1 // SPDX-License-Identifier: GPL-2.0 or MIT
2 /* Copyright 2019 Linaro, Ltd, Rob Herring <robh@kernel.org> */
3 /* Copyright 2023 Collabora ltd. */
4
5 #include <drm/drm_debugfs.h>
6 #include <drm/drm_drv.h>
7 #include <drm/drm_exec.h>
8 #include <drm/drm_gpuvm.h>
9 #include <drm/drm_managed.h>
10 #include <drm/gpu_scheduler.h>
11 #include <drm/panthor_drm.h>
12
13 #include <linux/atomic.h>
14 #include <linux/bitfield.h>
15 #include <linux/delay.h>
16 #include <linux/dma-mapping.h>
17 #include <linux/interrupt.h>
18 #include <linux/io.h>
19 #include <linux/iopoll.h>
20 #include <linux/io-pgtable.h>
21 #include <linux/iommu.h>
22 #include <linux/kmemleak.h>
23 #include <linux/platform_device.h>
24 #include <linux/pm_runtime.h>
25 #include <linux/rwsem.h>
26 #include <linux/sched.h>
27 #include <linux/shmem_fs.h>
28 #include <linux/sizes.h>
29
30 #include "panthor_device.h"
31 #include "panthor_gem.h"
32 #include "panthor_heap.h"
33 #include "panthor_mmu.h"
34 #include "panthor_regs.h"
35 #include "panthor_sched.h"
36
37 #define MAX_AS_SLOTS 32
38
39 struct panthor_vm;
40
41 /**
42 * struct panthor_as_slot - Address space slot
43 */
44 struct panthor_as_slot {
45 /** @vm: VM bound to this slot. NULL is no VM is bound. */
46 struct panthor_vm *vm;
47 };
48
49 /**
50 * struct panthor_mmu - MMU related data
51 */
52 struct panthor_mmu {
53 /** @irq: The MMU irq. */
54 struct panthor_irq irq;
55
56 /** @as: Address space related fields.
57 *
58 * The GPU has a limited number of address spaces (AS) slots, forcing
59 * us to re-assign them to re-assign slots on-demand.
60 */
61 struct {
62 /** @slots_lock: Lock protecting access to all other AS fields. */
63 struct mutex slots_lock;
64
65 /** @alloc_mask: Bitmask encoding the allocated slots. */
66 unsigned long alloc_mask;
67
68 /** @faulty_mask: Bitmask encoding the faulty slots. */
69 unsigned long faulty_mask;
70
71 /** @slots: VMs currently bound to the AS slots. */
72 struct panthor_as_slot slots[MAX_AS_SLOTS];
73
74 /**
75 * @lru_list: List of least recently used VMs.
76 *
77 * We use this list to pick a VM to evict when all slots are
78 * used.
79 *
80 * There should be no more active VMs than there are AS slots,
81 * so this LRU is just here to keep VMs bound until there's
82 * a need to release a slot, thus avoid unnecessary TLB/cache
83 * flushes.
84 */
85 struct list_head lru_list;
86 } as;
87
88 /** @vm: VMs management fields */
89 struct {
90 /** @lock: Lock protecting access to list. */
91 struct mutex lock;
92
93 /** @list: List containing all VMs. */
94 struct list_head list;
95
96 /** @reset_in_progress: True if a reset is in progress. */
97 bool reset_in_progress;
98
99 /** @wq: Workqueue used for the VM_BIND queues. */
100 struct workqueue_struct *wq;
101 } vm;
102 };
103
104 /**
105 * struct panthor_vm_pool - VM pool object
106 */
107 struct panthor_vm_pool {
108 /** @xa: Array used for VM handle tracking. */
109 struct xarray xa;
110 };
111
112 /**
113 * struct panthor_vma - GPU mapping object
114 *
115 * This is used to track GEM mappings in GPU space.
116 */
117 struct panthor_vma {
118 /** @base: Inherits from drm_gpuva. */
119 struct drm_gpuva base;
120
121 /** @node: Used to implement deferred release of VMAs. */
122 struct list_head node;
123
124 /**
125 * @flags: Combination of drm_panthor_vm_bind_op_flags.
126 *
127 * Only map related flags are accepted.
128 */
129 u32 flags;
130 };
131
132 /**
133 * struct panthor_vm_op_ctx - VM operation context
134 *
135 * With VM operations potentially taking place in a dma-signaling path, we
136 * need to make sure everything that might require resource allocation is
137 * pre-allocated upfront. This is what this operation context is far.
138 *
139 * We also collect resources that have been freed, so we can release them
140 * asynchronously, and let the VM_BIND scheduler process the next VM_BIND
141 * request.
142 */
143 struct panthor_vm_op_ctx {
144 /** @rsvd_page_tables: Pages reserved for the MMU page table update. */
145 struct {
146 /** @count: Number of pages reserved. */
147 u32 count;
148
149 /** @ptr: Point to the first unused page in the @pages table. */
150 u32 ptr;
151
152 /**
153 * @page: Array of pages that can be used for an MMU page table update.
154 *
155 * After an VM operation, there might be free pages left in this array.
156 * They should be returned to the pt_cache as part of the op_ctx cleanup.
157 */
158 void **pages;
159 } rsvd_page_tables;
160
161 /**
162 * @preallocated_vmas: Pre-allocated VMAs to handle the remap case.
163 *
164 * Partial unmap requests or map requests overlapping existing mappings will
165 * trigger a remap call, which need to register up to three panthor_vma objects
166 * (one for the new mapping, and two for the previous and next mappings).
167 */
168 struct panthor_vma *preallocated_vmas[3];
169
170 /** @flags: Combination of drm_panthor_vm_bind_op_flags. */
171 u32 flags;
172
173 /** @va: Virtual range targeted by the VM operation. */
174 struct {
175 /** @addr: Start address. */
176 u64 addr;
177
178 /** @range: Range size. */
179 u64 range;
180 } va;
181
182 /**
183 * @returned_vmas: List of panthor_vma objects returned after a VM operation.
184 *
185 * For unmap operations, this will contain all VMAs that were covered by the
186 * specified VA range.
187 *
188 * For map operations, this will contain all VMAs that previously mapped to
189 * the specified VA range.
190 *
191 * Those VMAs, and the resources they point to will be released as part of
192 * the op_ctx cleanup operation.
193 */
194 struct list_head returned_vmas;
195
196 /** @map: Fields specific to a map operation. */
197 struct {
198 /** @vm_bo: Buffer object to map. */
199 struct drm_gpuvm_bo *vm_bo;
200
201 /** @bo_offset: Offset in the buffer object. */
202 u64 bo_offset;
203
204 /**
205 * @sgt: sg-table pointing to pages backing the GEM object.
206 *
207 * This is gathered at job creation time, such that we don't have
208 * to allocate in ::run_job().
209 */
210 struct sg_table *sgt;
211
212 /**
213 * @new_vma: The new VMA object that will be inserted to the VA tree.
214 */
215 struct panthor_vma *new_vma;
216 } map;
217 };
218
219 /**
220 * struct panthor_vm - VM object
221 *
222 * A VM is an object representing a GPU (or MCU) virtual address space.
223 * It embeds the MMU page table for this address space, a tree containing
224 * all the virtual mappings of GEM objects, and other things needed to manage
225 * the VM.
226 *
227 * Except for the MCU VM, which is managed by the kernel, all other VMs are
228 * created by userspace and mostly managed by userspace, using the
229 * %DRM_IOCTL_PANTHOR_VM_BIND ioctl.
230 *
231 * A portion of the virtual address space is reserved for kernel objects,
232 * like heap chunks, and userspace gets to decide how much of the virtual
233 * address space is left to the kernel (half of the virtual address space
234 * by default).
235 */
236 struct panthor_vm {
237 /**
238 * @base: Inherit from drm_gpuvm.
239 *
240 * We delegate all the VA management to the common drm_gpuvm framework
241 * and only implement hooks to update the MMU page table.
242 */
243 struct drm_gpuvm base;
244
245 /**
246 * @sched: Scheduler used for asynchronous VM_BIND request.
247 *
248 * We use a 1:1 scheduler here.
249 */
250 struct drm_gpu_scheduler sched;
251
252 /**
253 * @entity: Scheduling entity representing the VM_BIND queue.
254 *
255 * There's currently one bind queue per VM. It doesn't make sense to
256 * allow more given the VM operations are serialized anyway.
257 */
258 struct drm_sched_entity entity;
259
260 /** @ptdev: Device. */
261 struct panthor_device *ptdev;
262
263 /** @memattr: Value to program to the AS_MEMATTR register. */
264 u64 memattr;
265
266 /** @pgtbl_ops: Page table operations. */
267 struct io_pgtable_ops *pgtbl_ops;
268
269 /** @root_page_table: Stores the root page table pointer. */
270 void *root_page_table;
271
272 /**
273 * @op_lock: Lock used to serialize operations on a VM.
274 *
275 * The serialization of jobs queued to the VM_BIND queue is already
276 * taken care of by drm_sched, but we need to serialize synchronous
277 * and asynchronous VM_BIND request. This is what this lock is for.
278 */
279 struct mutex op_lock;
280
281 /**
282 * @op_ctx: The context attached to the currently executing VM operation.
283 *
284 * NULL when no operation is in progress.
285 */
286 struct panthor_vm_op_ctx *op_ctx;
287
288 /**
289 * @mm: Memory management object representing the auto-VA/kernel-VA.
290 *
291 * Used to auto-allocate VA space for kernel-managed objects (tiler
292 * heaps, ...).
293 *
294 * For the MCU VM, this is managing the VA range that's used to map
295 * all shared interfaces.
296 *
297 * For user VMs, the range is specified by userspace, and must not
298 * exceed half of the VA space addressable.
299 */
300 struct drm_mm mm;
301
302 /** @mm_lock: Lock protecting the @mm field. */
303 struct mutex mm_lock;
304
305 /** @kernel_auto_va: Automatic VA-range for kernel BOs. */
306 struct {
307 /** @start: Start of the automatic VA-range for kernel BOs. */
308 u64 start;
309
310 /** @size: Size of the automatic VA-range for kernel BOs. */
311 u64 end;
312 } kernel_auto_va;
313
314 /** @as: Address space related fields. */
315 struct {
316 /**
317 * @id: ID of the address space this VM is bound to.
318 *
319 * A value of -1 means the VM is inactive/not bound.
320 */
321 int id;
322
323 /** @active_cnt: Number of active users of this VM. */
324 refcount_t active_cnt;
325
326 /**
327 * @lru_node: Used to instead the VM in the panthor_mmu::as::lru_list.
328 *
329 * Active VMs should not be inserted in the LRU list.
330 */
331 struct list_head lru_node;
332 } as;
333
334 /**
335 * @heaps: Tiler heap related fields.
336 */
337 struct {
338 /**
339 * @pool: The heap pool attached to this VM.
340 *
341 * Will stay NULL until someone creates a heap context on this VM.
342 */
343 struct panthor_heap_pool *pool;
344
345 /** @lock: Lock used to protect access to @pool. */
346 struct mutex lock;
347 } heaps;
348
349 /** @node: Used to insert the VM in the panthor_mmu::vm::list. */
350 struct list_head node;
351
352 /** @for_mcu: True if this is the MCU VM. */
353 bool for_mcu;
354
355 /**
356 * @destroyed: True if the VM was destroyed.
357 *
358 * No further bind requests should be queued to a destroyed VM.
359 */
360 bool destroyed;
361
362 /**
363 * @unusable: True if the VM has turned unusable because something
364 * bad happened during an asynchronous request.
365 *
366 * We don't try to recover from such failures, because this implies
367 * informing userspace about the specific operation that failed, and
368 * hoping the userspace driver can replay things from there. This all
369 * sounds very complicated for little gain.
370 *
371 * Instead, we should just flag the VM as unusable, and fail any
372 * further request targeting this VM.
373 *
374 * We also provide a way to query a VM state, so userspace can destroy
375 * it and create a new one.
376 *
377 * As an analogy, this would be mapped to a VK_ERROR_DEVICE_LOST
378 * situation, where the logical device needs to be re-created.
379 */
380 bool unusable;
381
382 /**
383 * @unhandled_fault: Unhandled fault happened.
384 *
385 * This should be reported to the scheduler, and the queue/group be
386 * flagged as faulty as a result.
387 */
388 bool unhandled_fault;
389 };
390
391 /**
392 * struct panthor_vm_bind_job - VM bind job
393 */
394 struct panthor_vm_bind_job {
395 /** @base: Inherit from drm_sched_job. */
396 struct drm_sched_job base;
397
398 /** @refcount: Reference count. */
399 struct kref refcount;
400
401 /** @cleanup_op_ctx_work: Work used to cleanup the VM operation context. */
402 struct work_struct cleanup_op_ctx_work;
403
404 /** @vm: VM targeted by the VM operation. */
405 struct panthor_vm *vm;
406
407 /** @ctx: Operation context. */
408 struct panthor_vm_op_ctx ctx;
409 };
410
411 /**
412 * @pt_cache: Cache used to allocate MMU page tables.
413 *
414 * The pre-allocation pattern forces us to over-allocate to plan for
415 * the worst case scenario, and return the pages we didn't use.
416 *
417 * Having a kmem_cache allows us to speed allocations.
418 */
419 static struct kmem_cache *pt_cache;
420
421 /**
422 * alloc_pt() - Custom page table allocator
423 * @cookie: Cookie passed at page table allocation time.
424 * @size: Size of the page table. This size should be fixed,
425 * and determined at creation time based on the granule size.
426 * @gfp: GFP flags.
427 *
428 * We want a custom allocator so we can use a cache for page table
429 * allocations and amortize the cost of the over-reservation that's
430 * done to allow asynchronous VM operations.
431 *
432 * Return: non-NULL on success, NULL if the allocation failed for any
433 * reason.
434 */
alloc_pt(void * cookie,size_t size,gfp_t gfp)435 static void *alloc_pt(void *cookie, size_t size, gfp_t gfp)
436 {
437 struct panthor_vm *vm = cookie;
438 void *page;
439
440 /* Allocation of the root page table happening during init. */
441 if (unlikely(!vm->root_page_table)) {
442 struct page *p;
443
444 drm_WARN_ON(&vm->ptdev->base, vm->op_ctx);
445 p = alloc_pages_node(dev_to_node(vm->ptdev->base.dev),
446 gfp | __GFP_ZERO, get_order(size));
447 page = p ? page_address(p) : NULL;
448 vm->root_page_table = page;
449 return page;
450 }
451
452 /* We're not supposed to have anything bigger than 4k here, because we picked a
453 * 4k granule size at init time.
454 */
455 if (drm_WARN_ON(&vm->ptdev->base, size != SZ_4K))
456 return NULL;
457
458 /* We must have some op_ctx attached to the VM and it must have at least one
459 * free page.
460 */
461 if (drm_WARN_ON(&vm->ptdev->base, !vm->op_ctx) ||
462 drm_WARN_ON(&vm->ptdev->base,
463 vm->op_ctx->rsvd_page_tables.ptr >= vm->op_ctx->rsvd_page_tables.count))
464 return NULL;
465
466 page = vm->op_ctx->rsvd_page_tables.pages[vm->op_ctx->rsvd_page_tables.ptr++];
467 memset(page, 0, SZ_4K);
468
469 /* Page table entries don't use virtual addresses, which trips out
470 * kmemleak. kmemleak_alloc_phys() might work, but physical addresses
471 * are mixed with other fields, and I fear kmemleak won't detect that
472 * either.
473 *
474 * Let's just ignore memory passed to the page-table driver for now.
475 */
476 kmemleak_ignore(page);
477 return page;
478 }
479
480 /**
481 * @free_pt() - Custom page table free function
482 * @cookie: Cookie passed at page table allocation time.
483 * @data: Page table to free.
484 * @size: Size of the page table. This size should be fixed,
485 * and determined at creation time based on the granule size.
486 */
free_pt(void * cookie,void * data,size_t size)487 static void free_pt(void *cookie, void *data, size_t size)
488 {
489 struct panthor_vm *vm = cookie;
490
491 if (unlikely(vm->root_page_table == data)) {
492 free_pages((unsigned long)data, get_order(size));
493 vm->root_page_table = NULL;
494 return;
495 }
496
497 if (drm_WARN_ON(&vm->ptdev->base, size != SZ_4K))
498 return;
499
500 /* Return the page to the pt_cache. */
501 kmem_cache_free(pt_cache, data);
502 }
503
wait_ready(struct panthor_device * ptdev,u32 as_nr)504 static int wait_ready(struct panthor_device *ptdev, u32 as_nr)
505 {
506 int ret;
507 u32 val;
508
509 /* Wait for the MMU status to indicate there is no active command, in
510 * case one is pending.
511 */
512 ret = readl_relaxed_poll_timeout_atomic(ptdev->iomem + AS_STATUS(as_nr),
513 val, !(val & AS_STATUS_AS_ACTIVE),
514 10, 100000);
515
516 if (ret) {
517 panthor_device_schedule_reset(ptdev);
518 drm_err(&ptdev->base, "AS_ACTIVE bit stuck\n");
519 }
520
521 return ret;
522 }
523
write_cmd(struct panthor_device * ptdev,u32 as_nr,u32 cmd)524 static int write_cmd(struct panthor_device *ptdev, u32 as_nr, u32 cmd)
525 {
526 int status;
527
528 /* write AS_COMMAND when MMU is ready to accept another command */
529 status = wait_ready(ptdev, as_nr);
530 if (!status)
531 gpu_write(ptdev, AS_COMMAND(as_nr), cmd);
532
533 return status;
534 }
535
lock_region(struct panthor_device * ptdev,u32 as_nr,u64 region_start,u64 size)536 static void lock_region(struct panthor_device *ptdev, u32 as_nr,
537 u64 region_start, u64 size)
538 {
539 u8 region_width;
540 u64 region;
541 u64 region_end = region_start + size;
542
543 if (!size)
544 return;
545
546 /*
547 * The locked region is a naturally aligned power of 2 block encoded as
548 * log2 minus(1).
549 * Calculate the desired start/end and look for the highest bit which
550 * differs. The smallest naturally aligned block must include this bit
551 * change, the desired region starts with this bit (and subsequent bits)
552 * zeroed and ends with the bit (and subsequent bits) set to one.
553 */
554 region_width = max(fls64(region_start ^ (region_end - 1)),
555 const_ilog2(AS_LOCK_REGION_MIN_SIZE)) - 1;
556
557 /*
558 * Mask off the low bits of region_start (which would be ignored by
559 * the hardware anyway)
560 */
561 region_start &= GENMASK_ULL(63, region_width);
562
563 region = region_width | region_start;
564
565 /* Lock the region that needs to be updated */
566 gpu_write(ptdev, AS_LOCKADDR_LO(as_nr), lower_32_bits(region));
567 gpu_write(ptdev, AS_LOCKADDR_HI(as_nr), upper_32_bits(region));
568 write_cmd(ptdev, as_nr, AS_COMMAND_LOCK);
569 }
570
mmu_hw_do_operation_locked(struct panthor_device * ptdev,int as_nr,u64 iova,u64 size,u32 op)571 static int mmu_hw_do_operation_locked(struct panthor_device *ptdev, int as_nr,
572 u64 iova, u64 size, u32 op)
573 {
574 lockdep_assert_held(&ptdev->mmu->as.slots_lock);
575
576 if (as_nr < 0)
577 return 0;
578
579 /*
580 * If the AS number is greater than zero, then we can be sure
581 * the device is up and running, so we don't need to explicitly
582 * power it up
583 */
584
585 if (op != AS_COMMAND_UNLOCK)
586 lock_region(ptdev, as_nr, iova, size);
587
588 /* Run the MMU operation */
589 write_cmd(ptdev, as_nr, op);
590
591 /* Wait for the flush to complete */
592 return wait_ready(ptdev, as_nr);
593 }
594
mmu_hw_do_operation(struct panthor_vm * vm,u64 iova,u64 size,u32 op)595 static int mmu_hw_do_operation(struct panthor_vm *vm,
596 u64 iova, u64 size, u32 op)
597 {
598 struct panthor_device *ptdev = vm->ptdev;
599 int ret;
600
601 mutex_lock(&ptdev->mmu->as.slots_lock);
602 ret = mmu_hw_do_operation_locked(ptdev, vm->as.id, iova, size, op);
603 mutex_unlock(&ptdev->mmu->as.slots_lock);
604
605 return ret;
606 }
607
panthor_mmu_as_enable(struct panthor_device * ptdev,u32 as_nr,u64 transtab,u64 transcfg,u64 memattr)608 static int panthor_mmu_as_enable(struct panthor_device *ptdev, u32 as_nr,
609 u64 transtab, u64 transcfg, u64 memattr)
610 {
611 int ret;
612
613 ret = mmu_hw_do_operation_locked(ptdev, as_nr, 0, ~0ULL, AS_COMMAND_FLUSH_MEM);
614 if (ret)
615 return ret;
616
617 gpu_write(ptdev, AS_TRANSTAB_LO(as_nr), lower_32_bits(transtab));
618 gpu_write(ptdev, AS_TRANSTAB_HI(as_nr), upper_32_bits(transtab));
619
620 gpu_write(ptdev, AS_MEMATTR_LO(as_nr), lower_32_bits(memattr));
621 gpu_write(ptdev, AS_MEMATTR_HI(as_nr), upper_32_bits(memattr));
622
623 gpu_write(ptdev, AS_TRANSCFG_LO(as_nr), lower_32_bits(transcfg));
624 gpu_write(ptdev, AS_TRANSCFG_HI(as_nr), upper_32_bits(transcfg));
625
626 return write_cmd(ptdev, as_nr, AS_COMMAND_UPDATE);
627 }
628
panthor_mmu_as_disable(struct panthor_device * ptdev,u32 as_nr)629 static int panthor_mmu_as_disable(struct panthor_device *ptdev, u32 as_nr)
630 {
631 int ret;
632
633 ret = mmu_hw_do_operation_locked(ptdev, as_nr, 0, ~0ULL, AS_COMMAND_FLUSH_MEM);
634 if (ret)
635 return ret;
636
637 gpu_write(ptdev, AS_TRANSTAB_LO(as_nr), 0);
638 gpu_write(ptdev, AS_TRANSTAB_HI(as_nr), 0);
639
640 gpu_write(ptdev, AS_MEMATTR_LO(as_nr), 0);
641 gpu_write(ptdev, AS_MEMATTR_HI(as_nr), 0);
642
643 gpu_write(ptdev, AS_TRANSCFG_LO(as_nr), AS_TRANSCFG_ADRMODE_UNMAPPED);
644 gpu_write(ptdev, AS_TRANSCFG_HI(as_nr), 0);
645
646 return write_cmd(ptdev, as_nr, AS_COMMAND_UPDATE);
647 }
648
panthor_mmu_fault_mask(struct panthor_device * ptdev,u32 value)649 static u32 panthor_mmu_fault_mask(struct panthor_device *ptdev, u32 value)
650 {
651 /* Bits 16 to 31 mean REQ_COMPLETE. */
652 return value & GENMASK(15, 0);
653 }
654
panthor_mmu_as_fault_mask(struct panthor_device * ptdev,u32 as)655 static u32 panthor_mmu_as_fault_mask(struct panthor_device *ptdev, u32 as)
656 {
657 return BIT(as);
658 }
659
660 /**
661 * panthor_vm_has_unhandled_faults() - Check if a VM has unhandled faults
662 * @vm: VM to check.
663 *
664 * Return: true if the VM has unhandled faults, false otherwise.
665 */
panthor_vm_has_unhandled_faults(struct panthor_vm * vm)666 bool panthor_vm_has_unhandled_faults(struct panthor_vm *vm)
667 {
668 return vm->unhandled_fault;
669 }
670
671 /**
672 * panthor_vm_is_unusable() - Check if the VM is still usable
673 * @vm: VM to check.
674 *
675 * Return: true if the VM is unusable, false otherwise.
676 */
panthor_vm_is_unusable(struct panthor_vm * vm)677 bool panthor_vm_is_unusable(struct panthor_vm *vm)
678 {
679 return vm->unusable;
680 }
681
panthor_vm_release_as_locked(struct panthor_vm * vm)682 static void panthor_vm_release_as_locked(struct panthor_vm *vm)
683 {
684 struct panthor_device *ptdev = vm->ptdev;
685
686 lockdep_assert_held(&ptdev->mmu->as.slots_lock);
687
688 if (drm_WARN_ON(&ptdev->base, vm->as.id < 0))
689 return;
690
691 ptdev->mmu->as.slots[vm->as.id].vm = NULL;
692 clear_bit(vm->as.id, &ptdev->mmu->as.alloc_mask);
693 refcount_set(&vm->as.active_cnt, 0);
694 list_del_init(&vm->as.lru_node);
695 vm->as.id = -1;
696 }
697
698 /**
699 * panthor_vm_active() - Flag a VM as active
700 * @VM: VM to flag as active.
701 *
702 * Assigns an address space to a VM so it can be used by the GPU/MCU.
703 *
704 * Return: 0 on success, a negative error code otherwise.
705 */
panthor_vm_active(struct panthor_vm * vm)706 int panthor_vm_active(struct panthor_vm *vm)
707 {
708 struct panthor_device *ptdev = vm->ptdev;
709 u32 va_bits = GPU_MMU_FEATURES_VA_BITS(ptdev->gpu_info.mmu_features);
710 struct io_pgtable_cfg *cfg = &io_pgtable_ops_to_pgtable(vm->pgtbl_ops)->cfg;
711 int ret = 0, as, cookie;
712 u64 transtab, transcfg;
713
714 if (!drm_dev_enter(&ptdev->base, &cookie))
715 return -ENODEV;
716
717 if (refcount_inc_not_zero(&vm->as.active_cnt))
718 goto out_dev_exit;
719
720 mutex_lock(&ptdev->mmu->as.slots_lock);
721
722 if (refcount_inc_not_zero(&vm->as.active_cnt))
723 goto out_unlock;
724
725 as = vm->as.id;
726 if (as >= 0) {
727 /* Unhandled pagefault on this AS, the MMU was disabled. We need to
728 * re-enable the MMU after clearing+unmasking the AS interrupts.
729 */
730 if (ptdev->mmu->as.faulty_mask & panthor_mmu_as_fault_mask(ptdev, as))
731 goto out_enable_as;
732
733 goto out_make_active;
734 }
735
736 /* Check for a free AS */
737 if (vm->for_mcu) {
738 drm_WARN_ON(&ptdev->base, ptdev->mmu->as.alloc_mask & BIT(0));
739 as = 0;
740 } else {
741 as = ffz(ptdev->mmu->as.alloc_mask | BIT(0));
742 }
743
744 if (!(BIT(as) & ptdev->gpu_info.as_present)) {
745 struct panthor_vm *lru_vm;
746
747 lru_vm = list_first_entry_or_null(&ptdev->mmu->as.lru_list,
748 struct panthor_vm,
749 as.lru_node);
750 if (drm_WARN_ON(&ptdev->base, !lru_vm)) {
751 ret = -EBUSY;
752 goto out_unlock;
753 }
754
755 drm_WARN_ON(&ptdev->base, refcount_read(&lru_vm->as.active_cnt));
756 as = lru_vm->as.id;
757 panthor_vm_release_as_locked(lru_vm);
758 }
759
760 /* Assign the free or reclaimed AS to the FD */
761 vm->as.id = as;
762 set_bit(as, &ptdev->mmu->as.alloc_mask);
763 ptdev->mmu->as.slots[as].vm = vm;
764
765 out_enable_as:
766 transtab = cfg->arm_lpae_s1_cfg.ttbr;
767 transcfg = AS_TRANSCFG_PTW_MEMATTR_WB |
768 AS_TRANSCFG_PTW_RA |
769 AS_TRANSCFG_ADRMODE_AARCH64_4K |
770 AS_TRANSCFG_INA_BITS(55 - va_bits);
771 if (ptdev->coherent)
772 transcfg |= AS_TRANSCFG_PTW_SH_OS;
773
774 /* If the VM is re-activated, we clear the fault. */
775 vm->unhandled_fault = false;
776
777 /* Unhandled pagefault on this AS, clear the fault and re-enable interrupts
778 * before enabling the AS.
779 */
780 if (ptdev->mmu->as.faulty_mask & panthor_mmu_as_fault_mask(ptdev, as)) {
781 gpu_write(ptdev, MMU_INT_CLEAR, panthor_mmu_as_fault_mask(ptdev, as));
782 ptdev->mmu->as.faulty_mask &= ~panthor_mmu_as_fault_mask(ptdev, as);
783 ptdev->mmu->irq.mask |= panthor_mmu_as_fault_mask(ptdev, as);
784 gpu_write(ptdev, MMU_INT_MASK, ~ptdev->mmu->as.faulty_mask);
785 }
786
787 ret = panthor_mmu_as_enable(vm->ptdev, vm->as.id, transtab, transcfg, vm->memattr);
788
789 out_make_active:
790 if (!ret) {
791 refcount_set(&vm->as.active_cnt, 1);
792 list_del_init(&vm->as.lru_node);
793 }
794
795 out_unlock:
796 mutex_unlock(&ptdev->mmu->as.slots_lock);
797
798 out_dev_exit:
799 drm_dev_exit(cookie);
800 return ret;
801 }
802
803 /**
804 * panthor_vm_idle() - Flag a VM idle
805 * @VM: VM to flag as idle.
806 *
807 * When we know the GPU is done with the VM (no more jobs to process),
808 * we can relinquish the AS slot attached to this VM, if any.
809 *
810 * We don't release the slot immediately, but instead place the VM in
811 * the LRU list, so it can be evicted if another VM needs an AS slot.
812 * This way, VMs keep attached to the AS they were given until we run
813 * out of free slot, limiting the number of MMU operations (TLB flush
814 * and other AS updates).
815 */
panthor_vm_idle(struct panthor_vm * vm)816 void panthor_vm_idle(struct panthor_vm *vm)
817 {
818 struct panthor_device *ptdev = vm->ptdev;
819
820 if (!refcount_dec_and_mutex_lock(&vm->as.active_cnt, &ptdev->mmu->as.slots_lock))
821 return;
822
823 if (!drm_WARN_ON(&ptdev->base, vm->as.id == -1 || !list_empty(&vm->as.lru_node)))
824 list_add_tail(&vm->as.lru_node, &ptdev->mmu->as.lru_list);
825
826 refcount_set(&vm->as.active_cnt, 0);
827 mutex_unlock(&ptdev->mmu->as.slots_lock);
828 }
829
panthor_vm_page_size(struct panthor_vm * vm)830 u32 panthor_vm_page_size(struct panthor_vm *vm)
831 {
832 const struct io_pgtable *pgt = io_pgtable_ops_to_pgtable(vm->pgtbl_ops);
833 u32 pg_shift = ffs(pgt->cfg.pgsize_bitmap) - 1;
834
835 return 1u << pg_shift;
836 }
837
panthor_vm_stop(struct panthor_vm * vm)838 static void panthor_vm_stop(struct panthor_vm *vm)
839 {
840 drm_sched_stop(&vm->sched, NULL);
841 }
842
panthor_vm_start(struct panthor_vm * vm)843 static void panthor_vm_start(struct panthor_vm *vm)
844 {
845 drm_sched_start(&vm->sched);
846 }
847
848 /**
849 * panthor_vm_as() - Get the AS slot attached to a VM
850 * @vm: VM to get the AS slot of.
851 *
852 * Return: -1 if the VM is not assigned an AS slot yet, >= 0 otherwise.
853 */
panthor_vm_as(struct panthor_vm * vm)854 int panthor_vm_as(struct panthor_vm *vm)
855 {
856 return vm->as.id;
857 }
858
get_pgsize(u64 addr,size_t size,size_t * count)859 static size_t get_pgsize(u64 addr, size_t size, size_t *count)
860 {
861 /*
862 * io-pgtable only operates on multiple pages within a single table
863 * entry, so we need to split at boundaries of the table size, i.e.
864 * the next block size up. The distance from address A to the next
865 * boundary of block size B is logically B - A % B, but in unsigned
866 * two's complement where B is a power of two we get the equivalence
867 * B - A % B == (B - A) % B == (n * B - A) % B, and choose n = 0 :)
868 */
869 size_t blk_offset = -addr % SZ_2M;
870
871 if (blk_offset || size < SZ_2M) {
872 *count = min_not_zero(blk_offset, size) / SZ_4K;
873 return SZ_4K;
874 }
875 blk_offset = -addr % SZ_1G ?: SZ_1G;
876 *count = min(blk_offset, size) / SZ_2M;
877 return SZ_2M;
878 }
879
panthor_vm_flush_range(struct panthor_vm * vm,u64 iova,u64 size)880 static int panthor_vm_flush_range(struct panthor_vm *vm, u64 iova, u64 size)
881 {
882 struct panthor_device *ptdev = vm->ptdev;
883 int ret = 0, cookie;
884
885 if (vm->as.id < 0)
886 return 0;
887
888 /* If the device is unplugged, we just silently skip the flush. */
889 if (!drm_dev_enter(&ptdev->base, &cookie))
890 return 0;
891
892 ret = mmu_hw_do_operation(vm, iova, size, AS_COMMAND_FLUSH_PT);
893
894 drm_dev_exit(cookie);
895 return ret;
896 }
897
898 /**
899 * panthor_vm_flush_all() - Flush L2 caches for the entirety of a VM's AS
900 * @vm: VM whose cache to flush
901 *
902 * Return: 0 on success, a negative error code if flush failed.
903 */
panthor_vm_flush_all(struct panthor_vm * vm)904 int panthor_vm_flush_all(struct panthor_vm *vm)
905 {
906 return panthor_vm_flush_range(vm, vm->base.mm_start, vm->base.mm_range);
907 }
908
panthor_vm_unmap_pages(struct panthor_vm * vm,u64 iova,u64 size)909 static int panthor_vm_unmap_pages(struct panthor_vm *vm, u64 iova, u64 size)
910 {
911 struct panthor_device *ptdev = vm->ptdev;
912 struct io_pgtable_ops *ops = vm->pgtbl_ops;
913 u64 offset = 0;
914
915 drm_dbg(&ptdev->base, "unmap: as=%d, iova=%llx, len=%llx", vm->as.id, iova, size);
916
917 while (offset < size) {
918 size_t unmapped_sz = 0, pgcount;
919 size_t pgsize = get_pgsize(iova + offset, size - offset, &pgcount);
920
921 unmapped_sz = ops->unmap_pages(ops, iova + offset, pgsize, pgcount, NULL);
922
923 if (drm_WARN_ON(&ptdev->base, unmapped_sz != pgsize * pgcount)) {
924 drm_err(&ptdev->base, "failed to unmap range %llx-%llx (requested range %llx-%llx)\n",
925 iova + offset + unmapped_sz,
926 iova + offset + pgsize * pgcount,
927 iova, iova + size);
928 panthor_vm_flush_range(vm, iova, offset + unmapped_sz);
929 return -EINVAL;
930 }
931 offset += unmapped_sz;
932 }
933
934 return panthor_vm_flush_range(vm, iova, size);
935 }
936
937 static int
panthor_vm_map_pages(struct panthor_vm * vm,u64 iova,int prot,struct sg_table * sgt,u64 offset,u64 size)938 panthor_vm_map_pages(struct panthor_vm *vm, u64 iova, int prot,
939 struct sg_table *sgt, u64 offset, u64 size)
940 {
941 struct panthor_device *ptdev = vm->ptdev;
942 unsigned int count;
943 struct scatterlist *sgl;
944 struct io_pgtable_ops *ops = vm->pgtbl_ops;
945 u64 start_iova = iova;
946 int ret;
947
948 if (!size)
949 return 0;
950
951 for_each_sgtable_dma_sg(sgt, sgl, count) {
952 dma_addr_t paddr = sg_dma_address(sgl);
953 size_t len = sg_dma_len(sgl);
954
955 if (len <= offset) {
956 offset -= len;
957 continue;
958 }
959
960 paddr += offset;
961 len -= offset;
962 len = min_t(size_t, len, size);
963 size -= len;
964
965 drm_dbg(&ptdev->base, "map: as=%d, iova=%llx, paddr=%pad, len=%zx",
966 vm->as.id, iova, &paddr, len);
967
968 while (len) {
969 size_t pgcount, mapped = 0;
970 size_t pgsize = get_pgsize(iova | paddr, len, &pgcount);
971
972 ret = ops->map_pages(ops, iova, paddr, pgsize, pgcount, prot,
973 GFP_KERNEL, &mapped);
974 iova += mapped;
975 paddr += mapped;
976 len -= mapped;
977
978 if (drm_WARN_ON(&ptdev->base, !ret && !mapped))
979 ret = -ENOMEM;
980
981 if (ret) {
982 /* If something failed, unmap what we've already mapped before
983 * returning. The unmap call is not supposed to fail.
984 */
985 drm_WARN_ON(&ptdev->base,
986 panthor_vm_unmap_pages(vm, start_iova,
987 iova - start_iova));
988 return ret;
989 }
990 }
991
992 if (!size)
993 break;
994
995 offset = 0;
996 }
997
998 return panthor_vm_flush_range(vm, start_iova, iova - start_iova);
999 }
1000
flags_to_prot(u32 flags)1001 static int flags_to_prot(u32 flags)
1002 {
1003 int prot = 0;
1004
1005 if (flags & DRM_PANTHOR_VM_BIND_OP_MAP_NOEXEC)
1006 prot |= IOMMU_NOEXEC;
1007
1008 if (!(flags & DRM_PANTHOR_VM_BIND_OP_MAP_UNCACHED))
1009 prot |= IOMMU_CACHE;
1010
1011 if (flags & DRM_PANTHOR_VM_BIND_OP_MAP_READONLY)
1012 prot |= IOMMU_READ;
1013 else
1014 prot |= IOMMU_READ | IOMMU_WRITE;
1015
1016 return prot;
1017 }
1018
1019 /**
1020 * panthor_vm_alloc_va() - Allocate a region in the auto-va space
1021 * @VM: VM to allocate a region on.
1022 * @va: start of the VA range. Can be PANTHOR_VM_KERNEL_AUTO_VA if the user
1023 * wants the VA to be automatically allocated from the auto-VA range.
1024 * @size: size of the VA range.
1025 * @va_node: drm_mm_node to initialize. Must be zero-initialized.
1026 *
1027 * Some GPU objects, like heap chunks, are fully managed by the kernel and
1028 * need to be mapped to the userspace VM, in the region reserved for kernel
1029 * objects.
1030 *
1031 * This function takes care of allocating a region in the kernel auto-VA space.
1032 *
1033 * Return: 0 on success, an error code otherwise.
1034 */
1035 int
panthor_vm_alloc_va(struct panthor_vm * vm,u64 va,u64 size,struct drm_mm_node * va_node)1036 panthor_vm_alloc_va(struct panthor_vm *vm, u64 va, u64 size,
1037 struct drm_mm_node *va_node)
1038 {
1039 ssize_t vm_pgsz = panthor_vm_page_size(vm);
1040 int ret;
1041
1042 if (!size || !IS_ALIGNED(size, vm_pgsz))
1043 return -EINVAL;
1044
1045 if (va != PANTHOR_VM_KERNEL_AUTO_VA && !IS_ALIGNED(va, vm_pgsz))
1046 return -EINVAL;
1047
1048 mutex_lock(&vm->mm_lock);
1049 if (va != PANTHOR_VM_KERNEL_AUTO_VA) {
1050 va_node->start = va;
1051 va_node->size = size;
1052 ret = drm_mm_reserve_node(&vm->mm, va_node);
1053 } else {
1054 ret = drm_mm_insert_node_in_range(&vm->mm, va_node, size,
1055 size >= SZ_2M ? SZ_2M : SZ_4K,
1056 0, vm->kernel_auto_va.start,
1057 vm->kernel_auto_va.end,
1058 DRM_MM_INSERT_BEST);
1059 }
1060 mutex_unlock(&vm->mm_lock);
1061
1062 return ret;
1063 }
1064
1065 /**
1066 * panthor_vm_free_va() - Free a region allocated with panthor_vm_alloc_va()
1067 * @VM: VM to free the region on.
1068 * @va_node: Memory node representing the region to free.
1069 */
panthor_vm_free_va(struct panthor_vm * vm,struct drm_mm_node * va_node)1070 void panthor_vm_free_va(struct panthor_vm *vm, struct drm_mm_node *va_node)
1071 {
1072 mutex_lock(&vm->mm_lock);
1073 drm_mm_remove_node(va_node);
1074 mutex_unlock(&vm->mm_lock);
1075 }
1076
panthor_vm_bo_put(struct drm_gpuvm_bo * vm_bo)1077 static void panthor_vm_bo_put(struct drm_gpuvm_bo *vm_bo)
1078 {
1079 struct panthor_gem_object *bo = to_panthor_bo(vm_bo->obj);
1080 struct drm_gpuvm *vm = vm_bo->vm;
1081 bool unpin;
1082
1083 /* We must retain the GEM before calling drm_gpuvm_bo_put(),
1084 * otherwise the mutex might be destroyed while we hold it.
1085 * Same goes for the VM, since we take the VM resv lock.
1086 */
1087 drm_gem_object_get(&bo->base.base);
1088 drm_gpuvm_get(vm);
1089
1090 /* We take the resv lock to protect against concurrent accesses to the
1091 * gpuvm evicted/extobj lists that are modified in
1092 * drm_gpuvm_bo_destroy(), which is called if drm_gpuvm_bo_put()
1093 * releases sthe last vm_bo reference.
1094 * We take the BO GPUVA list lock to protect the vm_bo removal from the
1095 * GEM vm_bo list.
1096 */
1097 dma_resv_lock(drm_gpuvm_resv(vm), NULL);
1098 mutex_lock(&bo->gpuva_list_lock);
1099 unpin = drm_gpuvm_bo_put(vm_bo);
1100 mutex_unlock(&bo->gpuva_list_lock);
1101 dma_resv_unlock(drm_gpuvm_resv(vm));
1102
1103 /* If the vm_bo object was destroyed, release the pin reference that
1104 * was hold by this object.
1105 */
1106 if (unpin && !bo->base.base.import_attach)
1107 drm_gem_shmem_unpin(&bo->base);
1108
1109 drm_gpuvm_put(vm);
1110 drm_gem_object_put(&bo->base.base);
1111 }
1112
panthor_vm_cleanup_op_ctx(struct panthor_vm_op_ctx * op_ctx,struct panthor_vm * vm)1113 static void panthor_vm_cleanup_op_ctx(struct panthor_vm_op_ctx *op_ctx,
1114 struct panthor_vm *vm)
1115 {
1116 struct panthor_vma *vma, *tmp_vma;
1117
1118 u32 remaining_pt_count = op_ctx->rsvd_page_tables.count -
1119 op_ctx->rsvd_page_tables.ptr;
1120
1121 if (remaining_pt_count) {
1122 kmem_cache_free_bulk(pt_cache, remaining_pt_count,
1123 op_ctx->rsvd_page_tables.pages +
1124 op_ctx->rsvd_page_tables.ptr);
1125 }
1126
1127 kfree(op_ctx->rsvd_page_tables.pages);
1128
1129 if (op_ctx->map.vm_bo)
1130 panthor_vm_bo_put(op_ctx->map.vm_bo);
1131
1132 for (u32 i = 0; i < ARRAY_SIZE(op_ctx->preallocated_vmas); i++)
1133 kfree(op_ctx->preallocated_vmas[i]);
1134
1135 list_for_each_entry_safe(vma, tmp_vma, &op_ctx->returned_vmas, node) {
1136 list_del(&vma->node);
1137 panthor_vm_bo_put(vma->base.vm_bo);
1138 kfree(vma);
1139 }
1140 }
1141
1142 static struct panthor_vma *
panthor_vm_op_ctx_get_vma(struct panthor_vm_op_ctx * op_ctx)1143 panthor_vm_op_ctx_get_vma(struct panthor_vm_op_ctx *op_ctx)
1144 {
1145 for (u32 i = 0; i < ARRAY_SIZE(op_ctx->preallocated_vmas); i++) {
1146 struct panthor_vma *vma = op_ctx->preallocated_vmas[i];
1147
1148 if (vma) {
1149 op_ctx->preallocated_vmas[i] = NULL;
1150 return vma;
1151 }
1152 }
1153
1154 return NULL;
1155 }
1156
1157 static int
panthor_vm_op_ctx_prealloc_vmas(struct panthor_vm_op_ctx * op_ctx)1158 panthor_vm_op_ctx_prealloc_vmas(struct panthor_vm_op_ctx *op_ctx)
1159 {
1160 u32 vma_count;
1161
1162 switch (op_ctx->flags & DRM_PANTHOR_VM_BIND_OP_TYPE_MASK) {
1163 case DRM_PANTHOR_VM_BIND_OP_TYPE_MAP:
1164 /* One VMA for the new mapping, and two more VMAs for the remap case
1165 * which might contain both a prev and next VA.
1166 */
1167 vma_count = 3;
1168 break;
1169
1170 case DRM_PANTHOR_VM_BIND_OP_TYPE_UNMAP:
1171 /* Partial unmaps might trigger a remap with either a prev or a next VA,
1172 * but not both.
1173 */
1174 vma_count = 1;
1175 break;
1176
1177 default:
1178 return 0;
1179 }
1180
1181 for (u32 i = 0; i < vma_count; i++) {
1182 struct panthor_vma *vma = kzalloc(sizeof(*vma), GFP_KERNEL);
1183
1184 if (!vma)
1185 return -ENOMEM;
1186
1187 op_ctx->preallocated_vmas[i] = vma;
1188 }
1189
1190 return 0;
1191 }
1192
1193 #define PANTHOR_VM_BIND_OP_MAP_FLAGS \
1194 (DRM_PANTHOR_VM_BIND_OP_MAP_READONLY | \
1195 DRM_PANTHOR_VM_BIND_OP_MAP_NOEXEC | \
1196 DRM_PANTHOR_VM_BIND_OP_MAP_UNCACHED | \
1197 DRM_PANTHOR_VM_BIND_OP_TYPE_MASK)
1198
panthor_vm_prepare_map_op_ctx(struct panthor_vm_op_ctx * op_ctx,struct panthor_vm * vm,struct panthor_gem_object * bo,u64 offset,u64 size,u64 va,u32 flags)1199 static int panthor_vm_prepare_map_op_ctx(struct panthor_vm_op_ctx *op_ctx,
1200 struct panthor_vm *vm,
1201 struct panthor_gem_object *bo,
1202 u64 offset,
1203 u64 size, u64 va,
1204 u32 flags)
1205 {
1206 struct drm_gpuvm_bo *preallocated_vm_bo;
1207 struct sg_table *sgt = NULL;
1208 u64 pt_count;
1209 int ret;
1210
1211 if (!bo)
1212 return -EINVAL;
1213
1214 if ((flags & ~PANTHOR_VM_BIND_OP_MAP_FLAGS) ||
1215 (flags & DRM_PANTHOR_VM_BIND_OP_TYPE_MASK) != DRM_PANTHOR_VM_BIND_OP_TYPE_MAP)
1216 return -EINVAL;
1217
1218 /* Make sure the VA and size are aligned and in-bounds. */
1219 if (size > bo->base.base.size || offset > bo->base.base.size - size)
1220 return -EINVAL;
1221
1222 /* If the BO has an exclusive VM attached, it can't be mapped to other VMs. */
1223 if (bo->exclusive_vm_root_gem &&
1224 bo->exclusive_vm_root_gem != panthor_vm_root_gem(vm))
1225 return -EINVAL;
1226
1227 memset(op_ctx, 0, sizeof(*op_ctx));
1228 INIT_LIST_HEAD(&op_ctx->returned_vmas);
1229 op_ctx->flags = flags;
1230 op_ctx->va.range = size;
1231 op_ctx->va.addr = va;
1232
1233 ret = panthor_vm_op_ctx_prealloc_vmas(op_ctx);
1234 if (ret)
1235 goto err_cleanup;
1236
1237 if (!bo->base.base.import_attach) {
1238 /* Pre-reserve the BO pages, so the map operation doesn't have to
1239 * allocate.
1240 */
1241 ret = drm_gem_shmem_pin(&bo->base);
1242 if (ret)
1243 goto err_cleanup;
1244 }
1245
1246 sgt = drm_gem_shmem_get_pages_sgt(&bo->base);
1247 if (IS_ERR(sgt)) {
1248 if (!bo->base.base.import_attach)
1249 drm_gem_shmem_unpin(&bo->base);
1250
1251 ret = PTR_ERR(sgt);
1252 goto err_cleanup;
1253 }
1254
1255 op_ctx->map.sgt = sgt;
1256
1257 preallocated_vm_bo = drm_gpuvm_bo_create(&vm->base, &bo->base.base);
1258 if (!preallocated_vm_bo) {
1259 if (!bo->base.base.import_attach)
1260 drm_gem_shmem_unpin(&bo->base);
1261
1262 ret = -ENOMEM;
1263 goto err_cleanup;
1264 }
1265
1266 /* drm_gpuvm_bo_obtain_prealloc() will call drm_gpuvm_bo_put() on our
1267 * pre-allocated BO if the <BO,VM> association exists. Given we
1268 * only have one ref on preallocated_vm_bo, drm_gpuvm_bo_destroy() will
1269 * be called immediately, and we have to hold the VM resv lock when
1270 * calling this function.
1271 */
1272 dma_resv_lock(panthor_vm_resv(vm), NULL);
1273 mutex_lock(&bo->gpuva_list_lock);
1274 op_ctx->map.vm_bo = drm_gpuvm_bo_obtain_prealloc(preallocated_vm_bo);
1275 mutex_unlock(&bo->gpuva_list_lock);
1276 dma_resv_unlock(panthor_vm_resv(vm));
1277
1278 /* If the a vm_bo for this <VM,BO> combination exists, it already
1279 * retains a pin ref, and we can release the one we took earlier.
1280 *
1281 * If our pre-allocated vm_bo is picked, it now retains the pin ref,
1282 * which will be released in panthor_vm_bo_put().
1283 */
1284 if (preallocated_vm_bo != op_ctx->map.vm_bo &&
1285 !bo->base.base.import_attach)
1286 drm_gem_shmem_unpin(&bo->base);
1287
1288 op_ctx->map.bo_offset = offset;
1289
1290 /* L1, L2 and L3 page tables.
1291 * We could optimize L3 allocation by iterating over the sgt and merging
1292 * 2M contiguous blocks, but it's simpler to over-provision and return
1293 * the pages if they're not used.
1294 */
1295 pt_count = ((ALIGN(va + size, 1ull << 39) - ALIGN_DOWN(va, 1ull << 39)) >> 39) +
1296 ((ALIGN(va + size, 1ull << 30) - ALIGN_DOWN(va, 1ull << 30)) >> 30) +
1297 ((ALIGN(va + size, 1ull << 21) - ALIGN_DOWN(va, 1ull << 21)) >> 21);
1298
1299 op_ctx->rsvd_page_tables.pages = kcalloc(pt_count,
1300 sizeof(*op_ctx->rsvd_page_tables.pages),
1301 GFP_KERNEL);
1302 if (!op_ctx->rsvd_page_tables.pages) {
1303 ret = -ENOMEM;
1304 goto err_cleanup;
1305 }
1306
1307 ret = kmem_cache_alloc_bulk(pt_cache, GFP_KERNEL, pt_count,
1308 op_ctx->rsvd_page_tables.pages);
1309 op_ctx->rsvd_page_tables.count = ret;
1310 if (ret != pt_count) {
1311 ret = -ENOMEM;
1312 goto err_cleanup;
1313 }
1314
1315 /* Insert BO into the extobj list last, when we know nothing can fail. */
1316 dma_resv_lock(panthor_vm_resv(vm), NULL);
1317 drm_gpuvm_bo_extobj_add(op_ctx->map.vm_bo);
1318 dma_resv_unlock(panthor_vm_resv(vm));
1319
1320 return 0;
1321
1322 err_cleanup:
1323 panthor_vm_cleanup_op_ctx(op_ctx, vm);
1324 return ret;
1325 }
1326
panthor_vm_prepare_unmap_op_ctx(struct panthor_vm_op_ctx * op_ctx,struct panthor_vm * vm,u64 va,u64 size)1327 static int panthor_vm_prepare_unmap_op_ctx(struct panthor_vm_op_ctx *op_ctx,
1328 struct panthor_vm *vm,
1329 u64 va, u64 size)
1330 {
1331 u32 pt_count = 0;
1332 int ret;
1333
1334 memset(op_ctx, 0, sizeof(*op_ctx));
1335 INIT_LIST_HEAD(&op_ctx->returned_vmas);
1336 op_ctx->va.range = size;
1337 op_ctx->va.addr = va;
1338 op_ctx->flags = DRM_PANTHOR_VM_BIND_OP_TYPE_UNMAP;
1339
1340 /* Pre-allocate L3 page tables to account for the split-2M-block
1341 * situation on unmap.
1342 */
1343 if (va != ALIGN(va, SZ_2M))
1344 pt_count++;
1345
1346 if (va + size != ALIGN(va + size, SZ_2M) &&
1347 ALIGN(va + size, SZ_2M) != ALIGN(va, SZ_2M))
1348 pt_count++;
1349
1350 ret = panthor_vm_op_ctx_prealloc_vmas(op_ctx);
1351 if (ret)
1352 goto err_cleanup;
1353
1354 if (pt_count) {
1355 op_ctx->rsvd_page_tables.pages = kcalloc(pt_count,
1356 sizeof(*op_ctx->rsvd_page_tables.pages),
1357 GFP_KERNEL);
1358 if (!op_ctx->rsvd_page_tables.pages) {
1359 ret = -ENOMEM;
1360 goto err_cleanup;
1361 }
1362
1363 ret = kmem_cache_alloc_bulk(pt_cache, GFP_KERNEL, pt_count,
1364 op_ctx->rsvd_page_tables.pages);
1365 if (ret != pt_count) {
1366 ret = -ENOMEM;
1367 goto err_cleanup;
1368 }
1369 op_ctx->rsvd_page_tables.count = pt_count;
1370 }
1371
1372 return 0;
1373
1374 err_cleanup:
1375 panthor_vm_cleanup_op_ctx(op_ctx, vm);
1376 return ret;
1377 }
1378
panthor_vm_prepare_sync_only_op_ctx(struct panthor_vm_op_ctx * op_ctx,struct panthor_vm * vm)1379 static void panthor_vm_prepare_sync_only_op_ctx(struct panthor_vm_op_ctx *op_ctx,
1380 struct panthor_vm *vm)
1381 {
1382 memset(op_ctx, 0, sizeof(*op_ctx));
1383 INIT_LIST_HEAD(&op_ctx->returned_vmas);
1384 op_ctx->flags = DRM_PANTHOR_VM_BIND_OP_TYPE_SYNC_ONLY;
1385 }
1386
1387 /**
1388 * panthor_vm_get_bo_for_va() - Get the GEM object mapped at a virtual address
1389 * @vm: VM to look into.
1390 * @va: Virtual address to search for.
1391 * @bo_offset: Offset of the GEM object mapped at this virtual address.
1392 * Only valid on success.
1393 *
1394 * The object returned by this function might no longer be mapped when the
1395 * function returns. It's the caller responsibility to ensure there's no
1396 * concurrent map/unmap operations making the returned value invalid, or
1397 * make sure it doesn't matter if the object is no longer mapped.
1398 *
1399 * Return: A valid pointer on success, an ERR_PTR() otherwise.
1400 */
1401 struct panthor_gem_object *
panthor_vm_get_bo_for_va(struct panthor_vm * vm,u64 va,u64 * bo_offset)1402 panthor_vm_get_bo_for_va(struct panthor_vm *vm, u64 va, u64 *bo_offset)
1403 {
1404 struct panthor_gem_object *bo = ERR_PTR(-ENOENT);
1405 struct drm_gpuva *gpuva;
1406 struct panthor_vma *vma;
1407
1408 /* Take the VM lock to prevent concurrent map/unmap operations. */
1409 mutex_lock(&vm->op_lock);
1410 gpuva = drm_gpuva_find_first(&vm->base, va, 1);
1411 vma = gpuva ? container_of(gpuva, struct panthor_vma, base) : NULL;
1412 if (vma && vma->base.gem.obj) {
1413 drm_gem_object_get(vma->base.gem.obj);
1414 bo = to_panthor_bo(vma->base.gem.obj);
1415 *bo_offset = vma->base.gem.offset + (va - vma->base.va.addr);
1416 }
1417 mutex_unlock(&vm->op_lock);
1418
1419 return bo;
1420 }
1421
1422 #define PANTHOR_VM_MIN_KERNEL_VA_SIZE SZ_256M
1423
1424 static u64
panthor_vm_create_get_user_va_range(const struct drm_panthor_vm_create * args,u64 full_va_range)1425 panthor_vm_create_get_user_va_range(const struct drm_panthor_vm_create *args,
1426 u64 full_va_range)
1427 {
1428 u64 user_va_range;
1429
1430 /* Make sure we have a minimum amount of VA space for kernel objects. */
1431 if (full_va_range < PANTHOR_VM_MIN_KERNEL_VA_SIZE)
1432 return 0;
1433
1434 if (args->user_va_range) {
1435 /* Use the user provided value if != 0. */
1436 user_va_range = args->user_va_range;
1437 } else if (TASK_SIZE_OF(current) < full_va_range) {
1438 /* If the task VM size is smaller than the GPU VA range, pick this
1439 * as our default user VA range, so userspace can CPU/GPU map buffers
1440 * at the same address.
1441 */
1442 user_va_range = TASK_SIZE_OF(current);
1443 } else {
1444 /* If the GPU VA range is smaller than the task VM size, we
1445 * just have to live with the fact we won't be able to map
1446 * all buffers at the same GPU/CPU address.
1447 *
1448 * If the GPU VA range is bigger than 4G (more than 32-bit of
1449 * VA), we split the range in two, and assign half of it to
1450 * the user and the other half to the kernel, if it's not, we
1451 * keep the kernel VA space as small as possible.
1452 */
1453 user_va_range = full_va_range > SZ_4G ?
1454 full_va_range / 2 :
1455 full_va_range - PANTHOR_VM_MIN_KERNEL_VA_SIZE;
1456 }
1457
1458 if (full_va_range - PANTHOR_VM_MIN_KERNEL_VA_SIZE < user_va_range)
1459 user_va_range = full_va_range - PANTHOR_VM_MIN_KERNEL_VA_SIZE;
1460
1461 return user_va_range;
1462 }
1463
1464 #define PANTHOR_VM_CREATE_FLAGS 0
1465
1466 static int
panthor_vm_create_check_args(const struct panthor_device * ptdev,const struct drm_panthor_vm_create * args,u64 * kernel_va_start,u64 * kernel_va_range)1467 panthor_vm_create_check_args(const struct panthor_device *ptdev,
1468 const struct drm_panthor_vm_create *args,
1469 u64 *kernel_va_start, u64 *kernel_va_range)
1470 {
1471 u32 va_bits = GPU_MMU_FEATURES_VA_BITS(ptdev->gpu_info.mmu_features);
1472 u64 full_va_range = 1ull << va_bits;
1473 u64 user_va_range;
1474
1475 if (args->flags & ~PANTHOR_VM_CREATE_FLAGS)
1476 return -EINVAL;
1477
1478 user_va_range = panthor_vm_create_get_user_va_range(args, full_va_range);
1479 if (!user_va_range || (args->user_va_range && args->user_va_range > user_va_range))
1480 return -EINVAL;
1481
1482 /* Pick a kernel VA range that's a power of two, to have a clear split. */
1483 *kernel_va_range = rounddown_pow_of_two(full_va_range - user_va_range);
1484 *kernel_va_start = full_va_range - *kernel_va_range;
1485 return 0;
1486 }
1487
1488 /*
1489 * Only 32 VMs per open file. If that becomes a limiting factor, we can
1490 * increase this number.
1491 */
1492 #define PANTHOR_MAX_VMS_PER_FILE 32
1493
1494 /**
1495 * panthor_vm_pool_create_vm() - Create a VM
1496 * @pool: The VM to create this VM on.
1497 * @kernel_va_start: Start of the region reserved for kernel objects.
1498 * @kernel_va_range: Size of the region reserved for kernel objects.
1499 *
1500 * Return: a positive VM ID on success, a negative error code otherwise.
1501 */
panthor_vm_pool_create_vm(struct panthor_device * ptdev,struct panthor_vm_pool * pool,struct drm_panthor_vm_create * args)1502 int panthor_vm_pool_create_vm(struct panthor_device *ptdev,
1503 struct panthor_vm_pool *pool,
1504 struct drm_panthor_vm_create *args)
1505 {
1506 u64 kernel_va_start, kernel_va_range;
1507 struct panthor_vm *vm;
1508 int ret;
1509 u32 id;
1510
1511 ret = panthor_vm_create_check_args(ptdev, args, &kernel_va_start, &kernel_va_range);
1512 if (ret)
1513 return ret;
1514
1515 vm = panthor_vm_create(ptdev, false, kernel_va_start, kernel_va_range,
1516 kernel_va_start, kernel_va_range);
1517 if (IS_ERR(vm))
1518 return PTR_ERR(vm);
1519
1520 ret = xa_alloc(&pool->xa, &id, vm,
1521 XA_LIMIT(1, PANTHOR_MAX_VMS_PER_FILE), GFP_KERNEL);
1522
1523 if (ret) {
1524 panthor_vm_put(vm);
1525 return ret;
1526 }
1527
1528 args->user_va_range = kernel_va_start;
1529 return id;
1530 }
1531
panthor_vm_destroy(struct panthor_vm * vm)1532 static void panthor_vm_destroy(struct panthor_vm *vm)
1533 {
1534 if (!vm)
1535 return;
1536
1537 vm->destroyed = true;
1538
1539 mutex_lock(&vm->heaps.lock);
1540 panthor_heap_pool_destroy(vm->heaps.pool);
1541 vm->heaps.pool = NULL;
1542 mutex_unlock(&vm->heaps.lock);
1543
1544 drm_WARN_ON(&vm->ptdev->base,
1545 panthor_vm_unmap_range(vm, vm->base.mm_start, vm->base.mm_range));
1546 panthor_vm_put(vm);
1547 }
1548
1549 /**
1550 * panthor_vm_pool_destroy_vm() - Destroy a VM.
1551 * @pool: VM pool.
1552 * @handle: VM handle.
1553 *
1554 * This function doesn't free the VM object or its resources, it just kills
1555 * all mappings, and makes sure nothing can be mapped after that point.
1556 *
1557 * If there was any active jobs at the time this function is called, these
1558 * jobs should experience page faults and be killed as a result.
1559 *
1560 * The VM resources are freed when the last reference on the VM object is
1561 * dropped.
1562 */
panthor_vm_pool_destroy_vm(struct panthor_vm_pool * pool,u32 handle)1563 int panthor_vm_pool_destroy_vm(struct panthor_vm_pool *pool, u32 handle)
1564 {
1565 struct panthor_vm *vm;
1566
1567 vm = xa_erase(&pool->xa, handle);
1568
1569 panthor_vm_destroy(vm);
1570
1571 return vm ? 0 : -EINVAL;
1572 }
1573
1574 /**
1575 * panthor_vm_pool_get_vm() - Retrieve VM object bound to a VM handle
1576 * @pool: VM pool to check.
1577 * @handle: Handle of the VM to retrieve.
1578 *
1579 * Return: A valid pointer if the VM exists, NULL otherwise.
1580 */
1581 struct panthor_vm *
panthor_vm_pool_get_vm(struct panthor_vm_pool * pool,u32 handle)1582 panthor_vm_pool_get_vm(struct panthor_vm_pool *pool, u32 handle)
1583 {
1584 struct panthor_vm *vm;
1585
1586 xa_lock(&pool->xa);
1587 vm = panthor_vm_get(xa_load(&pool->xa, handle));
1588 xa_unlock(&pool->xa);
1589
1590 return vm;
1591 }
1592
1593 /**
1594 * panthor_vm_pool_destroy() - Destroy a VM pool.
1595 * @pfile: File.
1596 *
1597 * Destroy all VMs in the pool, and release the pool resources.
1598 *
1599 * Note that VMs can outlive the pool they were created from if other
1600 * objects hold a reference to there VMs.
1601 */
panthor_vm_pool_destroy(struct panthor_file * pfile)1602 void panthor_vm_pool_destroy(struct panthor_file *pfile)
1603 {
1604 struct panthor_vm *vm;
1605 unsigned long i;
1606
1607 if (!pfile->vms)
1608 return;
1609
1610 xa_for_each(&pfile->vms->xa, i, vm)
1611 panthor_vm_destroy(vm);
1612
1613 xa_destroy(&pfile->vms->xa);
1614 kfree(pfile->vms);
1615 }
1616
1617 /**
1618 * panthor_vm_pool_create() - Create a VM pool
1619 * @pfile: File.
1620 *
1621 * Return: 0 on success, a negative error code otherwise.
1622 */
panthor_vm_pool_create(struct panthor_file * pfile)1623 int panthor_vm_pool_create(struct panthor_file *pfile)
1624 {
1625 pfile->vms = kzalloc(sizeof(*pfile->vms), GFP_KERNEL);
1626 if (!pfile->vms)
1627 return -ENOMEM;
1628
1629 xa_init_flags(&pfile->vms->xa, XA_FLAGS_ALLOC1);
1630 return 0;
1631 }
1632
1633 /* dummy TLB ops, the real TLB flush happens in panthor_vm_flush_range() */
mmu_tlb_flush_all(void * cookie)1634 static void mmu_tlb_flush_all(void *cookie)
1635 {
1636 }
1637
mmu_tlb_flush_walk(unsigned long iova,size_t size,size_t granule,void * cookie)1638 static void mmu_tlb_flush_walk(unsigned long iova, size_t size, size_t granule, void *cookie)
1639 {
1640 }
1641
1642 static const struct iommu_flush_ops mmu_tlb_ops = {
1643 .tlb_flush_all = mmu_tlb_flush_all,
1644 .tlb_flush_walk = mmu_tlb_flush_walk,
1645 };
1646
access_type_name(struct panthor_device * ptdev,u32 fault_status)1647 static const char *access_type_name(struct panthor_device *ptdev,
1648 u32 fault_status)
1649 {
1650 switch (fault_status & AS_FAULTSTATUS_ACCESS_TYPE_MASK) {
1651 case AS_FAULTSTATUS_ACCESS_TYPE_ATOMIC:
1652 return "ATOMIC";
1653 case AS_FAULTSTATUS_ACCESS_TYPE_READ:
1654 return "READ";
1655 case AS_FAULTSTATUS_ACCESS_TYPE_WRITE:
1656 return "WRITE";
1657 case AS_FAULTSTATUS_ACCESS_TYPE_EX:
1658 return "EXECUTE";
1659 default:
1660 drm_WARN_ON(&ptdev->base, 1);
1661 return NULL;
1662 }
1663 }
1664
panthor_mmu_irq_handler(struct panthor_device * ptdev,u32 status)1665 static void panthor_mmu_irq_handler(struct panthor_device *ptdev, u32 status)
1666 {
1667 bool has_unhandled_faults = false;
1668
1669 status = panthor_mmu_fault_mask(ptdev, status);
1670 while (status) {
1671 u32 as = ffs(status | (status >> 16)) - 1;
1672 u32 mask = panthor_mmu_as_fault_mask(ptdev, as);
1673 u32 new_int_mask;
1674 u64 addr;
1675 u32 fault_status;
1676 u32 exception_type;
1677 u32 access_type;
1678 u32 source_id;
1679
1680 fault_status = gpu_read(ptdev, AS_FAULTSTATUS(as));
1681 addr = gpu_read(ptdev, AS_FAULTADDRESS_LO(as));
1682 addr |= (u64)gpu_read(ptdev, AS_FAULTADDRESS_HI(as)) << 32;
1683
1684 /* decode the fault status */
1685 exception_type = fault_status & 0xFF;
1686 access_type = (fault_status >> 8) & 0x3;
1687 source_id = (fault_status >> 16);
1688
1689 mutex_lock(&ptdev->mmu->as.slots_lock);
1690
1691 ptdev->mmu->as.faulty_mask |= mask;
1692 new_int_mask =
1693 panthor_mmu_fault_mask(ptdev, ~ptdev->mmu->as.faulty_mask);
1694
1695 /* terminal fault, print info about the fault */
1696 drm_err(&ptdev->base,
1697 "Unhandled Page fault in AS%d at VA 0x%016llX\n"
1698 "raw fault status: 0x%X\n"
1699 "decoded fault status: %s\n"
1700 "exception type 0x%X: %s\n"
1701 "access type 0x%X: %s\n"
1702 "source id 0x%X\n",
1703 as, addr,
1704 fault_status,
1705 (fault_status & (1 << 10) ? "DECODER FAULT" : "SLAVE FAULT"),
1706 exception_type, panthor_exception_name(ptdev, exception_type),
1707 access_type, access_type_name(ptdev, fault_status),
1708 source_id);
1709
1710 /* Ignore MMU interrupts on this AS until it's been
1711 * re-enabled.
1712 */
1713 ptdev->mmu->irq.mask = new_int_mask;
1714 gpu_write(ptdev, MMU_INT_MASK, new_int_mask);
1715
1716 if (ptdev->mmu->as.slots[as].vm)
1717 ptdev->mmu->as.slots[as].vm->unhandled_fault = true;
1718
1719 /* Disable the MMU to kill jobs on this AS. */
1720 panthor_mmu_as_disable(ptdev, as);
1721 mutex_unlock(&ptdev->mmu->as.slots_lock);
1722
1723 status &= ~mask;
1724 has_unhandled_faults = true;
1725 }
1726
1727 if (has_unhandled_faults)
1728 panthor_sched_report_mmu_fault(ptdev);
1729 }
1730 PANTHOR_IRQ_HANDLER(mmu, MMU, panthor_mmu_irq_handler);
1731
1732 /**
1733 * panthor_mmu_suspend() - Suspend the MMU logic
1734 * @ptdev: Device.
1735 *
1736 * All we do here is de-assign the AS slots on all active VMs, so things
1737 * get flushed to the main memory, and no further access to these VMs are
1738 * possible.
1739 *
1740 * We also suspend the MMU IRQ.
1741 */
panthor_mmu_suspend(struct panthor_device * ptdev)1742 void panthor_mmu_suspend(struct panthor_device *ptdev)
1743 {
1744 mutex_lock(&ptdev->mmu->as.slots_lock);
1745 for (u32 i = 0; i < ARRAY_SIZE(ptdev->mmu->as.slots); i++) {
1746 struct panthor_vm *vm = ptdev->mmu->as.slots[i].vm;
1747
1748 if (vm) {
1749 drm_WARN_ON(&ptdev->base, panthor_mmu_as_disable(ptdev, i));
1750 panthor_vm_release_as_locked(vm);
1751 }
1752 }
1753 mutex_unlock(&ptdev->mmu->as.slots_lock);
1754
1755 panthor_mmu_irq_suspend(&ptdev->mmu->irq);
1756 }
1757
1758 /**
1759 * panthor_mmu_resume() - Resume the MMU logic
1760 * @ptdev: Device.
1761 *
1762 * Resume the IRQ.
1763 *
1764 * We don't re-enable previously active VMs. We assume other parts of the
1765 * driver will call panthor_vm_active() on the VMs they intend to use.
1766 */
panthor_mmu_resume(struct panthor_device * ptdev)1767 void panthor_mmu_resume(struct panthor_device *ptdev)
1768 {
1769 mutex_lock(&ptdev->mmu->as.slots_lock);
1770 ptdev->mmu->as.alloc_mask = 0;
1771 ptdev->mmu->as.faulty_mask = 0;
1772 mutex_unlock(&ptdev->mmu->as.slots_lock);
1773
1774 panthor_mmu_irq_resume(&ptdev->mmu->irq, panthor_mmu_fault_mask(ptdev, ~0));
1775 }
1776
1777 /**
1778 * panthor_mmu_pre_reset() - Prepare for a reset
1779 * @ptdev: Device.
1780 *
1781 * Suspend the IRQ, and make sure all VM_BIND queues are stopped, so we
1782 * don't get asked to do a VM operation while the GPU is down.
1783 *
1784 * We don't cleanly shutdown the AS slots here, because the reset might
1785 * come from an AS_ACTIVE_BIT stuck situation.
1786 */
panthor_mmu_pre_reset(struct panthor_device * ptdev)1787 void panthor_mmu_pre_reset(struct panthor_device *ptdev)
1788 {
1789 struct panthor_vm *vm;
1790
1791 panthor_mmu_irq_suspend(&ptdev->mmu->irq);
1792
1793 mutex_lock(&ptdev->mmu->vm.lock);
1794 ptdev->mmu->vm.reset_in_progress = true;
1795 list_for_each_entry(vm, &ptdev->mmu->vm.list, node)
1796 panthor_vm_stop(vm);
1797 mutex_unlock(&ptdev->mmu->vm.lock);
1798 }
1799
1800 /**
1801 * panthor_mmu_post_reset() - Restore things after a reset
1802 * @ptdev: Device.
1803 *
1804 * Put the MMU logic back in action after a reset. That implies resuming the
1805 * IRQ and re-enabling the VM_BIND queues.
1806 */
panthor_mmu_post_reset(struct panthor_device * ptdev)1807 void panthor_mmu_post_reset(struct panthor_device *ptdev)
1808 {
1809 struct panthor_vm *vm;
1810
1811 mutex_lock(&ptdev->mmu->as.slots_lock);
1812
1813 /* Now that the reset is effective, we can assume that none of the
1814 * AS slots are setup, and clear the faulty flags too.
1815 */
1816 ptdev->mmu->as.alloc_mask = 0;
1817 ptdev->mmu->as.faulty_mask = 0;
1818
1819 for (u32 i = 0; i < ARRAY_SIZE(ptdev->mmu->as.slots); i++) {
1820 struct panthor_vm *vm = ptdev->mmu->as.slots[i].vm;
1821
1822 if (vm)
1823 panthor_vm_release_as_locked(vm);
1824 }
1825
1826 mutex_unlock(&ptdev->mmu->as.slots_lock);
1827
1828 panthor_mmu_irq_resume(&ptdev->mmu->irq, panthor_mmu_fault_mask(ptdev, ~0));
1829
1830 /* Restart the VM_BIND queues. */
1831 mutex_lock(&ptdev->mmu->vm.lock);
1832 list_for_each_entry(vm, &ptdev->mmu->vm.list, node) {
1833 panthor_vm_start(vm);
1834 }
1835 ptdev->mmu->vm.reset_in_progress = false;
1836 mutex_unlock(&ptdev->mmu->vm.lock);
1837 }
1838
panthor_vm_free(struct drm_gpuvm * gpuvm)1839 static void panthor_vm_free(struct drm_gpuvm *gpuvm)
1840 {
1841 struct panthor_vm *vm = container_of(gpuvm, struct panthor_vm, base);
1842 struct panthor_device *ptdev = vm->ptdev;
1843
1844 mutex_lock(&vm->heaps.lock);
1845 if (drm_WARN_ON(&ptdev->base, vm->heaps.pool))
1846 panthor_heap_pool_destroy(vm->heaps.pool);
1847 mutex_unlock(&vm->heaps.lock);
1848 mutex_destroy(&vm->heaps.lock);
1849
1850 mutex_lock(&ptdev->mmu->vm.lock);
1851 list_del(&vm->node);
1852 /* Restore the scheduler state so we can call drm_sched_entity_destroy()
1853 * and drm_sched_fini(). If get there, that means we have no job left
1854 * and no new jobs can be queued, so we can start the scheduler without
1855 * risking interfering with the reset.
1856 */
1857 if (ptdev->mmu->vm.reset_in_progress)
1858 panthor_vm_start(vm);
1859 mutex_unlock(&ptdev->mmu->vm.lock);
1860
1861 drm_sched_entity_destroy(&vm->entity);
1862 drm_sched_fini(&vm->sched);
1863
1864 mutex_lock(&ptdev->mmu->as.slots_lock);
1865 if (vm->as.id >= 0) {
1866 int cookie;
1867
1868 if (drm_dev_enter(&ptdev->base, &cookie)) {
1869 panthor_mmu_as_disable(ptdev, vm->as.id);
1870 drm_dev_exit(cookie);
1871 }
1872
1873 ptdev->mmu->as.slots[vm->as.id].vm = NULL;
1874 clear_bit(vm->as.id, &ptdev->mmu->as.alloc_mask);
1875 list_del(&vm->as.lru_node);
1876 }
1877 mutex_unlock(&ptdev->mmu->as.slots_lock);
1878
1879 free_io_pgtable_ops(vm->pgtbl_ops);
1880
1881 drm_mm_takedown(&vm->mm);
1882 kfree(vm);
1883 }
1884
1885 /**
1886 * panthor_vm_put() - Release a reference on a VM
1887 * @vm: VM to release the reference on. Can be NULL.
1888 */
panthor_vm_put(struct panthor_vm * vm)1889 void panthor_vm_put(struct panthor_vm *vm)
1890 {
1891 drm_gpuvm_put(vm ? &vm->base : NULL);
1892 }
1893
1894 /**
1895 * panthor_vm_get() - Get a VM reference
1896 * @vm: VM to get the reference on. Can be NULL.
1897 *
1898 * Return: @vm value.
1899 */
panthor_vm_get(struct panthor_vm * vm)1900 struct panthor_vm *panthor_vm_get(struct panthor_vm *vm)
1901 {
1902 if (vm)
1903 drm_gpuvm_get(&vm->base);
1904
1905 return vm;
1906 }
1907
1908 /**
1909 * panthor_vm_get_heap_pool() - Get the heap pool attached to a VM
1910 * @vm: VM to query the heap pool on.
1911 * @create: True if the heap pool should be created when it doesn't exist.
1912 *
1913 * Heap pools are per-VM. This function allows one to retrieve the heap pool
1914 * attached to a VM.
1915 *
1916 * If no heap pool exists yet, and @create is true, we create one.
1917 *
1918 * The returned panthor_heap_pool should be released with panthor_heap_pool_put().
1919 *
1920 * Return: A valid pointer on success, an ERR_PTR() otherwise.
1921 */
panthor_vm_get_heap_pool(struct panthor_vm * vm,bool create)1922 struct panthor_heap_pool *panthor_vm_get_heap_pool(struct panthor_vm *vm, bool create)
1923 {
1924 struct panthor_heap_pool *pool;
1925
1926 mutex_lock(&vm->heaps.lock);
1927 if (!vm->heaps.pool && create) {
1928 if (vm->destroyed)
1929 pool = ERR_PTR(-EINVAL);
1930 else
1931 pool = panthor_heap_pool_create(vm->ptdev, vm);
1932
1933 if (!IS_ERR(pool))
1934 vm->heaps.pool = panthor_heap_pool_get(pool);
1935 } else {
1936 pool = panthor_heap_pool_get(vm->heaps.pool);
1937 if (!pool)
1938 pool = ERR_PTR(-ENOENT);
1939 }
1940 mutex_unlock(&vm->heaps.lock);
1941
1942 return pool;
1943 }
1944
mair_to_memattr(u64 mair)1945 static u64 mair_to_memattr(u64 mair)
1946 {
1947 u64 memattr = 0;
1948 u32 i;
1949
1950 for (i = 0; i < 8; i++) {
1951 u8 in_attr = mair >> (8 * i), out_attr;
1952 u8 outer = in_attr >> 4, inner = in_attr & 0xf;
1953
1954 /* For caching to be enabled, inner and outer caching policy
1955 * have to be both write-back, if one of them is write-through
1956 * or non-cacheable, we just choose non-cacheable. Device
1957 * memory is also translated to non-cacheable.
1958 */
1959 if (!(outer & 3) || !(outer & 4) || !(inner & 4)) {
1960 out_attr = AS_MEMATTR_AARCH64_INNER_OUTER_NC |
1961 AS_MEMATTR_AARCH64_SH_MIDGARD_INNER |
1962 AS_MEMATTR_AARCH64_INNER_ALLOC_EXPL(false, false);
1963 } else {
1964 /* Use SH_CPU_INNER mode so SH_IS, which is used when
1965 * IOMMU_CACHE is set, actually maps to the standard
1966 * definition of inner-shareable and not Mali's
1967 * internal-shareable mode.
1968 */
1969 out_attr = AS_MEMATTR_AARCH64_INNER_OUTER_WB |
1970 AS_MEMATTR_AARCH64_SH_CPU_INNER |
1971 AS_MEMATTR_AARCH64_INNER_ALLOC_EXPL(inner & 1, inner & 2);
1972 }
1973
1974 memattr |= (u64)out_attr << (8 * i);
1975 }
1976
1977 return memattr;
1978 }
1979
panthor_vma_link(struct panthor_vm * vm,struct panthor_vma * vma,struct drm_gpuvm_bo * vm_bo)1980 static void panthor_vma_link(struct panthor_vm *vm,
1981 struct panthor_vma *vma,
1982 struct drm_gpuvm_bo *vm_bo)
1983 {
1984 struct panthor_gem_object *bo = to_panthor_bo(vma->base.gem.obj);
1985
1986 mutex_lock(&bo->gpuva_list_lock);
1987 drm_gpuva_link(&vma->base, vm_bo);
1988 drm_WARN_ON(&vm->ptdev->base, drm_gpuvm_bo_put(vm_bo));
1989 mutex_unlock(&bo->gpuva_list_lock);
1990 }
1991
panthor_vma_unlink(struct panthor_vm * vm,struct panthor_vma * vma)1992 static void panthor_vma_unlink(struct panthor_vm *vm,
1993 struct panthor_vma *vma)
1994 {
1995 struct panthor_gem_object *bo = to_panthor_bo(vma->base.gem.obj);
1996 struct drm_gpuvm_bo *vm_bo = drm_gpuvm_bo_get(vma->base.vm_bo);
1997
1998 mutex_lock(&bo->gpuva_list_lock);
1999 drm_gpuva_unlink(&vma->base);
2000 mutex_unlock(&bo->gpuva_list_lock);
2001
2002 /* drm_gpuva_unlink() release the vm_bo, but we manually retained it
2003 * when entering this function, so we can implement deferred VMA
2004 * destruction. Re-assign it here.
2005 */
2006 vma->base.vm_bo = vm_bo;
2007 list_add_tail(&vma->node, &vm->op_ctx->returned_vmas);
2008 }
2009
panthor_vma_init(struct panthor_vma * vma,u32 flags)2010 static void panthor_vma_init(struct panthor_vma *vma, u32 flags)
2011 {
2012 INIT_LIST_HEAD(&vma->node);
2013 vma->flags = flags;
2014 }
2015
2016 #define PANTHOR_VM_MAP_FLAGS \
2017 (DRM_PANTHOR_VM_BIND_OP_MAP_READONLY | \
2018 DRM_PANTHOR_VM_BIND_OP_MAP_NOEXEC | \
2019 DRM_PANTHOR_VM_BIND_OP_MAP_UNCACHED)
2020
panthor_gpuva_sm_step_map(struct drm_gpuva_op * op,void * priv)2021 static int panthor_gpuva_sm_step_map(struct drm_gpuva_op *op, void *priv)
2022 {
2023 struct panthor_vm *vm = priv;
2024 struct panthor_vm_op_ctx *op_ctx = vm->op_ctx;
2025 struct panthor_vma *vma = panthor_vm_op_ctx_get_vma(op_ctx);
2026 int ret;
2027
2028 if (!vma)
2029 return -EINVAL;
2030
2031 panthor_vma_init(vma, op_ctx->flags & PANTHOR_VM_MAP_FLAGS);
2032
2033 ret = panthor_vm_map_pages(vm, op->map.va.addr, flags_to_prot(vma->flags),
2034 op_ctx->map.sgt, op->map.gem.offset,
2035 op->map.va.range);
2036 if (ret)
2037 return ret;
2038
2039 /* Ref owned by the mapping now, clear the obj field so we don't release the
2040 * pinning/obj ref behind GPUVA's back.
2041 */
2042 drm_gpuva_map(&vm->base, &vma->base, &op->map);
2043 panthor_vma_link(vm, vma, op_ctx->map.vm_bo);
2044 op_ctx->map.vm_bo = NULL;
2045 return 0;
2046 }
2047
panthor_gpuva_sm_step_remap(struct drm_gpuva_op * op,void * priv)2048 static int panthor_gpuva_sm_step_remap(struct drm_gpuva_op *op,
2049 void *priv)
2050 {
2051 struct panthor_vma *unmap_vma = container_of(op->remap.unmap->va, struct panthor_vma, base);
2052 struct panthor_vm *vm = priv;
2053 struct panthor_vm_op_ctx *op_ctx = vm->op_ctx;
2054 struct panthor_vma *prev_vma = NULL, *next_vma = NULL;
2055 u64 unmap_start, unmap_range;
2056 int ret;
2057
2058 drm_gpuva_op_remap_to_unmap_range(&op->remap, &unmap_start, &unmap_range);
2059 ret = panthor_vm_unmap_pages(vm, unmap_start, unmap_range);
2060 if (ret)
2061 return ret;
2062
2063 if (op->remap.prev) {
2064 prev_vma = panthor_vm_op_ctx_get_vma(op_ctx);
2065 panthor_vma_init(prev_vma, unmap_vma->flags);
2066 }
2067
2068 if (op->remap.next) {
2069 next_vma = panthor_vm_op_ctx_get_vma(op_ctx);
2070 panthor_vma_init(next_vma, unmap_vma->flags);
2071 }
2072
2073 drm_gpuva_remap(prev_vma ? &prev_vma->base : NULL,
2074 next_vma ? &next_vma->base : NULL,
2075 &op->remap);
2076
2077 if (prev_vma) {
2078 /* panthor_vma_link() transfers the vm_bo ownership to
2079 * the VMA object. Since the vm_bo we're passing is still
2080 * owned by the old mapping which will be released when this
2081 * mapping is destroyed, we need to grab a ref here.
2082 */
2083 panthor_vma_link(vm, prev_vma,
2084 drm_gpuvm_bo_get(op->remap.unmap->va->vm_bo));
2085 }
2086
2087 if (next_vma) {
2088 panthor_vma_link(vm, next_vma,
2089 drm_gpuvm_bo_get(op->remap.unmap->va->vm_bo));
2090 }
2091
2092 panthor_vma_unlink(vm, unmap_vma);
2093 return 0;
2094 }
2095
panthor_gpuva_sm_step_unmap(struct drm_gpuva_op * op,void * priv)2096 static int panthor_gpuva_sm_step_unmap(struct drm_gpuva_op *op,
2097 void *priv)
2098 {
2099 struct panthor_vma *unmap_vma = container_of(op->unmap.va, struct panthor_vma, base);
2100 struct panthor_vm *vm = priv;
2101 int ret;
2102
2103 ret = panthor_vm_unmap_pages(vm, unmap_vma->base.va.addr,
2104 unmap_vma->base.va.range);
2105 if (drm_WARN_ON(&vm->ptdev->base, ret))
2106 return ret;
2107
2108 drm_gpuva_unmap(&op->unmap);
2109 panthor_vma_unlink(vm, unmap_vma);
2110 return 0;
2111 }
2112
2113 static const struct drm_gpuvm_ops panthor_gpuvm_ops = {
2114 .vm_free = panthor_vm_free,
2115 .sm_step_map = panthor_gpuva_sm_step_map,
2116 .sm_step_remap = panthor_gpuva_sm_step_remap,
2117 .sm_step_unmap = panthor_gpuva_sm_step_unmap,
2118 };
2119
2120 /**
2121 * panthor_vm_resv() - Get the dma_resv object attached to a VM.
2122 * @vm: VM to get the dma_resv of.
2123 *
2124 * Return: A dma_resv object.
2125 */
panthor_vm_resv(struct panthor_vm * vm)2126 struct dma_resv *panthor_vm_resv(struct panthor_vm *vm)
2127 {
2128 return drm_gpuvm_resv(&vm->base);
2129 }
2130
panthor_vm_root_gem(struct panthor_vm * vm)2131 struct drm_gem_object *panthor_vm_root_gem(struct panthor_vm *vm)
2132 {
2133 if (!vm)
2134 return NULL;
2135
2136 return vm->base.r_obj;
2137 }
2138
2139 static int
panthor_vm_exec_op(struct panthor_vm * vm,struct panthor_vm_op_ctx * op,bool flag_vm_unusable_on_failure)2140 panthor_vm_exec_op(struct panthor_vm *vm, struct panthor_vm_op_ctx *op,
2141 bool flag_vm_unusable_on_failure)
2142 {
2143 u32 op_type = op->flags & DRM_PANTHOR_VM_BIND_OP_TYPE_MASK;
2144 int ret;
2145
2146 if (op_type == DRM_PANTHOR_VM_BIND_OP_TYPE_SYNC_ONLY)
2147 return 0;
2148
2149 mutex_lock(&vm->op_lock);
2150 vm->op_ctx = op;
2151 switch (op_type) {
2152 case DRM_PANTHOR_VM_BIND_OP_TYPE_MAP:
2153 if (vm->unusable) {
2154 ret = -EINVAL;
2155 break;
2156 }
2157
2158 ret = drm_gpuvm_sm_map(&vm->base, vm, op->va.addr, op->va.range,
2159 op->map.vm_bo->obj, op->map.bo_offset);
2160 break;
2161
2162 case DRM_PANTHOR_VM_BIND_OP_TYPE_UNMAP:
2163 ret = drm_gpuvm_sm_unmap(&vm->base, vm, op->va.addr, op->va.range);
2164 break;
2165
2166 default:
2167 ret = -EINVAL;
2168 break;
2169 }
2170
2171 if (ret && flag_vm_unusable_on_failure)
2172 vm->unusable = true;
2173
2174 vm->op_ctx = NULL;
2175 mutex_unlock(&vm->op_lock);
2176
2177 return ret;
2178 }
2179
2180 static struct dma_fence *
panthor_vm_bind_run_job(struct drm_sched_job * sched_job)2181 panthor_vm_bind_run_job(struct drm_sched_job *sched_job)
2182 {
2183 struct panthor_vm_bind_job *job = container_of(sched_job, struct panthor_vm_bind_job, base);
2184 bool cookie;
2185 int ret;
2186
2187 /* Not only we report an error whose result is propagated to the
2188 * drm_sched finished fence, but we also flag the VM as unusable, because
2189 * a failure in the async VM_BIND results in an inconsistent state. VM needs
2190 * to be destroyed and recreated.
2191 */
2192 cookie = dma_fence_begin_signalling();
2193 ret = panthor_vm_exec_op(job->vm, &job->ctx, true);
2194 dma_fence_end_signalling(cookie);
2195
2196 return ret ? ERR_PTR(ret) : NULL;
2197 }
2198
panthor_vm_bind_job_release(struct kref * kref)2199 static void panthor_vm_bind_job_release(struct kref *kref)
2200 {
2201 struct panthor_vm_bind_job *job = container_of(kref, struct panthor_vm_bind_job, refcount);
2202
2203 if (job->base.s_fence)
2204 drm_sched_job_cleanup(&job->base);
2205
2206 panthor_vm_cleanup_op_ctx(&job->ctx, job->vm);
2207 panthor_vm_put(job->vm);
2208 kfree(job);
2209 }
2210
2211 /**
2212 * panthor_vm_bind_job_put() - Release a VM_BIND job reference
2213 * @sched_job: Job to release the reference on.
2214 */
panthor_vm_bind_job_put(struct drm_sched_job * sched_job)2215 void panthor_vm_bind_job_put(struct drm_sched_job *sched_job)
2216 {
2217 struct panthor_vm_bind_job *job =
2218 container_of(sched_job, struct panthor_vm_bind_job, base);
2219
2220 if (sched_job)
2221 kref_put(&job->refcount, panthor_vm_bind_job_release);
2222 }
2223
2224 static void
panthor_vm_bind_free_job(struct drm_sched_job * sched_job)2225 panthor_vm_bind_free_job(struct drm_sched_job *sched_job)
2226 {
2227 struct panthor_vm_bind_job *job =
2228 container_of(sched_job, struct panthor_vm_bind_job, base);
2229
2230 drm_sched_job_cleanup(sched_job);
2231
2232 /* Do the heavy cleanups asynchronously, so we're out of the
2233 * dma-signaling path and can acquire dma-resv locks safely.
2234 */
2235 queue_work(panthor_cleanup_wq, &job->cleanup_op_ctx_work);
2236 }
2237
2238 static enum drm_gpu_sched_stat
panthor_vm_bind_timedout_job(struct drm_sched_job * sched_job)2239 panthor_vm_bind_timedout_job(struct drm_sched_job *sched_job)
2240 {
2241 WARN(1, "VM_BIND ops are synchronous for now, there should be no timeout!");
2242 return DRM_GPU_SCHED_STAT_NOMINAL;
2243 }
2244
2245 static const struct drm_sched_backend_ops panthor_vm_bind_ops = {
2246 .run_job = panthor_vm_bind_run_job,
2247 .free_job = panthor_vm_bind_free_job,
2248 .timedout_job = panthor_vm_bind_timedout_job,
2249 };
2250
2251 /**
2252 * panthor_vm_create() - Create a VM
2253 * @ptdev: Device.
2254 * @for_mcu: True if this is the FW MCU VM.
2255 * @kernel_va_start: Start of the range reserved for kernel BO mapping.
2256 * @kernel_va_size: Size of the range reserved for kernel BO mapping.
2257 * @auto_kernel_va_start: Start of the auto-VA kernel range.
2258 * @auto_kernel_va_size: Size of the auto-VA kernel range.
2259 *
2260 * Return: A valid pointer on success, an ERR_PTR() otherwise.
2261 */
2262 struct panthor_vm *
panthor_vm_create(struct panthor_device * ptdev,bool for_mcu,u64 kernel_va_start,u64 kernel_va_size,u64 auto_kernel_va_start,u64 auto_kernel_va_size)2263 panthor_vm_create(struct panthor_device *ptdev, bool for_mcu,
2264 u64 kernel_va_start, u64 kernel_va_size,
2265 u64 auto_kernel_va_start, u64 auto_kernel_va_size)
2266 {
2267 u32 va_bits = GPU_MMU_FEATURES_VA_BITS(ptdev->gpu_info.mmu_features);
2268 u32 pa_bits = GPU_MMU_FEATURES_PA_BITS(ptdev->gpu_info.mmu_features);
2269 u64 full_va_range = 1ull << va_bits;
2270 struct drm_gem_object *dummy_gem;
2271 struct drm_gpu_scheduler *sched;
2272 struct io_pgtable_cfg pgtbl_cfg;
2273 u64 mair, min_va, va_range;
2274 struct panthor_vm *vm;
2275 int ret;
2276
2277 vm = kzalloc(sizeof(*vm), GFP_KERNEL);
2278 if (!vm)
2279 return ERR_PTR(-ENOMEM);
2280
2281 /* We allocate a dummy GEM for the VM. */
2282 dummy_gem = drm_gpuvm_resv_object_alloc(&ptdev->base);
2283 if (!dummy_gem) {
2284 ret = -ENOMEM;
2285 goto err_free_vm;
2286 }
2287
2288 mutex_init(&vm->heaps.lock);
2289 vm->for_mcu = for_mcu;
2290 vm->ptdev = ptdev;
2291 mutex_init(&vm->op_lock);
2292
2293 if (for_mcu) {
2294 /* CSF MCU is a cortex M7, and can only address 4G */
2295 min_va = 0;
2296 va_range = SZ_4G;
2297 } else {
2298 min_va = 0;
2299 va_range = full_va_range;
2300 }
2301
2302 mutex_init(&vm->mm_lock);
2303 drm_mm_init(&vm->mm, kernel_va_start, kernel_va_size);
2304 vm->kernel_auto_va.start = auto_kernel_va_start;
2305 vm->kernel_auto_va.end = vm->kernel_auto_va.start + auto_kernel_va_size - 1;
2306
2307 INIT_LIST_HEAD(&vm->node);
2308 INIT_LIST_HEAD(&vm->as.lru_node);
2309 vm->as.id = -1;
2310 refcount_set(&vm->as.active_cnt, 0);
2311
2312 pgtbl_cfg = (struct io_pgtable_cfg) {
2313 .pgsize_bitmap = SZ_4K | SZ_2M,
2314 .ias = va_bits,
2315 .oas = pa_bits,
2316 .coherent_walk = ptdev->coherent,
2317 .tlb = &mmu_tlb_ops,
2318 .iommu_dev = ptdev->base.dev,
2319 .alloc = alloc_pt,
2320 .free = free_pt,
2321 };
2322
2323 vm->pgtbl_ops = alloc_io_pgtable_ops(ARM_64_LPAE_S1, &pgtbl_cfg, vm);
2324 if (!vm->pgtbl_ops) {
2325 ret = -EINVAL;
2326 goto err_mm_takedown;
2327 }
2328
2329 /* Bind operations are synchronous for now, no timeout needed. */
2330 ret = drm_sched_init(&vm->sched, &panthor_vm_bind_ops, ptdev->mmu->vm.wq,
2331 1, 1, 0,
2332 MAX_SCHEDULE_TIMEOUT, NULL, NULL,
2333 "panthor-vm-bind", ptdev->base.dev);
2334 if (ret)
2335 goto err_free_io_pgtable;
2336
2337 sched = &vm->sched;
2338 ret = drm_sched_entity_init(&vm->entity, 0, &sched, 1, NULL);
2339 if (ret)
2340 goto err_sched_fini;
2341
2342 mair = io_pgtable_ops_to_pgtable(vm->pgtbl_ops)->cfg.arm_lpae_s1_cfg.mair;
2343 vm->memattr = mair_to_memattr(mair);
2344
2345 mutex_lock(&ptdev->mmu->vm.lock);
2346 list_add_tail(&vm->node, &ptdev->mmu->vm.list);
2347
2348 /* If a reset is in progress, stop the scheduler. */
2349 if (ptdev->mmu->vm.reset_in_progress)
2350 panthor_vm_stop(vm);
2351 mutex_unlock(&ptdev->mmu->vm.lock);
2352
2353 /* We intentionally leave the reserved range to zero, because we want kernel VMAs
2354 * to be handled the same way user VMAs are.
2355 */
2356 drm_gpuvm_init(&vm->base, for_mcu ? "panthor-MCU-VM" : "panthor-GPU-VM",
2357 DRM_GPUVM_RESV_PROTECTED, &ptdev->base, dummy_gem,
2358 min_va, va_range, 0, 0, &panthor_gpuvm_ops);
2359 drm_gem_object_put(dummy_gem);
2360 return vm;
2361
2362 err_sched_fini:
2363 drm_sched_fini(&vm->sched);
2364
2365 err_free_io_pgtable:
2366 free_io_pgtable_ops(vm->pgtbl_ops);
2367
2368 err_mm_takedown:
2369 drm_mm_takedown(&vm->mm);
2370 drm_gem_object_put(dummy_gem);
2371
2372 err_free_vm:
2373 kfree(vm);
2374 return ERR_PTR(ret);
2375 }
2376
2377 static int
panthor_vm_bind_prepare_op_ctx(struct drm_file * file,struct panthor_vm * vm,const struct drm_panthor_vm_bind_op * op,struct panthor_vm_op_ctx * op_ctx)2378 panthor_vm_bind_prepare_op_ctx(struct drm_file *file,
2379 struct panthor_vm *vm,
2380 const struct drm_panthor_vm_bind_op *op,
2381 struct panthor_vm_op_ctx *op_ctx)
2382 {
2383 ssize_t vm_pgsz = panthor_vm_page_size(vm);
2384 struct drm_gem_object *gem;
2385 int ret;
2386
2387 /* Aligned on page size. */
2388 if (!IS_ALIGNED(op->va | op->size, vm_pgsz))
2389 return -EINVAL;
2390
2391 switch (op->flags & DRM_PANTHOR_VM_BIND_OP_TYPE_MASK) {
2392 case DRM_PANTHOR_VM_BIND_OP_TYPE_MAP:
2393 gem = drm_gem_object_lookup(file, op->bo_handle);
2394 ret = panthor_vm_prepare_map_op_ctx(op_ctx, vm,
2395 gem ? to_panthor_bo(gem) : NULL,
2396 op->bo_offset,
2397 op->size,
2398 op->va,
2399 op->flags);
2400 drm_gem_object_put(gem);
2401 return ret;
2402
2403 case DRM_PANTHOR_VM_BIND_OP_TYPE_UNMAP:
2404 if (op->flags & ~DRM_PANTHOR_VM_BIND_OP_TYPE_MASK)
2405 return -EINVAL;
2406
2407 if (op->bo_handle || op->bo_offset)
2408 return -EINVAL;
2409
2410 return panthor_vm_prepare_unmap_op_ctx(op_ctx, vm, op->va, op->size);
2411
2412 case DRM_PANTHOR_VM_BIND_OP_TYPE_SYNC_ONLY:
2413 if (op->flags & ~DRM_PANTHOR_VM_BIND_OP_TYPE_MASK)
2414 return -EINVAL;
2415
2416 if (op->bo_handle || op->bo_offset)
2417 return -EINVAL;
2418
2419 if (op->va || op->size)
2420 return -EINVAL;
2421
2422 if (!op->syncs.count)
2423 return -EINVAL;
2424
2425 panthor_vm_prepare_sync_only_op_ctx(op_ctx, vm);
2426 return 0;
2427
2428 default:
2429 return -EINVAL;
2430 }
2431 }
2432
panthor_vm_bind_job_cleanup_op_ctx_work(struct work_struct * work)2433 static void panthor_vm_bind_job_cleanup_op_ctx_work(struct work_struct *work)
2434 {
2435 struct panthor_vm_bind_job *job =
2436 container_of(work, struct panthor_vm_bind_job, cleanup_op_ctx_work);
2437
2438 panthor_vm_bind_job_put(&job->base);
2439 }
2440
2441 /**
2442 * panthor_vm_bind_job_create() - Create a VM_BIND job
2443 * @file: File.
2444 * @vm: VM targeted by the VM_BIND job.
2445 * @op: VM operation data.
2446 *
2447 * Return: A valid pointer on success, an ERR_PTR() otherwise.
2448 */
2449 struct drm_sched_job *
panthor_vm_bind_job_create(struct drm_file * file,struct panthor_vm * vm,const struct drm_panthor_vm_bind_op * op)2450 panthor_vm_bind_job_create(struct drm_file *file,
2451 struct panthor_vm *vm,
2452 const struct drm_panthor_vm_bind_op *op)
2453 {
2454 struct panthor_vm_bind_job *job;
2455 int ret;
2456
2457 if (!vm)
2458 return ERR_PTR(-EINVAL);
2459
2460 if (vm->destroyed || vm->unusable)
2461 return ERR_PTR(-EINVAL);
2462
2463 job = kzalloc(sizeof(*job), GFP_KERNEL);
2464 if (!job)
2465 return ERR_PTR(-ENOMEM);
2466
2467 ret = panthor_vm_bind_prepare_op_ctx(file, vm, op, &job->ctx);
2468 if (ret) {
2469 kfree(job);
2470 return ERR_PTR(ret);
2471 }
2472
2473 INIT_WORK(&job->cleanup_op_ctx_work, panthor_vm_bind_job_cleanup_op_ctx_work);
2474 kref_init(&job->refcount);
2475 job->vm = panthor_vm_get(vm);
2476
2477 ret = drm_sched_job_init(&job->base, &vm->entity, 1, vm);
2478 if (ret)
2479 goto err_put_job;
2480
2481 return &job->base;
2482
2483 err_put_job:
2484 panthor_vm_bind_job_put(&job->base);
2485 return ERR_PTR(ret);
2486 }
2487
2488 /**
2489 * panthor_vm_bind_job_prepare_resvs() - Prepare VM_BIND job dma_resvs
2490 * @exec: The locking/preparation context.
2491 * @sched_job: The job to prepare resvs on.
2492 *
2493 * Locks and prepare the VM resv.
2494 *
2495 * If this is a map operation, locks and prepares the GEM resv.
2496 *
2497 * Return: 0 on success, a negative error code otherwise.
2498 */
panthor_vm_bind_job_prepare_resvs(struct drm_exec * exec,struct drm_sched_job * sched_job)2499 int panthor_vm_bind_job_prepare_resvs(struct drm_exec *exec,
2500 struct drm_sched_job *sched_job)
2501 {
2502 struct panthor_vm_bind_job *job = container_of(sched_job, struct panthor_vm_bind_job, base);
2503 int ret;
2504
2505 /* Acquire the VM lock an reserve a slot for this VM bind job. */
2506 ret = drm_gpuvm_prepare_vm(&job->vm->base, exec, 1);
2507 if (ret)
2508 return ret;
2509
2510 if (job->ctx.map.vm_bo) {
2511 /* Lock/prepare the GEM being mapped. */
2512 ret = drm_exec_prepare_obj(exec, job->ctx.map.vm_bo->obj, 1);
2513 if (ret)
2514 return ret;
2515 }
2516
2517 return 0;
2518 }
2519
2520 /**
2521 * panthor_vm_bind_job_update_resvs() - Update the resv objects touched by a job
2522 * @exec: drm_exec context.
2523 * @sched_job: Job to update the resvs on.
2524 */
panthor_vm_bind_job_update_resvs(struct drm_exec * exec,struct drm_sched_job * sched_job)2525 void panthor_vm_bind_job_update_resvs(struct drm_exec *exec,
2526 struct drm_sched_job *sched_job)
2527 {
2528 struct panthor_vm_bind_job *job = container_of(sched_job, struct panthor_vm_bind_job, base);
2529
2530 /* Explicit sync => we just register our job finished fence as bookkeep. */
2531 drm_gpuvm_resv_add_fence(&job->vm->base, exec,
2532 &sched_job->s_fence->finished,
2533 DMA_RESV_USAGE_BOOKKEEP,
2534 DMA_RESV_USAGE_BOOKKEEP);
2535 }
2536
panthor_vm_update_resvs(struct panthor_vm * vm,struct drm_exec * exec,struct dma_fence * fence,enum dma_resv_usage private_usage,enum dma_resv_usage extobj_usage)2537 void panthor_vm_update_resvs(struct panthor_vm *vm, struct drm_exec *exec,
2538 struct dma_fence *fence,
2539 enum dma_resv_usage private_usage,
2540 enum dma_resv_usage extobj_usage)
2541 {
2542 drm_gpuvm_resv_add_fence(&vm->base, exec, fence, private_usage, extobj_usage);
2543 }
2544
2545 /**
2546 * panthor_vm_bind_exec_sync_op() - Execute a VM_BIND operation synchronously.
2547 * @file: File.
2548 * @vm: VM targeted by the VM operation.
2549 * @op: Data describing the VM operation.
2550 *
2551 * Return: 0 on success, a negative error code otherwise.
2552 */
panthor_vm_bind_exec_sync_op(struct drm_file * file,struct panthor_vm * vm,struct drm_panthor_vm_bind_op * op)2553 int panthor_vm_bind_exec_sync_op(struct drm_file *file,
2554 struct panthor_vm *vm,
2555 struct drm_panthor_vm_bind_op *op)
2556 {
2557 struct panthor_vm_op_ctx op_ctx;
2558 int ret;
2559
2560 /* No sync objects allowed on synchronous operations. */
2561 if (op->syncs.count)
2562 return -EINVAL;
2563
2564 if (!op->size)
2565 return 0;
2566
2567 ret = panthor_vm_bind_prepare_op_ctx(file, vm, op, &op_ctx);
2568 if (ret)
2569 return ret;
2570
2571 ret = panthor_vm_exec_op(vm, &op_ctx, false);
2572 panthor_vm_cleanup_op_ctx(&op_ctx, vm);
2573
2574 return ret;
2575 }
2576
2577 /**
2578 * panthor_vm_map_bo_range() - Map a GEM object range to a VM
2579 * @vm: VM to map the GEM to.
2580 * @bo: GEM object to map.
2581 * @offset: Offset in the GEM object.
2582 * @size: Size to map.
2583 * @va: Virtual address to map the object to.
2584 * @flags: Combination of drm_panthor_vm_bind_op_flags flags.
2585 * Only map-related flags are valid.
2586 *
2587 * Internal use only. For userspace requests, use
2588 * panthor_vm_bind_exec_sync_op() instead.
2589 *
2590 * Return: 0 on success, a negative error code otherwise.
2591 */
panthor_vm_map_bo_range(struct panthor_vm * vm,struct panthor_gem_object * bo,u64 offset,u64 size,u64 va,u32 flags)2592 int panthor_vm_map_bo_range(struct panthor_vm *vm, struct panthor_gem_object *bo,
2593 u64 offset, u64 size, u64 va, u32 flags)
2594 {
2595 struct panthor_vm_op_ctx op_ctx;
2596 int ret;
2597
2598 ret = panthor_vm_prepare_map_op_ctx(&op_ctx, vm, bo, offset, size, va, flags);
2599 if (ret)
2600 return ret;
2601
2602 ret = panthor_vm_exec_op(vm, &op_ctx, false);
2603 panthor_vm_cleanup_op_ctx(&op_ctx, vm);
2604
2605 return ret;
2606 }
2607
2608 /**
2609 * panthor_vm_unmap_range() - Unmap a portion of the VA space
2610 * @vm: VM to unmap the region from.
2611 * @va: Virtual address to unmap. Must be 4k aligned.
2612 * @size: Size of the region to unmap. Must be 4k aligned.
2613 *
2614 * Internal use only. For userspace requests, use
2615 * panthor_vm_bind_exec_sync_op() instead.
2616 *
2617 * Return: 0 on success, a negative error code otherwise.
2618 */
panthor_vm_unmap_range(struct panthor_vm * vm,u64 va,u64 size)2619 int panthor_vm_unmap_range(struct panthor_vm *vm, u64 va, u64 size)
2620 {
2621 struct panthor_vm_op_ctx op_ctx;
2622 int ret;
2623
2624 ret = panthor_vm_prepare_unmap_op_ctx(&op_ctx, vm, va, size);
2625 if (ret)
2626 return ret;
2627
2628 ret = panthor_vm_exec_op(vm, &op_ctx, false);
2629 panthor_vm_cleanup_op_ctx(&op_ctx, vm);
2630
2631 return ret;
2632 }
2633
2634 /**
2635 * panthor_vm_prepare_mapped_bos_resvs() - Prepare resvs on VM BOs.
2636 * @exec: Locking/preparation context.
2637 * @vm: VM targeted by the GPU job.
2638 * @slot_count: Number of slots to reserve.
2639 *
2640 * GPU jobs assume all BOs bound to the VM at the time the job is submitted
2641 * are available when the job is executed. In order to guarantee that, we
2642 * need to reserve a slot on all BOs mapped to a VM and update this slot with
2643 * the job fence after its submission.
2644 *
2645 * Return: 0 on success, a negative error code otherwise.
2646 */
panthor_vm_prepare_mapped_bos_resvs(struct drm_exec * exec,struct panthor_vm * vm,u32 slot_count)2647 int panthor_vm_prepare_mapped_bos_resvs(struct drm_exec *exec, struct panthor_vm *vm,
2648 u32 slot_count)
2649 {
2650 int ret;
2651
2652 /* Acquire the VM lock and reserve a slot for this GPU job. */
2653 ret = drm_gpuvm_prepare_vm(&vm->base, exec, slot_count);
2654 if (ret)
2655 return ret;
2656
2657 return drm_gpuvm_prepare_objects(&vm->base, exec, slot_count);
2658 }
2659
2660 /**
2661 * panthor_mmu_unplug() - Unplug the MMU logic
2662 * @ptdev: Device.
2663 *
2664 * No access to the MMU regs should be done after this function is called.
2665 * We suspend the IRQ and disable all VMs to guarantee that.
2666 */
panthor_mmu_unplug(struct panthor_device * ptdev)2667 void panthor_mmu_unplug(struct panthor_device *ptdev)
2668 {
2669 panthor_mmu_irq_suspend(&ptdev->mmu->irq);
2670
2671 mutex_lock(&ptdev->mmu->as.slots_lock);
2672 for (u32 i = 0; i < ARRAY_SIZE(ptdev->mmu->as.slots); i++) {
2673 struct panthor_vm *vm = ptdev->mmu->as.slots[i].vm;
2674
2675 if (vm) {
2676 drm_WARN_ON(&ptdev->base, panthor_mmu_as_disable(ptdev, i));
2677 panthor_vm_release_as_locked(vm);
2678 }
2679 }
2680 mutex_unlock(&ptdev->mmu->as.slots_lock);
2681 }
2682
panthor_mmu_release_wq(struct drm_device * ddev,void * res)2683 static void panthor_mmu_release_wq(struct drm_device *ddev, void *res)
2684 {
2685 destroy_workqueue(res);
2686 }
2687
2688 /**
2689 * panthor_mmu_init() - Initialize the MMU logic.
2690 * @ptdev: Device.
2691 *
2692 * Return: 0 on success, a negative error code otherwise.
2693 */
panthor_mmu_init(struct panthor_device * ptdev)2694 int panthor_mmu_init(struct panthor_device *ptdev)
2695 {
2696 u32 va_bits = GPU_MMU_FEATURES_VA_BITS(ptdev->gpu_info.mmu_features);
2697 struct panthor_mmu *mmu;
2698 int ret, irq;
2699
2700 mmu = drmm_kzalloc(&ptdev->base, sizeof(*mmu), GFP_KERNEL);
2701 if (!mmu)
2702 return -ENOMEM;
2703
2704 INIT_LIST_HEAD(&mmu->as.lru_list);
2705
2706 ret = drmm_mutex_init(&ptdev->base, &mmu->as.slots_lock);
2707 if (ret)
2708 return ret;
2709
2710 INIT_LIST_HEAD(&mmu->vm.list);
2711 ret = drmm_mutex_init(&ptdev->base, &mmu->vm.lock);
2712 if (ret)
2713 return ret;
2714
2715 ptdev->mmu = mmu;
2716
2717 irq = platform_get_irq_byname(to_platform_device(ptdev->base.dev), "mmu");
2718 if (irq <= 0)
2719 return -ENODEV;
2720
2721 ret = panthor_request_mmu_irq(ptdev, &mmu->irq, irq,
2722 panthor_mmu_fault_mask(ptdev, ~0));
2723 if (ret)
2724 return ret;
2725
2726 mmu->vm.wq = alloc_workqueue("panthor-vm-bind", WQ_UNBOUND, 0);
2727 if (!mmu->vm.wq)
2728 return -ENOMEM;
2729
2730 /* On 32-bit kernels, the VA space is limited by the io_pgtable_ops abstraction,
2731 * which passes iova as an unsigned long. Patch the mmu_features to reflect this
2732 * limitation.
2733 */
2734 if (sizeof(unsigned long) * 8 < va_bits) {
2735 ptdev->gpu_info.mmu_features &= ~GENMASK(7, 0);
2736 ptdev->gpu_info.mmu_features |= sizeof(unsigned long) * 8;
2737 }
2738
2739 return drmm_add_action_or_reset(&ptdev->base, panthor_mmu_release_wq, mmu->vm.wq);
2740 }
2741
2742 #ifdef CONFIG_DEBUG_FS
show_vm_gpuvas(struct panthor_vm * vm,struct seq_file * m)2743 static int show_vm_gpuvas(struct panthor_vm *vm, struct seq_file *m)
2744 {
2745 int ret;
2746
2747 mutex_lock(&vm->op_lock);
2748 ret = drm_debugfs_gpuva_info(m, &vm->base);
2749 mutex_unlock(&vm->op_lock);
2750
2751 return ret;
2752 }
2753
show_each_vm(struct seq_file * m,void * arg)2754 static int show_each_vm(struct seq_file *m, void *arg)
2755 {
2756 struct drm_info_node *node = (struct drm_info_node *)m->private;
2757 struct drm_device *ddev = node->minor->dev;
2758 struct panthor_device *ptdev = container_of(ddev, struct panthor_device, base);
2759 int (*show)(struct panthor_vm *, struct seq_file *) = node->info_ent->data;
2760 struct panthor_vm *vm;
2761 int ret = 0;
2762
2763 mutex_lock(&ptdev->mmu->vm.lock);
2764 list_for_each_entry(vm, &ptdev->mmu->vm.list, node) {
2765 ret = show(vm, m);
2766 if (ret < 0)
2767 break;
2768
2769 seq_puts(m, "\n");
2770 }
2771 mutex_unlock(&ptdev->mmu->vm.lock);
2772
2773 return ret;
2774 }
2775
2776 static struct drm_info_list panthor_mmu_debugfs_list[] = {
2777 DRM_DEBUGFS_GPUVA_INFO(show_each_vm, show_vm_gpuvas),
2778 };
2779
2780 /**
2781 * panthor_mmu_debugfs_init() - Initialize MMU debugfs entries
2782 * @minor: Minor.
2783 */
panthor_mmu_debugfs_init(struct drm_minor * minor)2784 void panthor_mmu_debugfs_init(struct drm_minor *minor)
2785 {
2786 drm_debugfs_create_files(panthor_mmu_debugfs_list,
2787 ARRAY_SIZE(panthor_mmu_debugfs_list),
2788 minor->debugfs_root, minor);
2789 }
2790 #endif /* CONFIG_DEBUG_FS */
2791
2792 /**
2793 * panthor_mmu_pt_cache_init() - Initialize the page table cache.
2794 *
2795 * Return: 0 on success, a negative error code otherwise.
2796 */
panthor_mmu_pt_cache_init(void)2797 int panthor_mmu_pt_cache_init(void)
2798 {
2799 pt_cache = kmem_cache_create("panthor-mmu-pt", SZ_4K, SZ_4K, 0, NULL);
2800 if (!pt_cache)
2801 return -ENOMEM;
2802
2803 return 0;
2804 }
2805
2806 /**
2807 * panthor_mmu_pt_cache_fini() - Destroy the page table cache.
2808 */
panthor_mmu_pt_cache_fini(void)2809 void panthor_mmu_pt_cache_fini(void)
2810 {
2811 kmem_cache_destroy(pt_cache);
2812 }
2813