guc_route_semaphores(struct intel_guc *guc, bool to_guc)
4763 {
4764 struct intel_gt *gt = guc_to_gt(guc);
4765 u32 val;
4766
4767 if (GRAPHICS_VER(gt->i915) < 12)
4768 return;
4769
4770 if (to_guc)
4771 val = GUC_SEM_INTR_ROUTE_TO_GUC | GUC_SEM_INTR_ENABLE_ALL;
4772 else
4773 val = 0;
4774
4775 intel_uncore_write(gt->uncore, GEN12_GUC_SEM_INTR_ENABLES, val);
4776 }
4777
intel_guc_submission_enable(struct intel_guc * guc)4778 int intel_guc_submission_enable(struct intel_guc *guc)
4779 {
4780 int ret;
4781
4782 /* Semaphore interrupt enable and route to GuC */
4783 guc_route_semaphores(guc, true);
4784
4785 ret = guc_init_submission(guc);
4786 if (ret)
4787 goto fail_sem;
4788
4789 ret = guc_init_engine_stats(guc);
4790 if (ret)
4791 goto fail_sem;
4792
4793 ret = guc_init_global_schedule_policy(guc);
4794 if (ret)
4795 goto fail_stats;
4796
4797 return 0;
4798
4799 fail_stats:
4800 guc_fini_engine_stats(guc);
4801 fail_sem:
4802 guc_route_semaphores(guc, false);
4803 return ret;
4804 }
4805
4806 /* Note: By the time we're here, GuC may have already been reset */
intel_guc_submission_disable(struct intel_guc * guc)4807 void intel_guc_submission_disable(struct intel_guc *guc)
4808 {
4809 guc_cancel_busyness_worker(guc);
4810
4811 /* Semaphore interrupt disable and route to host */
4812 guc_route_semaphores(guc, false);
4813 }
4814
__guc_submission_supported(struct intel_guc * guc)4815 static bool __guc_submission_supported(struct intel_guc *guc)
4816 {
4817 /* GuC submission is unavailable for pre-Gen11 */
4818 return intel_guc_is_supported(guc) &&
4819 GRAPHICS_VER(guc_to_i915(guc)) >= 11;
4820 }
4821
__guc_submission_selected(struct intel_guc * guc)4822 static bool __guc_submission_selected(struct intel_guc *guc)
4823 {
4824 struct drm_i915_private *i915 = guc_to_i915(guc);
4825
4826 if (!intel_guc_submission_is_supported(guc))
4827 return false;
4828
4829 return i915->params.enable_guc & ENABLE_GUC_SUBMISSION;
4830 }
4831
intel_guc_sched_disable_gucid_threshold_max(struct intel_guc * guc)4832 int intel_guc_sched_disable_gucid_threshold_max(struct intel_guc *guc)
4833 {
4834 return guc->submission_state.num_guc_ids - NUMBER_MULTI_LRC_GUC_ID(guc);
4835 }
4836
4837 /*
4838 * This default value of 33 milisecs (+1 milisec round up) ensures 30fps or higher
4839 * workloads are able to enjoy the latency reduction when delaying the schedule-disable
4840 * operation. This matches the 30fps game-render + encode (real world) workload this
4841 * knob was tested against.
4842 */
4843 #define SCHED_DISABLE_DELAY_MS 34
4844
4845 /*
4846 * A threshold of 75% is a reasonable starting point considering that real world apps
4847 * generally don't get anywhere near this.
4848 */
4849 #define NUM_SCHED_DISABLE_GUCIDS_DEFAULT_THRESHOLD(__guc) \
4850 (((intel_guc_sched_disable_gucid_threshold_max(guc)) * 3) / 4)
4851
intel_guc_submission_init_early(struct intel_guc * guc)4852 void intel_guc_submission_init_early(struct intel_guc *guc)
4853 {
4854 xa_init_flags(&guc->context_lookup, XA_FLAGS_LOCK_IRQ);
4855
4856 spin_lock_init(&guc->submission_state.lock);
4857 INIT_LIST_HEAD(&guc->submission_state.guc_id_list);
4858 ida_init(&guc->submission_state.guc_ids);
4859 INIT_LIST_HEAD(&guc->submission_state.destroyed_contexts);
4860 INIT_WORK(&guc->submission_state.destroyed_worker,
4861 destroyed_worker_func);
4862 INIT_WORK(&guc->submission_state.reset_fail_worker,
4863 reset_fail_worker_func);
4864
4865 spin_lock_init(&guc->timestamp.lock);
4866 INIT_DELAYED_WORK(&guc->timestamp.work, guc_timestamp_ping);
4867
4868 guc->submission_state.sched_disable_delay_ms = SCHED_DISABLE_DELAY_MS;
4869 guc->submission_state.num_guc_ids = GUC_MAX_CONTEXT_ID;
4870 guc->submission_state.sched_disable_gucid_threshold =
4871 NUM_SCHED_DISABLE_GUCIDS_DEFAULT_THRESHOLD(guc);
4872 guc->submission_supported = __guc_submission_supported(guc);
4873 guc->submission_selected = __guc_submission_selected(guc);
4874 }
4875
4876 static inline struct intel_context *
g2h_context_lookup(struct intel_guc * guc,u32 ctx_id)4877 g2h_context_lookup(struct intel_guc *guc, u32 ctx_id)
4878 {
4879 struct intel_context *ce;
4880
4881 if (unlikely(ctx_id >= GUC_MAX_CONTEXT_ID)) {
4882 guc_err(guc, "Invalid ctx_id %u\n", ctx_id);
4883 return NULL;
4884 }
4885
4886 ce = __get_context(guc, ctx_id);
4887 if (unlikely(!ce)) {
4888 guc_err(guc, "Context is NULL, ctx_id %u\n", ctx_id);
4889 return NULL;
4890 }
4891
4892 if (unlikely(intel_context_is_child(ce))) {
4893 guc_err(guc, "Context is child, ctx_id %u\n", ctx_id);
4894 return NULL;
4895 }
4896
4897 return ce;
4898 }
4899
wait_wake_outstanding_tlb_g2h(struct intel_guc * guc,u32 seqno)4900 static void wait_wake_outstanding_tlb_g2h(struct intel_guc *guc, u32 seqno)
4901 {
4902 struct intel_guc_tlb_wait *wait;
4903 unsigned long flags;
4904
4905 xa_lock_irqsave(&guc->tlb_lookup, flags);
4906 wait = xa_load(&guc->tlb_lookup, seqno);
4907
4908 if (wait)
4909 wake_up(&wait->wq);
4910 else
4911 guc_dbg(guc,
4912 "Stale TLB invalidation response with seqno %d\n", seqno);
4913
4914 xa_unlock_irqrestore(&guc->tlb_lookup, flags);
4915 }
4916
intel_guc_tlb_invalidation_done(struct intel_guc * guc,const u32 * payload,u32 len)4917 int intel_guc_tlb_invalidation_done(struct intel_guc *guc,
4918 const u32 *payload, u32 len)
4919 {
4920 if (len < 1)
4921 return -EPROTO;
4922
4923 wait_wake_outstanding_tlb_g2h(guc, payload[0]);
4924 return 0;
4925 }
4926
must_wait_woken(struct wait_queue_entry * wq_entry,long timeout)4927 static long must_wait_woken(struct wait_queue_entry *wq_entry, long timeout)
4928 {
4929 /*
4930 * This is equivalent to wait_woken() with the exception that
4931 * we do not wake up early if the kthread task has been completed.
4932 * As we are called from page reclaim in any task context,
4933 * we may be invoked from stopped kthreads, but we *must*
4934 * complete the wait from the HW.
4935 */
4936 do {
4937 set_current_state(TASK_UNINTERRUPTIBLE);
4938 if (wq_entry->flags & WQ_FLAG_WOKEN)
4939 break;
4940
4941 timeout = schedule_timeout(timeout);
4942 } while (timeout);
4943
4944 /* See wait_woken() and woken_wake_function() */
4945 __set_current_state(TASK_RUNNING);
4946 smp_store_mb(wq_entry->flags, wq_entry->flags & ~WQ_FLAG_WOKEN);
4947
4948 return timeout;
4949 }
4950
intel_gt_is_enabled(const struct intel_gt * gt)4951 static bool intel_gt_is_enabled(const struct intel_gt *gt)
4952 {
4953 /* Check if GT is wedged or suspended */
4954 if (intel_gt_is_wedged(gt) || !intel_irqs_enabled(gt->i915))
4955 return false;
4956 return true;
4957 }
4958
guc_send_invalidate_tlb(struct intel_guc * guc,enum intel_guc_tlb_invalidation_type type)4959 static int guc_send_invalidate_tlb(struct intel_guc *guc,
4960 enum intel_guc_tlb_invalidation_type type)
4961 {
4962 struct intel_guc_tlb_wait _wq, *wq = &_wq;
4963 struct intel_gt *gt = guc_to_gt(guc);
4964 DEFINE_WAIT_FUNC(wait, woken_wake_function);
4965 int err;
4966 u32 seqno;
4967 u32 action[] = {
4968 INTEL_GUC_ACTION_TLB_INVALIDATION,
4969 0,
4970 REG_FIELD_PREP(INTEL_GUC_TLB_INVAL_TYPE_MASK, type) |
4971 REG_FIELD_PREP(INTEL_GUC_TLB_INVAL_MODE_MASK,
4972 INTEL_GUC_TLB_INVAL_MODE_HEAVY) |
4973 INTEL_GUC_TLB_INVAL_FLUSH_CACHE,
4974 };
4975 u32 size = ARRAY_SIZE(action);
4976
4977 /*
4978 * Early guard against GT enablement. TLB invalidation should not be
4979 * attempted if the GT is disabled due to suspend/wedge.
4980 */
4981 if (!intel_gt_is_enabled(gt))
4982 return -EINVAL;
4983
4984 init_waitqueue_head(&_wq.wq);
4985
4986 if (xa_alloc_cyclic_irq(&guc->tlb_lookup, &seqno, wq,
4987 xa_limit_32b, &guc->next_seqno,
4988 GFP_ATOMIC | __GFP_NOWARN) < 0) {
4989 /* Under severe memory pressure? Serialise TLB allocations */
4990 xa_lock_irq(&guc->tlb_lookup);
4991 wq = xa_load(&guc->tlb_lookup, guc->serial_slot);
4992 wait_event_lock_irq(wq->wq,
4993 !READ_ONCE(wq->busy),
4994 guc->tlb_lookup.xa_lock);
4995 /*
4996 * Update wq->busy under lock to ensure only one waiter can
4997 * issue the TLB invalidation command using the serial slot at a
4998 * time. The condition is set to true before releasing the lock
4999 * so that other caller continue to wait until woken up again.
5000 */
5001 wq->busy = true;
5002 xa_unlock_irq(&guc->tlb_lookup);
5003
5004 seqno = guc->serial_slot;
5005 }
5006
5007 action[1] = seqno;
5008
5009 add_wait_queue(&wq->wq, &wait);
5010
5011 /* This is a critical reclaim path and thus we must loop here. */
5012 err = intel_guc_send_busy_loop(guc, action, size, G2H_LEN_DW_INVALIDATE_TLB, true);
5013 if (err)
5014 goto out;
5015
5016 /*
5017 * Late guard against GT enablement. It is not an error for the TLB
5018 * invalidation to time out if the GT is disabled during the process
5019 * due to suspend/wedge. In fact, the TLB invalidation is cancelled
5020 * in this case.
5021 */
5022 if (!must_wait_woken(&wait, intel_guc_ct_max_queue_time_jiffies()) &&
5023 intel_gt_is_enabled(gt)) {
5024 guc_err(guc,
5025 "TLB invalidation response timed out for seqno %u\n", seqno);
5026 err = -ETIME;
5027 }
5028 out:
5029 remove_wait_queue(&wq->wq, &wait);
5030 if (seqno != guc->serial_slot)
5031 xa_erase_irq(&guc->tlb_lookup, seqno);
5032
5033 return err;
5034 }
5035
5036 /* Send a H2G command to invalidate the TLBs at engine level and beyond. */
intel_guc_invalidate_tlb_engines(struct intel_guc * guc)5037 int intel_guc_invalidate_tlb_engines(struct intel_guc *guc)
5038 {
5039 return guc_send_invalidate_tlb(guc, INTEL_GUC_TLB_INVAL_ENGINES);
5040 }
5041
5042 /* Send a H2G command to invalidate the GuC's internal TLB. */
intel_guc_invalidate_tlb_guc(struct intel_guc * guc)5043 int intel_guc_invalidate_tlb_guc(struct intel_guc *guc)
5044 {
5045 return guc_send_invalidate_tlb(guc, INTEL_GUC_TLB_INVAL_GUC);
5046 }
5047
intel_guc_deregister_done_process_msg(struct intel_guc * guc,const u32 * msg,u32 len)5048 int intel_guc_deregister_done_process_msg(struct intel_guc *guc,
5049 const u32 *msg,
5050 u32 len)
5051 {
5052 struct intel_context *ce;
5053 u32 ctx_id;
5054
5055 if (unlikely(len < 1)) {
5056 guc_err(guc, "Invalid length %u\n", len);
5057 return -EPROTO;
5058 }
5059 ctx_id = msg[0];
5060
5061 ce = g2h_context_lookup(guc, ctx_id);
5062 if (unlikely(!ce))
5063 return -EPROTO;
5064
5065 trace_intel_context_deregister_done(ce);
5066
5067 #ifdef CONFIG_DRM_I915_SELFTEST
5068 if (unlikely(ce->drop_deregister)) {
5069 ce->drop_deregister = false;
5070 return 0;
5071 }
5072 #endif
5073
5074 if (context_wait_for_deregister_to_register(ce)) {
5075 struct intel_runtime_pm *runtime_pm =
5076 &ce->engine->gt->i915->runtime_pm;
5077 intel_wakeref_t wakeref;
5078
5079 /*
5080 * Previous owner of this guc_id has been deregistered, now safe
5081 * register this context.
5082 */
5083 with_intel_runtime_pm(runtime_pm, wakeref)
5084 register_context(ce, true);
5085 guc_signal_context_fence(ce);
5086 intel_context_put(ce);
5087 } else if (context_destroyed(ce)) {
5088 /* Context has been destroyed */
5089 intel_gt_pm_put_async_untracked(guc_to_gt(guc));
5090 release_guc_id(guc, ce);
5091 __guc_context_destroy(ce);
5092 }
5093
5094 decr_outstanding_submission_g2h(guc);
5095
5096 return 0;
5097 }
5098
intel_guc_sched_done_process_msg(struct intel_guc * guc,const u32 * msg,u32 len)5099 int intel_guc_sched_done_process_msg(struct intel_guc *guc,
5100 const u32 *msg,
5101 u32 len)
5102 {
5103 struct intel_context *ce;
5104 unsigned long flags;
5105 u32 ctx_id;
5106
5107 if (unlikely(len < 2)) {
5108 guc_err(guc, "Invalid length %u\n", len);
5109 return -EPROTO;
5110 }
5111 ctx_id = msg[0];
5112
5113 ce = g2h_context_lookup(guc, ctx_id);
5114 if (unlikely(!ce))
5115 return -EPROTO;
5116
5117 if (unlikely(context_destroyed(ce) ||
5118 (!context_pending_enable(ce) &&
5119 !context_pending_disable(ce)))) {
5120 guc_err(guc, "Bad context sched_state 0x%x, ctx_id %u\n",
5121 ce->guc_state.sched_state, ctx_id);
5122 return -EPROTO;
5123 }
5124
5125 trace_intel_context_sched_done(ce);
5126
5127 if (context_pending_enable(ce)) {
5128 #ifdef CONFIG_DRM_I915_SELFTEST
5129 if (unlikely(ce->drop_schedule_enable)) {
5130 ce->drop_schedule_enable = false;
5131 return 0;
5132 }
5133 #endif
5134
5135 spin_lock_irqsave(&ce->guc_state.lock, flags);
5136 clr_context_pending_enable(ce);
5137 spin_unlock_irqrestore(&ce->guc_state.lock, flags);
5138 } else if (context_pending_disable(ce)) {
5139 bool banned;
5140
5141 #ifdef CONFIG_DRM_I915_SELFTEST
5142 if (unlikely(ce->drop_schedule_disable)) {
5143 ce->drop_schedule_disable = false;
5144 return 0;
5145 }
5146 #endif
5147
5148 /*
5149 * Unpin must be done before __guc_signal_context_fence,
5150 * otherwise a race exists between the requests getting
5151 * submitted + retired before this unpin completes resulting in
5152 * the pin_count going to zero and the context still being
5153 * enabled.
5154 */
5155 intel_context_sched_disable_unpin(ce);
5156
5157 spin_lock_irqsave(&ce->guc_state.lock, flags);
5158 banned = context_banned(ce);
5159 clr_context_banned(ce);
5160 clr_context_pending_disable(ce);
5161 __guc_signal_context_fence(ce);
5162 guc_blocked_fence_complete(ce);
5163 spin_unlock_irqrestore(&ce->guc_state.lock, flags);
5164
5165 if (banned) {
5166 guc_cancel_context_requests(ce);
5167 intel_engine_signal_breadcrumbs(ce->engine);
5168 }
5169 }
5170
5171 decr_outstanding_submission_g2h(guc);
5172 intel_context_put(ce);
5173
5174 return 0;
5175 }
5176
capture_error_state(struct intel_guc * guc,struct intel_context * ce)5177 static void capture_error_state(struct intel_guc *guc,
5178 struct intel_context *ce)
5179 {
5180 struct intel_gt *gt = guc_to_gt(guc);
5181 struct drm_i915_private *i915 = gt->i915;
5182 intel_wakeref_t wakeref;
5183 intel_engine_mask_t engine_mask;
5184
5185 if (intel_engine_is_virtual(ce->engine)) {
5186 struct intel_engine_cs *e;
5187 intel_engine_mask_t tmp, virtual_mask = ce->engine->mask;
5188
5189 engine_mask = 0;
5190 for_each_engine_masked(e, ce->engine->gt, virtual_mask, tmp) {
5191 bool match = intel_guc_capture_is_matching_engine(gt, ce, e);
5192
5193 if (match) {
5194 intel_engine_set_hung_context(e, ce);
5195 engine_mask |= e->mask;
5196 i915_increase_reset_engine_count(&i915->gpu_error,
5197 e);
5198 }
5199 }
5200
5201 if (!engine_mask) {
5202 guc_warn(guc, "No matching physical engine capture for virtual engine context 0x%04X / %s",
5203 ce->guc_id.id, ce->engine->name);
5204 engine_mask = ~0U;
5205 }
5206 } else {
5207 intel_engine_set_hung_context(ce->engine, ce);
5208 engine_mask = ce->engine->mask;
5209 i915_increase_reset_engine_count(&i915->gpu_error, ce->engine);
5210 }
5211
5212 with_intel_runtime_pm(&i915->runtime_pm, wakeref)
5213 i915_capture_error_state(gt, engine_mask, CORE_DUMP_FLAG_IS_GUC_CAPTURE);
5214 }
5215
guc_context_replay(struct intel_context * ce)5216 static void guc_context_replay(struct intel_context *ce)
5217 {
5218 struct i915_sched_engine *sched_engine = ce->engine->sched_engine;
5219
5220 __guc_reset_context(ce, ce->engine->mask);
5221 tasklet_hi_schedule(&sched_engine->tasklet);
5222 }
5223
guc_handle_context_reset(struct intel_guc * guc,struct intel_context * ce)5224 static void guc_handle_context_reset(struct intel_guc *guc,
5225 struct intel_context *ce)
5226 {
5227 bool capture = intel_context_is_schedulable(ce);
5228
5229 trace_intel_context_reset(ce);
5230
5231 guc_dbg(guc, "%s context reset notification: 0x%04X on %s, exiting = %s, banned = %s\n",
5232 capture ? "Got" : "Ignoring",
5233 ce->guc_id.id, ce->engine->name,
5234 str_yes_no(intel_context_is_exiting(ce)),
5235 str_yes_no(intel_context_is_banned(ce)));
5236
5237 if (capture) {
5238 capture_error_state(guc, ce);
5239 guc_context_replay(ce);
5240 }
5241 }
5242
intel_guc_context_reset_process_msg(struct intel_guc * guc,const u32 * msg,u32 len)5243 int intel_guc_context_reset_process_msg(struct intel_guc *guc,
5244 const u32 *msg, u32 len)
5245 {
5246 struct intel_context *ce;
5247 unsigned long flags;
5248 int ctx_id;
5249
5250 if (unlikely(len != 1)) {
5251 guc_err(guc, "Invalid length %u", len);
5252 return -EPROTO;
5253 }
5254
5255 ctx_id = msg[0];
5256
5257 /*
5258 * The context lookup uses the xarray but lookups only require an RCU lock
5259 * not the full spinlock. So take the lock explicitly and keep it until the
5260 * context has been reference count locked to ensure it can't be destroyed
5261 * asynchronously until the reset is done.
5262 */
5263 xa_lock_irqsave(&guc->context_lookup, flags);
5264 ce = g2h_context_lookup(guc, ctx_id);
5265 if (ce)
5266 intel_context_get(ce);
5267 xa_unlock_irqrestore(&guc->context_lookup, flags);
5268
5269 if (unlikely(!ce))
5270 return -EPROTO;
5271
5272 guc_handle_context_reset(guc, ce);
5273 intel_context_put(ce);
5274
5275 return 0;
5276 }
5277
intel_guc_error_capture_process_msg(struct intel_guc * guc,const u32 * msg,u32 len)5278 int intel_guc_error_capture_process_msg(struct intel_guc *guc,
5279 const u32 *msg, u32 len)
5280 {
5281 u32 status;
5282
5283 if (unlikely(len != 1)) {
5284 guc_dbg(guc, "Invalid length %u", len);
5285 return -EPROTO;
5286 }
5287
5288 status = msg[0] & INTEL_GUC_STATE_CAPTURE_EVENT_STATUS_MASK;
5289 if (status == INTEL_GUC_STATE_CAPTURE_EVENT_STATUS_NOSPACE)
5290 guc_warn(guc, "No space for error capture");
5291
5292 intel_guc_capture_process(guc);
5293
5294 return 0;
5295 }
5296
5297 struct intel_engine_cs *
intel_guc_lookup_engine(struct intel_guc * guc,u8 guc_class,u8 instance)5298 intel_guc_lookup_engine(struct intel_guc *guc, u8 guc_class, u8 instance)
5299 {
5300 struct intel_gt *gt = guc_to_gt(guc);
5301 u8 engine_class = guc_class_to_engine_class(guc_class);
5302
5303 /* Class index is checked in class converter */
5304 GEM_BUG_ON(instance > MAX_ENGINE_INSTANCE);
5305
5306 return gt->engine_class[engine_class][instance];
5307 }
5308
reset_fail_worker_func(struct work_struct * w)5309 static void reset_fail_worker_func(struct work_struct *w)
5310 {
5311 struct intel_guc *guc = container_of(w, struct intel_guc,
5312 submission_state.reset_fail_worker);
5313 struct intel_gt *gt = guc_to_gt(guc);
5314 intel_engine_mask_t reset_fail_mask;
5315 unsigned long flags;
5316
5317 spin_lock_irqsave(&guc->submission_state.lock, flags);
5318 reset_fail_mask = guc->submission_state.reset_fail_mask;
5319 guc->submission_state.reset_fail_mask = 0;
5320 spin_unlock_irqrestore(&guc->submission_state.lock, flags);
5321
5322 if (likely(reset_fail_mask)) {
5323 struct intel_engine_cs *engine;
5324 enum intel_engine_id id;
5325
5326 /*
5327 * GuC is toast at this point - it dead loops after sending the failed
5328 * reset notification. So need to manually determine the guilty context.
5329 * Note that it should be reliable to do this here because the GuC is
5330 * toast and will not be scheduling behind the KMD's back.
5331 */
5332 for_each_engine_masked(engine, gt, reset_fail_mask, id)
5333 intel_guc_find_hung_context(engine);
5334
5335 intel_gt_handle_error(gt, reset_fail_mask,
5336 I915_ERROR_CAPTURE,
5337 "GuC failed to reset engine mask=0x%x",
5338 reset_fail_mask);
5339 }
5340 }
5341
intel_guc_engine_failure_process_msg(struct intel_guc * guc,const u32 * msg,u32 len)5342 int intel_guc_engine_failure_process_msg(struct intel_guc *guc,
5343 const u32 *msg, u32 len)
5344 {
5345 struct intel_engine_cs *engine;
5346 u8 guc_class, instance;
5347 u32 reason;
5348 unsigned long flags;
5349
5350 if (unlikely(len != 3)) {
5351 guc_err(guc, "Invalid length %u", len);
5352 return -EPROTO;
5353 }
5354
5355 guc_class = msg[0];
5356 instance = msg[1];
5357 reason = msg[2];
5358
5359 engine = intel_guc_lookup_engine(guc, guc_class, instance);
5360 if (unlikely(!engine)) {
5361 guc_err(guc, "Invalid engine %d:%d", guc_class, instance);
5362 return -EPROTO;
5363 }
5364
5365 /*
5366 * This is an unexpected failure of a hardware feature. So, log a real
5367 * error message not just the informational that comes with the reset.
5368 */
5369 guc_err(guc, "Engine reset failed on %d:%d (%s) because 0x%08X",
5370 guc_class, instance, engine->name, reason);
5371
5372 spin_lock_irqsave(&guc->submission_state.lock, flags);
5373 guc->submission_state.reset_fail_mask |= engine->mask;
5374 spin_unlock_irqrestore(&guc->submission_state.lock, flags);
5375
5376 /*
5377 * A GT reset flushes this worker queue (G2H handler) so we must use
5378 * another worker to trigger a GT reset.
5379 */
5380 queue_work(system_unbound_wq, &guc->submission_state.reset_fail_worker);
5381
5382 return 0;
5383 }
5384
intel_guc_find_hung_context(struct intel_engine_cs * engine)5385 void intel_guc_find_hung_context(struct intel_engine_cs *engine)
5386 {
5387 struct intel_guc *guc = gt_to_guc(engine->gt);
5388 struct intel_context *ce;
5389 struct i915_request *rq;
5390 unsigned long index;
5391 unsigned long flags;
5392
5393 /* Reset called during driver load? GuC not yet initialised! */
5394 if (unlikely(!guc_submission_initialized(guc)))
5395 return;
5396
5397 xa_lock_irqsave(&guc->context_lookup, flags);
5398 xa_for_each(&guc->context_lookup, index, ce) {
5399 bool found;
5400
5401 if (!kref_get_unless_zero(&ce->ref))
5402 continue;
5403
5404 xa_unlock(&guc->context_lookup);
5405
5406 if (!intel_context_is_pinned(ce))
5407 goto next;
5408
5409 if (intel_engine_is_virtual(ce->engine)) {
5410 if (!(ce->engine->mask & engine->mask))
5411 goto next;
5412 } else {
5413 if (ce->engine != engine)
5414 goto next;
5415 }
5416
5417 found = false;
5418 spin_lock(&ce->guc_state.lock);
5419 list_for_each_entry(rq, &ce->guc_state.requests, sched.link) {
5420 if (i915_test_request_state(rq) != I915_REQUEST_ACTIVE)
5421 continue;
5422
5423 found = true;
5424 break;
5425 }
5426 spin_unlock(&ce->guc_state.lock);
5427
5428 if (found) {
5429 intel_engine_set_hung_context(engine, ce);
5430
5431 /* Can only cope with one hang at a time... */
5432 intel_context_put(ce);
5433 xa_lock(&guc->context_lookup);
5434 goto done;
5435 }
5436
5437 next:
5438 intel_context_put(ce);
5439 xa_lock(&guc->context_lookup);
5440 }
5441 done:
5442 xa_unlock_irqrestore(&guc->context_lookup, flags);
5443 }
5444
intel_guc_dump_active_requests(struct intel_engine_cs * engine,struct i915_request * hung_rq,struct drm_printer * m)5445 void intel_guc_dump_active_requests(struct intel_engine_cs *engine,
5446 struct i915_request *hung_rq,
5447 struct drm_printer *m)
5448 {
5449 struct intel_guc *guc = gt_to_guc(engine->gt);
5450 struct intel_context *ce;
5451 unsigned long index;
5452 unsigned long flags;
5453
5454 /* Reset called during driver load? GuC not yet initialised! */
5455 if (unlikely(!guc_submission_initialized(guc)))
5456 return;
5457
5458 xa_lock_irqsave(&guc->context_lookup, flags);
5459 xa_for_each(&guc->context_lookup, index, ce) {
5460 if (!kref_get_unless_zero(&ce->ref))
5461 continue;
5462
5463 xa_unlock(&guc->context_lookup);
5464
5465 if (!intel_context_is_pinned(ce))
5466 goto next;
5467
5468 if (intel_engine_is_virtual(ce->engine)) {
5469 if (!(ce->engine->mask & engine->mask))
5470 goto next;
5471 } else {
5472 if (ce->engine != engine)
5473 goto next;
5474 }
5475
5476 spin_lock(&ce->guc_state.lock);
5477 intel_engine_dump_active_requests(&ce->guc_state.requests,
5478 hung_rq, m);
5479 spin_unlock(&ce->guc_state.lock);
5480
5481 next:
5482 intel_context_put(ce);
5483 xa_lock(&guc->context_lookup);
5484 }
5485 xa_unlock_irqrestore(&guc->context_lookup, flags);
5486 }
5487
intel_guc_submission_print_info(struct intel_guc * guc,struct drm_printer * p)5488 void intel_guc_submission_print_info(struct intel_guc *guc,
5489 struct drm_printer *p)
5490 {
5491 struct i915_sched_engine *sched_engine = guc->sched_engine;
5492 struct rb_node *rb;
5493 unsigned long flags;
5494
5495 if (!sched_engine)
5496 return;
5497
5498 drm_printf(p, "GuC Submission API Version: %d.%d.%d\n",
5499 guc->submission_version.major, guc->submission_version.minor,
5500 guc->submission_version.patch);
5501 drm_printf(p, "GuC Number Outstanding Submission G2H: %u\n",
5502 atomic_read(&guc->outstanding_submission_g2h));
5503 drm_printf(p, "GuC tasklet count: %u\n",
5504 atomic_read(&sched_engine->tasklet.count));
5505
5506 spin_lock_irqsave(&sched_engine->lock, flags);
5507 drm_printf(p, "Requests in GuC submit tasklet:\n");
5508 for (rb = rb_first_cached(&sched_engine->queue); rb; rb = rb_next(rb)) {
5509 struct i915_priolist *pl = to_priolist(rb);
5510 struct i915_request *rq;
5511
5512 priolist_for_each_request(rq, pl)
5513 drm_printf(p, "guc_id=%u, seqno=%llu\n",
5514 rq->context->guc_id.id,
5515 rq->fence.seqno);
5516 }
5517 spin_unlock_irqrestore(&sched_engine->lock, flags);
5518 drm_printf(p, "\n");
5519 }
5520
guc_log_context_priority(struct drm_printer * p,struct intel_context * ce)5521 static inline void guc_log_context_priority(struct drm_printer *p,
5522 struct intel_context *ce)
5523 {
5524 int i;
5525
5526 drm_printf(p, "\t\tPriority: %d\n", ce->guc_state.prio);
5527 drm_printf(p, "\t\tNumber Requests (lower index == higher priority)\n");
5528 for (i = GUC_CLIENT_PRIORITY_KMD_HIGH;
5529 i < GUC_CLIENT_PRIORITY_NUM; ++i) {
5530 drm_printf(p, "\t\tNumber requests in priority band[%d]: %d\n",
5531 i, ce->guc_state.prio_count[i]);
5532 }
5533 drm_printf(p, "\n");
5534 }
5535
guc_log_context(struct drm_printer * p,struct intel_context * ce)5536 static inline void guc_log_context(struct drm_printer *p,
5537 struct intel_context *ce)
5538 {
5539 drm_printf(p, "GuC lrc descriptor %u:\n", ce->guc_id.id);
5540 drm_printf(p, "\tHW Context Desc: 0x%08x\n", ce->lrc.lrca);
5541 if (intel_context_pin_if_active(ce)) {
5542 drm_printf(p, "\t\tLRC Head: Internal %u, Memory %u\n",
5543 ce->ring->head,
5544 ce->lrc_reg_state[CTX_RING_HEAD]);
5545 drm_printf(p, "\t\tLRC Tail: Internal %u, Memory %u\n",
5546 ce->ring->tail,
5547 ce->lrc_reg_state[CTX_RING_TAIL]);
5548 intel_context_unpin(ce);
5549 } else {
5550 drm_printf(p, "\t\tLRC Head: Internal %u, Memory not pinned\n",
5551 ce->ring->head);
5552 drm_printf(p, "\t\tLRC Tail: Internal %u, Memory not pinned\n",
5553 ce->ring->tail);
5554 }
5555 drm_printf(p, "\t\tContext Pin Count: %u\n",
5556 atomic_read(&ce->pin_count));
5557 drm_printf(p, "\t\tGuC ID Ref Count: %u\n",
5558 atomic_read(&ce->guc_id.ref));
5559 drm_printf(p, "\t\tSchedule State: 0x%x\n",
5560 ce->guc_state.sched_state);
5561 }
5562
intel_guc_submission_print_context_info(struct intel_guc * guc,struct drm_printer * p)5563 void intel_guc_submission_print_context_info(struct intel_guc *guc,
5564 struct drm_printer *p)
5565 {
5566 struct intel_context *ce;
5567 unsigned long index;
5568 unsigned long flags;
5569
5570 xa_lock_irqsave(&guc->context_lookup, flags);
5571 xa_for_each(&guc->context_lookup, index, ce) {
5572 GEM_BUG_ON(intel_context_is_child(ce));
5573
5574 guc_log_context(p, ce);
5575 guc_log_context_priority(p, ce);
5576
5577 if (intel_context_is_parent(ce)) {
5578 struct intel_context *child;
5579
5580 drm_printf(p, "\t\tNumber children: %u\n",
5581 ce->parallel.number_children);
5582
5583 if (ce->parallel.guc.wq_status) {
5584 drm_printf(p, "\t\tWQI Head: %u\n",
5585 READ_ONCE(*ce->parallel.guc.wq_head));
5586 drm_printf(p, "\t\tWQI Tail: %u\n",
5587 READ_ONCE(*ce->parallel.guc.wq_tail));
5588 drm_printf(p, "\t\tWQI Status: %u\n",
5589 READ_ONCE(*ce->parallel.guc.wq_status));
5590 }
5591
5592 if (ce->engine->emit_bb_start ==
5593 emit_bb_start_parent_no_preempt_mid_batch) {
5594 u8 i;
5595
5596 drm_printf(p, "\t\tChildren Go: %u\n",
5597 get_children_go_value(ce));
5598 for (i = 0; i < ce->parallel.number_children; ++i)
5599 drm_printf(p, "\t\tChildren Join: %u\n",
5600 get_children_join_value(ce, i));
5601 }
5602
5603 for_each_child(ce, child)
5604 guc_log_context(p, child);
5605 }
5606 }
5607 xa_unlock_irqrestore(&guc->context_lookup, flags);
5608 }
5609
get_children_go_addr(struct intel_context * ce)5610 static inline u32 get_children_go_addr(struct intel_context *ce)
5611 {
5612 GEM_BUG_ON(!intel_context_is_parent(ce));
5613
5614 return i915_ggtt_offset(ce->state) +
5615 __get_parent_scratch_offset(ce) +
5616 offsetof(struct parent_scratch, go.semaphore);
5617 }
5618
get_children_join_addr(struct intel_context * ce,u8 child_index)5619 static inline u32 get_children_join_addr(struct intel_context *ce,
5620 u8 child_index)
5621 {
5622 GEM_BUG_ON(!intel_context_is_parent(ce));
5623
5624 return i915_ggtt_offset(ce->state) +
5625 __get_parent_scratch_offset(ce) +
5626 offsetof(struct parent_scratch, join[child_index].semaphore);
5627 }
5628
5629 #define PARENT_GO_BB 1
5630 #define PARENT_GO_FINI_BREADCRUMB 0
5631 #define CHILD_GO_BB 1
5632 #define CHILD_GO_FINI_BREADCRUMB 0
emit_bb_start_parent_no_preempt_mid_batch(struct i915_request * rq,u64 offset,u32 len,const unsigned int flags)5633 static int emit_bb_start_parent_no_preempt_mid_batch(struct i915_request *rq,
5634 u64 offset, u32 len,
5635 const unsigned int flags)
5636 {
5637 struct intel_context *ce = rq->context;
5638 u32 *cs;
5639 u8 i;
5640
5641 GEM_BUG_ON(!intel_context_is_parent(ce));
5642
5643 cs = intel_ring_begin(rq, 10 + 4 * ce->parallel.number_children);
5644 if (IS_ERR(cs))
5645 return PTR_ERR(cs);
5646
5647 /* Wait on children */
5648 for (i = 0; i < ce->parallel.number_children; ++i) {
5649 *cs++ = (MI_SEMAPHORE_WAIT |
5650 MI_SEMAPHORE_GLOBAL_GTT |
5651 MI_SEMAPHORE_POLL |
5652 MI_SEMAPHORE_SAD_EQ_SDD);
5653 *cs++ = PARENT_GO_BB;
5654 *cs++ = get_children_join_addr(ce, i);
5655 *cs++ = 0;
5656 }
5657
5658 /* Turn off preemption */
5659 *cs++ = MI_ARB_ON_OFF | MI_ARB_DISABLE;
5660 *cs++ = MI_NOOP;
5661
5662 /* Tell children go */
5663 cs = gen8_emit_ggtt_write(cs,
5664 CHILD_GO_BB,
5665 get_children_go_addr(ce),
5666 0);
5667
5668 /* Jump to batch */
5669 *cs++ = MI_BATCH_BUFFER_START_GEN8 |
5670 (flags & I915_DISPATCH_SECURE ? 0 : BIT(8));
5671 *cs++ = lower_32_bits(offset);
5672 *cs++ = upper_32_bits(offset);
5673 *cs++ = MI_NOOP;
5674
5675 intel_ring_advance(rq, cs);
5676
5677 return 0;
5678 }
5679
emit_bb_start_child_no_preempt_mid_batch(struct i915_request * rq,u64 offset,u32 len,const unsigned int flags)5680 static int emit_bb_start_child_no_preempt_mid_batch(struct i915_request *rq,
5681 u64 offset, u32 len,
5682 const unsigned int flags)
5683 {
5684 struct intel_context *ce = rq->context;
5685 struct intel_context *parent = intel_context_to_parent(ce);
5686 u32 *cs;
5687
5688 GEM_BUG_ON(!intel_context_is_child(ce));
5689
5690 cs = intel_ring_begin(rq, 12);
5691 if (IS_ERR(cs))
5692 return PTR_ERR(cs);
5693
5694 /* Signal parent */
5695 cs = gen8_emit_ggtt_write(cs,
5696 PARENT_GO_BB,
5697 get_children_join_addr(parent,
5698 ce->parallel.child_index),
5699 0);
5700
5701 /* Wait on parent for go */
5702 *cs++ = (MI_SEMAPHORE_WAIT |
5703 MI_SEMAPHORE_GLOBAL_GTT |
5704 MI_SEMAPHORE_POLL |
5705 MI_SEMAPHORE_SAD_EQ_SDD);
5706 *cs++ = CHILD_GO_BB;
5707 *cs++ = get_children_go_addr(parent);
5708 *cs++ = 0;
5709
5710 /* Turn off preemption */
5711 *cs++ = MI_ARB_ON_OFF | MI_ARB_DISABLE;
5712
5713 /* Jump to batch */
5714 *cs++ = MI_BATCH_BUFFER_START_GEN8 |
5715 (flags & I915_DISPATCH_SECURE ? 0 : BIT(8));
5716 *cs++ = lower_32_bits(offset);
5717 *cs++ = upper_32_bits(offset);
5718
5719 intel_ring_advance(rq, cs);
5720
5721 return 0;
5722 }
5723
5724 static u32 *
__emit_fini_breadcrumb_parent_no_preempt_mid_batch(struct i915_request * rq,u32 * cs)5725 __emit_fini_breadcrumb_parent_no_preempt_mid_batch(struct i915_request *rq,
5726 u32 *cs)
5727 {
5728 struct intel_context *ce = rq->context;
5729 u8 i;
5730
5731 GEM_BUG_ON(!intel_context_is_parent(ce));
5732
5733 /* Wait on children */
5734 for (i = 0; i < ce->parallel.number_children; ++i) {
5735 *cs++ = (MI_SEMAPHORE_WAIT |
5736 MI_SEMAPHORE_GLOBAL_GTT |
5737 MI_SEMAPHORE_POLL |
5738 MI_SEMAPHORE_SAD_EQ_SDD);
5739 *cs++ = PARENT_GO_FINI_BREADCRUMB;
5740 *cs++ = get_children_join_addr(ce, i);
5741 *cs++ = 0;
5742 }
5743
5744 /* Turn on preemption */
5745 *cs++ = MI_ARB_ON_OFF | MI_ARB_ENABLE;
5746 *cs++ = MI_NOOP;
5747
5748 /* Tell children go */
5749 cs = gen8_emit_ggtt_write(cs,
5750 CHILD_GO_FINI_BREADCRUMB,
5751 get_children_go_addr(ce),
5752 0);
5753
5754 return cs;
5755 }
5756
5757 /*
5758 * If this true, a submission of multi-lrc requests had an error and the
5759 * requests need to be skipped. The front end (execuf IOCTL) should've called
5760 * i915_request_skip which squashes the BB but we still need to emit the fini
5761 * breadrcrumbs seqno write. At this point we don't know how many of the
5762 * requests in the multi-lrc submission were generated so we can't do the
5763 * handshake between the parent and children (e.g. if 4 requests should be
5764 * generated but 2nd hit an error only 1 would be seen by the GuC backend).
5765 * Simply skip the handshake, but still emit the breadcrumbd seqno, if an error
5766 * has occurred on any of the requests in submission / relationship.
5767 */
skip_handshake(struct i915_request * rq)5768 static inline bool skip_handshake(struct i915_request *rq)
5769 {
5770 return test_bit(I915_FENCE_FLAG_SKIP_PARALLEL, &rq->fence.flags);
5771 }
5772
5773 #define NON_SKIP_LEN 6
5774 static u32 *
emit_fini_breadcrumb_parent_no_preempt_mid_batch(struct i915_request * rq,u32 * cs)5775 emit_fini_breadcrumb_parent_no_preempt_mid_batch(struct i915_request *rq,
5776 u32 *cs)
5777 {
5778 struct intel_context *ce = rq->context;
5779 __maybe_unused u32 *before_fini_breadcrumb_user_interrupt_cs;
5780 __maybe_unused u32 *start_fini_breadcrumb_cs = cs;
5781
5782 GEM_BUG_ON(!intel_context_is_parent(ce));
5783
5784 if (unlikely(skip_handshake(rq))) {
5785 /*
5786 * NOP everything in __emit_fini_breadcrumb_parent_no_preempt_mid_batch,
5787 * the NON_SKIP_LEN comes from the length of the emits below.
5788 */
5789 memset(cs, 0, sizeof(u32) *
5790 (ce->engine->emit_fini_breadcrumb_dw - NON_SKIP_LEN));
5791 cs += ce->engine->emit_fini_breadcrumb_dw - NON_SKIP_LEN;
5792 } else {
5793 cs = __emit_fini_breadcrumb_parent_no_preempt_mid_batch(rq, cs);
5794 }
5795
5796 /* Emit fini breadcrumb */
5797 before_fini_breadcrumb_user_interrupt_cs = cs;
5798 cs = gen8_emit_ggtt_write(cs,
5799 rq->fence.seqno,
5800 i915_request_active_timeline(rq)->hwsp_offset,
5801 0);
5802
5803 /* User interrupt */
5804 *cs++ = MI_USER_INTERRUPT;
5805 *cs++ = MI_NOOP;
5806
5807 /* Ensure our math for skip + emit is correct */
5808 GEM_BUG_ON(before_fini_breadcrumb_user_interrupt_cs + NON_SKIP_LEN !=
5809 cs);
5810 GEM_BUG_ON(start_fini_breadcrumb_cs +
5811 ce->engine->emit_fini_breadcrumb_dw != cs);
5812
5813 rq->tail = intel_ring_offset(rq, cs);
5814
5815 return cs;
5816 }
5817
5818 static u32 *
__emit_fini_breadcrumb_child_no_preempt_mid_batch(struct i915_request * rq,u32 * cs)5819 __emit_fini_breadcrumb_child_no_preempt_mid_batch(struct i915_request *rq,
5820 u32 *cs)
5821 {
5822 struct intel_context *ce = rq->context;
5823 struct intel_context *parent = intel_context_to_parent(ce);
5824
5825 GEM_BUG_ON(!intel_context_is_child(ce));
5826
5827 /* Turn on preemption */
5828 *cs++ = MI_ARB_ON_OFF | MI_ARB_ENABLE;
5829 *cs++ = MI_NOOP;
5830
5831 /* Signal parent */
5832 cs = gen8_emit_ggtt_write(cs,
5833 PARENT_GO_FINI_BREADCRUMB,
5834 get_children_join_addr(parent,
5835 ce->parallel.child_index),
5836 0);
5837
5838 /* Wait parent on for go */
5839 *cs++ = (MI_SEMAPHORE_WAIT |
5840 MI_SEMAPHORE_GLOBAL_GTT |
5841 MI_SEMAPHORE_POLL |
5842 MI_SEMAPHORE_SAD_EQ_SDD);
5843 *cs++ = CHILD_GO_FINI_BREADCRUMB;
5844 *cs++ = get_children_go_addr(parent);
5845 *cs++ = 0;
5846
5847 return cs;
5848 }
5849
5850 static u32 *
emit_fini_breadcrumb_child_no_preempt_mid_batch(struct i915_request * rq,u32 * cs)5851 emit_fini_breadcrumb_child_no_preempt_mid_batch(struct i915_request *rq,
5852 u32 *cs)
5853 {
5854 struct intel_context *ce = rq->context;
5855 __maybe_unused u32 *before_fini_breadcrumb_user_interrupt_cs;
5856 __maybe_unused u32 *start_fini_breadcrumb_cs = cs;
5857
5858 GEM_BUG_ON(!intel_context_is_child(ce));
5859
5860 if (unlikely(skip_handshake(rq))) {
5861 /*
5862 * NOP everything in __emit_fini_breadcrumb_child_no_preempt_mid_batch,
5863 * the NON_SKIP_LEN comes from the length of the emits below.
5864 */
5865 memset(cs, 0, sizeof(u32) *
5866 (ce->engine->emit_fini_breadcrumb_dw - NON_SKIP_LEN));
5867 cs += ce->engine->emit_fini_breadcrumb_dw - NON_SKIP_LEN;
5868 } else {
5869 cs = __emit_fini_breadcrumb_child_no_preempt_mid_batch(rq, cs);
5870 }
5871
5872 /* Emit fini breadcrumb */
5873 before_fini_breadcrumb_user_interrupt_cs = cs;
5874 cs = gen8_emit_ggtt_write(cs,
5875 rq->fence.seqno,
5876 i915_request_active_timeline(rq)->hwsp_offset,
5877 0);
5878
5879 /* User interrupt */
5880 *cs++ = MI_USER_INTERRUPT;
5881 *cs++ = MI_NOOP;
5882
5883 /* Ensure our math for skip + emit is correct */
5884 GEM_BUG_ON(before_fini_breadcrumb_user_interrupt_cs + NON_SKIP_LEN !=
5885 cs);
5886 GEM_BUG_ON(start_fini_breadcrumb_cs +
5887 ce->engine->emit_fini_breadcrumb_dw != cs);
5888
5889 rq->tail = intel_ring_offset(rq, cs);
5890
5891 return cs;
5892 }
5893
5894 #undef NON_SKIP_LEN
5895
5896 static struct intel_context *
guc_create_virtual(struct intel_engine_cs ** siblings,unsigned int count,unsigned long flags)5897 guc_create_virtual(struct intel_engine_cs **siblings, unsigned int count,
5898 unsigned long flags)
5899 {
5900 struct guc_virtual_engine *ve;
5901 struct intel_guc *guc;
5902 unsigned int n;
5903 int err;
5904
5905 ve = kzalloc(sizeof(*ve), GFP_KERNEL);
5906 if (!ve)
5907 return ERR_PTR(-ENOMEM);
5908
5909 guc = gt_to_guc(siblings[0]->gt);
5910
5911 ve->base.i915 = siblings[0]->i915;
5912 ve->base.gt = siblings[0]->gt;
5913 ve->base.uncore = siblings[0]->uncore;
5914 ve->base.id = -1;
5915
5916 ve->base.uabi_class = I915_ENGINE_CLASS_INVALID;
5917 ve->base.instance = I915_ENGINE_CLASS_INVALID_VIRTUAL;
5918 ve->base.uabi_instance = I915_ENGINE_CLASS_INVALID_VIRTUAL;
5919 ve->base.saturated = ALL_ENGINES;
5920
5921 snprintf(ve->base.name, sizeof(ve->base.name), "virtual");
5922
5923 ve->base.sched_engine = i915_sched_engine_get(guc->sched_engine);
5924
5925 ve->base.cops = &virtual_guc_context_ops;
5926 ve->base.request_alloc = guc_request_alloc;
5927 ve->base.bump_serial = virtual_guc_bump_serial;
5928
5929 ve->base.submit_request = guc_submit_request;
5930
5931 ve->base.flags = I915_ENGINE_IS_VIRTUAL;
5932
5933 BUILD_BUG_ON(ilog2(VIRTUAL_ENGINES) < I915_NUM_ENGINES);
5934 ve->base.mask = VIRTUAL_ENGINES;
5935
5936 intel_context_init(&ve->context, &ve->base);
5937
5938 for (n = 0; n < count; n++) {
5939 struct intel_engine_cs *sibling = siblings[n];
5940
5941 GEM_BUG_ON(!is_power_of_2(sibling->mask));
5942 if (sibling->mask & ve->base.mask) {
5943 guc_dbg(guc, "duplicate %s entry in load balancer\n",
5944 sibling->name);
5945 err = -EINVAL;
5946 goto err_put;
5947 }
5948
5949 ve->base.mask |= sibling->mask;
5950 ve->base.logical_mask |= sibling->logical_mask;
5951
5952 if (n != 0 && ve->base.class != sibling->class) {
5953 guc_dbg(guc, "invalid mixing of engine class, sibling %d, already %d\n",
5954 sibling->class, ve->base.class);
5955 err = -EINVAL;
5956 goto err_put;
5957 } else if (n == 0) {
5958 ve->base.class = sibling->class;
5959 ve->base.uabi_class = sibling->uabi_class;
5960 snprintf(ve->base.name, sizeof(ve->base.name),
5961 "v%dx%d", ve->base.class, count);
5962 ve->base.context_size = sibling->context_size;
5963
5964 ve->base.add_active_request =
5965 sibling->add_active_request;
5966 ve->base.remove_active_request =
5967 sibling->remove_active_request;
5968 ve->base.emit_bb_start = sibling->emit_bb_start;
5969 ve->base.emit_flush = sibling->emit_flush;
5970 ve->base.emit_init_breadcrumb =
5971 sibling->emit_init_breadcrumb;
5972 ve->base.emit_fini_breadcrumb =
5973 sibling->emit_fini_breadcrumb;
5974 ve->base.emit_fini_breadcrumb_dw =
5975 sibling->emit_fini_breadcrumb_dw;
5976 ve->base.breadcrumbs =
5977 intel_breadcrumbs_get(sibling->breadcrumbs);
5978
5979 ve->base.flags |= sibling->flags;
5980
5981 ve->base.props.timeslice_duration_ms =
5982 sibling->props.timeslice_duration_ms;
5983 ve->base.props.preempt_timeout_ms =
5984 sibling->props.preempt_timeout_ms;
5985 }
5986 }
5987
5988 return &ve->context;
5989
5990 err_put:
5991 intel_context_put(&ve->context);
5992 return ERR_PTR(err);
5993 }
5994
intel_guc_virtual_engine_has_heartbeat(const struct intel_engine_cs * ve)5995 bool intel_guc_virtual_engine_has_heartbeat(const struct intel_engine_cs *ve)
5996 {
5997 struct intel_engine_cs *engine;
5998 intel_engine_mask_t tmp, mask = ve->mask;
5999
6000 for_each_engine_masked(engine, ve->gt, mask, tmp)
6001 if (READ_ONCE(engine->props.heartbeat_interval_ms))
6002 return true;
6003
6004 return false;
6005 }
6006
6007 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
6008 #include "selftest_guc.c"
6009 #include "selftest_guc_multi_lrc.c"
6010 #include "selftest_guc_hangcheck.c"
6011 #endif
6012