• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Silvaco dual-role I3C master driver
4  *
5  * Copyright (C) 2020 Silvaco
6  * Author: Miquel RAYNAL <miquel.raynal@bootlin.com>
7  * Based on a work from: Conor Culhane <conor.culhane@silvaco.com>
8  */
9 
10 #include <linux/bitfield.h>
11 #include <linux/clk.h>
12 #include <linux/completion.h>
13 #include <linux/errno.h>
14 #include <linux/i3c/master.h>
15 #include <linux/interrupt.h>
16 #include <linux/iopoll.h>
17 #include <linux/list.h>
18 #include <linux/module.h>
19 #include <linux/of.h>
20 #include <linux/pinctrl/consumer.h>
21 #include <linux/platform_device.h>
22 #include <linux/pm_runtime.h>
23 
24 /* Master Mode Registers */
25 #define SVC_I3C_MCONFIG      0x000
26 #define   SVC_I3C_MCONFIG_MASTER_EN BIT(0)
27 #define   SVC_I3C_MCONFIG_DISTO(x) FIELD_PREP(BIT(3), (x))
28 #define   SVC_I3C_MCONFIG_HKEEP(x) FIELD_PREP(GENMASK(5, 4), (x))
29 #define   SVC_I3C_MCONFIG_ODSTOP(x) FIELD_PREP(BIT(6), (x))
30 #define   SVC_I3C_MCONFIG_PPBAUD(x) FIELD_PREP(GENMASK(11, 8), (x))
31 #define   SVC_I3C_MCONFIG_PPLOW(x) FIELD_PREP(GENMASK(15, 12), (x))
32 #define   SVC_I3C_MCONFIG_ODBAUD(x) FIELD_PREP(GENMASK(23, 16), (x))
33 #define   SVC_I3C_MCONFIG_ODHPP(x) FIELD_PREP(BIT(24), (x))
34 #define   SVC_I3C_MCONFIG_SKEW(x) FIELD_PREP(GENMASK(27, 25), (x))
35 #define   SVC_I3C_MCONFIG_I2CBAUD(x) FIELD_PREP(GENMASK(31, 28), (x))
36 
37 #define SVC_I3C_MCTRL        0x084
38 #define   SVC_I3C_MCTRL_REQUEST_MASK GENMASK(2, 0)
39 #define   SVC_I3C_MCTRL_REQUEST_NONE 0
40 #define   SVC_I3C_MCTRL_REQUEST_START_ADDR 1
41 #define   SVC_I3C_MCTRL_REQUEST_STOP 2
42 #define   SVC_I3C_MCTRL_REQUEST_IBI_ACKNACK 3
43 #define   SVC_I3C_MCTRL_REQUEST_PROC_DAA 4
44 #define   SVC_I3C_MCTRL_REQUEST_AUTO_IBI 7
45 #define   SVC_I3C_MCTRL_TYPE_I3C 0
46 #define   SVC_I3C_MCTRL_TYPE_I2C BIT(4)
47 #define   SVC_I3C_MCTRL_IBIRESP_AUTO 0
48 #define   SVC_I3C_MCTRL_IBIRESP_ACK_WITHOUT_BYTE 0
49 #define   SVC_I3C_MCTRL_IBIRESP_ACK_WITH_BYTE BIT(7)
50 #define   SVC_I3C_MCTRL_IBIRESP_NACK BIT(6)
51 #define   SVC_I3C_MCTRL_IBIRESP_MANUAL GENMASK(7, 6)
52 #define   SVC_I3C_MCTRL_DIR(x) FIELD_PREP(BIT(8), (x))
53 #define   SVC_I3C_MCTRL_DIR_WRITE 0
54 #define   SVC_I3C_MCTRL_DIR_READ 1
55 #define   SVC_I3C_MCTRL_ADDR(x) FIELD_PREP(GENMASK(15, 9), (x))
56 #define   SVC_I3C_MCTRL_RDTERM(x) FIELD_PREP(GENMASK(23, 16), (x))
57 
58 #define SVC_I3C_MSTATUS      0x088
59 #define   SVC_I3C_MSTATUS_STATE(x) FIELD_GET(GENMASK(2, 0), (x))
60 #define   SVC_I3C_MSTATUS_STATE_DAA(x) (SVC_I3C_MSTATUS_STATE(x) == 5)
61 #define   SVC_I3C_MSTATUS_STATE_IDLE(x) (SVC_I3C_MSTATUS_STATE(x) == 0)
62 #define   SVC_I3C_MSTATUS_BETWEEN(x) FIELD_GET(BIT(4), (x))
63 #define   SVC_I3C_MSTATUS_NACKED(x) FIELD_GET(BIT(5), (x))
64 #define   SVC_I3C_MSTATUS_IBITYPE(x) FIELD_GET(GENMASK(7, 6), (x))
65 #define   SVC_I3C_MSTATUS_IBITYPE_IBI 1
66 #define   SVC_I3C_MSTATUS_IBITYPE_MASTER_REQUEST 2
67 #define   SVC_I3C_MSTATUS_IBITYPE_HOT_JOIN 3
68 #define   SVC_I3C_MINT_SLVSTART BIT(8)
69 #define   SVC_I3C_MINT_MCTRLDONE BIT(9)
70 #define   SVC_I3C_MINT_COMPLETE BIT(10)
71 #define   SVC_I3C_MINT_RXPEND BIT(11)
72 #define   SVC_I3C_MINT_TXNOTFULL BIT(12)
73 #define   SVC_I3C_MINT_IBIWON BIT(13)
74 #define   SVC_I3C_MINT_ERRWARN BIT(15)
75 #define   SVC_I3C_MSTATUS_SLVSTART(x) FIELD_GET(SVC_I3C_MINT_SLVSTART, (x))
76 #define   SVC_I3C_MSTATUS_MCTRLDONE(x) FIELD_GET(SVC_I3C_MINT_MCTRLDONE, (x))
77 #define   SVC_I3C_MSTATUS_COMPLETE(x) FIELD_GET(SVC_I3C_MINT_COMPLETE, (x))
78 #define   SVC_I3C_MSTATUS_RXPEND(x) FIELD_GET(SVC_I3C_MINT_RXPEND, (x))
79 #define   SVC_I3C_MSTATUS_TXNOTFULL(x) FIELD_GET(SVC_I3C_MINT_TXNOTFULL, (x))
80 #define   SVC_I3C_MSTATUS_IBIWON(x) FIELD_GET(SVC_I3C_MINT_IBIWON, (x))
81 #define   SVC_I3C_MSTATUS_ERRWARN(x) FIELD_GET(SVC_I3C_MINT_ERRWARN, (x))
82 #define   SVC_I3C_MSTATUS_IBIADDR(x) FIELD_GET(GENMASK(30, 24), (x))
83 
84 #define SVC_I3C_IBIRULES     0x08C
85 #define   SVC_I3C_IBIRULES_ADDR(slot, addr) FIELD_PREP(GENMASK(29, 0), \
86 						       ((addr) & 0x3F) << ((slot) * 6))
87 #define   SVC_I3C_IBIRULES_ADDRS 5
88 #define   SVC_I3C_IBIRULES_MSB0 BIT(30)
89 #define   SVC_I3C_IBIRULES_NOBYTE BIT(31)
90 #define   SVC_I3C_IBIRULES_MANDBYTE 0
91 #define SVC_I3C_MINTSET      0x090
92 #define SVC_I3C_MINTCLR      0x094
93 #define SVC_I3C_MINTMASKED   0x098
94 #define SVC_I3C_MERRWARN     0x09C
95 #define   SVC_I3C_MERRWARN_NACK BIT(2)
96 #define   SVC_I3C_MERRWARN_TIMEOUT BIT(20)
97 #define SVC_I3C_MDMACTRL     0x0A0
98 #define SVC_I3C_MDATACTRL    0x0AC
99 #define   SVC_I3C_MDATACTRL_FLUSHTB BIT(0)
100 #define   SVC_I3C_MDATACTRL_FLUSHRB BIT(1)
101 #define   SVC_I3C_MDATACTRL_UNLOCK_TRIG BIT(3)
102 #define   SVC_I3C_MDATACTRL_TXTRIG_FIFO_NOT_FULL GENMASK(5, 4)
103 #define   SVC_I3C_MDATACTRL_RXTRIG_FIFO_NOT_EMPTY 0
104 #define   SVC_I3C_MDATACTRL_RXCOUNT(x) FIELD_GET(GENMASK(28, 24), (x))
105 #define   SVC_I3C_MDATACTRL_TXFULL BIT(30)
106 #define   SVC_I3C_MDATACTRL_RXEMPTY BIT(31)
107 
108 #define SVC_I3C_MWDATAB      0x0B0
109 #define   SVC_I3C_MWDATAB_END BIT(8)
110 
111 #define SVC_I3C_MWDATABE     0x0B4
112 #define SVC_I3C_MWDATAH      0x0B8
113 #define SVC_I3C_MWDATAHE     0x0BC
114 #define SVC_I3C_MRDATAB      0x0C0
115 #define SVC_I3C_MRDATAH      0x0C8
116 #define SVC_I3C_MWMSG_SDR    0x0D0
117 #define SVC_I3C_MRMSG_SDR    0x0D4
118 #define SVC_I3C_MWMSG_DDR    0x0D8
119 #define SVC_I3C_MRMSG_DDR    0x0DC
120 
121 #define SVC_I3C_MDYNADDR     0x0E4
122 #define   SVC_MDYNADDR_VALID BIT(0)
123 #define   SVC_MDYNADDR_ADDR(x) FIELD_PREP(GENMASK(7, 1), (x))
124 
125 #define SVC_I3C_MAX_DEVS 32
126 #define SVC_I3C_PM_TIMEOUT_MS 1000
127 
128 /* This parameter depends on the implementation and may be tuned */
129 #define SVC_I3C_FIFO_SIZE 16
130 #define SVC_I3C_PPBAUD_MAX 15
131 #define SVC_I3C_QUICK_I2C_CLK 4170000
132 
133 #define SVC_I3C_EVENT_IBI	GENMASK(7, 0)
134 #define SVC_I3C_EVENT_HOTJOIN	BIT(31)
135 
136 struct svc_i3c_cmd {
137 	u8 addr;
138 	bool rnw;
139 	u8 *in;
140 	const void *out;
141 	unsigned int len;
142 	unsigned int actual_len;
143 	struct i3c_priv_xfer *xfer;
144 	bool continued;
145 };
146 
147 struct svc_i3c_xfer {
148 	struct list_head node;
149 	struct completion comp;
150 	int ret;
151 	unsigned int type;
152 	unsigned int ncmds;
153 	struct svc_i3c_cmd cmds[] __counted_by(ncmds);
154 };
155 
156 struct svc_i3c_regs_save {
157 	u32 mconfig;
158 	u32 mdynaddr;
159 };
160 
161 struct svc_i3c_drvdata {
162 	u32 quirks;
163 };
164 
165 /**
166  * struct svc_i3c_master - Silvaco I3C Master structure
167  * @base: I3C master controller
168  * @dev: Corresponding device
169  * @regs: Memory mapping
170  * @saved_regs: Volatile values for PM operations
171  * @free_slots: Bit array of available slots
172  * @addrs: Array containing the dynamic addresses of each attached device
173  * @descs: Array of descriptors, one per attached device
174  * @hj_work: Hot-join work
175  * @ibi_work: IBI work
176  * @irq: Main interrupt
177  * @pclk: System clock
178  * @fclk: Fast clock (bus)
179  * @sclk: Slow clock (other events)
180  * @xferqueue: Transfer queue structure
181  * @xferqueue.list: List member
182  * @xferqueue.cur: Current ongoing transfer
183  * @xferqueue.lock: Queue lock
184  * @ibi: IBI structure
185  * @ibi.num_slots: Number of slots available in @ibi.slots
186  * @ibi.slots: Available IBI slots
187  * @ibi.tbq_slot: To be queued IBI slot
188  * @ibi.lock: IBI lock
189  * @lock: Transfer lock, protect between IBI work thread and callbacks from master
190  * @drvdata: Driver data
191  * @enabled_events: Bit masks for enable events (IBI, HotJoin).
192  * @mctrl_config: Configuration value in SVC_I3C_MCTRL for setting speed back.
193  */
194 struct svc_i3c_master {
195 	struct i3c_master_controller base;
196 	struct device *dev;
197 	void __iomem *regs;
198 	struct svc_i3c_regs_save saved_regs;
199 	u32 free_slots;
200 	u8 addrs[SVC_I3C_MAX_DEVS];
201 	struct i3c_dev_desc *descs[SVC_I3C_MAX_DEVS];
202 	struct work_struct hj_work;
203 	struct work_struct ibi_work;
204 	int irq;
205 	struct clk *pclk;
206 	struct clk *fclk;
207 	struct clk *sclk;
208 	struct {
209 		struct list_head list;
210 		struct svc_i3c_xfer *cur;
211 		/* Prevent races between transfers */
212 		spinlock_t lock;
213 	} xferqueue;
214 	struct {
215 		unsigned int num_slots;
216 		struct i3c_dev_desc **slots;
217 		struct i3c_ibi_slot *tbq_slot;
218 		/* Prevent races within IBI handlers */
219 		spinlock_t lock;
220 	} ibi;
221 	struct mutex lock;
222 	const struct svc_i3c_drvdata *drvdata;
223 	u32 enabled_events;
224 	u32 mctrl_config;
225 };
226 
227 /**
228  * struct svc_i3c_i2c_dev_data - Device specific data
229  * @index: Index in the master tables corresponding to this device
230  * @ibi: IBI slot index in the master structure
231  * @ibi_pool: IBI pool associated to this device
232  */
233 struct svc_i3c_i2c_dev_data {
234 	u8 index;
235 	int ibi;
236 	struct i3c_generic_ibi_pool *ibi_pool;
237 };
238 
is_events_enabled(struct svc_i3c_master * master,u32 mask)239 static inline bool is_events_enabled(struct svc_i3c_master *master, u32 mask)
240 {
241 	return !!(master->enabled_events & mask);
242 }
243 
svc_i3c_master_error(struct svc_i3c_master * master)244 static bool svc_i3c_master_error(struct svc_i3c_master *master)
245 {
246 	u32 mstatus, merrwarn;
247 
248 	mstatus = readl(master->regs + SVC_I3C_MSTATUS);
249 	if (SVC_I3C_MSTATUS_ERRWARN(mstatus)) {
250 		merrwarn = readl(master->regs + SVC_I3C_MERRWARN);
251 		writel(merrwarn, master->regs + SVC_I3C_MERRWARN);
252 
253 		/* Ignore timeout error */
254 		if (merrwarn & SVC_I3C_MERRWARN_TIMEOUT) {
255 			dev_dbg(master->dev, "Warning condition: MSTATUS 0x%08x, MERRWARN 0x%08x\n",
256 				mstatus, merrwarn);
257 			return false;
258 		}
259 
260 		dev_err(master->dev,
261 			"Error condition: MSTATUS 0x%08x, MERRWARN 0x%08x\n",
262 			mstatus, merrwarn);
263 
264 		return true;
265 	}
266 
267 	return false;
268 }
269 
svc_i3c_master_enable_interrupts(struct svc_i3c_master * master,u32 mask)270 static void svc_i3c_master_enable_interrupts(struct svc_i3c_master *master, u32 mask)
271 {
272 	writel(mask, master->regs + SVC_I3C_MINTSET);
273 }
274 
svc_i3c_master_disable_interrupts(struct svc_i3c_master * master)275 static void svc_i3c_master_disable_interrupts(struct svc_i3c_master *master)
276 {
277 	u32 mask = readl(master->regs + SVC_I3C_MINTSET);
278 
279 	writel(mask, master->regs + SVC_I3C_MINTCLR);
280 }
281 
svc_i3c_master_clear_merrwarn(struct svc_i3c_master * master)282 static void svc_i3c_master_clear_merrwarn(struct svc_i3c_master *master)
283 {
284 	/* Clear pending warnings */
285 	writel(readl(master->regs + SVC_I3C_MERRWARN),
286 	       master->regs + SVC_I3C_MERRWARN);
287 }
288 
svc_i3c_master_flush_fifo(struct svc_i3c_master * master)289 static void svc_i3c_master_flush_fifo(struct svc_i3c_master *master)
290 {
291 	/* Flush FIFOs */
292 	writel(SVC_I3C_MDATACTRL_FLUSHTB | SVC_I3C_MDATACTRL_FLUSHRB,
293 	       master->regs + SVC_I3C_MDATACTRL);
294 }
295 
svc_i3c_master_reset_fifo_trigger(struct svc_i3c_master * master)296 static void svc_i3c_master_reset_fifo_trigger(struct svc_i3c_master *master)
297 {
298 	u32 reg;
299 
300 	/* Set RX and TX tigger levels, flush FIFOs */
301 	reg = SVC_I3C_MDATACTRL_FLUSHTB |
302 	      SVC_I3C_MDATACTRL_FLUSHRB |
303 	      SVC_I3C_MDATACTRL_UNLOCK_TRIG |
304 	      SVC_I3C_MDATACTRL_TXTRIG_FIFO_NOT_FULL |
305 	      SVC_I3C_MDATACTRL_RXTRIG_FIFO_NOT_EMPTY;
306 	writel(reg, master->regs + SVC_I3C_MDATACTRL);
307 }
308 
svc_i3c_master_reset(struct svc_i3c_master * master)309 static void svc_i3c_master_reset(struct svc_i3c_master *master)
310 {
311 	svc_i3c_master_clear_merrwarn(master);
312 	svc_i3c_master_reset_fifo_trigger(master);
313 	svc_i3c_master_disable_interrupts(master);
314 }
315 
316 static inline struct svc_i3c_master *
to_svc_i3c_master(struct i3c_master_controller * master)317 to_svc_i3c_master(struct i3c_master_controller *master)
318 {
319 	return container_of(master, struct svc_i3c_master, base);
320 }
321 
svc_i3c_master_hj_work(struct work_struct * work)322 static void svc_i3c_master_hj_work(struct work_struct *work)
323 {
324 	struct svc_i3c_master *master;
325 
326 	master = container_of(work, struct svc_i3c_master, hj_work);
327 	i3c_master_do_daa(&master->base);
328 }
329 
330 static struct i3c_dev_desc *
svc_i3c_master_dev_from_addr(struct svc_i3c_master * master,unsigned int ibiaddr)331 svc_i3c_master_dev_from_addr(struct svc_i3c_master *master,
332 			     unsigned int ibiaddr)
333 {
334 	int i;
335 
336 	for (i = 0; i < SVC_I3C_MAX_DEVS; i++)
337 		if (master->addrs[i] == ibiaddr)
338 			break;
339 
340 	if (i == SVC_I3C_MAX_DEVS)
341 		return NULL;
342 
343 	return master->descs[i];
344 }
345 
svc_i3c_master_emit_stop(struct svc_i3c_master * master)346 static void svc_i3c_master_emit_stop(struct svc_i3c_master *master)
347 {
348 	writel(SVC_I3C_MCTRL_REQUEST_STOP, master->regs + SVC_I3C_MCTRL);
349 
350 	/*
351 	 * This delay is necessary after the emission of a stop, otherwise eg.
352 	 * repeating IBIs do not get detected. There is a note in the manual
353 	 * about it, stating that the stop condition might not be settled
354 	 * correctly if a start condition follows too rapidly.
355 	 */
356 	udelay(1);
357 }
358 
svc_i3c_master_handle_ibi(struct svc_i3c_master * master,struct i3c_dev_desc * dev)359 static int svc_i3c_master_handle_ibi(struct svc_i3c_master *master,
360 				     struct i3c_dev_desc *dev)
361 {
362 	struct svc_i3c_i2c_dev_data *data = i3c_dev_get_master_data(dev);
363 	struct i3c_ibi_slot *slot;
364 	unsigned int count;
365 	u32 mdatactrl;
366 	int ret, val;
367 	u8 *buf;
368 
369 	slot = i3c_generic_ibi_get_free_slot(data->ibi_pool);
370 	if (!slot)
371 		return -ENOSPC;
372 
373 	slot->len = 0;
374 	buf = slot->data;
375 
376 	ret = readl_relaxed_poll_timeout(master->regs + SVC_I3C_MSTATUS, val,
377 						SVC_I3C_MSTATUS_COMPLETE(val), 0, 1000);
378 	if (ret) {
379 		dev_err(master->dev, "Timeout when polling for COMPLETE\n");
380 		return ret;
381 	}
382 
383 	while (SVC_I3C_MSTATUS_RXPEND(readl(master->regs + SVC_I3C_MSTATUS))  &&
384 	       slot->len < SVC_I3C_FIFO_SIZE) {
385 		mdatactrl = readl(master->regs + SVC_I3C_MDATACTRL);
386 		count = SVC_I3C_MDATACTRL_RXCOUNT(mdatactrl);
387 		readsb(master->regs + SVC_I3C_MRDATAB, buf, count);
388 		slot->len += count;
389 		buf += count;
390 	}
391 
392 	master->ibi.tbq_slot = slot;
393 
394 	return 0;
395 }
396 
svc_i3c_master_ack_ibi(struct svc_i3c_master * master,bool mandatory_byte)397 static void svc_i3c_master_ack_ibi(struct svc_i3c_master *master,
398 				   bool mandatory_byte)
399 {
400 	unsigned int ibi_ack_nack;
401 
402 	ibi_ack_nack = SVC_I3C_MCTRL_REQUEST_IBI_ACKNACK;
403 	if (mandatory_byte)
404 		ibi_ack_nack |= SVC_I3C_MCTRL_IBIRESP_ACK_WITH_BYTE;
405 	else
406 		ibi_ack_nack |= SVC_I3C_MCTRL_IBIRESP_ACK_WITHOUT_BYTE;
407 
408 	writel(ibi_ack_nack, master->regs + SVC_I3C_MCTRL);
409 }
410 
svc_i3c_master_nack_ibi(struct svc_i3c_master * master)411 static void svc_i3c_master_nack_ibi(struct svc_i3c_master *master)
412 {
413 	writel(SVC_I3C_MCTRL_REQUEST_IBI_ACKNACK |
414 	       SVC_I3C_MCTRL_IBIRESP_NACK,
415 	       master->regs + SVC_I3C_MCTRL);
416 }
417 
svc_i3c_master_ibi_work(struct work_struct * work)418 static void svc_i3c_master_ibi_work(struct work_struct *work)
419 {
420 	struct svc_i3c_master *master = container_of(work, struct svc_i3c_master, ibi_work);
421 	struct svc_i3c_i2c_dev_data *data;
422 	unsigned int ibitype, ibiaddr;
423 	struct i3c_dev_desc *dev;
424 	u32 status, val;
425 	int ret;
426 
427 	mutex_lock(&master->lock);
428 	/*
429 	 * IBIWON may be set before SVC_I3C_MCTRL_REQUEST_AUTO_IBI, causing
430 	 * readl_relaxed_poll_timeout() to return immediately. Consequently,
431 	 * ibitype will be 0 since it was last updated only after the 8th SCL
432 	 * cycle, leading to missed client IBI handlers.
433 	 *
434 	 * A typical scenario is when IBIWON occurs and bus arbitration is lost
435 	 * at svc_i3c_master_priv_xfers().
436 	 *
437 	 * Clear SVC_I3C_MINT_IBIWON before sending SVC_I3C_MCTRL_REQUEST_AUTO_IBI.
438 	 */
439 	writel(SVC_I3C_MINT_IBIWON, master->regs + SVC_I3C_MSTATUS);
440 
441 	/* Acknowledge the incoming interrupt with the AUTOIBI mechanism */
442 	writel(SVC_I3C_MCTRL_REQUEST_AUTO_IBI |
443 	       SVC_I3C_MCTRL_IBIRESP_AUTO,
444 	       master->regs + SVC_I3C_MCTRL);
445 
446 	/* Wait for IBIWON, should take approximately 100us */
447 	ret = readl_relaxed_poll_timeout(master->regs + SVC_I3C_MSTATUS, val,
448 					 SVC_I3C_MSTATUS_IBIWON(val), 0, 1000);
449 	if (ret) {
450 		dev_err(master->dev, "Timeout when polling for IBIWON\n");
451 		svc_i3c_master_emit_stop(master);
452 		goto reenable_ibis;
453 	}
454 
455 	status = readl(master->regs + SVC_I3C_MSTATUS);
456 	ibitype = SVC_I3C_MSTATUS_IBITYPE(status);
457 	ibiaddr = SVC_I3C_MSTATUS_IBIADDR(status);
458 
459 	/* Handle the critical responses to IBI's */
460 	switch (ibitype) {
461 	case SVC_I3C_MSTATUS_IBITYPE_IBI:
462 		dev = svc_i3c_master_dev_from_addr(master, ibiaddr);
463 		if (!dev || !is_events_enabled(master, SVC_I3C_EVENT_IBI))
464 			svc_i3c_master_nack_ibi(master);
465 		else
466 			svc_i3c_master_handle_ibi(master, dev);
467 		break;
468 	case SVC_I3C_MSTATUS_IBITYPE_HOT_JOIN:
469 		if (is_events_enabled(master, SVC_I3C_EVENT_HOTJOIN))
470 			svc_i3c_master_ack_ibi(master, false);
471 		else
472 			svc_i3c_master_nack_ibi(master);
473 		break;
474 	case SVC_I3C_MSTATUS_IBITYPE_MASTER_REQUEST:
475 		svc_i3c_master_nack_ibi(master);
476 		break;
477 	default:
478 		break;
479 	}
480 
481 	/*
482 	 * If an error happened, we probably got interrupted and the exchange
483 	 * timedout. In this case we just drop everything, emit a stop and wait
484 	 * for the slave to interrupt again.
485 	 */
486 	if (svc_i3c_master_error(master)) {
487 		if (master->ibi.tbq_slot) {
488 			data = i3c_dev_get_master_data(dev);
489 			i3c_generic_ibi_recycle_slot(data->ibi_pool,
490 						     master->ibi.tbq_slot);
491 			master->ibi.tbq_slot = NULL;
492 		}
493 
494 		svc_i3c_master_emit_stop(master);
495 
496 		goto reenable_ibis;
497 	}
498 
499 	/* Handle the non critical tasks */
500 	switch (ibitype) {
501 	case SVC_I3C_MSTATUS_IBITYPE_IBI:
502 		if (dev) {
503 			i3c_master_queue_ibi(dev, master->ibi.tbq_slot);
504 			master->ibi.tbq_slot = NULL;
505 		}
506 		svc_i3c_master_emit_stop(master);
507 		break;
508 	case SVC_I3C_MSTATUS_IBITYPE_HOT_JOIN:
509 		svc_i3c_master_emit_stop(master);
510 		if (is_events_enabled(master, SVC_I3C_EVENT_HOTJOIN))
511 			queue_work(master->base.wq, &master->hj_work);
512 		break;
513 	case SVC_I3C_MSTATUS_IBITYPE_MASTER_REQUEST:
514 		svc_i3c_master_emit_stop(master);
515 		break;
516 	default:
517 		break;
518 	}
519 
520 reenable_ibis:
521 	svc_i3c_master_enable_interrupts(master, SVC_I3C_MINT_SLVSTART);
522 	mutex_unlock(&master->lock);
523 }
524 
svc_i3c_master_irq_handler(int irq,void * dev_id)525 static irqreturn_t svc_i3c_master_irq_handler(int irq, void *dev_id)
526 {
527 	struct svc_i3c_master *master = (struct svc_i3c_master *)dev_id;
528 	u32 active = readl(master->regs + SVC_I3C_MSTATUS);
529 
530 	if (!SVC_I3C_MSTATUS_SLVSTART(active))
531 		return IRQ_NONE;
532 
533 	/* Clear the interrupt status */
534 	writel(SVC_I3C_MINT_SLVSTART, master->regs + SVC_I3C_MSTATUS);
535 
536 	svc_i3c_master_disable_interrupts(master);
537 
538 	/* Handle the interrupt in a non atomic context */
539 	queue_work(master->base.wq, &master->ibi_work);
540 
541 	return IRQ_HANDLED;
542 }
543 
svc_i3c_master_set_speed(struct i3c_master_controller * m,enum i3c_open_drain_speed speed)544 static int svc_i3c_master_set_speed(struct i3c_master_controller *m,
545 				     enum i3c_open_drain_speed speed)
546 {
547 	struct svc_i3c_master *master = to_svc_i3c_master(m);
548 	struct i3c_bus *bus = i3c_master_get_bus(&master->base);
549 	u32 ppbaud, odbaud, odhpp, mconfig;
550 	unsigned long fclk_rate;
551 	int ret;
552 
553 	ret = pm_runtime_resume_and_get(master->dev);
554 	if (ret < 0) {
555 		dev_err(master->dev, "<%s> Cannot get runtime PM.\n", __func__);
556 		return ret;
557 	}
558 
559 	switch (speed) {
560 	case I3C_OPEN_DRAIN_SLOW_SPEED:
561 		fclk_rate = clk_get_rate(master->fclk);
562 		if (!fclk_rate) {
563 			ret = -EINVAL;
564 			goto rpm_out;
565 		}
566 		/*
567 		 * Set 50% duty-cycle I2C speed to I3C OPEN-DRAIN mode, so the first
568 		 * broadcast address is visible to all I2C/I3C devices on the I3C bus.
569 		 * I3C device working as a I2C device will turn off its 50ns Spike
570 		 * Filter to change to I3C mode.
571 		 */
572 		mconfig = master->mctrl_config;
573 		ppbaud = FIELD_GET(GENMASK(11, 8), mconfig);
574 		odhpp = 0;
575 		odbaud = DIV_ROUND_UP(fclk_rate, bus->scl_rate.i2c * (2 + 2 * ppbaud)) - 1;
576 		mconfig &= ~GENMASK(24, 16);
577 		mconfig |= SVC_I3C_MCONFIG_ODBAUD(odbaud) | SVC_I3C_MCONFIG_ODHPP(odhpp);
578 		writel(mconfig, master->regs + SVC_I3C_MCONFIG);
579 		break;
580 	case I3C_OPEN_DRAIN_NORMAL_SPEED:
581 		writel(master->mctrl_config, master->regs + SVC_I3C_MCONFIG);
582 		break;
583 	}
584 
585 rpm_out:
586 	pm_runtime_mark_last_busy(master->dev);
587 	pm_runtime_put_autosuspend(master->dev);
588 
589 	return ret;
590 }
591 
svc_i3c_master_bus_init(struct i3c_master_controller * m)592 static int svc_i3c_master_bus_init(struct i3c_master_controller *m)
593 {
594 	struct svc_i3c_master *master = to_svc_i3c_master(m);
595 	struct i3c_bus *bus = i3c_master_get_bus(m);
596 	struct i3c_device_info info = {};
597 	unsigned long fclk_rate, fclk_period_ns;
598 	unsigned long i2c_period_ns, i2c_scl_rate, i3c_scl_rate;
599 	unsigned int high_period_ns, od_low_period_ns;
600 	u32 ppbaud, pplow, odhpp, odbaud, odstop, i2cbaud, reg;
601 	int ret;
602 
603 	ret = pm_runtime_resume_and_get(master->dev);
604 	if (ret < 0) {
605 		dev_err(master->dev,
606 			"<%s> cannot resume i3c bus master, err: %d\n",
607 			__func__, ret);
608 		return ret;
609 	}
610 
611 	/* Timings derivation */
612 	fclk_rate = clk_get_rate(master->fclk);
613 	if (!fclk_rate) {
614 		ret = -EINVAL;
615 		goto rpm_out;
616 	}
617 
618 	fclk_period_ns = DIV_ROUND_UP(1000000000, fclk_rate);
619 	i2c_period_ns = DIV_ROUND_UP(1000000000, bus->scl_rate.i2c);
620 	i2c_scl_rate = bus->scl_rate.i2c;
621 	i3c_scl_rate = bus->scl_rate.i3c;
622 
623 	/*
624 	 * Using I3C Push-Pull mode, target is 12.5MHz/80ns period.
625 	 * Simplest configuration is using a 50% duty-cycle of 40ns.
626 	 */
627 	ppbaud = DIV_ROUND_UP(fclk_rate / 2, i3c_scl_rate) - 1;
628 	pplow = 0;
629 
630 	/*
631 	 * Using I3C Open-Drain mode, target is 4.17MHz/240ns with a
632 	 * duty-cycle tuned so that high levels are filetered out by
633 	 * the 50ns filter (target being 40ns).
634 	 */
635 	odhpp = 1;
636 	high_period_ns = (ppbaud + 1) * fclk_period_ns;
637 	odbaud = DIV_ROUND_UP(fclk_rate, SVC_I3C_QUICK_I2C_CLK * (1 + ppbaud)) - 2;
638 	od_low_period_ns = (odbaud + 1) * high_period_ns;
639 
640 	switch (bus->mode) {
641 	case I3C_BUS_MODE_PURE:
642 		i2cbaud = 0;
643 		odstop = 0;
644 		break;
645 	case I3C_BUS_MODE_MIXED_FAST:
646 		/*
647 		 * Using I2C Fm+ mode, target is 1MHz/1000ns, the difference
648 		 * between the high and low period does not really matter.
649 		 */
650 		i2cbaud = DIV_ROUND_UP(i2c_period_ns, od_low_period_ns) - 2;
651 		odstop = 1;
652 		break;
653 	case I3C_BUS_MODE_MIXED_LIMITED:
654 	case I3C_BUS_MODE_MIXED_SLOW:
655 		/* I3C PP + I3C OP + I2C OP both use i2c clk rate */
656 		if (ppbaud > SVC_I3C_PPBAUD_MAX) {
657 			ppbaud = SVC_I3C_PPBAUD_MAX;
658 			pplow =  DIV_ROUND_UP(fclk_rate, i3c_scl_rate) - (2 + 2 * ppbaud);
659 		}
660 
661 		high_period_ns = (ppbaud + 1) * fclk_period_ns;
662 		odhpp = 0;
663 		odbaud = DIV_ROUND_UP(fclk_rate, i2c_scl_rate * (2 + 2 * ppbaud)) - 1;
664 
665 		od_low_period_ns = (odbaud + 1) * high_period_ns;
666 		i2cbaud = DIV_ROUND_UP(i2c_period_ns, od_low_period_ns) - 2;
667 		odstop = 1;
668 		break;
669 	default:
670 		goto rpm_out;
671 	}
672 
673 	reg = SVC_I3C_MCONFIG_MASTER_EN |
674 	      SVC_I3C_MCONFIG_DISTO(0) |
675 	      SVC_I3C_MCONFIG_HKEEP(0) |
676 	      SVC_I3C_MCONFIG_ODSTOP(odstop) |
677 	      SVC_I3C_MCONFIG_PPBAUD(ppbaud) |
678 	      SVC_I3C_MCONFIG_PPLOW(pplow) |
679 	      SVC_I3C_MCONFIG_ODBAUD(odbaud) |
680 	      SVC_I3C_MCONFIG_ODHPP(odhpp) |
681 	      SVC_I3C_MCONFIG_SKEW(0) |
682 	      SVC_I3C_MCONFIG_I2CBAUD(i2cbaud);
683 	writel(reg, master->regs + SVC_I3C_MCONFIG);
684 
685 	master->mctrl_config = reg;
686 	/* Master core's registration */
687 	ret = i3c_master_get_free_addr(m, 0);
688 	if (ret < 0)
689 		goto rpm_out;
690 
691 	info.dyn_addr = ret;
692 
693 	writel(SVC_MDYNADDR_VALID | SVC_MDYNADDR_ADDR(info.dyn_addr),
694 	       master->regs + SVC_I3C_MDYNADDR);
695 
696 	ret = i3c_master_set_info(&master->base, &info);
697 	if (ret)
698 		goto rpm_out;
699 
700 rpm_out:
701 	pm_runtime_mark_last_busy(master->dev);
702 	pm_runtime_put_autosuspend(master->dev);
703 
704 	return ret;
705 }
706 
svc_i3c_master_bus_cleanup(struct i3c_master_controller * m)707 static void svc_i3c_master_bus_cleanup(struct i3c_master_controller *m)
708 {
709 	struct svc_i3c_master *master = to_svc_i3c_master(m);
710 	int ret;
711 
712 	ret = pm_runtime_resume_and_get(master->dev);
713 	if (ret < 0) {
714 		dev_err(master->dev, "<%s> Cannot get runtime PM.\n", __func__);
715 		return;
716 	}
717 
718 	svc_i3c_master_disable_interrupts(master);
719 
720 	/* Disable master */
721 	writel(0, master->regs + SVC_I3C_MCONFIG);
722 
723 	pm_runtime_mark_last_busy(master->dev);
724 	pm_runtime_put_autosuspend(master->dev);
725 }
726 
svc_i3c_master_reserve_slot(struct svc_i3c_master * master)727 static int svc_i3c_master_reserve_slot(struct svc_i3c_master *master)
728 {
729 	unsigned int slot;
730 
731 	if (!(master->free_slots & GENMASK(SVC_I3C_MAX_DEVS - 1, 0)))
732 		return -ENOSPC;
733 
734 	slot = ffs(master->free_slots) - 1;
735 
736 	master->free_slots &= ~BIT(slot);
737 
738 	return slot;
739 }
740 
svc_i3c_master_release_slot(struct svc_i3c_master * master,unsigned int slot)741 static void svc_i3c_master_release_slot(struct svc_i3c_master *master,
742 					unsigned int slot)
743 {
744 	master->free_slots |= BIT(slot);
745 }
746 
svc_i3c_master_attach_i3c_dev(struct i3c_dev_desc * dev)747 static int svc_i3c_master_attach_i3c_dev(struct i3c_dev_desc *dev)
748 {
749 	struct i3c_master_controller *m = i3c_dev_get_master(dev);
750 	struct svc_i3c_master *master = to_svc_i3c_master(m);
751 	struct svc_i3c_i2c_dev_data *data;
752 	int slot;
753 
754 	slot = svc_i3c_master_reserve_slot(master);
755 	if (slot < 0)
756 		return slot;
757 
758 	data = kzalloc(sizeof(*data), GFP_KERNEL);
759 	if (!data) {
760 		svc_i3c_master_release_slot(master, slot);
761 		return -ENOMEM;
762 	}
763 
764 	data->ibi = -1;
765 	data->index = slot;
766 	master->addrs[slot] = dev->info.dyn_addr ? dev->info.dyn_addr :
767 						   dev->info.static_addr;
768 	master->descs[slot] = dev;
769 
770 	i3c_dev_set_master_data(dev, data);
771 
772 	return 0;
773 }
774 
svc_i3c_master_reattach_i3c_dev(struct i3c_dev_desc * dev,u8 old_dyn_addr)775 static int svc_i3c_master_reattach_i3c_dev(struct i3c_dev_desc *dev,
776 					   u8 old_dyn_addr)
777 {
778 	struct i3c_master_controller *m = i3c_dev_get_master(dev);
779 	struct svc_i3c_master *master = to_svc_i3c_master(m);
780 	struct svc_i3c_i2c_dev_data *data = i3c_dev_get_master_data(dev);
781 
782 	master->addrs[data->index] = dev->info.dyn_addr ? dev->info.dyn_addr :
783 							  dev->info.static_addr;
784 
785 	return 0;
786 }
787 
svc_i3c_master_detach_i3c_dev(struct i3c_dev_desc * dev)788 static void svc_i3c_master_detach_i3c_dev(struct i3c_dev_desc *dev)
789 {
790 	struct svc_i3c_i2c_dev_data *data = i3c_dev_get_master_data(dev);
791 	struct i3c_master_controller *m = i3c_dev_get_master(dev);
792 	struct svc_i3c_master *master = to_svc_i3c_master(m);
793 
794 	master->addrs[data->index] = 0;
795 	svc_i3c_master_release_slot(master, data->index);
796 
797 	kfree(data);
798 }
799 
svc_i3c_master_attach_i2c_dev(struct i2c_dev_desc * dev)800 static int svc_i3c_master_attach_i2c_dev(struct i2c_dev_desc *dev)
801 {
802 	struct i3c_master_controller *m = i2c_dev_get_master(dev);
803 	struct svc_i3c_master *master = to_svc_i3c_master(m);
804 	struct svc_i3c_i2c_dev_data *data;
805 	int slot;
806 
807 	slot = svc_i3c_master_reserve_slot(master);
808 	if (slot < 0)
809 		return slot;
810 
811 	data = kzalloc(sizeof(*data), GFP_KERNEL);
812 	if (!data) {
813 		svc_i3c_master_release_slot(master, slot);
814 		return -ENOMEM;
815 	}
816 
817 	data->index = slot;
818 	master->addrs[slot] = dev->addr;
819 
820 	i2c_dev_set_master_data(dev, data);
821 
822 	return 0;
823 }
824 
svc_i3c_master_detach_i2c_dev(struct i2c_dev_desc * dev)825 static void svc_i3c_master_detach_i2c_dev(struct i2c_dev_desc *dev)
826 {
827 	struct svc_i3c_i2c_dev_data *data = i2c_dev_get_master_data(dev);
828 	struct i3c_master_controller *m = i2c_dev_get_master(dev);
829 	struct svc_i3c_master *master = to_svc_i3c_master(m);
830 
831 	svc_i3c_master_release_slot(master, data->index);
832 
833 	kfree(data);
834 }
835 
svc_i3c_master_readb(struct svc_i3c_master * master,u8 * dst,unsigned int len)836 static int svc_i3c_master_readb(struct svc_i3c_master *master, u8 *dst,
837 				unsigned int len)
838 {
839 	int ret, i;
840 	u32 reg;
841 
842 	for (i = 0; i < len; i++) {
843 		ret = readl_poll_timeout_atomic(master->regs + SVC_I3C_MSTATUS,
844 						reg,
845 						SVC_I3C_MSTATUS_RXPEND(reg),
846 						0, 1000);
847 		if (ret)
848 			return ret;
849 
850 		dst[i] = readl(master->regs + SVC_I3C_MRDATAB);
851 	}
852 
853 	return 0;
854 }
855 
svc_i3c_master_do_daa_locked(struct svc_i3c_master * master,u8 * addrs,unsigned int * count)856 static int svc_i3c_master_do_daa_locked(struct svc_i3c_master *master,
857 					u8 *addrs, unsigned int *count)
858 {
859 	u64 prov_id[SVC_I3C_MAX_DEVS] = {}, nacking_prov_id = 0;
860 	unsigned int dev_nb = 0, last_addr = 0;
861 	u32 reg;
862 	int ret, i;
863 
864 	svc_i3c_master_flush_fifo(master);
865 
866 	while (true) {
867 		/* SVC_I3C_MCTRL_REQUEST_PROC_DAA have two mode, ENTER DAA or PROCESS DAA.
868 		 *
869 		 * ENTER DAA:
870 		 *   1 will issue START, 7E, ENTDAA, and then emits 7E/R to process first target.
871 		 *   2 Stops just before the new Dynamic Address (DA) is to be emitted.
872 		 *
873 		 * PROCESS DAA:
874 		 *   1 The DA is written using MWDATAB or ADDR bits 6:0.
875 		 *   2 ProcessDAA is requested again to write the new address, and then starts the
876 		 *     next (START, 7E, ENTDAA)  unless marked to STOP; an MSTATUS indicating NACK
877 		 *     means DA was not accepted (e.g. parity error). If PROCESSDAA is NACKed on the
878 		 *     7E/R, which means no more Slaves need a DA, then a COMPLETE will be signaled
879 		 *     (along with DONE), and a STOP issued automatically.
880 		 */
881 		writel(SVC_I3C_MCTRL_REQUEST_PROC_DAA |
882 		       SVC_I3C_MCTRL_TYPE_I3C |
883 		       SVC_I3C_MCTRL_IBIRESP_NACK |
884 		       SVC_I3C_MCTRL_DIR(SVC_I3C_MCTRL_DIR_WRITE),
885 		       master->regs + SVC_I3C_MCTRL);
886 
887 		/*
888 		 * Either one slave will send its ID, or the assignment process
889 		 * is done.
890 		 */
891 		ret = readl_poll_timeout_atomic(master->regs + SVC_I3C_MSTATUS,
892 						reg,
893 						SVC_I3C_MSTATUS_RXPEND(reg) |
894 						SVC_I3C_MSTATUS_MCTRLDONE(reg),
895 						1, 1000);
896 		if (ret)
897 			break;
898 
899 		if (SVC_I3C_MSTATUS_RXPEND(reg)) {
900 			u8 data[6];
901 
902 			/*
903 			 * We only care about the 48-bit provisioned ID yet to
904 			 * be sure a device does not nack an address twice.
905 			 * Otherwise, we would just need to flush the RX FIFO.
906 			 */
907 			ret = svc_i3c_master_readb(master, data, 6);
908 			if (ret)
909 				break;
910 
911 			for (i = 0; i < 6; i++)
912 				prov_id[dev_nb] |= (u64)(data[i]) << (8 * (5 - i));
913 
914 			/* We do not care about the BCR and DCR yet */
915 			ret = svc_i3c_master_readb(master, data, 2);
916 			if (ret)
917 				break;
918 		} else if (SVC_I3C_MSTATUS_MCTRLDONE(reg)) {
919 			if (SVC_I3C_MSTATUS_STATE_IDLE(reg) &&
920 			    SVC_I3C_MSTATUS_COMPLETE(reg)) {
921 				/*
922 				 * All devices received and acked they dynamic
923 				 * address, this is the natural end of the DAA
924 				 * procedure.
925 				 *
926 				 * Hardware will auto emit STOP at this case.
927 				 */
928 				*count = dev_nb;
929 				return 0;
930 
931 			} else if (SVC_I3C_MSTATUS_NACKED(reg)) {
932 				/* No I3C devices attached */
933 				if (dev_nb == 0) {
934 					/*
935 					 * Hardware can't treat first NACK for ENTAA as normal
936 					 * COMPLETE. So need manual emit STOP.
937 					 */
938 					ret = 0;
939 					*count = 0;
940 					break;
941 				}
942 
943 				/*
944 				 * A slave device nacked the address, this is
945 				 * allowed only once, DAA will be stopped and
946 				 * then resumed. The same device is supposed to
947 				 * answer again immediately and shall ack the
948 				 * address this time.
949 				 */
950 				if (prov_id[dev_nb] == nacking_prov_id) {
951 					ret = -EIO;
952 					break;
953 				}
954 
955 				dev_nb--;
956 				nacking_prov_id = prov_id[dev_nb];
957 				svc_i3c_master_emit_stop(master);
958 
959 				continue;
960 			} else {
961 				break;
962 			}
963 		}
964 
965 		/* Wait for the slave to be ready to receive its address */
966 		ret = readl_poll_timeout_atomic(master->regs + SVC_I3C_MSTATUS,
967 						reg,
968 						SVC_I3C_MSTATUS_MCTRLDONE(reg) &&
969 						SVC_I3C_MSTATUS_STATE_DAA(reg) &&
970 						SVC_I3C_MSTATUS_BETWEEN(reg),
971 						0, 1000);
972 		if (ret)
973 			break;
974 
975 		/* Give the slave device a suitable dynamic address */
976 		ret = i3c_master_get_free_addr(&master->base, last_addr + 1);
977 		if (ret < 0)
978 			break;
979 
980 		addrs[dev_nb] = ret;
981 		dev_dbg(master->dev, "DAA: device %d assigned to 0x%02x\n",
982 			dev_nb, addrs[dev_nb]);
983 
984 		writel(addrs[dev_nb], master->regs + SVC_I3C_MWDATAB);
985 		last_addr = addrs[dev_nb++];
986 	}
987 
988 	/* Need manual issue STOP except for Complete condition */
989 	svc_i3c_master_emit_stop(master);
990 	return ret;
991 }
992 
svc_i3c_update_ibirules(struct svc_i3c_master * master)993 static int svc_i3c_update_ibirules(struct svc_i3c_master *master)
994 {
995 	struct i3c_dev_desc *dev;
996 	u32 reg_mbyte = 0, reg_nobyte = SVC_I3C_IBIRULES_NOBYTE;
997 	unsigned int mbyte_addr_ok = 0, mbyte_addr_ko = 0, nobyte_addr_ok = 0,
998 		nobyte_addr_ko = 0;
999 	bool list_mbyte = false, list_nobyte = false;
1000 
1001 	/* Create the IBIRULES register for both cases */
1002 	i3c_bus_for_each_i3cdev(&master->base.bus, dev) {
1003 		if (!(dev->info.bcr & I3C_BCR_IBI_REQ_CAP))
1004 			continue;
1005 
1006 		if (dev->info.bcr & I3C_BCR_IBI_PAYLOAD) {
1007 			reg_mbyte |= SVC_I3C_IBIRULES_ADDR(mbyte_addr_ok,
1008 							   dev->info.dyn_addr);
1009 
1010 			/* IBI rules cannot be applied to devices with MSb=1 */
1011 			if (dev->info.dyn_addr & BIT(7))
1012 				mbyte_addr_ko++;
1013 			else
1014 				mbyte_addr_ok++;
1015 		} else {
1016 			reg_nobyte |= SVC_I3C_IBIRULES_ADDR(nobyte_addr_ok,
1017 							    dev->info.dyn_addr);
1018 
1019 			/* IBI rules cannot be applied to devices with MSb=1 */
1020 			if (dev->info.dyn_addr & BIT(7))
1021 				nobyte_addr_ko++;
1022 			else
1023 				nobyte_addr_ok++;
1024 		}
1025 	}
1026 
1027 	/* Device list cannot be handled by hardware */
1028 	if (!mbyte_addr_ko && mbyte_addr_ok <= SVC_I3C_IBIRULES_ADDRS)
1029 		list_mbyte = true;
1030 
1031 	if (!nobyte_addr_ko && nobyte_addr_ok <= SVC_I3C_IBIRULES_ADDRS)
1032 		list_nobyte = true;
1033 
1034 	/* No list can be properly handled, return an error */
1035 	if (!list_mbyte && !list_nobyte)
1036 		return -ERANGE;
1037 
1038 	/* Pick the first list that can be handled by hardware, randomly */
1039 	if (list_mbyte)
1040 		writel(reg_mbyte, master->regs + SVC_I3C_IBIRULES);
1041 	else
1042 		writel(reg_nobyte, master->regs + SVC_I3C_IBIRULES);
1043 
1044 	return 0;
1045 }
1046 
svc_i3c_master_do_daa(struct i3c_master_controller * m)1047 static int svc_i3c_master_do_daa(struct i3c_master_controller *m)
1048 {
1049 	struct svc_i3c_master *master = to_svc_i3c_master(m);
1050 	u8 addrs[SVC_I3C_MAX_DEVS];
1051 	unsigned long flags;
1052 	unsigned int dev_nb;
1053 	int ret, i;
1054 
1055 	ret = pm_runtime_resume_and_get(master->dev);
1056 	if (ret < 0) {
1057 		dev_err(master->dev, "<%s> Cannot get runtime PM.\n", __func__);
1058 		return ret;
1059 	}
1060 
1061 	spin_lock_irqsave(&master->xferqueue.lock, flags);
1062 	ret = svc_i3c_master_do_daa_locked(master, addrs, &dev_nb);
1063 	spin_unlock_irqrestore(&master->xferqueue.lock, flags);
1064 
1065 	svc_i3c_master_clear_merrwarn(master);
1066 	if (ret)
1067 		goto rpm_out;
1068 
1069 	/*
1070 	 * Register all devices who participated to the core
1071 	 *
1072 	 * If two devices (A and B) are detected in DAA and address 0xa is assigned to
1073 	 * device A and 0xb to device B, a failure in i3c_master_add_i3c_dev_locked()
1074 	 * for device A (addr: 0xa) could prevent device B (addr: 0xb) from being
1075 	 * registered on the bus. The I3C stack might still consider 0xb a free
1076 	 * address. If a subsequent Hotjoin occurs, 0xb might be assigned to Device A,
1077 	 * causing both devices A and B to use the same address 0xb, violating the I3C
1078 	 * specification.
1079 	 *
1080 	 * The return value for i3c_master_add_i3c_dev_locked() should not be checked
1081 	 * because subsequent steps will scan the entire I3C bus, independent of
1082 	 * whether i3c_master_add_i3c_dev_locked() returns success.
1083 	 *
1084 	 * If device A registration fails, there is still a chance to register device
1085 	 * B. i3c_master_add_i3c_dev_locked() can reset DAA if a failure occurs while
1086 	 * retrieving device information.
1087 	 */
1088 	for (i = 0; i < dev_nb; i++)
1089 		i3c_master_add_i3c_dev_locked(m, addrs[i]);
1090 
1091 	/* Configure IBI auto-rules */
1092 	ret = svc_i3c_update_ibirules(master);
1093 	if (ret)
1094 		dev_err(master->dev, "Cannot handle such a list of devices");
1095 
1096 rpm_out:
1097 	pm_runtime_mark_last_busy(master->dev);
1098 	pm_runtime_put_autosuspend(master->dev);
1099 
1100 	return ret;
1101 }
1102 
svc_i3c_master_read(struct svc_i3c_master * master,u8 * in,unsigned int len)1103 static int svc_i3c_master_read(struct svc_i3c_master *master,
1104 			       u8 *in, unsigned int len)
1105 {
1106 	int offset = 0, i;
1107 	u32 mdctrl, mstatus;
1108 	bool completed = false;
1109 	unsigned int count;
1110 	unsigned long start = jiffies;
1111 
1112 	while (!completed) {
1113 		mstatus = readl(master->regs + SVC_I3C_MSTATUS);
1114 		if (SVC_I3C_MSTATUS_COMPLETE(mstatus) != 0)
1115 			completed = true;
1116 
1117 		if (time_after(jiffies, start + msecs_to_jiffies(1000))) {
1118 			dev_dbg(master->dev, "I3C read timeout\n");
1119 			return -ETIMEDOUT;
1120 		}
1121 
1122 		mdctrl = readl(master->regs + SVC_I3C_MDATACTRL);
1123 		count = SVC_I3C_MDATACTRL_RXCOUNT(mdctrl);
1124 		if (offset + count > len) {
1125 			dev_err(master->dev, "I3C receive length too long!\n");
1126 			return -EINVAL;
1127 		}
1128 		for (i = 0; i < count; i++)
1129 			in[offset + i] = readl(master->regs + SVC_I3C_MRDATAB);
1130 
1131 		offset += count;
1132 	}
1133 
1134 	return offset;
1135 }
1136 
svc_i3c_master_write(struct svc_i3c_master * master,const u8 * out,unsigned int len)1137 static int svc_i3c_master_write(struct svc_i3c_master *master,
1138 				const u8 *out, unsigned int len)
1139 {
1140 	int offset = 0, ret;
1141 	u32 mdctrl;
1142 
1143 	while (offset < len) {
1144 		ret = readl_poll_timeout(master->regs + SVC_I3C_MDATACTRL,
1145 					 mdctrl,
1146 					 !(mdctrl & SVC_I3C_MDATACTRL_TXFULL),
1147 					 0, 1000);
1148 		if (ret)
1149 			return ret;
1150 
1151 		/*
1152 		 * The last byte to be sent over the bus must either have the
1153 		 * "end" bit set or be written in MWDATABE.
1154 		 */
1155 		if (likely(offset < (len - 1)))
1156 			writel(out[offset++], master->regs + SVC_I3C_MWDATAB);
1157 		else
1158 			writel(out[offset++], master->regs + SVC_I3C_MWDATABE);
1159 	}
1160 
1161 	return 0;
1162 }
1163 
svc_i3c_master_xfer(struct svc_i3c_master * master,bool rnw,unsigned int xfer_type,u8 addr,u8 * in,const u8 * out,unsigned int xfer_len,unsigned int * actual_len,bool continued)1164 static int svc_i3c_master_xfer(struct svc_i3c_master *master,
1165 			       bool rnw, unsigned int xfer_type, u8 addr,
1166 			       u8 *in, const u8 *out, unsigned int xfer_len,
1167 			       unsigned int *actual_len, bool continued)
1168 {
1169 	int retry = 2;
1170 	u32 reg;
1171 	int ret;
1172 
1173 	/* clean SVC_I3C_MINT_IBIWON w1c bits */
1174 	writel(SVC_I3C_MINT_IBIWON, master->regs + SVC_I3C_MSTATUS);
1175 
1176 
1177 	while (retry--) {
1178 		writel(SVC_I3C_MCTRL_REQUEST_START_ADDR |
1179 		       xfer_type |
1180 		       SVC_I3C_MCTRL_IBIRESP_NACK |
1181 		       SVC_I3C_MCTRL_DIR(rnw) |
1182 		       SVC_I3C_MCTRL_ADDR(addr) |
1183 		       SVC_I3C_MCTRL_RDTERM(*actual_len),
1184 		       master->regs + SVC_I3C_MCTRL);
1185 
1186 		ret = readl_poll_timeout(master->regs + SVC_I3C_MSTATUS, reg,
1187 				 SVC_I3C_MSTATUS_MCTRLDONE(reg), 0, 1000);
1188 		if (ret)
1189 			goto emit_stop;
1190 
1191 		if (readl(master->regs + SVC_I3C_MERRWARN) & SVC_I3C_MERRWARN_NACK) {
1192 			/*
1193 			 * According to I3C Spec 1.1.1, 11-Jun-2021, section: 5.1.2.2.3.
1194 			 * If the Controller chooses to start an I3C Message with an I3C Dynamic
1195 			 * Address, then special provisions shall be made because that same I3C
1196 			 * Target may be initiating an IBI or a Controller Role Request. So, one of
1197 			 * three things may happen: (skip 1, 2)
1198 			 *
1199 			 * 3. The Addresses match and the RnW bits also match, and so neither
1200 			 * Controller nor Target will ACK since both are expecting the other side to
1201 			 * provide ACK. As a result, each side might think it had "won" arbitration,
1202 			 * but neither side would continue, as each would subsequently see that the
1203 			 * other did not provide ACK.
1204 			 * ...
1205 			 * For either value of RnW: Due to the NACK, the Controller shall defer the
1206 			 * Private Write or Private Read, and should typically transmit the Target
1207 			 * Address again after a Repeated START (i.e., the next one or any one prior
1208 			 * to a STOP in the Frame). Since the Address Header following a Repeated
1209 			 * START is not arbitrated, the Controller will always win (see Section
1210 			 * 5.1.2.2.4).
1211 			 */
1212 			if (retry && addr != 0x7e) {
1213 				writel(SVC_I3C_MERRWARN_NACK, master->regs + SVC_I3C_MERRWARN);
1214 			} else {
1215 				ret = -ENXIO;
1216 				*actual_len = 0;
1217 				goto emit_stop;
1218 			}
1219 		} else {
1220 			break;
1221 		}
1222 	}
1223 
1224 	/*
1225 	 * According to I3C spec ver 1.1.1, 5.1.2.2.3 Consequence of Controller Starting a Frame
1226 	 * with I3C Target Address.
1227 	 *
1228 	 * The I3C Controller normally should start a Frame, the Address may be arbitrated, and so
1229 	 * the Controller shall monitor to see whether an In-Band Interrupt request, a Controller
1230 	 * Role Request (i.e., Secondary Controller requests to become the Active Controller), or
1231 	 * a Hot-Join Request has been made.
1232 	 *
1233 	 * If missed IBIWON check, the wrong data will be return. When IBIWON happen, return failure
1234 	 * and yield the above events handler.
1235 	 */
1236 	if (SVC_I3C_MSTATUS_IBIWON(reg)) {
1237 		ret = -EAGAIN;
1238 		*actual_len = 0;
1239 		goto emit_stop;
1240 	}
1241 
1242 	if (rnw)
1243 		ret = svc_i3c_master_read(master, in, xfer_len);
1244 	else
1245 		ret = svc_i3c_master_write(master, out, xfer_len);
1246 	if (ret < 0)
1247 		goto emit_stop;
1248 
1249 	if (rnw)
1250 		*actual_len = ret;
1251 
1252 	ret = readl_poll_timeout(master->regs + SVC_I3C_MSTATUS, reg,
1253 				 SVC_I3C_MSTATUS_COMPLETE(reg), 0, 1000);
1254 	if (ret)
1255 		goto emit_stop;
1256 
1257 	writel(SVC_I3C_MINT_COMPLETE, master->regs + SVC_I3C_MSTATUS);
1258 
1259 	if (!continued) {
1260 		svc_i3c_master_emit_stop(master);
1261 
1262 		/* Wait idle if stop is sent. */
1263 		readl_poll_timeout(master->regs + SVC_I3C_MSTATUS, reg,
1264 				   SVC_I3C_MSTATUS_STATE_IDLE(reg), 0, 1000);
1265 	}
1266 
1267 	return 0;
1268 
1269 emit_stop:
1270 	svc_i3c_master_emit_stop(master);
1271 	svc_i3c_master_clear_merrwarn(master);
1272 
1273 	return ret;
1274 }
1275 
1276 static struct svc_i3c_xfer *
svc_i3c_master_alloc_xfer(struct svc_i3c_master * master,unsigned int ncmds)1277 svc_i3c_master_alloc_xfer(struct svc_i3c_master *master, unsigned int ncmds)
1278 {
1279 	struct svc_i3c_xfer *xfer;
1280 
1281 	xfer = kzalloc(struct_size(xfer, cmds, ncmds), GFP_KERNEL);
1282 	if (!xfer)
1283 		return NULL;
1284 
1285 	INIT_LIST_HEAD(&xfer->node);
1286 	xfer->ncmds = ncmds;
1287 	xfer->ret = -ETIMEDOUT;
1288 
1289 	return xfer;
1290 }
1291 
svc_i3c_master_free_xfer(struct svc_i3c_xfer * xfer)1292 static void svc_i3c_master_free_xfer(struct svc_i3c_xfer *xfer)
1293 {
1294 	kfree(xfer);
1295 }
1296 
svc_i3c_master_dequeue_xfer_locked(struct svc_i3c_master * master,struct svc_i3c_xfer * xfer)1297 static void svc_i3c_master_dequeue_xfer_locked(struct svc_i3c_master *master,
1298 					       struct svc_i3c_xfer *xfer)
1299 {
1300 	if (master->xferqueue.cur == xfer)
1301 		master->xferqueue.cur = NULL;
1302 	else
1303 		list_del_init(&xfer->node);
1304 }
1305 
svc_i3c_master_dequeue_xfer(struct svc_i3c_master * master,struct svc_i3c_xfer * xfer)1306 static void svc_i3c_master_dequeue_xfer(struct svc_i3c_master *master,
1307 					struct svc_i3c_xfer *xfer)
1308 {
1309 	unsigned long flags;
1310 
1311 	spin_lock_irqsave(&master->xferqueue.lock, flags);
1312 	svc_i3c_master_dequeue_xfer_locked(master, xfer);
1313 	spin_unlock_irqrestore(&master->xferqueue.lock, flags);
1314 }
1315 
svc_i3c_master_start_xfer_locked(struct svc_i3c_master * master)1316 static void svc_i3c_master_start_xfer_locked(struct svc_i3c_master *master)
1317 {
1318 	struct svc_i3c_xfer *xfer = master->xferqueue.cur;
1319 	int ret, i;
1320 
1321 	if (!xfer)
1322 		return;
1323 
1324 	svc_i3c_master_clear_merrwarn(master);
1325 	svc_i3c_master_flush_fifo(master);
1326 
1327 	for (i = 0; i < xfer->ncmds; i++) {
1328 		struct svc_i3c_cmd *cmd = &xfer->cmds[i];
1329 
1330 		ret = svc_i3c_master_xfer(master, cmd->rnw, xfer->type,
1331 					  cmd->addr, cmd->in, cmd->out,
1332 					  cmd->len, &cmd->actual_len,
1333 					  cmd->continued);
1334 		/* cmd->xfer is NULL if I2C or CCC transfer */
1335 		if (cmd->xfer)
1336 			cmd->xfer->actual_len = cmd->actual_len;
1337 
1338 		if (ret)
1339 			break;
1340 	}
1341 
1342 	xfer->ret = ret;
1343 	complete(&xfer->comp);
1344 
1345 	if (ret < 0)
1346 		svc_i3c_master_dequeue_xfer_locked(master, xfer);
1347 
1348 	xfer = list_first_entry_or_null(&master->xferqueue.list,
1349 					struct svc_i3c_xfer,
1350 					node);
1351 	if (xfer)
1352 		list_del_init(&xfer->node);
1353 
1354 	master->xferqueue.cur = xfer;
1355 	svc_i3c_master_start_xfer_locked(master);
1356 }
1357 
svc_i3c_master_enqueue_xfer(struct svc_i3c_master * master,struct svc_i3c_xfer * xfer)1358 static void svc_i3c_master_enqueue_xfer(struct svc_i3c_master *master,
1359 					struct svc_i3c_xfer *xfer)
1360 {
1361 	unsigned long flags;
1362 	int ret;
1363 
1364 	ret = pm_runtime_resume_and_get(master->dev);
1365 	if (ret < 0) {
1366 		dev_err(master->dev, "<%s> Cannot get runtime PM.\n", __func__);
1367 		return;
1368 	}
1369 
1370 	init_completion(&xfer->comp);
1371 	spin_lock_irqsave(&master->xferqueue.lock, flags);
1372 	if (master->xferqueue.cur) {
1373 		list_add_tail(&xfer->node, &master->xferqueue.list);
1374 	} else {
1375 		master->xferqueue.cur = xfer;
1376 		svc_i3c_master_start_xfer_locked(master);
1377 	}
1378 	spin_unlock_irqrestore(&master->xferqueue.lock, flags);
1379 
1380 	pm_runtime_mark_last_busy(master->dev);
1381 	pm_runtime_put_autosuspend(master->dev);
1382 }
1383 
1384 static bool
svc_i3c_master_supports_ccc_cmd(struct i3c_master_controller * master,const struct i3c_ccc_cmd * cmd)1385 svc_i3c_master_supports_ccc_cmd(struct i3c_master_controller *master,
1386 				const struct i3c_ccc_cmd *cmd)
1387 {
1388 	/* No software support for CCC commands targeting more than one slave */
1389 	return (cmd->ndests == 1);
1390 }
1391 
svc_i3c_master_send_bdcast_ccc_cmd(struct svc_i3c_master * master,struct i3c_ccc_cmd * ccc)1392 static int svc_i3c_master_send_bdcast_ccc_cmd(struct svc_i3c_master *master,
1393 					      struct i3c_ccc_cmd *ccc)
1394 {
1395 	unsigned int xfer_len = ccc->dests[0].payload.len + 1;
1396 	struct svc_i3c_xfer *xfer;
1397 	struct svc_i3c_cmd *cmd;
1398 	u8 *buf;
1399 	int ret;
1400 
1401 	xfer = svc_i3c_master_alloc_xfer(master, 1);
1402 	if (!xfer)
1403 		return -ENOMEM;
1404 
1405 	buf = kmalloc(xfer_len, GFP_KERNEL);
1406 	if (!buf) {
1407 		svc_i3c_master_free_xfer(xfer);
1408 		return -ENOMEM;
1409 	}
1410 
1411 	buf[0] = ccc->id;
1412 	memcpy(&buf[1], ccc->dests[0].payload.data, ccc->dests[0].payload.len);
1413 
1414 	xfer->type = SVC_I3C_MCTRL_TYPE_I3C;
1415 
1416 	cmd = &xfer->cmds[0];
1417 	cmd->addr = ccc->dests[0].addr;
1418 	cmd->rnw = ccc->rnw;
1419 	cmd->in = NULL;
1420 	cmd->out = buf;
1421 	cmd->len = xfer_len;
1422 	cmd->actual_len = 0;
1423 	cmd->continued = false;
1424 
1425 	mutex_lock(&master->lock);
1426 	svc_i3c_master_enqueue_xfer(master, xfer);
1427 	if (!wait_for_completion_timeout(&xfer->comp, msecs_to_jiffies(1000)))
1428 		svc_i3c_master_dequeue_xfer(master, xfer);
1429 	mutex_unlock(&master->lock);
1430 
1431 	ret = xfer->ret;
1432 	kfree(buf);
1433 	svc_i3c_master_free_xfer(xfer);
1434 
1435 	return ret;
1436 }
1437 
svc_i3c_master_send_direct_ccc_cmd(struct svc_i3c_master * master,struct i3c_ccc_cmd * ccc)1438 static int svc_i3c_master_send_direct_ccc_cmd(struct svc_i3c_master *master,
1439 					      struct i3c_ccc_cmd *ccc)
1440 {
1441 	unsigned int xfer_len = ccc->dests[0].payload.len;
1442 	unsigned int actual_len = ccc->rnw ? xfer_len : 0;
1443 	struct svc_i3c_xfer *xfer;
1444 	struct svc_i3c_cmd *cmd;
1445 	int ret;
1446 
1447 	xfer = svc_i3c_master_alloc_xfer(master, 2);
1448 	if (!xfer)
1449 		return -ENOMEM;
1450 
1451 	xfer->type = SVC_I3C_MCTRL_TYPE_I3C;
1452 
1453 	/* Broadcasted message */
1454 	cmd = &xfer->cmds[0];
1455 	cmd->addr = I3C_BROADCAST_ADDR;
1456 	cmd->rnw = 0;
1457 	cmd->in = NULL;
1458 	cmd->out = &ccc->id;
1459 	cmd->len = 1;
1460 	cmd->actual_len = 0;
1461 	cmd->continued = true;
1462 
1463 	/* Directed message */
1464 	cmd = &xfer->cmds[1];
1465 	cmd->addr = ccc->dests[0].addr;
1466 	cmd->rnw = ccc->rnw;
1467 	cmd->in = ccc->rnw ? ccc->dests[0].payload.data : NULL;
1468 	cmd->out = ccc->rnw ? NULL : ccc->dests[0].payload.data;
1469 	cmd->len = xfer_len;
1470 	cmd->actual_len = actual_len;
1471 	cmd->continued = false;
1472 
1473 	mutex_lock(&master->lock);
1474 	svc_i3c_master_enqueue_xfer(master, xfer);
1475 	if (!wait_for_completion_timeout(&xfer->comp, msecs_to_jiffies(1000)))
1476 		svc_i3c_master_dequeue_xfer(master, xfer);
1477 	mutex_unlock(&master->lock);
1478 
1479 	if (cmd->actual_len != xfer_len)
1480 		ccc->dests[0].payload.len = cmd->actual_len;
1481 
1482 	ret = xfer->ret;
1483 	svc_i3c_master_free_xfer(xfer);
1484 
1485 	return ret;
1486 }
1487 
svc_i3c_master_send_ccc_cmd(struct i3c_master_controller * m,struct i3c_ccc_cmd * cmd)1488 static int svc_i3c_master_send_ccc_cmd(struct i3c_master_controller *m,
1489 				       struct i3c_ccc_cmd *cmd)
1490 {
1491 	struct svc_i3c_master *master = to_svc_i3c_master(m);
1492 	bool broadcast = cmd->id < 0x80;
1493 	int ret;
1494 
1495 	if (broadcast)
1496 		ret = svc_i3c_master_send_bdcast_ccc_cmd(master, cmd);
1497 	else
1498 		ret = svc_i3c_master_send_direct_ccc_cmd(master, cmd);
1499 
1500 	if (ret)
1501 		cmd->err = I3C_ERROR_M2;
1502 
1503 	return ret;
1504 }
1505 
svc_i3c_master_priv_xfers(struct i3c_dev_desc * dev,struct i3c_priv_xfer * xfers,int nxfers)1506 static int svc_i3c_master_priv_xfers(struct i3c_dev_desc *dev,
1507 				     struct i3c_priv_xfer *xfers,
1508 				     int nxfers)
1509 {
1510 	struct i3c_master_controller *m = i3c_dev_get_master(dev);
1511 	struct svc_i3c_master *master = to_svc_i3c_master(m);
1512 	struct svc_i3c_i2c_dev_data *data = i3c_dev_get_master_data(dev);
1513 	struct svc_i3c_xfer *xfer;
1514 	int ret, i;
1515 
1516 	xfer = svc_i3c_master_alloc_xfer(master, nxfers);
1517 	if (!xfer)
1518 		return -ENOMEM;
1519 
1520 	xfer->type = SVC_I3C_MCTRL_TYPE_I3C;
1521 
1522 	for (i = 0; i < nxfers; i++) {
1523 		struct svc_i3c_cmd *cmd = &xfer->cmds[i];
1524 
1525 		cmd->xfer = &xfers[i];
1526 		cmd->addr = master->addrs[data->index];
1527 		cmd->rnw = xfers[i].rnw;
1528 		cmd->in = xfers[i].rnw ? xfers[i].data.in : NULL;
1529 		cmd->out = xfers[i].rnw ? NULL : xfers[i].data.out;
1530 		cmd->len = xfers[i].len;
1531 		cmd->actual_len = xfers[i].rnw ? xfers[i].len : 0;
1532 		cmd->continued = (i + 1) < nxfers;
1533 	}
1534 
1535 	mutex_lock(&master->lock);
1536 	svc_i3c_master_enqueue_xfer(master, xfer);
1537 	if (!wait_for_completion_timeout(&xfer->comp, msecs_to_jiffies(1000)))
1538 		svc_i3c_master_dequeue_xfer(master, xfer);
1539 	mutex_unlock(&master->lock);
1540 
1541 	ret = xfer->ret;
1542 	svc_i3c_master_free_xfer(xfer);
1543 
1544 	return ret;
1545 }
1546 
svc_i3c_master_i2c_xfers(struct i2c_dev_desc * dev,const struct i2c_msg * xfers,int nxfers)1547 static int svc_i3c_master_i2c_xfers(struct i2c_dev_desc *dev,
1548 				    const struct i2c_msg *xfers,
1549 				    int nxfers)
1550 {
1551 	struct i3c_master_controller *m = i2c_dev_get_master(dev);
1552 	struct svc_i3c_master *master = to_svc_i3c_master(m);
1553 	struct svc_i3c_i2c_dev_data *data = i2c_dev_get_master_data(dev);
1554 	struct svc_i3c_xfer *xfer;
1555 	int ret, i;
1556 
1557 	xfer = svc_i3c_master_alloc_xfer(master, nxfers);
1558 	if (!xfer)
1559 		return -ENOMEM;
1560 
1561 	xfer->type = SVC_I3C_MCTRL_TYPE_I2C;
1562 
1563 	for (i = 0; i < nxfers; i++) {
1564 		struct svc_i3c_cmd *cmd = &xfer->cmds[i];
1565 
1566 		cmd->addr = master->addrs[data->index];
1567 		cmd->rnw = xfers[i].flags & I2C_M_RD;
1568 		cmd->in = cmd->rnw ? xfers[i].buf : NULL;
1569 		cmd->out = cmd->rnw ? NULL : xfers[i].buf;
1570 		cmd->len = xfers[i].len;
1571 		cmd->actual_len = cmd->rnw ? xfers[i].len : 0;
1572 		cmd->continued = (i + 1 < nxfers);
1573 	}
1574 
1575 	mutex_lock(&master->lock);
1576 	svc_i3c_master_enqueue_xfer(master, xfer);
1577 	if (!wait_for_completion_timeout(&xfer->comp, msecs_to_jiffies(1000)))
1578 		svc_i3c_master_dequeue_xfer(master, xfer);
1579 	mutex_unlock(&master->lock);
1580 
1581 	ret = xfer->ret;
1582 	svc_i3c_master_free_xfer(xfer);
1583 
1584 	return ret;
1585 }
1586 
svc_i3c_master_request_ibi(struct i3c_dev_desc * dev,const struct i3c_ibi_setup * req)1587 static int svc_i3c_master_request_ibi(struct i3c_dev_desc *dev,
1588 				      const struct i3c_ibi_setup *req)
1589 {
1590 	struct i3c_master_controller *m = i3c_dev_get_master(dev);
1591 	struct svc_i3c_master *master = to_svc_i3c_master(m);
1592 	struct svc_i3c_i2c_dev_data *data = i3c_dev_get_master_data(dev);
1593 	unsigned long flags;
1594 	unsigned int i;
1595 
1596 	if (dev->ibi->max_payload_len > SVC_I3C_FIFO_SIZE) {
1597 		dev_err(master->dev, "IBI max payload %d should be < %d\n",
1598 			dev->ibi->max_payload_len, SVC_I3C_FIFO_SIZE);
1599 		return -ERANGE;
1600 	}
1601 
1602 	data->ibi_pool = i3c_generic_ibi_alloc_pool(dev, req);
1603 	if (IS_ERR(data->ibi_pool))
1604 		return PTR_ERR(data->ibi_pool);
1605 
1606 	spin_lock_irqsave(&master->ibi.lock, flags);
1607 	for (i = 0; i < master->ibi.num_slots; i++) {
1608 		if (!master->ibi.slots[i]) {
1609 			data->ibi = i;
1610 			master->ibi.slots[i] = dev;
1611 			break;
1612 		}
1613 	}
1614 	spin_unlock_irqrestore(&master->ibi.lock, flags);
1615 
1616 	if (i < master->ibi.num_slots)
1617 		return 0;
1618 
1619 	i3c_generic_ibi_free_pool(data->ibi_pool);
1620 	data->ibi_pool = NULL;
1621 
1622 	return -ENOSPC;
1623 }
1624 
svc_i3c_master_free_ibi(struct i3c_dev_desc * dev)1625 static void svc_i3c_master_free_ibi(struct i3c_dev_desc *dev)
1626 {
1627 	struct i3c_master_controller *m = i3c_dev_get_master(dev);
1628 	struct svc_i3c_master *master = to_svc_i3c_master(m);
1629 	struct svc_i3c_i2c_dev_data *data = i3c_dev_get_master_data(dev);
1630 	unsigned long flags;
1631 
1632 	spin_lock_irqsave(&master->ibi.lock, flags);
1633 	master->ibi.slots[data->ibi] = NULL;
1634 	data->ibi = -1;
1635 	spin_unlock_irqrestore(&master->ibi.lock, flags);
1636 
1637 	i3c_generic_ibi_free_pool(data->ibi_pool);
1638 }
1639 
svc_i3c_master_enable_ibi(struct i3c_dev_desc * dev)1640 static int svc_i3c_master_enable_ibi(struct i3c_dev_desc *dev)
1641 {
1642 	struct i3c_master_controller *m = i3c_dev_get_master(dev);
1643 	struct svc_i3c_master *master = to_svc_i3c_master(m);
1644 	int ret;
1645 
1646 	ret = pm_runtime_resume_and_get(master->dev);
1647 	if (ret < 0) {
1648 		dev_err(master->dev, "<%s> Cannot get runtime PM.\n", __func__);
1649 		return ret;
1650 	}
1651 
1652 	master->enabled_events++;
1653 	svc_i3c_master_enable_interrupts(master, SVC_I3C_MINT_SLVSTART);
1654 
1655 	return i3c_master_enec_locked(m, dev->info.dyn_addr, I3C_CCC_EVENT_SIR);
1656 }
1657 
svc_i3c_master_disable_ibi(struct i3c_dev_desc * dev)1658 static int svc_i3c_master_disable_ibi(struct i3c_dev_desc *dev)
1659 {
1660 	struct i3c_master_controller *m = i3c_dev_get_master(dev);
1661 	struct svc_i3c_master *master = to_svc_i3c_master(m);
1662 	int ret;
1663 
1664 	master->enabled_events--;
1665 	if (!master->enabled_events)
1666 		svc_i3c_master_disable_interrupts(master);
1667 
1668 	ret = i3c_master_disec_locked(m, dev->info.dyn_addr, I3C_CCC_EVENT_SIR);
1669 
1670 	pm_runtime_mark_last_busy(master->dev);
1671 	pm_runtime_put_autosuspend(master->dev);
1672 
1673 	return ret;
1674 }
1675 
svc_i3c_master_enable_hotjoin(struct i3c_master_controller * m)1676 static int svc_i3c_master_enable_hotjoin(struct i3c_master_controller *m)
1677 {
1678 	struct svc_i3c_master *master = to_svc_i3c_master(m);
1679 	int ret;
1680 
1681 	ret = pm_runtime_resume_and_get(master->dev);
1682 	if (ret < 0) {
1683 		dev_err(master->dev, "<%s> Cannot get runtime PM.\n", __func__);
1684 		return ret;
1685 	}
1686 
1687 	master->enabled_events |= SVC_I3C_EVENT_HOTJOIN;
1688 
1689 	svc_i3c_master_enable_interrupts(master, SVC_I3C_MINT_SLVSTART);
1690 
1691 	return 0;
1692 }
1693 
svc_i3c_master_disable_hotjoin(struct i3c_master_controller * m)1694 static int svc_i3c_master_disable_hotjoin(struct i3c_master_controller *m)
1695 {
1696 	struct svc_i3c_master *master = to_svc_i3c_master(m);
1697 
1698 	master->enabled_events &= ~SVC_I3C_EVENT_HOTJOIN;
1699 
1700 	if (!master->enabled_events)
1701 		svc_i3c_master_disable_interrupts(master);
1702 
1703 	pm_runtime_mark_last_busy(master->dev);
1704 	pm_runtime_put_autosuspend(master->dev);
1705 
1706 	return 0;
1707 }
1708 
svc_i3c_master_recycle_ibi_slot(struct i3c_dev_desc * dev,struct i3c_ibi_slot * slot)1709 static void svc_i3c_master_recycle_ibi_slot(struct i3c_dev_desc *dev,
1710 					    struct i3c_ibi_slot *slot)
1711 {
1712 	struct svc_i3c_i2c_dev_data *data = i3c_dev_get_master_data(dev);
1713 
1714 	i3c_generic_ibi_recycle_slot(data->ibi_pool, slot);
1715 }
1716 
1717 static const struct i3c_master_controller_ops svc_i3c_master_ops = {
1718 	.bus_init = svc_i3c_master_bus_init,
1719 	.bus_cleanup = svc_i3c_master_bus_cleanup,
1720 	.attach_i3c_dev = svc_i3c_master_attach_i3c_dev,
1721 	.detach_i3c_dev = svc_i3c_master_detach_i3c_dev,
1722 	.reattach_i3c_dev = svc_i3c_master_reattach_i3c_dev,
1723 	.attach_i2c_dev = svc_i3c_master_attach_i2c_dev,
1724 	.detach_i2c_dev = svc_i3c_master_detach_i2c_dev,
1725 	.do_daa = svc_i3c_master_do_daa,
1726 	.supports_ccc_cmd = svc_i3c_master_supports_ccc_cmd,
1727 	.send_ccc_cmd = svc_i3c_master_send_ccc_cmd,
1728 	.priv_xfers = svc_i3c_master_priv_xfers,
1729 	.i2c_xfers = svc_i3c_master_i2c_xfers,
1730 	.request_ibi = svc_i3c_master_request_ibi,
1731 	.free_ibi = svc_i3c_master_free_ibi,
1732 	.recycle_ibi_slot = svc_i3c_master_recycle_ibi_slot,
1733 	.enable_ibi = svc_i3c_master_enable_ibi,
1734 	.disable_ibi = svc_i3c_master_disable_ibi,
1735 	.enable_hotjoin = svc_i3c_master_enable_hotjoin,
1736 	.disable_hotjoin = svc_i3c_master_disable_hotjoin,
1737 	.set_speed = svc_i3c_master_set_speed,
1738 };
1739 
svc_i3c_master_prepare_clks(struct svc_i3c_master * master)1740 static int svc_i3c_master_prepare_clks(struct svc_i3c_master *master)
1741 {
1742 	int ret = 0;
1743 
1744 	ret = clk_prepare_enable(master->pclk);
1745 	if (ret)
1746 		return ret;
1747 
1748 	ret = clk_prepare_enable(master->fclk);
1749 	if (ret) {
1750 		clk_disable_unprepare(master->pclk);
1751 		return ret;
1752 	}
1753 
1754 	ret = clk_prepare_enable(master->sclk);
1755 	if (ret) {
1756 		clk_disable_unprepare(master->pclk);
1757 		clk_disable_unprepare(master->fclk);
1758 		return ret;
1759 	}
1760 
1761 	return 0;
1762 }
1763 
svc_i3c_master_unprepare_clks(struct svc_i3c_master * master)1764 static void svc_i3c_master_unprepare_clks(struct svc_i3c_master *master)
1765 {
1766 	clk_disable_unprepare(master->pclk);
1767 	clk_disable_unprepare(master->fclk);
1768 	clk_disable_unprepare(master->sclk);
1769 }
1770 
svc_i3c_master_probe(struct platform_device * pdev)1771 static int svc_i3c_master_probe(struct platform_device *pdev)
1772 {
1773 	struct device *dev = &pdev->dev;
1774 	struct svc_i3c_master *master;
1775 	int ret;
1776 
1777 	master = devm_kzalloc(dev, sizeof(*master), GFP_KERNEL);
1778 	if (!master)
1779 		return -ENOMEM;
1780 
1781 	master->drvdata = of_device_get_match_data(dev);
1782 	if (!master->drvdata)
1783 		return -EINVAL;
1784 
1785 	master->regs = devm_platform_ioremap_resource(pdev, 0);
1786 	if (IS_ERR(master->regs))
1787 		return PTR_ERR(master->regs);
1788 
1789 	master->pclk = devm_clk_get(dev, "pclk");
1790 	if (IS_ERR(master->pclk))
1791 		return PTR_ERR(master->pclk);
1792 
1793 	master->fclk = devm_clk_get(dev, "fast_clk");
1794 	if (IS_ERR(master->fclk))
1795 		return PTR_ERR(master->fclk);
1796 
1797 	master->sclk = devm_clk_get(dev, "slow_clk");
1798 	if (IS_ERR(master->sclk))
1799 		return PTR_ERR(master->sclk);
1800 
1801 	master->irq = platform_get_irq(pdev, 0);
1802 	if (master->irq < 0)
1803 		return master->irq;
1804 
1805 	master->dev = dev;
1806 
1807 	ret = svc_i3c_master_prepare_clks(master);
1808 	if (ret)
1809 		return ret;
1810 
1811 	INIT_WORK(&master->hj_work, svc_i3c_master_hj_work);
1812 	INIT_WORK(&master->ibi_work, svc_i3c_master_ibi_work);
1813 	mutex_init(&master->lock);
1814 
1815 	ret = devm_request_irq(dev, master->irq, svc_i3c_master_irq_handler,
1816 			       IRQF_NO_SUSPEND, "svc-i3c-irq", master);
1817 	if (ret)
1818 		goto err_disable_clks;
1819 
1820 	master->free_slots = GENMASK(SVC_I3C_MAX_DEVS - 1, 0);
1821 
1822 	spin_lock_init(&master->xferqueue.lock);
1823 	INIT_LIST_HEAD(&master->xferqueue.list);
1824 
1825 	spin_lock_init(&master->ibi.lock);
1826 	master->ibi.num_slots = SVC_I3C_MAX_DEVS;
1827 	master->ibi.slots = devm_kcalloc(&pdev->dev, master->ibi.num_slots,
1828 					 sizeof(*master->ibi.slots),
1829 					 GFP_KERNEL);
1830 	if (!master->ibi.slots) {
1831 		ret = -ENOMEM;
1832 		goto err_disable_clks;
1833 	}
1834 
1835 	platform_set_drvdata(pdev, master);
1836 
1837 	pm_runtime_set_autosuspend_delay(&pdev->dev, SVC_I3C_PM_TIMEOUT_MS);
1838 	pm_runtime_use_autosuspend(&pdev->dev);
1839 	pm_runtime_get_noresume(&pdev->dev);
1840 	pm_runtime_set_active(&pdev->dev);
1841 	pm_runtime_enable(&pdev->dev);
1842 
1843 	svc_i3c_master_reset(master);
1844 
1845 	/* Register the master */
1846 	ret = i3c_master_register(&master->base, &pdev->dev,
1847 				  &svc_i3c_master_ops, false);
1848 	if (ret)
1849 		goto rpm_disable;
1850 
1851 	pm_runtime_mark_last_busy(&pdev->dev);
1852 	pm_runtime_put_autosuspend(&pdev->dev);
1853 
1854 	return 0;
1855 
1856 rpm_disable:
1857 	pm_runtime_dont_use_autosuspend(&pdev->dev);
1858 	pm_runtime_put_noidle(&pdev->dev);
1859 	pm_runtime_disable(&pdev->dev);
1860 	pm_runtime_set_suspended(&pdev->dev);
1861 
1862 err_disable_clks:
1863 	svc_i3c_master_unprepare_clks(master);
1864 
1865 	return ret;
1866 }
1867 
svc_i3c_master_remove(struct platform_device * pdev)1868 static void svc_i3c_master_remove(struct platform_device *pdev)
1869 {
1870 	struct svc_i3c_master *master = platform_get_drvdata(pdev);
1871 
1872 	cancel_work_sync(&master->hj_work);
1873 	i3c_master_unregister(&master->base);
1874 
1875 	pm_runtime_dont_use_autosuspend(&pdev->dev);
1876 	pm_runtime_disable(&pdev->dev);
1877 }
1878 
svc_i3c_save_regs(struct svc_i3c_master * master)1879 static void svc_i3c_save_regs(struct svc_i3c_master *master)
1880 {
1881 	master->saved_regs.mconfig = readl(master->regs + SVC_I3C_MCONFIG);
1882 	master->saved_regs.mdynaddr = readl(master->regs + SVC_I3C_MDYNADDR);
1883 }
1884 
svc_i3c_restore_regs(struct svc_i3c_master * master)1885 static void svc_i3c_restore_regs(struct svc_i3c_master *master)
1886 {
1887 	if (readl(master->regs + SVC_I3C_MDYNADDR) !=
1888 	    master->saved_regs.mdynaddr) {
1889 		writel(master->saved_regs.mconfig,
1890 		       master->regs + SVC_I3C_MCONFIG);
1891 		writel(master->saved_regs.mdynaddr,
1892 		       master->regs + SVC_I3C_MDYNADDR);
1893 	}
1894 }
1895 
svc_i3c_runtime_suspend(struct device * dev)1896 static int __maybe_unused svc_i3c_runtime_suspend(struct device *dev)
1897 {
1898 	struct svc_i3c_master *master = dev_get_drvdata(dev);
1899 
1900 	svc_i3c_save_regs(master);
1901 	svc_i3c_master_unprepare_clks(master);
1902 	pinctrl_pm_select_sleep_state(dev);
1903 
1904 	return 0;
1905 }
1906 
svc_i3c_runtime_resume(struct device * dev)1907 static int __maybe_unused svc_i3c_runtime_resume(struct device *dev)
1908 {
1909 	struct svc_i3c_master *master = dev_get_drvdata(dev);
1910 
1911 	pinctrl_pm_select_default_state(dev);
1912 	svc_i3c_master_prepare_clks(master);
1913 
1914 	svc_i3c_restore_regs(master);
1915 
1916 	return 0;
1917 }
1918 
1919 static const struct dev_pm_ops svc_i3c_pm_ops = {
1920 	SET_NOIRQ_SYSTEM_SLEEP_PM_OPS(pm_runtime_force_suspend,
1921 				      pm_runtime_force_resume)
1922 	SET_RUNTIME_PM_OPS(svc_i3c_runtime_suspend,
1923 			   svc_i3c_runtime_resume, NULL)
1924 };
1925 
1926 static const struct svc_i3c_drvdata npcm845_drvdata = {};
1927 
1928 static const struct svc_i3c_drvdata svc_default_drvdata = {};
1929 
1930 static const struct of_device_id svc_i3c_master_of_match_tbl[] = {
1931 	{ .compatible = "nuvoton,npcm845-i3c", .data = &npcm845_drvdata },
1932 	{ .compatible = "silvaco,i3c-master-v1", .data = &svc_default_drvdata },
1933 	{ /* sentinel */ },
1934 };
1935 MODULE_DEVICE_TABLE(of, svc_i3c_master_of_match_tbl);
1936 
1937 static struct platform_driver svc_i3c_master = {
1938 	.probe = svc_i3c_master_probe,
1939 	.remove_new = svc_i3c_master_remove,
1940 	.driver = {
1941 		.name = "silvaco-i3c-master",
1942 		.of_match_table = svc_i3c_master_of_match_tbl,
1943 		.pm = &svc_i3c_pm_ops,
1944 	},
1945 };
1946 module_platform_driver(svc_i3c_master);
1947 
1948 MODULE_AUTHOR("Conor Culhane <conor.culhane@silvaco.com>");
1949 MODULE_AUTHOR("Miquel Raynal <miquel.raynal@bootlin.com>");
1950 MODULE_DESCRIPTION("Silvaco dual-role I3C master driver");
1951 MODULE_LICENSE("GPL v2");
1952