1 /* SPDX-License-Identifier: GPL-2.0-only */
2 /*
3 * Copyright (C) 2013 Red Hat
4 * Author: Rob Clark <robdclark@gmail.com>
5 */
6
7 #ifndef __MSM_GPU_H__
8 #define __MSM_GPU_H__
9
10 #include <linux/adreno-smmu-priv.h>
11 #include <linux/clk.h>
12 #include <linux/devfreq.h>
13 #include <linux/interconnect.h>
14 #include <linux/pm_opp.h>
15 #include <linux/regulator/consumer.h>
16
17 #include "msm_drv.h"
18 #include "msm_fence.h"
19 #include "msm_ringbuffer.h"
20 #include "msm_gem.h"
21
22 struct msm_gem_submit;
23 struct msm_gpu_perfcntr;
24 struct msm_gpu_state;
25 struct msm_file_private;
26
27 struct msm_gpu_config {
28 const char *ioname;
29 unsigned int nr_rings;
30 };
31
32 /* So far, with hardware that I've seen to date, we can have:
33 * + zero, one, or two z180 2d cores
34 * + a3xx or a2xx 3d core, which share a common CP (the firmware
35 * for the CP seems to implement some different PM4 packet types
36 * but the basics of cmdstream submission are the same)
37 *
38 * Which means that the eventual complete "class" hierarchy, once
39 * support for all past and present hw is in place, becomes:
40 * + msm_gpu
41 * + adreno_gpu
42 * + a3xx_gpu
43 * + a2xx_gpu
44 * + z180_gpu
45 */
46 struct msm_gpu_funcs {
47 int (*get_param)(struct msm_gpu *gpu, struct msm_file_private *ctx,
48 uint32_t param, uint64_t *value, uint32_t *len);
49 int (*set_param)(struct msm_gpu *gpu, struct msm_file_private *ctx,
50 uint32_t param, uint64_t value, uint32_t len);
51 int (*hw_init)(struct msm_gpu *gpu);
52
53 /**
54 * @ucode_load: Optional hook to upload fw to GEM objs
55 */
56 int (*ucode_load)(struct msm_gpu *gpu);
57
58 int (*pm_suspend)(struct msm_gpu *gpu);
59 int (*pm_resume)(struct msm_gpu *gpu);
60 void (*submit)(struct msm_gpu *gpu, struct msm_gem_submit *submit);
61 void (*flush)(struct msm_gpu *gpu, struct msm_ringbuffer *ring);
62 irqreturn_t (*irq)(struct msm_gpu *irq);
63 struct msm_ringbuffer *(*active_ring)(struct msm_gpu *gpu);
64 void (*recover)(struct msm_gpu *gpu);
65 void (*destroy)(struct msm_gpu *gpu);
66 #if defined(CONFIG_DEBUG_FS) || defined(CONFIG_DEV_COREDUMP)
67 /* show GPU status in debugfs: */
68 void (*show)(struct msm_gpu *gpu, struct msm_gpu_state *state,
69 struct drm_printer *p);
70 /* for generation specific debugfs: */
71 void (*debugfs_init)(struct msm_gpu *gpu, struct drm_minor *minor);
72 #endif
73 /* note: gpu_busy() can assume that we have been pm_resumed */
74 u64 (*gpu_busy)(struct msm_gpu *gpu, unsigned long *out_sample_rate);
75 struct msm_gpu_state *(*gpu_state_get)(struct msm_gpu *gpu);
76 int (*gpu_state_put)(struct msm_gpu_state *state);
77 unsigned long (*gpu_get_freq)(struct msm_gpu *gpu);
78 /* note: gpu_set_freq() can assume that we have been pm_resumed */
79 void (*gpu_set_freq)(struct msm_gpu *gpu, struct dev_pm_opp *opp,
80 bool suspended);
81 struct msm_gem_address_space *(*create_address_space)
82 (struct msm_gpu *gpu, struct platform_device *pdev);
83 struct msm_gem_address_space *(*create_private_address_space)
84 (struct msm_gpu *gpu);
85 uint32_t (*get_rptr)(struct msm_gpu *gpu, struct msm_ringbuffer *ring);
86
87 /**
88 * progress: Has the GPU made progress?
89 *
90 * Return true if GPU position in cmdstream has advanced (or changed)
91 * since the last call. To avoid false negatives, this should account
92 * for cmdstream that is buffered in this FIFO upstream of the CP fw.
93 */
94 bool (*progress)(struct msm_gpu *gpu, struct msm_ringbuffer *ring);
95 };
96
97 /* Additional state for iommu faults: */
98 struct msm_gpu_fault_info {
99 u64 ttbr0;
100 unsigned long iova;
101 int flags;
102 const char *type;
103 const char *block;
104
105 /* Information about what we think/expect is the current SMMU state,
106 * for example expected_ttbr0 should match smmu_info.ttbr0 which
107 * was read back from SMMU registers.
108 */
109 phys_addr_t pgtbl_ttbr0;
110 u64 ptes[4];
111 int asid;
112 };
113
114 /**
115 * struct msm_gpu_devfreq - devfreq related state
116 */
117 struct msm_gpu_devfreq {
118 /** devfreq: devfreq instance */
119 struct devfreq *devfreq;
120
121 /** lock: lock for "suspended", "busy_cycles", and "time" */
122 struct mutex lock;
123
124 /**
125 * idle_freq:
126 *
127 * Shadow frequency used while the GPU is idle. From the PoV of
128 * the devfreq governor, we are continuing to sample busyness and
129 * adjust frequency while the GPU is idle, but we use this shadow
130 * value as the GPU is actually clamped to minimum frequency while
131 * it is inactive.
132 */
133 unsigned long idle_freq;
134
135 /**
136 * boost_constraint:
137 *
138 * A PM QoS constraint to boost min freq for a period of time
139 * until the boost expires.
140 */
141 struct dev_pm_qos_request boost_freq;
142
143 /**
144 * busy_cycles: Last busy counter value, for calculating elapsed busy
145 * cycles since last sampling period.
146 */
147 u64 busy_cycles;
148
149 /** time: Time of last sampling period. */
150 ktime_t time;
151
152 /** idle_time: Time of last transition to idle: */
153 ktime_t idle_time;
154
155 /**
156 * idle_work:
157 *
158 * Used to delay clamping to idle freq on active->idle transition.
159 */
160 struct msm_hrtimer_work idle_work;
161
162 /**
163 * boost_work:
164 *
165 * Used to reset the boost_constraint after the boost period has
166 * elapsed
167 */
168 struct msm_hrtimer_work boost_work;
169
170 /** suspended: tracks if we're suspended */
171 bool suspended;
172 };
173
174 struct msm_gpu {
175 const char *name;
176 struct drm_device *dev;
177 struct platform_device *pdev;
178 const struct msm_gpu_funcs *funcs;
179
180 struct adreno_smmu_priv adreno_smmu;
181
182 /* performance counters (hw & sw): */
183 spinlock_t perf_lock;
184 bool perfcntr_active;
185 struct {
186 bool active;
187 ktime_t time;
188 } last_sample;
189 uint32_t totaltime, activetime; /* sw counters */
190 uint32_t last_cntrs[5]; /* hw counters */
191 const struct msm_gpu_perfcntr *perfcntrs;
192 uint32_t num_perfcntrs;
193
194 struct msm_ringbuffer *rb[MSM_GPU_MAX_RINGS];
195 int nr_rings;
196
197 /**
198 * sysprof_active:
199 *
200 * The count of contexts that have enabled system profiling.
201 */
202 refcount_t sysprof_active;
203
204 /**
205 * cur_ctx_seqno:
206 *
207 * The ctx->seqno value of the last context to submit rendering,
208 * and the one with current pgtables installed (for generations
209 * that support per-context pgtables). Tracked by seqno rather
210 * than pointer value to avoid dangling pointers, and cases where
211 * a ctx can be freed and a new one created with the same address.
212 */
213 int cur_ctx_seqno;
214
215 /**
216 * lock:
217 *
218 * General lock for serializing all the gpu things.
219 *
220 * TODO move to per-ring locking where feasible (ie. submit/retire
221 * path, etc)
222 */
223 struct mutex lock;
224
225 /**
226 * active_submits:
227 *
228 * The number of submitted but not yet retired submits, used to
229 * determine transitions between active and idle.
230 *
231 * Protected by active_lock
232 */
233 int active_submits;
234
235 /** lock: protects active_submits and idle/active transitions */
236 struct mutex active_lock;
237
238 /* does gpu need hw_init? */
239 bool needs_hw_init;
240
241 /**
242 * global_faults: number of GPU hangs not attributed to a particular
243 * address space
244 */
245 int global_faults;
246
247 void __iomem *mmio;
248 int irq;
249
250 struct msm_gem_address_space *aspace;
251
252 /* Power Control: */
253 struct regulator *gpu_reg, *gpu_cx;
254 struct clk_bulk_data *grp_clks;
255 int nr_clocks;
256 struct clk *ebi1_clk, *core_clk, *rbbmtimer_clk;
257 uint32_t fast_rate;
258
259 /* Hang and Inactivity Detection:
260 */
261 #define DRM_MSM_INACTIVE_PERIOD 66 /* in ms (roughly four frames) */
262
263 #define DRM_MSM_HANGCHECK_DEFAULT_PERIOD 500 /* in ms */
264 #define DRM_MSM_HANGCHECK_PROGRESS_RETRIES 3
265 struct timer_list hangcheck_timer;
266
267 /* Fault info for most recent iova fault: */
268 struct msm_gpu_fault_info fault_info;
269
270 /* work for handling GPU ioval faults: */
271 struct kthread_work fault_work;
272
273 /* work for handling GPU recovery: */
274 struct kthread_work recover_work;
275
276 /** retire_event: notified when submits are retired: */
277 wait_queue_head_t retire_event;
278
279 /* work for handling active-list retiring: */
280 struct kthread_work retire_work;
281
282 /* worker for retire/recover: */
283 struct kthread_worker *worker;
284
285 struct drm_gem_object *memptrs_bo;
286
287 struct msm_gpu_devfreq devfreq;
288
289 uint32_t suspend_count;
290
291 struct msm_gpu_state *crashstate;
292
293 /* True if the hardware supports expanded apriv (a650 and newer) */
294 bool hw_apriv;
295
296 /**
297 * @allow_relocs: allow relocs in SUBMIT ioctl
298 *
299 * Mesa won't use relocs for driver version 1.4.0 and later. This
300 * switch-over happened early enough in mesa a6xx bringup that we
301 * can disallow relocs for a6xx and newer.
302 */
303 bool allow_relocs;
304
305 struct thermal_cooling_device *cooling;
306 };
307
dev_to_gpu(struct device * dev)308 static inline struct msm_gpu *dev_to_gpu(struct device *dev)
309 {
310 struct adreno_smmu_priv *adreno_smmu = dev_get_drvdata(dev);
311
312 if (!adreno_smmu)
313 return NULL;
314
315 return container_of(adreno_smmu, struct msm_gpu, adreno_smmu);
316 }
317
318 /* It turns out that all targets use the same ringbuffer size */
319 #define MSM_GPU_RINGBUFFER_SZ SZ_32K
320 #define MSM_GPU_RINGBUFFER_BLKSIZE 32
321
322 #define MSM_GPU_RB_CNTL_DEFAULT \
323 (AXXX_CP_RB_CNTL_BUFSZ(ilog2(MSM_GPU_RINGBUFFER_SZ / 8)) | \
324 AXXX_CP_RB_CNTL_BLKSZ(ilog2(MSM_GPU_RINGBUFFER_BLKSIZE / 8)))
325
msm_gpu_active(struct msm_gpu * gpu)326 static inline bool msm_gpu_active(struct msm_gpu *gpu)
327 {
328 int i;
329
330 for (i = 0; i < gpu->nr_rings; i++) {
331 struct msm_ringbuffer *ring = gpu->rb[i];
332
333 if (fence_after(ring->fctx->last_fence, ring->memptrs->fence))
334 return true;
335 }
336
337 return false;
338 }
339
340 /* Perf-Counters:
341 * The select_reg and select_val are just there for the benefit of the child
342 * class that actually enables the perf counter.. but msm_gpu base class
343 * will handle sampling/displaying the counters.
344 */
345
346 struct msm_gpu_perfcntr {
347 uint32_t select_reg;
348 uint32_t sample_reg;
349 uint32_t select_val;
350 const char *name;
351 };
352
353 /*
354 * The number of priority levels provided by drm gpu scheduler. The
355 * DRM_SCHED_PRIORITY_KERNEL priority level is treated specially in some
356 * cases, so we don't use it (no need for kernel generated jobs).
357 */
358 #define NR_SCHED_PRIORITIES (1 + DRM_SCHED_PRIORITY_LOW - DRM_SCHED_PRIORITY_HIGH)
359
360 /**
361 * struct msm_file_private - per-drm_file context
362 *
363 * @queuelock: synchronizes access to submitqueues list
364 * @submitqueues: list of &msm_gpu_submitqueue created by userspace
365 * @queueid: counter incremented each time a submitqueue is created,
366 * used to assign &msm_gpu_submitqueue.id
367 * @aspace: the per-process GPU address-space
368 * @ref: reference count
369 * @seqno: unique per process seqno
370 */
371 struct msm_file_private {
372 rwlock_t queuelock;
373 struct list_head submitqueues;
374 int queueid;
375 struct msm_gem_address_space *aspace;
376 struct kref ref;
377 int seqno;
378
379 /**
380 * sysprof:
381 *
382 * The value of MSM_PARAM_SYSPROF set by userspace. This is
383 * intended to be used by system profiling tools like Mesa's
384 * pps-producer (perfetto), and restricted to CAP_SYS_ADMIN.
385 *
386 * Setting a value of 1 will preserve performance counters across
387 * context switches. Setting a value of 2 will in addition
388 * suppress suspend. (Performance counters lose state across
389 * power collapse, which is undesirable for profiling in some
390 * cases.)
391 *
392 * The value automatically reverts to zero when the drm device
393 * file is closed.
394 */
395 int sysprof;
396
397 /**
398 * comm: Overridden task comm, see MSM_PARAM_COMM
399 *
400 * Accessed under msm_gpu::lock
401 */
402 char *comm;
403
404 /**
405 * cmdline: Overridden task cmdline, see MSM_PARAM_CMDLINE
406 *
407 * Accessed under msm_gpu::lock
408 */
409 char *cmdline;
410
411 /**
412 * elapsed:
413 *
414 * The total (cumulative) elapsed time GPU was busy with rendering
415 * from this context in ns.
416 */
417 uint64_t elapsed_ns;
418
419 /**
420 * cycles:
421 *
422 * The total (cumulative) GPU cycles elapsed attributed to this
423 * context.
424 */
425 uint64_t cycles;
426
427 /**
428 * entities:
429 *
430 * Table of per-priority-level sched entities used by submitqueues
431 * associated with this &drm_file. Because some userspace apps
432 * make assumptions about rendering from multiple gl contexts
433 * (of the same priority) within the process happening in FIFO
434 * order without requiring any fencing beyond MakeCurrent(), we
435 * create at most one &drm_sched_entity per-process per-priority-
436 * level.
437 */
438 struct drm_sched_entity *entities[NR_SCHED_PRIORITIES * MSM_GPU_MAX_RINGS];
439
440 /**
441 * ctx_mem:
442 *
443 * Total amount of memory of GEM buffers with handles attached for
444 * this context.
445 */
446 atomic64_t ctx_mem;
447 };
448
449 /**
450 * msm_gpu_convert_priority - Map userspace priority to ring # and sched priority
451 *
452 * @gpu: the gpu instance
453 * @prio: the userspace priority level
454 * @ring_nr: [out] the ringbuffer the userspace priority maps to
455 * @sched_prio: [out] the gpu scheduler priority level which the userspace
456 * priority maps to
457 *
458 * With drm/scheduler providing it's own level of prioritization, our total
459 * number of available priority levels is (nr_rings * NR_SCHED_PRIORITIES).
460 * Each ring is associated with it's own scheduler instance. However, our
461 * UABI is that lower numerical values are higher priority. So mapping the
462 * single userspace priority level into ring_nr and sched_prio takes some
463 * care. The userspace provided priority (when a submitqueue is created)
464 * is mapped to ring nr and scheduler priority as such:
465 *
466 * ring_nr = userspace_prio / NR_SCHED_PRIORITIES
467 * sched_prio = NR_SCHED_PRIORITIES -
468 * (userspace_prio % NR_SCHED_PRIORITIES) - 1
469 *
470 * This allows generations without preemption (nr_rings==1) to have some
471 * amount of prioritization, and provides more priority levels for gens
472 * that do have preemption.
473 */
msm_gpu_convert_priority(struct msm_gpu * gpu,int prio,unsigned * ring_nr,enum drm_sched_priority * sched_prio)474 static inline int msm_gpu_convert_priority(struct msm_gpu *gpu, int prio,
475 unsigned *ring_nr, enum drm_sched_priority *sched_prio)
476 {
477 unsigned rn, sp;
478
479 rn = div_u64_rem(prio, NR_SCHED_PRIORITIES, &sp);
480
481 /* invert sched priority to map to higher-numeric-is-higher-
482 * priority convention
483 */
484 sp = NR_SCHED_PRIORITIES - sp - 1;
485
486 if (rn >= gpu->nr_rings)
487 return -EINVAL;
488
489 *ring_nr = rn;
490 *sched_prio = sp;
491
492 return 0;
493 }
494
495 /**
496 * struct msm_gpu_submitqueues - Userspace created context.
497 *
498 * A submitqueue is associated with a gl context or vk queue (or equiv)
499 * in userspace.
500 *
501 * @id: userspace id for the submitqueue, unique within the drm_file
502 * @flags: userspace flags for the submitqueue, specified at creation
503 * (currently unusued)
504 * @ring_nr: the ringbuffer used by this submitqueue, which is determined
505 * by the submitqueue's priority
506 * @faults: the number of GPU hangs associated with this submitqueue
507 * @last_fence: the sequence number of the last allocated fence (for error
508 * checking)
509 * @ctx: the per-drm_file context associated with the submitqueue (ie.
510 * which set of pgtables do submits jobs associated with the
511 * submitqueue use)
512 * @node: node in the context's list of submitqueues
513 * @fence_idr: maps fence-id to dma_fence for userspace visible fence
514 * seqno, protected by submitqueue lock
515 * @idr_lock: for serializing access to fence_idr
516 * @lock: submitqueue lock for serializing submits on a queue
517 * @ref: reference count
518 * @entity: the submit job-queue
519 */
520 struct msm_gpu_submitqueue {
521 int id;
522 u32 flags;
523 u32 ring_nr;
524 int faults;
525 uint32_t last_fence;
526 struct msm_file_private *ctx;
527 struct list_head node;
528 struct idr fence_idr;
529 struct spinlock idr_lock;
530 struct mutex lock;
531 struct kref ref;
532 struct drm_sched_entity *entity;
533 };
534
535 struct msm_gpu_state_bo {
536 u64 iova;
537 size_t size;
538 u32 flags;
539 void *data;
540 bool encoded;
541 char name[32];
542 };
543
544 struct msm_gpu_state {
545 struct kref ref;
546 struct timespec64 time;
547
548 struct {
549 u64 iova;
550 u32 fence;
551 u32 seqno;
552 u32 rptr;
553 u32 wptr;
554 void *data;
555 int data_size;
556 bool encoded;
557 } ring[MSM_GPU_MAX_RINGS];
558
559 int nr_registers;
560 u32 *registers;
561
562 u32 rbbm_status;
563
564 char *comm;
565 char *cmd;
566
567 struct msm_gpu_fault_info fault_info;
568
569 int nr_bos;
570 struct msm_gpu_state_bo *bos;
571 };
572
gpu_write(struct msm_gpu * gpu,u32 reg,u32 data)573 static inline void gpu_write(struct msm_gpu *gpu, u32 reg, u32 data)
574 {
575 writel(data, gpu->mmio + (reg << 2));
576 }
577
gpu_read(struct msm_gpu * gpu,u32 reg)578 static inline u32 gpu_read(struct msm_gpu *gpu, u32 reg)
579 {
580 return readl(gpu->mmio + (reg << 2));
581 }
582
gpu_rmw(struct msm_gpu * gpu,u32 reg,u32 mask,u32 or)583 static inline void gpu_rmw(struct msm_gpu *gpu, u32 reg, u32 mask, u32 or)
584 {
585 msm_rmw(gpu->mmio + (reg << 2), mask, or);
586 }
587
gpu_read64(struct msm_gpu * gpu,u32 reg)588 static inline u64 gpu_read64(struct msm_gpu *gpu, u32 reg)
589 {
590 u64 val;
591
592 /*
593 * Why not a readq here? Two reasons: 1) many of the LO registers are
594 * not quad word aligned and 2) the GPU hardware designers have a bit
595 * of a history of putting registers where they fit, especially in
596 * spins. The longer a GPU family goes the higher the chance that
597 * we'll get burned. We could do a series of validity checks if we
598 * wanted to, but really is a readq() that much better? Nah.
599 */
600
601 /*
602 * For some lo/hi registers (like perfcounters), the hi value is latched
603 * when the lo is read, so make sure to read the lo first to trigger
604 * that
605 */
606 val = (u64) readl(gpu->mmio + (reg << 2));
607 val |= ((u64) readl(gpu->mmio + ((reg + 1) << 2)) << 32);
608
609 return val;
610 }
611
gpu_write64(struct msm_gpu * gpu,u32 reg,u64 val)612 static inline void gpu_write64(struct msm_gpu *gpu, u32 reg, u64 val)
613 {
614 /* Why not a writeq here? Read the screed above */
615 writel(lower_32_bits(val), gpu->mmio + (reg << 2));
616 writel(upper_32_bits(val), gpu->mmio + ((reg + 1) << 2));
617 }
618
619 int msm_gpu_pm_suspend(struct msm_gpu *gpu);
620 int msm_gpu_pm_resume(struct msm_gpu *gpu);
621
622 void msm_gpu_show_fdinfo(struct msm_gpu *gpu, struct msm_file_private *ctx,
623 struct drm_printer *p);
624
625 int msm_submitqueue_init(struct drm_device *drm, struct msm_file_private *ctx);
626 struct msm_gpu_submitqueue *msm_submitqueue_get(struct msm_file_private *ctx,
627 u32 id);
628 int msm_submitqueue_create(struct drm_device *drm,
629 struct msm_file_private *ctx,
630 u32 prio, u32 flags, u32 *id);
631 int msm_submitqueue_query(struct drm_device *drm, struct msm_file_private *ctx,
632 struct drm_msm_submitqueue_query *args);
633 int msm_submitqueue_remove(struct msm_file_private *ctx, u32 id);
634 void msm_submitqueue_close(struct msm_file_private *ctx);
635
636 void msm_submitqueue_destroy(struct kref *kref);
637
638 int msm_file_private_set_sysprof(struct msm_file_private *ctx,
639 struct msm_gpu *gpu, int sysprof);
640 void __msm_file_private_destroy(struct kref *kref);
641
msm_file_private_put(struct msm_file_private * ctx)642 static inline void msm_file_private_put(struct msm_file_private *ctx)
643 {
644 kref_put(&ctx->ref, __msm_file_private_destroy);
645 }
646
msm_file_private_get(struct msm_file_private * ctx)647 static inline struct msm_file_private *msm_file_private_get(
648 struct msm_file_private *ctx)
649 {
650 kref_get(&ctx->ref);
651 return ctx;
652 }
653
654 void msm_devfreq_init(struct msm_gpu *gpu);
655 void msm_devfreq_cleanup(struct msm_gpu *gpu);
656 void msm_devfreq_resume(struct msm_gpu *gpu);
657 void msm_devfreq_suspend(struct msm_gpu *gpu);
658 void msm_devfreq_boost(struct msm_gpu *gpu, unsigned factor);
659 void msm_devfreq_active(struct msm_gpu *gpu);
660 void msm_devfreq_idle(struct msm_gpu *gpu);
661
662 int msm_gpu_hw_init(struct msm_gpu *gpu);
663
664 void msm_gpu_perfcntr_start(struct msm_gpu *gpu);
665 void msm_gpu_perfcntr_stop(struct msm_gpu *gpu);
666 int msm_gpu_perfcntr_sample(struct msm_gpu *gpu, uint32_t *activetime,
667 uint32_t *totaltime, uint32_t ncntrs, uint32_t *cntrs);
668
669 void msm_gpu_retire(struct msm_gpu *gpu);
670 void msm_gpu_submit(struct msm_gpu *gpu, struct msm_gem_submit *submit);
671
672 int msm_gpu_init(struct drm_device *drm, struct platform_device *pdev,
673 struct msm_gpu *gpu, const struct msm_gpu_funcs *funcs,
674 const char *name, struct msm_gpu_config *config);
675
676 struct msm_gem_address_space *
677 msm_gpu_create_private_address_space(struct msm_gpu *gpu, struct task_struct *task);
678
679 void msm_gpu_cleanup(struct msm_gpu *gpu);
680
681 struct msm_gpu *adreno_load_gpu(struct drm_device *dev);
682 void __init adreno_register(void);
683 void __exit adreno_unregister(void);
684
msm_submitqueue_put(struct msm_gpu_submitqueue * queue)685 static inline void msm_submitqueue_put(struct msm_gpu_submitqueue *queue)
686 {
687 if (queue)
688 kref_put(&queue->ref, msm_submitqueue_destroy);
689 }
690
msm_gpu_crashstate_get(struct msm_gpu * gpu)691 static inline struct msm_gpu_state *msm_gpu_crashstate_get(struct msm_gpu *gpu)
692 {
693 struct msm_gpu_state *state = NULL;
694
695 mutex_lock(&gpu->lock);
696
697 if (gpu->crashstate) {
698 kref_get(&gpu->crashstate->ref);
699 state = gpu->crashstate;
700 }
701
702 mutex_unlock(&gpu->lock);
703
704 return state;
705 }
706
msm_gpu_crashstate_put(struct msm_gpu * gpu)707 static inline void msm_gpu_crashstate_put(struct msm_gpu *gpu)
708 {
709 mutex_lock(&gpu->lock);
710
711 if (gpu->crashstate) {
712 if (gpu->funcs->gpu_state_put(gpu->crashstate))
713 gpu->crashstate = NULL;
714 }
715
716 mutex_unlock(&gpu->lock);
717 }
718
719 /*
720 * Simple macro to semi-cleanly add the MAP_PRIV flag for targets that can
721 * support expanded privileges
722 */
723 #define check_apriv(gpu, flags) \
724 (((gpu)->hw_apriv ? MSM_BO_MAP_PRIV : 0) | (flags))
725
726
727 #endif /* __MSM_GPU_H__ */
728