1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * drivers/i2c/busses/i2c-tegra.c
4 *
5 * Copyright (C) 2010 Google, Inc.
6 * Author: Colin Cross <ccross@android.com>
7 */
8
9 #include <linux/acpi.h>
10 #include <linux/bitfield.h>
11 #include <linux/clk.h>
12 #include <linux/delay.h>
13 #include <linux/dmaengine.h>
14 #include <linux/dma-mapping.h>
15 #include <linux/err.h>
16 #include <linux/i2c.h>
17 #include <linux/init.h>
18 #include <linux/interrupt.h>
19 #include <linux/io.h>
20 #include <linux/iopoll.h>
21 #include <linux/irq.h>
22 #include <linux/kernel.h>
23 #include <linux/ktime.h>
24 #include <linux/module.h>
25 #include <linux/of.h>
26 #include <linux/pinctrl/consumer.h>
27 #include <linux/platform_device.h>
28 #include <linux/pm_runtime.h>
29 #include <linux/reset.h>
30
31 #define BYTES_PER_FIFO_WORD 4
32
33 #define I2C_CNFG 0x000
34 #define I2C_CNFG_DEBOUNCE_CNT GENMASK(14, 12)
35 #define I2C_CNFG_PACKET_MODE_EN BIT(10)
36 #define I2C_CNFG_NEW_MASTER_FSM BIT(11)
37 #define I2C_CNFG_MULTI_MASTER_MODE BIT(17)
38 #define I2C_STATUS 0x01c
39 #define I2C_SL_CNFG 0x020
40 #define I2C_SL_CNFG_NACK BIT(1)
41 #define I2C_SL_CNFG_NEWSL BIT(2)
42 #define I2C_SL_ADDR1 0x02c
43 #define I2C_SL_ADDR2 0x030
44 #define I2C_TLOW_SEXT 0x034
45 #define I2C_TX_FIFO 0x050
46 #define I2C_RX_FIFO 0x054
47 #define I2C_PACKET_TRANSFER_STATUS 0x058
48 #define I2C_FIFO_CONTROL 0x05c
49 #define I2C_FIFO_CONTROL_TX_FLUSH BIT(1)
50 #define I2C_FIFO_CONTROL_RX_FLUSH BIT(0)
51 #define I2C_FIFO_CONTROL_TX_TRIG(x) (((x) - 1) << 5)
52 #define I2C_FIFO_CONTROL_RX_TRIG(x) (((x) - 1) << 2)
53 #define I2C_FIFO_STATUS 0x060
54 #define I2C_FIFO_STATUS_TX GENMASK(7, 4)
55 #define I2C_FIFO_STATUS_RX GENMASK(3, 0)
56 #define I2C_INT_MASK 0x064
57 #define I2C_INT_STATUS 0x068
58 #define I2C_INT_BUS_CLR_DONE BIT(11)
59 #define I2C_INT_PACKET_XFER_COMPLETE BIT(7)
60 #define I2C_INT_NO_ACK BIT(3)
61 #define I2C_INT_ARBITRATION_LOST BIT(2)
62 #define I2C_INT_TX_FIFO_DATA_REQ BIT(1)
63 #define I2C_INT_RX_FIFO_DATA_REQ BIT(0)
64 #define I2C_CLK_DIVISOR 0x06c
65 #define I2C_CLK_DIVISOR_STD_FAST_MODE GENMASK(31, 16)
66 #define I2C_CLK_DIVISOR_HSMODE GENMASK(15, 0)
67
68 #define DVC_CTRL_REG1 0x000
69 #define DVC_CTRL_REG1_INTR_EN BIT(10)
70 #define DVC_CTRL_REG3 0x008
71 #define DVC_CTRL_REG3_SW_PROG BIT(26)
72 #define DVC_CTRL_REG3_I2C_DONE_INTR_EN BIT(30)
73 #define DVC_STATUS 0x00c
74 #define DVC_STATUS_I2C_DONE_INTR BIT(30)
75
76 #define I2C_ERR_NONE 0x00
77 #define I2C_ERR_NO_ACK BIT(0)
78 #define I2C_ERR_ARBITRATION_LOST BIT(1)
79 #define I2C_ERR_UNKNOWN_INTERRUPT BIT(2)
80 #define I2C_ERR_RX_BUFFER_OVERFLOW BIT(3)
81
82 #define PACKET_HEADER0_HEADER_SIZE GENMASK(29, 28)
83 #define PACKET_HEADER0_PACKET_ID GENMASK(23, 16)
84 #define PACKET_HEADER0_CONT_ID GENMASK(15, 12)
85 #define PACKET_HEADER0_PROTOCOL GENMASK(7, 4)
86 #define PACKET_HEADER0_PROTOCOL_I2C 1
87
88 #define I2C_HEADER_CONT_ON_NAK BIT(21)
89 #define I2C_HEADER_READ BIT(19)
90 #define I2C_HEADER_10BIT_ADDR BIT(18)
91 #define I2C_HEADER_IE_ENABLE BIT(17)
92 #define I2C_HEADER_REPEAT_START BIT(16)
93 #define I2C_HEADER_CONTINUE_XFER BIT(15)
94 #define I2C_HEADER_SLAVE_ADDR_SHIFT 1
95
96 #define I2C_BUS_CLEAR_CNFG 0x084
97 #define I2C_BC_SCLK_THRESHOLD GENMASK(23, 16)
98 #define I2C_BC_STOP_COND BIT(2)
99 #define I2C_BC_TERMINATE BIT(1)
100 #define I2C_BC_ENABLE BIT(0)
101 #define I2C_BUS_CLEAR_STATUS 0x088
102 #define I2C_BC_STATUS BIT(0)
103
104 #define I2C_CONFIG_LOAD 0x08c
105 #define I2C_MSTR_CONFIG_LOAD BIT(0)
106
107 #define I2C_CLKEN_OVERRIDE 0x090
108 #define I2C_MST_CORE_CLKEN_OVR BIT(0)
109
110 #define I2C_INTERFACE_TIMING_0 0x094
111 #define I2C_INTERFACE_TIMING_THIGH GENMASK(13, 8)
112 #define I2C_INTERFACE_TIMING_TLOW GENMASK(5, 0)
113 #define I2C_INTERFACE_TIMING_1 0x098
114 #define I2C_INTERFACE_TIMING_TBUF GENMASK(29, 24)
115 #define I2C_INTERFACE_TIMING_TSU_STO GENMASK(21, 16)
116 #define I2C_INTERFACE_TIMING_THD_STA GENMASK(13, 8)
117 #define I2C_INTERFACE_TIMING_TSU_STA GENMASK(5, 0)
118
119 #define I2C_HS_INTERFACE_TIMING_0 0x09c
120 #define I2C_HS_INTERFACE_TIMING_THIGH GENMASK(13, 8)
121 #define I2C_HS_INTERFACE_TIMING_TLOW GENMASK(5, 0)
122 #define I2C_HS_INTERFACE_TIMING_1 0x0a0
123 #define I2C_HS_INTERFACE_TIMING_TSU_STO GENMASK(21, 16)
124 #define I2C_HS_INTERFACE_TIMING_THD_STA GENMASK(13, 8)
125 #define I2C_HS_INTERFACE_TIMING_TSU_STA GENMASK(5, 0)
126
127 #define I2C_MST_FIFO_CONTROL 0x0b4
128 #define I2C_MST_FIFO_CONTROL_RX_FLUSH BIT(0)
129 #define I2C_MST_FIFO_CONTROL_TX_FLUSH BIT(1)
130 #define I2C_MST_FIFO_CONTROL_RX_TRIG(x) (((x) - 1) << 4)
131 #define I2C_MST_FIFO_CONTROL_TX_TRIG(x) (((x) - 1) << 16)
132
133 #define I2C_MST_FIFO_STATUS 0x0b8
134 #define I2C_MST_FIFO_STATUS_TX GENMASK(23, 16)
135 #define I2C_MST_FIFO_STATUS_RX GENMASK(7, 0)
136
137 /* configuration load timeout in microseconds */
138 #define I2C_CONFIG_LOAD_TIMEOUT 1000000
139
140 /* packet header size in bytes */
141 #define I2C_PACKET_HEADER_SIZE 12
142
143 /*
144 * I2C Controller will use PIO mode for transfers up to 32 bytes in order to
145 * avoid DMA overhead, otherwise external APB DMA controller will be used.
146 * Note that the actual MAX PIO length is 20 bytes because 32 bytes include
147 * I2C_PACKET_HEADER_SIZE.
148 */
149 #define I2C_PIO_MODE_PREFERRED_LEN 32
150
151 /*
152 * msg_end_type: The bus control which needs to be sent at end of transfer.
153 * @MSG_END_STOP: Send stop pulse.
154 * @MSG_END_REPEAT_START: Send repeat-start.
155 * @MSG_END_CONTINUE: Don't send stop or repeat-start.
156 */
157 enum msg_end_type {
158 MSG_END_STOP,
159 MSG_END_REPEAT_START,
160 MSG_END_CONTINUE,
161 };
162
163 /**
164 * struct tegra_i2c_hw_feature : per hardware generation features
165 * @has_continue_xfer_support: continue-transfer supported
166 * @has_per_pkt_xfer_complete_irq: Has enable/disable capability for transfer
167 * completion interrupt on per packet basis.
168 * @has_config_load_reg: Has the config load register to load the new
169 * configuration.
170 * @clk_divisor_hs_mode: Clock divisor in HS mode.
171 * @clk_divisor_std_mode: Clock divisor in standard mode. It is
172 * applicable if there is no fast clock source i.e. single clock
173 * source.
174 * @clk_divisor_fast_mode: Clock divisor in fast mode. It is
175 * applicable if there is no fast clock source i.e. single clock
176 * source.
177 * @clk_divisor_fast_plus_mode: Clock divisor in fast mode plus. It is
178 * applicable if there is no fast clock source (i.e. single
179 * clock source).
180 * @has_multi_master_mode: The I2C controller supports running in single-master
181 * or multi-master mode.
182 * @has_slcg_override_reg: The I2C controller supports a register that
183 * overrides the second level clock gating.
184 * @has_mst_fifo: The I2C controller contains the new MST FIFO interface that
185 * provides additional features and allows for longer messages to
186 * be transferred in one go.
187 * @quirks: I2C adapter quirks for limiting write/read transfer size and not
188 * allowing 0 length transfers.
189 * @supports_bus_clear: Bus Clear support to recover from bus hang during
190 * SDA stuck low from device for some unknown reasons.
191 * @has_apb_dma: Support of APBDMA on corresponding Tegra chip.
192 * @tlow_std_mode: Low period of the clock in standard mode.
193 * @thigh_std_mode: High period of the clock in standard mode.
194 * @tlow_fast_fastplus_mode: Low period of the clock in fast/fast-plus modes.
195 * @thigh_fast_fastplus_mode: High period of the clock in fast/fast-plus modes.
196 * @setup_hold_time_std_mode: Setup and hold time for start and stop conditions
197 * in standard mode.
198 * @setup_hold_time_fast_fast_plus_mode: Setup and hold time for start and stop
199 * conditions in fast/fast-plus modes.
200 * @setup_hold_time_hs_mode: Setup and hold time for start and stop conditions
201 * in HS mode.
202 * @has_interface_timing_reg: Has interface timing register to program the tuned
203 * timing settings.
204 */
205 struct tegra_i2c_hw_feature {
206 bool has_continue_xfer_support;
207 bool has_per_pkt_xfer_complete_irq;
208 bool has_config_load_reg;
209 u32 clk_divisor_hs_mode;
210 u32 clk_divisor_std_mode;
211 u32 clk_divisor_fast_mode;
212 u32 clk_divisor_fast_plus_mode;
213 bool has_multi_master_mode;
214 bool has_slcg_override_reg;
215 bool has_mst_fifo;
216 const struct i2c_adapter_quirks *quirks;
217 bool supports_bus_clear;
218 bool has_apb_dma;
219 u32 tlow_std_mode;
220 u32 thigh_std_mode;
221 u32 tlow_fast_fastplus_mode;
222 u32 thigh_fast_fastplus_mode;
223 u32 setup_hold_time_std_mode;
224 u32 setup_hold_time_fast_fast_plus_mode;
225 u32 setup_hold_time_hs_mode;
226 bool has_interface_timing_reg;
227 };
228
229 /**
230 * struct tegra_i2c_dev - per device I2C context
231 * @dev: device reference for power management
232 * @hw: Tegra I2C HW feature
233 * @adapter: core I2C layer adapter information
234 * @div_clk: clock reference for div clock of I2C controller
235 * @clocks: array of I2C controller clocks
236 * @nclocks: number of clocks in the array
237 * @rst: reset control for the I2C controller
238 * @base: ioremapped registers cookie
239 * @base_phys: physical base address of the I2C controller
240 * @cont_id: I2C controller ID, used for packet header
241 * @irq: IRQ number of transfer complete interrupt
242 * @is_dvc: identifies the DVC I2C controller, has a different register layout
243 * @is_vi: identifies the VI I2C controller, has a different register layout
244 * @msg_complete: transfer completion notifier
245 * @msg_buf_remaining: size of unsent data in the message buffer
246 * @msg_len: length of message in current transfer
247 * @msg_err: error code for completed message
248 * @msg_buf: pointer to current message data
249 * @msg_read: indicates that the transfer is a read access
250 * @timings: i2c timings information like bus frequency
251 * @multimaster_mode: indicates that I2C controller is in multi-master mode
252 * @dma_chan: DMA channel
253 * @dma_phys: handle to DMA resources
254 * @dma_buf: pointer to allocated DMA buffer
255 * @dma_buf_size: DMA buffer size
256 * @dma_mode: indicates active DMA transfer
257 * @dma_complete: DMA completion notifier
258 * @atomic_mode: indicates active atomic transfer
259 */
260 struct tegra_i2c_dev {
261 struct device *dev;
262 struct i2c_adapter adapter;
263
264 const struct tegra_i2c_hw_feature *hw;
265 struct reset_control *rst;
266 unsigned int cont_id;
267 unsigned int irq;
268
269 phys_addr_t base_phys;
270 void __iomem *base;
271
272 struct clk_bulk_data clocks[2];
273 unsigned int nclocks;
274
275 struct clk *div_clk;
276 struct i2c_timings timings;
277
278 struct completion msg_complete;
279 size_t msg_buf_remaining;
280 unsigned int msg_len;
281 int msg_err;
282 u8 *msg_buf;
283
284 struct completion dma_complete;
285 struct dma_chan *dma_chan;
286 unsigned int dma_buf_size;
287 struct device *dma_dev;
288 dma_addr_t dma_phys;
289 void *dma_buf;
290
291 bool multimaster_mode;
292 bool atomic_mode;
293 bool dma_mode;
294 bool msg_read;
295 bool is_dvc;
296 bool is_vi;
297 };
298
299 #define IS_DVC(dev) (IS_ENABLED(CONFIG_ARCH_TEGRA_2x_SOC) && (dev)->is_dvc)
300 #define IS_VI(dev) (IS_ENABLED(CONFIG_ARCH_TEGRA_210_SOC) && (dev)->is_vi)
301
dvc_writel(struct tegra_i2c_dev * i2c_dev,u32 val,unsigned int reg)302 static void dvc_writel(struct tegra_i2c_dev *i2c_dev, u32 val,
303 unsigned int reg)
304 {
305 writel_relaxed(val, i2c_dev->base + reg);
306 }
307
dvc_readl(struct tegra_i2c_dev * i2c_dev,unsigned int reg)308 static u32 dvc_readl(struct tegra_i2c_dev *i2c_dev, unsigned int reg)
309 {
310 return readl_relaxed(i2c_dev->base + reg);
311 }
312
313 /*
314 * If necessary, i2c_writel() and i2c_readl() will offset the register
315 * in order to talk to the I2C block inside the DVC block.
316 */
tegra_i2c_reg_addr(struct tegra_i2c_dev * i2c_dev,unsigned int reg)317 static u32 tegra_i2c_reg_addr(struct tegra_i2c_dev *i2c_dev, unsigned int reg)
318 {
319 if (IS_DVC(i2c_dev))
320 reg += (reg >= I2C_TX_FIFO) ? 0x10 : 0x40;
321 else if (IS_VI(i2c_dev))
322 reg = 0xc00 + (reg << 2);
323
324 return reg;
325 }
326
i2c_writel(struct tegra_i2c_dev * i2c_dev,u32 val,unsigned int reg)327 static void i2c_writel(struct tegra_i2c_dev *i2c_dev, u32 val, unsigned int reg)
328 {
329 writel_relaxed(val, i2c_dev->base + tegra_i2c_reg_addr(i2c_dev, reg));
330
331 /* read back register to make sure that register writes completed */
332 if (reg != I2C_TX_FIFO)
333 readl_relaxed(i2c_dev->base + tegra_i2c_reg_addr(i2c_dev, reg));
334 else if (IS_VI(i2c_dev))
335 readl_relaxed(i2c_dev->base + tegra_i2c_reg_addr(i2c_dev, I2C_INT_STATUS));
336 }
337
i2c_readl(struct tegra_i2c_dev * i2c_dev,unsigned int reg)338 static u32 i2c_readl(struct tegra_i2c_dev *i2c_dev, unsigned int reg)
339 {
340 return readl_relaxed(i2c_dev->base + tegra_i2c_reg_addr(i2c_dev, reg));
341 }
342
i2c_writesl(struct tegra_i2c_dev * i2c_dev,void * data,unsigned int reg,unsigned int len)343 static void i2c_writesl(struct tegra_i2c_dev *i2c_dev, void *data,
344 unsigned int reg, unsigned int len)
345 {
346 writesl(i2c_dev->base + tegra_i2c_reg_addr(i2c_dev, reg), data, len);
347 }
348
i2c_writesl_vi(struct tegra_i2c_dev * i2c_dev,void * data,unsigned int reg,unsigned int len)349 static void i2c_writesl_vi(struct tegra_i2c_dev *i2c_dev, void *data,
350 unsigned int reg, unsigned int len)
351 {
352 u32 *data32 = data;
353
354 /*
355 * VI I2C controller has known hardware bug where writes get stuck
356 * when immediate multiple writes happen to TX_FIFO register.
357 * Recommended software work around is to read I2C register after
358 * each write to TX_FIFO register to flush out the data.
359 */
360 while (len--)
361 i2c_writel(i2c_dev, *data32++, reg);
362 }
363
i2c_readsl(struct tegra_i2c_dev * i2c_dev,void * data,unsigned int reg,unsigned int len)364 static void i2c_readsl(struct tegra_i2c_dev *i2c_dev, void *data,
365 unsigned int reg, unsigned int len)
366 {
367 readsl(i2c_dev->base + tegra_i2c_reg_addr(i2c_dev, reg), data, len);
368 }
369
tegra_i2c_mask_irq(struct tegra_i2c_dev * i2c_dev,u32 mask)370 static void tegra_i2c_mask_irq(struct tegra_i2c_dev *i2c_dev, u32 mask)
371 {
372 u32 int_mask;
373
374 int_mask = i2c_readl(i2c_dev, I2C_INT_MASK) & ~mask;
375 i2c_writel(i2c_dev, int_mask, I2C_INT_MASK);
376 }
377
tegra_i2c_unmask_irq(struct tegra_i2c_dev * i2c_dev,u32 mask)378 static void tegra_i2c_unmask_irq(struct tegra_i2c_dev *i2c_dev, u32 mask)
379 {
380 u32 int_mask;
381
382 int_mask = i2c_readl(i2c_dev, I2C_INT_MASK) | mask;
383 i2c_writel(i2c_dev, int_mask, I2C_INT_MASK);
384 }
385
tegra_i2c_dma_complete(void * args)386 static void tegra_i2c_dma_complete(void *args)
387 {
388 struct tegra_i2c_dev *i2c_dev = args;
389
390 complete(&i2c_dev->dma_complete);
391 }
392
tegra_i2c_dma_submit(struct tegra_i2c_dev * i2c_dev,size_t len)393 static int tegra_i2c_dma_submit(struct tegra_i2c_dev *i2c_dev, size_t len)
394 {
395 struct dma_async_tx_descriptor *dma_desc;
396 enum dma_transfer_direction dir;
397
398 dev_dbg(i2c_dev->dev, "starting DMA for length: %zu\n", len);
399
400 reinit_completion(&i2c_dev->dma_complete);
401
402 dir = i2c_dev->msg_read ? DMA_DEV_TO_MEM : DMA_MEM_TO_DEV;
403
404 dma_desc = dmaengine_prep_slave_single(i2c_dev->dma_chan, i2c_dev->dma_phys,
405 len, dir, DMA_PREP_INTERRUPT |
406 DMA_CTRL_ACK);
407 if (!dma_desc) {
408 dev_err(i2c_dev->dev, "failed to get %s DMA descriptor\n",
409 i2c_dev->msg_read ? "RX" : "TX");
410 return -EINVAL;
411 }
412
413 dma_desc->callback = tegra_i2c_dma_complete;
414 dma_desc->callback_param = i2c_dev;
415
416 dmaengine_submit(dma_desc);
417 dma_async_issue_pending(i2c_dev->dma_chan);
418
419 return 0;
420 }
421
tegra_i2c_release_dma(struct tegra_i2c_dev * i2c_dev)422 static void tegra_i2c_release_dma(struct tegra_i2c_dev *i2c_dev)
423 {
424 if (i2c_dev->dma_buf) {
425 dma_free_coherent(i2c_dev->dma_dev, i2c_dev->dma_buf_size,
426 i2c_dev->dma_buf, i2c_dev->dma_phys);
427 i2c_dev->dma_buf = NULL;
428 }
429
430 if (i2c_dev->dma_chan) {
431 dma_release_channel(i2c_dev->dma_chan);
432 i2c_dev->dma_chan = NULL;
433 }
434 }
435
tegra_i2c_init_dma(struct tegra_i2c_dev * i2c_dev)436 static int tegra_i2c_init_dma(struct tegra_i2c_dev *i2c_dev)
437 {
438 dma_addr_t dma_phys;
439 u32 *dma_buf;
440 int err;
441
442 if (IS_VI(i2c_dev))
443 return 0;
444
445 if (i2c_dev->hw->has_apb_dma) {
446 if (!IS_ENABLED(CONFIG_TEGRA20_APB_DMA)) {
447 dev_dbg(i2c_dev->dev, "APB DMA support not enabled\n");
448 return 0;
449 }
450 } else if (!IS_ENABLED(CONFIG_TEGRA186_GPC_DMA)) {
451 dev_dbg(i2c_dev->dev, "GPC DMA support not enabled\n");
452 return 0;
453 }
454
455 /*
456 * The same channel will be used for both RX and TX.
457 * Keeping the name as "tx" for backward compatibility
458 * with existing devicetrees.
459 */
460 i2c_dev->dma_chan = dma_request_chan(i2c_dev->dev, "tx");
461 if (IS_ERR(i2c_dev->dma_chan)) {
462 err = PTR_ERR(i2c_dev->dma_chan);
463 i2c_dev->dma_chan = NULL;
464 goto err_out;
465 }
466
467 i2c_dev->dma_dev = i2c_dev->dma_chan->device->dev;
468 i2c_dev->dma_buf_size = i2c_dev->hw->quirks->max_write_len +
469 I2C_PACKET_HEADER_SIZE;
470
471 dma_buf = dma_alloc_coherent(i2c_dev->dma_dev, i2c_dev->dma_buf_size,
472 &dma_phys, GFP_KERNEL | __GFP_NOWARN);
473 if (!dma_buf) {
474 dev_err(i2c_dev->dev, "failed to allocate DMA buffer\n");
475 err = -ENOMEM;
476 goto err_out;
477 }
478
479 i2c_dev->dma_buf = dma_buf;
480 i2c_dev->dma_phys = dma_phys;
481
482 return 0;
483
484 err_out:
485 tegra_i2c_release_dma(i2c_dev);
486 if (err != -EPROBE_DEFER) {
487 dev_err(i2c_dev->dev, "cannot use DMA: %d\n", err);
488 dev_err(i2c_dev->dev, "falling back to PIO\n");
489 return 0;
490 }
491
492 return err;
493 }
494
495 /*
496 * One of the Tegra I2C blocks is inside the DVC (Digital Voltage Controller)
497 * block. This block is identical to the rest of the I2C blocks, except that
498 * it only supports master mode, it has registers moved around, and it needs
499 * some extra init to get it into I2C mode. The register moves are handled
500 * by i2c_readl() and i2c_writel().
501 */
tegra_dvc_init(struct tegra_i2c_dev * i2c_dev)502 static void tegra_dvc_init(struct tegra_i2c_dev *i2c_dev)
503 {
504 u32 val;
505
506 val = dvc_readl(i2c_dev, DVC_CTRL_REG3);
507 val |= DVC_CTRL_REG3_SW_PROG;
508 val |= DVC_CTRL_REG3_I2C_DONE_INTR_EN;
509 dvc_writel(i2c_dev, val, DVC_CTRL_REG3);
510
511 val = dvc_readl(i2c_dev, DVC_CTRL_REG1);
512 val |= DVC_CTRL_REG1_INTR_EN;
513 dvc_writel(i2c_dev, val, DVC_CTRL_REG1);
514 }
515
tegra_i2c_vi_init(struct tegra_i2c_dev * i2c_dev)516 static void tegra_i2c_vi_init(struct tegra_i2c_dev *i2c_dev)
517 {
518 u32 value;
519
520 value = FIELD_PREP(I2C_INTERFACE_TIMING_THIGH, 2) |
521 FIELD_PREP(I2C_INTERFACE_TIMING_TLOW, 4);
522 i2c_writel(i2c_dev, value, I2C_INTERFACE_TIMING_0);
523
524 value = FIELD_PREP(I2C_INTERFACE_TIMING_TBUF, 4) |
525 FIELD_PREP(I2C_INTERFACE_TIMING_TSU_STO, 7) |
526 FIELD_PREP(I2C_INTERFACE_TIMING_THD_STA, 4) |
527 FIELD_PREP(I2C_INTERFACE_TIMING_TSU_STA, 4);
528 i2c_writel(i2c_dev, value, I2C_INTERFACE_TIMING_1);
529
530 value = FIELD_PREP(I2C_HS_INTERFACE_TIMING_THIGH, 3) |
531 FIELD_PREP(I2C_HS_INTERFACE_TIMING_TLOW, 8);
532 i2c_writel(i2c_dev, value, I2C_HS_INTERFACE_TIMING_0);
533
534 value = FIELD_PREP(I2C_HS_INTERFACE_TIMING_TSU_STO, 11) |
535 FIELD_PREP(I2C_HS_INTERFACE_TIMING_THD_STA, 11) |
536 FIELD_PREP(I2C_HS_INTERFACE_TIMING_TSU_STA, 11);
537 i2c_writel(i2c_dev, value, I2C_HS_INTERFACE_TIMING_1);
538
539 value = FIELD_PREP(I2C_BC_SCLK_THRESHOLD, 9) | I2C_BC_STOP_COND;
540 i2c_writel(i2c_dev, value, I2C_BUS_CLEAR_CNFG);
541
542 i2c_writel(i2c_dev, 0x0, I2C_TLOW_SEXT);
543 }
544
tegra_i2c_poll_register(struct tegra_i2c_dev * i2c_dev,u32 reg,u32 mask,u32 delay_us,u32 timeout_us)545 static int tegra_i2c_poll_register(struct tegra_i2c_dev *i2c_dev,
546 u32 reg, u32 mask, u32 delay_us,
547 u32 timeout_us)
548 {
549 void __iomem *addr = i2c_dev->base + tegra_i2c_reg_addr(i2c_dev, reg);
550 u32 val;
551
552 if (!i2c_dev->atomic_mode)
553 return readl_relaxed_poll_timeout(addr, val, !(val & mask),
554 delay_us, timeout_us);
555
556 return readl_relaxed_poll_timeout_atomic(addr, val, !(val & mask),
557 delay_us, timeout_us);
558 }
559
tegra_i2c_flush_fifos(struct tegra_i2c_dev * i2c_dev)560 static int tegra_i2c_flush_fifos(struct tegra_i2c_dev *i2c_dev)
561 {
562 u32 mask, val, offset;
563 int err;
564
565 if (i2c_dev->hw->has_mst_fifo) {
566 mask = I2C_MST_FIFO_CONTROL_TX_FLUSH |
567 I2C_MST_FIFO_CONTROL_RX_FLUSH;
568 offset = I2C_MST_FIFO_CONTROL;
569 } else {
570 mask = I2C_FIFO_CONTROL_TX_FLUSH |
571 I2C_FIFO_CONTROL_RX_FLUSH;
572 offset = I2C_FIFO_CONTROL;
573 }
574
575 val = i2c_readl(i2c_dev, offset);
576 val |= mask;
577 i2c_writel(i2c_dev, val, offset);
578
579 err = tegra_i2c_poll_register(i2c_dev, offset, mask, 1000, 1000000);
580 if (err) {
581 dev_err(i2c_dev->dev, "failed to flush FIFO\n");
582 return err;
583 }
584
585 return 0;
586 }
587
tegra_i2c_wait_for_config_load(struct tegra_i2c_dev * i2c_dev)588 static int tegra_i2c_wait_for_config_load(struct tegra_i2c_dev *i2c_dev)
589 {
590 int err;
591
592 if (!i2c_dev->hw->has_config_load_reg)
593 return 0;
594
595 i2c_writel(i2c_dev, I2C_MSTR_CONFIG_LOAD, I2C_CONFIG_LOAD);
596
597 err = tegra_i2c_poll_register(i2c_dev, I2C_CONFIG_LOAD, 0xffffffff,
598 1000, I2C_CONFIG_LOAD_TIMEOUT);
599 if (err) {
600 dev_err(i2c_dev->dev, "failed to load config\n");
601 return err;
602 }
603
604 return 0;
605 }
606
tegra_i2c_init(struct tegra_i2c_dev * i2c_dev)607 static int tegra_i2c_init(struct tegra_i2c_dev *i2c_dev)
608 {
609 u32 val, clk_divisor, clk_multiplier, tsu_thd, tlow, thigh, non_hs_mode;
610 struct i2c_timings *t = &i2c_dev->timings;
611 int err;
612
613 /*
614 * The reset shouldn't ever fail in practice. The failure will be a
615 * sign of a severe problem that needs to be resolved. Still we don't
616 * want to fail the initialization completely because this may break
617 * kernel boot up since voltage regulators use I2C. Hence, we will
618 * emit a noisy warning on error, which won't stay unnoticed and
619 * won't hose machine entirely.
620 */
621 err = device_reset(i2c_dev->dev);
622 WARN_ON_ONCE(err);
623
624 if (IS_DVC(i2c_dev))
625 tegra_dvc_init(i2c_dev);
626
627 val = I2C_CNFG_NEW_MASTER_FSM | I2C_CNFG_PACKET_MODE_EN |
628 FIELD_PREP(I2C_CNFG_DEBOUNCE_CNT, 2);
629
630 if (i2c_dev->hw->has_multi_master_mode)
631 val |= I2C_CNFG_MULTI_MASTER_MODE;
632
633 i2c_writel(i2c_dev, val, I2C_CNFG);
634 i2c_writel(i2c_dev, 0, I2C_INT_MASK);
635
636 if (IS_VI(i2c_dev))
637 tegra_i2c_vi_init(i2c_dev);
638
639 switch (t->bus_freq_hz) {
640 case I2C_MAX_STANDARD_MODE_FREQ + 1 ... I2C_MAX_FAST_MODE_PLUS_FREQ:
641 default:
642 tlow = i2c_dev->hw->tlow_fast_fastplus_mode;
643 thigh = i2c_dev->hw->thigh_fast_fastplus_mode;
644 tsu_thd = i2c_dev->hw->setup_hold_time_fast_fast_plus_mode;
645
646 if (t->bus_freq_hz > I2C_MAX_FAST_MODE_FREQ)
647 non_hs_mode = i2c_dev->hw->clk_divisor_fast_plus_mode;
648 else
649 non_hs_mode = i2c_dev->hw->clk_divisor_fast_mode;
650 break;
651
652 case 0 ... I2C_MAX_STANDARD_MODE_FREQ:
653 tlow = i2c_dev->hw->tlow_std_mode;
654 thigh = i2c_dev->hw->thigh_std_mode;
655 tsu_thd = i2c_dev->hw->setup_hold_time_std_mode;
656 non_hs_mode = i2c_dev->hw->clk_divisor_std_mode;
657 break;
658 }
659
660 /* make sure clock divisor programmed correctly */
661 clk_divisor = FIELD_PREP(I2C_CLK_DIVISOR_HSMODE,
662 i2c_dev->hw->clk_divisor_hs_mode) |
663 FIELD_PREP(I2C_CLK_DIVISOR_STD_FAST_MODE, non_hs_mode);
664 i2c_writel(i2c_dev, clk_divisor, I2C_CLK_DIVISOR);
665
666 if (i2c_dev->hw->has_interface_timing_reg) {
667 val = FIELD_PREP(I2C_INTERFACE_TIMING_THIGH, thigh) |
668 FIELD_PREP(I2C_INTERFACE_TIMING_TLOW, tlow);
669 i2c_writel(i2c_dev, val, I2C_INTERFACE_TIMING_0);
670 }
671
672 /*
673 * Configure setup and hold times only when tsu_thd is non-zero.
674 * Otherwise, preserve the chip default values.
675 */
676 if (i2c_dev->hw->has_interface_timing_reg && tsu_thd)
677 i2c_writel(i2c_dev, tsu_thd, I2C_INTERFACE_TIMING_1);
678
679 clk_multiplier = (tlow + thigh + 2) * (non_hs_mode + 1);
680
681 err = clk_set_rate(i2c_dev->div_clk,
682 t->bus_freq_hz * clk_multiplier);
683 if (err) {
684 dev_err(i2c_dev->dev, "failed to set div-clk rate: %d\n", err);
685 return err;
686 }
687
688 if (!IS_DVC(i2c_dev) && !IS_VI(i2c_dev)) {
689 u32 sl_cfg = i2c_readl(i2c_dev, I2C_SL_CNFG);
690
691 sl_cfg |= I2C_SL_CNFG_NACK | I2C_SL_CNFG_NEWSL;
692 i2c_writel(i2c_dev, sl_cfg, I2C_SL_CNFG);
693 i2c_writel(i2c_dev, 0xfc, I2C_SL_ADDR1);
694 i2c_writel(i2c_dev, 0x00, I2C_SL_ADDR2);
695 }
696
697 err = tegra_i2c_flush_fifos(i2c_dev);
698 if (err)
699 return err;
700
701 if (i2c_dev->multimaster_mode && i2c_dev->hw->has_slcg_override_reg)
702 i2c_writel(i2c_dev, I2C_MST_CORE_CLKEN_OVR, I2C_CLKEN_OVERRIDE);
703
704 err = tegra_i2c_wait_for_config_load(i2c_dev);
705 if (err)
706 return err;
707
708 return 0;
709 }
710
tegra_i2c_disable_packet_mode(struct tegra_i2c_dev * i2c_dev)711 static int tegra_i2c_disable_packet_mode(struct tegra_i2c_dev *i2c_dev)
712 {
713 u32 cnfg;
714
715 /*
716 * NACK interrupt is generated before the I2C controller generates
717 * the STOP condition on the bus. So, wait for 2 clock periods
718 * before disabling the controller so that the STOP condition has
719 * been delivered properly.
720 */
721 udelay(DIV_ROUND_UP(2 * 1000000, i2c_dev->timings.bus_freq_hz));
722
723 cnfg = i2c_readl(i2c_dev, I2C_CNFG);
724 if (cnfg & I2C_CNFG_PACKET_MODE_EN)
725 i2c_writel(i2c_dev, cnfg & ~I2C_CNFG_PACKET_MODE_EN, I2C_CNFG);
726
727 return tegra_i2c_wait_for_config_load(i2c_dev);
728 }
729
tegra_i2c_empty_rx_fifo(struct tegra_i2c_dev * i2c_dev)730 static int tegra_i2c_empty_rx_fifo(struct tegra_i2c_dev *i2c_dev)
731 {
732 size_t buf_remaining = i2c_dev->msg_buf_remaining;
733 unsigned int words_to_transfer, rx_fifo_avail;
734 u8 *buf = i2c_dev->msg_buf;
735 u32 val;
736
737 /*
738 * Catch overflow due to message fully sent before the check for
739 * RX FIFO availability.
740 */
741 if (WARN_ON_ONCE(!(i2c_dev->msg_buf_remaining)))
742 return -EINVAL;
743
744 if (i2c_dev->hw->has_mst_fifo) {
745 val = i2c_readl(i2c_dev, I2C_MST_FIFO_STATUS);
746 rx_fifo_avail = FIELD_GET(I2C_MST_FIFO_STATUS_RX, val);
747 } else {
748 val = i2c_readl(i2c_dev, I2C_FIFO_STATUS);
749 rx_fifo_avail = FIELD_GET(I2C_FIFO_STATUS_RX, val);
750 }
751
752 /* round down to exclude partial word at the end of buffer */
753 words_to_transfer = buf_remaining / BYTES_PER_FIFO_WORD;
754 if (words_to_transfer > rx_fifo_avail)
755 words_to_transfer = rx_fifo_avail;
756
757 i2c_readsl(i2c_dev, buf, I2C_RX_FIFO, words_to_transfer);
758
759 buf += words_to_transfer * BYTES_PER_FIFO_WORD;
760 buf_remaining -= words_to_transfer * BYTES_PER_FIFO_WORD;
761 rx_fifo_avail -= words_to_transfer;
762
763 /*
764 * If there is a partial word at the end of buffer, handle it
765 * manually to prevent overwriting past the end of buffer.
766 */
767 if (rx_fifo_avail > 0 && buf_remaining > 0) {
768 /*
769 * buf_remaining > 3 check not needed as rx_fifo_avail == 0
770 * when (words_to_transfer was > rx_fifo_avail) earlier
771 * in this function.
772 */
773 val = i2c_readl(i2c_dev, I2C_RX_FIFO);
774 val = cpu_to_le32(val);
775 memcpy(buf, &val, buf_remaining);
776 buf_remaining = 0;
777 rx_fifo_avail--;
778 }
779
780 /* RX FIFO must be drained, otherwise it's an Overflow case. */
781 if (WARN_ON_ONCE(rx_fifo_avail))
782 return -EINVAL;
783
784 i2c_dev->msg_buf_remaining = buf_remaining;
785 i2c_dev->msg_buf = buf;
786
787 return 0;
788 }
789
tegra_i2c_fill_tx_fifo(struct tegra_i2c_dev * i2c_dev)790 static int tegra_i2c_fill_tx_fifo(struct tegra_i2c_dev *i2c_dev)
791 {
792 size_t buf_remaining = i2c_dev->msg_buf_remaining;
793 unsigned int words_to_transfer, tx_fifo_avail;
794 u8 *buf = i2c_dev->msg_buf;
795 u32 val;
796
797 if (i2c_dev->hw->has_mst_fifo) {
798 val = i2c_readl(i2c_dev, I2C_MST_FIFO_STATUS);
799 tx_fifo_avail = FIELD_GET(I2C_MST_FIFO_STATUS_TX, val);
800 } else {
801 val = i2c_readl(i2c_dev, I2C_FIFO_STATUS);
802 tx_fifo_avail = FIELD_GET(I2C_FIFO_STATUS_TX, val);
803 }
804
805 /* round down to exclude partial word at the end of buffer */
806 words_to_transfer = buf_remaining / BYTES_PER_FIFO_WORD;
807
808 /*
809 * This hunk pushes 4 bytes at a time into the TX FIFO.
810 *
811 * It's very common to have < 4 bytes, hence there is no word
812 * to push if we have less than 4 bytes to transfer.
813 */
814 if (words_to_transfer) {
815 if (words_to_transfer > tx_fifo_avail)
816 words_to_transfer = tx_fifo_avail;
817
818 /*
819 * Update state before writing to FIFO. Note that this may
820 * cause us to finish writing all bytes (AKA buf_remaining
821 * goes to 0), hence we have a potential for an interrupt
822 * (PACKET_XFER_COMPLETE is not maskable), but GIC interrupt
823 * is disabled at this point.
824 */
825 buf_remaining -= words_to_transfer * BYTES_PER_FIFO_WORD;
826 tx_fifo_avail -= words_to_transfer;
827
828 i2c_dev->msg_buf_remaining = buf_remaining;
829 i2c_dev->msg_buf = buf + words_to_transfer * BYTES_PER_FIFO_WORD;
830
831 if (IS_VI(i2c_dev))
832 i2c_writesl_vi(i2c_dev, buf, I2C_TX_FIFO, words_to_transfer);
833 else
834 i2c_writesl(i2c_dev, buf, I2C_TX_FIFO, words_to_transfer);
835
836 buf += words_to_transfer * BYTES_PER_FIFO_WORD;
837 }
838
839 /*
840 * If there is a partial word at the end of buffer, handle it manually
841 * to prevent reading past the end of buffer, which could cross a page
842 * boundary and fault.
843 */
844 if (tx_fifo_avail > 0 && buf_remaining > 0) {
845 /*
846 * buf_remaining > 3 check not needed as tx_fifo_avail == 0
847 * when (words_to_transfer was > tx_fifo_avail) earlier
848 * in this function for non-zero words_to_transfer.
849 */
850 memcpy(&val, buf, buf_remaining);
851 val = le32_to_cpu(val);
852
853 i2c_dev->msg_buf_remaining = 0;
854 i2c_dev->msg_buf = NULL;
855
856 i2c_writel(i2c_dev, val, I2C_TX_FIFO);
857 }
858
859 return 0;
860 }
861
tegra_i2c_isr(int irq,void * dev_id)862 static irqreturn_t tegra_i2c_isr(int irq, void *dev_id)
863 {
864 const u32 status_err = I2C_INT_NO_ACK | I2C_INT_ARBITRATION_LOST;
865 struct tegra_i2c_dev *i2c_dev = dev_id;
866 u32 status;
867
868 status = i2c_readl(i2c_dev, I2C_INT_STATUS);
869
870 if (status == 0) {
871 dev_warn(i2c_dev->dev, "IRQ status 0 %08x %08x %08x\n",
872 i2c_readl(i2c_dev, I2C_PACKET_TRANSFER_STATUS),
873 i2c_readl(i2c_dev, I2C_STATUS),
874 i2c_readl(i2c_dev, I2C_CNFG));
875 i2c_dev->msg_err |= I2C_ERR_UNKNOWN_INTERRUPT;
876 goto err;
877 }
878
879 if (status & status_err) {
880 tegra_i2c_disable_packet_mode(i2c_dev);
881 if (status & I2C_INT_NO_ACK)
882 i2c_dev->msg_err |= I2C_ERR_NO_ACK;
883 if (status & I2C_INT_ARBITRATION_LOST)
884 i2c_dev->msg_err |= I2C_ERR_ARBITRATION_LOST;
885 goto err;
886 }
887
888 /*
889 * I2C transfer is terminated during the bus clear, so skip
890 * processing the other interrupts.
891 */
892 if (i2c_dev->hw->supports_bus_clear && (status & I2C_INT_BUS_CLR_DONE))
893 goto err;
894
895 if (!i2c_dev->dma_mode) {
896 if (i2c_dev->msg_read && (status & I2C_INT_RX_FIFO_DATA_REQ)) {
897 if (tegra_i2c_empty_rx_fifo(i2c_dev)) {
898 /*
899 * Overflow error condition: message fully sent,
900 * with no XFER_COMPLETE interrupt but hardware
901 * asks to transfer more.
902 */
903 i2c_dev->msg_err |= I2C_ERR_RX_BUFFER_OVERFLOW;
904 goto err;
905 }
906 }
907
908 if (!i2c_dev->msg_read && (status & I2C_INT_TX_FIFO_DATA_REQ)) {
909 if (i2c_dev->msg_buf_remaining)
910 tegra_i2c_fill_tx_fifo(i2c_dev);
911 else
912 tegra_i2c_mask_irq(i2c_dev,
913 I2C_INT_TX_FIFO_DATA_REQ);
914 }
915 }
916
917 i2c_writel(i2c_dev, status, I2C_INT_STATUS);
918 if (IS_DVC(i2c_dev))
919 dvc_writel(i2c_dev, DVC_STATUS_I2C_DONE_INTR, DVC_STATUS);
920
921 /*
922 * During message read XFER_COMPLETE interrupt is triggered prior to
923 * DMA completion and during message write XFER_COMPLETE interrupt is
924 * triggered after DMA completion.
925 *
926 * PACKETS_XFER_COMPLETE indicates completion of all bytes of transfer,
927 * so forcing msg_buf_remaining to 0 in DMA mode.
928 */
929 if (status & I2C_INT_PACKET_XFER_COMPLETE) {
930 if (i2c_dev->dma_mode)
931 i2c_dev->msg_buf_remaining = 0;
932 /*
933 * Underflow error condition: XFER_COMPLETE before message
934 * fully sent.
935 */
936 if (WARN_ON_ONCE(i2c_dev->msg_buf_remaining)) {
937 i2c_dev->msg_err |= I2C_ERR_UNKNOWN_INTERRUPT;
938 goto err;
939 }
940 complete(&i2c_dev->msg_complete);
941 }
942 goto done;
943 err:
944 /* mask all interrupts on error */
945 tegra_i2c_mask_irq(i2c_dev,
946 I2C_INT_NO_ACK |
947 I2C_INT_ARBITRATION_LOST |
948 I2C_INT_PACKET_XFER_COMPLETE |
949 I2C_INT_TX_FIFO_DATA_REQ |
950 I2C_INT_RX_FIFO_DATA_REQ);
951
952 if (i2c_dev->hw->supports_bus_clear)
953 tegra_i2c_mask_irq(i2c_dev, I2C_INT_BUS_CLR_DONE);
954
955 i2c_writel(i2c_dev, status, I2C_INT_STATUS);
956
957 if (IS_DVC(i2c_dev))
958 dvc_writel(i2c_dev, DVC_STATUS_I2C_DONE_INTR, DVC_STATUS);
959
960 if (i2c_dev->dma_mode) {
961 dmaengine_terminate_async(i2c_dev->dma_chan);
962 complete(&i2c_dev->dma_complete);
963 }
964
965 complete(&i2c_dev->msg_complete);
966 done:
967 return IRQ_HANDLED;
968 }
969
tegra_i2c_config_fifo_trig(struct tegra_i2c_dev * i2c_dev,size_t len)970 static void tegra_i2c_config_fifo_trig(struct tegra_i2c_dev *i2c_dev,
971 size_t len)
972 {
973 struct dma_slave_config slv_config = {0};
974 u32 val, reg, dma_burst, reg_offset;
975 int err;
976
977 if (i2c_dev->hw->has_mst_fifo)
978 reg = I2C_MST_FIFO_CONTROL;
979 else
980 reg = I2C_FIFO_CONTROL;
981
982 if (i2c_dev->dma_mode) {
983 if (len & 0xF)
984 dma_burst = 1;
985 else if (len & 0x10)
986 dma_burst = 4;
987 else
988 dma_burst = 8;
989
990 if (i2c_dev->msg_read) {
991 reg_offset = tegra_i2c_reg_addr(i2c_dev, I2C_RX_FIFO);
992
993 slv_config.src_addr = i2c_dev->base_phys + reg_offset;
994 slv_config.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
995 slv_config.src_maxburst = dma_burst;
996
997 if (i2c_dev->hw->has_mst_fifo)
998 val = I2C_MST_FIFO_CONTROL_RX_TRIG(dma_burst);
999 else
1000 val = I2C_FIFO_CONTROL_RX_TRIG(dma_burst);
1001 } else {
1002 reg_offset = tegra_i2c_reg_addr(i2c_dev, I2C_TX_FIFO);
1003
1004 slv_config.dst_addr = i2c_dev->base_phys + reg_offset;
1005 slv_config.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
1006 slv_config.dst_maxburst = dma_burst;
1007
1008 if (i2c_dev->hw->has_mst_fifo)
1009 val = I2C_MST_FIFO_CONTROL_TX_TRIG(dma_burst);
1010 else
1011 val = I2C_FIFO_CONTROL_TX_TRIG(dma_burst);
1012 }
1013
1014 slv_config.device_fc = true;
1015 err = dmaengine_slave_config(i2c_dev->dma_chan, &slv_config);
1016 if (err) {
1017 dev_err(i2c_dev->dev, "DMA config failed: %d\n", err);
1018 dev_err(i2c_dev->dev, "falling back to PIO\n");
1019
1020 tegra_i2c_release_dma(i2c_dev);
1021 i2c_dev->dma_mode = false;
1022 } else {
1023 goto out;
1024 }
1025 }
1026
1027 if (i2c_dev->hw->has_mst_fifo)
1028 val = I2C_MST_FIFO_CONTROL_TX_TRIG(8) |
1029 I2C_MST_FIFO_CONTROL_RX_TRIG(1);
1030 else
1031 val = I2C_FIFO_CONTROL_TX_TRIG(8) |
1032 I2C_FIFO_CONTROL_RX_TRIG(1);
1033 out:
1034 i2c_writel(i2c_dev, val, reg);
1035 }
1036
tegra_i2c_poll_completion(struct tegra_i2c_dev * i2c_dev,struct completion * complete,unsigned int timeout_ms)1037 static unsigned long tegra_i2c_poll_completion(struct tegra_i2c_dev *i2c_dev,
1038 struct completion *complete,
1039 unsigned int timeout_ms)
1040 {
1041 ktime_t ktime = ktime_get();
1042 ktime_t ktimeout = ktime_add_ms(ktime, timeout_ms);
1043
1044 do {
1045 u32 status = i2c_readl(i2c_dev, I2C_INT_STATUS);
1046
1047 if (status)
1048 tegra_i2c_isr(i2c_dev->irq, i2c_dev);
1049
1050 if (completion_done(complete)) {
1051 s64 delta = ktime_ms_delta(ktimeout, ktime);
1052
1053 return msecs_to_jiffies(delta) ?: 1;
1054 }
1055
1056 ktime = ktime_get();
1057
1058 } while (ktime_before(ktime, ktimeout));
1059
1060 return 0;
1061 }
1062
tegra_i2c_wait_completion(struct tegra_i2c_dev * i2c_dev,struct completion * complete,unsigned int timeout_ms)1063 static unsigned long tegra_i2c_wait_completion(struct tegra_i2c_dev *i2c_dev,
1064 struct completion *complete,
1065 unsigned int timeout_ms)
1066 {
1067 unsigned long ret;
1068
1069 if (i2c_dev->atomic_mode) {
1070 ret = tegra_i2c_poll_completion(i2c_dev, complete, timeout_ms);
1071 } else {
1072 enable_irq(i2c_dev->irq);
1073 ret = wait_for_completion_timeout(complete,
1074 msecs_to_jiffies(timeout_ms));
1075 disable_irq(i2c_dev->irq);
1076
1077 /*
1078 * Under some rare circumstances (like running KASAN +
1079 * NFS root) CPU, which handles interrupt, may stuck in
1080 * uninterruptible state for a significant time. In this
1081 * case we will get timeout if I2C transfer is running on
1082 * a sibling CPU, despite of IRQ being raised.
1083 *
1084 * In order to handle this rare condition, the IRQ status
1085 * needs to be checked after timeout.
1086 */
1087 if (ret == 0)
1088 ret = tegra_i2c_poll_completion(i2c_dev, complete, 0);
1089 }
1090
1091 return ret;
1092 }
1093
tegra_i2c_issue_bus_clear(struct i2c_adapter * adap)1094 static int tegra_i2c_issue_bus_clear(struct i2c_adapter *adap)
1095 {
1096 struct tegra_i2c_dev *i2c_dev = i2c_get_adapdata(adap);
1097 u32 val, time_left;
1098 int err;
1099
1100 reinit_completion(&i2c_dev->msg_complete);
1101
1102 val = FIELD_PREP(I2C_BC_SCLK_THRESHOLD, 9) | I2C_BC_STOP_COND |
1103 I2C_BC_TERMINATE;
1104 i2c_writel(i2c_dev, val, I2C_BUS_CLEAR_CNFG);
1105
1106 err = tegra_i2c_wait_for_config_load(i2c_dev);
1107 if (err)
1108 return err;
1109
1110 val |= I2C_BC_ENABLE;
1111 i2c_writel(i2c_dev, val, I2C_BUS_CLEAR_CNFG);
1112 tegra_i2c_unmask_irq(i2c_dev, I2C_INT_BUS_CLR_DONE);
1113
1114 time_left = tegra_i2c_wait_completion(i2c_dev, &i2c_dev->msg_complete, 50);
1115 tegra_i2c_mask_irq(i2c_dev, I2C_INT_BUS_CLR_DONE);
1116
1117 if (time_left == 0) {
1118 dev_err(i2c_dev->dev, "failed to clear bus\n");
1119 return -ETIMEDOUT;
1120 }
1121
1122 val = i2c_readl(i2c_dev, I2C_BUS_CLEAR_STATUS);
1123 if (!(val & I2C_BC_STATUS)) {
1124 dev_err(i2c_dev->dev, "un-recovered arbitration lost\n");
1125 return -EIO;
1126 }
1127
1128 return -EAGAIN;
1129 }
1130
tegra_i2c_push_packet_header(struct tegra_i2c_dev * i2c_dev,struct i2c_msg * msg,enum msg_end_type end_state)1131 static void tegra_i2c_push_packet_header(struct tegra_i2c_dev *i2c_dev,
1132 struct i2c_msg *msg,
1133 enum msg_end_type end_state)
1134 {
1135 u32 *dma_buf = i2c_dev->dma_buf;
1136 u32 packet_header;
1137
1138 packet_header = FIELD_PREP(PACKET_HEADER0_HEADER_SIZE, 0) |
1139 FIELD_PREP(PACKET_HEADER0_PROTOCOL,
1140 PACKET_HEADER0_PROTOCOL_I2C) |
1141 FIELD_PREP(PACKET_HEADER0_CONT_ID, i2c_dev->cont_id) |
1142 FIELD_PREP(PACKET_HEADER0_PACKET_ID, 1);
1143
1144 if (i2c_dev->dma_mode && !i2c_dev->msg_read)
1145 *dma_buf++ = packet_header;
1146 else
1147 i2c_writel(i2c_dev, packet_header, I2C_TX_FIFO);
1148
1149 packet_header = i2c_dev->msg_len - 1;
1150
1151 if (i2c_dev->dma_mode && !i2c_dev->msg_read)
1152 *dma_buf++ = packet_header;
1153 else
1154 i2c_writel(i2c_dev, packet_header, I2C_TX_FIFO);
1155
1156 packet_header = I2C_HEADER_IE_ENABLE;
1157
1158 if (end_state == MSG_END_CONTINUE)
1159 packet_header |= I2C_HEADER_CONTINUE_XFER;
1160 else if (end_state == MSG_END_REPEAT_START)
1161 packet_header |= I2C_HEADER_REPEAT_START;
1162
1163 if (msg->flags & I2C_M_TEN) {
1164 packet_header |= msg->addr;
1165 packet_header |= I2C_HEADER_10BIT_ADDR;
1166 } else {
1167 packet_header |= msg->addr << I2C_HEADER_SLAVE_ADDR_SHIFT;
1168 }
1169
1170 if (msg->flags & I2C_M_IGNORE_NAK)
1171 packet_header |= I2C_HEADER_CONT_ON_NAK;
1172
1173 if (msg->flags & I2C_M_RD)
1174 packet_header |= I2C_HEADER_READ;
1175
1176 if (i2c_dev->dma_mode && !i2c_dev->msg_read)
1177 *dma_buf++ = packet_header;
1178 else
1179 i2c_writel(i2c_dev, packet_header, I2C_TX_FIFO);
1180 }
1181
tegra_i2c_error_recover(struct tegra_i2c_dev * i2c_dev,struct i2c_msg * msg)1182 static int tegra_i2c_error_recover(struct tegra_i2c_dev *i2c_dev,
1183 struct i2c_msg *msg)
1184 {
1185 if (i2c_dev->msg_err == I2C_ERR_NONE)
1186 return 0;
1187
1188 tegra_i2c_init(i2c_dev);
1189
1190 /* start recovery upon arbitration loss in single master mode */
1191 if (i2c_dev->msg_err == I2C_ERR_ARBITRATION_LOST) {
1192 if (!i2c_dev->multimaster_mode)
1193 return i2c_recover_bus(&i2c_dev->adapter);
1194
1195 return -EAGAIN;
1196 }
1197
1198 if (i2c_dev->msg_err == I2C_ERR_NO_ACK) {
1199 if (msg->flags & I2C_M_IGNORE_NAK)
1200 return 0;
1201
1202 return -EREMOTEIO;
1203 }
1204
1205 return -EIO;
1206 }
1207
tegra_i2c_xfer_msg(struct tegra_i2c_dev * i2c_dev,struct i2c_msg * msg,enum msg_end_type end_state)1208 static int tegra_i2c_xfer_msg(struct tegra_i2c_dev *i2c_dev,
1209 struct i2c_msg *msg,
1210 enum msg_end_type end_state)
1211 {
1212 unsigned long time_left, xfer_time = 100;
1213 size_t xfer_size;
1214 u32 int_mask;
1215 int err;
1216
1217 err = tegra_i2c_flush_fifos(i2c_dev);
1218 if (err)
1219 return err;
1220
1221 i2c_dev->msg_buf = msg->buf;
1222 i2c_dev->msg_len = msg->len;
1223
1224 i2c_dev->msg_err = I2C_ERR_NONE;
1225 i2c_dev->msg_read = !!(msg->flags & I2C_M_RD);
1226 reinit_completion(&i2c_dev->msg_complete);
1227
1228 /*
1229 * For SMBUS block read command, read only 1 byte in the first transfer.
1230 * Adjust that 1 byte for the next transfer in the msg buffer and msg
1231 * length.
1232 */
1233 if (msg->flags & I2C_M_RECV_LEN) {
1234 if (end_state == MSG_END_CONTINUE) {
1235 i2c_dev->msg_len = 1;
1236 } else {
1237 i2c_dev->msg_buf += 1;
1238 i2c_dev->msg_len -= 1;
1239 }
1240 }
1241
1242 i2c_dev->msg_buf_remaining = i2c_dev->msg_len;
1243
1244 if (i2c_dev->msg_read)
1245 xfer_size = i2c_dev->msg_len;
1246 else
1247 xfer_size = i2c_dev->msg_len + I2C_PACKET_HEADER_SIZE;
1248
1249 xfer_size = ALIGN(xfer_size, BYTES_PER_FIFO_WORD);
1250
1251 i2c_dev->dma_mode = xfer_size > I2C_PIO_MODE_PREFERRED_LEN &&
1252 i2c_dev->dma_buf && !i2c_dev->atomic_mode;
1253
1254 tegra_i2c_config_fifo_trig(i2c_dev, xfer_size);
1255
1256 /*
1257 * Transfer time in mSec = Total bits / transfer rate
1258 * Total bits = 9 bits per byte (including ACK bit) + Start & stop bits
1259 */
1260 xfer_time += DIV_ROUND_CLOSEST(((xfer_size * 9) + 2) * MSEC_PER_SEC,
1261 i2c_dev->timings.bus_freq_hz);
1262
1263 int_mask = I2C_INT_NO_ACK | I2C_INT_ARBITRATION_LOST;
1264 tegra_i2c_unmask_irq(i2c_dev, int_mask);
1265
1266 if (i2c_dev->dma_mode) {
1267 if (i2c_dev->msg_read) {
1268 dma_sync_single_for_device(i2c_dev->dma_dev,
1269 i2c_dev->dma_phys,
1270 xfer_size, DMA_FROM_DEVICE);
1271
1272 err = tegra_i2c_dma_submit(i2c_dev, xfer_size);
1273 if (err)
1274 return err;
1275 } else {
1276 dma_sync_single_for_cpu(i2c_dev->dma_dev,
1277 i2c_dev->dma_phys,
1278 xfer_size, DMA_TO_DEVICE);
1279 }
1280 }
1281
1282 tegra_i2c_push_packet_header(i2c_dev, msg, end_state);
1283
1284 if (!i2c_dev->msg_read) {
1285 if (i2c_dev->dma_mode) {
1286 memcpy(i2c_dev->dma_buf + I2C_PACKET_HEADER_SIZE,
1287 msg->buf, i2c_dev->msg_len);
1288
1289 dma_sync_single_for_device(i2c_dev->dma_dev,
1290 i2c_dev->dma_phys,
1291 xfer_size, DMA_TO_DEVICE);
1292
1293 err = tegra_i2c_dma_submit(i2c_dev, xfer_size);
1294 if (err)
1295 return err;
1296 } else {
1297 tegra_i2c_fill_tx_fifo(i2c_dev);
1298 }
1299 }
1300
1301 if (i2c_dev->hw->has_per_pkt_xfer_complete_irq)
1302 int_mask |= I2C_INT_PACKET_XFER_COMPLETE;
1303
1304 if (!i2c_dev->dma_mode) {
1305 if (msg->flags & I2C_M_RD)
1306 int_mask |= I2C_INT_RX_FIFO_DATA_REQ;
1307 else if (i2c_dev->msg_buf_remaining)
1308 int_mask |= I2C_INT_TX_FIFO_DATA_REQ;
1309 }
1310
1311 tegra_i2c_unmask_irq(i2c_dev, int_mask);
1312 dev_dbg(i2c_dev->dev, "unmasked IRQ: %02x\n",
1313 i2c_readl(i2c_dev, I2C_INT_MASK));
1314
1315 if (i2c_dev->dma_mode) {
1316 time_left = tegra_i2c_wait_completion(i2c_dev,
1317 &i2c_dev->dma_complete,
1318 xfer_time);
1319
1320 /*
1321 * Synchronize DMA first, since dmaengine_terminate_sync()
1322 * performs synchronization after the transfer's termination
1323 * and we want to get a completion if transfer succeeded.
1324 */
1325 dmaengine_synchronize(i2c_dev->dma_chan);
1326 dmaengine_terminate_sync(i2c_dev->dma_chan);
1327
1328 if (!time_left && !completion_done(&i2c_dev->dma_complete)) {
1329 tegra_i2c_init(i2c_dev);
1330 return -ETIMEDOUT;
1331 }
1332
1333 if (i2c_dev->msg_read && i2c_dev->msg_err == I2C_ERR_NONE) {
1334 dma_sync_single_for_cpu(i2c_dev->dma_dev,
1335 i2c_dev->dma_phys,
1336 xfer_size, DMA_FROM_DEVICE);
1337
1338 memcpy(i2c_dev->msg_buf, i2c_dev->dma_buf, i2c_dev->msg_len);
1339 }
1340 }
1341
1342 time_left = tegra_i2c_wait_completion(i2c_dev, &i2c_dev->msg_complete,
1343 xfer_time);
1344
1345 tegra_i2c_mask_irq(i2c_dev, int_mask);
1346
1347 if (time_left == 0) {
1348 tegra_i2c_init(i2c_dev);
1349 return -ETIMEDOUT;
1350 }
1351
1352 dev_dbg(i2c_dev->dev, "transfer complete: %lu %d %d\n",
1353 time_left, completion_done(&i2c_dev->msg_complete),
1354 i2c_dev->msg_err);
1355
1356 i2c_dev->dma_mode = false;
1357
1358 err = tegra_i2c_error_recover(i2c_dev, msg);
1359 if (err)
1360 return err;
1361
1362 return 0;
1363 }
1364
tegra_i2c_xfer(struct i2c_adapter * adap,struct i2c_msg msgs[],int num)1365 static int tegra_i2c_xfer(struct i2c_adapter *adap, struct i2c_msg msgs[],
1366 int num)
1367 {
1368 struct tegra_i2c_dev *i2c_dev = i2c_get_adapdata(adap);
1369 int i, ret;
1370
1371 ret = pm_runtime_get_sync(i2c_dev->dev);
1372 if (ret < 0) {
1373 dev_err(i2c_dev->dev, "runtime resume failed %d\n", ret);
1374 pm_runtime_put_noidle(i2c_dev->dev);
1375 return ret;
1376 }
1377
1378 for (i = 0; i < num; i++) {
1379 enum msg_end_type end_type = MSG_END_STOP;
1380
1381 if (i < (num - 1)) {
1382 /* check whether follow up message is coming */
1383 if (msgs[i + 1].flags & I2C_M_NOSTART)
1384 end_type = MSG_END_CONTINUE;
1385 else
1386 end_type = MSG_END_REPEAT_START;
1387 }
1388 /* If M_RECV_LEN use ContinueXfer to read the first byte */
1389 if (msgs[i].flags & I2C_M_RECV_LEN) {
1390 ret = tegra_i2c_xfer_msg(i2c_dev, &msgs[i], MSG_END_CONTINUE);
1391 if (ret)
1392 break;
1393
1394 /* Validate message length before proceeding */
1395 if (msgs[i].buf[0] == 0 || msgs[i].buf[0] > I2C_SMBUS_BLOCK_MAX)
1396 break;
1397
1398 /* Set the msg length from first byte */
1399 msgs[i].len += msgs[i].buf[0];
1400 dev_dbg(i2c_dev->dev, "reading %d bytes\n", msgs[i].len);
1401 }
1402 ret = tegra_i2c_xfer_msg(i2c_dev, &msgs[i], end_type);
1403 if (ret)
1404 break;
1405 }
1406
1407 pm_runtime_put(i2c_dev->dev);
1408
1409 return ret ?: i;
1410 }
1411
tegra_i2c_xfer_atomic(struct i2c_adapter * adap,struct i2c_msg msgs[],int num)1412 static int tegra_i2c_xfer_atomic(struct i2c_adapter *adap,
1413 struct i2c_msg msgs[], int num)
1414 {
1415 struct tegra_i2c_dev *i2c_dev = i2c_get_adapdata(adap);
1416 int ret;
1417
1418 i2c_dev->atomic_mode = true;
1419 ret = tegra_i2c_xfer(adap, msgs, num);
1420 i2c_dev->atomic_mode = false;
1421
1422 return ret;
1423 }
1424
tegra_i2c_func(struct i2c_adapter * adap)1425 static u32 tegra_i2c_func(struct i2c_adapter *adap)
1426 {
1427 struct tegra_i2c_dev *i2c_dev = i2c_get_adapdata(adap);
1428 u32 ret = I2C_FUNC_I2C | (I2C_FUNC_SMBUS_EMUL & ~I2C_FUNC_SMBUS_QUICK) |
1429 I2C_FUNC_10BIT_ADDR | I2C_FUNC_PROTOCOL_MANGLING;
1430
1431 if (i2c_dev->hw->has_continue_xfer_support)
1432 ret |= I2C_FUNC_NOSTART | I2C_FUNC_SMBUS_READ_BLOCK_DATA;
1433
1434 return ret;
1435 }
1436
1437 static const struct i2c_algorithm tegra_i2c_algo = {
1438 .master_xfer = tegra_i2c_xfer,
1439 .master_xfer_atomic = tegra_i2c_xfer_atomic,
1440 .functionality = tegra_i2c_func,
1441 };
1442
1443 /* payload size is only 12 bit */
1444 static const struct i2c_adapter_quirks tegra_i2c_quirks = {
1445 .flags = I2C_AQ_NO_ZERO_LEN,
1446 .max_read_len = SZ_4K,
1447 .max_write_len = SZ_4K - I2C_PACKET_HEADER_SIZE,
1448 };
1449
1450 static const struct i2c_adapter_quirks tegra194_i2c_quirks = {
1451 .flags = I2C_AQ_NO_ZERO_LEN,
1452 .max_write_len = SZ_64K - I2C_PACKET_HEADER_SIZE,
1453 };
1454
1455 static struct i2c_bus_recovery_info tegra_i2c_recovery_info = {
1456 .recover_bus = tegra_i2c_issue_bus_clear,
1457 };
1458
1459 static const struct tegra_i2c_hw_feature tegra20_i2c_hw = {
1460 .has_continue_xfer_support = false,
1461 .has_per_pkt_xfer_complete_irq = false,
1462 .clk_divisor_hs_mode = 3,
1463 .clk_divisor_std_mode = 0,
1464 .clk_divisor_fast_mode = 0,
1465 .clk_divisor_fast_plus_mode = 0,
1466 .has_config_load_reg = false,
1467 .has_multi_master_mode = false,
1468 .has_slcg_override_reg = false,
1469 .has_mst_fifo = false,
1470 .quirks = &tegra_i2c_quirks,
1471 .supports_bus_clear = false,
1472 .has_apb_dma = true,
1473 .tlow_std_mode = 0x4,
1474 .thigh_std_mode = 0x2,
1475 .tlow_fast_fastplus_mode = 0x4,
1476 .thigh_fast_fastplus_mode = 0x2,
1477 .setup_hold_time_std_mode = 0x0,
1478 .setup_hold_time_fast_fast_plus_mode = 0x0,
1479 .setup_hold_time_hs_mode = 0x0,
1480 .has_interface_timing_reg = false,
1481 };
1482
1483 static const struct tegra_i2c_hw_feature tegra30_i2c_hw = {
1484 .has_continue_xfer_support = true,
1485 .has_per_pkt_xfer_complete_irq = false,
1486 .clk_divisor_hs_mode = 3,
1487 .clk_divisor_std_mode = 0,
1488 .clk_divisor_fast_mode = 0,
1489 .clk_divisor_fast_plus_mode = 0,
1490 .has_config_load_reg = false,
1491 .has_multi_master_mode = false,
1492 .has_slcg_override_reg = false,
1493 .has_mst_fifo = false,
1494 .quirks = &tegra_i2c_quirks,
1495 .supports_bus_clear = false,
1496 .has_apb_dma = true,
1497 .tlow_std_mode = 0x4,
1498 .thigh_std_mode = 0x2,
1499 .tlow_fast_fastplus_mode = 0x4,
1500 .thigh_fast_fastplus_mode = 0x2,
1501 .setup_hold_time_std_mode = 0x0,
1502 .setup_hold_time_fast_fast_plus_mode = 0x0,
1503 .setup_hold_time_hs_mode = 0x0,
1504 .has_interface_timing_reg = false,
1505 };
1506
1507 static const struct tegra_i2c_hw_feature tegra114_i2c_hw = {
1508 .has_continue_xfer_support = true,
1509 .has_per_pkt_xfer_complete_irq = true,
1510 .clk_divisor_hs_mode = 1,
1511 .clk_divisor_std_mode = 0x19,
1512 .clk_divisor_fast_mode = 0x19,
1513 .clk_divisor_fast_plus_mode = 0x10,
1514 .has_config_load_reg = false,
1515 .has_multi_master_mode = false,
1516 .has_slcg_override_reg = false,
1517 .has_mst_fifo = false,
1518 .quirks = &tegra_i2c_quirks,
1519 .supports_bus_clear = true,
1520 .has_apb_dma = true,
1521 .tlow_std_mode = 0x4,
1522 .thigh_std_mode = 0x2,
1523 .tlow_fast_fastplus_mode = 0x4,
1524 .thigh_fast_fastplus_mode = 0x2,
1525 .setup_hold_time_std_mode = 0x0,
1526 .setup_hold_time_fast_fast_plus_mode = 0x0,
1527 .setup_hold_time_hs_mode = 0x0,
1528 .has_interface_timing_reg = false,
1529 };
1530
1531 static const struct tegra_i2c_hw_feature tegra124_i2c_hw = {
1532 .has_continue_xfer_support = true,
1533 .has_per_pkt_xfer_complete_irq = true,
1534 .clk_divisor_hs_mode = 1,
1535 .clk_divisor_std_mode = 0x19,
1536 .clk_divisor_fast_mode = 0x19,
1537 .clk_divisor_fast_plus_mode = 0x10,
1538 .has_config_load_reg = true,
1539 .has_multi_master_mode = false,
1540 .has_slcg_override_reg = true,
1541 .has_mst_fifo = false,
1542 .quirks = &tegra_i2c_quirks,
1543 .supports_bus_clear = true,
1544 .has_apb_dma = true,
1545 .tlow_std_mode = 0x4,
1546 .thigh_std_mode = 0x2,
1547 .tlow_fast_fastplus_mode = 0x4,
1548 .thigh_fast_fastplus_mode = 0x2,
1549 .setup_hold_time_std_mode = 0x0,
1550 .setup_hold_time_fast_fast_plus_mode = 0x0,
1551 .setup_hold_time_hs_mode = 0x0,
1552 .has_interface_timing_reg = true,
1553 };
1554
1555 static const struct tegra_i2c_hw_feature tegra210_i2c_hw = {
1556 .has_continue_xfer_support = true,
1557 .has_per_pkt_xfer_complete_irq = true,
1558 .clk_divisor_hs_mode = 1,
1559 .clk_divisor_std_mode = 0x19,
1560 .clk_divisor_fast_mode = 0x19,
1561 .clk_divisor_fast_plus_mode = 0x10,
1562 .has_config_load_reg = true,
1563 .has_multi_master_mode = false,
1564 .has_slcg_override_reg = true,
1565 .has_mst_fifo = false,
1566 .quirks = &tegra_i2c_quirks,
1567 .supports_bus_clear = true,
1568 .has_apb_dma = true,
1569 .tlow_std_mode = 0x4,
1570 .thigh_std_mode = 0x2,
1571 .tlow_fast_fastplus_mode = 0x4,
1572 .thigh_fast_fastplus_mode = 0x2,
1573 .setup_hold_time_std_mode = 0,
1574 .setup_hold_time_fast_fast_plus_mode = 0,
1575 .setup_hold_time_hs_mode = 0,
1576 .has_interface_timing_reg = true,
1577 };
1578
1579 static const struct tegra_i2c_hw_feature tegra186_i2c_hw = {
1580 .has_continue_xfer_support = true,
1581 .has_per_pkt_xfer_complete_irq = true,
1582 .clk_divisor_hs_mode = 1,
1583 .clk_divisor_std_mode = 0x16,
1584 .clk_divisor_fast_mode = 0x19,
1585 .clk_divisor_fast_plus_mode = 0x10,
1586 .has_config_load_reg = true,
1587 .has_multi_master_mode = false,
1588 .has_slcg_override_reg = true,
1589 .has_mst_fifo = false,
1590 .quirks = &tegra_i2c_quirks,
1591 .supports_bus_clear = true,
1592 .has_apb_dma = false,
1593 .tlow_std_mode = 0x4,
1594 .thigh_std_mode = 0x3,
1595 .tlow_fast_fastplus_mode = 0x4,
1596 .thigh_fast_fastplus_mode = 0x2,
1597 .setup_hold_time_std_mode = 0,
1598 .setup_hold_time_fast_fast_plus_mode = 0,
1599 .setup_hold_time_hs_mode = 0,
1600 .has_interface_timing_reg = true,
1601 };
1602
1603 static const struct tegra_i2c_hw_feature tegra194_i2c_hw = {
1604 .has_continue_xfer_support = true,
1605 .has_per_pkt_xfer_complete_irq = true,
1606 .clk_divisor_hs_mode = 1,
1607 .clk_divisor_std_mode = 0x4f,
1608 .clk_divisor_fast_mode = 0x3c,
1609 .clk_divisor_fast_plus_mode = 0x16,
1610 .has_config_load_reg = true,
1611 .has_multi_master_mode = true,
1612 .has_slcg_override_reg = true,
1613 .has_mst_fifo = true,
1614 .quirks = &tegra194_i2c_quirks,
1615 .supports_bus_clear = true,
1616 .has_apb_dma = false,
1617 .tlow_std_mode = 0x8,
1618 .thigh_std_mode = 0x7,
1619 .tlow_fast_fastplus_mode = 0x2,
1620 .thigh_fast_fastplus_mode = 0x2,
1621 .setup_hold_time_std_mode = 0x08080808,
1622 .setup_hold_time_fast_fast_plus_mode = 0x02020202,
1623 .setup_hold_time_hs_mode = 0x090909,
1624 .has_interface_timing_reg = true,
1625 };
1626
1627 static const struct of_device_id tegra_i2c_of_match[] = {
1628 { .compatible = "nvidia,tegra194-i2c", .data = &tegra194_i2c_hw, },
1629 { .compatible = "nvidia,tegra186-i2c", .data = &tegra186_i2c_hw, },
1630 #if IS_ENABLED(CONFIG_ARCH_TEGRA_210_SOC)
1631 { .compatible = "nvidia,tegra210-i2c-vi", .data = &tegra210_i2c_hw, },
1632 #endif
1633 { .compatible = "nvidia,tegra210-i2c", .data = &tegra210_i2c_hw, },
1634 { .compatible = "nvidia,tegra124-i2c", .data = &tegra124_i2c_hw, },
1635 { .compatible = "nvidia,tegra114-i2c", .data = &tegra114_i2c_hw, },
1636 { .compatible = "nvidia,tegra30-i2c", .data = &tegra30_i2c_hw, },
1637 { .compatible = "nvidia,tegra20-i2c", .data = &tegra20_i2c_hw, },
1638 #if IS_ENABLED(CONFIG_ARCH_TEGRA_2x_SOC)
1639 { .compatible = "nvidia,tegra20-i2c-dvc", .data = &tegra20_i2c_hw, },
1640 #endif
1641 {},
1642 };
1643 MODULE_DEVICE_TABLE(of, tegra_i2c_of_match);
1644
tegra_i2c_parse_dt(struct tegra_i2c_dev * i2c_dev)1645 static void tegra_i2c_parse_dt(struct tegra_i2c_dev *i2c_dev)
1646 {
1647 struct device_node *np = i2c_dev->dev->of_node;
1648 bool multi_mode;
1649
1650 i2c_parse_fw_timings(i2c_dev->dev, &i2c_dev->timings, true);
1651
1652 multi_mode = device_property_read_bool(i2c_dev->dev, "multi-master");
1653 i2c_dev->multimaster_mode = multi_mode;
1654
1655 if (IS_ENABLED(CONFIG_ARCH_TEGRA_2x_SOC) &&
1656 of_device_is_compatible(np, "nvidia,tegra20-i2c-dvc"))
1657 i2c_dev->is_dvc = true;
1658
1659 if (IS_ENABLED(CONFIG_ARCH_TEGRA_210_SOC) &&
1660 of_device_is_compatible(np, "nvidia,tegra210-i2c-vi"))
1661 i2c_dev->is_vi = true;
1662 }
1663
tegra_i2c_init_clocks(struct tegra_i2c_dev * i2c_dev)1664 static int tegra_i2c_init_clocks(struct tegra_i2c_dev *i2c_dev)
1665 {
1666 int err;
1667
1668 if (ACPI_HANDLE(i2c_dev->dev))
1669 return 0;
1670
1671 i2c_dev->clocks[i2c_dev->nclocks++].id = "div-clk";
1672
1673 if (i2c_dev->hw == &tegra20_i2c_hw || i2c_dev->hw == &tegra30_i2c_hw)
1674 i2c_dev->clocks[i2c_dev->nclocks++].id = "fast-clk";
1675
1676 if (IS_VI(i2c_dev))
1677 i2c_dev->clocks[i2c_dev->nclocks++].id = "slow";
1678
1679 err = devm_clk_bulk_get(i2c_dev->dev, i2c_dev->nclocks,
1680 i2c_dev->clocks);
1681 if (err)
1682 return err;
1683
1684 err = clk_bulk_prepare(i2c_dev->nclocks, i2c_dev->clocks);
1685 if (err)
1686 return err;
1687
1688 i2c_dev->div_clk = i2c_dev->clocks[0].clk;
1689
1690 if (!i2c_dev->multimaster_mode)
1691 return 0;
1692
1693 err = clk_enable(i2c_dev->div_clk);
1694 if (err) {
1695 dev_err(i2c_dev->dev, "failed to enable div-clk: %d\n", err);
1696 goto unprepare_clocks;
1697 }
1698
1699 return 0;
1700
1701 unprepare_clocks:
1702 clk_bulk_unprepare(i2c_dev->nclocks, i2c_dev->clocks);
1703
1704 return err;
1705 }
1706
tegra_i2c_release_clocks(struct tegra_i2c_dev * i2c_dev)1707 static void tegra_i2c_release_clocks(struct tegra_i2c_dev *i2c_dev)
1708 {
1709 if (i2c_dev->multimaster_mode)
1710 clk_disable(i2c_dev->div_clk);
1711
1712 clk_bulk_unprepare(i2c_dev->nclocks, i2c_dev->clocks);
1713 }
1714
tegra_i2c_init_hardware(struct tegra_i2c_dev * i2c_dev)1715 static int tegra_i2c_init_hardware(struct tegra_i2c_dev *i2c_dev)
1716 {
1717 int ret;
1718
1719 ret = pm_runtime_get_sync(i2c_dev->dev);
1720 if (ret < 0)
1721 dev_err(i2c_dev->dev, "runtime resume failed: %d\n", ret);
1722 else
1723 ret = tegra_i2c_init(i2c_dev);
1724
1725 pm_runtime_put_sync(i2c_dev->dev);
1726
1727 return ret;
1728 }
1729
tegra_i2c_probe(struct platform_device * pdev)1730 static int tegra_i2c_probe(struct platform_device *pdev)
1731 {
1732 struct tegra_i2c_dev *i2c_dev;
1733 struct resource *res;
1734 int err;
1735
1736 i2c_dev = devm_kzalloc(&pdev->dev, sizeof(*i2c_dev), GFP_KERNEL);
1737 if (!i2c_dev)
1738 return -ENOMEM;
1739
1740 platform_set_drvdata(pdev, i2c_dev);
1741
1742 init_completion(&i2c_dev->msg_complete);
1743 init_completion(&i2c_dev->dma_complete);
1744
1745 i2c_dev->hw = device_get_match_data(&pdev->dev);
1746 i2c_dev->cont_id = pdev->id;
1747 i2c_dev->dev = &pdev->dev;
1748
1749 i2c_dev->base = devm_platform_get_and_ioremap_resource(pdev, 0, &res);
1750 if (IS_ERR(i2c_dev->base))
1751 return PTR_ERR(i2c_dev->base);
1752
1753 i2c_dev->base_phys = res->start;
1754
1755 err = platform_get_irq(pdev, 0);
1756 if (err < 0)
1757 return err;
1758
1759 i2c_dev->irq = err;
1760
1761 /* interrupt will be enabled during of transfer time */
1762 irq_set_status_flags(i2c_dev->irq, IRQ_NOAUTOEN);
1763
1764 err = devm_request_threaded_irq(i2c_dev->dev, i2c_dev->irq,
1765 NULL, tegra_i2c_isr,
1766 IRQF_NO_SUSPEND | IRQF_ONESHOT,
1767 dev_name(i2c_dev->dev), i2c_dev);
1768 if (err)
1769 return err;
1770
1771 tegra_i2c_parse_dt(i2c_dev);
1772
1773 err = tegra_i2c_init_clocks(i2c_dev);
1774 if (err)
1775 return err;
1776
1777 err = tegra_i2c_init_dma(i2c_dev);
1778 if (err)
1779 goto release_clocks;
1780
1781 /*
1782 * VI I2C is in VE power domain which is not always ON and not
1783 * IRQ-safe. Thus, IRQ-safe device shouldn't be attached to a
1784 * non IRQ-safe domain because this prevents powering off the power
1785 * domain.
1786 *
1787 * VI I2C device shouldn't be marked as IRQ-safe because VI I2C won't
1788 * be used for atomic transfers. ACPI device is not IRQ safe also.
1789 */
1790 if (!IS_VI(i2c_dev) && !has_acpi_companion(i2c_dev->dev))
1791 pm_runtime_irq_safe(i2c_dev->dev);
1792
1793 pm_runtime_enable(i2c_dev->dev);
1794
1795 err = tegra_i2c_init_hardware(i2c_dev);
1796 if (err)
1797 goto release_rpm;
1798
1799 i2c_set_adapdata(&i2c_dev->adapter, i2c_dev);
1800 i2c_dev->adapter.dev.of_node = i2c_dev->dev->of_node;
1801 i2c_dev->adapter.dev.parent = i2c_dev->dev;
1802 i2c_dev->adapter.retries = 1;
1803 i2c_dev->adapter.timeout = 6 * HZ;
1804 i2c_dev->adapter.quirks = i2c_dev->hw->quirks;
1805 i2c_dev->adapter.owner = THIS_MODULE;
1806 i2c_dev->adapter.class = I2C_CLASS_DEPRECATED;
1807 i2c_dev->adapter.algo = &tegra_i2c_algo;
1808 i2c_dev->adapter.nr = pdev->id;
1809 ACPI_COMPANION_SET(&i2c_dev->adapter.dev, ACPI_COMPANION(&pdev->dev));
1810
1811 if (i2c_dev->hw->supports_bus_clear)
1812 i2c_dev->adapter.bus_recovery_info = &tegra_i2c_recovery_info;
1813
1814 strscpy(i2c_dev->adapter.name, dev_name(i2c_dev->dev),
1815 sizeof(i2c_dev->adapter.name));
1816
1817 err = i2c_add_numbered_adapter(&i2c_dev->adapter);
1818 if (err)
1819 goto release_rpm;
1820
1821 return 0;
1822
1823 release_rpm:
1824 pm_runtime_disable(i2c_dev->dev);
1825
1826 tegra_i2c_release_dma(i2c_dev);
1827 release_clocks:
1828 tegra_i2c_release_clocks(i2c_dev);
1829
1830 return err;
1831 }
1832
tegra_i2c_remove(struct platform_device * pdev)1833 static void tegra_i2c_remove(struct platform_device *pdev)
1834 {
1835 struct tegra_i2c_dev *i2c_dev = platform_get_drvdata(pdev);
1836
1837 i2c_del_adapter(&i2c_dev->adapter);
1838 pm_runtime_force_suspend(i2c_dev->dev);
1839
1840 tegra_i2c_release_dma(i2c_dev);
1841 tegra_i2c_release_clocks(i2c_dev);
1842 }
1843
tegra_i2c_runtime_resume(struct device * dev)1844 static int __maybe_unused tegra_i2c_runtime_resume(struct device *dev)
1845 {
1846 struct tegra_i2c_dev *i2c_dev = dev_get_drvdata(dev);
1847 int err;
1848
1849 err = pinctrl_pm_select_default_state(dev);
1850 if (err)
1851 return err;
1852
1853 err = clk_bulk_enable(i2c_dev->nclocks, i2c_dev->clocks);
1854 if (err)
1855 return err;
1856
1857 /*
1858 * VI I2C device is attached to VE power domain which goes through
1859 * power ON/OFF during runtime PM resume/suspend, meaning that
1860 * controller needs to be re-initialized after power ON.
1861 */
1862 if (IS_VI(i2c_dev)) {
1863 err = tegra_i2c_init(i2c_dev);
1864 if (err)
1865 goto disable_clocks;
1866 }
1867
1868 return 0;
1869
1870 disable_clocks:
1871 clk_bulk_disable(i2c_dev->nclocks, i2c_dev->clocks);
1872
1873 return err;
1874 }
1875
tegra_i2c_runtime_suspend(struct device * dev)1876 static int __maybe_unused tegra_i2c_runtime_suspend(struct device *dev)
1877 {
1878 struct tegra_i2c_dev *i2c_dev = dev_get_drvdata(dev);
1879
1880 clk_bulk_disable(i2c_dev->nclocks, i2c_dev->clocks);
1881
1882 return pinctrl_pm_select_idle_state(dev);
1883 }
1884
tegra_i2c_suspend(struct device * dev)1885 static int __maybe_unused tegra_i2c_suspend(struct device *dev)
1886 {
1887 struct tegra_i2c_dev *i2c_dev = dev_get_drvdata(dev);
1888 int err;
1889
1890 i2c_mark_adapter_suspended(&i2c_dev->adapter);
1891
1892 if (!pm_runtime_status_suspended(dev)) {
1893 err = tegra_i2c_runtime_suspend(dev);
1894 if (err)
1895 return err;
1896 }
1897
1898 return 0;
1899 }
1900
tegra_i2c_resume(struct device * dev)1901 static int __maybe_unused tegra_i2c_resume(struct device *dev)
1902 {
1903 struct tegra_i2c_dev *i2c_dev = dev_get_drvdata(dev);
1904 int err;
1905
1906 /*
1907 * We need to ensure that clocks are enabled so that registers can be
1908 * restored in tegra_i2c_init().
1909 */
1910 err = tegra_i2c_runtime_resume(dev);
1911 if (err)
1912 return err;
1913
1914 err = tegra_i2c_init(i2c_dev);
1915 if (err)
1916 return err;
1917
1918 /*
1919 * In case we are runtime suspended, disable clocks again so that we
1920 * don't unbalance the clock reference counts during the next runtime
1921 * resume transition.
1922 */
1923 if (pm_runtime_status_suspended(dev)) {
1924 err = tegra_i2c_runtime_suspend(dev);
1925 if (err)
1926 return err;
1927 }
1928
1929 i2c_mark_adapter_resumed(&i2c_dev->adapter);
1930
1931 return 0;
1932 }
1933
1934 static const struct dev_pm_ops tegra_i2c_pm = {
1935 SET_NOIRQ_SYSTEM_SLEEP_PM_OPS(tegra_i2c_suspend, tegra_i2c_resume)
1936 SET_RUNTIME_PM_OPS(tegra_i2c_runtime_suspend, tegra_i2c_runtime_resume,
1937 NULL)
1938 };
1939
1940 static const struct acpi_device_id tegra_i2c_acpi_match[] = {
1941 {.id = "NVDA0101", .driver_data = (kernel_ulong_t)&tegra210_i2c_hw},
1942 {.id = "NVDA0201", .driver_data = (kernel_ulong_t)&tegra186_i2c_hw},
1943 {.id = "NVDA0301", .driver_data = (kernel_ulong_t)&tegra194_i2c_hw},
1944 { }
1945 };
1946 MODULE_DEVICE_TABLE(acpi, tegra_i2c_acpi_match);
1947
1948 static struct platform_driver tegra_i2c_driver = {
1949 .probe = tegra_i2c_probe,
1950 .remove_new = tegra_i2c_remove,
1951 .driver = {
1952 .name = "tegra-i2c",
1953 .of_match_table = tegra_i2c_of_match,
1954 .acpi_match_table = tegra_i2c_acpi_match,
1955 .pm = &tegra_i2c_pm,
1956 },
1957 };
1958 module_platform_driver(tegra_i2c_driver);
1959
1960 MODULE_DESCRIPTION("NVIDIA Tegra I2C Bus Controller driver");
1961 MODULE_AUTHOR("Colin Cross");
1962 MODULE_LICENSE("GPL v2");
1963