• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /* SPDX-License-Identifier: GPL-2.0 OR MIT */
2 /**************************************************************************
3  *
4  * Copyright (c) 2007-2009 VMware, Inc., Palo Alto, CA., USA
5  * All Rights Reserved.
6  *
7  * Permission is hereby granted, free of charge, to any person obtaining a
8  * copy of this software and associated documentation files (the
9  * "Software"), to deal in the Software without restriction, including
10  * without limitation the rights to use, copy, modify, merge, publish,
11  * distribute, sub license, and/or sell copies of the Software, and to
12  * permit persons to whom the Software is furnished to do so, subject to
13  * the following conditions:
14  *
15  * The above copyright notice and this permission notice (including the
16  * next paragraph) shall be included in all copies or substantial portions
17  * of the Software.
18  *
19  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
20  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
21  * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
22  * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM,
23  * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
24  * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
25  * USE OR OTHER DEALINGS IN THE SOFTWARE.
26  *
27  **************************************************************************/
28 /*
29  * Authors: Thomas Hellstrom <thellstrom-at-vmware-dot-com>
30  */
31 
32 #include <linux/vmalloc.h>
33 
34 #include <drm/ttm/ttm_bo.h>
35 #include <drm/ttm/ttm_placement.h>
36 #include <drm/ttm/ttm_tt.h>
37 
38 #include <drm/drm_cache.h>
39 
40 #include <linux/android_kabi.h>
41 ANDROID_KABI_DECLONLY(dma_buf);
42 ANDROID_KABI_DECLONLY(dma_buf_attachment);
43 
44 struct ttm_transfer_obj {
45 	struct ttm_buffer_object base;
46 	struct ttm_buffer_object *bo;
47 };
48 
ttm_mem_io_reserve(struct ttm_device * bdev,struct ttm_resource * mem)49 int ttm_mem_io_reserve(struct ttm_device *bdev,
50 		       struct ttm_resource *mem)
51 {
52 	if (mem->bus.offset || mem->bus.addr)
53 		return 0;
54 
55 	mem->bus.is_iomem = false;
56 	if (!bdev->funcs->io_mem_reserve)
57 		return 0;
58 
59 	return bdev->funcs->io_mem_reserve(bdev, mem);
60 }
61 
ttm_mem_io_free(struct ttm_device * bdev,struct ttm_resource * mem)62 void ttm_mem_io_free(struct ttm_device *bdev,
63 		     struct ttm_resource *mem)
64 {
65 	if (!mem)
66 		return;
67 
68 	if (!mem->bus.offset && !mem->bus.addr)
69 		return;
70 
71 	if (bdev->funcs->io_mem_free)
72 		bdev->funcs->io_mem_free(bdev, mem);
73 
74 	mem->bus.offset = 0;
75 	mem->bus.addr = NULL;
76 }
77 
78 /**
79  * ttm_move_memcpy - Helper to perform a memcpy ttm move operation.
80  * @clear: Whether to clear rather than copy.
81  * @num_pages: Number of pages of the operation.
82  * @dst_iter: A struct ttm_kmap_iter representing the destination resource.
83  * @src_iter: A struct ttm_kmap_iter representing the source resource.
84  *
85  * This function is intended to be able to move out async under a
86  * dma-fence if desired.
87  */
ttm_move_memcpy(bool clear,u32 num_pages,struct ttm_kmap_iter * dst_iter,struct ttm_kmap_iter * src_iter)88 void ttm_move_memcpy(bool clear,
89 		     u32 num_pages,
90 		     struct ttm_kmap_iter *dst_iter,
91 		     struct ttm_kmap_iter *src_iter)
92 {
93 	const struct ttm_kmap_iter_ops *dst_ops = dst_iter->ops;
94 	const struct ttm_kmap_iter_ops *src_ops = src_iter->ops;
95 	struct iosys_map src_map, dst_map;
96 	pgoff_t i;
97 
98 	/* Single TTM move. NOP */
99 	if (dst_ops->maps_tt && src_ops->maps_tt)
100 		return;
101 
102 	/* Don't move nonexistent data. Clear destination instead. */
103 	if (clear) {
104 		for (i = 0; i < num_pages; ++i) {
105 			dst_ops->map_local(dst_iter, &dst_map, i);
106 			if (dst_map.is_iomem)
107 				memset_io(dst_map.vaddr_iomem, 0, PAGE_SIZE);
108 			else
109 				memset(dst_map.vaddr, 0, PAGE_SIZE);
110 			if (dst_ops->unmap_local)
111 				dst_ops->unmap_local(dst_iter, &dst_map);
112 		}
113 		return;
114 	}
115 
116 	for (i = 0; i < num_pages; ++i) {
117 		dst_ops->map_local(dst_iter, &dst_map, i);
118 		src_ops->map_local(src_iter, &src_map, i);
119 
120 		drm_memcpy_from_wc(&dst_map, &src_map, PAGE_SIZE);
121 
122 		if (src_ops->unmap_local)
123 			src_ops->unmap_local(src_iter, &src_map);
124 		if (dst_ops->unmap_local)
125 			dst_ops->unmap_local(dst_iter, &dst_map);
126 	}
127 }
128 EXPORT_SYMBOL(ttm_move_memcpy);
129 
130 /**
131  * ttm_bo_move_memcpy
132  *
133  * @bo: A pointer to a struct ttm_buffer_object.
134  * @ctx: operation context
135  * @dst_mem: struct ttm_resource indicating where to move.
136  *
137  * Fallback move function for a mappable buffer object in mappable memory.
138  * The function will, if successful,
139  * free any old aperture space, and set (@new_mem)->mm_node to NULL,
140  * and update the (@bo)->mem placement flags. If unsuccessful, the old
141  * data remains untouched, and it's up to the caller to free the
142  * memory space indicated by @new_mem.
143  * Returns:
144  * !0: Failure.
145  */
ttm_bo_move_memcpy(struct ttm_buffer_object * bo,struct ttm_operation_ctx * ctx,struct ttm_resource * dst_mem)146 int ttm_bo_move_memcpy(struct ttm_buffer_object *bo,
147 		       struct ttm_operation_ctx *ctx,
148 		       struct ttm_resource *dst_mem)
149 {
150 	struct ttm_device *bdev = bo->bdev;
151 	struct ttm_resource_manager *dst_man =
152 		ttm_manager_type(bo->bdev, dst_mem->mem_type);
153 	struct ttm_tt *ttm = bo->ttm;
154 	struct ttm_resource *src_mem = bo->resource;
155 	struct ttm_resource_manager *src_man;
156 	union {
157 		struct ttm_kmap_iter_tt tt;
158 		struct ttm_kmap_iter_linear_io io;
159 	} _dst_iter, _src_iter;
160 	struct ttm_kmap_iter *dst_iter, *src_iter;
161 	bool clear;
162 	int ret = 0;
163 
164 	if (WARN_ON(!src_mem))
165 		return -EINVAL;
166 
167 	src_man = ttm_manager_type(bdev, src_mem->mem_type);
168 	if (ttm && ((ttm->page_flags & TTM_TT_FLAG_SWAPPED) ||
169 		    dst_man->use_tt)) {
170 		ret = ttm_tt_populate(bdev, ttm, ctx);
171 		if (ret)
172 			return ret;
173 	}
174 
175 	dst_iter = ttm_kmap_iter_linear_io_init(&_dst_iter.io, bdev, dst_mem);
176 	if (PTR_ERR(dst_iter) == -EINVAL && dst_man->use_tt)
177 		dst_iter = ttm_kmap_iter_tt_init(&_dst_iter.tt, bo->ttm);
178 	if (IS_ERR(dst_iter))
179 		return PTR_ERR(dst_iter);
180 
181 	src_iter = ttm_kmap_iter_linear_io_init(&_src_iter.io, bdev, src_mem);
182 	if (PTR_ERR(src_iter) == -EINVAL && src_man->use_tt)
183 		src_iter = ttm_kmap_iter_tt_init(&_src_iter.tt, bo->ttm);
184 	if (IS_ERR(src_iter)) {
185 		ret = PTR_ERR(src_iter);
186 		goto out_src_iter;
187 	}
188 
189 	clear = src_iter->ops->maps_tt && (!ttm || !ttm_tt_is_populated(ttm));
190 	if (!(clear && ttm && !(ttm->page_flags & TTM_TT_FLAG_ZERO_ALLOC)))
191 		ttm_move_memcpy(clear, PFN_UP(dst_mem->size), dst_iter, src_iter);
192 
193 	if (!src_iter->ops->maps_tt)
194 		ttm_kmap_iter_linear_io_fini(&_src_iter.io, bdev, src_mem);
195 	ttm_bo_move_sync_cleanup(bo, dst_mem);
196 
197 out_src_iter:
198 	if (!dst_iter->ops->maps_tt)
199 		ttm_kmap_iter_linear_io_fini(&_dst_iter.io, bdev, dst_mem);
200 
201 	return ret;
202 }
203 EXPORT_SYMBOL(ttm_bo_move_memcpy);
204 
ttm_transfered_destroy(struct ttm_buffer_object * bo)205 static void ttm_transfered_destroy(struct ttm_buffer_object *bo)
206 {
207 	struct ttm_transfer_obj *fbo;
208 
209 	fbo = container_of(bo, struct ttm_transfer_obj, base);
210 	dma_resv_fini(&fbo->base.base._resv);
211 	ttm_bo_put(fbo->bo);
212 	kfree(fbo);
213 }
214 
215 /**
216  * ttm_buffer_object_transfer
217  *
218  * @bo: A pointer to a struct ttm_buffer_object.
219  * @new_obj: A pointer to a pointer to a newly created ttm_buffer_object,
220  * holding the data of @bo with the old placement.
221  *
222  * This is a utility function that may be called after an accelerated move
223  * has been scheduled. A new buffer object is created as a placeholder for
224  * the old data while it's being copied. When that buffer object is idle,
225  * it can be destroyed, releasing the space of the old placement.
226  * Returns:
227  * !0: Failure.
228  */
229 
ttm_buffer_object_transfer(struct ttm_buffer_object * bo,struct ttm_buffer_object ** new_obj)230 static int ttm_buffer_object_transfer(struct ttm_buffer_object *bo,
231 				      struct ttm_buffer_object **new_obj)
232 {
233 	struct ttm_transfer_obj *fbo;
234 	int ret;
235 
236 	fbo = kmalloc(sizeof(*fbo), GFP_KERNEL);
237 	if (!fbo)
238 		return -ENOMEM;
239 
240 	fbo->base = *bo;
241 
242 	/**
243 	 * Fix up members that we shouldn't copy directly:
244 	 * TODO: Explicit member copy would probably be better here.
245 	 */
246 
247 	atomic_inc(&ttm_glob.bo_count);
248 	drm_vma_node_reset(&fbo->base.base.vma_node);
249 
250 	kref_init(&fbo->base.kref);
251 	fbo->base.destroy = &ttm_transfered_destroy;
252 	fbo->base.pin_count = 0;
253 	if (bo->type != ttm_bo_type_sg)
254 		fbo->base.base.resv = &fbo->base.base._resv;
255 
256 	dma_resv_init(&fbo->base.base._resv);
257 	fbo->base.base.dev = NULL;
258 	ret = dma_resv_trylock(&fbo->base.base._resv);
259 	WARN_ON(!ret);
260 
261 	ret = dma_resv_reserve_fences(&fbo->base.base._resv, 1);
262 	if (ret) {
263 		dma_resv_unlock(&fbo->base.base._resv);
264 		kfree(fbo);
265 		return ret;
266 	}
267 
268 	if (fbo->base.resource) {
269 		ttm_resource_set_bo(fbo->base.resource, &fbo->base);
270 		bo->resource = NULL;
271 		ttm_bo_set_bulk_move(&fbo->base, NULL);
272 	} else {
273 		fbo->base.bulk_move = NULL;
274 	}
275 
276 	ttm_bo_get(bo);
277 	fbo->bo = bo;
278 
279 	ttm_bo_move_to_lru_tail_unlocked(&fbo->base);
280 
281 	*new_obj = &fbo->base;
282 	return 0;
283 }
284 
285 /**
286  * ttm_io_prot
287  *
288  * @bo: ttm buffer object
289  * @res: ttm resource object
290  * @tmp: Page protection flag for a normal, cached mapping.
291  *
292  * Utility function that returns the pgprot_t that should be used for
293  * setting up a PTE with the caching model indicated by @c_state.
294  */
ttm_io_prot(struct ttm_buffer_object * bo,struct ttm_resource * res,pgprot_t tmp)295 pgprot_t ttm_io_prot(struct ttm_buffer_object *bo, struct ttm_resource *res,
296 		     pgprot_t tmp)
297 {
298 	struct ttm_resource_manager *man;
299 	enum ttm_caching caching;
300 
301 	man = ttm_manager_type(bo->bdev, res->mem_type);
302 	if (man->use_tt) {
303 		caching = bo->ttm->caching;
304 		if (bo->ttm->page_flags & TTM_TT_FLAG_DECRYPTED)
305 			tmp = pgprot_decrypted(tmp);
306 	} else  {
307 		caching = res->bus.caching;
308 	}
309 
310 	return ttm_prot_from_caching(caching, tmp);
311 }
312 EXPORT_SYMBOL(ttm_io_prot);
313 
ttm_bo_ioremap(struct ttm_buffer_object * bo,unsigned long offset,unsigned long size,struct ttm_bo_kmap_obj * map)314 static int ttm_bo_ioremap(struct ttm_buffer_object *bo,
315 			  unsigned long offset,
316 			  unsigned long size,
317 			  struct ttm_bo_kmap_obj *map)
318 {
319 	struct ttm_resource *mem = bo->resource;
320 
321 	if (bo->resource->bus.addr) {
322 		map->bo_kmap_type = ttm_bo_map_premapped;
323 		map->virtual = ((u8 *)bo->resource->bus.addr) + offset;
324 	} else {
325 		resource_size_t res = bo->resource->bus.offset + offset;
326 
327 		map->bo_kmap_type = ttm_bo_map_iomap;
328 		if (mem->bus.caching == ttm_write_combined)
329 			map->virtual = ioremap_wc(res, size);
330 #ifdef CONFIG_X86
331 		else if (mem->bus.caching == ttm_cached)
332 			map->virtual = ioremap_cache(res, size);
333 #endif
334 		else
335 			map->virtual = ioremap(res, size);
336 	}
337 	return (!map->virtual) ? -ENOMEM : 0;
338 }
339 
ttm_bo_kmap_ttm(struct ttm_buffer_object * bo,unsigned long start_page,unsigned long num_pages,struct ttm_bo_kmap_obj * map)340 static int ttm_bo_kmap_ttm(struct ttm_buffer_object *bo,
341 			   unsigned long start_page,
342 			   unsigned long num_pages,
343 			   struct ttm_bo_kmap_obj *map)
344 {
345 	struct ttm_resource *mem = bo->resource;
346 	struct ttm_operation_ctx ctx = {
347 		.interruptible = false,
348 		.no_wait_gpu = false
349 	};
350 	struct ttm_tt *ttm = bo->ttm;
351 	struct ttm_resource_manager *man =
352 			ttm_manager_type(bo->bdev, bo->resource->mem_type);
353 	pgprot_t prot;
354 	int ret;
355 
356 	BUG_ON(!ttm);
357 
358 	ret = ttm_tt_populate(bo->bdev, ttm, &ctx);
359 	if (ret)
360 		return ret;
361 
362 	if (num_pages == 1 && ttm->caching == ttm_cached &&
363 	    !(man->use_tt && (ttm->page_flags & TTM_TT_FLAG_DECRYPTED))) {
364 		/*
365 		 * We're mapping a single page, and the desired
366 		 * page protection is consistent with the bo.
367 		 */
368 
369 		map->bo_kmap_type = ttm_bo_map_kmap;
370 		map->page = ttm->pages[start_page];
371 		map->virtual = kmap(map->page);
372 	} else {
373 		/*
374 		 * We need to use vmap to get the desired page protection
375 		 * or to make the buffer object look contiguous.
376 		 */
377 		prot = ttm_io_prot(bo, mem, PAGE_KERNEL);
378 		map->bo_kmap_type = ttm_bo_map_vmap;
379 		map->virtual = vmap(ttm->pages + start_page, num_pages,
380 				    0, prot);
381 	}
382 	return (!map->virtual) ? -ENOMEM : 0;
383 }
384 
385 /**
386  * ttm_bo_kmap
387  *
388  * @bo: The buffer object.
389  * @start_page: The first page to map.
390  * @num_pages: Number of pages to map.
391  * @map: pointer to a struct ttm_bo_kmap_obj representing the map.
392  *
393  * Sets up a kernel virtual mapping, using ioremap, vmap or kmap to the
394  * data in the buffer object. The ttm_kmap_obj_virtual function can then be
395  * used to obtain a virtual address to the data.
396  *
397  * Returns
398  * -ENOMEM: Out of memory.
399  * -EINVAL: Invalid range.
400  */
ttm_bo_kmap(struct ttm_buffer_object * bo,unsigned long start_page,unsigned long num_pages,struct ttm_bo_kmap_obj * map)401 int ttm_bo_kmap(struct ttm_buffer_object *bo,
402 		unsigned long start_page, unsigned long num_pages,
403 		struct ttm_bo_kmap_obj *map)
404 {
405 	unsigned long offset, size;
406 	int ret;
407 
408 	map->virtual = NULL;
409 	map->bo = bo;
410 	if (num_pages > PFN_UP(bo->resource->size))
411 		return -EINVAL;
412 	if ((start_page + num_pages) > PFN_UP(bo->resource->size))
413 		return -EINVAL;
414 
415 	ret = ttm_mem_io_reserve(bo->bdev, bo->resource);
416 	if (ret)
417 		return ret;
418 	if (!bo->resource->bus.is_iomem) {
419 		return ttm_bo_kmap_ttm(bo, start_page, num_pages, map);
420 	} else {
421 		offset = start_page << PAGE_SHIFT;
422 		size = num_pages << PAGE_SHIFT;
423 		return ttm_bo_ioremap(bo, offset, size, map);
424 	}
425 }
426 EXPORT_SYMBOL(ttm_bo_kmap);
427 
428 /**
429  * ttm_bo_kunmap
430  *
431  * @map: Object describing the map to unmap.
432  *
433  * Unmaps a kernel map set up by ttm_bo_kmap.
434  */
ttm_bo_kunmap(struct ttm_bo_kmap_obj * map)435 void ttm_bo_kunmap(struct ttm_bo_kmap_obj *map)
436 {
437 	if (!map->virtual)
438 		return;
439 	switch (map->bo_kmap_type) {
440 	case ttm_bo_map_iomap:
441 		iounmap(map->virtual);
442 		break;
443 	case ttm_bo_map_vmap:
444 		vunmap(map->virtual);
445 		break;
446 	case ttm_bo_map_kmap:
447 		kunmap(map->page);
448 		break;
449 	case ttm_bo_map_premapped:
450 		break;
451 	default:
452 		BUG();
453 	}
454 	ttm_mem_io_free(map->bo->bdev, map->bo->resource);
455 	map->virtual = NULL;
456 	map->page = NULL;
457 }
458 EXPORT_SYMBOL(ttm_bo_kunmap);
459 
460 /**
461  * ttm_bo_vmap
462  *
463  * @bo: The buffer object.
464  * @map: pointer to a struct iosys_map representing the map.
465  *
466  * Sets up a kernel virtual mapping, using ioremap or vmap to the
467  * data in the buffer object. The parameter @map returns the virtual
468  * address as struct iosys_map. Unmap the buffer with ttm_bo_vunmap().
469  *
470  * Returns
471  * -ENOMEM: Out of memory.
472  * -EINVAL: Invalid range.
473  */
ttm_bo_vmap(struct ttm_buffer_object * bo,struct iosys_map * map)474 int ttm_bo_vmap(struct ttm_buffer_object *bo, struct iosys_map *map)
475 {
476 	struct ttm_resource *mem = bo->resource;
477 	int ret;
478 
479 	dma_resv_assert_held(bo->base.resv);
480 
481 	ret = ttm_mem_io_reserve(bo->bdev, mem);
482 	if (ret)
483 		return ret;
484 
485 	if (mem->bus.is_iomem) {
486 		void __iomem *vaddr_iomem;
487 
488 		if (mem->bus.addr)
489 			vaddr_iomem = (void __iomem *)mem->bus.addr;
490 		else if (mem->bus.caching == ttm_write_combined)
491 			vaddr_iomem = ioremap_wc(mem->bus.offset,
492 						 bo->base.size);
493 #ifdef CONFIG_X86
494 		else if (mem->bus.caching == ttm_cached)
495 			vaddr_iomem = ioremap_cache(mem->bus.offset,
496 						  bo->base.size);
497 #endif
498 		else
499 			vaddr_iomem = ioremap(mem->bus.offset, bo->base.size);
500 
501 		if (!vaddr_iomem)
502 			return -ENOMEM;
503 
504 		iosys_map_set_vaddr_iomem(map, vaddr_iomem);
505 
506 	} else {
507 		struct ttm_operation_ctx ctx = {
508 			.interruptible = false,
509 			.no_wait_gpu = false
510 		};
511 		struct ttm_tt *ttm = bo->ttm;
512 		pgprot_t prot;
513 		void *vaddr;
514 
515 		ret = ttm_tt_populate(bo->bdev, ttm, &ctx);
516 		if (ret)
517 			return ret;
518 
519 		/*
520 		 * We need to use vmap to get the desired page protection
521 		 * or to make the buffer object look contiguous.
522 		 */
523 		prot = ttm_io_prot(bo, mem, PAGE_KERNEL);
524 		vaddr = vmap(ttm->pages, ttm->num_pages, 0, prot);
525 		if (!vaddr)
526 			return -ENOMEM;
527 
528 		iosys_map_set_vaddr(map, vaddr);
529 	}
530 
531 	return 0;
532 }
533 EXPORT_SYMBOL(ttm_bo_vmap);
534 
535 /**
536  * ttm_bo_vunmap
537  *
538  * @bo: The buffer object.
539  * @map: Object describing the map to unmap.
540  *
541  * Unmaps a kernel map set up by ttm_bo_vmap().
542  */
ttm_bo_vunmap(struct ttm_buffer_object * bo,struct iosys_map * map)543 void ttm_bo_vunmap(struct ttm_buffer_object *bo, struct iosys_map *map)
544 {
545 	struct ttm_resource *mem = bo->resource;
546 
547 	dma_resv_assert_held(bo->base.resv);
548 
549 	if (iosys_map_is_null(map))
550 		return;
551 
552 	if (!map->is_iomem)
553 		vunmap(map->vaddr);
554 	else if (!mem->bus.addr)
555 		iounmap(map->vaddr_iomem);
556 	iosys_map_clear(map);
557 
558 	ttm_mem_io_free(bo->bdev, bo->resource);
559 }
560 EXPORT_SYMBOL(ttm_bo_vunmap);
561 
ttm_bo_wait_free_node(struct ttm_buffer_object * bo,bool dst_use_tt)562 static int ttm_bo_wait_free_node(struct ttm_buffer_object *bo,
563 				 bool dst_use_tt)
564 {
565 	long ret;
566 
567 	ret = dma_resv_wait_timeout(bo->base.resv, DMA_RESV_USAGE_BOOKKEEP,
568 				    false, 15 * HZ);
569 	if (ret == 0)
570 		return -EBUSY;
571 	if (ret < 0)
572 		return ret;
573 
574 	if (!dst_use_tt)
575 		ttm_bo_tt_destroy(bo);
576 	ttm_resource_free(bo, &bo->resource);
577 	return 0;
578 }
579 
ttm_bo_move_to_ghost(struct ttm_buffer_object * bo,struct dma_fence * fence,bool dst_use_tt)580 static int ttm_bo_move_to_ghost(struct ttm_buffer_object *bo,
581 				struct dma_fence *fence,
582 				bool dst_use_tt)
583 {
584 	struct ttm_buffer_object *ghost_obj;
585 	int ret;
586 
587 	/**
588 	 * This should help pipeline ordinary buffer moves.
589 	 *
590 	 * Hang old buffer memory on a new buffer object,
591 	 * and leave it to be released when the GPU
592 	 * operation has completed.
593 	 */
594 
595 	ret = ttm_buffer_object_transfer(bo, &ghost_obj);
596 	if (ret)
597 		return ret;
598 
599 	dma_resv_add_fence(&ghost_obj->base._resv, fence,
600 			   DMA_RESV_USAGE_KERNEL);
601 
602 	/**
603 	 * If we're not moving to fixed memory, the TTM object
604 	 * needs to stay alive. Otherwhise hang it on the ghost
605 	 * bo to be unbound and destroyed.
606 	 */
607 
608 	if (dst_use_tt)
609 		ghost_obj->ttm = NULL;
610 	else
611 		bo->ttm = NULL;
612 
613 	dma_resv_unlock(&ghost_obj->base._resv);
614 	ttm_bo_put(ghost_obj);
615 	return 0;
616 }
617 
ttm_bo_move_pipeline_evict(struct ttm_buffer_object * bo,struct dma_fence * fence)618 static void ttm_bo_move_pipeline_evict(struct ttm_buffer_object *bo,
619 				       struct dma_fence *fence)
620 {
621 	struct ttm_device *bdev = bo->bdev;
622 	struct ttm_resource_manager *from;
623 
624 	from = ttm_manager_type(bdev, bo->resource->mem_type);
625 
626 	/**
627 	 * BO doesn't have a TTM we need to bind/unbind. Just remember
628 	 * this eviction and free up the allocation
629 	 */
630 	spin_lock(&from->move_lock);
631 	if (!from->move || dma_fence_is_later(fence, from->move)) {
632 		dma_fence_put(from->move);
633 		from->move = dma_fence_get(fence);
634 	}
635 	spin_unlock(&from->move_lock);
636 
637 	ttm_resource_free(bo, &bo->resource);
638 }
639 
640 /**
641  * ttm_bo_move_accel_cleanup - cleanup helper for hw copies
642  *
643  * @bo: A pointer to a struct ttm_buffer_object.
644  * @fence: A fence object that signals when moving is complete.
645  * @evict: This is an evict move. Don't return until the buffer is idle.
646  * @pipeline: evictions are to be pipelined.
647  * @new_mem: struct ttm_resource indicating where to move.
648  *
649  * Accelerated move function to be called when an accelerated move
650  * has been scheduled. The function will create a new temporary buffer object
651  * representing the old placement, and put the sync object on both buffer
652  * objects. After that the newly created buffer object is unref'd to be
653  * destroyed when the move is complete. This will help pipeline
654  * buffer moves.
655  */
ttm_bo_move_accel_cleanup(struct ttm_buffer_object * bo,struct dma_fence * fence,bool evict,bool pipeline,struct ttm_resource * new_mem)656 int ttm_bo_move_accel_cleanup(struct ttm_buffer_object *bo,
657 			      struct dma_fence *fence,
658 			      bool evict,
659 			      bool pipeline,
660 			      struct ttm_resource *new_mem)
661 {
662 	struct ttm_device *bdev = bo->bdev;
663 	struct ttm_resource_manager *from = ttm_manager_type(bdev, bo->resource->mem_type);
664 	struct ttm_resource_manager *man = ttm_manager_type(bdev, new_mem->mem_type);
665 	int ret = 0;
666 
667 	dma_resv_add_fence(bo->base.resv, fence, DMA_RESV_USAGE_KERNEL);
668 	if (!evict)
669 		ret = ttm_bo_move_to_ghost(bo, fence, man->use_tt);
670 	else if (!from->use_tt && pipeline)
671 		ttm_bo_move_pipeline_evict(bo, fence);
672 	else
673 		ret = ttm_bo_wait_free_node(bo, man->use_tt);
674 
675 	if (ret)
676 		return ret;
677 
678 	ttm_bo_assign_mem(bo, new_mem);
679 
680 	return 0;
681 }
682 EXPORT_SYMBOL(ttm_bo_move_accel_cleanup);
683 
684 /**
685  * ttm_bo_move_sync_cleanup - cleanup by waiting for the move to finish
686  *
687  * @bo: A pointer to a struct ttm_buffer_object.
688  * @new_mem: struct ttm_resource indicating where to move.
689  *
690  * Special case of ttm_bo_move_accel_cleanup where the bo is guaranteed
691  * by the caller to be idle. Typically used after memcpy buffer moves.
692  */
ttm_bo_move_sync_cleanup(struct ttm_buffer_object * bo,struct ttm_resource * new_mem)693 void ttm_bo_move_sync_cleanup(struct ttm_buffer_object *bo,
694 			      struct ttm_resource *new_mem)
695 {
696 	struct ttm_device *bdev = bo->bdev;
697 	struct ttm_resource_manager *man = ttm_manager_type(bdev, new_mem->mem_type);
698 	int ret;
699 
700 	ret = ttm_bo_wait_free_node(bo, man->use_tt);
701 	if (WARN_ON(ret))
702 		return;
703 
704 	ttm_bo_assign_mem(bo, new_mem);
705 }
706 EXPORT_SYMBOL(ttm_bo_move_sync_cleanup);
707 
708 /**
709  * ttm_bo_pipeline_gutting - purge the contents of a bo
710  * @bo: The buffer object
711  *
712  * Purge the contents of a bo, async if the bo is not idle.
713  * After a successful call, the bo is left unpopulated in
714  * system placement. The function may wait uninterruptible
715  * for idle on OOM.
716  *
717  * Return: 0 if successful, negative error code on failure.
718  */
ttm_bo_pipeline_gutting(struct ttm_buffer_object * bo)719 int ttm_bo_pipeline_gutting(struct ttm_buffer_object *bo)
720 {
721 	struct ttm_buffer_object *ghost;
722 	struct ttm_tt *ttm;
723 	int ret;
724 
725 	/* If already idle, no need for ghost object dance. */
726 	if (dma_resv_test_signaled(bo->base.resv, DMA_RESV_USAGE_BOOKKEEP)) {
727 		if (!bo->ttm) {
728 			/* See comment below about clearing. */
729 			ret = ttm_tt_create(bo, true);
730 			if (ret)
731 				return ret;
732 		} else {
733 			ttm_tt_unpopulate(bo->bdev, bo->ttm);
734 			if (bo->type == ttm_bo_type_device)
735 				ttm_tt_mark_for_clear(bo->ttm);
736 		}
737 		ttm_resource_free(bo, &bo->resource);
738 		return 0;
739 	}
740 
741 	/*
742 	 * We need an unpopulated ttm_tt after giving our current one,
743 	 * if any, to the ghost object. And we can't afford to fail
744 	 * creating one *after* the operation. If the bo subsequently gets
745 	 * resurrected, make sure it's cleared (if ttm_bo_type_device)
746 	 * to avoid leaking sensitive information to user-space.
747 	 */
748 
749 	ttm = bo->ttm;
750 	bo->ttm = NULL;
751 	ret = ttm_tt_create(bo, true);
752 	swap(bo->ttm, ttm);
753 	if (ret)
754 		return ret;
755 
756 	ret = ttm_buffer_object_transfer(bo, &ghost);
757 	if (ret)
758 		goto error_destroy_tt;
759 
760 	ret = dma_resv_copy_fences(&ghost->base._resv, bo->base.resv);
761 	/* Last resort, wait for the BO to be idle when we are OOM */
762 	if (ret) {
763 		dma_resv_wait_timeout(bo->base.resv, DMA_RESV_USAGE_BOOKKEEP,
764 				      false, MAX_SCHEDULE_TIMEOUT);
765 	}
766 
767 	dma_resv_unlock(&ghost->base._resv);
768 	ttm_bo_put(ghost);
769 	bo->ttm = ttm;
770 	return 0;
771 
772 error_destroy_tt:
773 	ttm_tt_destroy(bo->bdev, ttm);
774 	return ret;
775 }
776 
ttm_lru_walk_trylock(struct ttm_lru_walk * walk,struct ttm_buffer_object * bo,bool * needs_unlock)777 static bool ttm_lru_walk_trylock(struct ttm_lru_walk *walk,
778 				 struct ttm_buffer_object *bo,
779 				 bool *needs_unlock)
780 {
781 	struct ttm_operation_ctx *ctx = walk->ctx;
782 
783 	*needs_unlock = false;
784 
785 	if (dma_resv_trylock(bo->base.resv)) {
786 		*needs_unlock = true;
787 		return true;
788 	}
789 
790 	if (bo->base.resv == ctx->resv && ctx->allow_res_evict) {
791 		dma_resv_assert_held(bo->base.resv);
792 		return true;
793 	}
794 
795 	return false;
796 }
797 
ttm_lru_walk_ticketlock(struct ttm_lru_walk * walk,struct ttm_buffer_object * bo,bool * needs_unlock)798 static int ttm_lru_walk_ticketlock(struct ttm_lru_walk *walk,
799 				   struct ttm_buffer_object *bo,
800 				   bool *needs_unlock)
801 {
802 	struct dma_resv *resv = bo->base.resv;
803 	int ret;
804 
805 	if (walk->ctx->interruptible)
806 		ret = dma_resv_lock_interruptible(resv, walk->ticket);
807 	else
808 		ret = dma_resv_lock(resv, walk->ticket);
809 
810 	if (!ret) {
811 		*needs_unlock = true;
812 		/*
813 		 * Only a single ticketlock per loop. Ticketlocks are prone
814 		 * to return -EDEADLK causing the eviction to fail, so
815 		 * after waiting for the ticketlock, revert back to
816 		 * trylocking for this walk.
817 		 */
818 		walk->ticket = NULL;
819 	} else if (ret == -EDEADLK) {
820 		/* Caller needs to exit the ww transaction. */
821 		ret = -ENOSPC;
822 	}
823 
824 	return ret;
825 }
826 
ttm_lru_walk_unlock(struct ttm_buffer_object * bo,bool locked)827 static void ttm_lru_walk_unlock(struct ttm_buffer_object *bo, bool locked)
828 {
829 	if (locked)
830 		dma_resv_unlock(bo->base.resv);
831 }
832 
833 /**
834  * ttm_lru_walk_for_evict() - Perform a LRU list walk, with actions taken on
835  * valid items.
836  * @walk: describe the walks and actions taken
837  * @bdev: The TTM device.
838  * @man: The struct ttm_resource manager whose LRU lists we're walking.
839  * @target: The end condition for the walk.
840  *
841  * The LRU lists of @man are walk, and for each struct ttm_resource encountered,
842  * the corresponding ttm_buffer_object is locked and taken a reference on, and
843  * the LRU lock is dropped. the LRU lock may be dropped before locking and, in
844  * that case, it's verified that the item actually remains on the LRU list after
845  * the lock, and that the buffer object didn't switch resource in between.
846  *
847  * With a locked object, the actions indicated by @walk->process_bo are
848  * performed, and after that, the bo is unlocked, the refcount dropped and the
849  * next struct ttm_resource is processed. Here, the walker relies on
850  * TTM's restartable LRU list implementation.
851  *
852  * Typically @walk->process_bo() would return the number of pages evicted,
853  * swapped or shrunken, so that when the total exceeds @target, or when the
854  * LRU list has been walked in full, iteration is terminated. It's also terminated
855  * on error. Note that the definition of @target is done by the caller, it
856  * could have a different meaning than the number of pages.
857  *
858  * Note that the way dma_resv individualization is done, locking needs to be done
859  * either with the LRU lock held (trylocking only) or with a reference on the
860  * object.
861  *
862  * Return: The progress made towards target or negative error code on error.
863  */
ttm_lru_walk_for_evict(struct ttm_lru_walk * walk,struct ttm_device * bdev,struct ttm_resource_manager * man,s64 target)864 s64 ttm_lru_walk_for_evict(struct ttm_lru_walk *walk, struct ttm_device *bdev,
865 			   struct ttm_resource_manager *man, s64 target)
866 {
867 	struct ttm_resource_cursor cursor;
868 	struct ttm_resource *res;
869 	s64 progress = 0;
870 	s64 lret;
871 
872 	spin_lock(&bdev->lru_lock);
873 	ttm_resource_manager_for_each_res(man, &cursor, res) {
874 		struct ttm_buffer_object *bo = res->bo;
875 		bool bo_needs_unlock = false;
876 		bool bo_locked = false;
877 		int mem_type;
878 
879 		/*
880 		 * Attempt a trylock before taking a reference on the bo,
881 		 * since if we do it the other way around, and the trylock fails,
882 		 * we need to drop the lru lock to put the bo.
883 		 */
884 		if (ttm_lru_walk_trylock(walk, bo, &bo_needs_unlock))
885 			bo_locked = true;
886 		else if (!walk->ticket || walk->ctx->no_wait_gpu ||
887 			 walk->trylock_only)
888 			continue;
889 
890 		if (!ttm_bo_get_unless_zero(bo)) {
891 			ttm_lru_walk_unlock(bo, bo_needs_unlock);
892 			continue;
893 		}
894 
895 		mem_type = res->mem_type;
896 		spin_unlock(&bdev->lru_lock);
897 
898 		lret = 0;
899 		if (!bo_locked)
900 			lret = ttm_lru_walk_ticketlock(walk, bo, &bo_needs_unlock);
901 
902 		/*
903 		 * Note that in between the release of the lru lock and the
904 		 * ticketlock, the bo may have switched resource,
905 		 * and also memory type, since the resource may have been
906 		 * freed and allocated again with a different memory type.
907 		 * In that case, just skip it.
908 		 */
909 		if (!lret && bo->resource && bo->resource->mem_type == mem_type)
910 			lret = walk->ops->process_bo(walk, bo);
911 
912 		ttm_lru_walk_unlock(bo, bo_needs_unlock);
913 		ttm_bo_put(bo);
914 		if (lret == -EBUSY || lret == -EALREADY)
915 			lret = 0;
916 		progress = (lret < 0) ? lret : progress + lret;
917 
918 		spin_lock(&bdev->lru_lock);
919 		if (progress < 0 || progress >= target)
920 			break;
921 	}
922 	ttm_resource_cursor_fini(&cursor);
923 	spin_unlock(&bdev->lru_lock);
924 
925 	return progress;
926 }
927