• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: MIT
2 /*
3  * Copyright © 2021 Intel Corporation
4  */
5 
6 #include "xe_sync.h"
7 
8 #include <linux/dma-fence-array.h>
9 #include <linux/kthread.h>
10 #include <linux/sched/mm.h>
11 #include <linux/uaccess.h>
12 
13 #include <drm/drm_print.h>
14 #include <drm/drm_syncobj.h>
15 #include <uapi/drm/xe_drm.h>
16 
17 #include "xe_device_types.h"
18 #include "xe_exec_queue.h"
19 #include "xe_macros.h"
20 #include "xe_sched_job_types.h"
21 
22 struct xe_user_fence {
23 	struct xe_device *xe;
24 	struct kref refcount;
25 	struct dma_fence_cb cb;
26 	struct work_struct worker;
27 	struct mm_struct *mm;
28 	u64 __user *addr;
29 	u64 value;
30 	int signalled;
31 };
32 
user_fence_destroy(struct kref * kref)33 static void user_fence_destroy(struct kref *kref)
34 {
35 	struct xe_user_fence *ufence = container_of(kref, struct xe_user_fence,
36 						 refcount);
37 
38 	mmdrop(ufence->mm);
39 	kfree(ufence);
40 }
41 
user_fence_get(struct xe_user_fence * ufence)42 static void user_fence_get(struct xe_user_fence *ufence)
43 {
44 	kref_get(&ufence->refcount);
45 }
46 
user_fence_put(struct xe_user_fence * ufence)47 static void user_fence_put(struct xe_user_fence *ufence)
48 {
49 	kref_put(&ufence->refcount, user_fence_destroy);
50 }
51 
user_fence_create(struct xe_device * xe,u64 addr,u64 value)52 static struct xe_user_fence *user_fence_create(struct xe_device *xe, u64 addr,
53 					       u64 value)
54 {
55 	struct xe_user_fence *ufence;
56 	u64 __user *ptr = u64_to_user_ptr(addr);
57 	u64 __maybe_unused prefetch_val;
58 
59 	if (get_user(prefetch_val, ptr))
60 		return ERR_PTR(-EFAULT);
61 
62 	ufence = kzalloc(sizeof(*ufence), GFP_KERNEL);
63 	if (!ufence)
64 		return ERR_PTR(-ENOMEM);
65 
66 	ufence->xe = xe;
67 	kref_init(&ufence->refcount);
68 	ufence->addr = ptr;
69 	ufence->value = value;
70 	ufence->mm = current->mm;
71 	mmgrab(ufence->mm);
72 
73 	return ufence;
74 }
75 
user_fence_worker(struct work_struct * w)76 static void user_fence_worker(struct work_struct *w)
77 {
78 	struct xe_user_fence *ufence = container_of(w, struct xe_user_fence, worker);
79 
80 	WRITE_ONCE(ufence->signalled, 1);
81 	if (mmget_not_zero(ufence->mm)) {
82 		kthread_use_mm(ufence->mm);
83 		if (copy_to_user(ufence->addr, &ufence->value, sizeof(ufence->value)))
84 			XE_WARN_ON("Copy to user failed");
85 		kthread_unuse_mm(ufence->mm);
86 		mmput(ufence->mm);
87 	}
88 
89 	/*
90 	 * Wake up waiters only after updating the ufence state, allowing the UMD
91 	 * to safely reuse the same ufence without encountering -EBUSY errors.
92 	 */
93 	wake_up_all(&ufence->xe->ufence_wq);
94 	user_fence_put(ufence);
95 }
96 
kick_ufence(struct xe_user_fence * ufence,struct dma_fence * fence)97 static void kick_ufence(struct xe_user_fence *ufence, struct dma_fence *fence)
98 {
99 	INIT_WORK(&ufence->worker, user_fence_worker);
100 	queue_work(ufence->xe->ordered_wq, &ufence->worker);
101 	dma_fence_put(fence);
102 }
103 
user_fence_cb(struct dma_fence * fence,struct dma_fence_cb * cb)104 static void user_fence_cb(struct dma_fence *fence, struct dma_fence_cb *cb)
105 {
106 	struct xe_user_fence *ufence = container_of(cb, struct xe_user_fence, cb);
107 
108 	kick_ufence(ufence, fence);
109 }
110 
xe_sync_entry_parse(struct xe_device * xe,struct xe_file * xef,struct xe_sync_entry * sync,struct drm_xe_sync __user * sync_user,unsigned int flags)111 int xe_sync_entry_parse(struct xe_device *xe, struct xe_file *xef,
112 			struct xe_sync_entry *sync,
113 			struct drm_xe_sync __user *sync_user,
114 			unsigned int flags)
115 {
116 	struct drm_xe_sync sync_in;
117 	int err;
118 	bool exec = flags & SYNC_PARSE_FLAG_EXEC;
119 	bool in_lr_mode = flags & SYNC_PARSE_FLAG_LR_MODE;
120 	bool disallow_user_fence = flags & SYNC_PARSE_FLAG_DISALLOW_USER_FENCE;
121 	bool signal;
122 
123 	if (copy_from_user(&sync_in, sync_user, sizeof(*sync_user)))
124 		return -EFAULT;
125 
126 	if (XE_IOCTL_DBG(xe, sync_in.flags & ~DRM_XE_SYNC_FLAG_SIGNAL) ||
127 	    XE_IOCTL_DBG(xe, sync_in.reserved[0] || sync_in.reserved[1]))
128 		return -EINVAL;
129 
130 	signal = sync_in.flags & DRM_XE_SYNC_FLAG_SIGNAL;
131 	switch (sync_in.type) {
132 	case DRM_XE_SYNC_TYPE_SYNCOBJ:
133 		if (XE_IOCTL_DBG(xe, in_lr_mode && signal))
134 			return -EOPNOTSUPP;
135 
136 		if (XE_IOCTL_DBG(xe, upper_32_bits(sync_in.addr)))
137 			return -EINVAL;
138 
139 		sync->syncobj = drm_syncobj_find(xef->drm, sync_in.handle);
140 		if (XE_IOCTL_DBG(xe, !sync->syncobj))
141 			return -ENOENT;
142 
143 		if (!signal) {
144 			sync->fence = drm_syncobj_fence_get(sync->syncobj);
145 			if (XE_IOCTL_DBG(xe, !sync->fence))
146 				return -EINVAL;
147 		}
148 		break;
149 
150 	case DRM_XE_SYNC_TYPE_TIMELINE_SYNCOBJ:
151 		if (XE_IOCTL_DBG(xe, in_lr_mode && signal))
152 			return -EOPNOTSUPP;
153 
154 		if (XE_IOCTL_DBG(xe, upper_32_bits(sync_in.addr)))
155 			return -EINVAL;
156 
157 		if (XE_IOCTL_DBG(xe, sync_in.timeline_value == 0))
158 			return -EINVAL;
159 
160 		sync->syncobj = drm_syncobj_find(xef->drm, sync_in.handle);
161 		if (XE_IOCTL_DBG(xe, !sync->syncobj))
162 			return -ENOENT;
163 
164 		if (signal) {
165 			sync->chain_fence = dma_fence_chain_alloc();
166 			if (!sync->chain_fence)
167 				return -ENOMEM;
168 		} else {
169 			sync->fence = drm_syncobj_fence_get(sync->syncobj);
170 			if (XE_IOCTL_DBG(xe, !sync->fence))
171 				return -EINVAL;
172 
173 			err = dma_fence_chain_find_seqno(&sync->fence,
174 							 sync_in.timeline_value);
175 			if (err)
176 				return err;
177 		}
178 		break;
179 
180 	case DRM_XE_SYNC_TYPE_USER_FENCE:
181 		if (XE_IOCTL_DBG(xe, disallow_user_fence))
182 			return -EOPNOTSUPP;
183 
184 		if (XE_IOCTL_DBG(xe, !signal))
185 			return -EOPNOTSUPP;
186 
187 		if (XE_IOCTL_DBG(xe, sync_in.addr & 0x7))
188 			return -EINVAL;
189 
190 		if (exec) {
191 			sync->addr = sync_in.addr;
192 		} else {
193 			sync->ufence = user_fence_create(xe, sync_in.addr,
194 							 sync_in.timeline_value);
195 			if (XE_IOCTL_DBG(xe, IS_ERR(sync->ufence)))
196 				return PTR_ERR(sync->ufence);
197 		}
198 
199 		break;
200 
201 	default:
202 		return -EINVAL;
203 	}
204 
205 	sync->type = sync_in.type;
206 	sync->flags = sync_in.flags;
207 	sync->timeline_value = sync_in.timeline_value;
208 
209 	return 0;
210 }
211 
xe_sync_entry_add_deps(struct xe_sync_entry * sync,struct xe_sched_job * job)212 int xe_sync_entry_add_deps(struct xe_sync_entry *sync, struct xe_sched_job *job)
213 {
214 	if (sync->fence)
215 		return  drm_sched_job_add_dependency(&job->drm,
216 						     dma_fence_get(sync->fence));
217 
218 	return 0;
219 }
220 
xe_sync_entry_signal(struct xe_sync_entry * sync,struct dma_fence * fence)221 void xe_sync_entry_signal(struct xe_sync_entry *sync, struct dma_fence *fence)
222 {
223 	if (!(sync->flags & DRM_XE_SYNC_FLAG_SIGNAL))
224 		return;
225 
226 	if (sync->chain_fence) {
227 		drm_syncobj_add_point(sync->syncobj, sync->chain_fence,
228 				      fence, sync->timeline_value);
229 		/*
230 		 * The chain's ownership is transferred to the
231 		 * timeline.
232 		 */
233 		sync->chain_fence = NULL;
234 	} else if (sync->syncobj) {
235 		drm_syncobj_replace_fence(sync->syncobj, fence);
236 	} else if (sync->ufence) {
237 		int err;
238 
239 		dma_fence_get(fence);
240 		user_fence_get(sync->ufence);
241 		err = dma_fence_add_callback(fence, &sync->ufence->cb,
242 					     user_fence_cb);
243 		if (err == -ENOENT) {
244 			kick_ufence(sync->ufence, fence);
245 		} else if (err) {
246 			XE_WARN_ON("failed to add user fence");
247 			user_fence_put(sync->ufence);
248 			dma_fence_put(fence);
249 		}
250 	}
251 }
252 
xe_sync_entry_cleanup(struct xe_sync_entry * sync)253 void xe_sync_entry_cleanup(struct xe_sync_entry *sync)
254 {
255 	if (sync->syncobj)
256 		drm_syncobj_put(sync->syncobj);
257 	dma_fence_put(sync->fence);
258 	dma_fence_chain_free(sync->chain_fence);
259 	if (sync->ufence)
260 		user_fence_put(sync->ufence);
261 }
262 
263 /**
264  * xe_sync_in_fence_get() - Get a fence from syncs, exec queue, and VM
265  * @sync: input syncs
266  * @num_sync: number of syncs
267  * @q: exec queue
268  * @vm: VM
269  *
270  * Get a fence from syncs, exec queue, and VM. If syncs contain in-fences create
271  * and return a composite fence of all in-fences + last fence. If no in-fences
272  * return last fence on  input exec queue. Caller must drop reference to
273  * returned fence.
274  *
275  * Return: fence on success, ERR_PTR(-ENOMEM) on failure
276  */
277 struct dma_fence *
xe_sync_in_fence_get(struct xe_sync_entry * sync,int num_sync,struct xe_exec_queue * q,struct xe_vm * vm)278 xe_sync_in_fence_get(struct xe_sync_entry *sync, int num_sync,
279 		     struct xe_exec_queue *q, struct xe_vm *vm)
280 {
281 	struct dma_fence **fences = NULL;
282 	struct dma_fence_array *cf = NULL;
283 	struct dma_fence *fence;
284 	int i, num_in_fence = 0, current_fence = 0;
285 
286 	lockdep_assert_held(&vm->lock);
287 
288 	/* Count in-fences */
289 	for (i = 0; i < num_sync; ++i) {
290 		if (sync[i].fence) {
291 			++num_in_fence;
292 			fence = sync[i].fence;
293 		}
294 	}
295 
296 	/* Easy case... */
297 	if (!num_in_fence) {
298 		fence = xe_exec_queue_last_fence_get(q, vm);
299 		return fence;
300 	}
301 
302 	/* Create composite fence */
303 	fences = kmalloc_array(num_in_fence + 1, sizeof(*fences), GFP_KERNEL);
304 	if (!fences)
305 		return ERR_PTR(-ENOMEM);
306 	for (i = 0; i < num_sync; ++i) {
307 		if (sync[i].fence) {
308 			dma_fence_get(sync[i].fence);
309 			fences[current_fence++] = sync[i].fence;
310 		}
311 	}
312 	fences[current_fence++] = xe_exec_queue_last_fence_get(q, vm);
313 	cf = dma_fence_array_create(num_in_fence, fences,
314 				    vm->composite_fence_ctx,
315 				    vm->composite_fence_seqno++,
316 				    false);
317 	if (!cf) {
318 		--vm->composite_fence_seqno;
319 		goto err_out;
320 	}
321 
322 	return &cf->base;
323 
324 err_out:
325 	while (current_fence)
326 		dma_fence_put(fences[--current_fence]);
327 	kfree(fences);
328 	kfree(cf);
329 
330 	return ERR_PTR(-ENOMEM);
331 }
332 
333 /**
334  * __xe_sync_ufence_get() - Get user fence from user fence
335  * @ufence: input user fence
336  *
337  * Get a user fence reference from user fence
338  *
339  * Return: xe_user_fence pointer with reference
340  */
__xe_sync_ufence_get(struct xe_user_fence * ufence)341 struct xe_user_fence *__xe_sync_ufence_get(struct xe_user_fence *ufence)
342 {
343 	user_fence_get(ufence);
344 
345 	return ufence;
346 }
347 
348 /**
349  * xe_sync_ufence_get() - Get user fence from sync
350  * @sync: input sync
351  *
352  * Get a user fence reference from sync.
353  *
354  * Return: xe_user_fence pointer with reference
355  */
xe_sync_ufence_get(struct xe_sync_entry * sync)356 struct xe_user_fence *xe_sync_ufence_get(struct xe_sync_entry *sync)
357 {
358 	user_fence_get(sync->ufence);
359 
360 	return sync->ufence;
361 }
362 
363 /**
364  * xe_sync_ufence_put() - Put user fence reference
365  * @ufence: user fence reference
366  *
367  */
xe_sync_ufence_put(struct xe_user_fence * ufence)368 void xe_sync_ufence_put(struct xe_user_fence *ufence)
369 {
370 	user_fence_put(ufence);
371 }
372 
373 /**
374  * xe_sync_ufence_get_status() - Get user fence status
375  * @ufence: user fence
376  *
377  * Return: 1 if signalled, 0 not signalled, <0 on error
378  */
xe_sync_ufence_get_status(struct xe_user_fence * ufence)379 int xe_sync_ufence_get_status(struct xe_user_fence *ufence)
380 {
381 	return READ_ONCE(ufence->signalled);
382 }
383