• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0 or MIT
2 /* Copyright 2023 Collabora ltd. */
3 
4 #include <drm/drm_drv.h>
5 #include <drm/drm_exec.h>
6 #include <drm/drm_gem_shmem_helper.h>
7 #include <drm/drm_managed.h>
8 #include <drm/gpu_scheduler.h>
9 #include <drm/panthor_drm.h>
10 
11 #include <linux/build_bug.h>
12 #include <linux/clk.h>
13 #include <linux/delay.h>
14 #include <linux/dma-mapping.h>
15 #include <linux/dma-resv.h>
16 #include <linux/firmware.h>
17 #include <linux/interrupt.h>
18 #include <linux/io.h>
19 #include <linux/iopoll.h>
20 #include <linux/iosys-map.h>
21 #include <linux/module.h>
22 #include <linux/platform_device.h>
23 #include <linux/pm_runtime.h>
24 
25 #include "panthor_devfreq.h"
26 #include "panthor_device.h"
27 #include "panthor_fw.h"
28 #include "panthor_gem.h"
29 #include "panthor_gpu.h"
30 #include "panthor_heap.h"
31 #include "panthor_mmu.h"
32 #include "panthor_regs.h"
33 #include "panthor_sched.h"
34 
35 /**
36  * DOC: Scheduler
37  *
38  * Mali CSF hardware adopts a firmware-assisted scheduling model, where
39  * the firmware takes care of scheduling aspects, to some extent.
40  *
41  * The scheduling happens at the scheduling group level, each group
42  * contains 1 to N queues (N is FW/hardware dependent, and exposed
43  * through the firmware interface). Each queue is assigned a command
44  * stream ring buffer, which serves as a way to get jobs submitted to
45  * the GPU, among other things.
46  *
47  * The firmware can schedule a maximum of M groups (M is FW/hardware
48  * dependent, and exposed through the firmware interface). Passed
49  * this maximum number of groups, the kernel must take care of
50  * rotating the groups passed to the firmware so every group gets
51  * a chance to have his queues scheduled for execution.
52  *
53  * The current implementation only supports with kernel-mode queues.
54  * In other terms, userspace doesn't have access to the ring-buffer.
55  * Instead, userspace passes indirect command stream buffers that are
56  * called from the queue ring-buffer by the kernel using a pre-defined
57  * sequence of command stream instructions to ensure the userspace driver
58  * always gets consistent results (cache maintenance,
59  * synchronization, ...).
60  *
61  * We rely on the drm_gpu_scheduler framework to deal with job
62  * dependencies and submission. As any other driver dealing with a
63  * FW-scheduler, we use the 1:1 entity:scheduler mode, such that each
64  * entity has its own job scheduler. When a job is ready to be executed
65  * (all its dependencies are met), it is pushed to the appropriate
66  * queue ring-buffer, and the group is scheduled for execution if it
67  * wasn't already active.
68  *
69  * Kernel-side group scheduling is timeslice-based. When we have less
70  * groups than there are slots, the periodic tick is disabled and we
71  * just let the FW schedule the active groups. When there are more
72  * groups than slots, we let each group a chance to execute stuff for
73  * a given amount of time, and then re-evaluate and pick new groups
74  * to schedule. The group selection algorithm is based on
75  * priority+round-robin.
76  *
77  * Even though user-mode queues is out of the scope right now, the
78  * current design takes them into account by avoiding any guess on the
79  * group/queue state that would be based on information we wouldn't have
80  * if userspace was in charge of the ring-buffer. That's also one of the
81  * reason we don't do 'cooperative' scheduling (encoding FW group slot
82  * reservation as dma_fence that would be returned from the
83  * drm_gpu_scheduler::prepare_job() hook, and treating group rotation as
84  * a queue of waiters, ordered by job submission order). This approach
85  * would work for kernel-mode queues, but would make user-mode queues a
86  * lot more complicated to retrofit.
87  */
88 
89 #define JOB_TIMEOUT_MS				5000
90 
91 #define MIN_CS_PER_CSG				8
92 
93 #define MIN_CSGS				3
94 #define MAX_CSG_PRIO				0xf
95 
96 #define NUM_INSTRS_PER_CACHE_LINE		(64 / sizeof(u64))
97 #define MAX_INSTRS_PER_JOB			24
98 
99 struct panthor_group;
100 
101 /**
102  * struct panthor_csg_slot - Command stream group slot
103  *
104  * This represents a FW slot for a scheduling group.
105  */
106 struct panthor_csg_slot {
107 	/** @group: Scheduling group bound to this slot. */
108 	struct panthor_group *group;
109 
110 	/** @priority: Group priority. */
111 	u8 priority;
112 
113 	/**
114 	 * @idle: True if the group bound to this slot is idle.
115 	 *
116 	 * A group is idle when it has nothing waiting for execution on
117 	 * all its queues, or when queues are blocked waiting for something
118 	 * to happen (synchronization object).
119 	 */
120 	bool idle;
121 };
122 
123 /**
124  * enum panthor_csg_priority - Group priority
125  */
126 enum panthor_csg_priority {
127 	/** @PANTHOR_CSG_PRIORITY_LOW: Low priority group. */
128 	PANTHOR_CSG_PRIORITY_LOW = 0,
129 
130 	/** @PANTHOR_CSG_PRIORITY_MEDIUM: Medium priority group. */
131 	PANTHOR_CSG_PRIORITY_MEDIUM,
132 
133 	/** @PANTHOR_CSG_PRIORITY_HIGH: High priority group. */
134 	PANTHOR_CSG_PRIORITY_HIGH,
135 
136 	/**
137 	 * @PANTHOR_CSG_PRIORITY_RT: Real-time priority group.
138 	 *
139 	 * Real-time priority allows one to preempt scheduling of other
140 	 * non-real-time groups. When such a group becomes executable,
141 	 * it will evict the group with the lowest non-rt priority if
142 	 * there's no free group slot available.
143 	 *
144 	 * Currently not exposed to userspace.
145 	 */
146 	PANTHOR_CSG_PRIORITY_RT,
147 
148 	/** @PANTHOR_CSG_PRIORITY_COUNT: Number of priority levels. */
149 	PANTHOR_CSG_PRIORITY_COUNT,
150 };
151 
152 /**
153  * struct panthor_scheduler - Object used to manage the scheduler
154  */
155 struct panthor_scheduler {
156 	/** @ptdev: Device. */
157 	struct panthor_device *ptdev;
158 
159 	/**
160 	 * @wq: Workqueue used by our internal scheduler logic and
161 	 * drm_gpu_scheduler.
162 	 *
163 	 * Used for the scheduler tick, group update or other kind of FW
164 	 * event processing that can't be handled in the threaded interrupt
165 	 * path. Also passed to the drm_gpu_scheduler instances embedded
166 	 * in panthor_queue.
167 	 */
168 	struct workqueue_struct *wq;
169 
170 	/**
171 	 * @heap_alloc_wq: Workqueue used to schedule tiler_oom works.
172 	 *
173 	 * We have a queue dedicated to heap chunk allocation works to avoid
174 	 * blocking the rest of the scheduler if the allocation tries to
175 	 * reclaim memory.
176 	 */
177 	struct workqueue_struct *heap_alloc_wq;
178 
179 	/** @tick_work: Work executed on a scheduling tick. */
180 	struct delayed_work tick_work;
181 
182 	/**
183 	 * @sync_upd_work: Work used to process synchronization object updates.
184 	 *
185 	 * We use this work to unblock queues/groups that were waiting on a
186 	 * synchronization object.
187 	 */
188 	struct work_struct sync_upd_work;
189 
190 	/**
191 	 * @fw_events_work: Work used to process FW events outside the interrupt path.
192 	 *
193 	 * Even if the interrupt is threaded, we need any event processing
194 	 * that require taking the panthor_scheduler::lock to be processed
195 	 * outside the interrupt path so we don't block the tick logic when
196 	 * it calls panthor_fw_{csg,wait}_wait_acks(). Since most of the
197 	 * event processing requires taking this lock, we just delegate all
198 	 * FW event processing to the scheduler workqueue.
199 	 */
200 	struct work_struct fw_events_work;
201 
202 	/**
203 	 * @fw_events: Bitmask encoding pending FW events.
204 	 */
205 	atomic_t fw_events;
206 
207 	/**
208 	 * @resched_target: When the next tick should occur.
209 	 *
210 	 * Expressed in jiffies.
211 	 */
212 	u64 resched_target;
213 
214 	/**
215 	 * @last_tick: When the last tick occurred.
216 	 *
217 	 * Expressed in jiffies.
218 	 */
219 	u64 last_tick;
220 
221 	/** @tick_period: Tick period in jiffies. */
222 	u64 tick_period;
223 
224 	/**
225 	 * @lock: Lock protecting access to all the scheduler fields.
226 	 *
227 	 * Should be taken in the tick work, the irq handler, and anywhere the @groups
228 	 * fields are touched.
229 	 */
230 	struct mutex lock;
231 
232 	/** @groups: Various lists used to classify groups. */
233 	struct {
234 		/**
235 		 * @runnable: Runnable group lists.
236 		 *
237 		 * When a group has queues that want to execute something,
238 		 * its panthor_group::run_node should be inserted here.
239 		 *
240 		 * One list per-priority.
241 		 */
242 		struct list_head runnable[PANTHOR_CSG_PRIORITY_COUNT];
243 
244 		/**
245 		 * @idle: Idle group lists.
246 		 *
247 		 * When all queues of a group are idle (either because they
248 		 * have nothing to execute, or because they are blocked), the
249 		 * panthor_group::run_node field should be inserted here.
250 		 *
251 		 * One list per-priority.
252 		 */
253 		struct list_head idle[PANTHOR_CSG_PRIORITY_COUNT];
254 
255 		/**
256 		 * @waiting: List of groups whose queues are blocked on a
257 		 * synchronization object.
258 		 *
259 		 * Insert panthor_group::wait_node here when a group is waiting
260 		 * for synchronization objects to be signaled.
261 		 *
262 		 * This list is evaluated in the @sync_upd_work work.
263 		 */
264 		struct list_head waiting;
265 	} groups;
266 
267 	/**
268 	 * @csg_slots: FW command stream group slots.
269 	 */
270 	struct panthor_csg_slot csg_slots[MAX_CSGS];
271 
272 	/** @csg_slot_count: Number of command stream group slots exposed by the FW. */
273 	u32 csg_slot_count;
274 
275 	/** @cs_slot_count: Number of command stream slot per group slot exposed by the FW. */
276 	u32 cs_slot_count;
277 
278 	/** @as_slot_count: Number of address space slots supported by the MMU. */
279 	u32 as_slot_count;
280 
281 	/** @used_csg_slot_count: Number of command stream group slot currently used. */
282 	u32 used_csg_slot_count;
283 
284 	/** @sb_slot_count: Number of scoreboard slots. */
285 	u32 sb_slot_count;
286 
287 	/**
288 	 * @might_have_idle_groups: True if an active group might have become idle.
289 	 *
290 	 * This will force a tick, so other runnable groups can be scheduled if one
291 	 * or more active groups became idle.
292 	 */
293 	bool might_have_idle_groups;
294 
295 	/** @pm: Power management related fields. */
296 	struct {
297 		/** @has_ref: True if the scheduler owns a runtime PM reference. */
298 		bool has_ref;
299 	} pm;
300 
301 	/** @reset: Reset related fields. */
302 	struct {
303 		/** @lock: Lock protecting the other reset fields. */
304 		struct mutex lock;
305 
306 		/**
307 		 * @in_progress: True if a reset is in progress.
308 		 *
309 		 * Set to true in panthor_sched_pre_reset() and back to false in
310 		 * panthor_sched_post_reset().
311 		 */
312 		atomic_t in_progress;
313 
314 		/**
315 		 * @stopped_groups: List containing all groups that were stopped
316 		 * before a reset.
317 		 *
318 		 * Insert panthor_group::run_node in the pre_reset path.
319 		 */
320 		struct list_head stopped_groups;
321 	} reset;
322 };
323 
324 /**
325  * struct panthor_syncobj_32b - 32-bit FW synchronization object
326  */
327 struct panthor_syncobj_32b {
328 	/** @seqno: Sequence number. */
329 	u32 seqno;
330 
331 	/**
332 	 * @status: Status.
333 	 *
334 	 * Not zero on failure.
335 	 */
336 	u32 status;
337 };
338 
339 /**
340  * struct panthor_syncobj_64b - 64-bit FW synchronization object
341  */
342 struct panthor_syncobj_64b {
343 	/** @seqno: Sequence number. */
344 	u64 seqno;
345 
346 	/**
347 	 * @status: Status.
348 	 *
349 	 * Not zero on failure.
350 	 */
351 	u32 status;
352 
353 	/** @pad: MBZ. */
354 	u32 pad;
355 };
356 
357 /**
358  * struct panthor_queue - Execution queue
359  */
360 struct panthor_queue {
361 	/** @scheduler: DRM scheduler used for this queue. */
362 	struct drm_gpu_scheduler scheduler;
363 
364 	/** @entity: DRM scheduling entity used for this queue. */
365 	struct drm_sched_entity entity;
366 
367 	/**
368 	 * @remaining_time: Time remaining before the job timeout expires.
369 	 *
370 	 * The job timeout is suspended when the queue is not scheduled by the
371 	 * FW. Every time we suspend the timer, we need to save the remaining
372 	 * time so we can restore it later on.
373 	 */
374 	unsigned long remaining_time;
375 
376 	/** @timeout_suspended: True if the job timeout was suspended. */
377 	bool timeout_suspended;
378 
379 	/**
380 	 * @doorbell_id: Doorbell assigned to this queue.
381 	 *
382 	 * Right now, all groups share the same doorbell, and the doorbell ID
383 	 * is assigned to group_slot + 1 when the group is assigned a slot. But
384 	 * we might decide to provide fine grained doorbell assignment at some
385 	 * point, so don't have to wake up all queues in a group every time one
386 	 * of them is updated.
387 	 */
388 	u8 doorbell_id;
389 
390 	/**
391 	 * @priority: Priority of the queue inside the group.
392 	 *
393 	 * Must be less than 16 (Only 4 bits available).
394 	 */
395 	u8 priority;
396 #define CSF_MAX_QUEUE_PRIO	GENMASK(3, 0)
397 
398 	/** @ringbuf: Command stream ring-buffer. */
399 	struct panthor_kernel_bo *ringbuf;
400 
401 	/** @iface: Firmware interface. */
402 	struct {
403 		/** @mem: FW memory allocated for this interface. */
404 		struct panthor_kernel_bo *mem;
405 
406 		/** @input: Input interface. */
407 		struct panthor_fw_ringbuf_input_iface *input;
408 
409 		/** @output: Output interface. */
410 		const struct panthor_fw_ringbuf_output_iface *output;
411 
412 		/** @input_fw_va: FW virtual address of the input interface buffer. */
413 		u32 input_fw_va;
414 
415 		/** @output_fw_va: FW virtual address of the output interface buffer. */
416 		u32 output_fw_va;
417 	} iface;
418 
419 	/**
420 	 * @syncwait: Stores information about the synchronization object this
421 	 * queue is waiting on.
422 	 */
423 	struct {
424 		/** @gpu_va: GPU address of the synchronization object. */
425 		u64 gpu_va;
426 
427 		/** @ref: Reference value to compare against. */
428 		u64 ref;
429 
430 		/** @gt: True if this is a greater-than test. */
431 		bool gt;
432 
433 		/** @sync64: True if this is a 64-bit sync object. */
434 		bool sync64;
435 
436 		/** @bo: Buffer object holding the synchronization object. */
437 		struct drm_gem_object *obj;
438 
439 		/** @offset: Offset of the synchronization object inside @bo. */
440 		u64 offset;
441 
442 		/**
443 		 * @kmap: Kernel mapping of the buffer object holding the
444 		 * synchronization object.
445 		 */
446 		void *kmap;
447 	} syncwait;
448 
449 	/** @fence_ctx: Fence context fields. */
450 	struct {
451 		/** @lock: Used to protect access to all fences allocated by this context. */
452 		spinlock_t lock;
453 
454 		/**
455 		 * @id: Fence context ID.
456 		 *
457 		 * Allocated with dma_fence_context_alloc().
458 		 */
459 		u64 id;
460 
461 		/** @seqno: Sequence number of the last initialized fence. */
462 		atomic64_t seqno;
463 
464 		/**
465 		 * @last_fence: Fence of the last submitted job.
466 		 *
467 		 * We return this fence when we get an empty command stream.
468 		 * This way, we are guaranteed that all earlier jobs have completed
469 		 * when drm_sched_job::s_fence::finished without having to feed
470 		 * the CS ring buffer with a dummy job that only signals the fence.
471 		 */
472 		struct dma_fence *last_fence;
473 
474 		/**
475 		 * @in_flight_jobs: List containing all in-flight jobs.
476 		 *
477 		 * Used to keep track and signal panthor_job::done_fence when the
478 		 * synchronization object attached to the queue is signaled.
479 		 */
480 		struct list_head in_flight_jobs;
481 	} fence_ctx;
482 
483 	/** @profiling: Job profiling data slots and access information. */
484 	struct {
485 		/** @slots: Kernel BO holding the slots. */
486 		struct panthor_kernel_bo *slots;
487 
488 		/** @slot_count: Number of jobs ringbuffer can hold at once. */
489 		u32 slot_count;
490 
491 		/** @seqno: Index of the next available profiling information slot. */
492 		u32 seqno;
493 	} profiling;
494 };
495 
496 /**
497  * enum panthor_group_state - Scheduling group state.
498  */
499 enum panthor_group_state {
500 	/** @PANTHOR_CS_GROUP_CREATED: Group was created, but not scheduled yet. */
501 	PANTHOR_CS_GROUP_CREATED,
502 
503 	/** @PANTHOR_CS_GROUP_ACTIVE: Group is currently scheduled. */
504 	PANTHOR_CS_GROUP_ACTIVE,
505 
506 	/**
507 	 * @PANTHOR_CS_GROUP_SUSPENDED: Group was scheduled at least once, but is
508 	 * inactive/suspended right now.
509 	 */
510 	PANTHOR_CS_GROUP_SUSPENDED,
511 
512 	/**
513 	 * @PANTHOR_CS_GROUP_TERMINATED: Group was terminated.
514 	 *
515 	 * Can no longer be scheduled. The only allowed action is a destruction.
516 	 */
517 	PANTHOR_CS_GROUP_TERMINATED,
518 
519 	/**
520 	 * @PANTHOR_CS_GROUP_UNKNOWN_STATE: Group is an unknown state.
521 	 *
522 	 * The FW returned an inconsistent state. The group is flagged unusable
523 	 * and can no longer be scheduled. The only allowed action is a
524 	 * destruction.
525 	 *
526 	 * When that happens, we also schedule a FW reset, to start from a fresh
527 	 * state.
528 	 */
529 	PANTHOR_CS_GROUP_UNKNOWN_STATE,
530 };
531 
532 /**
533  * struct panthor_group - Scheduling group object
534  */
535 struct panthor_group {
536 	/** @refcount: Reference count */
537 	struct kref refcount;
538 
539 	/** @ptdev: Device. */
540 	struct panthor_device *ptdev;
541 
542 	/** @vm: VM bound to the group. */
543 	struct panthor_vm *vm;
544 
545 	/** @compute_core_mask: Mask of shader cores that can be used for compute jobs. */
546 	u64 compute_core_mask;
547 
548 	/** @fragment_core_mask: Mask of shader cores that can be used for fragment jobs. */
549 	u64 fragment_core_mask;
550 
551 	/** @tiler_core_mask: Mask of tiler cores that can be used for tiler jobs. */
552 	u64 tiler_core_mask;
553 
554 	/** @max_compute_cores: Maximum number of shader cores used for compute jobs. */
555 	u8 max_compute_cores;
556 
557 	/** @max_fragment_cores: Maximum number of shader cores used for fragment jobs. */
558 	u8 max_fragment_cores;
559 
560 	/** @max_tiler_cores: Maximum number of tiler cores used for tiler jobs. */
561 	u8 max_tiler_cores;
562 
563 	/** @priority: Group priority (check panthor_csg_priority). */
564 	u8 priority;
565 
566 	/** @blocked_queues: Bitmask reflecting the blocked queues. */
567 	u32 blocked_queues;
568 
569 	/** @idle_queues: Bitmask reflecting the idle queues. */
570 	u32 idle_queues;
571 
572 	/** @fatal_lock: Lock used to protect access to fatal fields. */
573 	spinlock_t fatal_lock;
574 
575 	/** @fatal_queues: Bitmask reflecting the queues that hit a fatal exception. */
576 	u32 fatal_queues;
577 
578 	/** @tiler_oom: Mask of queues that have a tiler OOM event to process. */
579 	atomic_t tiler_oom;
580 
581 	/** @queue_count: Number of queues in this group. */
582 	u32 queue_count;
583 
584 	/** @queues: Queues owned by this group. */
585 	struct panthor_queue *queues[MAX_CS_PER_CSG];
586 
587 	/**
588 	 * @csg_id: ID of the FW group slot.
589 	 *
590 	 * -1 when the group is not scheduled/active.
591 	 */
592 	int csg_id;
593 
594 	/**
595 	 * @destroyed: True when the group has been destroyed.
596 	 *
597 	 * If a group is destroyed it becomes useless: no further jobs can be submitted
598 	 * to its queues. We simply wait for all references to be dropped so we can
599 	 * release the group object.
600 	 */
601 	bool destroyed;
602 
603 	/**
604 	 * @timedout: True when a timeout occurred on any of the queues owned by
605 	 * this group.
606 	 *
607 	 * Timeouts can be reported by drm_sched or by the FW. If a reset is required,
608 	 * and the group can't be suspended, this also leads to a timeout. In any case,
609 	 * any timeout situation is unrecoverable, and the group becomes useless. We
610 	 * simply wait for all references to be dropped so we can release the group
611 	 * object.
612 	 */
613 	bool timedout;
614 
615 	/**
616 	 * @syncobjs: Pool of per-queue synchronization objects.
617 	 *
618 	 * One sync object per queue. The position of the sync object is
619 	 * determined by the queue index.
620 	 */
621 	struct panthor_kernel_bo *syncobjs;
622 
623 	/** @state: Group state. */
624 	enum panthor_group_state state;
625 
626 	/**
627 	 * @suspend_buf: Suspend buffer.
628 	 *
629 	 * Stores the state of the group and its queues when a group is suspended.
630 	 * Used at resume time to restore the group in its previous state.
631 	 *
632 	 * The size of the suspend buffer is exposed through the FW interface.
633 	 */
634 	struct panthor_kernel_bo *suspend_buf;
635 
636 	/**
637 	 * @protm_suspend_buf: Protection mode suspend buffer.
638 	 *
639 	 * Stores the state of the group and its queues when a group that's in
640 	 * protection mode is suspended.
641 	 *
642 	 * Used at resume time to restore the group in its previous state.
643 	 *
644 	 * The size of the protection mode suspend buffer is exposed through the
645 	 * FW interface.
646 	 */
647 	struct panthor_kernel_bo *protm_suspend_buf;
648 
649 	/** @sync_upd_work: Work used to check/signal job fences. */
650 	struct work_struct sync_upd_work;
651 
652 	/** @tiler_oom_work: Work used to process tiler OOM events happening on this group. */
653 	struct work_struct tiler_oom_work;
654 
655 	/** @term_work: Work used to finish the group termination procedure. */
656 	struct work_struct term_work;
657 
658 	/**
659 	 * @release_work: Work used to release group resources.
660 	 *
661 	 * We need to postpone the group release to avoid a deadlock when
662 	 * the last ref is released in the tick work.
663 	 */
664 	struct work_struct release_work;
665 
666 	/**
667 	 * @run_node: Node used to insert the group in the
668 	 * panthor_group::groups::{runnable,idle} and
669 	 * panthor_group::reset.stopped_groups lists.
670 	 */
671 	struct list_head run_node;
672 
673 	/**
674 	 * @wait_node: Node used to insert the group in the
675 	 * panthor_group::groups::waiting list.
676 	 */
677 	struct list_head wait_node;
678 };
679 
680 struct panthor_job_profiling_data {
681 	struct {
682 		u64 before;
683 		u64 after;
684 	} cycles;
685 
686 	struct {
687 		u64 before;
688 		u64 after;
689 	} time;
690 };
691 
692 /**
693  * group_queue_work() - Queue a group work
694  * @group: Group to queue the work for.
695  * @wname: Work name.
696  *
697  * Grabs a ref and queue a work item to the scheduler workqueue. If
698  * the work was already queued, we release the reference we grabbed.
699  *
700  * Work callbacks must release the reference we grabbed here.
701  */
702 #define group_queue_work(group, wname) \
703 	do { \
704 		group_get(group); \
705 		if (!queue_work((group)->ptdev->scheduler->wq, &(group)->wname ## _work)) \
706 			group_put(group); \
707 	} while (0)
708 
709 /**
710  * sched_queue_work() - Queue a scheduler work.
711  * @sched: Scheduler object.
712  * @wname: Work name.
713  *
714  * Conditionally queues a scheduler work if no reset is pending/in-progress.
715  */
716 #define sched_queue_work(sched, wname) \
717 	do { \
718 		if (!atomic_read(&(sched)->reset.in_progress) && \
719 		    !panthor_device_reset_is_pending((sched)->ptdev)) \
720 			queue_work((sched)->wq, &(sched)->wname ## _work); \
721 	} while (0)
722 
723 /**
724  * sched_queue_delayed_work() - Queue a scheduler delayed work.
725  * @sched: Scheduler object.
726  * @wname: Work name.
727  * @delay: Work delay in jiffies.
728  *
729  * Conditionally queues a scheduler delayed work if no reset is
730  * pending/in-progress.
731  */
732 #define sched_queue_delayed_work(sched, wname, delay) \
733 	do { \
734 		if (!atomic_read(&sched->reset.in_progress) && \
735 		    !panthor_device_reset_is_pending((sched)->ptdev)) \
736 			mod_delayed_work((sched)->wq, &(sched)->wname ## _work, delay); \
737 	} while (0)
738 
739 /*
740  * We currently set the maximum of groups per file to an arbitrary low value.
741  * But this can be updated if we need more.
742  */
743 #define MAX_GROUPS_PER_POOL 128
744 
745 /**
746  * struct panthor_group_pool - Group pool
747  *
748  * Each file get assigned a group pool.
749  */
750 struct panthor_group_pool {
751 	/** @xa: Xarray used to manage group handles. */
752 	struct xarray xa;
753 };
754 
755 /**
756  * struct panthor_job - Used to manage GPU job
757  */
758 struct panthor_job {
759 	/** @base: Inherit from drm_sched_job. */
760 	struct drm_sched_job base;
761 
762 	/** @refcount: Reference count. */
763 	struct kref refcount;
764 
765 	/** @group: Group of the queue this job will be pushed to. */
766 	struct panthor_group *group;
767 
768 	/** @queue_idx: Index of the queue inside @group. */
769 	u32 queue_idx;
770 
771 	/** @call_info: Information about the userspace command stream call. */
772 	struct {
773 		/** @start: GPU address of the userspace command stream. */
774 		u64 start;
775 
776 		/** @size: Size of the userspace command stream. */
777 		u32 size;
778 
779 		/**
780 		 * @latest_flush: Flush ID at the time the userspace command
781 		 * stream was built.
782 		 *
783 		 * Needed for the flush reduction mechanism.
784 		 */
785 		u32 latest_flush;
786 	} call_info;
787 
788 	/** @ringbuf: Position of this job is in the ring buffer. */
789 	struct {
790 		/** @start: Start offset. */
791 		u64 start;
792 
793 		/** @end: End offset. */
794 		u64 end;
795 	} ringbuf;
796 
797 	/**
798 	 * @node: Used to insert the job in the panthor_queue::fence_ctx::in_flight_jobs
799 	 * list.
800 	 */
801 	struct list_head node;
802 
803 	/** @done_fence: Fence signaled when the job is finished or cancelled. */
804 	struct dma_fence *done_fence;
805 
806 	/** @profiling: Job profiling information. */
807 	struct {
808 		/** @mask: Current device job profiling enablement bitmask. */
809 		u32 mask;
810 
811 		/** @slot: Job index in the profiling slots BO. */
812 		u32 slot;
813 	} profiling;
814 };
815 
816 static void
panthor_queue_put_syncwait_obj(struct panthor_queue * queue)817 panthor_queue_put_syncwait_obj(struct panthor_queue *queue)
818 {
819 	if (queue->syncwait.kmap) {
820 		struct iosys_map map = IOSYS_MAP_INIT_VADDR(queue->syncwait.kmap);
821 
822 		drm_gem_vunmap_unlocked(queue->syncwait.obj, &map);
823 		queue->syncwait.kmap = NULL;
824 	}
825 
826 	drm_gem_object_put(queue->syncwait.obj);
827 	queue->syncwait.obj = NULL;
828 }
829 
830 static void *
panthor_queue_get_syncwait_obj(struct panthor_group * group,struct panthor_queue * queue)831 panthor_queue_get_syncwait_obj(struct panthor_group *group, struct panthor_queue *queue)
832 {
833 	struct panthor_device *ptdev = group->ptdev;
834 	struct panthor_gem_object *bo;
835 	struct iosys_map map;
836 	int ret;
837 
838 	if (queue->syncwait.kmap)
839 		return queue->syncwait.kmap + queue->syncwait.offset;
840 
841 	bo = panthor_vm_get_bo_for_va(group->vm,
842 				      queue->syncwait.gpu_va,
843 				      &queue->syncwait.offset);
844 	if (drm_WARN_ON(&ptdev->base, IS_ERR_OR_NULL(bo)))
845 		goto err_put_syncwait_obj;
846 
847 	queue->syncwait.obj = &bo->base.base;
848 	ret = drm_gem_vmap_unlocked(queue->syncwait.obj, &map);
849 	if (drm_WARN_ON(&ptdev->base, ret))
850 		goto err_put_syncwait_obj;
851 
852 	queue->syncwait.kmap = map.vaddr;
853 	if (drm_WARN_ON(&ptdev->base, !queue->syncwait.kmap))
854 		goto err_put_syncwait_obj;
855 
856 	return queue->syncwait.kmap + queue->syncwait.offset;
857 
858 err_put_syncwait_obj:
859 	panthor_queue_put_syncwait_obj(queue);
860 	return NULL;
861 }
862 
group_free_queue(struct panthor_group * group,struct panthor_queue * queue)863 static void group_free_queue(struct panthor_group *group, struct panthor_queue *queue)
864 {
865 	if (IS_ERR_OR_NULL(queue))
866 		return;
867 
868 	drm_sched_entity_destroy(&queue->entity);
869 
870 	if (queue->scheduler.ops)
871 		drm_sched_fini(&queue->scheduler);
872 
873 	panthor_queue_put_syncwait_obj(queue);
874 
875 	panthor_kernel_bo_destroy(queue->ringbuf);
876 	panthor_kernel_bo_destroy(queue->iface.mem);
877 	panthor_kernel_bo_destroy(queue->profiling.slots);
878 
879 	/* Release the last_fence we were holding, if any. */
880 	dma_fence_put(queue->fence_ctx.last_fence);
881 
882 	kfree(queue);
883 }
884 
group_release_work(struct work_struct * work)885 static void group_release_work(struct work_struct *work)
886 {
887 	struct panthor_group *group = container_of(work,
888 						   struct panthor_group,
889 						   release_work);
890 	u32 i;
891 
892 	for (i = 0; i < group->queue_count; i++)
893 		group_free_queue(group, group->queues[i]);
894 
895 	panthor_kernel_bo_destroy(group->suspend_buf);
896 	panthor_kernel_bo_destroy(group->protm_suspend_buf);
897 	panthor_kernel_bo_destroy(group->syncobjs);
898 
899 	panthor_vm_put(group->vm);
900 	kfree(group);
901 }
902 
group_release(struct kref * kref)903 static void group_release(struct kref *kref)
904 {
905 	struct panthor_group *group = container_of(kref,
906 						   struct panthor_group,
907 						   refcount);
908 	struct panthor_device *ptdev = group->ptdev;
909 
910 	drm_WARN_ON(&ptdev->base, group->csg_id >= 0);
911 	drm_WARN_ON(&ptdev->base, !list_empty(&group->run_node));
912 	drm_WARN_ON(&ptdev->base, !list_empty(&group->wait_node));
913 
914 	queue_work(panthor_cleanup_wq, &group->release_work);
915 }
916 
group_put(struct panthor_group * group)917 static void group_put(struct panthor_group *group)
918 {
919 	if (group)
920 		kref_put(&group->refcount, group_release);
921 }
922 
923 static struct panthor_group *
group_get(struct panthor_group * group)924 group_get(struct panthor_group *group)
925 {
926 	if (group)
927 		kref_get(&group->refcount);
928 
929 	return group;
930 }
931 
932 /**
933  * group_bind_locked() - Bind a group to a group slot
934  * @group: Group.
935  * @csg_id: Slot.
936  *
937  * Return: 0 on success, a negative error code otherwise.
938  */
939 static int
group_bind_locked(struct panthor_group * group,u32 csg_id)940 group_bind_locked(struct panthor_group *group, u32 csg_id)
941 {
942 	struct panthor_device *ptdev = group->ptdev;
943 	struct panthor_csg_slot *csg_slot;
944 	int ret;
945 
946 	lockdep_assert_held(&ptdev->scheduler->lock);
947 
948 	if (drm_WARN_ON(&ptdev->base, group->csg_id != -1 || csg_id >= MAX_CSGS ||
949 			ptdev->scheduler->csg_slots[csg_id].group))
950 		return -EINVAL;
951 
952 	ret = panthor_vm_active(group->vm);
953 	if (ret)
954 		return ret;
955 
956 	csg_slot = &ptdev->scheduler->csg_slots[csg_id];
957 	group_get(group);
958 	group->csg_id = csg_id;
959 
960 	/* Dummy doorbell allocation: doorbell is assigned to the group and
961 	 * all queues use the same doorbell.
962 	 *
963 	 * TODO: Implement LRU-based doorbell assignment, so the most often
964 	 * updated queues get their own doorbell, thus avoiding useless checks
965 	 * on queues belonging to the same group that are rarely updated.
966 	 */
967 	for (u32 i = 0; i < group->queue_count; i++)
968 		group->queues[i]->doorbell_id = csg_id + 1;
969 
970 	csg_slot->group = group;
971 
972 	return 0;
973 }
974 
975 /**
976  * group_unbind_locked() - Unbind a group from a slot.
977  * @group: Group to unbind.
978  *
979  * Return: 0 on success, a negative error code otherwise.
980  */
981 static int
group_unbind_locked(struct panthor_group * group)982 group_unbind_locked(struct panthor_group *group)
983 {
984 	struct panthor_device *ptdev = group->ptdev;
985 	struct panthor_csg_slot *slot;
986 
987 	lockdep_assert_held(&ptdev->scheduler->lock);
988 
989 	if (drm_WARN_ON(&ptdev->base, group->csg_id < 0 || group->csg_id >= MAX_CSGS))
990 		return -EINVAL;
991 
992 	if (drm_WARN_ON(&ptdev->base, group->state == PANTHOR_CS_GROUP_ACTIVE))
993 		return -EINVAL;
994 
995 	slot = &ptdev->scheduler->csg_slots[group->csg_id];
996 	panthor_vm_idle(group->vm);
997 	group->csg_id = -1;
998 
999 	/* Tiler OOM events will be re-issued next time the group is scheduled. */
1000 	atomic_set(&group->tiler_oom, 0);
1001 	cancel_work(&group->tiler_oom_work);
1002 
1003 	for (u32 i = 0; i < group->queue_count; i++)
1004 		group->queues[i]->doorbell_id = -1;
1005 
1006 	slot->group = NULL;
1007 
1008 	group_put(group);
1009 	return 0;
1010 }
1011 
1012 /**
1013  * cs_slot_prog_locked() - Program a queue slot
1014  * @ptdev: Device.
1015  * @csg_id: Group slot ID.
1016  * @cs_id: Queue slot ID.
1017  *
1018  * Program a queue slot with the queue information so things can start being
1019  * executed on this queue.
1020  *
1021  * The group slot must have a group bound to it already (group_bind_locked()).
1022  */
1023 static void
cs_slot_prog_locked(struct panthor_device * ptdev,u32 csg_id,u32 cs_id)1024 cs_slot_prog_locked(struct panthor_device *ptdev, u32 csg_id, u32 cs_id)
1025 {
1026 	struct panthor_queue *queue = ptdev->scheduler->csg_slots[csg_id].group->queues[cs_id];
1027 	struct panthor_fw_cs_iface *cs_iface = panthor_fw_get_cs_iface(ptdev, csg_id, cs_id);
1028 
1029 	lockdep_assert_held(&ptdev->scheduler->lock);
1030 
1031 	queue->iface.input->extract = queue->iface.output->extract;
1032 	drm_WARN_ON(&ptdev->base, queue->iface.input->insert < queue->iface.input->extract);
1033 
1034 	cs_iface->input->ringbuf_base = panthor_kernel_bo_gpuva(queue->ringbuf);
1035 	cs_iface->input->ringbuf_size = panthor_kernel_bo_size(queue->ringbuf);
1036 	cs_iface->input->ringbuf_input = queue->iface.input_fw_va;
1037 	cs_iface->input->ringbuf_output = queue->iface.output_fw_va;
1038 	cs_iface->input->config = CS_CONFIG_PRIORITY(queue->priority) |
1039 				  CS_CONFIG_DOORBELL(queue->doorbell_id);
1040 	cs_iface->input->ack_irq_mask = ~0;
1041 	panthor_fw_update_reqs(cs_iface, req,
1042 			       CS_IDLE_SYNC_WAIT |
1043 			       CS_IDLE_EMPTY |
1044 			       CS_STATE_START |
1045 			       CS_EXTRACT_EVENT,
1046 			       CS_IDLE_SYNC_WAIT |
1047 			       CS_IDLE_EMPTY |
1048 			       CS_STATE_MASK |
1049 			       CS_EXTRACT_EVENT);
1050 	if (queue->iface.input->insert != queue->iface.input->extract && queue->timeout_suspended) {
1051 		drm_sched_resume_timeout(&queue->scheduler, queue->remaining_time);
1052 		queue->timeout_suspended = false;
1053 	}
1054 }
1055 
1056 /**
1057  * cs_slot_reset_locked() - Reset a queue slot
1058  * @ptdev: Device.
1059  * @csg_id: Group slot.
1060  * @cs_id: Queue slot.
1061  *
1062  * Change the queue slot state to STOP and suspend the queue timeout if
1063  * the queue is not blocked.
1064  *
1065  * The group slot must have a group bound to it (group_bind_locked()).
1066  */
1067 static int
cs_slot_reset_locked(struct panthor_device * ptdev,u32 csg_id,u32 cs_id)1068 cs_slot_reset_locked(struct panthor_device *ptdev, u32 csg_id, u32 cs_id)
1069 {
1070 	struct panthor_fw_cs_iface *cs_iface = panthor_fw_get_cs_iface(ptdev, csg_id, cs_id);
1071 	struct panthor_group *group = ptdev->scheduler->csg_slots[csg_id].group;
1072 	struct panthor_queue *queue = group->queues[cs_id];
1073 
1074 	lockdep_assert_held(&ptdev->scheduler->lock);
1075 
1076 	panthor_fw_update_reqs(cs_iface, req,
1077 			       CS_STATE_STOP,
1078 			       CS_STATE_MASK);
1079 
1080 	/* If the queue is blocked, we want to keep the timeout running, so
1081 	 * we can detect unbounded waits and kill the group when that happens.
1082 	 */
1083 	if (!(group->blocked_queues & BIT(cs_id)) && !queue->timeout_suspended) {
1084 		queue->remaining_time = drm_sched_suspend_timeout(&queue->scheduler);
1085 		queue->timeout_suspended = true;
1086 		WARN_ON(queue->remaining_time > msecs_to_jiffies(JOB_TIMEOUT_MS));
1087 	}
1088 
1089 	return 0;
1090 }
1091 
1092 /**
1093  * csg_slot_sync_priority_locked() - Synchronize the group slot priority
1094  * @ptdev: Device.
1095  * @csg_id: Group slot ID.
1096  *
1097  * Group slot priority update happens asynchronously. When we receive a
1098  * %CSG_ENDPOINT_CONFIG, we know the update is effective, and can
1099  * reflect it to our panthor_csg_slot object.
1100  */
1101 static void
csg_slot_sync_priority_locked(struct panthor_device * ptdev,u32 csg_id)1102 csg_slot_sync_priority_locked(struct panthor_device *ptdev, u32 csg_id)
1103 {
1104 	struct panthor_csg_slot *csg_slot = &ptdev->scheduler->csg_slots[csg_id];
1105 	struct panthor_fw_csg_iface *csg_iface;
1106 
1107 	lockdep_assert_held(&ptdev->scheduler->lock);
1108 
1109 	csg_iface = panthor_fw_get_csg_iface(ptdev, csg_id);
1110 	csg_slot->priority = (csg_iface->input->endpoint_req & CSG_EP_REQ_PRIORITY_MASK) >> 28;
1111 }
1112 
1113 /**
1114  * cs_slot_sync_queue_state_locked() - Synchronize the queue slot priority
1115  * @ptdev: Device.
1116  * @csg_id: Group slot.
1117  * @cs_id: Queue slot.
1118  *
1119  * Queue state is updated on group suspend or STATUS_UPDATE event.
1120  */
1121 static void
cs_slot_sync_queue_state_locked(struct panthor_device * ptdev,u32 csg_id,u32 cs_id)1122 cs_slot_sync_queue_state_locked(struct panthor_device *ptdev, u32 csg_id, u32 cs_id)
1123 {
1124 	struct panthor_group *group = ptdev->scheduler->csg_slots[csg_id].group;
1125 	struct panthor_queue *queue = group->queues[cs_id];
1126 	struct panthor_fw_cs_iface *cs_iface =
1127 		panthor_fw_get_cs_iface(group->ptdev, csg_id, cs_id);
1128 
1129 	u32 status_wait_cond;
1130 
1131 	switch (cs_iface->output->status_blocked_reason) {
1132 	case CS_STATUS_BLOCKED_REASON_UNBLOCKED:
1133 		if (queue->iface.input->insert == queue->iface.output->extract &&
1134 		    cs_iface->output->status_scoreboards == 0)
1135 			group->idle_queues |= BIT(cs_id);
1136 		break;
1137 
1138 	case CS_STATUS_BLOCKED_REASON_SYNC_WAIT:
1139 		if (list_empty(&group->wait_node)) {
1140 			list_move_tail(&group->wait_node,
1141 				       &group->ptdev->scheduler->groups.waiting);
1142 		}
1143 
1144 		/* The queue is only blocked if there's no deferred operation
1145 		 * pending, which can be checked through the scoreboard status.
1146 		 */
1147 		if (!cs_iface->output->status_scoreboards)
1148 			group->blocked_queues |= BIT(cs_id);
1149 
1150 		queue->syncwait.gpu_va = cs_iface->output->status_wait_sync_ptr;
1151 		queue->syncwait.ref = cs_iface->output->status_wait_sync_value;
1152 		status_wait_cond = cs_iface->output->status_wait & CS_STATUS_WAIT_SYNC_COND_MASK;
1153 		queue->syncwait.gt = status_wait_cond == CS_STATUS_WAIT_SYNC_COND_GT;
1154 		if (cs_iface->output->status_wait & CS_STATUS_WAIT_SYNC_64B) {
1155 			u64 sync_val_hi = cs_iface->output->status_wait_sync_value_hi;
1156 
1157 			queue->syncwait.sync64 = true;
1158 			queue->syncwait.ref |= sync_val_hi << 32;
1159 		} else {
1160 			queue->syncwait.sync64 = false;
1161 		}
1162 		break;
1163 
1164 	default:
1165 		/* Other reasons are not blocking. Consider the queue as runnable
1166 		 * in those cases.
1167 		 */
1168 		break;
1169 	}
1170 }
1171 
1172 static void
csg_slot_sync_queues_state_locked(struct panthor_device * ptdev,u32 csg_id)1173 csg_slot_sync_queues_state_locked(struct panthor_device *ptdev, u32 csg_id)
1174 {
1175 	struct panthor_csg_slot *csg_slot = &ptdev->scheduler->csg_slots[csg_id];
1176 	struct panthor_group *group = csg_slot->group;
1177 	u32 i;
1178 
1179 	lockdep_assert_held(&ptdev->scheduler->lock);
1180 
1181 	group->idle_queues = 0;
1182 	group->blocked_queues = 0;
1183 
1184 	for (i = 0; i < group->queue_count; i++) {
1185 		if (group->queues[i])
1186 			cs_slot_sync_queue_state_locked(ptdev, csg_id, i);
1187 	}
1188 }
1189 
1190 static void
csg_slot_sync_state_locked(struct panthor_device * ptdev,u32 csg_id)1191 csg_slot_sync_state_locked(struct panthor_device *ptdev, u32 csg_id)
1192 {
1193 	struct panthor_csg_slot *csg_slot = &ptdev->scheduler->csg_slots[csg_id];
1194 	struct panthor_fw_csg_iface *csg_iface;
1195 	struct panthor_group *group;
1196 	enum panthor_group_state new_state, old_state;
1197 	u32 csg_state;
1198 
1199 	lockdep_assert_held(&ptdev->scheduler->lock);
1200 
1201 	csg_iface = panthor_fw_get_csg_iface(ptdev, csg_id);
1202 	group = csg_slot->group;
1203 
1204 	if (!group)
1205 		return;
1206 
1207 	old_state = group->state;
1208 	csg_state = csg_iface->output->ack & CSG_STATE_MASK;
1209 	switch (csg_state) {
1210 	case CSG_STATE_START:
1211 	case CSG_STATE_RESUME:
1212 		new_state = PANTHOR_CS_GROUP_ACTIVE;
1213 		break;
1214 	case CSG_STATE_TERMINATE:
1215 		new_state = PANTHOR_CS_GROUP_TERMINATED;
1216 		break;
1217 	case CSG_STATE_SUSPEND:
1218 		new_state = PANTHOR_CS_GROUP_SUSPENDED;
1219 		break;
1220 	default:
1221 		/* The unknown state might be caused by a FW state corruption,
1222 		 * which means the group metadata can't be trusted anymore, and
1223 		 * the SUSPEND operation might propagate the corruption to the
1224 		 * suspend buffers. Flag the group state as unknown to make
1225 		 * sure it's unusable after that point.
1226 		 */
1227 		drm_err(&ptdev->base, "Invalid state on CSG %d (state=%d)",
1228 			csg_id, csg_state);
1229 		new_state = PANTHOR_CS_GROUP_UNKNOWN_STATE;
1230 		break;
1231 	}
1232 
1233 	if (old_state == new_state)
1234 		return;
1235 
1236 	/* The unknown state might be caused by a FW issue, reset the FW to
1237 	 * take a fresh start.
1238 	 */
1239 	if (new_state == PANTHOR_CS_GROUP_UNKNOWN_STATE)
1240 		panthor_device_schedule_reset(ptdev);
1241 
1242 	if (new_state == PANTHOR_CS_GROUP_SUSPENDED)
1243 		csg_slot_sync_queues_state_locked(ptdev, csg_id);
1244 
1245 	if (old_state == PANTHOR_CS_GROUP_ACTIVE) {
1246 		u32 i;
1247 
1248 		/* Reset the queue slots so we start from a clean
1249 		 * state when starting/resuming a new group on this
1250 		 * CSG slot. No wait needed here, and no ringbell
1251 		 * either, since the CS slot will only be re-used
1252 		 * on the next CSG start operation.
1253 		 */
1254 		for (i = 0; i < group->queue_count; i++) {
1255 			if (group->queues[i])
1256 				cs_slot_reset_locked(ptdev, csg_id, i);
1257 		}
1258 	}
1259 
1260 	group->state = new_state;
1261 }
1262 
1263 static int
csg_slot_prog_locked(struct panthor_device * ptdev,u32 csg_id,u32 priority)1264 csg_slot_prog_locked(struct panthor_device *ptdev, u32 csg_id, u32 priority)
1265 {
1266 	struct panthor_fw_csg_iface *csg_iface;
1267 	struct panthor_csg_slot *csg_slot;
1268 	struct panthor_group *group;
1269 	u32 queue_mask = 0, i;
1270 
1271 	lockdep_assert_held(&ptdev->scheduler->lock);
1272 
1273 	if (priority > MAX_CSG_PRIO)
1274 		return -EINVAL;
1275 
1276 	if (drm_WARN_ON(&ptdev->base, csg_id >= MAX_CSGS))
1277 		return -EINVAL;
1278 
1279 	csg_slot = &ptdev->scheduler->csg_slots[csg_id];
1280 	group = csg_slot->group;
1281 	if (!group || group->state == PANTHOR_CS_GROUP_ACTIVE)
1282 		return 0;
1283 
1284 	csg_iface = panthor_fw_get_csg_iface(group->ptdev, csg_id);
1285 
1286 	for (i = 0; i < group->queue_count; i++) {
1287 		if (group->queues[i]) {
1288 			cs_slot_prog_locked(ptdev, csg_id, i);
1289 			queue_mask |= BIT(i);
1290 		}
1291 	}
1292 
1293 	csg_iface->input->allow_compute = group->compute_core_mask;
1294 	csg_iface->input->allow_fragment = group->fragment_core_mask;
1295 	csg_iface->input->allow_other = group->tiler_core_mask;
1296 	csg_iface->input->endpoint_req = CSG_EP_REQ_COMPUTE(group->max_compute_cores) |
1297 					 CSG_EP_REQ_FRAGMENT(group->max_fragment_cores) |
1298 					 CSG_EP_REQ_TILER(group->max_tiler_cores) |
1299 					 CSG_EP_REQ_PRIORITY(priority);
1300 	csg_iface->input->config = panthor_vm_as(group->vm);
1301 
1302 	if (group->suspend_buf)
1303 		csg_iface->input->suspend_buf = panthor_kernel_bo_gpuva(group->suspend_buf);
1304 	else
1305 		csg_iface->input->suspend_buf = 0;
1306 
1307 	if (group->protm_suspend_buf) {
1308 		csg_iface->input->protm_suspend_buf =
1309 			panthor_kernel_bo_gpuva(group->protm_suspend_buf);
1310 	} else {
1311 		csg_iface->input->protm_suspend_buf = 0;
1312 	}
1313 
1314 	csg_iface->input->ack_irq_mask = ~0;
1315 	panthor_fw_toggle_reqs(csg_iface, doorbell_req, doorbell_ack, queue_mask);
1316 	return 0;
1317 }
1318 
1319 static void
cs_slot_process_fatal_event_locked(struct panthor_device * ptdev,u32 csg_id,u32 cs_id)1320 cs_slot_process_fatal_event_locked(struct panthor_device *ptdev,
1321 				   u32 csg_id, u32 cs_id)
1322 {
1323 	struct panthor_scheduler *sched = ptdev->scheduler;
1324 	struct panthor_csg_slot *csg_slot = &sched->csg_slots[csg_id];
1325 	struct panthor_group *group = csg_slot->group;
1326 	struct panthor_fw_cs_iface *cs_iface;
1327 	u32 fatal;
1328 	u64 info;
1329 
1330 	lockdep_assert_held(&sched->lock);
1331 
1332 	cs_iface = panthor_fw_get_cs_iface(ptdev, csg_id, cs_id);
1333 	fatal = cs_iface->output->fatal;
1334 	info = cs_iface->output->fatal_info;
1335 
1336 	if (group)
1337 		group->fatal_queues |= BIT(cs_id);
1338 
1339 	if (CS_EXCEPTION_TYPE(fatal) == DRM_PANTHOR_EXCEPTION_CS_UNRECOVERABLE) {
1340 		/* If this exception is unrecoverable, queue a reset, and make
1341 		 * sure we stop scheduling groups until the reset has happened.
1342 		 */
1343 		panthor_device_schedule_reset(ptdev);
1344 		cancel_delayed_work(&sched->tick_work);
1345 	} else {
1346 		sched_queue_delayed_work(sched, tick, 0);
1347 	}
1348 
1349 	drm_warn(&ptdev->base,
1350 		 "CSG slot %d CS slot: %d\n"
1351 		 "CS_FATAL.EXCEPTION_TYPE: 0x%x (%s)\n"
1352 		 "CS_FATAL.EXCEPTION_DATA: 0x%x\n"
1353 		 "CS_FATAL_INFO.EXCEPTION_DATA: 0x%llx\n",
1354 		 csg_id, cs_id,
1355 		 (unsigned int)CS_EXCEPTION_TYPE(fatal),
1356 		 panthor_exception_name(ptdev, CS_EXCEPTION_TYPE(fatal)),
1357 		 (unsigned int)CS_EXCEPTION_DATA(fatal),
1358 		 info);
1359 }
1360 
1361 static void
cs_slot_process_fault_event_locked(struct panthor_device * ptdev,u32 csg_id,u32 cs_id)1362 cs_slot_process_fault_event_locked(struct panthor_device *ptdev,
1363 				   u32 csg_id, u32 cs_id)
1364 {
1365 	struct panthor_scheduler *sched = ptdev->scheduler;
1366 	struct panthor_csg_slot *csg_slot = &sched->csg_slots[csg_id];
1367 	struct panthor_group *group = csg_slot->group;
1368 	struct panthor_queue *queue = group && cs_id < group->queue_count ?
1369 				      group->queues[cs_id] : NULL;
1370 	struct panthor_fw_cs_iface *cs_iface;
1371 	u32 fault;
1372 	u64 info;
1373 
1374 	lockdep_assert_held(&sched->lock);
1375 
1376 	cs_iface = panthor_fw_get_cs_iface(ptdev, csg_id, cs_id);
1377 	fault = cs_iface->output->fault;
1378 	info = cs_iface->output->fault_info;
1379 
1380 	if (queue && CS_EXCEPTION_TYPE(fault) == DRM_PANTHOR_EXCEPTION_CS_INHERIT_FAULT) {
1381 		u64 cs_extract = queue->iface.output->extract;
1382 		struct panthor_job *job;
1383 
1384 		spin_lock(&queue->fence_ctx.lock);
1385 		list_for_each_entry(job, &queue->fence_ctx.in_flight_jobs, node) {
1386 			if (cs_extract >= job->ringbuf.end)
1387 				continue;
1388 
1389 			if (cs_extract < job->ringbuf.start)
1390 				break;
1391 
1392 			dma_fence_set_error(job->done_fence, -EINVAL);
1393 		}
1394 		spin_unlock(&queue->fence_ctx.lock);
1395 	}
1396 
1397 	drm_warn(&ptdev->base,
1398 		 "CSG slot %d CS slot: %d\n"
1399 		 "CS_FAULT.EXCEPTION_TYPE: 0x%x (%s)\n"
1400 		 "CS_FAULT.EXCEPTION_DATA: 0x%x\n"
1401 		 "CS_FAULT_INFO.EXCEPTION_DATA: 0x%llx\n",
1402 		 csg_id, cs_id,
1403 		 (unsigned int)CS_EXCEPTION_TYPE(fault),
1404 		 panthor_exception_name(ptdev, CS_EXCEPTION_TYPE(fault)),
1405 		 (unsigned int)CS_EXCEPTION_DATA(fault),
1406 		 info);
1407 }
1408 
group_process_tiler_oom(struct panthor_group * group,u32 cs_id)1409 static int group_process_tiler_oom(struct panthor_group *group, u32 cs_id)
1410 {
1411 	struct panthor_device *ptdev = group->ptdev;
1412 	struct panthor_scheduler *sched = ptdev->scheduler;
1413 	u32 renderpasses_in_flight, pending_frag_count;
1414 	struct panthor_heap_pool *heaps = NULL;
1415 	u64 heap_address, new_chunk_va = 0;
1416 	u32 vt_start, vt_end, frag_end;
1417 	int ret, csg_id;
1418 
1419 	mutex_lock(&sched->lock);
1420 	csg_id = group->csg_id;
1421 	if (csg_id >= 0) {
1422 		struct panthor_fw_cs_iface *cs_iface;
1423 
1424 		cs_iface = panthor_fw_get_cs_iface(ptdev, csg_id, cs_id);
1425 		heaps = panthor_vm_get_heap_pool(group->vm, false);
1426 		heap_address = cs_iface->output->heap_address;
1427 		vt_start = cs_iface->output->heap_vt_start;
1428 		vt_end = cs_iface->output->heap_vt_end;
1429 		frag_end = cs_iface->output->heap_frag_end;
1430 		renderpasses_in_flight = vt_start - frag_end;
1431 		pending_frag_count = vt_end - frag_end;
1432 	}
1433 	mutex_unlock(&sched->lock);
1434 
1435 	/* The group got scheduled out, we stop here. We will get a new tiler OOM event
1436 	 * when it's scheduled again.
1437 	 */
1438 	if (unlikely(csg_id < 0))
1439 		return 0;
1440 
1441 	if (IS_ERR(heaps) || frag_end > vt_end || vt_end >= vt_start) {
1442 		ret = -EINVAL;
1443 	} else {
1444 		/* We do the allocation without holding the scheduler lock to avoid
1445 		 * blocking the scheduling.
1446 		 */
1447 		ret = panthor_heap_grow(heaps, heap_address,
1448 					renderpasses_in_flight,
1449 					pending_frag_count, &new_chunk_va);
1450 	}
1451 
1452 	/* If the heap context doesn't have memory for us, we want to let the
1453 	 * FW try to reclaim memory by waiting for fragment jobs to land or by
1454 	 * executing the tiler OOM exception handler, which is supposed to
1455 	 * implement incremental rendering.
1456 	 */
1457 	if (ret && ret != -ENOMEM) {
1458 		drm_warn(&ptdev->base, "Failed to extend the tiler heap\n");
1459 		group->fatal_queues |= BIT(cs_id);
1460 		sched_queue_delayed_work(sched, tick, 0);
1461 		goto out_put_heap_pool;
1462 	}
1463 
1464 	mutex_lock(&sched->lock);
1465 	csg_id = group->csg_id;
1466 	if (csg_id >= 0) {
1467 		struct panthor_fw_csg_iface *csg_iface;
1468 		struct panthor_fw_cs_iface *cs_iface;
1469 
1470 		csg_iface = panthor_fw_get_csg_iface(ptdev, csg_id);
1471 		cs_iface = panthor_fw_get_cs_iface(ptdev, csg_id, cs_id);
1472 
1473 		cs_iface->input->heap_start = new_chunk_va;
1474 		cs_iface->input->heap_end = new_chunk_va;
1475 		panthor_fw_update_reqs(cs_iface, req, cs_iface->output->ack, CS_TILER_OOM);
1476 		panthor_fw_toggle_reqs(csg_iface, doorbell_req, doorbell_ack, BIT(cs_id));
1477 		panthor_fw_ring_csg_doorbells(ptdev, BIT(csg_id));
1478 	}
1479 	mutex_unlock(&sched->lock);
1480 
1481 	/* We allocated a chunck, but couldn't link it to the heap
1482 	 * context because the group was scheduled out while we were
1483 	 * allocating memory. We need to return this chunk to the heap.
1484 	 */
1485 	if (unlikely(csg_id < 0 && new_chunk_va))
1486 		panthor_heap_return_chunk(heaps, heap_address, new_chunk_va);
1487 
1488 	ret = 0;
1489 
1490 out_put_heap_pool:
1491 	panthor_heap_pool_put(heaps);
1492 	return ret;
1493 }
1494 
group_tiler_oom_work(struct work_struct * work)1495 static void group_tiler_oom_work(struct work_struct *work)
1496 {
1497 	struct panthor_group *group =
1498 		container_of(work, struct panthor_group, tiler_oom_work);
1499 	u32 tiler_oom = atomic_xchg(&group->tiler_oom, 0);
1500 
1501 	while (tiler_oom) {
1502 		u32 cs_id = ffs(tiler_oom) - 1;
1503 
1504 		group_process_tiler_oom(group, cs_id);
1505 		tiler_oom &= ~BIT(cs_id);
1506 	}
1507 
1508 	group_put(group);
1509 }
1510 
1511 static void
cs_slot_process_tiler_oom_event_locked(struct panthor_device * ptdev,u32 csg_id,u32 cs_id)1512 cs_slot_process_tiler_oom_event_locked(struct panthor_device *ptdev,
1513 				       u32 csg_id, u32 cs_id)
1514 {
1515 	struct panthor_scheduler *sched = ptdev->scheduler;
1516 	struct panthor_csg_slot *csg_slot = &sched->csg_slots[csg_id];
1517 	struct panthor_group *group = csg_slot->group;
1518 
1519 	lockdep_assert_held(&sched->lock);
1520 
1521 	if (drm_WARN_ON(&ptdev->base, !group))
1522 		return;
1523 
1524 	atomic_or(BIT(cs_id), &group->tiler_oom);
1525 
1526 	/* We don't use group_queue_work() here because we want to queue the
1527 	 * work item to the heap_alloc_wq.
1528 	 */
1529 	group_get(group);
1530 	if (!queue_work(sched->heap_alloc_wq, &group->tiler_oom_work))
1531 		group_put(group);
1532 }
1533 
cs_slot_process_irq_locked(struct panthor_device * ptdev,u32 csg_id,u32 cs_id)1534 static bool cs_slot_process_irq_locked(struct panthor_device *ptdev,
1535 				       u32 csg_id, u32 cs_id)
1536 {
1537 	struct panthor_fw_cs_iface *cs_iface;
1538 	u32 req, ack, events;
1539 
1540 	lockdep_assert_held(&ptdev->scheduler->lock);
1541 
1542 	cs_iface = panthor_fw_get_cs_iface(ptdev, csg_id, cs_id);
1543 	req = cs_iface->input->req;
1544 	ack = cs_iface->output->ack;
1545 	events = (req ^ ack) & CS_EVT_MASK;
1546 
1547 	if (events & CS_FATAL)
1548 		cs_slot_process_fatal_event_locked(ptdev, csg_id, cs_id);
1549 
1550 	if (events & CS_FAULT)
1551 		cs_slot_process_fault_event_locked(ptdev, csg_id, cs_id);
1552 
1553 	if (events & CS_TILER_OOM)
1554 		cs_slot_process_tiler_oom_event_locked(ptdev, csg_id, cs_id);
1555 
1556 	/* We don't acknowledge the TILER_OOM event since its handling is
1557 	 * deferred to a separate work.
1558 	 */
1559 	panthor_fw_update_reqs(cs_iface, req, ack, CS_FATAL | CS_FAULT);
1560 
1561 	return (events & (CS_FAULT | CS_TILER_OOM)) != 0;
1562 }
1563 
csg_slot_sync_idle_state_locked(struct panthor_device * ptdev,u32 csg_id)1564 static void csg_slot_sync_idle_state_locked(struct panthor_device *ptdev, u32 csg_id)
1565 {
1566 	struct panthor_csg_slot *csg_slot = &ptdev->scheduler->csg_slots[csg_id];
1567 	struct panthor_fw_csg_iface *csg_iface;
1568 
1569 	lockdep_assert_held(&ptdev->scheduler->lock);
1570 
1571 	csg_iface = panthor_fw_get_csg_iface(ptdev, csg_id);
1572 	csg_slot->idle = csg_iface->output->status_state & CSG_STATUS_STATE_IS_IDLE;
1573 }
1574 
csg_slot_process_idle_event_locked(struct panthor_device * ptdev,u32 csg_id)1575 static void csg_slot_process_idle_event_locked(struct panthor_device *ptdev, u32 csg_id)
1576 {
1577 	struct panthor_scheduler *sched = ptdev->scheduler;
1578 
1579 	lockdep_assert_held(&sched->lock);
1580 
1581 	sched->might_have_idle_groups = true;
1582 
1583 	/* Schedule a tick so we can evict idle groups and schedule non-idle
1584 	 * ones. This will also update runtime PM and devfreq busy/idle states,
1585 	 * so the device can lower its frequency or get suspended.
1586 	 */
1587 	sched_queue_delayed_work(sched, tick, 0);
1588 }
1589 
csg_slot_sync_update_locked(struct panthor_device * ptdev,u32 csg_id)1590 static void csg_slot_sync_update_locked(struct panthor_device *ptdev,
1591 					u32 csg_id)
1592 {
1593 	struct panthor_csg_slot *csg_slot = &ptdev->scheduler->csg_slots[csg_id];
1594 	struct panthor_group *group = csg_slot->group;
1595 
1596 	lockdep_assert_held(&ptdev->scheduler->lock);
1597 
1598 	if (group)
1599 		group_queue_work(group, sync_upd);
1600 
1601 	sched_queue_work(ptdev->scheduler, sync_upd);
1602 }
1603 
1604 static void
csg_slot_process_progress_timer_event_locked(struct panthor_device * ptdev,u32 csg_id)1605 csg_slot_process_progress_timer_event_locked(struct panthor_device *ptdev, u32 csg_id)
1606 {
1607 	struct panthor_scheduler *sched = ptdev->scheduler;
1608 	struct panthor_csg_slot *csg_slot = &sched->csg_slots[csg_id];
1609 	struct panthor_group *group = csg_slot->group;
1610 
1611 	lockdep_assert_held(&sched->lock);
1612 
1613 	drm_warn(&ptdev->base, "CSG slot %d progress timeout\n", csg_id);
1614 
1615 	group = csg_slot->group;
1616 	if (!drm_WARN_ON(&ptdev->base, !group))
1617 		group->timedout = true;
1618 
1619 	sched_queue_delayed_work(sched, tick, 0);
1620 }
1621 
sched_process_csg_irq_locked(struct panthor_device * ptdev,u32 csg_id)1622 static void sched_process_csg_irq_locked(struct panthor_device *ptdev, u32 csg_id)
1623 {
1624 	u32 req, ack, cs_irq_req, cs_irq_ack, cs_irqs, csg_events;
1625 	struct panthor_fw_csg_iface *csg_iface;
1626 	u32 ring_cs_db_mask = 0;
1627 
1628 	lockdep_assert_held(&ptdev->scheduler->lock);
1629 
1630 	if (drm_WARN_ON(&ptdev->base, csg_id >= ptdev->scheduler->csg_slot_count))
1631 		return;
1632 
1633 	csg_iface = panthor_fw_get_csg_iface(ptdev, csg_id);
1634 	req = READ_ONCE(csg_iface->input->req);
1635 	ack = READ_ONCE(csg_iface->output->ack);
1636 	cs_irq_req = READ_ONCE(csg_iface->output->cs_irq_req);
1637 	cs_irq_ack = READ_ONCE(csg_iface->input->cs_irq_ack);
1638 	csg_events = (req ^ ack) & CSG_EVT_MASK;
1639 
1640 	/* There may not be any pending CSG/CS interrupts to process */
1641 	if (req == ack && cs_irq_req == cs_irq_ack)
1642 		return;
1643 
1644 	/* Immediately set IRQ_ACK bits to be same as the IRQ_REQ bits before
1645 	 * examining the CS_ACK & CS_REQ bits. This would ensure that Host
1646 	 * doesn't miss an interrupt for the CS in the race scenario where
1647 	 * whilst Host is servicing an interrupt for the CS, firmware sends
1648 	 * another interrupt for that CS.
1649 	 */
1650 	csg_iface->input->cs_irq_ack = cs_irq_req;
1651 
1652 	panthor_fw_update_reqs(csg_iface, req, ack,
1653 			       CSG_SYNC_UPDATE |
1654 			       CSG_IDLE |
1655 			       CSG_PROGRESS_TIMER_EVENT);
1656 
1657 	if (csg_events & CSG_IDLE)
1658 		csg_slot_process_idle_event_locked(ptdev, csg_id);
1659 
1660 	if (csg_events & CSG_PROGRESS_TIMER_EVENT)
1661 		csg_slot_process_progress_timer_event_locked(ptdev, csg_id);
1662 
1663 	cs_irqs = cs_irq_req ^ cs_irq_ack;
1664 	while (cs_irqs) {
1665 		u32 cs_id = ffs(cs_irqs) - 1;
1666 
1667 		if (cs_slot_process_irq_locked(ptdev, csg_id, cs_id))
1668 			ring_cs_db_mask |= BIT(cs_id);
1669 
1670 		cs_irqs &= ~BIT(cs_id);
1671 	}
1672 
1673 	if (csg_events & CSG_SYNC_UPDATE)
1674 		csg_slot_sync_update_locked(ptdev, csg_id);
1675 
1676 	if (ring_cs_db_mask)
1677 		panthor_fw_toggle_reqs(csg_iface, doorbell_req, doorbell_ack, ring_cs_db_mask);
1678 
1679 	panthor_fw_ring_csg_doorbells(ptdev, BIT(csg_id));
1680 }
1681 
sched_process_idle_event_locked(struct panthor_device * ptdev)1682 static void sched_process_idle_event_locked(struct panthor_device *ptdev)
1683 {
1684 	struct panthor_fw_global_iface *glb_iface = panthor_fw_get_glb_iface(ptdev);
1685 
1686 	lockdep_assert_held(&ptdev->scheduler->lock);
1687 
1688 	/* Acknowledge the idle event and schedule a tick. */
1689 	panthor_fw_update_reqs(glb_iface, req, glb_iface->output->ack, GLB_IDLE);
1690 	sched_queue_delayed_work(ptdev->scheduler, tick, 0);
1691 }
1692 
1693 /**
1694  * sched_process_global_irq_locked() - Process the scheduling part of a global IRQ
1695  * @ptdev: Device.
1696  */
sched_process_global_irq_locked(struct panthor_device * ptdev)1697 static void sched_process_global_irq_locked(struct panthor_device *ptdev)
1698 {
1699 	struct panthor_fw_global_iface *glb_iface = panthor_fw_get_glb_iface(ptdev);
1700 	u32 req, ack, evts;
1701 
1702 	lockdep_assert_held(&ptdev->scheduler->lock);
1703 
1704 	req = READ_ONCE(glb_iface->input->req);
1705 	ack = READ_ONCE(glb_iface->output->ack);
1706 	evts = (req ^ ack) & GLB_EVT_MASK;
1707 
1708 	if (evts & GLB_IDLE)
1709 		sched_process_idle_event_locked(ptdev);
1710 }
1711 
process_fw_events_work(struct work_struct * work)1712 static void process_fw_events_work(struct work_struct *work)
1713 {
1714 	struct panthor_scheduler *sched = container_of(work, struct panthor_scheduler,
1715 						      fw_events_work);
1716 	u32 events = atomic_xchg(&sched->fw_events, 0);
1717 	struct panthor_device *ptdev = sched->ptdev;
1718 
1719 	mutex_lock(&sched->lock);
1720 
1721 	if (events & JOB_INT_GLOBAL_IF) {
1722 		sched_process_global_irq_locked(ptdev);
1723 		events &= ~JOB_INT_GLOBAL_IF;
1724 	}
1725 
1726 	while (events) {
1727 		u32 csg_id = ffs(events) - 1;
1728 
1729 		sched_process_csg_irq_locked(ptdev, csg_id);
1730 		events &= ~BIT(csg_id);
1731 	}
1732 
1733 	mutex_unlock(&sched->lock);
1734 }
1735 
1736 /**
1737  * panthor_sched_report_fw_events() - Report FW events to the scheduler.
1738  */
panthor_sched_report_fw_events(struct panthor_device * ptdev,u32 events)1739 void panthor_sched_report_fw_events(struct panthor_device *ptdev, u32 events)
1740 {
1741 	if (!ptdev->scheduler)
1742 		return;
1743 
1744 	atomic_or(events, &ptdev->scheduler->fw_events);
1745 	sched_queue_work(ptdev->scheduler, fw_events);
1746 }
1747 
fence_get_driver_name(struct dma_fence * fence)1748 static const char *fence_get_driver_name(struct dma_fence *fence)
1749 {
1750 	return "panthor";
1751 }
1752 
queue_fence_get_timeline_name(struct dma_fence * fence)1753 static const char *queue_fence_get_timeline_name(struct dma_fence *fence)
1754 {
1755 	return "queue-fence";
1756 }
1757 
1758 static const struct dma_fence_ops panthor_queue_fence_ops = {
1759 	.get_driver_name = fence_get_driver_name,
1760 	.get_timeline_name = queue_fence_get_timeline_name,
1761 };
1762 
1763 struct panthor_csg_slots_upd_ctx {
1764 	u32 update_mask;
1765 	u32 timedout_mask;
1766 	struct {
1767 		u32 value;
1768 		u32 mask;
1769 	} requests[MAX_CSGS];
1770 };
1771 
csgs_upd_ctx_init(struct panthor_csg_slots_upd_ctx * ctx)1772 static void csgs_upd_ctx_init(struct panthor_csg_slots_upd_ctx *ctx)
1773 {
1774 	memset(ctx, 0, sizeof(*ctx));
1775 }
1776 
csgs_upd_ctx_queue_reqs(struct panthor_device * ptdev,struct panthor_csg_slots_upd_ctx * ctx,u32 csg_id,u32 value,u32 mask)1777 static void csgs_upd_ctx_queue_reqs(struct panthor_device *ptdev,
1778 				    struct panthor_csg_slots_upd_ctx *ctx,
1779 				    u32 csg_id, u32 value, u32 mask)
1780 {
1781 	if (drm_WARN_ON(&ptdev->base, !mask) ||
1782 	    drm_WARN_ON(&ptdev->base, csg_id >= ptdev->scheduler->csg_slot_count))
1783 		return;
1784 
1785 	ctx->requests[csg_id].value = (ctx->requests[csg_id].value & ~mask) | (value & mask);
1786 	ctx->requests[csg_id].mask |= mask;
1787 	ctx->update_mask |= BIT(csg_id);
1788 }
1789 
csgs_upd_ctx_apply_locked(struct panthor_device * ptdev,struct panthor_csg_slots_upd_ctx * ctx)1790 static int csgs_upd_ctx_apply_locked(struct panthor_device *ptdev,
1791 				     struct panthor_csg_slots_upd_ctx *ctx)
1792 {
1793 	struct panthor_scheduler *sched = ptdev->scheduler;
1794 	u32 update_slots = ctx->update_mask;
1795 
1796 	lockdep_assert_held(&sched->lock);
1797 
1798 	if (!ctx->update_mask)
1799 		return 0;
1800 
1801 	while (update_slots) {
1802 		struct panthor_fw_csg_iface *csg_iface;
1803 		u32 csg_id = ffs(update_slots) - 1;
1804 
1805 		update_slots &= ~BIT(csg_id);
1806 		csg_iface = panthor_fw_get_csg_iface(ptdev, csg_id);
1807 		panthor_fw_update_reqs(csg_iface, req,
1808 				       ctx->requests[csg_id].value,
1809 				       ctx->requests[csg_id].mask);
1810 	}
1811 
1812 	panthor_fw_ring_csg_doorbells(ptdev, ctx->update_mask);
1813 
1814 	update_slots = ctx->update_mask;
1815 	while (update_slots) {
1816 		struct panthor_fw_csg_iface *csg_iface;
1817 		u32 csg_id = ffs(update_slots) - 1;
1818 		u32 req_mask = ctx->requests[csg_id].mask, acked;
1819 		int ret;
1820 
1821 		update_slots &= ~BIT(csg_id);
1822 		csg_iface = panthor_fw_get_csg_iface(ptdev, csg_id);
1823 
1824 		ret = panthor_fw_csg_wait_acks(ptdev, csg_id, req_mask, &acked, 100);
1825 
1826 		if (acked & CSG_ENDPOINT_CONFIG)
1827 			csg_slot_sync_priority_locked(ptdev, csg_id);
1828 
1829 		if (acked & CSG_STATE_MASK)
1830 			csg_slot_sync_state_locked(ptdev, csg_id);
1831 
1832 		if (acked & CSG_STATUS_UPDATE) {
1833 			csg_slot_sync_queues_state_locked(ptdev, csg_id);
1834 			csg_slot_sync_idle_state_locked(ptdev, csg_id);
1835 		}
1836 
1837 		if (ret && acked != req_mask &&
1838 		    ((csg_iface->input->req ^ csg_iface->output->ack) & req_mask) != 0) {
1839 			drm_err(&ptdev->base, "CSG %d update request timedout", csg_id);
1840 			ctx->timedout_mask |= BIT(csg_id);
1841 		}
1842 	}
1843 
1844 	if (ctx->timedout_mask)
1845 		return -ETIMEDOUT;
1846 
1847 	return 0;
1848 }
1849 
1850 struct panthor_sched_tick_ctx {
1851 	struct list_head old_groups[PANTHOR_CSG_PRIORITY_COUNT];
1852 	struct list_head groups[PANTHOR_CSG_PRIORITY_COUNT];
1853 	u32 idle_group_count;
1854 	u32 group_count;
1855 	enum panthor_csg_priority min_priority;
1856 	struct panthor_vm *vms[MAX_CS_PER_CSG];
1857 	u32 as_count;
1858 	bool immediate_tick;
1859 	u32 csg_upd_failed_mask;
1860 };
1861 
1862 static bool
tick_ctx_is_full(const struct panthor_scheduler * sched,const struct panthor_sched_tick_ctx * ctx)1863 tick_ctx_is_full(const struct panthor_scheduler *sched,
1864 		 const struct panthor_sched_tick_ctx *ctx)
1865 {
1866 	return ctx->group_count == sched->csg_slot_count;
1867 }
1868 
1869 static bool
group_is_idle(struct panthor_group * group)1870 group_is_idle(struct panthor_group *group)
1871 {
1872 	struct panthor_device *ptdev = group->ptdev;
1873 	u32 inactive_queues;
1874 
1875 	if (group->csg_id >= 0)
1876 		return ptdev->scheduler->csg_slots[group->csg_id].idle;
1877 
1878 	inactive_queues = group->idle_queues | group->blocked_queues;
1879 	return hweight32(inactive_queues) == group->queue_count;
1880 }
1881 
1882 static bool
group_can_run(struct panthor_group * group)1883 group_can_run(struct panthor_group *group)
1884 {
1885 	return group->state != PANTHOR_CS_GROUP_TERMINATED &&
1886 	       group->state != PANTHOR_CS_GROUP_UNKNOWN_STATE &&
1887 	       !group->destroyed && group->fatal_queues == 0 &&
1888 	       !group->timedout;
1889 }
1890 
1891 static void
tick_ctx_pick_groups_from_list(const struct panthor_scheduler * sched,struct panthor_sched_tick_ctx * ctx,struct list_head * queue,bool skip_idle_groups,bool owned_by_tick_ctx)1892 tick_ctx_pick_groups_from_list(const struct panthor_scheduler *sched,
1893 			       struct panthor_sched_tick_ctx *ctx,
1894 			       struct list_head *queue,
1895 			       bool skip_idle_groups,
1896 			       bool owned_by_tick_ctx)
1897 {
1898 	struct panthor_group *group, *tmp;
1899 
1900 	if (tick_ctx_is_full(sched, ctx))
1901 		return;
1902 
1903 	list_for_each_entry_safe(group, tmp, queue, run_node) {
1904 		u32 i;
1905 
1906 		if (!group_can_run(group))
1907 			continue;
1908 
1909 		if (skip_idle_groups && group_is_idle(group))
1910 			continue;
1911 
1912 		for (i = 0; i < ctx->as_count; i++) {
1913 			if (ctx->vms[i] == group->vm)
1914 				break;
1915 		}
1916 
1917 		if (i == ctx->as_count && ctx->as_count == sched->as_slot_count)
1918 			continue;
1919 
1920 		if (!owned_by_tick_ctx)
1921 			group_get(group);
1922 
1923 		list_move_tail(&group->run_node, &ctx->groups[group->priority]);
1924 		ctx->group_count++;
1925 		if (group_is_idle(group))
1926 			ctx->idle_group_count++;
1927 
1928 		if (i == ctx->as_count)
1929 			ctx->vms[ctx->as_count++] = group->vm;
1930 
1931 		if (ctx->min_priority > group->priority)
1932 			ctx->min_priority = group->priority;
1933 
1934 		if (tick_ctx_is_full(sched, ctx))
1935 			return;
1936 	}
1937 }
1938 
1939 static void
tick_ctx_insert_old_group(struct panthor_scheduler * sched,struct panthor_sched_tick_ctx * ctx,struct panthor_group * group,bool full_tick)1940 tick_ctx_insert_old_group(struct panthor_scheduler *sched,
1941 			  struct panthor_sched_tick_ctx *ctx,
1942 			  struct panthor_group *group,
1943 			  bool full_tick)
1944 {
1945 	struct panthor_csg_slot *csg_slot = &sched->csg_slots[group->csg_id];
1946 	struct panthor_group *other_group;
1947 
1948 	if (!full_tick) {
1949 		list_add_tail(&group->run_node, &ctx->old_groups[group->priority]);
1950 		return;
1951 	}
1952 
1953 	/* Rotate to make sure groups with lower CSG slot
1954 	 * priorities have a chance to get a higher CSG slot
1955 	 * priority next time they get picked. This priority
1956 	 * has an impact on resource request ordering, so it's
1957 	 * important to make sure we don't let one group starve
1958 	 * all other groups with the same group priority.
1959 	 */
1960 	list_for_each_entry(other_group,
1961 			    &ctx->old_groups[csg_slot->group->priority],
1962 			    run_node) {
1963 		struct panthor_csg_slot *other_csg_slot = &sched->csg_slots[other_group->csg_id];
1964 
1965 		if (other_csg_slot->priority > csg_slot->priority) {
1966 			list_add_tail(&csg_slot->group->run_node, &other_group->run_node);
1967 			return;
1968 		}
1969 	}
1970 
1971 	list_add_tail(&group->run_node, &ctx->old_groups[group->priority]);
1972 }
1973 
1974 static void
tick_ctx_init(struct panthor_scheduler * sched,struct panthor_sched_tick_ctx * ctx,bool full_tick)1975 tick_ctx_init(struct panthor_scheduler *sched,
1976 	      struct panthor_sched_tick_ctx *ctx,
1977 	      bool full_tick)
1978 {
1979 	struct panthor_device *ptdev = sched->ptdev;
1980 	struct panthor_csg_slots_upd_ctx upd_ctx;
1981 	int ret;
1982 	u32 i;
1983 
1984 	memset(ctx, 0, sizeof(*ctx));
1985 	csgs_upd_ctx_init(&upd_ctx);
1986 
1987 	ctx->min_priority = PANTHOR_CSG_PRIORITY_COUNT;
1988 	for (i = 0; i < ARRAY_SIZE(ctx->groups); i++) {
1989 		INIT_LIST_HEAD(&ctx->groups[i]);
1990 		INIT_LIST_HEAD(&ctx->old_groups[i]);
1991 	}
1992 
1993 	for (i = 0; i < sched->csg_slot_count; i++) {
1994 		struct panthor_csg_slot *csg_slot = &sched->csg_slots[i];
1995 		struct panthor_group *group = csg_slot->group;
1996 		struct panthor_fw_csg_iface *csg_iface;
1997 
1998 		if (!group)
1999 			continue;
2000 
2001 		csg_iface = panthor_fw_get_csg_iface(ptdev, i);
2002 		group_get(group);
2003 
2004 		/* If there was unhandled faults on the VM, force processing of
2005 		 * CSG IRQs, so we can flag the faulty queue.
2006 		 */
2007 		if (panthor_vm_has_unhandled_faults(group->vm)) {
2008 			sched_process_csg_irq_locked(ptdev, i);
2009 
2010 			/* No fatal fault reported, flag all queues as faulty. */
2011 			if (!group->fatal_queues)
2012 				group->fatal_queues |= GENMASK(group->queue_count - 1, 0);
2013 		}
2014 
2015 		tick_ctx_insert_old_group(sched, ctx, group, full_tick);
2016 		csgs_upd_ctx_queue_reqs(ptdev, &upd_ctx, i,
2017 					csg_iface->output->ack ^ CSG_STATUS_UPDATE,
2018 					CSG_STATUS_UPDATE);
2019 	}
2020 
2021 	ret = csgs_upd_ctx_apply_locked(ptdev, &upd_ctx);
2022 	if (ret) {
2023 		panthor_device_schedule_reset(ptdev);
2024 		ctx->csg_upd_failed_mask |= upd_ctx.timedout_mask;
2025 	}
2026 }
2027 
2028 static void
group_term_post_processing(struct panthor_group * group)2029 group_term_post_processing(struct panthor_group *group)
2030 {
2031 	struct panthor_job *job, *tmp;
2032 	LIST_HEAD(faulty_jobs);
2033 	bool cookie;
2034 	u32 i = 0;
2035 
2036 	if (drm_WARN_ON(&group->ptdev->base, group_can_run(group)))
2037 		return;
2038 
2039 	cookie = dma_fence_begin_signalling();
2040 	for (i = 0; i < group->queue_count; i++) {
2041 		struct panthor_queue *queue = group->queues[i];
2042 		struct panthor_syncobj_64b *syncobj;
2043 		int err;
2044 
2045 		if (group->fatal_queues & BIT(i))
2046 			err = -EINVAL;
2047 		else if (group->timedout)
2048 			err = -ETIMEDOUT;
2049 		else
2050 			err = -ECANCELED;
2051 
2052 		if (!queue)
2053 			continue;
2054 
2055 		spin_lock(&queue->fence_ctx.lock);
2056 		list_for_each_entry_safe(job, tmp, &queue->fence_ctx.in_flight_jobs, node) {
2057 			list_move_tail(&job->node, &faulty_jobs);
2058 			dma_fence_set_error(job->done_fence, err);
2059 			dma_fence_signal_locked(job->done_fence);
2060 		}
2061 		spin_unlock(&queue->fence_ctx.lock);
2062 
2063 		/* Manually update the syncobj seqno to unblock waiters. */
2064 		syncobj = group->syncobjs->kmap + (i * sizeof(*syncobj));
2065 		syncobj->status = ~0;
2066 		syncobj->seqno = atomic64_read(&queue->fence_ctx.seqno);
2067 		sched_queue_work(group->ptdev->scheduler, sync_upd);
2068 	}
2069 	dma_fence_end_signalling(cookie);
2070 
2071 	list_for_each_entry_safe(job, tmp, &faulty_jobs, node) {
2072 		list_del_init(&job->node);
2073 		panthor_job_put(&job->base);
2074 	}
2075 }
2076 
group_term_work(struct work_struct * work)2077 static void group_term_work(struct work_struct *work)
2078 {
2079 	struct panthor_group *group =
2080 		container_of(work, struct panthor_group, term_work);
2081 
2082 	group_term_post_processing(group);
2083 	group_put(group);
2084 }
2085 
2086 static void
tick_ctx_cleanup(struct panthor_scheduler * sched,struct panthor_sched_tick_ctx * ctx)2087 tick_ctx_cleanup(struct panthor_scheduler *sched,
2088 		 struct panthor_sched_tick_ctx *ctx)
2089 {
2090 	struct panthor_device *ptdev = sched->ptdev;
2091 	struct panthor_group *group, *tmp;
2092 	u32 i;
2093 
2094 	for (i = 0; i < ARRAY_SIZE(ctx->old_groups); i++) {
2095 		list_for_each_entry_safe(group, tmp, &ctx->old_groups[i], run_node) {
2096 			/* If everything went fine, we should only have groups
2097 			 * to be terminated in the old_groups lists.
2098 			 */
2099 			drm_WARN_ON(&ptdev->base, !ctx->csg_upd_failed_mask &&
2100 				    group_can_run(group));
2101 
2102 			if (!group_can_run(group)) {
2103 				list_del_init(&group->run_node);
2104 				list_del_init(&group->wait_node);
2105 				group_queue_work(group, term);
2106 			} else if (group->csg_id >= 0) {
2107 				list_del_init(&group->run_node);
2108 			} else {
2109 				list_move(&group->run_node,
2110 					  group_is_idle(group) ?
2111 					  &sched->groups.idle[group->priority] :
2112 					  &sched->groups.runnable[group->priority]);
2113 			}
2114 			group_put(group);
2115 		}
2116 	}
2117 
2118 	for (i = 0; i < ARRAY_SIZE(ctx->groups); i++) {
2119 		/* If everything went fine, the groups to schedule lists should
2120 		 * be empty.
2121 		 */
2122 		drm_WARN_ON(&ptdev->base,
2123 			    !ctx->csg_upd_failed_mask && !list_empty(&ctx->groups[i]));
2124 
2125 		list_for_each_entry_safe(group, tmp, &ctx->groups[i], run_node) {
2126 			if (group->csg_id >= 0) {
2127 				list_del_init(&group->run_node);
2128 			} else {
2129 				list_move(&group->run_node,
2130 					  group_is_idle(group) ?
2131 					  &sched->groups.idle[group->priority] :
2132 					  &sched->groups.runnable[group->priority]);
2133 			}
2134 			group_put(group);
2135 		}
2136 	}
2137 }
2138 
2139 static void
tick_ctx_apply(struct panthor_scheduler * sched,struct panthor_sched_tick_ctx * ctx)2140 tick_ctx_apply(struct panthor_scheduler *sched, struct panthor_sched_tick_ctx *ctx)
2141 {
2142 	struct panthor_group *group, *tmp;
2143 	struct panthor_device *ptdev = sched->ptdev;
2144 	struct panthor_csg_slot *csg_slot;
2145 	int prio, new_csg_prio = MAX_CSG_PRIO, i;
2146 	u32 free_csg_slots = 0;
2147 	struct panthor_csg_slots_upd_ctx upd_ctx;
2148 	int ret;
2149 
2150 	csgs_upd_ctx_init(&upd_ctx);
2151 
2152 	for (prio = PANTHOR_CSG_PRIORITY_COUNT - 1; prio >= 0; prio--) {
2153 		/* Suspend or terminate evicted groups. */
2154 		list_for_each_entry(group, &ctx->old_groups[prio], run_node) {
2155 			bool term = !group_can_run(group);
2156 			int csg_id = group->csg_id;
2157 
2158 			if (drm_WARN_ON(&ptdev->base, csg_id < 0))
2159 				continue;
2160 
2161 			csg_slot = &sched->csg_slots[csg_id];
2162 			csgs_upd_ctx_queue_reqs(ptdev, &upd_ctx, csg_id,
2163 						term ? CSG_STATE_TERMINATE : CSG_STATE_SUSPEND,
2164 						CSG_STATE_MASK);
2165 		}
2166 
2167 		/* Update priorities on already running groups. */
2168 		list_for_each_entry(group, &ctx->groups[prio], run_node) {
2169 			struct panthor_fw_csg_iface *csg_iface;
2170 			int csg_id = group->csg_id;
2171 
2172 			if (csg_id < 0) {
2173 				new_csg_prio--;
2174 				continue;
2175 			}
2176 
2177 			csg_slot = &sched->csg_slots[csg_id];
2178 			csg_iface = panthor_fw_get_csg_iface(ptdev, csg_id);
2179 			if (csg_slot->priority == new_csg_prio) {
2180 				new_csg_prio--;
2181 				continue;
2182 			}
2183 
2184 			panthor_fw_update_reqs(csg_iface, endpoint_req,
2185 					       CSG_EP_REQ_PRIORITY(new_csg_prio),
2186 					       CSG_EP_REQ_PRIORITY_MASK);
2187 			csgs_upd_ctx_queue_reqs(ptdev, &upd_ctx, csg_id,
2188 						csg_iface->output->ack ^ CSG_ENDPOINT_CONFIG,
2189 						CSG_ENDPOINT_CONFIG);
2190 			new_csg_prio--;
2191 		}
2192 	}
2193 
2194 	ret = csgs_upd_ctx_apply_locked(ptdev, &upd_ctx);
2195 	if (ret) {
2196 		panthor_device_schedule_reset(ptdev);
2197 		ctx->csg_upd_failed_mask |= upd_ctx.timedout_mask;
2198 		return;
2199 	}
2200 
2201 	/* Unbind evicted groups. */
2202 	for (prio = PANTHOR_CSG_PRIORITY_COUNT - 1; prio >= 0; prio--) {
2203 		list_for_each_entry(group, &ctx->old_groups[prio], run_node) {
2204 			/* This group is gone. Process interrupts to clear
2205 			 * any pending interrupts before we start the new
2206 			 * group.
2207 			 */
2208 			if (group->csg_id >= 0)
2209 				sched_process_csg_irq_locked(ptdev, group->csg_id);
2210 
2211 			group_unbind_locked(group);
2212 		}
2213 	}
2214 
2215 	for (i = 0; i < sched->csg_slot_count; i++) {
2216 		if (!sched->csg_slots[i].group)
2217 			free_csg_slots |= BIT(i);
2218 	}
2219 
2220 	csgs_upd_ctx_init(&upd_ctx);
2221 	new_csg_prio = MAX_CSG_PRIO;
2222 
2223 	/* Start new groups. */
2224 	for (prio = PANTHOR_CSG_PRIORITY_COUNT - 1; prio >= 0; prio--) {
2225 		list_for_each_entry(group, &ctx->groups[prio], run_node) {
2226 			int csg_id = group->csg_id;
2227 			struct panthor_fw_csg_iface *csg_iface;
2228 
2229 			if (csg_id >= 0) {
2230 				new_csg_prio--;
2231 				continue;
2232 			}
2233 
2234 			csg_id = ffs(free_csg_slots) - 1;
2235 			if (drm_WARN_ON(&ptdev->base, csg_id < 0))
2236 				break;
2237 
2238 			csg_iface = panthor_fw_get_csg_iface(ptdev, csg_id);
2239 			csg_slot = &sched->csg_slots[csg_id];
2240 			group_bind_locked(group, csg_id);
2241 			csg_slot_prog_locked(ptdev, csg_id, new_csg_prio--);
2242 			csgs_upd_ctx_queue_reqs(ptdev, &upd_ctx, csg_id,
2243 						group->state == PANTHOR_CS_GROUP_SUSPENDED ?
2244 						CSG_STATE_RESUME : CSG_STATE_START,
2245 						CSG_STATE_MASK);
2246 			csgs_upd_ctx_queue_reqs(ptdev, &upd_ctx, csg_id,
2247 						csg_iface->output->ack ^ CSG_ENDPOINT_CONFIG,
2248 						CSG_ENDPOINT_CONFIG);
2249 			free_csg_slots &= ~BIT(csg_id);
2250 		}
2251 	}
2252 
2253 	ret = csgs_upd_ctx_apply_locked(ptdev, &upd_ctx);
2254 	if (ret) {
2255 		panthor_device_schedule_reset(ptdev);
2256 		ctx->csg_upd_failed_mask |= upd_ctx.timedout_mask;
2257 		return;
2258 	}
2259 
2260 	for (prio = PANTHOR_CSG_PRIORITY_COUNT - 1; prio >= 0; prio--) {
2261 		list_for_each_entry_safe(group, tmp, &ctx->groups[prio], run_node) {
2262 			list_del_init(&group->run_node);
2263 
2264 			/* If the group has been destroyed while we were
2265 			 * scheduling, ask for an immediate tick to
2266 			 * re-evaluate as soon as possible and get rid of
2267 			 * this dangling group.
2268 			 */
2269 			if (group->destroyed)
2270 				ctx->immediate_tick = true;
2271 			group_put(group);
2272 		}
2273 
2274 		/* Return evicted groups to the idle or run queues. Groups
2275 		 * that can no longer be run (because they've been destroyed
2276 		 * or experienced an unrecoverable error) will be scheduled
2277 		 * for destruction in tick_ctx_cleanup().
2278 		 */
2279 		list_for_each_entry_safe(group, tmp, &ctx->old_groups[prio], run_node) {
2280 			if (!group_can_run(group))
2281 				continue;
2282 
2283 			if (group_is_idle(group))
2284 				list_move_tail(&group->run_node, &sched->groups.idle[prio]);
2285 			else
2286 				list_move_tail(&group->run_node, &sched->groups.runnable[prio]);
2287 			group_put(group);
2288 		}
2289 	}
2290 
2291 	sched->used_csg_slot_count = ctx->group_count;
2292 	sched->might_have_idle_groups = ctx->idle_group_count > 0;
2293 }
2294 
2295 static u64
tick_ctx_update_resched_target(struct panthor_scheduler * sched,const struct panthor_sched_tick_ctx * ctx)2296 tick_ctx_update_resched_target(struct panthor_scheduler *sched,
2297 			       const struct panthor_sched_tick_ctx *ctx)
2298 {
2299 	/* We had space left, no need to reschedule until some external event happens. */
2300 	if (!tick_ctx_is_full(sched, ctx))
2301 		goto no_tick;
2302 
2303 	/* If idle groups were scheduled, no need to wake up until some external
2304 	 * event happens (group unblocked, new job submitted, ...).
2305 	 */
2306 	if (ctx->idle_group_count)
2307 		goto no_tick;
2308 
2309 	if (drm_WARN_ON(&sched->ptdev->base, ctx->min_priority >= PANTHOR_CSG_PRIORITY_COUNT))
2310 		goto no_tick;
2311 
2312 	/* If there are groups of the same priority waiting, we need to
2313 	 * keep the scheduler ticking, otherwise, we'll just wait for
2314 	 * new groups with higher priority to be queued.
2315 	 */
2316 	if (!list_empty(&sched->groups.runnable[ctx->min_priority])) {
2317 		u64 resched_target = sched->last_tick + sched->tick_period;
2318 
2319 		if (time_before64(sched->resched_target, sched->last_tick) ||
2320 		    time_before64(resched_target, sched->resched_target))
2321 			sched->resched_target = resched_target;
2322 
2323 		return sched->resched_target - sched->last_tick;
2324 	}
2325 
2326 no_tick:
2327 	sched->resched_target = U64_MAX;
2328 	return U64_MAX;
2329 }
2330 
tick_work(struct work_struct * work)2331 static void tick_work(struct work_struct *work)
2332 {
2333 	struct panthor_scheduler *sched = container_of(work, struct panthor_scheduler,
2334 						      tick_work.work);
2335 	struct panthor_device *ptdev = sched->ptdev;
2336 	struct panthor_sched_tick_ctx ctx;
2337 	u64 remaining_jiffies = 0, resched_delay;
2338 	u64 now = get_jiffies_64();
2339 	int prio, ret, cookie;
2340 
2341 	if (!drm_dev_enter(&ptdev->base, &cookie))
2342 		return;
2343 
2344 	ret = pm_runtime_resume_and_get(ptdev->base.dev);
2345 	if (drm_WARN_ON(&ptdev->base, ret))
2346 		goto out_dev_exit;
2347 
2348 	if (time_before64(now, sched->resched_target))
2349 		remaining_jiffies = sched->resched_target - now;
2350 
2351 	mutex_lock(&sched->lock);
2352 	if (panthor_device_reset_is_pending(sched->ptdev))
2353 		goto out_unlock;
2354 
2355 	tick_ctx_init(sched, &ctx, remaining_jiffies != 0);
2356 	if (ctx.csg_upd_failed_mask)
2357 		goto out_cleanup_ctx;
2358 
2359 	if (remaining_jiffies) {
2360 		/* Scheduling forced in the middle of a tick. Only RT groups
2361 		 * can preempt non-RT ones. Currently running RT groups can't be
2362 		 * preempted.
2363 		 */
2364 		for (prio = PANTHOR_CSG_PRIORITY_COUNT - 1;
2365 		     prio >= 0 && !tick_ctx_is_full(sched, &ctx);
2366 		     prio--) {
2367 			tick_ctx_pick_groups_from_list(sched, &ctx, &ctx.old_groups[prio],
2368 						       true, true);
2369 			if (prio == PANTHOR_CSG_PRIORITY_RT) {
2370 				tick_ctx_pick_groups_from_list(sched, &ctx,
2371 							       &sched->groups.runnable[prio],
2372 							       true, false);
2373 			}
2374 		}
2375 	}
2376 
2377 	/* First pick non-idle groups */
2378 	for (prio = PANTHOR_CSG_PRIORITY_COUNT - 1;
2379 	     prio >= 0 && !tick_ctx_is_full(sched, &ctx);
2380 	     prio--) {
2381 		tick_ctx_pick_groups_from_list(sched, &ctx, &sched->groups.runnable[prio],
2382 					       true, false);
2383 		tick_ctx_pick_groups_from_list(sched, &ctx, &ctx.old_groups[prio], true, true);
2384 	}
2385 
2386 	/* If we have free CSG slots left, pick idle groups */
2387 	for (prio = PANTHOR_CSG_PRIORITY_COUNT - 1;
2388 	     prio >= 0 && !tick_ctx_is_full(sched, &ctx);
2389 	     prio--) {
2390 		/* Check the old_group queue first to avoid reprogramming the slots */
2391 		tick_ctx_pick_groups_from_list(sched, &ctx, &ctx.old_groups[prio], false, true);
2392 		tick_ctx_pick_groups_from_list(sched, &ctx, &sched->groups.idle[prio],
2393 					       false, false);
2394 	}
2395 
2396 	tick_ctx_apply(sched, &ctx);
2397 	if (ctx.csg_upd_failed_mask)
2398 		goto out_cleanup_ctx;
2399 
2400 	if (ctx.idle_group_count == ctx.group_count) {
2401 		panthor_devfreq_record_idle(sched->ptdev);
2402 		if (sched->pm.has_ref) {
2403 			pm_runtime_put_autosuspend(ptdev->base.dev);
2404 			sched->pm.has_ref = false;
2405 		}
2406 	} else {
2407 		panthor_devfreq_record_busy(sched->ptdev);
2408 		if (!sched->pm.has_ref) {
2409 			pm_runtime_get(ptdev->base.dev);
2410 			sched->pm.has_ref = true;
2411 		}
2412 	}
2413 
2414 	sched->last_tick = now;
2415 	resched_delay = tick_ctx_update_resched_target(sched, &ctx);
2416 	if (ctx.immediate_tick)
2417 		resched_delay = 0;
2418 
2419 	if (resched_delay != U64_MAX)
2420 		sched_queue_delayed_work(sched, tick, resched_delay);
2421 
2422 out_cleanup_ctx:
2423 	tick_ctx_cleanup(sched, &ctx);
2424 
2425 out_unlock:
2426 	mutex_unlock(&sched->lock);
2427 	pm_runtime_mark_last_busy(ptdev->base.dev);
2428 	pm_runtime_put_autosuspend(ptdev->base.dev);
2429 
2430 out_dev_exit:
2431 	drm_dev_exit(cookie);
2432 }
2433 
panthor_queue_eval_syncwait(struct panthor_group * group,u8 queue_idx)2434 static int panthor_queue_eval_syncwait(struct panthor_group *group, u8 queue_idx)
2435 {
2436 	struct panthor_queue *queue = group->queues[queue_idx];
2437 	union {
2438 		struct panthor_syncobj_64b sync64;
2439 		struct panthor_syncobj_32b sync32;
2440 	} *syncobj;
2441 	bool result;
2442 	u64 value;
2443 
2444 	syncobj = panthor_queue_get_syncwait_obj(group, queue);
2445 	if (!syncobj)
2446 		return -EINVAL;
2447 
2448 	value = queue->syncwait.sync64 ?
2449 		syncobj->sync64.seqno :
2450 		syncobj->sync32.seqno;
2451 
2452 	if (queue->syncwait.gt)
2453 		result = value > queue->syncwait.ref;
2454 	else
2455 		result = value <= queue->syncwait.ref;
2456 
2457 	if (result)
2458 		panthor_queue_put_syncwait_obj(queue);
2459 
2460 	return result;
2461 }
2462 
sync_upd_work(struct work_struct * work)2463 static void sync_upd_work(struct work_struct *work)
2464 {
2465 	struct panthor_scheduler *sched = container_of(work,
2466 						      struct panthor_scheduler,
2467 						      sync_upd_work);
2468 	struct panthor_group *group, *tmp;
2469 	bool immediate_tick = false;
2470 
2471 	mutex_lock(&sched->lock);
2472 	list_for_each_entry_safe(group, tmp, &sched->groups.waiting, wait_node) {
2473 		u32 tested_queues = group->blocked_queues;
2474 		u32 unblocked_queues = 0;
2475 
2476 		while (tested_queues) {
2477 			u32 cs_id = ffs(tested_queues) - 1;
2478 			int ret;
2479 
2480 			ret = panthor_queue_eval_syncwait(group, cs_id);
2481 			drm_WARN_ON(&group->ptdev->base, ret < 0);
2482 			if (ret)
2483 				unblocked_queues |= BIT(cs_id);
2484 
2485 			tested_queues &= ~BIT(cs_id);
2486 		}
2487 
2488 		if (unblocked_queues) {
2489 			group->blocked_queues &= ~unblocked_queues;
2490 
2491 			if (group->csg_id < 0) {
2492 				list_move(&group->run_node,
2493 					  &sched->groups.runnable[group->priority]);
2494 				if (group->priority == PANTHOR_CSG_PRIORITY_RT)
2495 					immediate_tick = true;
2496 			}
2497 		}
2498 
2499 		if (!group->blocked_queues)
2500 			list_del_init(&group->wait_node);
2501 	}
2502 	mutex_unlock(&sched->lock);
2503 
2504 	if (immediate_tick)
2505 		sched_queue_delayed_work(sched, tick, 0);
2506 }
2507 
group_schedule_locked(struct panthor_group * group,u32 queue_mask)2508 static void group_schedule_locked(struct panthor_group *group, u32 queue_mask)
2509 {
2510 	struct panthor_device *ptdev = group->ptdev;
2511 	struct panthor_scheduler *sched = ptdev->scheduler;
2512 	struct list_head *queue = &sched->groups.runnable[group->priority];
2513 	u64 delay_jiffies = 0;
2514 	bool was_idle;
2515 	u64 now;
2516 
2517 	if (!group_can_run(group))
2518 		return;
2519 
2520 	/* All updated queues are blocked, no need to wake up the scheduler. */
2521 	if ((queue_mask & group->blocked_queues) == queue_mask)
2522 		return;
2523 
2524 	was_idle = group_is_idle(group);
2525 	group->idle_queues &= ~queue_mask;
2526 
2527 	/* Don't mess up with the lists if we're in a middle of a reset. */
2528 	if (atomic_read(&sched->reset.in_progress))
2529 		return;
2530 
2531 	if (was_idle && !group_is_idle(group))
2532 		list_move_tail(&group->run_node, queue);
2533 
2534 	/* RT groups are preemptive. */
2535 	if (group->priority == PANTHOR_CSG_PRIORITY_RT) {
2536 		sched_queue_delayed_work(sched, tick, 0);
2537 		return;
2538 	}
2539 
2540 	/* Some groups might be idle, force an immediate tick to
2541 	 * re-evaluate.
2542 	 */
2543 	if (sched->might_have_idle_groups) {
2544 		sched_queue_delayed_work(sched, tick, 0);
2545 		return;
2546 	}
2547 
2548 	/* Scheduler is ticking, nothing to do. */
2549 	if (sched->resched_target != U64_MAX) {
2550 		/* If there are free slots, force immediating ticking. */
2551 		if (sched->used_csg_slot_count < sched->csg_slot_count)
2552 			sched_queue_delayed_work(sched, tick, 0);
2553 
2554 		return;
2555 	}
2556 
2557 	/* Scheduler tick was off, recalculate the resched_target based on the
2558 	 * last tick event, and queue the scheduler work.
2559 	 */
2560 	now = get_jiffies_64();
2561 	sched->resched_target = sched->last_tick + sched->tick_period;
2562 	if (sched->used_csg_slot_count == sched->csg_slot_count &&
2563 	    time_before64(now, sched->resched_target))
2564 		delay_jiffies = min_t(unsigned long, sched->resched_target - now, ULONG_MAX);
2565 
2566 	sched_queue_delayed_work(sched, tick, delay_jiffies);
2567 }
2568 
queue_stop(struct panthor_queue * queue,struct panthor_job * bad_job)2569 static void queue_stop(struct panthor_queue *queue,
2570 		       struct panthor_job *bad_job)
2571 {
2572 	drm_sched_stop(&queue->scheduler, bad_job ? &bad_job->base : NULL);
2573 }
2574 
queue_start(struct panthor_queue * queue)2575 static void queue_start(struct panthor_queue *queue)
2576 {
2577 	struct panthor_job *job;
2578 
2579 	/* Re-assign the parent fences. */
2580 	list_for_each_entry(job, &queue->scheduler.pending_list, base.list)
2581 		job->base.s_fence->parent = dma_fence_get(job->done_fence);
2582 
2583 	drm_sched_start(&queue->scheduler);
2584 }
2585 
panthor_group_stop(struct panthor_group * group)2586 static void panthor_group_stop(struct panthor_group *group)
2587 {
2588 	struct panthor_scheduler *sched = group->ptdev->scheduler;
2589 
2590 	lockdep_assert_held(&sched->reset.lock);
2591 
2592 	for (u32 i = 0; i < group->queue_count; i++)
2593 		queue_stop(group->queues[i], NULL);
2594 
2595 	group_get(group);
2596 	list_move_tail(&group->run_node, &sched->reset.stopped_groups);
2597 }
2598 
panthor_group_start(struct panthor_group * group)2599 static void panthor_group_start(struct panthor_group *group)
2600 {
2601 	struct panthor_scheduler *sched = group->ptdev->scheduler;
2602 
2603 	lockdep_assert_held(&group->ptdev->scheduler->reset.lock);
2604 
2605 	for (u32 i = 0; i < group->queue_count; i++)
2606 		queue_start(group->queues[i]);
2607 
2608 	if (group_can_run(group)) {
2609 		list_move_tail(&group->run_node,
2610 			       group_is_idle(group) ?
2611 			       &sched->groups.idle[group->priority] :
2612 			       &sched->groups.runnable[group->priority]);
2613 	} else {
2614 		list_del_init(&group->run_node);
2615 		list_del_init(&group->wait_node);
2616 		group_queue_work(group, term);
2617 	}
2618 
2619 	group_put(group);
2620 }
2621 
panthor_sched_immediate_tick(struct panthor_device * ptdev)2622 static void panthor_sched_immediate_tick(struct panthor_device *ptdev)
2623 {
2624 	struct panthor_scheduler *sched = ptdev->scheduler;
2625 
2626 	sched_queue_delayed_work(sched, tick, 0);
2627 }
2628 
2629 /**
2630  * panthor_sched_report_mmu_fault() - Report MMU faults to the scheduler.
2631  */
panthor_sched_report_mmu_fault(struct panthor_device * ptdev)2632 void panthor_sched_report_mmu_fault(struct panthor_device *ptdev)
2633 {
2634 	/* Force a tick to immediately kill faulty groups. */
2635 	if (ptdev->scheduler)
2636 		panthor_sched_immediate_tick(ptdev);
2637 }
2638 
panthor_sched_resume(struct panthor_device * ptdev)2639 void panthor_sched_resume(struct panthor_device *ptdev)
2640 {
2641 	/* Force a tick to re-evaluate after a resume. */
2642 	panthor_sched_immediate_tick(ptdev);
2643 }
2644 
panthor_sched_suspend(struct panthor_device * ptdev)2645 void panthor_sched_suspend(struct panthor_device *ptdev)
2646 {
2647 	struct panthor_scheduler *sched = ptdev->scheduler;
2648 	struct panthor_csg_slots_upd_ctx upd_ctx;
2649 	struct panthor_group *group;
2650 	u32 suspended_slots;
2651 	u32 i;
2652 
2653 	mutex_lock(&sched->lock);
2654 	csgs_upd_ctx_init(&upd_ctx);
2655 	for (i = 0; i < sched->csg_slot_count; i++) {
2656 		struct panthor_csg_slot *csg_slot = &sched->csg_slots[i];
2657 
2658 		if (csg_slot->group) {
2659 			csgs_upd_ctx_queue_reqs(ptdev, &upd_ctx, i,
2660 						group_can_run(csg_slot->group) ?
2661 						CSG_STATE_SUSPEND : CSG_STATE_TERMINATE,
2662 						CSG_STATE_MASK);
2663 		}
2664 	}
2665 
2666 	suspended_slots = upd_ctx.update_mask;
2667 
2668 	csgs_upd_ctx_apply_locked(ptdev, &upd_ctx);
2669 	suspended_slots &= ~upd_ctx.timedout_mask;
2670 
2671 	if (upd_ctx.timedout_mask) {
2672 		u32 slot_mask = upd_ctx.timedout_mask;
2673 
2674 		drm_err(&ptdev->base, "CSG suspend failed, escalating to termination");
2675 		csgs_upd_ctx_init(&upd_ctx);
2676 		while (slot_mask) {
2677 			u32 csg_id = ffs(slot_mask) - 1;
2678 			struct panthor_csg_slot *csg_slot = &sched->csg_slots[csg_id];
2679 
2680 			/* We consider group suspension failures as fatal and flag the
2681 			 * group as unusable by setting timedout=true.
2682 			 */
2683 			csg_slot->group->timedout = true;
2684 
2685 			csgs_upd_ctx_queue_reqs(ptdev, &upd_ctx, csg_id,
2686 						CSG_STATE_TERMINATE,
2687 						CSG_STATE_MASK);
2688 			slot_mask &= ~BIT(csg_id);
2689 		}
2690 
2691 		csgs_upd_ctx_apply_locked(ptdev, &upd_ctx);
2692 
2693 		slot_mask = upd_ctx.timedout_mask;
2694 		while (slot_mask) {
2695 			u32 csg_id = ffs(slot_mask) - 1;
2696 			struct panthor_csg_slot *csg_slot = &sched->csg_slots[csg_id];
2697 
2698 			/* Terminate command timedout, but the soft-reset will
2699 			 * automatically terminate all active groups, so let's
2700 			 * force the state to halted here.
2701 			 */
2702 			if (csg_slot->group->state != PANTHOR_CS_GROUP_TERMINATED)
2703 				csg_slot->group->state = PANTHOR_CS_GROUP_TERMINATED;
2704 			slot_mask &= ~BIT(csg_id);
2705 		}
2706 	}
2707 
2708 	/* Flush L2 and LSC caches to make sure suspend state is up-to-date.
2709 	 * If the flush fails, flag all queues for termination.
2710 	 */
2711 	if (suspended_slots) {
2712 		bool flush_caches_failed = false;
2713 		u32 slot_mask = suspended_slots;
2714 
2715 		if (panthor_gpu_flush_caches(ptdev, CACHE_CLEAN, CACHE_CLEAN, 0))
2716 			flush_caches_failed = true;
2717 
2718 		while (slot_mask) {
2719 			u32 csg_id = ffs(slot_mask) - 1;
2720 			struct panthor_csg_slot *csg_slot = &sched->csg_slots[csg_id];
2721 
2722 			if (flush_caches_failed)
2723 				csg_slot->group->state = PANTHOR_CS_GROUP_TERMINATED;
2724 			else
2725 				csg_slot_sync_update_locked(ptdev, csg_id);
2726 
2727 			slot_mask &= ~BIT(csg_id);
2728 		}
2729 	}
2730 
2731 	for (i = 0; i < sched->csg_slot_count; i++) {
2732 		struct panthor_csg_slot *csg_slot = &sched->csg_slots[i];
2733 
2734 		group = csg_slot->group;
2735 		if (!group)
2736 			continue;
2737 
2738 		group_get(group);
2739 
2740 		if (group->csg_id >= 0)
2741 			sched_process_csg_irq_locked(ptdev, group->csg_id);
2742 
2743 		group_unbind_locked(group);
2744 
2745 		drm_WARN_ON(&group->ptdev->base, !list_empty(&group->run_node));
2746 
2747 		if (group_can_run(group)) {
2748 			list_add(&group->run_node,
2749 				 &sched->groups.idle[group->priority]);
2750 		} else {
2751 			/* We don't bother stopping the scheduler if the group is
2752 			 * faulty, the group termination work will finish the job.
2753 			 */
2754 			list_del_init(&group->wait_node);
2755 			group_queue_work(group, term);
2756 		}
2757 		group_put(group);
2758 	}
2759 	mutex_unlock(&sched->lock);
2760 }
2761 
panthor_sched_pre_reset(struct panthor_device * ptdev)2762 void panthor_sched_pre_reset(struct panthor_device *ptdev)
2763 {
2764 	struct panthor_scheduler *sched = ptdev->scheduler;
2765 	struct panthor_group *group, *group_tmp;
2766 	u32 i;
2767 
2768 	mutex_lock(&sched->reset.lock);
2769 	atomic_set(&sched->reset.in_progress, true);
2770 
2771 	/* Cancel all scheduler works. Once this is done, these works can't be
2772 	 * scheduled again until the reset operation is complete.
2773 	 */
2774 	cancel_work_sync(&sched->sync_upd_work);
2775 	cancel_delayed_work_sync(&sched->tick_work);
2776 
2777 	panthor_sched_suspend(ptdev);
2778 
2779 	/* Stop all groups that might still accept jobs, so we don't get passed
2780 	 * new jobs while we're resetting.
2781 	 */
2782 	for (i = 0; i < ARRAY_SIZE(sched->groups.runnable); i++) {
2783 		/* All groups should be in the idle lists. */
2784 		drm_WARN_ON(&ptdev->base, !list_empty(&sched->groups.runnable[i]));
2785 		list_for_each_entry_safe(group, group_tmp, &sched->groups.runnable[i], run_node)
2786 			panthor_group_stop(group);
2787 	}
2788 
2789 	for (i = 0; i < ARRAY_SIZE(sched->groups.idle); i++) {
2790 		list_for_each_entry_safe(group, group_tmp, &sched->groups.idle[i], run_node)
2791 			panthor_group_stop(group);
2792 	}
2793 
2794 	mutex_unlock(&sched->reset.lock);
2795 }
2796 
panthor_sched_post_reset(struct panthor_device * ptdev,bool reset_failed)2797 void panthor_sched_post_reset(struct panthor_device *ptdev, bool reset_failed)
2798 {
2799 	struct panthor_scheduler *sched = ptdev->scheduler;
2800 	struct panthor_group *group, *group_tmp;
2801 
2802 	mutex_lock(&sched->reset.lock);
2803 
2804 	list_for_each_entry_safe(group, group_tmp, &sched->reset.stopped_groups, run_node) {
2805 		/* Consider all previously running group as terminated if the
2806 		 * reset failed.
2807 		 */
2808 		if (reset_failed)
2809 			group->state = PANTHOR_CS_GROUP_TERMINATED;
2810 
2811 		panthor_group_start(group);
2812 	}
2813 
2814 	/* We're done resetting the GPU, clear the reset.in_progress bit so we can
2815 	 * kick the scheduler.
2816 	 */
2817 	atomic_set(&sched->reset.in_progress, false);
2818 	mutex_unlock(&sched->reset.lock);
2819 
2820 	/* No need to queue a tick and update syncs if the reset failed. */
2821 	if (!reset_failed) {
2822 		sched_queue_delayed_work(sched, tick, 0);
2823 		sched_queue_work(sched, sync_upd);
2824 	}
2825 }
2826 
group_sync_upd_work(struct work_struct * work)2827 static void group_sync_upd_work(struct work_struct *work)
2828 {
2829 	struct panthor_group *group =
2830 		container_of(work, struct panthor_group, sync_upd_work);
2831 	struct panthor_job *job, *job_tmp;
2832 	LIST_HEAD(done_jobs);
2833 	u32 queue_idx;
2834 	bool cookie;
2835 
2836 	cookie = dma_fence_begin_signalling();
2837 	for (queue_idx = 0; queue_idx < group->queue_count; queue_idx++) {
2838 		struct panthor_queue *queue = group->queues[queue_idx];
2839 		struct panthor_syncobj_64b *syncobj;
2840 
2841 		if (!queue)
2842 			continue;
2843 
2844 		syncobj = group->syncobjs->kmap + (queue_idx * sizeof(*syncobj));
2845 
2846 		spin_lock(&queue->fence_ctx.lock);
2847 		list_for_each_entry_safe(job, job_tmp, &queue->fence_ctx.in_flight_jobs, node) {
2848 			if (syncobj->seqno < job->done_fence->seqno)
2849 				break;
2850 
2851 			list_move_tail(&job->node, &done_jobs);
2852 			dma_fence_signal_locked(job->done_fence);
2853 		}
2854 		spin_unlock(&queue->fence_ctx.lock);
2855 	}
2856 	dma_fence_end_signalling(cookie);
2857 
2858 	list_for_each_entry_safe(job, job_tmp, &done_jobs, node) {
2859 		list_del_init(&job->node);
2860 		panthor_job_put(&job->base);
2861 	}
2862 
2863 	group_put(group);
2864 }
2865 
2866 struct panthor_job_ringbuf_instrs {
2867 	u64 buffer[MAX_INSTRS_PER_JOB];
2868 	u32 count;
2869 };
2870 
2871 struct panthor_job_instr {
2872 	u32 profile_mask;
2873 	u64 instr;
2874 };
2875 
2876 #define JOB_INSTR(__prof, __instr) \
2877 	{ \
2878 		.profile_mask = __prof, \
2879 		.instr = __instr, \
2880 	}
2881 
2882 static void
copy_instrs_to_ringbuf(struct panthor_queue * queue,struct panthor_job * job,struct panthor_job_ringbuf_instrs * instrs)2883 copy_instrs_to_ringbuf(struct panthor_queue *queue,
2884 		       struct panthor_job *job,
2885 		       struct panthor_job_ringbuf_instrs *instrs)
2886 {
2887 	u64 ringbuf_size = panthor_kernel_bo_size(queue->ringbuf);
2888 	u64 start = job->ringbuf.start & (ringbuf_size - 1);
2889 	u64 size, written;
2890 
2891 	/*
2892 	 * We need to write a whole slot, including any trailing zeroes
2893 	 * that may come at the end of it. Also, because instrs.buffer has
2894 	 * been zero-initialised, there's no need to pad it with 0's
2895 	 */
2896 	instrs->count = ALIGN(instrs->count, NUM_INSTRS_PER_CACHE_LINE);
2897 	size = instrs->count * sizeof(u64);
2898 	WARN_ON(size > ringbuf_size);
2899 	written = min(ringbuf_size - start, size);
2900 
2901 	memcpy(queue->ringbuf->kmap + start, instrs->buffer, written);
2902 
2903 	if (written < size)
2904 		memcpy(queue->ringbuf->kmap,
2905 		       &instrs->buffer[written / sizeof(u64)],
2906 		       size - written);
2907 }
2908 
2909 struct panthor_job_cs_params {
2910 	u32 profile_mask;
2911 	u64 addr_reg; u64 val_reg;
2912 	u64 cycle_reg; u64 time_reg;
2913 	u64 sync_addr; u64 times_addr;
2914 	u64 cs_start; u64 cs_size;
2915 	u32 last_flush; u32 waitall_mask;
2916 };
2917 
2918 static void
get_job_cs_params(struct panthor_job * job,struct panthor_job_cs_params * params)2919 get_job_cs_params(struct panthor_job *job, struct panthor_job_cs_params *params)
2920 {
2921 	struct panthor_group *group = job->group;
2922 	struct panthor_queue *queue = group->queues[job->queue_idx];
2923 	struct panthor_device *ptdev = group->ptdev;
2924 	struct panthor_scheduler *sched = ptdev->scheduler;
2925 
2926 	params->addr_reg = ptdev->csif_info.cs_reg_count -
2927 			   ptdev->csif_info.unpreserved_cs_reg_count;
2928 	params->val_reg = params->addr_reg + 2;
2929 	params->cycle_reg = params->addr_reg;
2930 	params->time_reg = params->val_reg;
2931 
2932 	params->sync_addr = panthor_kernel_bo_gpuva(group->syncobjs) +
2933 			    job->queue_idx * sizeof(struct panthor_syncobj_64b);
2934 	params->times_addr = panthor_kernel_bo_gpuva(queue->profiling.slots) +
2935 			     (job->profiling.slot * sizeof(struct panthor_job_profiling_data));
2936 	params->waitall_mask = GENMASK(sched->sb_slot_count - 1, 0);
2937 
2938 	params->cs_start = job->call_info.start;
2939 	params->cs_size = job->call_info.size;
2940 	params->last_flush = job->call_info.latest_flush;
2941 
2942 	params->profile_mask = job->profiling.mask;
2943 }
2944 
2945 #define JOB_INSTR_ALWAYS(instr) \
2946 	JOB_INSTR(PANTHOR_DEVICE_PROFILING_DISABLED, (instr))
2947 #define JOB_INSTR_TIMESTAMP(instr) \
2948 	JOB_INSTR(PANTHOR_DEVICE_PROFILING_TIMESTAMP, (instr))
2949 #define JOB_INSTR_CYCLES(instr) \
2950 	JOB_INSTR(PANTHOR_DEVICE_PROFILING_CYCLES, (instr))
2951 
2952 static void
prepare_job_instrs(const struct panthor_job_cs_params * params,struct panthor_job_ringbuf_instrs * instrs)2953 prepare_job_instrs(const struct panthor_job_cs_params *params,
2954 		   struct panthor_job_ringbuf_instrs *instrs)
2955 {
2956 	const struct panthor_job_instr instr_seq[] = {
2957 		/* MOV32 rX+2, cs.latest_flush */
2958 		JOB_INSTR_ALWAYS((2ull << 56) | (params->val_reg << 48) | params->last_flush),
2959 		/* FLUSH_CACHE2.clean_inv_all.no_wait.signal(0) rX+2 */
2960 		JOB_INSTR_ALWAYS((36ull << 56) | (0ull << 48) | (params->val_reg << 40) |
2961 				 (0 << 16) | 0x233),
2962 		/* MOV48 rX:rX+1, cycles_offset */
2963 		JOB_INSTR_CYCLES((1ull << 56) | (params->cycle_reg << 48) |
2964 				 (params->times_addr +
2965 				  offsetof(struct panthor_job_profiling_data, cycles.before))),
2966 		/* STORE_STATE cycles */
2967 		JOB_INSTR_CYCLES((40ull << 56) | (params->cycle_reg << 40) | (1ll << 32)),
2968 		/* MOV48 rX:rX+1, time_offset */
2969 		JOB_INSTR_TIMESTAMP((1ull << 56) | (params->time_reg << 48) |
2970 				    (params->times_addr +
2971 				     offsetof(struct panthor_job_profiling_data, time.before))),
2972 		/* STORE_STATE timer */
2973 		JOB_INSTR_TIMESTAMP((40ull << 56) | (params->time_reg << 40) | (0ll << 32)),
2974 		/* MOV48 rX:rX+1, cs.start */
2975 		JOB_INSTR_ALWAYS((1ull << 56) | (params->addr_reg << 48) | params->cs_start),
2976 		/* MOV32 rX+2, cs.size */
2977 		JOB_INSTR_ALWAYS((2ull << 56) | (params->val_reg << 48) | params->cs_size),
2978 		/* WAIT(0) => waits for FLUSH_CACHE2 instruction */
2979 		JOB_INSTR_ALWAYS((3ull << 56) | (1 << 16)),
2980 		/* CALL rX:rX+1, rX+2 */
2981 		JOB_INSTR_ALWAYS((32ull << 56) | (params->addr_reg << 40) |
2982 				 (params->val_reg << 32)),
2983 		/* MOV48 rX:rX+1, cycles_offset */
2984 		JOB_INSTR_CYCLES((1ull << 56) | (params->cycle_reg << 48) |
2985 				 (params->times_addr +
2986 				  offsetof(struct panthor_job_profiling_data, cycles.after))),
2987 		/* STORE_STATE cycles */
2988 		JOB_INSTR_CYCLES((40ull << 56) | (params->cycle_reg << 40) | (1ll << 32)),
2989 		/* MOV48 rX:rX+1, time_offset */
2990 		JOB_INSTR_TIMESTAMP((1ull << 56) | (params->time_reg << 48) |
2991 			  (params->times_addr +
2992 			   offsetof(struct panthor_job_profiling_data, time.after))),
2993 		/* STORE_STATE timer */
2994 		JOB_INSTR_TIMESTAMP((40ull << 56) | (params->time_reg << 40) | (0ll << 32)),
2995 		/* MOV48 rX:rX+1, sync_addr */
2996 		JOB_INSTR_ALWAYS((1ull << 56) | (params->addr_reg << 48) | params->sync_addr),
2997 		/* MOV48 rX+2, #1 */
2998 		JOB_INSTR_ALWAYS((1ull << 56) | (params->val_reg << 48) | 1),
2999 		/* WAIT(all) */
3000 		JOB_INSTR_ALWAYS((3ull << 56) | (params->waitall_mask << 16)),
3001 		/* SYNC_ADD64.system_scope.propage_err.nowait rX:rX+1, rX+2*/
3002 		JOB_INSTR_ALWAYS((51ull << 56) | (0ull << 48) | (params->addr_reg << 40) |
3003 				 (params->val_reg << 32) | (0 << 16) | 1),
3004 		/* ERROR_BARRIER, so we can recover from faults at job boundaries. */
3005 		JOB_INSTR_ALWAYS((47ull << 56)),
3006 	};
3007 	u32 pad;
3008 
3009 	instrs->count = 0;
3010 
3011 	/* NEED to be cacheline aligned to please the prefetcher. */
3012 	static_assert(sizeof(instrs->buffer) % 64 == 0,
3013 		      "panthor_job_ringbuf_instrs::buffer is not aligned on a cacheline");
3014 
3015 	/* Make sure we have enough storage to store the whole sequence. */
3016 	static_assert(ALIGN(ARRAY_SIZE(instr_seq), NUM_INSTRS_PER_CACHE_LINE) ==
3017 		      ARRAY_SIZE(instrs->buffer),
3018 		      "instr_seq vs panthor_job_ringbuf_instrs::buffer size mismatch");
3019 
3020 	for (u32 i = 0; i < ARRAY_SIZE(instr_seq); i++) {
3021 		/* If the profile mask of this instruction is not enabled, skip it. */
3022 		if (instr_seq[i].profile_mask &&
3023 		    !(instr_seq[i].profile_mask & params->profile_mask))
3024 			continue;
3025 
3026 		instrs->buffer[instrs->count++] = instr_seq[i].instr;
3027 	}
3028 
3029 	pad = ALIGN(instrs->count, NUM_INSTRS_PER_CACHE_LINE);
3030 	memset(&instrs->buffer[instrs->count], 0,
3031 	       (pad - instrs->count) * sizeof(instrs->buffer[0]));
3032 	instrs->count = pad;
3033 }
3034 
calc_job_credits(u32 profile_mask)3035 static u32 calc_job_credits(u32 profile_mask)
3036 {
3037 	struct panthor_job_ringbuf_instrs instrs;
3038 	struct panthor_job_cs_params params = {
3039 		.profile_mask = profile_mask,
3040 	};
3041 
3042 	prepare_job_instrs(&params, &instrs);
3043 	return instrs.count;
3044 }
3045 
3046 static struct dma_fence *
queue_run_job(struct drm_sched_job * sched_job)3047 queue_run_job(struct drm_sched_job *sched_job)
3048 {
3049 	struct panthor_job *job = container_of(sched_job, struct panthor_job, base);
3050 	struct panthor_group *group = job->group;
3051 	struct panthor_queue *queue = group->queues[job->queue_idx];
3052 	struct panthor_device *ptdev = group->ptdev;
3053 	struct panthor_scheduler *sched = ptdev->scheduler;
3054 	struct panthor_job_ringbuf_instrs instrs;
3055 	struct panthor_job_cs_params cs_params;
3056 	struct dma_fence *done_fence;
3057 	int ret;
3058 
3059 	/* Stream size is zero, nothing to do except making sure all previously
3060 	 * submitted jobs are done before we signal the
3061 	 * drm_sched_job::s_fence::finished fence.
3062 	 */
3063 	if (!job->call_info.size) {
3064 		job->done_fence = dma_fence_get(queue->fence_ctx.last_fence);
3065 		return dma_fence_get(job->done_fence);
3066 	}
3067 
3068 	ret = pm_runtime_resume_and_get(ptdev->base.dev);
3069 	if (drm_WARN_ON(&ptdev->base, ret))
3070 		return ERR_PTR(ret);
3071 
3072 	mutex_lock(&sched->lock);
3073 	if (!group_can_run(group)) {
3074 		done_fence = ERR_PTR(-ECANCELED);
3075 		goto out_unlock;
3076 	}
3077 
3078 	dma_fence_init(job->done_fence,
3079 		       &panthor_queue_fence_ops,
3080 		       &queue->fence_ctx.lock,
3081 		       queue->fence_ctx.id,
3082 		       atomic64_inc_return(&queue->fence_ctx.seqno));
3083 
3084 	job->profiling.slot = queue->profiling.seqno++;
3085 	if (queue->profiling.seqno == queue->profiling.slot_count)
3086 		queue->profiling.seqno = 0;
3087 
3088 	job->ringbuf.start = queue->iface.input->insert;
3089 
3090 	get_job_cs_params(job, &cs_params);
3091 	prepare_job_instrs(&cs_params, &instrs);
3092 	copy_instrs_to_ringbuf(queue, job, &instrs);
3093 
3094 	job->ringbuf.end = job->ringbuf.start + (instrs.count * sizeof(u64));
3095 
3096 	panthor_job_get(&job->base);
3097 	spin_lock(&queue->fence_ctx.lock);
3098 	list_add_tail(&job->node, &queue->fence_ctx.in_flight_jobs);
3099 	spin_unlock(&queue->fence_ctx.lock);
3100 
3101 	/* Make sure the ring buffer is updated before the INSERT
3102 	 * register.
3103 	 */
3104 	wmb();
3105 
3106 	queue->iface.input->extract = queue->iface.output->extract;
3107 	queue->iface.input->insert = job->ringbuf.end;
3108 
3109 	if (group->csg_id < 0) {
3110 		/* If the queue is blocked, we want to keep the timeout running, so we
3111 		 * can detect unbounded waits and kill the group when that happens.
3112 		 * Otherwise, we suspend the timeout so the time we spend waiting for
3113 		 * a CSG slot is not counted.
3114 		 */
3115 		if (!(group->blocked_queues & BIT(job->queue_idx)) &&
3116 		    !queue->timeout_suspended) {
3117 			queue->remaining_time = drm_sched_suspend_timeout(&queue->scheduler);
3118 			queue->timeout_suspended = true;
3119 		}
3120 
3121 		group_schedule_locked(group, BIT(job->queue_idx));
3122 	} else {
3123 		gpu_write(ptdev, CSF_DOORBELL(queue->doorbell_id), 1);
3124 		if (!sched->pm.has_ref &&
3125 		    !(group->blocked_queues & BIT(job->queue_idx))) {
3126 			pm_runtime_get(ptdev->base.dev);
3127 			sched->pm.has_ref = true;
3128 		}
3129 		panthor_devfreq_record_busy(sched->ptdev);
3130 	}
3131 
3132 	/* Update the last fence. */
3133 	dma_fence_put(queue->fence_ctx.last_fence);
3134 	queue->fence_ctx.last_fence = dma_fence_get(job->done_fence);
3135 
3136 	done_fence = dma_fence_get(job->done_fence);
3137 
3138 out_unlock:
3139 	mutex_unlock(&sched->lock);
3140 	pm_runtime_mark_last_busy(ptdev->base.dev);
3141 	pm_runtime_put_autosuspend(ptdev->base.dev);
3142 
3143 	return done_fence;
3144 }
3145 
3146 static enum drm_gpu_sched_stat
queue_timedout_job(struct drm_sched_job * sched_job)3147 queue_timedout_job(struct drm_sched_job *sched_job)
3148 {
3149 	struct panthor_job *job = container_of(sched_job, struct panthor_job, base);
3150 	struct panthor_group *group = job->group;
3151 	struct panthor_device *ptdev = group->ptdev;
3152 	struct panthor_scheduler *sched = ptdev->scheduler;
3153 	struct panthor_queue *queue = group->queues[job->queue_idx];
3154 
3155 	drm_warn(&ptdev->base, "job timeout\n");
3156 
3157 	drm_WARN_ON(&ptdev->base, atomic_read(&sched->reset.in_progress));
3158 
3159 	queue_stop(queue, job);
3160 
3161 	mutex_lock(&sched->lock);
3162 	group->timedout = true;
3163 	if (group->csg_id >= 0) {
3164 		sched_queue_delayed_work(ptdev->scheduler, tick, 0);
3165 	} else {
3166 		/* Remove from the run queues, so the scheduler can't
3167 		 * pick the group on the next tick.
3168 		 */
3169 		list_del_init(&group->run_node);
3170 		list_del_init(&group->wait_node);
3171 
3172 		group_queue_work(group, term);
3173 	}
3174 	mutex_unlock(&sched->lock);
3175 
3176 	queue_start(queue);
3177 
3178 	return DRM_GPU_SCHED_STAT_NOMINAL;
3179 }
3180 
queue_free_job(struct drm_sched_job * sched_job)3181 static void queue_free_job(struct drm_sched_job *sched_job)
3182 {
3183 	drm_sched_job_cleanup(sched_job);
3184 	panthor_job_put(sched_job);
3185 }
3186 
3187 static const struct drm_sched_backend_ops panthor_queue_sched_ops = {
3188 	.run_job = queue_run_job,
3189 	.timedout_job = queue_timedout_job,
3190 	.free_job = queue_free_job,
3191 };
3192 
calc_profiling_ringbuf_num_slots(struct panthor_device * ptdev,u32 cs_ringbuf_size)3193 static u32 calc_profiling_ringbuf_num_slots(struct panthor_device *ptdev,
3194 					    u32 cs_ringbuf_size)
3195 {
3196 	u32 min_profiled_job_instrs = U32_MAX;
3197 	u32 last_flag = fls(PANTHOR_DEVICE_PROFILING_ALL);
3198 
3199 	/*
3200 	 * We want to calculate the minimum size of a profiled job's CS,
3201 	 * because since they need additional instructions for the sampling
3202 	 * of performance metrics, they might take up further slots in
3203 	 * the queue's ringbuffer. This means we might not need as many job
3204 	 * slots for keeping track of their profiling information. What we
3205 	 * need is the maximum number of slots we should allocate to this end,
3206 	 * which matches the maximum number of profiled jobs we can place
3207 	 * simultaneously in the queue's ring buffer.
3208 	 * That has to be calculated separately for every single job profiling
3209 	 * flag, but not in the case job profiling is disabled, since unprofiled
3210 	 * jobs don't need to keep track of this at all.
3211 	 */
3212 	for (u32 i = 0; i < last_flag; i++) {
3213 		min_profiled_job_instrs =
3214 			min(min_profiled_job_instrs, calc_job_credits(BIT(i)));
3215 	}
3216 
3217 	return DIV_ROUND_UP(cs_ringbuf_size, min_profiled_job_instrs * sizeof(u64));
3218 }
3219 
3220 static struct panthor_queue *
group_create_queue(struct panthor_group * group,const struct drm_panthor_queue_create * args)3221 group_create_queue(struct panthor_group *group,
3222 		   const struct drm_panthor_queue_create *args)
3223 {
3224 	struct drm_gpu_scheduler *drm_sched;
3225 	struct panthor_queue *queue;
3226 	int ret;
3227 
3228 	if (args->pad[0] || args->pad[1] || args->pad[2])
3229 		return ERR_PTR(-EINVAL);
3230 
3231 	if (args->ringbuf_size < SZ_4K || args->ringbuf_size > SZ_64K ||
3232 	    !is_power_of_2(args->ringbuf_size))
3233 		return ERR_PTR(-EINVAL);
3234 
3235 	if (args->priority > CSF_MAX_QUEUE_PRIO)
3236 		return ERR_PTR(-EINVAL);
3237 
3238 	queue = kzalloc(sizeof(*queue), GFP_KERNEL);
3239 	if (!queue)
3240 		return ERR_PTR(-ENOMEM);
3241 
3242 	queue->fence_ctx.id = dma_fence_context_alloc(1);
3243 	spin_lock_init(&queue->fence_ctx.lock);
3244 	INIT_LIST_HEAD(&queue->fence_ctx.in_flight_jobs);
3245 
3246 	queue->priority = args->priority;
3247 
3248 	queue->ringbuf = panthor_kernel_bo_create(group->ptdev, group->vm,
3249 						  args->ringbuf_size,
3250 						  DRM_PANTHOR_BO_NO_MMAP,
3251 						  DRM_PANTHOR_VM_BIND_OP_MAP_NOEXEC |
3252 						  DRM_PANTHOR_VM_BIND_OP_MAP_UNCACHED,
3253 						  PANTHOR_VM_KERNEL_AUTO_VA);
3254 	if (IS_ERR(queue->ringbuf)) {
3255 		ret = PTR_ERR(queue->ringbuf);
3256 		goto err_free_queue;
3257 	}
3258 
3259 	ret = panthor_kernel_bo_vmap(queue->ringbuf);
3260 	if (ret)
3261 		goto err_free_queue;
3262 
3263 	queue->iface.mem = panthor_fw_alloc_queue_iface_mem(group->ptdev,
3264 							    &queue->iface.input,
3265 							    &queue->iface.output,
3266 							    &queue->iface.input_fw_va,
3267 							    &queue->iface.output_fw_va);
3268 	if (IS_ERR(queue->iface.mem)) {
3269 		ret = PTR_ERR(queue->iface.mem);
3270 		goto err_free_queue;
3271 	}
3272 
3273 	queue->profiling.slot_count =
3274 		calc_profiling_ringbuf_num_slots(group->ptdev, args->ringbuf_size);
3275 
3276 	queue->profiling.slots =
3277 		panthor_kernel_bo_create(group->ptdev, group->vm,
3278 					 queue->profiling.slot_count *
3279 					 sizeof(struct panthor_job_profiling_data),
3280 					 DRM_PANTHOR_BO_NO_MMAP,
3281 					 DRM_PANTHOR_VM_BIND_OP_MAP_NOEXEC |
3282 					 DRM_PANTHOR_VM_BIND_OP_MAP_UNCACHED,
3283 					 PANTHOR_VM_KERNEL_AUTO_VA);
3284 
3285 	if (IS_ERR(queue->profiling.slots)) {
3286 		ret = PTR_ERR(queue->profiling.slots);
3287 		goto err_free_queue;
3288 	}
3289 
3290 	ret = panthor_kernel_bo_vmap(queue->profiling.slots);
3291 	if (ret)
3292 		goto err_free_queue;
3293 
3294 	/*
3295 	 * Credit limit argument tells us the total number of instructions
3296 	 * across all CS slots in the ringbuffer, with some jobs requiring
3297 	 * twice as many as others, depending on their profiling status.
3298 	 */
3299 	ret = drm_sched_init(&queue->scheduler, &panthor_queue_sched_ops,
3300 			     group->ptdev->scheduler->wq, 1,
3301 			     args->ringbuf_size / sizeof(u64),
3302 			     0, msecs_to_jiffies(JOB_TIMEOUT_MS),
3303 			     group->ptdev->reset.wq,
3304 			     NULL, "panthor-queue", group->ptdev->base.dev);
3305 	if (ret)
3306 		goto err_free_queue;
3307 
3308 	drm_sched = &queue->scheduler;
3309 	ret = drm_sched_entity_init(&queue->entity, 0, &drm_sched, 1, NULL);
3310 
3311 	return queue;
3312 
3313 err_free_queue:
3314 	group_free_queue(group, queue);
3315 	return ERR_PTR(ret);
3316 }
3317 
3318 #define MAX_GROUPS_PER_POOL		128
3319 
panthor_group_create(struct panthor_file * pfile,const struct drm_panthor_group_create * group_args,const struct drm_panthor_queue_create * queue_args)3320 int panthor_group_create(struct panthor_file *pfile,
3321 			 const struct drm_panthor_group_create *group_args,
3322 			 const struct drm_panthor_queue_create *queue_args)
3323 {
3324 	struct panthor_device *ptdev = pfile->ptdev;
3325 	struct panthor_group_pool *gpool = pfile->groups;
3326 	struct panthor_scheduler *sched = ptdev->scheduler;
3327 	struct panthor_fw_csg_iface *csg_iface = panthor_fw_get_csg_iface(ptdev, 0);
3328 	struct panthor_group *group = NULL;
3329 	u32 gid, i, suspend_size;
3330 	int ret;
3331 
3332 	if (group_args->pad)
3333 		return -EINVAL;
3334 
3335 	if (group_args->priority >= PANTHOR_CSG_PRIORITY_COUNT)
3336 		return -EINVAL;
3337 
3338 	if ((group_args->compute_core_mask & ~ptdev->gpu_info.shader_present) ||
3339 	    (group_args->fragment_core_mask & ~ptdev->gpu_info.shader_present) ||
3340 	    (group_args->tiler_core_mask & ~ptdev->gpu_info.tiler_present))
3341 		return -EINVAL;
3342 
3343 	if (hweight64(group_args->compute_core_mask) < group_args->max_compute_cores ||
3344 	    hweight64(group_args->fragment_core_mask) < group_args->max_fragment_cores ||
3345 	    hweight64(group_args->tiler_core_mask) < group_args->max_tiler_cores)
3346 		return -EINVAL;
3347 
3348 	group = kzalloc(sizeof(*group), GFP_KERNEL);
3349 	if (!group)
3350 		return -ENOMEM;
3351 
3352 	spin_lock_init(&group->fatal_lock);
3353 	kref_init(&group->refcount);
3354 	group->state = PANTHOR_CS_GROUP_CREATED;
3355 	group->csg_id = -1;
3356 
3357 	group->ptdev = ptdev;
3358 	group->max_compute_cores = group_args->max_compute_cores;
3359 	group->compute_core_mask = group_args->compute_core_mask;
3360 	group->max_fragment_cores = group_args->max_fragment_cores;
3361 	group->fragment_core_mask = group_args->fragment_core_mask;
3362 	group->max_tiler_cores = group_args->max_tiler_cores;
3363 	group->tiler_core_mask = group_args->tiler_core_mask;
3364 	group->priority = group_args->priority;
3365 
3366 	INIT_LIST_HEAD(&group->wait_node);
3367 	INIT_LIST_HEAD(&group->run_node);
3368 	INIT_WORK(&group->term_work, group_term_work);
3369 	INIT_WORK(&group->sync_upd_work, group_sync_upd_work);
3370 	INIT_WORK(&group->tiler_oom_work, group_tiler_oom_work);
3371 	INIT_WORK(&group->release_work, group_release_work);
3372 
3373 	group->vm = panthor_vm_pool_get_vm(pfile->vms, group_args->vm_id);
3374 	if (!group->vm) {
3375 		ret = -EINVAL;
3376 		goto err_put_group;
3377 	}
3378 
3379 	suspend_size = csg_iface->control->suspend_size;
3380 	group->suspend_buf = panthor_fw_alloc_suspend_buf_mem(ptdev, suspend_size);
3381 	if (IS_ERR(group->suspend_buf)) {
3382 		ret = PTR_ERR(group->suspend_buf);
3383 		group->suspend_buf = NULL;
3384 		goto err_put_group;
3385 	}
3386 
3387 	suspend_size = csg_iface->control->protm_suspend_size;
3388 	group->protm_suspend_buf = panthor_fw_alloc_suspend_buf_mem(ptdev, suspend_size);
3389 	if (IS_ERR(group->protm_suspend_buf)) {
3390 		ret = PTR_ERR(group->protm_suspend_buf);
3391 		group->protm_suspend_buf = NULL;
3392 		goto err_put_group;
3393 	}
3394 
3395 	group->syncobjs = panthor_kernel_bo_create(ptdev, group->vm,
3396 						   group_args->queues.count *
3397 						   sizeof(struct panthor_syncobj_64b),
3398 						   DRM_PANTHOR_BO_NO_MMAP,
3399 						   DRM_PANTHOR_VM_BIND_OP_MAP_NOEXEC |
3400 						   DRM_PANTHOR_VM_BIND_OP_MAP_UNCACHED,
3401 						   PANTHOR_VM_KERNEL_AUTO_VA);
3402 	if (IS_ERR(group->syncobjs)) {
3403 		ret = PTR_ERR(group->syncobjs);
3404 		goto err_put_group;
3405 	}
3406 
3407 	ret = panthor_kernel_bo_vmap(group->syncobjs);
3408 	if (ret)
3409 		goto err_put_group;
3410 
3411 	memset(group->syncobjs->kmap, 0,
3412 	       group_args->queues.count * sizeof(struct panthor_syncobj_64b));
3413 
3414 	for (i = 0; i < group_args->queues.count; i++) {
3415 		group->queues[i] = group_create_queue(group, &queue_args[i]);
3416 		if (IS_ERR(group->queues[i])) {
3417 			ret = PTR_ERR(group->queues[i]);
3418 			group->queues[i] = NULL;
3419 			goto err_put_group;
3420 		}
3421 
3422 		group->queue_count++;
3423 	}
3424 
3425 	group->idle_queues = GENMASK(group->queue_count - 1, 0);
3426 
3427 	ret = xa_alloc(&gpool->xa, &gid, group, XA_LIMIT(1, MAX_GROUPS_PER_POOL), GFP_KERNEL);
3428 	if (ret)
3429 		goto err_put_group;
3430 
3431 	mutex_lock(&sched->reset.lock);
3432 	if (atomic_read(&sched->reset.in_progress)) {
3433 		panthor_group_stop(group);
3434 	} else {
3435 		mutex_lock(&sched->lock);
3436 		list_add_tail(&group->run_node,
3437 			      &sched->groups.idle[group->priority]);
3438 		mutex_unlock(&sched->lock);
3439 	}
3440 	mutex_unlock(&sched->reset.lock);
3441 
3442 	return gid;
3443 
3444 err_put_group:
3445 	group_put(group);
3446 	return ret;
3447 }
3448 
panthor_group_destroy(struct panthor_file * pfile,u32 group_handle)3449 int panthor_group_destroy(struct panthor_file *pfile, u32 group_handle)
3450 {
3451 	struct panthor_group_pool *gpool = pfile->groups;
3452 	struct panthor_device *ptdev = pfile->ptdev;
3453 	struct panthor_scheduler *sched = ptdev->scheduler;
3454 	struct panthor_group *group;
3455 
3456 	group = xa_erase(&gpool->xa, group_handle);
3457 	if (!group)
3458 		return -EINVAL;
3459 
3460 	mutex_lock(&sched->reset.lock);
3461 	mutex_lock(&sched->lock);
3462 	group->destroyed = true;
3463 	if (group->csg_id >= 0) {
3464 		sched_queue_delayed_work(sched, tick, 0);
3465 	} else if (!atomic_read(&sched->reset.in_progress)) {
3466 		/* Remove from the run queues, so the scheduler can't
3467 		 * pick the group on the next tick.
3468 		 */
3469 		list_del_init(&group->run_node);
3470 		list_del_init(&group->wait_node);
3471 		group_queue_work(group, term);
3472 	}
3473 	mutex_unlock(&sched->lock);
3474 	mutex_unlock(&sched->reset.lock);
3475 
3476 	group_put(group);
3477 	return 0;
3478 }
3479 
group_from_handle(struct panthor_group_pool * pool,u32 group_handle)3480 static struct panthor_group *group_from_handle(struct panthor_group_pool *pool,
3481 					       u32 group_handle)
3482 {
3483 	struct panthor_group *group;
3484 
3485 	xa_lock(&pool->xa);
3486 	group = group_get(xa_load(&pool->xa, group_handle));
3487 	xa_unlock(&pool->xa);
3488 
3489 	return group;
3490 }
3491 
panthor_group_get_state(struct panthor_file * pfile,struct drm_panthor_group_get_state * get_state)3492 int panthor_group_get_state(struct panthor_file *pfile,
3493 			    struct drm_panthor_group_get_state *get_state)
3494 {
3495 	struct panthor_group_pool *gpool = pfile->groups;
3496 	struct panthor_device *ptdev = pfile->ptdev;
3497 	struct panthor_scheduler *sched = ptdev->scheduler;
3498 	struct panthor_group *group;
3499 
3500 	if (get_state->pad)
3501 		return -EINVAL;
3502 
3503 	group = group_from_handle(gpool, get_state->group_handle);
3504 	if (!group)
3505 		return -EINVAL;
3506 
3507 	memset(get_state, 0, sizeof(*get_state));
3508 
3509 	mutex_lock(&sched->lock);
3510 	if (group->timedout)
3511 		get_state->state |= DRM_PANTHOR_GROUP_STATE_TIMEDOUT;
3512 	if (group->fatal_queues) {
3513 		get_state->state |= DRM_PANTHOR_GROUP_STATE_FATAL_FAULT;
3514 		get_state->fatal_queues = group->fatal_queues;
3515 	}
3516 	mutex_unlock(&sched->lock);
3517 
3518 	group_put(group);
3519 	return 0;
3520 }
3521 
panthor_group_pool_create(struct panthor_file * pfile)3522 int panthor_group_pool_create(struct panthor_file *pfile)
3523 {
3524 	struct panthor_group_pool *gpool;
3525 
3526 	gpool = kzalloc(sizeof(*gpool), GFP_KERNEL);
3527 	if (!gpool)
3528 		return -ENOMEM;
3529 
3530 	xa_init_flags(&gpool->xa, XA_FLAGS_ALLOC1);
3531 	pfile->groups = gpool;
3532 	return 0;
3533 }
3534 
panthor_group_pool_destroy(struct panthor_file * pfile)3535 void panthor_group_pool_destroy(struct panthor_file *pfile)
3536 {
3537 	struct panthor_group_pool *gpool = pfile->groups;
3538 	struct panthor_group *group;
3539 	unsigned long i;
3540 
3541 	if (IS_ERR_OR_NULL(gpool))
3542 		return;
3543 
3544 	xa_for_each(&gpool->xa, i, group)
3545 		panthor_group_destroy(pfile, i);
3546 
3547 	xa_destroy(&gpool->xa);
3548 	kfree(gpool);
3549 	pfile->groups = NULL;
3550 }
3551 
job_release(struct kref * ref)3552 static void job_release(struct kref *ref)
3553 {
3554 	struct panthor_job *job = container_of(ref, struct panthor_job, refcount);
3555 
3556 	drm_WARN_ON(&job->group->ptdev->base, !list_empty(&job->node));
3557 
3558 	if (job->base.s_fence)
3559 		drm_sched_job_cleanup(&job->base);
3560 
3561 	if (job->done_fence && job->done_fence->ops)
3562 		dma_fence_put(job->done_fence);
3563 	else
3564 		dma_fence_free(job->done_fence);
3565 
3566 	group_put(job->group);
3567 
3568 	kfree(job);
3569 }
3570 
panthor_job_get(struct drm_sched_job * sched_job)3571 struct drm_sched_job *panthor_job_get(struct drm_sched_job *sched_job)
3572 {
3573 	if (sched_job) {
3574 		struct panthor_job *job = container_of(sched_job, struct panthor_job, base);
3575 
3576 		kref_get(&job->refcount);
3577 	}
3578 
3579 	return sched_job;
3580 }
3581 
panthor_job_put(struct drm_sched_job * sched_job)3582 void panthor_job_put(struct drm_sched_job *sched_job)
3583 {
3584 	struct panthor_job *job = container_of(sched_job, struct panthor_job, base);
3585 
3586 	if (sched_job)
3587 		kref_put(&job->refcount, job_release);
3588 }
3589 
panthor_job_vm(struct drm_sched_job * sched_job)3590 struct panthor_vm *panthor_job_vm(struct drm_sched_job *sched_job)
3591 {
3592 	struct panthor_job *job = container_of(sched_job, struct panthor_job, base);
3593 
3594 	return job->group->vm;
3595 }
3596 
3597 struct drm_sched_job *
panthor_job_create(struct panthor_file * pfile,u16 group_handle,const struct drm_panthor_queue_submit * qsubmit)3598 panthor_job_create(struct panthor_file *pfile,
3599 		   u16 group_handle,
3600 		   const struct drm_panthor_queue_submit *qsubmit)
3601 {
3602 	struct panthor_group_pool *gpool = pfile->groups;
3603 	struct panthor_job *job;
3604 	u32 credits;
3605 	int ret;
3606 
3607 	if (qsubmit->pad)
3608 		return ERR_PTR(-EINVAL);
3609 
3610 	/* If stream_addr is zero, so stream_size should be. */
3611 	if ((qsubmit->stream_size == 0) != (qsubmit->stream_addr == 0))
3612 		return ERR_PTR(-EINVAL);
3613 
3614 	/* Make sure the address is aligned on 64-byte (cacheline) and the size is
3615 	 * aligned on 8-byte (instruction size).
3616 	 */
3617 	if ((qsubmit->stream_addr & 63) || (qsubmit->stream_size & 7))
3618 		return ERR_PTR(-EINVAL);
3619 
3620 	/* bits 24:30 must be zero. */
3621 	if (qsubmit->latest_flush & GENMASK(30, 24))
3622 		return ERR_PTR(-EINVAL);
3623 
3624 	job = kzalloc(sizeof(*job), GFP_KERNEL);
3625 	if (!job)
3626 		return ERR_PTR(-ENOMEM);
3627 
3628 	kref_init(&job->refcount);
3629 	job->queue_idx = qsubmit->queue_index;
3630 	job->call_info.size = qsubmit->stream_size;
3631 	job->call_info.start = qsubmit->stream_addr;
3632 	job->call_info.latest_flush = qsubmit->latest_flush;
3633 	INIT_LIST_HEAD(&job->node);
3634 
3635 	job->group = group_from_handle(gpool, group_handle);
3636 	if (!job->group) {
3637 		ret = -EINVAL;
3638 		goto err_put_job;
3639 	}
3640 
3641 	if (!group_can_run(job->group)) {
3642 		ret = -EINVAL;
3643 		goto err_put_job;
3644 	}
3645 
3646 	if (job->queue_idx >= job->group->queue_count ||
3647 	    !job->group->queues[job->queue_idx]) {
3648 		ret = -EINVAL;
3649 		goto err_put_job;
3650 	}
3651 
3652 	/* Empty command streams don't need a fence, they'll pick the one from
3653 	 * the previously submitted job.
3654 	 */
3655 	if (job->call_info.size) {
3656 		job->done_fence = kzalloc(sizeof(*job->done_fence), GFP_KERNEL);
3657 		if (!job->done_fence) {
3658 			ret = -ENOMEM;
3659 			goto err_put_job;
3660 		}
3661 	}
3662 
3663 	job->profiling.mask = pfile->ptdev->profile_mask;
3664 	credits = calc_job_credits(job->profiling.mask);
3665 	if (credits == 0) {
3666 		ret = -EINVAL;
3667 		goto err_put_job;
3668 	}
3669 
3670 	ret = drm_sched_job_init(&job->base,
3671 				 &job->group->queues[job->queue_idx]->entity,
3672 				 credits, job->group);
3673 	if (ret)
3674 		goto err_put_job;
3675 
3676 	return &job->base;
3677 
3678 err_put_job:
3679 	panthor_job_put(&job->base);
3680 	return ERR_PTR(ret);
3681 }
3682 
panthor_job_update_resvs(struct drm_exec * exec,struct drm_sched_job * sched_job)3683 void panthor_job_update_resvs(struct drm_exec *exec, struct drm_sched_job *sched_job)
3684 {
3685 	struct panthor_job *job = container_of(sched_job, struct panthor_job, base);
3686 
3687 	panthor_vm_update_resvs(job->group->vm, exec, &sched_job->s_fence->finished,
3688 				DMA_RESV_USAGE_BOOKKEEP, DMA_RESV_USAGE_BOOKKEEP);
3689 }
3690 
panthor_sched_unplug(struct panthor_device * ptdev)3691 void panthor_sched_unplug(struct panthor_device *ptdev)
3692 {
3693 	struct panthor_scheduler *sched = ptdev->scheduler;
3694 
3695 	cancel_delayed_work_sync(&sched->tick_work);
3696 
3697 	mutex_lock(&sched->lock);
3698 	if (sched->pm.has_ref) {
3699 		pm_runtime_put(ptdev->base.dev);
3700 		sched->pm.has_ref = false;
3701 	}
3702 	mutex_unlock(&sched->lock);
3703 }
3704 
panthor_sched_fini(struct drm_device * ddev,void * res)3705 static void panthor_sched_fini(struct drm_device *ddev, void *res)
3706 {
3707 	struct panthor_scheduler *sched = res;
3708 	int prio;
3709 
3710 	if (!sched || !sched->csg_slot_count)
3711 		return;
3712 
3713 	cancel_delayed_work_sync(&sched->tick_work);
3714 
3715 	if (sched->wq)
3716 		destroy_workqueue(sched->wq);
3717 
3718 	if (sched->heap_alloc_wq)
3719 		destroy_workqueue(sched->heap_alloc_wq);
3720 
3721 	for (prio = PANTHOR_CSG_PRIORITY_COUNT - 1; prio >= 0; prio--) {
3722 		drm_WARN_ON(ddev, !list_empty(&sched->groups.runnable[prio]));
3723 		drm_WARN_ON(ddev, !list_empty(&sched->groups.idle[prio]));
3724 	}
3725 
3726 	drm_WARN_ON(ddev, !list_empty(&sched->groups.waiting));
3727 }
3728 
panthor_sched_init(struct panthor_device * ptdev)3729 int panthor_sched_init(struct panthor_device *ptdev)
3730 {
3731 	struct panthor_fw_global_iface *glb_iface = panthor_fw_get_glb_iface(ptdev);
3732 	struct panthor_fw_csg_iface *csg_iface = panthor_fw_get_csg_iface(ptdev, 0);
3733 	struct panthor_fw_cs_iface *cs_iface = panthor_fw_get_cs_iface(ptdev, 0, 0);
3734 	struct panthor_scheduler *sched;
3735 	u32 gpu_as_count, num_groups;
3736 	int prio, ret;
3737 
3738 	sched = drmm_kzalloc(&ptdev->base, sizeof(*sched), GFP_KERNEL);
3739 	if (!sched)
3740 		return -ENOMEM;
3741 
3742 	/* The highest bit in JOB_INT_* is reserved for globabl IRQs. That
3743 	 * leaves 31 bits for CSG IRQs, hence the MAX_CSGS clamp here.
3744 	 */
3745 	num_groups = min_t(u32, MAX_CSGS, glb_iface->control->group_num);
3746 
3747 	/* The FW-side scheduler might deadlock if two groups with the same
3748 	 * priority try to access a set of resources that overlaps, with part
3749 	 * of the resources being allocated to one group and the other part to
3750 	 * the other group, both groups waiting for the remaining resources to
3751 	 * be allocated. To avoid that, it is recommended to assign each CSG a
3752 	 * different priority. In theory we could allow several groups to have
3753 	 * the same CSG priority if they don't request the same resources, but
3754 	 * that makes the scheduling logic more complicated, so let's clamp
3755 	 * the number of CSG slots to MAX_CSG_PRIO + 1 for now.
3756 	 */
3757 	num_groups = min_t(u32, MAX_CSG_PRIO + 1, num_groups);
3758 
3759 	/* We need at least one AS for the MCU and one for the GPU contexts. */
3760 	gpu_as_count = hweight32(ptdev->gpu_info.as_present & GENMASK(31, 1));
3761 	if (!gpu_as_count) {
3762 		drm_err(&ptdev->base, "Not enough AS (%d, expected at least 2)",
3763 			gpu_as_count + 1);
3764 		return -EINVAL;
3765 	}
3766 
3767 	sched->ptdev = ptdev;
3768 	sched->sb_slot_count = CS_FEATURES_SCOREBOARDS(cs_iface->control->features);
3769 	sched->csg_slot_count = num_groups;
3770 	sched->cs_slot_count = csg_iface->control->stream_num;
3771 	sched->as_slot_count = gpu_as_count;
3772 	ptdev->csif_info.csg_slot_count = sched->csg_slot_count;
3773 	ptdev->csif_info.cs_slot_count = sched->cs_slot_count;
3774 	ptdev->csif_info.scoreboard_slot_count = sched->sb_slot_count;
3775 
3776 	sched->last_tick = 0;
3777 	sched->resched_target = U64_MAX;
3778 	sched->tick_period = msecs_to_jiffies(10);
3779 	INIT_DELAYED_WORK(&sched->tick_work, tick_work);
3780 	INIT_WORK(&sched->sync_upd_work, sync_upd_work);
3781 	INIT_WORK(&sched->fw_events_work, process_fw_events_work);
3782 
3783 	ret = drmm_mutex_init(&ptdev->base, &sched->lock);
3784 	if (ret)
3785 		return ret;
3786 
3787 	for (prio = PANTHOR_CSG_PRIORITY_COUNT - 1; prio >= 0; prio--) {
3788 		INIT_LIST_HEAD(&sched->groups.runnable[prio]);
3789 		INIT_LIST_HEAD(&sched->groups.idle[prio]);
3790 	}
3791 	INIT_LIST_HEAD(&sched->groups.waiting);
3792 
3793 	ret = drmm_mutex_init(&ptdev->base, &sched->reset.lock);
3794 	if (ret)
3795 		return ret;
3796 
3797 	INIT_LIST_HEAD(&sched->reset.stopped_groups);
3798 
3799 	/* sched->heap_alloc_wq will be used for heap chunk allocation on
3800 	 * tiler OOM events, which means we can't use the same workqueue for
3801 	 * the scheduler because works queued by the scheduler are in
3802 	 * the dma-signalling path. Allocate a dedicated heap_alloc_wq to
3803 	 * work around this limitation.
3804 	 *
3805 	 * FIXME: Ultimately, what we need is a failable/non-blocking GEM
3806 	 * allocation path that we can call when a heap OOM is reported. The
3807 	 * FW is smart enough to fall back on other methods if the kernel can't
3808 	 * allocate memory, and fail the tiling job if none of these
3809 	 * countermeasures worked.
3810 	 *
3811 	 * Set WQ_MEM_RECLAIM on sched->wq to unblock the situation when the
3812 	 * system is running out of memory.
3813 	 */
3814 	sched->heap_alloc_wq = alloc_workqueue("panthor-heap-alloc", WQ_UNBOUND, 0);
3815 	sched->wq = alloc_workqueue("panthor-csf-sched", WQ_MEM_RECLAIM | WQ_UNBOUND, 0);
3816 	if (!sched->wq || !sched->heap_alloc_wq) {
3817 		panthor_sched_fini(&ptdev->base, sched);
3818 		drm_err(&ptdev->base, "Failed to allocate the workqueues");
3819 		return -ENOMEM;
3820 	}
3821 
3822 	ret = drmm_add_action_or_reset(&ptdev->base, panthor_sched_fini, sched);
3823 	if (ret)
3824 		return ret;
3825 
3826 	ptdev->scheduler = sched;
3827 	return 0;
3828 }
3829