• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: MIT
2 /*
3  * Copyright © 2022 Intel Corporation
4  */
5 
6 #include <linux/dma-fence-array.h>
7 
8 #include "xe_pt.h"
9 
10 #include "regs/xe_gtt_defs.h"
11 #include "xe_bo.h"
12 #include "xe_device.h"
13 #include "xe_drm_client.h"
14 #include "xe_exec_queue.h"
15 #include "xe_gt.h"
16 #include "xe_gt_tlb_invalidation.h"
17 #include "xe_migrate.h"
18 #include "xe_pt_types.h"
19 #include "xe_pt_walk.h"
20 #include "xe_res_cursor.h"
21 #include "xe_sched_job.h"
22 #include "xe_sync.h"
23 #include "xe_trace.h"
24 #include "xe_ttm_stolen_mgr.h"
25 #include "xe_vm.h"
26 
27 struct xe_pt_dir {
28 	struct xe_pt pt;
29 	/** @children: Array of page-table child nodes */
30 	struct xe_ptw *children[XE_PDES];
31 	/** @staging: Array of page-table staging nodes */
32 	struct xe_ptw *staging[XE_PDES];
33 };
34 
35 #if IS_ENABLED(CONFIG_DRM_XE_DEBUG_VM)
36 #define xe_pt_set_addr(__xe_pt, __addr) ((__xe_pt)->addr = (__addr))
37 #define xe_pt_addr(__xe_pt) ((__xe_pt)->addr)
38 #else
39 #define xe_pt_set_addr(__xe_pt, __addr)
40 #define xe_pt_addr(__xe_pt) 0ull
41 #endif
42 
43 static const u64 xe_normal_pt_shifts[] = {12, 21, 30, 39, 48};
44 static const u64 xe_compact_pt_shifts[] = {16, 21, 30, 39, 48};
45 
46 #define XE_PT_HIGHEST_LEVEL (ARRAY_SIZE(xe_normal_pt_shifts) - 1)
47 
as_xe_pt_dir(struct xe_pt * pt)48 static struct xe_pt_dir *as_xe_pt_dir(struct xe_pt *pt)
49 {
50 	return container_of(pt, struct xe_pt_dir, pt);
51 }
52 
53 static struct xe_pt *
xe_pt_entry_staging(struct xe_pt_dir * pt_dir,unsigned int index)54 xe_pt_entry_staging(struct xe_pt_dir *pt_dir, unsigned int index)
55 {
56 	return container_of(pt_dir->staging[index], struct xe_pt, base);
57 }
58 
__xe_pt_empty_pte(struct xe_tile * tile,struct xe_vm * vm,unsigned int level)59 static u64 __xe_pt_empty_pte(struct xe_tile *tile, struct xe_vm *vm,
60 			     unsigned int level)
61 {
62 	struct xe_device *xe = tile_to_xe(tile);
63 	u16 pat_index = xe->pat.idx[XE_CACHE_WB];
64 	u8 id = tile->id;
65 
66 	if (!xe_vm_has_scratch(vm))
67 		return 0;
68 
69 	if (level > MAX_HUGEPTE_LEVEL)
70 		return vm->pt_ops->pde_encode_bo(vm->scratch_pt[id][level - 1]->bo,
71 						 0, pat_index);
72 
73 	return vm->pt_ops->pte_encode_addr(xe, 0, pat_index, level, IS_DGFX(xe), 0) |
74 		XE_PTE_NULL;
75 }
76 
xe_pt_free(struct xe_pt * pt)77 static void xe_pt_free(struct xe_pt *pt)
78 {
79 	if (pt->level)
80 		kfree(as_xe_pt_dir(pt));
81 	else
82 		kfree(pt);
83 }
84 
85 /**
86  * xe_pt_create() - Create a page-table.
87  * @vm: The vm to create for.
88  * @tile: The tile to create for.
89  * @level: The page-table level.
90  *
91  * Allocate and initialize a single struct xe_pt metadata structure. Also
92  * create the corresponding page-table bo, but don't initialize it. If the
93  * level is grater than zero, then it's assumed to be a directory page-
94  * table and the directory structure is also allocated and initialized to
95  * NULL pointers.
96  *
97  * Return: A valid struct xe_pt pointer on success, Pointer error code on
98  * error.
99  */
xe_pt_create(struct xe_vm * vm,struct xe_tile * tile,unsigned int level)100 struct xe_pt *xe_pt_create(struct xe_vm *vm, struct xe_tile *tile,
101 			   unsigned int level)
102 {
103 	struct xe_pt *pt;
104 	struct xe_bo *bo;
105 	int err;
106 
107 	if (level) {
108 		struct xe_pt_dir *dir = kzalloc(sizeof(*dir), GFP_KERNEL);
109 
110 		pt = (dir) ? &dir->pt : NULL;
111 	} else {
112 		pt = kzalloc(sizeof(*pt), GFP_KERNEL);
113 	}
114 	if (!pt)
115 		return ERR_PTR(-ENOMEM);
116 
117 	pt->level = level;
118 	bo = xe_bo_create_pin_map(vm->xe, tile, vm, SZ_4K,
119 				  ttm_bo_type_kernel,
120 				  XE_BO_FLAG_VRAM_IF_DGFX(tile) |
121 				  XE_BO_FLAG_IGNORE_MIN_PAGE_SIZE |
122 				  XE_BO_FLAG_PINNED |
123 				  XE_BO_FLAG_NO_RESV_EVICT |
124 				  XE_BO_FLAG_PAGETABLE);
125 	if (IS_ERR(bo)) {
126 		err = PTR_ERR(bo);
127 		goto err_kfree;
128 	}
129 	pt->bo = bo;
130 	pt->base.children = level ? as_xe_pt_dir(pt)->children : NULL;
131 	pt->base.staging = level ? as_xe_pt_dir(pt)->staging : NULL;
132 
133 	if (vm->xef)
134 		xe_drm_client_add_bo(vm->xef->client, pt->bo);
135 	xe_tile_assert(tile, level <= XE_VM_MAX_LEVEL);
136 
137 	return pt;
138 
139 err_kfree:
140 	xe_pt_free(pt);
141 	return ERR_PTR(err);
142 }
143 
144 /**
145  * xe_pt_populate_empty() - Populate a page-table bo with scratch- or zero
146  * entries.
147  * @tile: The tile the scratch pagetable of which to use.
148  * @vm: The vm we populate for.
149  * @pt: The pagetable the bo of which to initialize.
150  *
151  * Populate the page-table bo of @pt with entries pointing into the tile's
152  * scratch page-table tree if any. Otherwise populate with zeros.
153  */
xe_pt_populate_empty(struct xe_tile * tile,struct xe_vm * vm,struct xe_pt * pt)154 void xe_pt_populate_empty(struct xe_tile *tile, struct xe_vm *vm,
155 			  struct xe_pt *pt)
156 {
157 	struct iosys_map *map = &pt->bo->vmap;
158 	u64 empty;
159 	int i;
160 
161 	if (!xe_vm_has_scratch(vm)) {
162 		/*
163 		 * FIXME: Some memory is allocated already allocated to zero?
164 		 * Find out which memory that is and avoid this memset...
165 		 */
166 		xe_map_memset(vm->xe, map, 0, 0, SZ_4K);
167 	} else {
168 		empty = __xe_pt_empty_pte(tile, vm, pt->level);
169 		for (i = 0; i < XE_PDES; i++)
170 			xe_pt_write(vm->xe, map, i, empty);
171 	}
172 }
173 
174 /**
175  * xe_pt_shift() - Return the ilog2 value of the size of the address range of
176  * a page-table at a certain level.
177  * @level: The level.
178  *
179  * Return: The ilog2 value of the size of the address range of a page-table
180  * at level @level.
181  */
xe_pt_shift(unsigned int level)182 unsigned int xe_pt_shift(unsigned int level)
183 {
184 	return XE_PTE_SHIFT + XE_PDE_SHIFT * level;
185 }
186 
187 /**
188  * xe_pt_destroy() - Destroy a page-table tree.
189  * @pt: The root of the page-table tree to destroy.
190  * @flags: vm flags. Currently unused.
191  * @deferred: List head of lockless list for deferred putting. NULL for
192  *            immediate putting.
193  *
194  * Puts the page-table bo, recursively calls xe_pt_destroy on all children
195  * and finally frees @pt. TODO: Can we remove the @flags argument?
196  */
xe_pt_destroy(struct xe_pt * pt,u32 flags,struct llist_head * deferred)197 void xe_pt_destroy(struct xe_pt *pt, u32 flags, struct llist_head *deferred)
198 {
199 	int i;
200 
201 	if (!pt)
202 		return;
203 
204 	XE_WARN_ON(!list_empty(&pt->bo->ttm.base.gpuva.list));
205 	xe_bo_unpin(pt->bo);
206 	xe_bo_put_deferred(pt->bo, deferred);
207 
208 	if (pt->level > 0 && pt->num_live) {
209 		struct xe_pt_dir *pt_dir = as_xe_pt_dir(pt);
210 
211 		for (i = 0; i < XE_PDES; i++) {
212 			if (xe_pt_entry_staging(pt_dir, i))
213 				xe_pt_destroy(xe_pt_entry_staging(pt_dir, i), flags,
214 					      deferred);
215 		}
216 	}
217 	xe_pt_free(pt);
218 }
219 
220 /**
221  * xe_pt_clear() - Clear a page-table.
222  * @xe: xe device.
223  * @pt: The page-table.
224  *
225  * Clears page-table by setting to zero.
226  */
xe_pt_clear(struct xe_device * xe,struct xe_pt * pt)227 void xe_pt_clear(struct xe_device *xe, struct xe_pt *pt)
228 {
229 	struct iosys_map *map = &pt->bo->vmap;
230 
231 	xe_map_memset(xe, map, 0, 0, SZ_4K);
232 }
233 
234 /**
235  * DOC: Pagetable building
236  *
237  * Below we use the term "page-table" for both page-directories, containing
238  * pointers to lower level page-directories or page-tables, and level 0
239  * page-tables that contain only page-table-entries pointing to memory pages.
240  *
241  * When inserting an address range in an already existing page-table tree
242  * there will typically be a set of page-tables that are shared with other
243  * address ranges, and a set that are private to this address range.
244  * The set of shared page-tables can be at most two per level,
245  * and those can't be updated immediately because the entries of those
246  * page-tables may still be in use by the gpu for other mappings. Therefore
247  * when inserting entries into those, we instead stage those insertions by
248  * adding insertion data into struct xe_vm_pgtable_update structures. This
249  * data, (subtrees for the cpu and page-table-entries for the gpu) is then
250  * added in a separate commit step. CPU-data is committed while still under the
251  * vm lock, the object lock and for userptr, the notifier lock in read mode.
252  * The GPU async data is committed either by the GPU or CPU after fulfilling
253  * relevant dependencies.
254  * For non-shared page-tables (and, in fact, for shared ones that aren't
255  * existing at the time of staging), we add the data in-place without the
256  * special update structures. This private part of the page-table tree will
257  * remain disconnected from the vm page-table tree until data is committed to
258  * the shared page tables of the vm tree in the commit phase.
259  */
260 
261 struct xe_pt_update {
262 	/** @update: The update structure we're building for this parent. */
263 	struct xe_vm_pgtable_update *update;
264 	/** @parent: The parent. Used to detect a parent change. */
265 	struct xe_pt *parent;
266 	/** @preexisting: Whether the parent was pre-existing or allocated */
267 	bool preexisting;
268 };
269 
270 struct xe_pt_stage_bind_walk {
271 	/** base: The base class. */
272 	struct xe_pt_walk base;
273 
274 	/* Input parameters for the walk */
275 	/** @vm: The vm we're building for. */
276 	struct xe_vm *vm;
277 	/** @tile: The tile we're building for. */
278 	struct xe_tile *tile;
279 	/** @default_pte: PTE flag only template. No address is associated */
280 	u64 default_pte;
281 	/** @dma_offset: DMA offset to add to the PTE. */
282 	u64 dma_offset;
283 	/**
284 	 * @needs_64k: This address range enforces 64K alignment and
285 	 * granularity.
286 	 */
287 	bool needs_64K;
288 	/**
289 	 * @vma: VMA being mapped
290 	 */
291 	struct xe_vma *vma;
292 
293 	/* Also input, but is updated during the walk*/
294 	/** @curs: The DMA address cursor. */
295 	struct xe_res_cursor *curs;
296 	/** @va_curs_start: The Virtual address coresponding to @curs->start */
297 	u64 va_curs_start;
298 
299 	/* Output */
300 	struct xe_walk_update {
301 		/** @wupd.entries: Caller provided storage. */
302 		struct xe_vm_pgtable_update *entries;
303 		/** @wupd.num_used_entries: Number of update @entries used. */
304 		unsigned int num_used_entries;
305 		/** @wupd.updates: Tracks the update entry at a given level */
306 		struct xe_pt_update updates[XE_VM_MAX_LEVEL + 1];
307 	} wupd;
308 
309 	/* Walk state */
310 	/**
311 	 * @l0_end_addr: The end address of the current l0 leaf. Used for
312 	 * 64K granularity detection.
313 	 */
314 	u64 l0_end_addr;
315 	/** @addr_64K: The start address of the current 64K chunk. */
316 	u64 addr_64K;
317 	/** @found_64: Whether @add_64K actually points to a 64K chunk. */
318 	bool found_64K;
319 };
320 
321 static int
xe_pt_new_shared(struct xe_walk_update * wupd,struct xe_pt * parent,pgoff_t offset,bool alloc_entries)322 xe_pt_new_shared(struct xe_walk_update *wupd, struct xe_pt *parent,
323 		 pgoff_t offset, bool alloc_entries)
324 {
325 	struct xe_pt_update *upd = &wupd->updates[parent->level];
326 	struct xe_vm_pgtable_update *entry;
327 
328 	/*
329 	 * For *each level*, we could only have one active
330 	 * struct xt_pt_update at any one time. Once we move on to a
331 	 * new parent and page-directory, the old one is complete, and
332 	 * updates are either already stored in the build tree or in
333 	 * @wupd->entries
334 	 */
335 	if (likely(upd->parent == parent))
336 		return 0;
337 
338 	upd->parent = parent;
339 	upd->preexisting = true;
340 
341 	if (wupd->num_used_entries == XE_VM_MAX_LEVEL * 2 + 1)
342 		return -EINVAL;
343 
344 	entry = wupd->entries + wupd->num_used_entries++;
345 	upd->update = entry;
346 	entry->ofs = offset;
347 	entry->pt_bo = parent->bo;
348 	entry->pt = parent;
349 	entry->flags = 0;
350 	entry->qwords = 0;
351 	entry->pt_bo->update_index = -1;
352 
353 	if (alloc_entries) {
354 		entry->pt_entries = kmalloc_array(XE_PDES,
355 						  sizeof(*entry->pt_entries),
356 						  GFP_KERNEL);
357 		if (!entry->pt_entries)
358 			return -ENOMEM;
359 	}
360 
361 	return 0;
362 }
363 
364 /*
365  * NOTE: This is a very frequently called function so we allow ourselves
366  * to annotate (using branch prediction hints) the fastpath of updating a
367  * non-pre-existing pagetable with leaf ptes.
368  */
369 static int
xe_pt_insert_entry(struct xe_pt_stage_bind_walk * xe_walk,struct xe_pt * parent,pgoff_t offset,struct xe_pt * xe_child,u64 pte)370 xe_pt_insert_entry(struct xe_pt_stage_bind_walk *xe_walk, struct xe_pt *parent,
371 		   pgoff_t offset, struct xe_pt *xe_child, u64 pte)
372 {
373 	struct xe_pt_update *upd = &xe_walk->wupd.updates[parent->level];
374 	struct xe_pt_update *child_upd = xe_child ?
375 		&xe_walk->wupd.updates[xe_child->level] : NULL;
376 	int ret;
377 
378 	ret = xe_pt_new_shared(&xe_walk->wupd, parent, offset, true);
379 	if (unlikely(ret))
380 		return ret;
381 
382 	/*
383 	 * Register this new pagetable so that it won't be recognized as
384 	 * a shared pagetable by a subsequent insertion.
385 	 */
386 	if (unlikely(child_upd)) {
387 		child_upd->update = NULL;
388 		child_upd->parent = xe_child;
389 		child_upd->preexisting = false;
390 	}
391 
392 	if (likely(!upd->preexisting)) {
393 		/* Continue building a non-connected subtree. */
394 		struct iosys_map *map = &parent->bo->vmap;
395 
396 		if (unlikely(xe_child)) {
397 			parent->base.children[offset] = &xe_child->base;
398 			parent->base.staging[offset] = &xe_child->base;
399 		}
400 
401 		xe_pt_write(xe_walk->vm->xe, map, offset, pte);
402 		parent->num_live++;
403 	} else {
404 		/* Shared pt. Stage update. */
405 		unsigned int idx;
406 		struct xe_vm_pgtable_update *entry = upd->update;
407 
408 		idx = offset - entry->ofs;
409 		entry->pt_entries[idx].pt = xe_child;
410 		entry->pt_entries[idx].pte = pte;
411 		entry->qwords++;
412 	}
413 
414 	return 0;
415 }
416 
xe_pt_hugepte_possible(u64 addr,u64 next,unsigned int level,struct xe_pt_stage_bind_walk * xe_walk)417 static bool xe_pt_hugepte_possible(u64 addr, u64 next, unsigned int level,
418 				   struct xe_pt_stage_bind_walk *xe_walk)
419 {
420 	u64 size, dma;
421 
422 	if (level > MAX_HUGEPTE_LEVEL)
423 		return false;
424 
425 	/* Does the virtual range requested cover a huge pte? */
426 	if (!xe_pt_covers(addr, next, level, &xe_walk->base))
427 		return false;
428 
429 	/* Does the DMA segment cover the whole pte? */
430 	if (next - xe_walk->va_curs_start > xe_walk->curs->size)
431 		return false;
432 
433 	/* null VMA's do not have dma addresses */
434 	if (xe_vma_is_null(xe_walk->vma))
435 		return true;
436 
437 	/* Is the DMA address huge PTE size aligned? */
438 	size = next - addr;
439 	dma = addr - xe_walk->va_curs_start + xe_res_dma(xe_walk->curs);
440 
441 	return IS_ALIGNED(dma, size);
442 }
443 
444 /*
445  * Scan the requested mapping to check whether it can be done entirely
446  * with 64K PTEs.
447  */
448 static bool
xe_pt_scan_64K(u64 addr,u64 next,struct xe_pt_stage_bind_walk * xe_walk)449 xe_pt_scan_64K(u64 addr, u64 next, struct xe_pt_stage_bind_walk *xe_walk)
450 {
451 	struct xe_res_cursor curs = *xe_walk->curs;
452 
453 	if (!IS_ALIGNED(addr, SZ_64K))
454 		return false;
455 
456 	if (next > xe_walk->l0_end_addr)
457 		return false;
458 
459 	/* null VMA's do not have dma addresses */
460 	if (xe_vma_is_null(xe_walk->vma))
461 		return true;
462 
463 	xe_res_next(&curs, addr - xe_walk->va_curs_start);
464 	for (; addr < next; addr += SZ_64K) {
465 		if (!IS_ALIGNED(xe_res_dma(&curs), SZ_64K) || curs.size < SZ_64K)
466 			return false;
467 
468 		xe_res_next(&curs, SZ_64K);
469 	}
470 
471 	return addr == next;
472 }
473 
474 /*
475  * For non-compact "normal" 4K level-0 pagetables, we want to try to group
476  * addresses together in 64K-contigous regions to add a 64K TLB hint for the
477  * device to the PTE.
478  * This function determines whether the address is part of such a
479  * segment. For VRAM in normal pagetables, this is strictly necessary on
480  * some devices.
481  */
482 static bool
xe_pt_is_pte_ps64K(u64 addr,u64 next,struct xe_pt_stage_bind_walk * xe_walk)483 xe_pt_is_pte_ps64K(u64 addr, u64 next, struct xe_pt_stage_bind_walk *xe_walk)
484 {
485 	/* Address is within an already found 64k region */
486 	if (xe_walk->found_64K && addr - xe_walk->addr_64K < SZ_64K)
487 		return true;
488 
489 	xe_walk->found_64K = xe_pt_scan_64K(addr, addr + SZ_64K, xe_walk);
490 	xe_walk->addr_64K = addr;
491 
492 	return xe_walk->found_64K;
493 }
494 
495 static int
xe_pt_stage_bind_entry(struct xe_ptw * parent,pgoff_t offset,unsigned int level,u64 addr,u64 next,struct xe_ptw ** child,enum page_walk_action * action,struct xe_pt_walk * walk)496 xe_pt_stage_bind_entry(struct xe_ptw *parent, pgoff_t offset,
497 		       unsigned int level, u64 addr, u64 next,
498 		       struct xe_ptw **child,
499 		       enum page_walk_action *action,
500 		       struct xe_pt_walk *walk)
501 {
502 	struct xe_pt_stage_bind_walk *xe_walk =
503 		container_of(walk, typeof(*xe_walk), base);
504 	u16 pat_index = xe_walk->vma->pat_index;
505 	struct xe_pt *xe_parent = container_of(parent, typeof(*xe_parent), base);
506 	struct xe_vm *vm = xe_walk->vm;
507 	struct xe_pt *xe_child;
508 	bool covers;
509 	int ret = 0;
510 	u64 pte;
511 
512 	/* Is this a leaf entry ?*/
513 	if (level == 0 || xe_pt_hugepte_possible(addr, next, level, xe_walk)) {
514 		struct xe_res_cursor *curs = xe_walk->curs;
515 		bool is_null = xe_vma_is_null(xe_walk->vma);
516 
517 		XE_WARN_ON(xe_walk->va_curs_start != addr);
518 
519 		pte = vm->pt_ops->pte_encode_vma(is_null ? 0 :
520 						 xe_res_dma(curs) + xe_walk->dma_offset,
521 						 xe_walk->vma, pat_index, level);
522 		pte |= xe_walk->default_pte;
523 
524 		/*
525 		 * Set the XE_PTE_PS64 hint if possible, otherwise if
526 		 * this device *requires* 64K PTE size for VRAM, fail.
527 		 */
528 		if (level == 0 && !xe_parent->is_compact) {
529 			if (xe_pt_is_pte_ps64K(addr, next, xe_walk)) {
530 				xe_walk->vma->gpuva.flags |= XE_VMA_PTE_64K;
531 				pte |= XE_PTE_PS64;
532 			} else if (XE_WARN_ON(xe_walk->needs_64K)) {
533 				return -EINVAL;
534 			}
535 		}
536 
537 		ret = xe_pt_insert_entry(xe_walk, xe_parent, offset, NULL, pte);
538 		if (unlikely(ret))
539 			return ret;
540 
541 		if (!is_null)
542 			xe_res_next(curs, next - addr);
543 		xe_walk->va_curs_start = next;
544 		xe_walk->vma->gpuva.flags |= (XE_VMA_PTE_4K << level);
545 		*action = ACTION_CONTINUE;
546 
547 		return ret;
548 	}
549 
550 	/*
551 	 * Descending to lower level. Determine if we need to allocate a
552 	 * new page table or -directory, which we do if there is no
553 	 * previous one or there is one we can completely replace.
554 	 */
555 	if (level == 1) {
556 		walk->shifts = xe_normal_pt_shifts;
557 		xe_walk->l0_end_addr = next;
558 	}
559 
560 	covers = xe_pt_covers(addr, next, level, &xe_walk->base);
561 	if (covers || !*child) {
562 		u64 flags = 0;
563 
564 		xe_child = xe_pt_create(xe_walk->vm, xe_walk->tile, level - 1);
565 		if (IS_ERR(xe_child))
566 			return PTR_ERR(xe_child);
567 
568 		xe_pt_set_addr(xe_child,
569 			       round_down(addr, 1ull << walk->shifts[level]));
570 
571 		if (!covers)
572 			xe_pt_populate_empty(xe_walk->tile, xe_walk->vm, xe_child);
573 
574 		*child = &xe_child->base;
575 
576 		/*
577 		 * Prefer the compact pagetable layout for L0 if possible. Only
578 		 * possible if VMA covers entire 2MB region as compact 64k and
579 		 * 4k pages cannot be mixed within a 2MB region.
580 		 * TODO: Suballocate the pt bo to avoid wasting a lot of
581 		 * memory.
582 		 */
583 		if (GRAPHICS_VERx100(tile_to_xe(xe_walk->tile)) >= 1250 && level == 1 &&
584 		    covers && xe_pt_scan_64K(addr, next, xe_walk)) {
585 			walk->shifts = xe_compact_pt_shifts;
586 			xe_walk->vma->gpuva.flags |= XE_VMA_PTE_COMPACT;
587 			flags |= XE_PDE_64K;
588 			xe_child->is_compact = true;
589 		}
590 
591 		pte = vm->pt_ops->pde_encode_bo(xe_child->bo, 0, pat_index) | flags;
592 		ret = xe_pt_insert_entry(xe_walk, xe_parent, offset, xe_child,
593 					 pte);
594 	}
595 
596 	*action = ACTION_SUBTREE;
597 	return ret;
598 }
599 
600 static const struct xe_pt_walk_ops xe_pt_stage_bind_ops = {
601 	.pt_entry = xe_pt_stage_bind_entry,
602 };
603 
604 /**
605  * xe_pt_stage_bind() - Build a disconnected page-table tree for a given address
606  * range.
607  * @tile: The tile we're building for.
608  * @vma: The vma indicating the address range.
609  * @entries: Storage for the update entries used for connecting the tree to
610  * the main tree at commit time.
611  * @num_entries: On output contains the number of @entries used.
612  *
613  * This function builds a disconnected page-table tree for a given address
614  * range. The tree is connected to the main vm tree for the gpu using
615  * xe_migrate_update_pgtables() and for the cpu using xe_pt_commit_bind().
616  * The function builds xe_vm_pgtable_update structures for already existing
617  * shared page-tables, and non-existing shared and non-shared page-tables
618  * are built and populated directly.
619  *
620  * Return 0 on success, negative error code on error.
621  */
622 static int
xe_pt_stage_bind(struct xe_tile * tile,struct xe_vma * vma,struct xe_vm_pgtable_update * entries,u32 * num_entries)623 xe_pt_stage_bind(struct xe_tile *tile, struct xe_vma *vma,
624 		 struct xe_vm_pgtable_update *entries, u32 *num_entries)
625 {
626 	struct xe_device *xe = tile_to_xe(tile);
627 	struct xe_bo *bo = xe_vma_bo(vma);
628 	bool is_devmem = !xe_vma_is_userptr(vma) && bo &&
629 		(xe_bo_is_vram(bo) || xe_bo_is_stolen_devmem(bo));
630 	struct xe_res_cursor curs;
631 	struct xe_pt_stage_bind_walk xe_walk = {
632 		.base = {
633 			.ops = &xe_pt_stage_bind_ops,
634 			.shifts = xe_normal_pt_shifts,
635 			.max_level = XE_PT_HIGHEST_LEVEL,
636 			.staging = true,
637 		},
638 		.vm = xe_vma_vm(vma),
639 		.tile = tile,
640 		.curs = &curs,
641 		.va_curs_start = xe_vma_start(vma),
642 		.vma = vma,
643 		.wupd.entries = entries,
644 		.needs_64K = (xe_vma_vm(vma)->flags & XE_VM_FLAG_64K) && is_devmem,
645 	};
646 	struct xe_pt *pt = xe_vma_vm(vma)->pt_root[tile->id];
647 	int ret;
648 
649 	/**
650 	 * Default atomic expectations for different allocation scenarios are as follows:
651 	 *
652 	 * 1. Traditional API: When the VM is not in LR mode:
653 	 *    - Device atomics are expected to function with all allocations.
654 	 *
655 	 * 2. Compute/SVM API: When the VM is in LR mode:
656 	 *    - Device atomics are the default behavior when the bo is placed in a single region.
657 	 *    - In all other cases device atomics will be disabled with AE=0 until an application
658 	 *      request differently using a ioctl like madvise.
659 	 */
660 	if (vma->gpuva.flags & XE_VMA_ATOMIC_PTE_BIT) {
661 		if (xe_vm_in_lr_mode(xe_vma_vm(vma))) {
662 			if (bo && xe_bo_has_single_placement(bo))
663 				xe_walk.default_pte |= XE_USM_PPGTT_PTE_AE;
664 			/**
665 			 * If a SMEM+LMEM allocation is backed by SMEM, a device
666 			 * atomics will cause a gpu page fault and which then
667 			 * gets migrated to LMEM, bind such allocations with
668 			 * device atomics enabled.
669 			 */
670 			else if (is_devmem && !xe_bo_has_single_placement(bo))
671 				xe_walk.default_pte |= XE_USM_PPGTT_PTE_AE;
672 		} else {
673 			xe_walk.default_pte |= XE_USM_PPGTT_PTE_AE;
674 		}
675 
676 		/**
677 		 * Unset AE if the platform(PVC) doesn't support it on an
678 		 * allocation
679 		 */
680 		if (!xe->info.has_device_atomics_on_smem && !is_devmem)
681 			xe_walk.default_pte &= ~XE_USM_PPGTT_PTE_AE;
682 	}
683 
684 	if (is_devmem) {
685 		xe_walk.default_pte |= XE_PPGTT_PTE_DM;
686 		xe_walk.dma_offset = vram_region_gpu_offset(bo->ttm.resource);
687 	}
688 
689 	if (!xe_vma_has_no_bo(vma) && xe_bo_is_stolen(bo))
690 		xe_walk.dma_offset = xe_ttm_stolen_gpu_offset(xe_bo_device(bo));
691 
692 	xe_bo_assert_held(bo);
693 
694 	if (!xe_vma_is_null(vma)) {
695 		if (xe_vma_is_userptr(vma))
696 			xe_res_first_sg(to_userptr_vma(vma)->userptr.sg, 0,
697 					xe_vma_size(vma), &curs);
698 		else if (xe_bo_is_vram(bo) || xe_bo_is_stolen(bo))
699 			xe_res_first(bo->ttm.resource, xe_vma_bo_offset(vma),
700 				     xe_vma_size(vma), &curs);
701 		else
702 			xe_res_first_sg(xe_bo_sg(bo), xe_vma_bo_offset(vma),
703 					xe_vma_size(vma), &curs);
704 	} else {
705 		curs.size = xe_vma_size(vma);
706 	}
707 
708 	ret = xe_pt_walk_range(&pt->base, pt->level, xe_vma_start(vma),
709 			       xe_vma_end(vma), &xe_walk.base);
710 
711 	*num_entries = xe_walk.wupd.num_used_entries;
712 	return ret;
713 }
714 
715 /**
716  * xe_pt_nonshared_offsets() - Determine the non-shared entry offsets of a
717  * shared pagetable.
718  * @addr: The start address within the non-shared pagetable.
719  * @end: The end address within the non-shared pagetable.
720  * @level: The level of the non-shared pagetable.
721  * @walk: Walk info. The function adjusts the walk action.
722  * @action: next action to perform (see enum page_walk_action)
723  * @offset: Ignored on input, First non-shared entry on output.
724  * @end_offset: Ignored on input, Last non-shared entry + 1 on output.
725  *
726  * A non-shared page-table has some entries that belong to the address range
727  * and others that don't. This function determines the entries that belong
728  * fully to the address range. Depending on level, some entries may
729  * partially belong to the address range (that can't happen at level 0).
730  * The function detects that and adjust those offsets to not include those
731  * partial entries. Iff it does detect partial entries, we know that there must
732  * be shared page tables also at lower levels, so it adjusts the walk action
733  * accordingly.
734  *
735  * Return: true if there were non-shared entries, false otherwise.
736  */
xe_pt_nonshared_offsets(u64 addr,u64 end,unsigned int level,struct xe_pt_walk * walk,enum page_walk_action * action,pgoff_t * offset,pgoff_t * end_offset)737 static bool xe_pt_nonshared_offsets(u64 addr, u64 end, unsigned int level,
738 				    struct xe_pt_walk *walk,
739 				    enum page_walk_action *action,
740 				    pgoff_t *offset, pgoff_t *end_offset)
741 {
742 	u64 size = 1ull << walk->shifts[level];
743 
744 	*offset = xe_pt_offset(addr, level, walk);
745 	*end_offset = xe_pt_num_entries(addr, end, level, walk) + *offset;
746 
747 	if (!level)
748 		return true;
749 
750 	/*
751 	 * If addr or next are not size aligned, there are shared pts at lower
752 	 * level, so in that case traverse down the subtree
753 	 */
754 	*action = ACTION_CONTINUE;
755 	if (!IS_ALIGNED(addr, size)) {
756 		*action = ACTION_SUBTREE;
757 		(*offset)++;
758 	}
759 
760 	if (!IS_ALIGNED(end, size)) {
761 		*action = ACTION_SUBTREE;
762 		(*end_offset)--;
763 	}
764 
765 	return *end_offset > *offset;
766 }
767 
768 struct xe_pt_zap_ptes_walk {
769 	/** @base: The walk base-class */
770 	struct xe_pt_walk base;
771 
772 	/* Input parameters for the walk */
773 	/** @tile: The tile we're building for */
774 	struct xe_tile *tile;
775 
776 	/* Output */
777 	/** @needs_invalidate: Whether we need to invalidate TLB*/
778 	bool needs_invalidate;
779 };
780 
xe_pt_zap_ptes_entry(struct xe_ptw * parent,pgoff_t offset,unsigned int level,u64 addr,u64 next,struct xe_ptw ** child,enum page_walk_action * action,struct xe_pt_walk * walk)781 static int xe_pt_zap_ptes_entry(struct xe_ptw *parent, pgoff_t offset,
782 				unsigned int level, u64 addr, u64 next,
783 				struct xe_ptw **child,
784 				enum page_walk_action *action,
785 				struct xe_pt_walk *walk)
786 {
787 	struct xe_pt_zap_ptes_walk *xe_walk =
788 		container_of(walk, typeof(*xe_walk), base);
789 	struct xe_pt *xe_child = container_of(*child, typeof(*xe_child), base);
790 	pgoff_t end_offset;
791 
792 	XE_WARN_ON(!*child);
793 	XE_WARN_ON(!level);
794 
795 	/*
796 	 * Note that we're called from an entry callback, and we're dealing
797 	 * with the child of that entry rather than the parent, so need to
798 	 * adjust level down.
799 	 */
800 	if (xe_pt_nonshared_offsets(addr, next, --level, walk, action, &offset,
801 				    &end_offset)) {
802 		xe_map_memset(tile_to_xe(xe_walk->tile), &xe_child->bo->vmap,
803 			      offset * sizeof(u64), 0,
804 			      (end_offset - offset) * sizeof(u64));
805 		xe_walk->needs_invalidate = true;
806 	}
807 
808 	return 0;
809 }
810 
811 static const struct xe_pt_walk_ops xe_pt_zap_ptes_ops = {
812 	.pt_entry = xe_pt_zap_ptes_entry,
813 };
814 
815 /**
816  * xe_pt_zap_ptes() - Zap (zero) gpu ptes of an address range
817  * @tile: The tile we're zapping for.
818  * @vma: GPU VMA detailing address range.
819  *
820  * Eviction and Userptr invalidation needs to be able to zap the
821  * gpu ptes of a given address range in pagefaulting mode.
822  * In order to be able to do that, that function needs access to the shared
823  * page-table entrieaso it can either clear the leaf PTEs or
824  * clear the pointers to lower-level page-tables. The caller is required
825  * to hold the necessary locks to ensure neither the page-table connectivity
826  * nor the page-table entries of the range is updated from under us.
827  *
828  * Return: Whether ptes were actually updated and a TLB invalidation is
829  * required.
830  */
xe_pt_zap_ptes(struct xe_tile * tile,struct xe_vma * vma)831 bool xe_pt_zap_ptes(struct xe_tile *tile, struct xe_vma *vma)
832 {
833 	struct xe_pt_zap_ptes_walk xe_walk = {
834 		.base = {
835 			.ops = &xe_pt_zap_ptes_ops,
836 			.shifts = xe_normal_pt_shifts,
837 			.max_level = XE_PT_HIGHEST_LEVEL,
838 		},
839 		.tile = tile,
840 	};
841 	struct xe_pt *pt = xe_vma_vm(vma)->pt_root[tile->id];
842 	u8 pt_mask = (vma->tile_present & ~vma->tile_invalidated);
843 
844 	if (!(pt_mask & BIT(tile->id)))
845 		return false;
846 
847 	(void)xe_pt_walk_shared(&pt->base, pt->level, xe_vma_start(vma),
848 				xe_vma_end(vma), &xe_walk.base);
849 
850 	return xe_walk.needs_invalidate;
851 }
852 
853 static void
xe_vm_populate_pgtable(struct xe_migrate_pt_update * pt_update,struct xe_tile * tile,struct iosys_map * map,void * data,u32 qword_ofs,u32 num_qwords,const struct xe_vm_pgtable_update * update)854 xe_vm_populate_pgtable(struct xe_migrate_pt_update *pt_update, struct xe_tile *tile,
855 		       struct iosys_map *map, void *data,
856 		       u32 qword_ofs, u32 num_qwords,
857 		       const struct xe_vm_pgtable_update *update)
858 {
859 	struct xe_pt_entry *ptes = update->pt_entries;
860 	u64 *ptr = data;
861 	u32 i;
862 
863 	for (i = 0; i < num_qwords; i++) {
864 		if (map)
865 			xe_map_wr(tile_to_xe(tile), map, (qword_ofs + i) *
866 				  sizeof(u64), u64, ptes[i].pte);
867 		else
868 			ptr[i] = ptes[i].pte;
869 	}
870 }
871 
xe_pt_cancel_bind(struct xe_vma * vma,struct xe_vm_pgtable_update * entries,u32 num_entries)872 static void xe_pt_cancel_bind(struct xe_vma *vma,
873 			      struct xe_vm_pgtable_update *entries,
874 			      u32 num_entries)
875 {
876 	u32 i, j;
877 
878 	for (i = 0; i < num_entries; i++) {
879 		struct xe_pt *pt = entries[i].pt;
880 
881 		if (!pt)
882 			continue;
883 
884 		if (pt->level) {
885 			for (j = 0; j < entries[i].qwords; j++)
886 				xe_pt_destroy(entries[i].pt_entries[j].pt,
887 					      xe_vma_vm(vma)->flags, NULL);
888 		}
889 
890 		kfree(entries[i].pt_entries);
891 		entries[i].pt_entries = NULL;
892 		entries[i].qwords = 0;
893 	}
894 }
895 
xe_pt_commit_prepare_locks_assert(struct xe_vma * vma)896 static void xe_pt_commit_prepare_locks_assert(struct xe_vma *vma)
897 {
898 	struct xe_vm *vm = xe_vma_vm(vma);
899 
900 	lockdep_assert_held(&vm->lock);
901 
902 	if (!xe_vma_is_userptr(vma) && !xe_vma_is_null(vma))
903 		dma_resv_assert_held(xe_vma_bo(vma)->ttm.base.resv);
904 
905 	xe_vm_assert_held(vm);
906 }
907 
xe_pt_commit_locks_assert(struct xe_vma * vma)908 static void xe_pt_commit_locks_assert(struct xe_vma *vma)
909 {
910 	struct xe_vm *vm = xe_vma_vm(vma);
911 
912 	xe_pt_commit_prepare_locks_assert(vma);
913 
914 	if (xe_vma_is_userptr(vma))
915 		lockdep_assert_held_read(&vm->userptr.notifier_lock);
916 }
917 
xe_pt_commit(struct xe_vma * vma,struct xe_vm_pgtable_update * entries,u32 num_entries,struct llist_head * deferred)918 static void xe_pt_commit(struct xe_vma *vma,
919 			 struct xe_vm_pgtable_update *entries,
920 			 u32 num_entries, struct llist_head *deferred)
921 {
922 	u32 i, j;
923 
924 	xe_pt_commit_locks_assert(vma);
925 
926 	for (i = 0; i < num_entries; i++) {
927 		struct xe_pt *pt = entries[i].pt;
928 		struct xe_pt_dir *pt_dir;
929 
930 		if (!pt->level)
931 			continue;
932 
933 		pt_dir = as_xe_pt_dir(pt);
934 		for (j = 0; j < entries[i].qwords; j++) {
935 			struct xe_pt *oldpte = entries[i].pt_entries[j].pt;
936 			int j_ = j + entries[i].ofs;
937 
938 			pt_dir->children[j_] = pt_dir->staging[j_];
939 			xe_pt_destroy(oldpte, xe_vma_vm(vma)->flags, deferred);
940 		}
941 	}
942 }
943 
xe_pt_abort_bind(struct xe_vma * vma,struct xe_vm_pgtable_update * entries,u32 num_entries,bool rebind)944 static void xe_pt_abort_bind(struct xe_vma *vma,
945 			     struct xe_vm_pgtable_update *entries,
946 			     u32 num_entries, bool rebind)
947 {
948 	int i, j;
949 
950 	xe_pt_commit_prepare_locks_assert(vma);
951 
952 	for (i = num_entries - 1; i >= 0; --i) {
953 		struct xe_pt *pt = entries[i].pt;
954 		struct xe_pt_dir *pt_dir;
955 
956 		if (!rebind)
957 			pt->num_live -= entries[i].qwords;
958 
959 		if (!pt->level)
960 			continue;
961 
962 		pt_dir = as_xe_pt_dir(pt);
963 		for (j = 0; j < entries[i].qwords; j++) {
964 			u32 j_ = j + entries[i].ofs;
965 			struct xe_pt *newpte = xe_pt_entry_staging(pt_dir, j_);
966 			struct xe_pt *oldpte = entries[i].pt_entries[j].pt;
967 
968 			pt_dir->staging[j_] = oldpte ? &oldpte->base : 0;
969 			xe_pt_destroy(newpte, xe_vma_vm(vma)->flags, NULL);
970 		}
971 	}
972 }
973 
xe_pt_commit_prepare_bind(struct xe_vma * vma,struct xe_vm_pgtable_update * entries,u32 num_entries,bool rebind)974 static void xe_pt_commit_prepare_bind(struct xe_vma *vma,
975 				      struct xe_vm_pgtable_update *entries,
976 				      u32 num_entries, bool rebind)
977 {
978 	u32 i, j;
979 
980 	xe_pt_commit_prepare_locks_assert(vma);
981 
982 	for (i = 0; i < num_entries; i++) {
983 		struct xe_pt *pt = entries[i].pt;
984 		struct xe_pt_dir *pt_dir;
985 
986 		if (!rebind)
987 			pt->num_live += entries[i].qwords;
988 
989 		if (!pt->level)
990 			continue;
991 
992 		pt_dir = as_xe_pt_dir(pt);
993 		for (j = 0; j < entries[i].qwords; j++) {
994 			u32 j_ = j + entries[i].ofs;
995 			struct xe_pt *newpte = entries[i].pt_entries[j].pt;
996 			struct xe_pt *oldpte = NULL;
997 
998 			if (xe_pt_entry_staging(pt_dir, j_))
999 				oldpte = xe_pt_entry_staging(pt_dir, j_);
1000 
1001 			pt_dir->staging[j_] = &newpte->base;
1002 			entries[i].pt_entries[j].pt = oldpte;
1003 		}
1004 	}
1005 }
1006 
xe_pt_free_bind(struct xe_vm_pgtable_update * entries,u32 num_entries)1007 static void xe_pt_free_bind(struct xe_vm_pgtable_update *entries,
1008 			    u32 num_entries)
1009 {
1010 	u32 i;
1011 
1012 	for (i = 0; i < num_entries; i++)
1013 		kfree(entries[i].pt_entries);
1014 }
1015 
1016 static int
xe_pt_prepare_bind(struct xe_tile * tile,struct xe_vma * vma,struct xe_vm_pgtable_update * entries,u32 * num_entries)1017 xe_pt_prepare_bind(struct xe_tile *tile, struct xe_vma *vma,
1018 		   struct xe_vm_pgtable_update *entries, u32 *num_entries)
1019 {
1020 	int err;
1021 
1022 	*num_entries = 0;
1023 	err = xe_pt_stage_bind(tile, vma, entries, num_entries);
1024 	if (!err)
1025 		xe_tile_assert(tile, *num_entries);
1026 
1027 	return err;
1028 }
1029 
xe_vm_dbg_print_entries(struct xe_device * xe,const struct xe_vm_pgtable_update * entries,unsigned int num_entries,bool bind)1030 static void xe_vm_dbg_print_entries(struct xe_device *xe,
1031 				    const struct xe_vm_pgtable_update *entries,
1032 				    unsigned int num_entries, bool bind)
1033 #if (IS_ENABLED(CONFIG_DRM_XE_DEBUG_VM))
1034 {
1035 	unsigned int i;
1036 
1037 	vm_dbg(&xe->drm, "%s: %u entries to update\n", bind ? "bind" : "unbind",
1038 	       num_entries);
1039 	for (i = 0; i < num_entries; i++) {
1040 		const struct xe_vm_pgtable_update *entry = &entries[i];
1041 		struct xe_pt *xe_pt = entry->pt;
1042 		u64 page_size = 1ull << xe_pt_shift(xe_pt->level);
1043 		u64 end;
1044 		u64 start;
1045 
1046 		xe_assert(xe, !entry->pt->is_compact);
1047 		start = entry->ofs * page_size;
1048 		end = start + page_size * entry->qwords;
1049 		vm_dbg(&xe->drm,
1050 		       "\t%u: Update level %u at (%u + %u) [%llx...%llx) f:%x\n",
1051 		       i, xe_pt->level, entry->ofs, entry->qwords,
1052 		       xe_pt_addr(xe_pt) + start, xe_pt_addr(xe_pt) + end, 0);
1053 	}
1054 }
1055 #else
1056 {}
1057 #endif
1058 
no_in_syncs(struct xe_sync_entry * syncs,u32 num_syncs)1059 static bool no_in_syncs(struct xe_sync_entry *syncs, u32 num_syncs)
1060 {
1061 	int i;
1062 
1063 	for (i = 0; i < num_syncs; i++) {
1064 		struct dma_fence *fence = syncs[i].fence;
1065 
1066 		if (fence && !test_bit(DMA_FENCE_FLAG_SIGNALED_BIT,
1067 				       &fence->flags))
1068 			return false;
1069 	}
1070 
1071 	return true;
1072 }
1073 
job_test_add_deps(struct xe_sched_job * job,struct dma_resv * resv,enum dma_resv_usage usage)1074 static int job_test_add_deps(struct xe_sched_job *job,
1075 			     struct dma_resv *resv,
1076 			     enum dma_resv_usage usage)
1077 {
1078 	if (!job) {
1079 		if (!dma_resv_test_signaled(resv, usage))
1080 			return -ETIME;
1081 
1082 		return 0;
1083 	}
1084 
1085 	return xe_sched_job_add_deps(job, resv, usage);
1086 }
1087 
vma_add_deps(struct xe_vma * vma,struct xe_sched_job * job)1088 static int vma_add_deps(struct xe_vma *vma, struct xe_sched_job *job)
1089 {
1090 	struct xe_bo *bo = xe_vma_bo(vma);
1091 
1092 	xe_bo_assert_held(bo);
1093 
1094 	if (bo && !bo->vm)
1095 		return job_test_add_deps(job, bo->ttm.base.resv,
1096 					 DMA_RESV_USAGE_KERNEL);
1097 
1098 	return 0;
1099 }
1100 
op_add_deps(struct xe_vm * vm,struct xe_vma_op * op,struct xe_sched_job * job)1101 static int op_add_deps(struct xe_vm *vm, struct xe_vma_op *op,
1102 		       struct xe_sched_job *job)
1103 {
1104 	int err = 0;
1105 
1106 	switch (op->base.op) {
1107 	case DRM_GPUVA_OP_MAP:
1108 		if (!op->map.immediate && xe_vm_in_fault_mode(vm))
1109 			break;
1110 
1111 		err = vma_add_deps(op->map.vma, job);
1112 		break;
1113 	case DRM_GPUVA_OP_REMAP:
1114 		if (op->remap.prev)
1115 			err = vma_add_deps(op->remap.prev, job);
1116 		if (!err && op->remap.next)
1117 			err = vma_add_deps(op->remap.next, job);
1118 		break;
1119 	case DRM_GPUVA_OP_UNMAP:
1120 		break;
1121 	case DRM_GPUVA_OP_PREFETCH:
1122 		err = vma_add_deps(gpuva_to_vma(op->base.prefetch.va), job);
1123 		break;
1124 	default:
1125 		drm_warn(&vm->xe->drm, "NOT POSSIBLE");
1126 	}
1127 
1128 	return err;
1129 }
1130 
xe_pt_vm_dependencies(struct xe_sched_job * job,struct xe_vm * vm,struct xe_vma_ops * vops,struct xe_vm_pgtable_update_ops * pt_update_ops,struct xe_range_fence_tree * rftree)1131 static int xe_pt_vm_dependencies(struct xe_sched_job *job,
1132 				 struct xe_vm *vm,
1133 				 struct xe_vma_ops *vops,
1134 				 struct xe_vm_pgtable_update_ops *pt_update_ops,
1135 				 struct xe_range_fence_tree *rftree)
1136 {
1137 	struct xe_range_fence *rtfence;
1138 	struct dma_fence *fence;
1139 	struct xe_vma_op *op;
1140 	int err = 0, i;
1141 
1142 	xe_vm_assert_held(vm);
1143 
1144 	if (!job && !no_in_syncs(vops->syncs, vops->num_syncs))
1145 		return -ETIME;
1146 
1147 	if (!job && !xe_exec_queue_is_idle(pt_update_ops->q))
1148 		return -ETIME;
1149 
1150 	if (pt_update_ops->wait_vm_bookkeep || pt_update_ops->wait_vm_kernel) {
1151 		err = job_test_add_deps(job, xe_vm_resv(vm),
1152 					pt_update_ops->wait_vm_bookkeep ?
1153 					DMA_RESV_USAGE_BOOKKEEP :
1154 					DMA_RESV_USAGE_KERNEL);
1155 		if (err)
1156 			return err;
1157 	}
1158 
1159 	rtfence = xe_range_fence_tree_first(rftree, pt_update_ops->start,
1160 					    pt_update_ops->last);
1161 	while (rtfence) {
1162 		fence = rtfence->fence;
1163 
1164 		if (!dma_fence_is_signaled(fence)) {
1165 			/*
1166 			 * Is this a CPU update? GPU is busy updating, so return
1167 			 * an error
1168 			 */
1169 			if (!job)
1170 				return -ETIME;
1171 
1172 			dma_fence_get(fence);
1173 			err = drm_sched_job_add_dependency(&job->drm, fence);
1174 			if (err)
1175 				return err;
1176 		}
1177 
1178 		rtfence = xe_range_fence_tree_next(rtfence,
1179 						   pt_update_ops->start,
1180 						   pt_update_ops->last);
1181 	}
1182 
1183 	list_for_each_entry(op, &vops->list, link) {
1184 		err = op_add_deps(vm, op, job);
1185 		if (err)
1186 			return err;
1187 	}
1188 
1189 	if (!(pt_update_ops->q->flags & EXEC_QUEUE_FLAG_KERNEL)) {
1190 		if (job)
1191 			err = xe_sched_job_last_fence_add_dep(job, vm);
1192 		else
1193 			err = xe_exec_queue_last_fence_test_dep(pt_update_ops->q, vm);
1194 	}
1195 
1196 	for (i = 0; job && !err && i < vops->num_syncs; i++)
1197 		err = xe_sync_entry_add_deps(&vops->syncs[i], job);
1198 
1199 	return err;
1200 }
1201 
xe_pt_pre_commit(struct xe_migrate_pt_update * pt_update)1202 static int xe_pt_pre_commit(struct xe_migrate_pt_update *pt_update)
1203 {
1204 	struct xe_vma_ops *vops = pt_update->vops;
1205 	struct xe_vm *vm = vops->vm;
1206 	struct xe_range_fence_tree *rftree = &vm->rftree[pt_update->tile_id];
1207 	struct xe_vm_pgtable_update_ops *pt_update_ops =
1208 		&vops->pt_update_ops[pt_update->tile_id];
1209 
1210 	return xe_pt_vm_dependencies(pt_update->job, vm, pt_update->vops,
1211 				     pt_update_ops, rftree);
1212 }
1213 
1214 #ifdef CONFIG_DRM_XE_USERPTR_INVAL_INJECT
1215 
xe_pt_userptr_inject_eagain(struct xe_userptr_vma * uvma)1216 static bool xe_pt_userptr_inject_eagain(struct xe_userptr_vma *uvma)
1217 {
1218 	u32 divisor = uvma->userptr.divisor ? uvma->userptr.divisor : 2;
1219 	static u32 count;
1220 
1221 	if (count++ % divisor == divisor - 1) {
1222 		uvma->userptr.divisor = divisor << 1;
1223 		return true;
1224 	}
1225 
1226 	return false;
1227 }
1228 
1229 #else
1230 
xe_pt_userptr_inject_eagain(struct xe_userptr_vma * uvma)1231 static bool xe_pt_userptr_inject_eagain(struct xe_userptr_vma *uvma)
1232 {
1233 	return false;
1234 }
1235 
1236 #endif
1237 
vma_check_userptr(struct xe_vm * vm,struct xe_vma * vma,struct xe_vm_pgtable_update_ops * pt_update)1238 static int vma_check_userptr(struct xe_vm *vm, struct xe_vma *vma,
1239 			     struct xe_vm_pgtable_update_ops *pt_update)
1240 {
1241 	struct xe_userptr_vma *uvma;
1242 	unsigned long notifier_seq;
1243 
1244 	lockdep_assert_held_read(&vm->userptr.notifier_lock);
1245 
1246 	if (!xe_vma_is_userptr(vma))
1247 		return 0;
1248 
1249 	uvma = to_userptr_vma(vma);
1250 	if (xe_pt_userptr_inject_eagain(uvma))
1251 		xe_vma_userptr_force_invalidate(uvma);
1252 
1253 	notifier_seq = uvma->userptr.notifier_seq;
1254 
1255 	if (!mmu_interval_read_retry(&uvma->userptr.notifier,
1256 				     notifier_seq))
1257 		return 0;
1258 
1259 	if (xe_vm_in_fault_mode(vm))
1260 		return -EAGAIN;
1261 
1262 	/*
1263 	 * Just continue the operation since exec or rebind worker
1264 	 * will take care of rebinding.
1265 	 */
1266 	return 0;
1267 }
1268 
op_check_userptr(struct xe_vm * vm,struct xe_vma_op * op,struct xe_vm_pgtable_update_ops * pt_update)1269 static int op_check_userptr(struct xe_vm *vm, struct xe_vma_op *op,
1270 			    struct xe_vm_pgtable_update_ops *pt_update)
1271 {
1272 	int err = 0;
1273 
1274 	lockdep_assert_held_read(&vm->userptr.notifier_lock);
1275 
1276 	switch (op->base.op) {
1277 	case DRM_GPUVA_OP_MAP:
1278 		if (!op->map.immediate && xe_vm_in_fault_mode(vm))
1279 			break;
1280 
1281 		err = vma_check_userptr(vm, op->map.vma, pt_update);
1282 		break;
1283 	case DRM_GPUVA_OP_REMAP:
1284 		if (op->remap.prev)
1285 			err = vma_check_userptr(vm, op->remap.prev, pt_update);
1286 		if (!err && op->remap.next)
1287 			err = vma_check_userptr(vm, op->remap.next, pt_update);
1288 		break;
1289 	case DRM_GPUVA_OP_UNMAP:
1290 		break;
1291 	case DRM_GPUVA_OP_PREFETCH:
1292 		err = vma_check_userptr(vm, gpuva_to_vma(op->base.prefetch.va),
1293 					pt_update);
1294 		break;
1295 	default:
1296 		drm_warn(&vm->xe->drm, "NOT POSSIBLE");
1297 	}
1298 
1299 	return err;
1300 }
1301 
xe_pt_userptr_pre_commit(struct xe_migrate_pt_update * pt_update)1302 static int xe_pt_userptr_pre_commit(struct xe_migrate_pt_update *pt_update)
1303 {
1304 	struct xe_vm *vm = pt_update->vops->vm;
1305 	struct xe_vma_ops *vops = pt_update->vops;
1306 	struct xe_vm_pgtable_update_ops *pt_update_ops =
1307 		&vops->pt_update_ops[pt_update->tile_id];
1308 	struct xe_vma_op *op;
1309 	int err;
1310 
1311 	err = xe_pt_pre_commit(pt_update);
1312 	if (err)
1313 		return err;
1314 
1315 	down_read(&vm->userptr.notifier_lock);
1316 
1317 	list_for_each_entry(op, &vops->list, link) {
1318 		err = op_check_userptr(vm, op, pt_update_ops);
1319 		if (err) {
1320 			up_read(&vm->userptr.notifier_lock);
1321 			break;
1322 		}
1323 	}
1324 
1325 	return err;
1326 }
1327 
1328 struct invalidation_fence {
1329 	struct xe_gt_tlb_invalidation_fence base;
1330 	struct xe_gt *gt;
1331 	struct dma_fence *fence;
1332 	struct dma_fence_cb cb;
1333 	struct work_struct work;
1334 	u64 start;
1335 	u64 end;
1336 	u32 asid;
1337 };
1338 
invalidation_fence_cb(struct dma_fence * fence,struct dma_fence_cb * cb)1339 static void invalidation_fence_cb(struct dma_fence *fence,
1340 				  struct dma_fence_cb *cb)
1341 {
1342 	struct invalidation_fence *ifence =
1343 		container_of(cb, struct invalidation_fence, cb);
1344 	struct xe_device *xe = gt_to_xe(ifence->gt);
1345 
1346 	trace_xe_gt_tlb_invalidation_fence_cb(xe, &ifence->base);
1347 	if (!ifence->fence->error) {
1348 		queue_work(system_wq, &ifence->work);
1349 	} else {
1350 		ifence->base.base.error = ifence->fence->error;
1351 		xe_gt_tlb_invalidation_fence_signal(&ifence->base);
1352 	}
1353 	dma_fence_put(ifence->fence);
1354 }
1355 
invalidation_fence_work_func(struct work_struct * w)1356 static void invalidation_fence_work_func(struct work_struct *w)
1357 {
1358 	struct invalidation_fence *ifence =
1359 		container_of(w, struct invalidation_fence, work);
1360 	struct xe_device *xe = gt_to_xe(ifence->gt);
1361 
1362 	trace_xe_gt_tlb_invalidation_fence_work_func(xe, &ifence->base);
1363 	xe_gt_tlb_invalidation_range(ifence->gt, &ifence->base, ifence->start,
1364 				     ifence->end, ifence->asid);
1365 }
1366 
invalidation_fence_init(struct xe_gt * gt,struct invalidation_fence * ifence,struct dma_fence * fence,u64 start,u64 end,u32 asid)1367 static void invalidation_fence_init(struct xe_gt *gt,
1368 				    struct invalidation_fence *ifence,
1369 				    struct dma_fence *fence,
1370 				    u64 start, u64 end, u32 asid)
1371 {
1372 	int ret;
1373 
1374 	trace_xe_gt_tlb_invalidation_fence_create(gt_to_xe(gt), &ifence->base);
1375 
1376 	xe_gt_tlb_invalidation_fence_init(gt, &ifence->base, false);
1377 
1378 	ifence->fence = fence;
1379 	ifence->gt = gt;
1380 	ifence->start = start;
1381 	ifence->end = end;
1382 	ifence->asid = asid;
1383 
1384 	INIT_WORK(&ifence->work, invalidation_fence_work_func);
1385 	ret = dma_fence_add_callback(fence, &ifence->cb, invalidation_fence_cb);
1386 	if (ret == -ENOENT) {
1387 		dma_fence_put(ifence->fence);	/* Usually dropped in CB */
1388 		invalidation_fence_work_func(&ifence->work);
1389 	} else if (ret) {
1390 		dma_fence_put(&ifence->base.base);	/* Caller ref */
1391 		dma_fence_put(&ifence->base.base);	/* Creation ref */
1392 	}
1393 
1394 	xe_gt_assert(gt, !ret || ret == -ENOENT);
1395 }
1396 
1397 struct xe_pt_stage_unbind_walk {
1398 	/** @base: The pagewalk base-class. */
1399 	struct xe_pt_walk base;
1400 
1401 	/* Input parameters for the walk */
1402 	/** @tile: The tile we're unbinding from. */
1403 	struct xe_tile *tile;
1404 
1405 	/**
1406 	 * @modified_start: Walk range start, modified to include any
1407 	 * shared pagetables that we're the only user of and can thus
1408 	 * treat as private.
1409 	 */
1410 	u64 modified_start;
1411 	/** @modified_end: Walk range start, modified like @modified_start. */
1412 	u64 modified_end;
1413 
1414 	/* Output */
1415 	/* @wupd: Structure to track the page-table updates we're building */
1416 	struct xe_walk_update wupd;
1417 };
1418 
1419 /*
1420  * Check whether this range is the only one populating this pagetable,
1421  * and in that case, update the walk range checks so that higher levels don't
1422  * view us as a shared pagetable.
1423  */
xe_pt_check_kill(u64 addr,u64 next,unsigned int level,const struct xe_pt * child,enum page_walk_action * action,struct xe_pt_walk * walk)1424 static bool xe_pt_check_kill(u64 addr, u64 next, unsigned int level,
1425 			     const struct xe_pt *child,
1426 			     enum page_walk_action *action,
1427 			     struct xe_pt_walk *walk)
1428 {
1429 	struct xe_pt_stage_unbind_walk *xe_walk =
1430 		container_of(walk, typeof(*xe_walk), base);
1431 	unsigned int shift = walk->shifts[level];
1432 	u64 size = 1ull << shift;
1433 
1434 	if (IS_ALIGNED(addr, size) && IS_ALIGNED(next, size) &&
1435 	    ((next - addr) >> shift) == child->num_live) {
1436 		u64 size = 1ull << walk->shifts[level + 1];
1437 
1438 		*action = ACTION_CONTINUE;
1439 
1440 		if (xe_walk->modified_start >= addr)
1441 			xe_walk->modified_start = round_down(addr, size);
1442 		if (xe_walk->modified_end <= next)
1443 			xe_walk->modified_end = round_up(next, size);
1444 
1445 		return true;
1446 	}
1447 
1448 	return false;
1449 }
1450 
xe_pt_stage_unbind_entry(struct xe_ptw * parent,pgoff_t offset,unsigned int level,u64 addr,u64 next,struct xe_ptw ** child,enum page_walk_action * action,struct xe_pt_walk * walk)1451 static int xe_pt_stage_unbind_entry(struct xe_ptw *parent, pgoff_t offset,
1452 				    unsigned int level, u64 addr, u64 next,
1453 				    struct xe_ptw **child,
1454 				    enum page_walk_action *action,
1455 				    struct xe_pt_walk *walk)
1456 {
1457 	struct xe_pt *xe_child = container_of(*child, typeof(*xe_child), base);
1458 
1459 	XE_WARN_ON(!*child);
1460 	XE_WARN_ON(!level);
1461 
1462 	xe_pt_check_kill(addr, next, level - 1, xe_child, action, walk);
1463 
1464 	return 0;
1465 }
1466 
1467 static int
xe_pt_stage_unbind_post_descend(struct xe_ptw * parent,pgoff_t offset,unsigned int level,u64 addr,u64 next,struct xe_ptw ** child,enum page_walk_action * action,struct xe_pt_walk * walk)1468 xe_pt_stage_unbind_post_descend(struct xe_ptw *parent, pgoff_t offset,
1469 				unsigned int level, u64 addr, u64 next,
1470 				struct xe_ptw **child,
1471 				enum page_walk_action *action,
1472 				struct xe_pt_walk *walk)
1473 {
1474 	struct xe_pt_stage_unbind_walk *xe_walk =
1475 		container_of(walk, typeof(*xe_walk), base);
1476 	struct xe_pt *xe_child = container_of(*child, typeof(*xe_child), base);
1477 	pgoff_t end_offset;
1478 	u64 size = 1ull << walk->shifts[--level];
1479 	int err;
1480 
1481 	if (!IS_ALIGNED(addr, size))
1482 		addr = xe_walk->modified_start;
1483 	if (!IS_ALIGNED(next, size))
1484 		next = xe_walk->modified_end;
1485 
1486 	/* Parent == *child is the root pt. Don't kill it. */
1487 	if (parent != *child &&
1488 	    xe_pt_check_kill(addr, next, level, xe_child, action, walk))
1489 		return 0;
1490 
1491 	if (!xe_pt_nonshared_offsets(addr, next, level, walk, action, &offset,
1492 				     &end_offset))
1493 		return 0;
1494 
1495 	err = xe_pt_new_shared(&xe_walk->wupd, xe_child, offset, true);
1496 	if (err)
1497 		return err;
1498 
1499 	xe_walk->wupd.updates[level].update->qwords = end_offset - offset;
1500 
1501 	return 0;
1502 }
1503 
1504 static const struct xe_pt_walk_ops xe_pt_stage_unbind_ops = {
1505 	.pt_entry = xe_pt_stage_unbind_entry,
1506 	.pt_post_descend = xe_pt_stage_unbind_post_descend,
1507 };
1508 
1509 /**
1510  * xe_pt_stage_unbind() - Build page-table update structures for an unbind
1511  * operation
1512  * @tile: The tile we're unbinding for.
1513  * @vma: The vma we're unbinding.
1514  * @entries: Caller-provided storage for the update structures.
1515  *
1516  * Builds page-table update structures for an unbind operation. The function
1517  * will attempt to remove all page-tables that we're the only user
1518  * of, and for that to work, the unbind operation must be committed in the
1519  * same critical section that blocks racing binds to the same page-table tree.
1520  *
1521  * Return: The number of entries used.
1522  */
xe_pt_stage_unbind(struct xe_tile * tile,struct xe_vma * vma,struct xe_vm_pgtable_update * entries)1523 static unsigned int xe_pt_stage_unbind(struct xe_tile *tile, struct xe_vma *vma,
1524 				       struct xe_vm_pgtable_update *entries)
1525 {
1526 	struct xe_pt_stage_unbind_walk xe_walk = {
1527 		.base = {
1528 			.ops = &xe_pt_stage_unbind_ops,
1529 			.shifts = xe_normal_pt_shifts,
1530 			.max_level = XE_PT_HIGHEST_LEVEL,
1531 			.staging = true,
1532 		},
1533 		.tile = tile,
1534 		.modified_start = xe_vma_start(vma),
1535 		.modified_end = xe_vma_end(vma),
1536 		.wupd.entries = entries,
1537 	};
1538 	struct xe_pt *pt = xe_vma_vm(vma)->pt_root[tile->id];
1539 
1540 	(void)xe_pt_walk_shared(&pt->base, pt->level, xe_vma_start(vma),
1541 				xe_vma_end(vma), &xe_walk.base);
1542 
1543 	return xe_walk.wupd.num_used_entries;
1544 }
1545 
1546 static void
xe_migrate_clear_pgtable_callback(struct xe_migrate_pt_update * pt_update,struct xe_tile * tile,struct iosys_map * map,void * ptr,u32 qword_ofs,u32 num_qwords,const struct xe_vm_pgtable_update * update)1547 xe_migrate_clear_pgtable_callback(struct xe_migrate_pt_update *pt_update,
1548 				  struct xe_tile *tile, struct iosys_map *map,
1549 				  void *ptr, u32 qword_ofs, u32 num_qwords,
1550 				  const struct xe_vm_pgtable_update *update)
1551 {
1552 	struct xe_vm *vm = pt_update->vops->vm;
1553 	u64 empty = __xe_pt_empty_pte(tile, vm, update->pt->level);
1554 	int i;
1555 
1556 	if (map && map->is_iomem)
1557 		for (i = 0; i < num_qwords; ++i)
1558 			xe_map_wr(tile_to_xe(tile), map, (qword_ofs + i) *
1559 				  sizeof(u64), u64, empty);
1560 	else if (map)
1561 		memset64(map->vaddr + qword_ofs * sizeof(u64), empty,
1562 			 num_qwords);
1563 	else
1564 		memset64(ptr, empty, num_qwords);
1565 }
1566 
xe_pt_abort_unbind(struct xe_vma * vma,struct xe_vm_pgtable_update * entries,u32 num_entries)1567 static void xe_pt_abort_unbind(struct xe_vma *vma,
1568 			       struct xe_vm_pgtable_update *entries,
1569 			       u32 num_entries)
1570 {
1571 	int i, j;
1572 
1573 	xe_pt_commit_prepare_locks_assert(vma);
1574 
1575 	for (i = num_entries - 1; i >= 0; --i) {
1576 		struct xe_vm_pgtable_update *entry = &entries[i];
1577 		struct xe_pt *pt = entry->pt;
1578 		struct xe_pt_dir *pt_dir = as_xe_pt_dir(pt);
1579 
1580 		pt->num_live += entry->qwords;
1581 
1582 		if (!pt->level)
1583 			continue;
1584 
1585 		for (j = entry->ofs; j < entry->ofs + entry->qwords; j++)
1586 			pt_dir->staging[j] =
1587 				entries[i].pt_entries[j - entry->ofs].pt ?
1588 				&entries[i].pt_entries[j - entry->ofs].pt->base : NULL;
1589 	}
1590 }
1591 
1592 static void
xe_pt_commit_prepare_unbind(struct xe_vma * vma,struct xe_vm_pgtable_update * entries,u32 num_entries)1593 xe_pt_commit_prepare_unbind(struct xe_vma *vma,
1594 			    struct xe_vm_pgtable_update *entries,
1595 			    u32 num_entries)
1596 {
1597 	int i, j;
1598 
1599 	xe_pt_commit_prepare_locks_assert(vma);
1600 
1601 	for (i = 0; i < num_entries; ++i) {
1602 		struct xe_vm_pgtable_update *entry = &entries[i];
1603 		struct xe_pt *pt = entry->pt;
1604 		struct xe_pt_dir *pt_dir;
1605 
1606 		pt->num_live -= entry->qwords;
1607 		if (!pt->level)
1608 			continue;
1609 
1610 		pt_dir = as_xe_pt_dir(pt);
1611 		for (j = entry->ofs; j < entry->ofs + entry->qwords; j++) {
1612 			entry->pt_entries[j - entry->ofs].pt =
1613 				xe_pt_entry_staging(pt_dir, j);
1614 			pt_dir->staging[j] = NULL;
1615 		}
1616 	}
1617 }
1618 
1619 static void
xe_pt_update_ops_rfence_interval(struct xe_vm_pgtable_update_ops * pt_update_ops,struct xe_vma * vma)1620 xe_pt_update_ops_rfence_interval(struct xe_vm_pgtable_update_ops *pt_update_ops,
1621 				 struct xe_vma *vma)
1622 {
1623 	u32 current_op = pt_update_ops->current_op;
1624 	struct xe_vm_pgtable_update_op *pt_op = &pt_update_ops->ops[current_op];
1625 	int i, level = 0;
1626 	u64 start, last;
1627 
1628 	for (i = 0; i < pt_op->num_entries; i++) {
1629 		const struct xe_vm_pgtable_update *entry = &pt_op->entries[i];
1630 
1631 		if (entry->pt->level > level)
1632 			level = entry->pt->level;
1633 	}
1634 
1635 	/* Greedy (non-optimal) calculation but simple */
1636 	start = ALIGN_DOWN(xe_vma_start(vma), 0x1ull << xe_pt_shift(level));
1637 	last = ALIGN(xe_vma_end(vma), 0x1ull << xe_pt_shift(level)) - 1;
1638 
1639 	if (start < pt_update_ops->start)
1640 		pt_update_ops->start = start;
1641 	if (last > pt_update_ops->last)
1642 		pt_update_ops->last = last;
1643 }
1644 
vma_reserve_fences(struct xe_device * xe,struct xe_vma * vma)1645 static int vma_reserve_fences(struct xe_device *xe, struct xe_vma *vma)
1646 {
1647 	int shift = xe_device_get_root_tile(xe)->media_gt ? 1 : 0;
1648 
1649 	if (!xe_vma_has_no_bo(vma) && !xe_vma_bo(vma)->vm)
1650 		return dma_resv_reserve_fences(xe_vma_bo(vma)->ttm.base.resv,
1651 					       xe->info.tile_count << shift);
1652 
1653 	return 0;
1654 }
1655 
bind_op_prepare(struct xe_vm * vm,struct xe_tile * tile,struct xe_vm_pgtable_update_ops * pt_update_ops,struct xe_vma * vma)1656 static int bind_op_prepare(struct xe_vm *vm, struct xe_tile *tile,
1657 			   struct xe_vm_pgtable_update_ops *pt_update_ops,
1658 			   struct xe_vma *vma)
1659 {
1660 	u32 current_op = pt_update_ops->current_op;
1661 	struct xe_vm_pgtable_update_op *pt_op = &pt_update_ops->ops[current_op];
1662 	int err;
1663 
1664 	xe_bo_assert_held(xe_vma_bo(vma));
1665 
1666 	vm_dbg(&xe_vma_vm(vma)->xe->drm,
1667 	       "Preparing bind, with range [%llx...%llx)\n",
1668 	       xe_vma_start(vma), xe_vma_end(vma) - 1);
1669 
1670 	pt_op->vma = NULL;
1671 	pt_op->bind = true;
1672 	pt_op->rebind = BIT(tile->id) & vma->tile_present;
1673 
1674 	err = vma_reserve_fences(tile_to_xe(tile), vma);
1675 	if (err)
1676 		return err;
1677 
1678 	err = xe_pt_prepare_bind(tile, vma, pt_op->entries,
1679 				 &pt_op->num_entries);
1680 	if (!err) {
1681 		xe_tile_assert(tile, pt_op->num_entries <=
1682 			       ARRAY_SIZE(pt_op->entries));
1683 		xe_vm_dbg_print_entries(tile_to_xe(tile), pt_op->entries,
1684 					pt_op->num_entries, true);
1685 
1686 		xe_pt_update_ops_rfence_interval(pt_update_ops, vma);
1687 		++pt_update_ops->current_op;
1688 		pt_update_ops->needs_userptr_lock |= xe_vma_is_userptr(vma);
1689 
1690 		/*
1691 		 * If rebind, we have to invalidate TLB on !LR vms to invalidate
1692 		 * cached PTEs point to freed memory. On LR vms this is done
1693 		 * automatically when the context is re-enabled by the rebind worker,
1694 		 * or in fault mode it was invalidated on PTE zapping.
1695 		 *
1696 		 * If !rebind, and scratch enabled VMs, there is a chance the scratch
1697 		 * PTE is already cached in the TLB so it needs to be invalidated.
1698 		 * On !LR VMs this is done in the ring ops preceding a batch, but on
1699 		 * non-faulting LR, in particular on user-space batch buffer chaining,
1700 		 * it needs to be done here.
1701 		 */
1702 		if ((!pt_op->rebind && xe_vm_has_scratch(vm) &&
1703 		     xe_vm_in_preempt_fence_mode(vm)))
1704 			pt_update_ops->needs_invalidation = true;
1705 		else if (pt_op->rebind && !xe_vm_in_lr_mode(vm))
1706 			/* We bump also if batch_invalidate_tlb is true */
1707 			vm->tlb_flush_seqno++;
1708 
1709 		vma->tile_staged |= BIT(tile->id);
1710 		pt_op->vma = vma;
1711 		xe_pt_commit_prepare_bind(vma, pt_op->entries,
1712 					  pt_op->num_entries, pt_op->rebind);
1713 	} else {
1714 		xe_pt_cancel_bind(vma, pt_op->entries, pt_op->num_entries);
1715 	}
1716 
1717 	return err;
1718 }
1719 
unbind_op_prepare(struct xe_tile * tile,struct xe_vm_pgtable_update_ops * pt_update_ops,struct xe_vma * vma)1720 static int unbind_op_prepare(struct xe_tile *tile,
1721 			     struct xe_vm_pgtable_update_ops *pt_update_ops,
1722 			     struct xe_vma *vma)
1723 {
1724 	u32 current_op = pt_update_ops->current_op;
1725 	struct xe_vm_pgtable_update_op *pt_op = &pt_update_ops->ops[current_op];
1726 	int err;
1727 
1728 	if (!((vma->tile_present | vma->tile_staged) & BIT(tile->id)))
1729 		return 0;
1730 
1731 	xe_bo_assert_held(xe_vma_bo(vma));
1732 
1733 	vm_dbg(&xe_vma_vm(vma)->xe->drm,
1734 	       "Preparing unbind, with range [%llx...%llx)\n",
1735 	       xe_vma_start(vma), xe_vma_end(vma) - 1);
1736 
1737 	/*
1738 	 * Wait for invalidation to complete. Can corrupt internal page table
1739 	 * state if an invalidation is running while preparing an unbind.
1740 	 */
1741 	if (xe_vma_is_userptr(vma) && xe_vm_in_fault_mode(xe_vma_vm(vma)))
1742 		mmu_interval_read_begin(&to_userptr_vma(vma)->userptr.notifier);
1743 
1744 	pt_op->vma = vma;
1745 	pt_op->bind = false;
1746 	pt_op->rebind = false;
1747 
1748 	err = vma_reserve_fences(tile_to_xe(tile), vma);
1749 	if (err)
1750 		return err;
1751 
1752 	pt_op->num_entries = xe_pt_stage_unbind(tile, vma, pt_op->entries);
1753 
1754 	xe_vm_dbg_print_entries(tile_to_xe(tile), pt_op->entries,
1755 				pt_op->num_entries, false);
1756 	xe_pt_update_ops_rfence_interval(pt_update_ops, vma);
1757 	++pt_update_ops->current_op;
1758 	pt_update_ops->needs_userptr_lock |= xe_vma_is_userptr(vma);
1759 	pt_update_ops->needs_invalidation = true;
1760 
1761 	xe_pt_commit_prepare_unbind(vma, pt_op->entries, pt_op->num_entries);
1762 
1763 	return 0;
1764 }
1765 
op_prepare(struct xe_vm * vm,struct xe_tile * tile,struct xe_vm_pgtable_update_ops * pt_update_ops,struct xe_vma_op * op)1766 static int op_prepare(struct xe_vm *vm,
1767 		      struct xe_tile *tile,
1768 		      struct xe_vm_pgtable_update_ops *pt_update_ops,
1769 		      struct xe_vma_op *op)
1770 {
1771 	int err = 0;
1772 
1773 	xe_vm_assert_held(vm);
1774 
1775 	switch (op->base.op) {
1776 	case DRM_GPUVA_OP_MAP:
1777 		if (!op->map.immediate && xe_vm_in_fault_mode(vm))
1778 			break;
1779 
1780 		err = bind_op_prepare(vm, tile, pt_update_ops, op->map.vma);
1781 		pt_update_ops->wait_vm_kernel = true;
1782 		break;
1783 	case DRM_GPUVA_OP_REMAP:
1784 		err = unbind_op_prepare(tile, pt_update_ops,
1785 					gpuva_to_vma(op->base.remap.unmap->va));
1786 
1787 		if (!err && op->remap.prev) {
1788 			err = bind_op_prepare(vm, tile, pt_update_ops,
1789 					      op->remap.prev);
1790 			pt_update_ops->wait_vm_bookkeep = true;
1791 		}
1792 		if (!err && op->remap.next) {
1793 			err = bind_op_prepare(vm, tile, pt_update_ops,
1794 					      op->remap.next);
1795 			pt_update_ops->wait_vm_bookkeep = true;
1796 		}
1797 		break;
1798 	case DRM_GPUVA_OP_UNMAP:
1799 		err = unbind_op_prepare(tile, pt_update_ops,
1800 					gpuva_to_vma(op->base.unmap.va));
1801 		break;
1802 	case DRM_GPUVA_OP_PREFETCH:
1803 		err = bind_op_prepare(vm, tile, pt_update_ops,
1804 				      gpuva_to_vma(op->base.prefetch.va));
1805 		pt_update_ops->wait_vm_kernel = true;
1806 		break;
1807 	default:
1808 		drm_warn(&vm->xe->drm, "NOT POSSIBLE");
1809 	}
1810 
1811 	return err;
1812 }
1813 
1814 static void
xe_pt_update_ops_init(struct xe_vm_pgtable_update_ops * pt_update_ops)1815 xe_pt_update_ops_init(struct xe_vm_pgtable_update_ops *pt_update_ops)
1816 {
1817 	init_llist_head(&pt_update_ops->deferred);
1818 	pt_update_ops->start = ~0x0ull;
1819 	pt_update_ops->last = 0x0ull;
1820 }
1821 
1822 /**
1823  * xe_pt_update_ops_prepare() - Prepare PT update operations
1824  * @tile: Tile of PT update operations
1825  * @vops: VMA operationa
1826  *
1827  * Prepare PT update operations which includes updating internal PT state,
1828  * allocate memory for page tables, populate page table being pruned in, and
1829  * create PT update operations for leaf insertion / removal.
1830  *
1831  * Return: 0 on success, negative error code on error.
1832  */
xe_pt_update_ops_prepare(struct xe_tile * tile,struct xe_vma_ops * vops)1833 int xe_pt_update_ops_prepare(struct xe_tile *tile, struct xe_vma_ops *vops)
1834 {
1835 	struct xe_vm_pgtable_update_ops *pt_update_ops =
1836 		&vops->pt_update_ops[tile->id];
1837 	struct xe_vma_op *op;
1838 	int shift = tile->media_gt ? 1 : 0;
1839 	int err;
1840 
1841 	lockdep_assert_held(&vops->vm->lock);
1842 	xe_vm_assert_held(vops->vm);
1843 
1844 	xe_pt_update_ops_init(pt_update_ops);
1845 
1846 	err = dma_resv_reserve_fences(xe_vm_resv(vops->vm),
1847 				      tile_to_xe(tile)->info.tile_count << shift);
1848 	if (err)
1849 		return err;
1850 
1851 	list_for_each_entry(op, &vops->list, link) {
1852 		err = op_prepare(vops->vm, tile, pt_update_ops, op);
1853 
1854 		if (err)
1855 			return err;
1856 	}
1857 
1858 	xe_tile_assert(tile, pt_update_ops->current_op <=
1859 		       pt_update_ops->num_ops);
1860 
1861 #ifdef TEST_VM_OPS_ERROR
1862 	if (vops->inject_error &&
1863 	    vops->vm->xe->vm_inject_error_position == FORCE_OP_ERROR_PREPARE)
1864 		return -ENOSPC;
1865 #endif
1866 
1867 	return 0;
1868 }
1869 
bind_op_commit(struct xe_vm * vm,struct xe_tile * tile,struct xe_vm_pgtable_update_ops * pt_update_ops,struct xe_vma * vma,struct dma_fence * fence,struct dma_fence * fence2)1870 static void bind_op_commit(struct xe_vm *vm, struct xe_tile *tile,
1871 			   struct xe_vm_pgtable_update_ops *pt_update_ops,
1872 			   struct xe_vma *vma, struct dma_fence *fence,
1873 			   struct dma_fence *fence2)
1874 {
1875 	if (!xe_vma_has_no_bo(vma) && !xe_vma_bo(vma)->vm) {
1876 		dma_resv_add_fence(xe_vma_bo(vma)->ttm.base.resv, fence,
1877 				   pt_update_ops->wait_vm_bookkeep ?
1878 				   DMA_RESV_USAGE_KERNEL :
1879 				   DMA_RESV_USAGE_BOOKKEEP);
1880 		if (fence2)
1881 			dma_resv_add_fence(xe_vma_bo(vma)->ttm.base.resv, fence2,
1882 					   pt_update_ops->wait_vm_bookkeep ?
1883 					   DMA_RESV_USAGE_KERNEL :
1884 					   DMA_RESV_USAGE_BOOKKEEP);
1885 	}
1886 	vma->tile_present |= BIT(tile->id);
1887 	vma->tile_staged &= ~BIT(tile->id);
1888 	if (xe_vma_is_userptr(vma)) {
1889 		lockdep_assert_held_read(&vm->userptr.notifier_lock);
1890 		to_userptr_vma(vma)->userptr.initial_bind = true;
1891 	}
1892 
1893 	/*
1894 	 * Kick rebind worker if this bind triggers preempt fences and not in
1895 	 * the rebind worker
1896 	 */
1897 	if (pt_update_ops->wait_vm_bookkeep &&
1898 	    xe_vm_in_preempt_fence_mode(vm) &&
1899 	    !current->mm)
1900 		xe_vm_queue_rebind_worker(vm);
1901 }
1902 
unbind_op_commit(struct xe_vm * vm,struct xe_tile * tile,struct xe_vm_pgtable_update_ops * pt_update_ops,struct xe_vma * vma,struct dma_fence * fence,struct dma_fence * fence2)1903 static void unbind_op_commit(struct xe_vm *vm, struct xe_tile *tile,
1904 			     struct xe_vm_pgtable_update_ops *pt_update_ops,
1905 			     struct xe_vma *vma, struct dma_fence *fence,
1906 			     struct dma_fence *fence2)
1907 {
1908 	if (!xe_vma_has_no_bo(vma) && !xe_vma_bo(vma)->vm) {
1909 		dma_resv_add_fence(xe_vma_bo(vma)->ttm.base.resv, fence,
1910 				   pt_update_ops->wait_vm_bookkeep ?
1911 				   DMA_RESV_USAGE_KERNEL :
1912 				   DMA_RESV_USAGE_BOOKKEEP);
1913 		if (fence2)
1914 			dma_resv_add_fence(xe_vma_bo(vma)->ttm.base.resv, fence2,
1915 					   pt_update_ops->wait_vm_bookkeep ?
1916 					   DMA_RESV_USAGE_KERNEL :
1917 					   DMA_RESV_USAGE_BOOKKEEP);
1918 	}
1919 	vma->tile_present &= ~BIT(tile->id);
1920 	if (!vma->tile_present) {
1921 		list_del_init(&vma->combined_links.rebind);
1922 		if (xe_vma_is_userptr(vma)) {
1923 			lockdep_assert_held_read(&vm->userptr.notifier_lock);
1924 
1925 			spin_lock(&vm->userptr.invalidated_lock);
1926 			list_del_init(&to_userptr_vma(vma)->userptr.invalidate_link);
1927 			spin_unlock(&vm->userptr.invalidated_lock);
1928 		}
1929 	}
1930 }
1931 
op_commit(struct xe_vm * vm,struct xe_tile * tile,struct xe_vm_pgtable_update_ops * pt_update_ops,struct xe_vma_op * op,struct dma_fence * fence,struct dma_fence * fence2)1932 static void op_commit(struct xe_vm *vm,
1933 		      struct xe_tile *tile,
1934 		      struct xe_vm_pgtable_update_ops *pt_update_ops,
1935 		      struct xe_vma_op *op, struct dma_fence *fence,
1936 		      struct dma_fence *fence2)
1937 {
1938 	xe_vm_assert_held(vm);
1939 
1940 	switch (op->base.op) {
1941 	case DRM_GPUVA_OP_MAP:
1942 		if (!op->map.immediate && xe_vm_in_fault_mode(vm))
1943 			break;
1944 
1945 		bind_op_commit(vm, tile, pt_update_ops, op->map.vma, fence,
1946 			       fence2);
1947 		break;
1948 	case DRM_GPUVA_OP_REMAP:
1949 		unbind_op_commit(vm, tile, pt_update_ops,
1950 				 gpuva_to_vma(op->base.remap.unmap->va), fence,
1951 				 fence2);
1952 
1953 		if (op->remap.prev)
1954 			bind_op_commit(vm, tile, pt_update_ops, op->remap.prev,
1955 				       fence, fence2);
1956 		if (op->remap.next)
1957 			bind_op_commit(vm, tile, pt_update_ops, op->remap.next,
1958 				       fence, fence2);
1959 		break;
1960 	case DRM_GPUVA_OP_UNMAP:
1961 		unbind_op_commit(vm, tile, pt_update_ops,
1962 				 gpuva_to_vma(op->base.unmap.va), fence, fence2);
1963 		break;
1964 	case DRM_GPUVA_OP_PREFETCH:
1965 		bind_op_commit(vm, tile, pt_update_ops,
1966 			       gpuva_to_vma(op->base.prefetch.va), fence, fence2);
1967 		break;
1968 	default:
1969 		drm_warn(&vm->xe->drm, "NOT POSSIBLE");
1970 	}
1971 }
1972 
1973 static const struct xe_migrate_pt_update_ops migrate_ops = {
1974 	.populate = xe_vm_populate_pgtable,
1975 	.clear = xe_migrate_clear_pgtable_callback,
1976 	.pre_commit = xe_pt_pre_commit,
1977 };
1978 
1979 static const struct xe_migrate_pt_update_ops userptr_migrate_ops = {
1980 	.populate = xe_vm_populate_pgtable,
1981 	.clear = xe_migrate_clear_pgtable_callback,
1982 	.pre_commit = xe_pt_userptr_pre_commit,
1983 };
1984 
1985 /**
1986  * xe_pt_update_ops_run() - Run PT update operations
1987  * @tile: Tile of PT update operations
1988  * @vops: VMA operationa
1989  *
1990  * Run PT update operations which includes committing internal PT state changes,
1991  * creating job for PT update operations for leaf insertion / removal, and
1992  * installing job fence in various places.
1993  *
1994  * Return: fence on success, negative ERR_PTR on error.
1995  */
1996 struct dma_fence *
xe_pt_update_ops_run(struct xe_tile * tile,struct xe_vma_ops * vops)1997 xe_pt_update_ops_run(struct xe_tile *tile, struct xe_vma_ops *vops)
1998 {
1999 	struct xe_vm *vm = vops->vm;
2000 	struct xe_vm_pgtable_update_ops *pt_update_ops =
2001 		&vops->pt_update_ops[tile->id];
2002 	struct dma_fence *fence;
2003 	struct invalidation_fence *ifence = NULL, *mfence = NULL;
2004 	struct dma_fence **fences = NULL;
2005 	struct dma_fence_array *cf = NULL;
2006 	struct xe_range_fence *rfence;
2007 	struct xe_vma_op *op;
2008 	int err = 0, i;
2009 	struct xe_migrate_pt_update update = {
2010 		.ops = pt_update_ops->needs_userptr_lock ?
2011 			&userptr_migrate_ops :
2012 			&migrate_ops,
2013 		.vops = vops,
2014 		.tile_id = tile->id,
2015 	};
2016 
2017 	lockdep_assert_held(&vm->lock);
2018 	xe_vm_assert_held(vm);
2019 
2020 	if (!pt_update_ops->current_op) {
2021 		xe_tile_assert(tile, xe_vm_in_fault_mode(vm));
2022 
2023 		return dma_fence_get_stub();
2024 	}
2025 
2026 #ifdef TEST_VM_OPS_ERROR
2027 	if (vops->inject_error &&
2028 	    vm->xe->vm_inject_error_position == FORCE_OP_ERROR_RUN)
2029 		return ERR_PTR(-ENOSPC);
2030 #endif
2031 
2032 	if (pt_update_ops->needs_invalidation) {
2033 		ifence = kzalloc(sizeof(*ifence), GFP_KERNEL);
2034 		if (!ifence) {
2035 			err = -ENOMEM;
2036 			goto kill_vm_tile1;
2037 		}
2038 		if (tile->media_gt) {
2039 			mfence = kzalloc(sizeof(*ifence), GFP_KERNEL);
2040 			if (!mfence) {
2041 				err = -ENOMEM;
2042 				goto free_ifence;
2043 			}
2044 			fences = kmalloc_array(2, sizeof(*fences), GFP_KERNEL);
2045 			if (!fences) {
2046 				err = -ENOMEM;
2047 				goto free_ifence;
2048 			}
2049 			cf = dma_fence_array_alloc(2);
2050 			if (!cf) {
2051 				err = -ENOMEM;
2052 				goto free_ifence;
2053 			}
2054 		}
2055 	}
2056 
2057 	rfence = kzalloc(sizeof(*rfence), GFP_KERNEL);
2058 	if (!rfence) {
2059 		err = -ENOMEM;
2060 		goto free_ifence;
2061 	}
2062 
2063 	fence = xe_migrate_update_pgtables(tile->migrate, &update);
2064 	if (IS_ERR(fence)) {
2065 		err = PTR_ERR(fence);
2066 		goto free_rfence;
2067 	}
2068 
2069 	/* Point of no return - VM killed if failure after this */
2070 	for (i = 0; i < pt_update_ops->current_op; ++i) {
2071 		struct xe_vm_pgtable_update_op *pt_op = &pt_update_ops->ops[i];
2072 
2073 		xe_pt_commit(pt_op->vma, pt_op->entries,
2074 			     pt_op->num_entries, &pt_update_ops->deferred);
2075 		pt_op->vma = NULL;	/* skip in xe_pt_update_ops_abort */
2076 	}
2077 
2078 	if (xe_range_fence_insert(&vm->rftree[tile->id], rfence,
2079 				  &xe_range_fence_kfree_ops,
2080 				  pt_update_ops->start,
2081 				  pt_update_ops->last, fence))
2082 		dma_fence_wait(fence, false);
2083 
2084 	/* tlb invalidation must be done before signaling rebind */
2085 	if (ifence) {
2086 		if (mfence)
2087 			dma_fence_get(fence);
2088 		invalidation_fence_init(tile->primary_gt, ifence, fence,
2089 					pt_update_ops->start,
2090 					pt_update_ops->last, vm->usm.asid);
2091 		if (mfence) {
2092 			invalidation_fence_init(tile->media_gt, mfence, fence,
2093 						pt_update_ops->start,
2094 						pt_update_ops->last, vm->usm.asid);
2095 			fences[0] = &ifence->base.base;
2096 			fences[1] = &mfence->base.base;
2097 			dma_fence_array_init(cf, 2, fences,
2098 					     vm->composite_fence_ctx,
2099 					     vm->composite_fence_seqno++,
2100 					     false);
2101 			fence = &cf->base;
2102 		} else {
2103 			fence = &ifence->base.base;
2104 		}
2105 	}
2106 
2107 	if (!mfence) {
2108 		dma_resv_add_fence(xe_vm_resv(vm), fence,
2109 				   pt_update_ops->wait_vm_bookkeep ?
2110 				   DMA_RESV_USAGE_KERNEL :
2111 				   DMA_RESV_USAGE_BOOKKEEP);
2112 
2113 		list_for_each_entry(op, &vops->list, link)
2114 			op_commit(vops->vm, tile, pt_update_ops, op, fence, NULL);
2115 	} else {
2116 		dma_resv_add_fence(xe_vm_resv(vm), &ifence->base.base,
2117 				   pt_update_ops->wait_vm_bookkeep ?
2118 				   DMA_RESV_USAGE_KERNEL :
2119 				   DMA_RESV_USAGE_BOOKKEEP);
2120 
2121 		dma_resv_add_fence(xe_vm_resv(vm), &mfence->base.base,
2122 				   pt_update_ops->wait_vm_bookkeep ?
2123 				   DMA_RESV_USAGE_KERNEL :
2124 				   DMA_RESV_USAGE_BOOKKEEP);
2125 
2126 		list_for_each_entry(op, &vops->list, link)
2127 			op_commit(vops->vm, tile, pt_update_ops, op,
2128 				  &ifence->base.base, &mfence->base.base);
2129 	}
2130 
2131 	if (pt_update_ops->needs_userptr_lock)
2132 		up_read(&vm->userptr.notifier_lock);
2133 
2134 	return fence;
2135 
2136 free_rfence:
2137 	kfree(rfence);
2138 free_ifence:
2139 	kfree(cf);
2140 	kfree(fences);
2141 	kfree(mfence);
2142 	kfree(ifence);
2143 kill_vm_tile1:
2144 	if (err != -EAGAIN && tile->id)
2145 		xe_vm_kill(vops->vm, false);
2146 
2147 	return ERR_PTR(err);
2148 }
2149 
2150 /**
2151  * xe_pt_update_ops_fini() - Finish PT update operations
2152  * @tile: Tile of PT update operations
2153  * @vops: VMA operations
2154  *
2155  * Finish PT update operations by committing to destroy page table memory
2156  */
xe_pt_update_ops_fini(struct xe_tile * tile,struct xe_vma_ops * vops)2157 void xe_pt_update_ops_fini(struct xe_tile *tile, struct xe_vma_ops *vops)
2158 {
2159 	struct xe_vm_pgtable_update_ops *pt_update_ops =
2160 		&vops->pt_update_ops[tile->id];
2161 	int i;
2162 
2163 	lockdep_assert_held(&vops->vm->lock);
2164 	xe_vm_assert_held(vops->vm);
2165 
2166 	for (i = 0; i < pt_update_ops->current_op; ++i) {
2167 		struct xe_vm_pgtable_update_op *pt_op = &pt_update_ops->ops[i];
2168 
2169 		xe_pt_free_bind(pt_op->entries, pt_op->num_entries);
2170 	}
2171 	xe_bo_put_commit(&vops->pt_update_ops[tile->id].deferred);
2172 }
2173 
2174 /**
2175  * xe_pt_update_ops_abort() - Abort PT update operations
2176  * @tile: Tile of PT update operations
2177  * @vops: VMA operationa
2178  *
2179  *  Abort PT update operations by unwinding internal PT state
2180  */
xe_pt_update_ops_abort(struct xe_tile * tile,struct xe_vma_ops * vops)2181 void xe_pt_update_ops_abort(struct xe_tile *tile, struct xe_vma_ops *vops)
2182 {
2183 	struct xe_vm_pgtable_update_ops *pt_update_ops =
2184 		&vops->pt_update_ops[tile->id];
2185 	int i;
2186 
2187 	lockdep_assert_held(&vops->vm->lock);
2188 	xe_vm_assert_held(vops->vm);
2189 
2190 	for (i = pt_update_ops->num_ops - 1; i >= 0; --i) {
2191 		struct xe_vm_pgtable_update_op *pt_op =
2192 			&pt_update_ops->ops[i];
2193 
2194 		if (!pt_op->vma || i >= pt_update_ops->current_op)
2195 			continue;
2196 
2197 		if (pt_op->bind)
2198 			xe_pt_abort_bind(pt_op->vma, pt_op->entries,
2199 					 pt_op->num_entries,
2200 					 pt_op->rebind);
2201 		else
2202 			xe_pt_abort_unbind(pt_op->vma, pt_op->entries,
2203 					   pt_op->num_entries);
2204 	}
2205 
2206 	xe_pt_update_ops_fini(tile, vops);
2207 }
2208