• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * A fairly generic DMA-API to IOMMU-API glue layer.
4  *
5  * Copyright (C) 2014-2015 ARM Ltd.
6  *
7  * based in part on arch/arm/mm/dma-mapping.c:
8  * Copyright (C) 2000-2004 Russell King
9  */
10 
11 #include <linux/acpi_iort.h>
12 #include <linux/atomic.h>
13 #include <linux/crash_dump.h>
14 #include <linux/device.h>
15 #include <linux/dma-direct.h>
16 #include <linux/dma-map-ops.h>
17 #include <linux/gfp.h>
18 #include <linux/huge_mm.h>
19 #include <linux/iommu.h>
20 #include <linux/iommu-dma.h>
21 #include <linux/iova.h>
22 #include <linux/irq.h>
23 #include <linux/list_sort.h>
24 #include <linux/memremap.h>
25 #include <linux/mm.h>
26 #include <linux/mutex.h>
27 #include <linux/of_iommu.h>
28 #include <linux/pci.h>
29 #include <linux/pci-p2pdma.h>
30 #include <linux/scatterlist.h>
31 #include <linux/spinlock.h>
32 #include <linux/swiotlb.h>
33 #include <linux/vmalloc.h>
34 #include <trace/events/swiotlb.h>
35 #include <trace/hooks/iommu.h>
36 
37 #include "dma-iommu.h"
38 #include "iommu-pages.h"
39 
40 struct iommu_dma_msi_page {
41 	struct list_head	list;
42 	dma_addr_t		iova;
43 	phys_addr_t		phys;
44 };
45 
46 enum iommu_dma_cookie_type {
47 	IOMMU_DMA_IOVA_COOKIE,
48 	IOMMU_DMA_MSI_COOKIE,
49 };
50 
51 enum iommu_dma_queue_type {
52 	IOMMU_DMA_OPTS_PER_CPU_QUEUE,
53 	IOMMU_DMA_OPTS_SINGLE_QUEUE,
54 };
55 
56 struct iommu_dma_options {
57 	enum iommu_dma_queue_type qt;
58 	size_t		fq_size;
59 	unsigned int	fq_timeout;
60 };
61 
62 struct iommu_dma_cookie {
63 	enum iommu_dma_cookie_type	type;
64 	union {
65 		/* Full allocator for IOMMU_DMA_IOVA_COOKIE */
66 		struct {
67 			struct iova_domain	iovad;
68 			/* Flush queue */
69 			union {
70 				struct iova_fq	*single_fq;
71 				struct iova_fq	__percpu *percpu_fq;
72 			};
73 			/* Number of TLB flushes that have been started */
74 			atomic64_t		fq_flush_start_cnt;
75 			/* Number of TLB flushes that have been finished */
76 			atomic64_t		fq_flush_finish_cnt;
77 			/* Timer to regularily empty the flush queues */
78 			struct timer_list	fq_timer;
79 			/* 1 when timer is active, 0 when not */
80 			atomic_t		fq_timer_on;
81 		};
82 		/* Trivial linear page allocator for IOMMU_DMA_MSI_COOKIE */
83 		dma_addr_t		msi_iova;
84 	};
85 	struct list_head		msi_page_list;
86 
87 	/* Domain for flush queue callback; NULL if flush queue not in use */
88 	struct iommu_domain		*fq_domain;
89 	/* Options for dma-iommu use */
90 	struct iommu_dma_options	options;
91 	struct mutex			mutex;
92 };
93 
94 static DEFINE_STATIC_KEY_FALSE(iommu_deferred_attach_enabled);
95 bool iommu_dma_forcedac __read_mostly;
96 
iommu_dma_forcedac_setup(char * str)97 static int __init iommu_dma_forcedac_setup(char *str)
98 {
99 	int ret = kstrtobool(str, &iommu_dma_forcedac);
100 
101 	if (!ret && iommu_dma_forcedac)
102 		pr_info("Forcing DAC for PCI devices\n");
103 	return ret;
104 }
105 early_param("iommu.forcedac", iommu_dma_forcedac_setup);
106 
107 /* Number of entries per flush queue */
108 #define IOVA_DEFAULT_FQ_SIZE	256
109 #define IOVA_SINGLE_FQ_SIZE	32768
110 
111 /* Timeout (in ms) after which entries are flushed from the queue */
112 #define IOVA_DEFAULT_FQ_TIMEOUT	10
113 #define IOVA_SINGLE_FQ_TIMEOUT	1000
114 
115 /* Flush queue entry for deferred flushing */
116 struct iova_fq_entry {
117 	unsigned long iova_pfn;
118 	unsigned long pages;
119 	struct list_head freelist;
120 	u64 counter; /* Flush counter when this entry was added */
121 };
122 
123 /* Per-CPU flush queue structure */
124 struct iova_fq {
125 	spinlock_t lock;
126 	unsigned int head, tail;
127 	unsigned int mod_mask;
128 	struct iova_fq_entry entries[];
129 };
130 
131 #define fq_ring_for_each(i, fq) \
132 	for ((i) = (fq)->head; (i) != (fq)->tail; (i) = ((i) + 1) & (fq)->mod_mask)
133 
fq_full(struct iova_fq * fq)134 static inline bool fq_full(struct iova_fq *fq)
135 {
136 	assert_spin_locked(&fq->lock);
137 	return (((fq->tail + 1) & fq->mod_mask) == fq->head);
138 }
139 
fq_ring_add(struct iova_fq * fq)140 static inline unsigned int fq_ring_add(struct iova_fq *fq)
141 {
142 	unsigned int idx = fq->tail;
143 
144 	assert_spin_locked(&fq->lock);
145 
146 	fq->tail = (idx + 1) & fq->mod_mask;
147 
148 	return idx;
149 }
150 
fq_ring_free_locked(struct iommu_dma_cookie * cookie,struct iova_fq * fq)151 static void fq_ring_free_locked(struct iommu_dma_cookie *cookie, struct iova_fq *fq)
152 {
153 	u64 counter = atomic64_read(&cookie->fq_flush_finish_cnt);
154 	unsigned int idx;
155 
156 	assert_spin_locked(&fq->lock);
157 
158 	fq_ring_for_each(idx, fq) {
159 
160 		if (fq->entries[idx].counter >= counter)
161 			break;
162 
163 		iommu_put_pages_list(&fq->entries[idx].freelist);
164 		free_iova_fast(&cookie->iovad,
165 			       fq->entries[idx].iova_pfn,
166 			       fq->entries[idx].pages);
167 
168 		fq->head = (fq->head + 1) & fq->mod_mask;
169 	}
170 }
171 
fq_ring_free(struct iommu_dma_cookie * cookie,struct iova_fq * fq)172 static void fq_ring_free(struct iommu_dma_cookie *cookie, struct iova_fq *fq)
173 {
174 	unsigned long flags;
175 
176 	spin_lock_irqsave(&fq->lock, flags);
177 	fq_ring_free_locked(cookie, fq);
178 	spin_unlock_irqrestore(&fq->lock, flags);
179 }
180 
fq_flush_iotlb(struct iommu_dma_cookie * cookie)181 static void fq_flush_iotlb(struct iommu_dma_cookie *cookie)
182 {
183 	atomic64_inc(&cookie->fq_flush_start_cnt);
184 	cookie->fq_domain->ops->flush_iotlb_all(cookie->fq_domain);
185 	atomic64_inc(&cookie->fq_flush_finish_cnt);
186 }
187 
fq_flush_timeout(struct timer_list * t)188 static void fq_flush_timeout(struct timer_list *t)
189 {
190 	struct iommu_dma_cookie *cookie = from_timer(cookie, t, fq_timer);
191 	int cpu;
192 
193 	atomic_set(&cookie->fq_timer_on, 0);
194 	fq_flush_iotlb(cookie);
195 
196 	if (cookie->options.qt == IOMMU_DMA_OPTS_SINGLE_QUEUE) {
197 		fq_ring_free(cookie, cookie->single_fq);
198 	} else {
199 		for_each_possible_cpu(cpu)
200 			fq_ring_free(cookie, per_cpu_ptr(cookie->percpu_fq, cpu));
201 	}
202 }
203 
queue_iova(struct iommu_dma_cookie * cookie,unsigned long pfn,unsigned long pages,struct list_head * freelist)204 static void queue_iova(struct iommu_dma_cookie *cookie,
205 		unsigned long pfn, unsigned long pages,
206 		struct list_head *freelist)
207 {
208 	struct iova_fq *fq;
209 	unsigned long flags;
210 	unsigned int idx;
211 
212 	/*
213 	 * Order against the IOMMU driver's pagetable update from unmapping
214 	 * @pte, to guarantee that fq_flush_iotlb() observes that if called
215 	 * from a different CPU before we release the lock below. Full barrier
216 	 * so it also pairs with iommu_dma_init_fq() to avoid seeing partially
217 	 * written fq state here.
218 	 */
219 	smp_mb();
220 
221 	if (cookie->options.qt == IOMMU_DMA_OPTS_SINGLE_QUEUE)
222 		fq = cookie->single_fq;
223 	else
224 		fq = raw_cpu_ptr(cookie->percpu_fq);
225 
226 	spin_lock_irqsave(&fq->lock, flags);
227 
228 	/*
229 	 * First remove all entries from the flush queue that have already been
230 	 * flushed out on another CPU. This makes the fq_full() check below less
231 	 * likely to be true.
232 	 */
233 	fq_ring_free_locked(cookie, fq);
234 
235 	if (fq_full(fq)) {
236 		fq_flush_iotlb(cookie);
237 		fq_ring_free_locked(cookie, fq);
238 	}
239 
240 	idx = fq_ring_add(fq);
241 
242 	fq->entries[idx].iova_pfn = pfn;
243 	fq->entries[idx].pages    = pages;
244 	fq->entries[idx].counter  = atomic64_read(&cookie->fq_flush_start_cnt);
245 	list_splice(freelist, &fq->entries[idx].freelist);
246 
247 	spin_unlock_irqrestore(&fq->lock, flags);
248 
249 	/* Avoid false sharing as much as possible. */
250 	if (!atomic_read(&cookie->fq_timer_on) &&
251 	    !atomic_xchg(&cookie->fq_timer_on, 1))
252 		mod_timer(&cookie->fq_timer,
253 			  jiffies + msecs_to_jiffies(cookie->options.fq_timeout));
254 }
255 
iommu_dma_free_fq_single(struct iova_fq * fq)256 static void iommu_dma_free_fq_single(struct iova_fq *fq)
257 {
258 	int idx;
259 
260 	fq_ring_for_each(idx, fq)
261 		iommu_put_pages_list(&fq->entries[idx].freelist);
262 	vfree(fq);
263 }
264 
iommu_dma_free_fq_percpu(struct iova_fq __percpu * percpu_fq)265 static void iommu_dma_free_fq_percpu(struct iova_fq __percpu *percpu_fq)
266 {
267 	int cpu, idx;
268 
269 	/* The IOVAs will be torn down separately, so just free our queued pages */
270 	for_each_possible_cpu(cpu) {
271 		struct iova_fq *fq = per_cpu_ptr(percpu_fq, cpu);
272 
273 		fq_ring_for_each(idx, fq)
274 			iommu_put_pages_list(&fq->entries[idx].freelist);
275 	}
276 
277 	free_percpu(percpu_fq);
278 }
279 
iommu_dma_free_fq(struct iommu_dma_cookie * cookie)280 static void iommu_dma_free_fq(struct iommu_dma_cookie *cookie)
281 {
282 	if (!cookie->fq_domain)
283 		return;
284 
285 	del_timer_sync(&cookie->fq_timer);
286 	if (cookie->options.qt == IOMMU_DMA_OPTS_SINGLE_QUEUE)
287 		iommu_dma_free_fq_single(cookie->single_fq);
288 	else
289 		iommu_dma_free_fq_percpu(cookie->percpu_fq);
290 }
291 
iommu_dma_init_one_fq(struct iova_fq * fq,size_t fq_size)292 static void iommu_dma_init_one_fq(struct iova_fq *fq, size_t fq_size)
293 {
294 	int i;
295 
296 	fq->head = 0;
297 	fq->tail = 0;
298 	fq->mod_mask = fq_size - 1;
299 
300 	spin_lock_init(&fq->lock);
301 
302 	for (i = 0; i < fq_size; i++)
303 		INIT_LIST_HEAD(&fq->entries[i].freelist);
304 }
305 
iommu_dma_init_fq_single(struct iommu_dma_cookie * cookie)306 static int iommu_dma_init_fq_single(struct iommu_dma_cookie *cookie)
307 {
308 	size_t fq_size = cookie->options.fq_size;
309 	struct iova_fq *queue;
310 
311 	queue = vmalloc(struct_size(queue, entries, fq_size));
312 	if (!queue)
313 		return -ENOMEM;
314 	iommu_dma_init_one_fq(queue, fq_size);
315 	cookie->single_fq = queue;
316 
317 	return 0;
318 }
319 
iommu_dma_init_fq_percpu(struct iommu_dma_cookie * cookie)320 static int iommu_dma_init_fq_percpu(struct iommu_dma_cookie *cookie)
321 {
322 	size_t fq_size = cookie->options.fq_size;
323 	struct iova_fq __percpu *queue;
324 	int cpu;
325 
326 	queue = __alloc_percpu(struct_size(queue, entries, fq_size),
327 			       __alignof__(*queue));
328 	if (!queue)
329 		return -ENOMEM;
330 
331 	for_each_possible_cpu(cpu)
332 		iommu_dma_init_one_fq(per_cpu_ptr(queue, cpu), fq_size);
333 	cookie->percpu_fq = queue;
334 	return 0;
335 }
336 
337 /* sysfs updates are serialised by the mutex of the group owning @domain */
iommu_dma_init_fq(struct iommu_domain * domain)338 int iommu_dma_init_fq(struct iommu_domain *domain)
339 {
340 	struct iommu_dma_cookie *cookie = domain->iova_cookie;
341 	int rc;
342 
343 	if (cookie->fq_domain)
344 		return 0;
345 
346 	atomic64_set(&cookie->fq_flush_start_cnt,  0);
347 	atomic64_set(&cookie->fq_flush_finish_cnt, 0);
348 
349 	if (cookie->options.qt == IOMMU_DMA_OPTS_SINGLE_QUEUE)
350 		rc = iommu_dma_init_fq_single(cookie);
351 	else
352 		rc = iommu_dma_init_fq_percpu(cookie);
353 
354 	if (rc) {
355 		pr_warn("iova flush queue initialization failed\n");
356 		return -ENOMEM;
357 	}
358 
359 	timer_setup(&cookie->fq_timer, fq_flush_timeout, 0);
360 	atomic_set(&cookie->fq_timer_on, 0);
361 	/*
362 	 * Prevent incomplete fq state being observable. Pairs with path from
363 	 * __iommu_dma_unmap() through iommu_dma_free_iova() to queue_iova()
364 	 */
365 	smp_wmb();
366 	WRITE_ONCE(cookie->fq_domain, domain);
367 	return 0;
368 }
369 
cookie_msi_granule(struct iommu_dma_cookie * cookie)370 static inline size_t cookie_msi_granule(struct iommu_dma_cookie *cookie)
371 {
372 	if (cookie->type == IOMMU_DMA_IOVA_COOKIE)
373 		return cookie->iovad.granule;
374 	return PAGE_SIZE;
375 }
376 
cookie_alloc(enum iommu_dma_cookie_type type)377 static struct iommu_dma_cookie *cookie_alloc(enum iommu_dma_cookie_type type)
378 {
379 	struct iommu_dma_cookie *cookie;
380 
381 	cookie = kzalloc(sizeof(*cookie), GFP_KERNEL);
382 	if (cookie) {
383 		INIT_LIST_HEAD(&cookie->msi_page_list);
384 		cookie->type = type;
385 	}
386 	return cookie;
387 }
388 
389 /**
390  * iommu_get_dma_cookie - Acquire DMA-API resources for a domain
391  * @domain: IOMMU domain to prepare for DMA-API usage
392  */
iommu_get_dma_cookie(struct iommu_domain * domain)393 int iommu_get_dma_cookie(struct iommu_domain *domain)
394 {
395 	if (domain->iova_cookie)
396 		return -EEXIST;
397 
398 	domain->iova_cookie = cookie_alloc(IOMMU_DMA_IOVA_COOKIE);
399 	if (!domain->iova_cookie)
400 		return -ENOMEM;
401 
402 	mutex_init(&domain->iova_cookie->mutex);
403 	return 0;
404 }
405 
406 /**
407  * iommu_get_msi_cookie - Acquire just MSI remapping resources
408  * @domain: IOMMU domain to prepare
409  * @base: Start address of IOVA region for MSI mappings
410  *
411  * Users who manage their own IOVA allocation and do not want DMA API support,
412  * but would still like to take advantage of automatic MSI remapping, can use
413  * this to initialise their own domain appropriately. Users should reserve a
414  * contiguous IOVA region, starting at @base, large enough to accommodate the
415  * number of PAGE_SIZE mappings necessary to cover every MSI doorbell address
416  * used by the devices attached to @domain.
417  */
iommu_get_msi_cookie(struct iommu_domain * domain,dma_addr_t base)418 int iommu_get_msi_cookie(struct iommu_domain *domain, dma_addr_t base)
419 {
420 	struct iommu_dma_cookie *cookie;
421 
422 	if (domain->type != IOMMU_DOMAIN_UNMANAGED)
423 		return -EINVAL;
424 
425 	if (domain->iova_cookie)
426 		return -EEXIST;
427 
428 	cookie = cookie_alloc(IOMMU_DMA_MSI_COOKIE);
429 	if (!cookie)
430 		return -ENOMEM;
431 
432 	cookie->msi_iova = base;
433 	domain->iova_cookie = cookie;
434 	return 0;
435 }
436 EXPORT_SYMBOL(iommu_get_msi_cookie);
437 
438 /**
439  * iommu_put_dma_cookie - Release a domain's DMA mapping resources
440  * @domain: IOMMU domain previously prepared by iommu_get_dma_cookie() or
441  *          iommu_get_msi_cookie()
442  */
iommu_put_dma_cookie(struct iommu_domain * domain)443 void iommu_put_dma_cookie(struct iommu_domain *domain)
444 {
445 	struct iommu_dma_cookie *cookie = domain->iova_cookie;
446 	struct iommu_dma_msi_page *msi, *tmp;
447 
448 	if (!cookie)
449 		return;
450 
451 	if (cookie->type == IOMMU_DMA_IOVA_COOKIE && cookie->iovad.granule) {
452 		iommu_dma_free_fq(cookie);
453 		put_iova_domain(&cookie->iovad);
454 	}
455 
456 	list_for_each_entry_safe(msi, tmp, &cookie->msi_page_list, list) {
457 		list_del(&msi->list);
458 		kfree(msi);
459 	}
460 	kfree(cookie);
461 	domain->iova_cookie = NULL;
462 }
463 
464 /**
465  * iommu_dma_get_resv_regions - Reserved region driver helper
466  * @dev: Device from iommu_get_resv_regions()
467  * @list: Reserved region list from iommu_get_resv_regions()
468  *
469  * IOMMU drivers can use this to implement their .get_resv_regions callback
470  * for general non-IOMMU-specific reservations. Currently, this covers GICv3
471  * ITS region reservation on ACPI based ARM platforms that may require HW MSI
472  * reservation.
473  */
iommu_dma_get_resv_regions(struct device * dev,struct list_head * list)474 void iommu_dma_get_resv_regions(struct device *dev, struct list_head *list)
475 {
476 
477 	if (!is_of_node(dev_iommu_fwspec_get(dev)->iommu_fwnode))
478 		iort_iommu_get_resv_regions(dev, list);
479 
480 	if (dev->of_node)
481 		of_iommu_get_resv_regions(dev, list);
482 }
483 EXPORT_SYMBOL(iommu_dma_get_resv_regions);
484 
cookie_init_hw_msi_region(struct iommu_dma_cookie * cookie,phys_addr_t start,phys_addr_t end)485 static int cookie_init_hw_msi_region(struct iommu_dma_cookie *cookie,
486 		phys_addr_t start, phys_addr_t end)
487 {
488 	struct iova_domain *iovad = &cookie->iovad;
489 	struct iommu_dma_msi_page *msi_page;
490 	int i, num_pages;
491 
492 	start -= iova_offset(iovad, start);
493 	num_pages = iova_align(iovad, end - start) >> iova_shift(iovad);
494 
495 	for (i = 0; i < num_pages; i++) {
496 		msi_page = kmalloc(sizeof(*msi_page), GFP_KERNEL);
497 		if (!msi_page)
498 			return -ENOMEM;
499 
500 		msi_page->phys = start;
501 		msi_page->iova = start;
502 		INIT_LIST_HEAD(&msi_page->list);
503 		list_add(&msi_page->list, &cookie->msi_page_list);
504 		start += iovad->granule;
505 	}
506 
507 	return 0;
508 }
509 
iommu_dma_ranges_sort(void * priv,const struct list_head * a,const struct list_head * b)510 static int iommu_dma_ranges_sort(void *priv, const struct list_head *a,
511 		const struct list_head *b)
512 {
513 	struct resource_entry *res_a = list_entry(a, typeof(*res_a), node);
514 	struct resource_entry *res_b = list_entry(b, typeof(*res_b), node);
515 
516 	return res_a->res->start > res_b->res->start;
517 }
518 
iova_reserve_pci_windows(struct pci_dev * dev,struct iova_domain * iovad)519 static int iova_reserve_pci_windows(struct pci_dev *dev,
520 		struct iova_domain *iovad)
521 {
522 	struct pci_host_bridge *bridge = pci_find_host_bridge(dev->bus);
523 	struct resource_entry *window;
524 	unsigned long lo, hi;
525 	phys_addr_t start = 0, end;
526 
527 	resource_list_for_each_entry(window, &bridge->windows) {
528 		if (resource_type(window->res) != IORESOURCE_MEM)
529 			continue;
530 
531 		lo = iova_pfn(iovad, window->res->start - window->offset);
532 		hi = iova_pfn(iovad, window->res->end - window->offset);
533 		reserve_iova(iovad, lo, hi);
534 	}
535 
536 	/* Get reserved DMA windows from host bridge */
537 	list_sort(NULL, &bridge->dma_ranges, iommu_dma_ranges_sort);
538 	resource_list_for_each_entry(window, &bridge->dma_ranges) {
539 		end = window->res->start - window->offset;
540 resv_iova:
541 		if (end > start) {
542 			lo = iova_pfn(iovad, start);
543 			hi = iova_pfn(iovad, end);
544 			reserve_iova(iovad, lo, hi);
545 		} else if (end < start) {
546 			/* DMA ranges should be non-overlapping */
547 			dev_err(&dev->dev,
548 				"Failed to reserve IOVA [%pa-%pa]\n",
549 				&start, &end);
550 			return -EINVAL;
551 		}
552 
553 		start = window->res->end - window->offset + 1;
554 		/* If window is last entry */
555 		if (window->node.next == &bridge->dma_ranges &&
556 		    end != ~(phys_addr_t)0) {
557 			end = ~(phys_addr_t)0;
558 			goto resv_iova;
559 		}
560 	}
561 
562 	return 0;
563 }
564 
iova_reserve_iommu_regions(struct device * dev,struct iommu_domain * domain)565 static int iova_reserve_iommu_regions(struct device *dev,
566 		struct iommu_domain *domain)
567 {
568 	struct iommu_dma_cookie *cookie = domain->iova_cookie;
569 	struct iova_domain *iovad = &cookie->iovad;
570 	struct iommu_resv_region *region;
571 	LIST_HEAD(resv_regions);
572 	int ret = 0;
573 
574 	if (dev_is_pci(dev)) {
575 		ret = iova_reserve_pci_windows(to_pci_dev(dev), iovad);
576 		if (ret)
577 			return ret;
578 	}
579 
580 	iommu_get_resv_regions(dev, &resv_regions);
581 	list_for_each_entry(region, &resv_regions, list) {
582 		unsigned long lo, hi;
583 
584 		/* We ARE the software that manages these! */
585 		if (region->type == IOMMU_RESV_SW_MSI)
586 			continue;
587 
588 		lo = iova_pfn(iovad, region->start);
589 		hi = iova_pfn(iovad, region->start + region->length - 1);
590 		reserve_iova(iovad, lo, hi);
591 
592 		if (region->type == IOMMU_RESV_MSI)
593 			ret = cookie_init_hw_msi_region(cookie, region->start,
594 					region->start + region->length);
595 		if (ret)
596 			break;
597 	}
598 	iommu_put_resv_regions(dev, &resv_regions);
599 
600 	return ret;
601 }
602 
dev_requires_dma_protection(struct device * dev)603 static bool dev_requires_dma_protection(struct device *dev)
604 {
605 	return dev_is_pci(dev) && to_pci_dev(dev)->requires_dma_protection;
606 }
607 
dev_use_swiotlb(struct device * dev,size_t size,enum dma_data_direction dir)608 static bool dev_use_swiotlb(struct device *dev, size_t size,
609 			    enum dma_data_direction dir)
610 {
611 	return IS_ENABLED(CONFIG_SWIOTLB) &&
612 		(dev_requires_dma_protection(dev) ||
613 		 dma_kmalloc_needs_bounce(dev, size, dir));
614 }
615 
dev_use_sg_swiotlb(struct device * dev,struct scatterlist * sg,int nents,enum dma_data_direction dir)616 static bool dev_use_sg_swiotlb(struct device *dev, struct scatterlist *sg,
617 			       int nents, enum dma_data_direction dir)
618 {
619 	struct scatterlist *s;
620 	int i;
621 
622 	if (!IS_ENABLED(CONFIG_SWIOTLB))
623 		return false;
624 
625 	if (dev_requires_dma_protection(dev))
626 		return true;
627 
628 	/*
629 	 * If kmalloc() buffers are not DMA-safe for this device and
630 	 * direction, check the individual lengths in the sg list. If any
631 	 * element is deemed unsafe, use the swiotlb for bouncing.
632 	 */
633 	if (!dma_kmalloc_safe(dev, dir)) {
634 		for_each_sg(sg, s, nents, i)
635 			if (!dma_kmalloc_size_aligned(s->length))
636 				return true;
637 	}
638 
639 	return false;
640 }
641 
642 /**
643  * iommu_dma_init_options - Initialize dma-iommu options
644  * @options: The options to be initialized
645  * @dev: Device the options are set for
646  *
647  * This allows tuning dma-iommu specific to device properties
648  */
iommu_dma_init_options(struct iommu_dma_options * options,struct device * dev)649 static void iommu_dma_init_options(struct iommu_dma_options *options,
650 				   struct device *dev)
651 {
652 	/* Shadowing IOTLB flushes do better with a single large queue */
653 	if (dev->iommu->shadow_on_flush) {
654 		options->qt = IOMMU_DMA_OPTS_SINGLE_QUEUE;
655 		options->fq_timeout = IOVA_SINGLE_FQ_TIMEOUT;
656 		options->fq_size = IOVA_SINGLE_FQ_SIZE;
657 	} else {
658 		options->qt = IOMMU_DMA_OPTS_PER_CPU_QUEUE;
659 		options->fq_size = IOVA_DEFAULT_FQ_SIZE;
660 		options->fq_timeout = IOVA_DEFAULT_FQ_TIMEOUT;
661 	}
662 }
663 
664 /**
665  * iommu_dma_init_domain - Initialise a DMA mapping domain
666  * @domain: IOMMU domain previously prepared by iommu_get_dma_cookie()
667  * @dev: Device the domain is being initialised for
668  *
669  * If the geometry and dma_range_map include address 0, we reserve that page
670  * to ensure it is an invalid IOVA. It is safe to reinitialise a domain, but
671  * any change which could make prior IOVAs invalid will fail.
672  */
iommu_dma_init_domain(struct iommu_domain * domain,struct device * dev)673 static int iommu_dma_init_domain(struct iommu_domain *domain, struct device *dev)
674 {
675 	struct iommu_dma_cookie *cookie = domain->iova_cookie;
676 	const struct bus_dma_region *map = dev->dma_range_map;
677 	unsigned long order, base_pfn;
678 	struct iova_domain *iovad;
679 	int ret;
680 
681 	if (!cookie || cookie->type != IOMMU_DMA_IOVA_COOKIE)
682 		return -EINVAL;
683 
684 	iovad = &cookie->iovad;
685 
686 	/* Use the smallest supported page size for IOVA granularity */
687 	order = __ffs(domain->pgsize_bitmap);
688 	base_pfn = 1;
689 
690 	/* Check the domain allows at least some access to the device... */
691 	if (map) {
692 		if (dma_range_map_min(map) > domain->geometry.aperture_end ||
693 		    dma_range_map_max(map) < domain->geometry.aperture_start) {
694 			pr_warn("specified DMA range outside IOMMU capability\n");
695 			return -EFAULT;
696 		}
697 	}
698 	/* ...then finally give it a kicking to make sure it fits */
699 	base_pfn = max_t(unsigned long, base_pfn,
700 			 domain->geometry.aperture_start >> order);
701 
702 	/* start_pfn is always nonzero for an already-initialised domain */
703 	mutex_lock(&cookie->mutex);
704 	if (iovad->start_pfn) {
705 		if (1UL << order != iovad->granule ||
706 		    base_pfn != iovad->start_pfn) {
707 			pr_warn("Incompatible range for DMA domain\n");
708 			ret = -EFAULT;
709 			goto done_unlock;
710 		}
711 
712 		ret = 0;
713 		goto done_unlock;
714 	}
715 
716 	init_iova_domain(iovad, 1UL << order, base_pfn);
717 
718 	trace_android_rvh_iommu_iovad_init_alloc_algo(dev, iovad);
719 
720 	ret = iova_domain_init_rcaches(iovad);
721 	if (ret)
722 		goto done_unlock;
723 
724 	iommu_dma_init_options(&cookie->options, dev);
725 
726 	/* If the FQ fails we can simply fall back to strict mode */
727 	if (domain->type == IOMMU_DOMAIN_DMA_FQ &&
728 	    (!device_iommu_capable(dev, IOMMU_CAP_DEFERRED_FLUSH) || iommu_dma_init_fq(domain)))
729 		domain->type = IOMMU_DOMAIN_DMA;
730 
731 	ret = iova_reserve_iommu_regions(dev, domain);
732 
733 done_unlock:
734 	mutex_unlock(&cookie->mutex);
735 	return ret;
736 }
737 
738 /**
739  * dma_info_to_prot - Translate DMA API directions and attributes to IOMMU API
740  *                    page flags.
741  * @dir: Direction of DMA transfer
742  * @coherent: Is the DMA master cache-coherent?
743  * @attrs: DMA attributes for the mapping
744  *
745  * Return: corresponding IOMMU API page protection flags
746  */
dma_info_to_prot(enum dma_data_direction dir,bool coherent,unsigned long attrs)747 static int dma_info_to_prot(enum dma_data_direction dir, bool coherent,
748 		     unsigned long attrs)
749 {
750 	int prot = coherent ? IOMMU_CACHE : 0;
751 
752 	if (attrs & DMA_ATTR_PRIVILEGED)
753 		prot |= IOMMU_PRIV;
754 
755 	trace_android_rvh_iommu_dma_info_to_prot(attrs, &prot);
756 
757 	switch (dir) {
758 	case DMA_BIDIRECTIONAL:
759 		return prot | IOMMU_READ | IOMMU_WRITE;
760 	case DMA_TO_DEVICE:
761 		return prot | IOMMU_READ;
762 	case DMA_FROM_DEVICE:
763 		return prot | IOMMU_WRITE;
764 	default:
765 		return 0;
766 	}
767 }
768 
iommu_dma_alloc_iova(struct iommu_domain * domain,size_t size,u64 dma_limit,struct device * dev)769 static dma_addr_t iommu_dma_alloc_iova(struct iommu_domain *domain,
770 		size_t size, u64 dma_limit, struct device *dev)
771 {
772 	struct iommu_dma_cookie *cookie = domain->iova_cookie;
773 	struct iova_domain *iovad = &cookie->iovad;
774 	unsigned long shift, iova_len, iova;
775 
776 	if (cookie->type == IOMMU_DMA_MSI_COOKIE) {
777 		cookie->msi_iova += size;
778 		return cookie->msi_iova - size;
779 	}
780 
781 	shift = iova_shift(iovad);
782 	iova_len = size >> shift;
783 
784 	dma_limit = min_not_zero(dma_limit, dev->bus_dma_limit);
785 
786 	if (domain->geometry.force_aperture)
787 		dma_limit = min(dma_limit, (u64)domain->geometry.aperture_end);
788 
789 	/*
790 	 * Try to use all the 32-bit PCI addresses first. The original SAC vs.
791 	 * DAC reasoning loses relevance with PCIe, but enough hardware and
792 	 * firmware bugs are still lurking out there that it's safest not to
793 	 * venture into the 64-bit space until necessary.
794 	 *
795 	 * If your device goes wrong after seeing the notice then likely either
796 	 * its driver is not setting DMA masks accurately, the hardware has
797 	 * some inherent bug in handling >32-bit addresses, or not all the
798 	 * expected address bits are wired up between the device and the IOMMU.
799 	 */
800 	if (dma_limit > DMA_BIT_MASK(32) && dev->iommu->pci_32bit_workaround) {
801 		iova = alloc_iova_fast(iovad, iova_len,
802 				       DMA_BIT_MASK(32) >> shift, false);
803 		if (iova)
804 			goto done;
805 
806 		dev->iommu->pci_32bit_workaround = false;
807 		dev_notice(dev, "Using %d-bit DMA addresses\n", bits_per(dma_limit));
808 	}
809 
810 	iova = alloc_iova_fast(iovad, iova_len, dma_limit >> shift, true);
811 done:
812 	trace_android_vh_iommu_iovad_alloc_iova(dev, iovad, (dma_addr_t)iova << shift, size);
813 	return (dma_addr_t)iova << shift;
814 }
815 
iommu_dma_free_iova(struct iommu_dma_cookie * cookie,dma_addr_t iova,size_t size,struct iommu_iotlb_gather * gather)816 static void iommu_dma_free_iova(struct iommu_dma_cookie *cookie,
817 		dma_addr_t iova, size_t size, struct iommu_iotlb_gather *gather)
818 {
819 	struct iova_domain *iovad = &cookie->iovad;
820 
821 	/* The MSI case is only ever cleaning up its most recent allocation */
822 	if (cookie->type == IOMMU_DMA_MSI_COOKIE)
823 		cookie->msi_iova -= size;
824 	else if (gather && gather->queued)
825 		queue_iova(cookie, iova_pfn(iovad, iova),
826 				size >> iova_shift(iovad),
827 				&gather->freelist);
828 	else
829 		free_iova_fast(iovad, iova_pfn(iovad, iova),
830 				size >> iova_shift(iovad));
831 
832 	trace_android_vh_iommu_iovad_free_iova(iovad, iova, size);
833 }
834 
__iommu_dma_unmap(struct device * dev,dma_addr_t dma_addr,size_t size)835 static void __iommu_dma_unmap(struct device *dev, dma_addr_t dma_addr,
836 		size_t size)
837 {
838 	struct iommu_domain *domain = iommu_get_dma_domain(dev);
839 	struct iommu_dma_cookie *cookie = domain->iova_cookie;
840 	struct iova_domain *iovad = &cookie->iovad;
841 	size_t iova_off = iova_offset(iovad, dma_addr);
842 	struct iommu_iotlb_gather iotlb_gather;
843 	size_t unmapped;
844 
845 	dma_addr -= iova_off;
846 	size = iova_align(iovad, size + iova_off);
847 	iommu_iotlb_gather_init(&iotlb_gather);
848 	iotlb_gather.queued = READ_ONCE(cookie->fq_domain);
849 
850 	unmapped = iommu_unmap_fast(domain, dma_addr, size, &iotlb_gather);
851 	WARN_ON(unmapped != size);
852 
853 	if (!iotlb_gather.queued)
854 		iommu_iotlb_sync(domain, &iotlb_gather);
855 	iommu_dma_free_iova(cookie, dma_addr, size, &iotlb_gather);
856 }
857 
__iommu_dma_map(struct device * dev,phys_addr_t phys,size_t size,int prot,u64 dma_mask)858 static dma_addr_t __iommu_dma_map(struct device *dev, phys_addr_t phys,
859 		size_t size, int prot, u64 dma_mask)
860 {
861 	struct iommu_domain *domain = iommu_get_dma_domain(dev);
862 	struct iommu_dma_cookie *cookie = domain->iova_cookie;
863 	struct iova_domain *iovad = &cookie->iovad;
864 	size_t iova_off = iova_offset(iovad, phys);
865 	dma_addr_t iova;
866 
867 	if (static_branch_unlikely(&iommu_deferred_attach_enabled) &&
868 	    iommu_deferred_attach(dev, domain))
869 		return DMA_MAPPING_ERROR;
870 
871 	/* If anyone ever wants this we'd need support in the IOVA allocator */
872 	if (dev_WARN_ONCE(dev, dma_get_min_align_mask(dev) > iova_mask(iovad),
873 	    "Unsupported alignment constraint\n"))
874 		return DMA_MAPPING_ERROR;
875 
876 	size = iova_align(iovad, size + iova_off);
877 
878 	iova = iommu_dma_alloc_iova(domain, size, dma_mask, dev);
879 	if (!iova)
880 		return DMA_MAPPING_ERROR;
881 
882 	if (iommu_map(domain, iova, phys - iova_off, size, prot, GFP_ATOMIC)) {
883 		iommu_dma_free_iova(cookie, iova, size, NULL);
884 		return DMA_MAPPING_ERROR;
885 	}
886 	return iova + iova_off;
887 }
888 
__iommu_dma_free_pages(struct page ** pages,int count)889 static void __iommu_dma_free_pages(struct page **pages, int count)
890 {
891 	while (count--)
892 		__free_page(pages[count]);
893 	kvfree(pages);
894 }
895 
__iommu_dma_alloc_pages(struct device * dev,unsigned int count,unsigned long order_mask,gfp_t gfp)896 static struct page **__iommu_dma_alloc_pages(struct device *dev,
897 		unsigned int count, unsigned long order_mask, gfp_t gfp)
898 {
899 	struct page **pages;
900 	unsigned int i = 0, nid = dev_to_node(dev);
901 
902 	order_mask &= GENMASK(MAX_PAGE_ORDER, 0);
903 	if (!order_mask)
904 		return NULL;
905 
906 	pages = kvcalloc(count, sizeof(*pages), GFP_KERNEL);
907 	if (!pages)
908 		return NULL;
909 
910 	/* IOMMU can map any pages, so himem can also be used here */
911 	gfp |= __GFP_NOWARN | __GFP_HIGHMEM;
912 
913 	while (count) {
914 		struct page *page = NULL;
915 		unsigned int order_size;
916 
917 		/*
918 		 * Higher-order allocations are a convenience rather
919 		 * than a necessity, hence using __GFP_NORETRY until
920 		 * falling back to minimum-order allocations.
921 		 */
922 		for (order_mask &= GENMASK(__fls(count), 0);
923 		     order_mask; order_mask &= ~order_size) {
924 			unsigned int order = __fls(order_mask);
925 			gfp_t alloc_flags = gfp;
926 
927 			order_size = 1U << order;
928 			if (order_mask > order_size)
929 				alloc_flags |= __GFP_NORETRY;
930 			trace_android_vh_adjust_alloc_flags(order, &alloc_flags);
931 			page = alloc_pages_node(nid, alloc_flags, order);
932 			if (!page)
933 				continue;
934 			if (order)
935 				split_page(page, order);
936 			break;
937 		}
938 		if (!page) {
939 			__iommu_dma_free_pages(pages, i);
940 			return NULL;
941 		}
942 		count -= order_size;
943 		while (order_size--)
944 			pages[i++] = page++;
945 	}
946 	return pages;
947 }
948 
949 /*
950  * If size is less than PAGE_SIZE, then a full CPU page will be allocated,
951  * but an IOMMU which supports smaller pages might not map the whole thing.
952  */
__iommu_dma_alloc_noncontiguous(struct device * dev,size_t size,struct sg_table * sgt,gfp_t gfp,unsigned long attrs)953 static struct page **__iommu_dma_alloc_noncontiguous(struct device *dev,
954 		size_t size, struct sg_table *sgt, gfp_t gfp, unsigned long attrs)
955 {
956 	struct iommu_domain *domain = iommu_get_dma_domain(dev);
957 	struct iommu_dma_cookie *cookie = domain->iova_cookie;
958 	struct iova_domain *iovad = &cookie->iovad;
959 	bool coherent = dev_is_dma_coherent(dev);
960 	int ioprot = dma_info_to_prot(DMA_BIDIRECTIONAL, coherent, attrs);
961 	unsigned int count, min_size, alloc_sizes = domain->pgsize_bitmap;
962 	struct page **pages;
963 	dma_addr_t iova;
964 	ssize_t ret;
965 
966 	if (static_branch_unlikely(&iommu_deferred_attach_enabled) &&
967 	    iommu_deferred_attach(dev, domain))
968 		return NULL;
969 
970 	min_size = alloc_sizes & -alloc_sizes;
971 	if (min_size < PAGE_SIZE) {
972 		min_size = PAGE_SIZE;
973 		alloc_sizes |= PAGE_SIZE;
974 	} else {
975 		size = ALIGN(size, min_size);
976 	}
977 	if (attrs & DMA_ATTR_ALLOC_SINGLE_PAGES)
978 		alloc_sizes = min_size;
979 
980 	count = PAGE_ALIGN(size) >> PAGE_SHIFT;
981 	pages = __iommu_dma_alloc_pages(dev, count, alloc_sizes >> PAGE_SHIFT,
982 					gfp);
983 	if (!pages)
984 		return NULL;
985 
986 	size = iova_align(iovad, size);
987 	iova = iommu_dma_alloc_iova(domain, size, dev->coherent_dma_mask, dev);
988 	if (!iova)
989 		goto out_free_pages;
990 
991 	/*
992 	 * Remove the zone/policy flags from the GFP - these are applied to the
993 	 * __iommu_dma_alloc_pages() but are not used for the supporting
994 	 * internal allocations that follow.
995 	 */
996 	gfp &= ~(__GFP_DMA | __GFP_DMA32 | __GFP_HIGHMEM | __GFP_COMP);
997 
998 	if (sg_alloc_table_from_pages(sgt, pages, count, 0, size, gfp))
999 		goto out_free_iova;
1000 
1001 	if (!(ioprot & IOMMU_CACHE)) {
1002 		struct scatterlist *sg;
1003 		int i;
1004 
1005 		for_each_sg(sgt->sgl, sg, sgt->orig_nents, i)
1006 			arch_dma_prep_coherent(sg_page(sg), sg->length);
1007 	}
1008 
1009 	ret = iommu_map_sg(domain, iova, sgt->sgl, sgt->orig_nents, ioprot,
1010 			   gfp);
1011 	if (ret < 0 || ret < size)
1012 		goto out_free_sg;
1013 
1014 	sgt->sgl->dma_address = iova;
1015 	sgt->sgl->dma_length = size;
1016 	return pages;
1017 
1018 out_free_sg:
1019 	sg_free_table(sgt);
1020 out_free_iova:
1021 	iommu_dma_free_iova(cookie, iova, size, NULL);
1022 out_free_pages:
1023 	__iommu_dma_free_pages(pages, count);
1024 	return NULL;
1025 }
1026 
iommu_dma_alloc_remap(struct device * dev,size_t size,dma_addr_t * dma_handle,gfp_t gfp,unsigned long attrs)1027 static void *iommu_dma_alloc_remap(struct device *dev, size_t size,
1028 		dma_addr_t *dma_handle, gfp_t gfp, unsigned long attrs)
1029 {
1030 	struct page **pages;
1031 	struct sg_table sgt;
1032 	void *vaddr;
1033 	pgprot_t prot = dma_pgprot(dev, PAGE_KERNEL, attrs);
1034 
1035 	pages = __iommu_dma_alloc_noncontiguous(dev, size, &sgt, gfp, attrs);
1036 	if (!pages)
1037 		return NULL;
1038 	*dma_handle = sgt.sgl->dma_address;
1039 	sg_free_table(&sgt);
1040 	vaddr = dma_common_pages_remap(pages, size, prot,
1041 			__builtin_return_address(0));
1042 	if (!vaddr)
1043 		goto out_unmap;
1044 	return vaddr;
1045 
1046 out_unmap:
1047 	__iommu_dma_unmap(dev, *dma_handle, size);
1048 	__iommu_dma_free_pages(pages, PAGE_ALIGN(size) >> PAGE_SHIFT);
1049 	return NULL;
1050 }
1051 
1052 /*
1053  * This is the actual return value from the iommu_dma_alloc_noncontiguous.
1054  *
1055  * The users of the DMA API should only care about the sg_table, but to make
1056  * the DMA-API internal vmaping and freeing easier we stash away the page
1057  * array as well (except for the fallback case).  This can go away any time,
1058  * e.g. when a vmap-variant that takes a scatterlist comes along.
1059  */
1060 struct dma_sgt_handle {
1061 	struct sg_table sgt;
1062 	struct page **pages;
1063 };
1064 #define sgt_handle(sgt) \
1065 	container_of((sgt), struct dma_sgt_handle, sgt)
1066 
iommu_dma_alloc_noncontiguous(struct device * dev,size_t size,enum dma_data_direction dir,gfp_t gfp,unsigned long attrs)1067 struct sg_table *iommu_dma_alloc_noncontiguous(struct device *dev, size_t size,
1068 	       enum dma_data_direction dir, gfp_t gfp, unsigned long attrs)
1069 {
1070 	struct dma_sgt_handle *sh;
1071 
1072 	sh = kmalloc(sizeof(*sh), gfp);
1073 	if (!sh)
1074 		return NULL;
1075 
1076 	sh->pages = __iommu_dma_alloc_noncontiguous(dev, size, &sh->sgt, gfp, attrs);
1077 	if (!sh->pages) {
1078 		kfree(sh);
1079 		return NULL;
1080 	}
1081 	return &sh->sgt;
1082 }
1083 
iommu_dma_free_noncontiguous(struct device * dev,size_t size,struct sg_table * sgt,enum dma_data_direction dir)1084 void iommu_dma_free_noncontiguous(struct device *dev, size_t size,
1085 		struct sg_table *sgt, enum dma_data_direction dir)
1086 {
1087 	struct dma_sgt_handle *sh = sgt_handle(sgt);
1088 
1089 	__iommu_dma_unmap(dev, sgt->sgl->dma_address, size);
1090 	__iommu_dma_free_pages(sh->pages, PAGE_ALIGN(size) >> PAGE_SHIFT);
1091 	sg_free_table(&sh->sgt);
1092 	kfree(sh);
1093 }
1094 
iommu_dma_vmap_noncontiguous(struct device * dev,size_t size,struct sg_table * sgt)1095 void *iommu_dma_vmap_noncontiguous(struct device *dev, size_t size,
1096 		struct sg_table *sgt)
1097 {
1098 	unsigned long count = PAGE_ALIGN(size) >> PAGE_SHIFT;
1099 
1100 	return vmap(sgt_handle(sgt)->pages, count, VM_MAP, PAGE_KERNEL);
1101 }
1102 
iommu_dma_mmap_noncontiguous(struct device * dev,struct vm_area_struct * vma,size_t size,struct sg_table * sgt)1103 int iommu_dma_mmap_noncontiguous(struct device *dev, struct vm_area_struct *vma,
1104 		size_t size, struct sg_table *sgt)
1105 {
1106 	unsigned long count = PAGE_ALIGN(size) >> PAGE_SHIFT;
1107 
1108 	if (vma->vm_pgoff >= count || vma_pages(vma) > count - vma->vm_pgoff)
1109 		return -ENXIO;
1110 	return vm_map_pages(vma, sgt_handle(sgt)->pages, count);
1111 }
1112 
iommu_dma_sync_single_for_cpu(struct device * dev,dma_addr_t dma_handle,size_t size,enum dma_data_direction dir)1113 void iommu_dma_sync_single_for_cpu(struct device *dev, dma_addr_t dma_handle,
1114 		size_t size, enum dma_data_direction dir)
1115 {
1116 	phys_addr_t phys;
1117 
1118 	if (dev_is_dma_coherent(dev) && !dev_use_swiotlb(dev, size, dir))
1119 		return;
1120 
1121 	phys = iommu_iova_to_phys(iommu_get_dma_domain(dev), dma_handle);
1122 	if (!dev_is_dma_coherent(dev))
1123 		arch_sync_dma_for_cpu(phys, size, dir);
1124 
1125 	swiotlb_sync_single_for_cpu(dev, phys, size, dir);
1126 }
1127 
iommu_dma_sync_single_for_device(struct device * dev,dma_addr_t dma_handle,size_t size,enum dma_data_direction dir)1128 void iommu_dma_sync_single_for_device(struct device *dev, dma_addr_t dma_handle,
1129 		size_t size, enum dma_data_direction dir)
1130 {
1131 	phys_addr_t phys;
1132 
1133 	if (dev_is_dma_coherent(dev) && !dev_use_swiotlb(dev, size, dir))
1134 		return;
1135 
1136 	phys = iommu_iova_to_phys(iommu_get_dma_domain(dev), dma_handle);
1137 	swiotlb_sync_single_for_device(dev, phys, size, dir);
1138 
1139 	if (!dev_is_dma_coherent(dev))
1140 		arch_sync_dma_for_device(phys, size, dir);
1141 }
1142 
iommu_dma_sync_sg_for_cpu(struct device * dev,struct scatterlist * sgl,int nelems,enum dma_data_direction dir)1143 void iommu_dma_sync_sg_for_cpu(struct device *dev, struct scatterlist *sgl,
1144 		int nelems, enum dma_data_direction dir)
1145 {
1146 	struct scatterlist *sg;
1147 	int i;
1148 
1149 	if (sg_dma_is_swiotlb(sgl))
1150 		for_each_sg(sgl, sg, nelems, i)
1151 			iommu_dma_sync_single_for_cpu(dev, sg_dma_address(sg),
1152 						      sg->length, dir);
1153 	else if (!dev_is_dma_coherent(dev))
1154 		for_each_sg(sgl, sg, nelems, i)
1155 			arch_sync_dma_for_cpu(sg_phys(sg), sg->length, dir);
1156 }
1157 
iommu_dma_sync_sg_for_device(struct device * dev,struct scatterlist * sgl,int nelems,enum dma_data_direction dir)1158 void iommu_dma_sync_sg_for_device(struct device *dev, struct scatterlist *sgl,
1159 		int nelems, enum dma_data_direction dir)
1160 {
1161 	struct scatterlist *sg;
1162 	int i;
1163 
1164 	if (sg_dma_is_swiotlb(sgl))
1165 		for_each_sg(sgl, sg, nelems, i)
1166 			iommu_dma_sync_single_for_device(dev,
1167 							 sg_dma_address(sg),
1168 							 sg->length, dir);
1169 	else if (!dev_is_dma_coherent(dev))
1170 		for_each_sg(sgl, sg, nelems, i)
1171 			arch_sync_dma_for_device(sg_phys(sg), sg->length, dir);
1172 }
1173 
iommu_dma_map_swiotlb(struct device * dev,phys_addr_t phys,size_t size,enum dma_data_direction dir,unsigned long attrs)1174 static phys_addr_t iommu_dma_map_swiotlb(struct device *dev, phys_addr_t phys,
1175 		size_t size, enum dma_data_direction dir, unsigned long attrs)
1176 {
1177 	struct iommu_domain *domain = iommu_get_dma_domain(dev);
1178 	struct iova_domain *iovad = &domain->iova_cookie->iovad;
1179 
1180 	if (!is_swiotlb_active(dev)) {
1181 		dev_warn_once(dev, "DMA bounce buffers are inactive, unable to map unaligned transaction.\n");
1182 		return (phys_addr_t)DMA_MAPPING_ERROR;
1183 	}
1184 
1185 	trace_swiotlb_bounced(dev, phys, size);
1186 
1187 	phys = swiotlb_tbl_map_single(dev, phys, size, iova_mask(iovad), dir,
1188 			attrs);
1189 
1190 	/*
1191 	 * Zero the pre- and post-padding to prevent exposing kernel data to devices
1192 	 * requiring DMA protection.
1193 	 * swiotlb_tbl_map_single() has initialized the bounce buffer proper to
1194 	 * the contents of the original memory buffer.
1195 	 */
1196 	if (phys != (phys_addr_t)DMA_MAPPING_ERROR && dev_requires_dma_protection(dev)) {
1197 		size_t start, virt = (size_t)phys_to_virt(phys);
1198 
1199 		/* Pre-padding */
1200 		start = iova_align_down(iovad, virt);
1201 		memset((void *)start, 0, virt - start);
1202 
1203 		/* Post-padding */
1204 		start = virt + size;
1205 		memset((void *)start, 0, iova_align(iovad, start) - start);
1206 	}
1207 
1208 	return phys;
1209 }
1210 
1211 /*
1212  * Checks if a physical buffer has unaligned boundaries with respect to
1213  * the IOMMU granule. Returns non-zero if either the start or end
1214  * address is not aligned to the granule boundary.
1215  */
iova_unaligned(struct iova_domain * iovad,phys_addr_t phys,size_t size)1216 static inline size_t iova_unaligned(struct iova_domain *iovad, phys_addr_t phys,
1217 				    size_t size)
1218 {
1219 	return iova_offset(iovad, phys | size);
1220 }
1221 
iommu_dma_map_page(struct device * dev,struct page * page,unsigned long offset,size_t size,enum dma_data_direction dir,unsigned long attrs)1222 dma_addr_t iommu_dma_map_page(struct device *dev, struct page *page,
1223 	      unsigned long offset, size_t size, enum dma_data_direction dir,
1224 	      unsigned long attrs)
1225 {
1226 	phys_addr_t phys = page_to_phys(page) + offset;
1227 	bool coherent = dev_is_dma_coherent(dev);
1228 	int prot = dma_info_to_prot(dir, coherent, attrs);
1229 	struct iommu_domain *domain = iommu_get_dma_domain(dev);
1230 	struct iommu_dma_cookie *cookie = domain->iova_cookie;
1231 	struct iova_domain *iovad = &cookie->iovad;
1232 	dma_addr_t iova, dma_mask = dma_get_mask(dev);
1233 
1234 	/*
1235 	 * If both the physical buffer start address and size are page aligned,
1236 	 * we don't need to use a bounce page.
1237 	 */
1238 	if (dev_use_swiotlb(dev, size, dir) &&
1239 	    iova_unaligned(iovad, phys, size)) {
1240 		phys = iommu_dma_map_swiotlb(dev, phys, size, dir, attrs);
1241 		if (phys == (phys_addr_t)DMA_MAPPING_ERROR)
1242 			return DMA_MAPPING_ERROR;
1243 	}
1244 
1245 	if (!coherent && !(attrs & DMA_ATTR_SKIP_CPU_SYNC))
1246 		arch_sync_dma_for_device(phys, size, dir);
1247 
1248 	iova = __iommu_dma_map(dev, phys, size, prot, dma_mask);
1249 	if (iova == DMA_MAPPING_ERROR)
1250 		swiotlb_tbl_unmap_single(dev, phys, size, dir, attrs);
1251 	return iova;
1252 }
1253 
iommu_dma_unmap_page(struct device * dev,dma_addr_t dma_handle,size_t size,enum dma_data_direction dir,unsigned long attrs)1254 void iommu_dma_unmap_page(struct device *dev, dma_addr_t dma_handle,
1255 		size_t size, enum dma_data_direction dir, unsigned long attrs)
1256 {
1257 	struct iommu_domain *domain = iommu_get_dma_domain(dev);
1258 	phys_addr_t phys;
1259 
1260 	phys = iommu_iova_to_phys(domain, dma_handle);
1261 	if (WARN_ON(!phys))
1262 		return;
1263 
1264 	if (!(attrs & DMA_ATTR_SKIP_CPU_SYNC) && !dev_is_dma_coherent(dev))
1265 		arch_sync_dma_for_cpu(phys, size, dir);
1266 
1267 	__iommu_dma_unmap(dev, dma_handle, size);
1268 
1269 	swiotlb_tbl_unmap_single(dev, phys, size, dir, attrs);
1270 }
1271 
1272 /*
1273  * Prepare a successfully-mapped scatterlist to give back to the caller.
1274  *
1275  * At this point the segments are already laid out by iommu_dma_map_sg() to
1276  * avoid individually crossing any boundaries, so we merely need to check a
1277  * segment's start address to avoid concatenating across one.
1278  */
__finalise_sg(struct device * dev,struct scatterlist * sg,int nents,dma_addr_t dma_addr)1279 static int __finalise_sg(struct device *dev, struct scatterlist *sg, int nents,
1280 		dma_addr_t dma_addr)
1281 {
1282 	struct scatterlist *s, *cur = sg;
1283 	unsigned long seg_mask = dma_get_seg_boundary(dev);
1284 	unsigned int cur_len = 0, max_len = dma_get_max_seg_size(dev);
1285 	int i, count = 0;
1286 
1287 	for_each_sg(sg, s, nents, i) {
1288 		/* Restore this segment's original unaligned fields first */
1289 		dma_addr_t s_dma_addr = sg_dma_address(s);
1290 		unsigned int s_iova_off = sg_dma_address(s);
1291 		unsigned int s_length = sg_dma_len(s);
1292 		unsigned int s_iova_len = s->length;
1293 
1294 		sg_dma_address(s) = DMA_MAPPING_ERROR;
1295 		sg_dma_len(s) = 0;
1296 
1297 		if (sg_dma_is_bus_address(s)) {
1298 			if (i > 0)
1299 				cur = sg_next(cur);
1300 
1301 			sg_dma_unmark_bus_address(s);
1302 			sg_dma_address(cur) = s_dma_addr;
1303 			sg_dma_len(cur) = s_length;
1304 			sg_dma_mark_bus_address(cur);
1305 			count++;
1306 			cur_len = 0;
1307 			continue;
1308 		}
1309 
1310 		s->offset += s_iova_off;
1311 		s->length = s_length;
1312 
1313 		/*
1314 		 * Now fill in the real DMA data. If...
1315 		 * - there is a valid output segment to append to
1316 		 * - and this segment starts on an IOVA page boundary
1317 		 * - but doesn't fall at a segment boundary
1318 		 * - and wouldn't make the resulting output segment too long
1319 		 */
1320 		if (cur_len && !s_iova_off && (dma_addr & seg_mask) &&
1321 		    (max_len - cur_len >= s_length)) {
1322 			/* ...then concatenate it with the previous one */
1323 			cur_len += s_length;
1324 		} else {
1325 			/* Otherwise start the next output segment */
1326 			if (i > 0)
1327 				cur = sg_next(cur);
1328 			cur_len = s_length;
1329 			count++;
1330 
1331 			sg_dma_address(cur) = dma_addr + s_iova_off;
1332 		}
1333 
1334 		sg_dma_len(cur) = cur_len;
1335 		dma_addr += s_iova_len;
1336 
1337 		if (s_length + s_iova_off < s_iova_len)
1338 			cur_len = 0;
1339 	}
1340 	return count;
1341 }
1342 
1343 /*
1344  * If mapping failed, then just restore the original list,
1345  * but making sure the DMA fields are invalidated.
1346  */
__invalidate_sg(struct scatterlist * sg,int nents)1347 static void __invalidate_sg(struct scatterlist *sg, int nents)
1348 {
1349 	struct scatterlist *s;
1350 	int i;
1351 
1352 	for_each_sg(sg, s, nents, i) {
1353 		if (sg_dma_is_bus_address(s)) {
1354 			sg_dma_unmark_bus_address(s);
1355 		} else {
1356 			if (sg_dma_address(s) != DMA_MAPPING_ERROR)
1357 				s->offset += sg_dma_address(s);
1358 			if (sg_dma_len(s))
1359 				s->length = sg_dma_len(s);
1360 		}
1361 		sg_dma_address(s) = DMA_MAPPING_ERROR;
1362 		sg_dma_len(s) = 0;
1363 	}
1364 }
1365 
iommu_dma_unmap_sg_swiotlb(struct device * dev,struct scatterlist * sg,int nents,enum dma_data_direction dir,unsigned long attrs)1366 static void iommu_dma_unmap_sg_swiotlb(struct device *dev, struct scatterlist *sg,
1367 		int nents, enum dma_data_direction dir, unsigned long attrs)
1368 {
1369 	struct scatterlist *s;
1370 	int i;
1371 
1372 	for_each_sg(sg, s, nents, i)
1373 		iommu_dma_unmap_page(dev, sg_dma_address(s),
1374 				sg_dma_len(s), dir, attrs);
1375 }
1376 
iommu_dma_map_sg_swiotlb(struct device * dev,struct scatterlist * sg,int nents,enum dma_data_direction dir,unsigned long attrs)1377 static int iommu_dma_map_sg_swiotlb(struct device *dev, struct scatterlist *sg,
1378 		int nents, enum dma_data_direction dir, unsigned long attrs)
1379 {
1380 	struct scatterlist *s;
1381 	int i;
1382 
1383 	sg_dma_mark_swiotlb(sg);
1384 
1385 	for_each_sg(sg, s, nents, i) {
1386 		sg_dma_address(s) = iommu_dma_map_page(dev, sg_page(s),
1387 				s->offset, s->length, dir, attrs);
1388 		if (sg_dma_address(s) == DMA_MAPPING_ERROR)
1389 			goto out_unmap;
1390 		sg_dma_len(s) = s->length;
1391 	}
1392 
1393 	return nents;
1394 
1395 out_unmap:
1396 	iommu_dma_unmap_sg_swiotlb(dev, sg, i, dir, attrs | DMA_ATTR_SKIP_CPU_SYNC);
1397 	return -EIO;
1398 }
1399 
1400 /*
1401  * The DMA API client is passing in a scatterlist which could describe
1402  * any old buffer layout, but the IOMMU API requires everything to be
1403  * aligned to IOMMU pages. Hence the need for this complicated bit of
1404  * impedance-matching, to be able to hand off a suitably-aligned list,
1405  * but still preserve the original offsets and sizes for the caller.
1406  */
iommu_dma_map_sg(struct device * dev,struct scatterlist * sg,int nents,enum dma_data_direction dir,unsigned long attrs)1407 int iommu_dma_map_sg(struct device *dev, struct scatterlist *sg, int nents,
1408 		enum dma_data_direction dir, unsigned long attrs)
1409 {
1410 	struct iommu_domain *domain = iommu_get_dma_domain(dev);
1411 	struct iommu_dma_cookie *cookie = domain->iova_cookie;
1412 	struct iova_domain *iovad = &cookie->iovad;
1413 	struct scatterlist *s, *prev = NULL;
1414 	int prot = dma_info_to_prot(dir, dev_is_dma_coherent(dev), attrs);
1415 	struct pci_p2pdma_map_state p2pdma_state = {};
1416 	dma_addr_t iova;
1417 	size_t iova_len = 0;
1418 	unsigned long mask = dma_get_seg_boundary(dev);
1419 	ssize_t ret;
1420 	int i;
1421 
1422 	if (static_branch_unlikely(&iommu_deferred_attach_enabled)) {
1423 		ret = iommu_deferred_attach(dev, domain);
1424 		if (ret)
1425 			goto out;
1426 	}
1427 
1428 	if (dev_use_sg_swiotlb(dev, sg, nents, dir))
1429 		return iommu_dma_map_sg_swiotlb(dev, sg, nents, dir, attrs);
1430 
1431 	if (!(attrs & DMA_ATTR_SKIP_CPU_SYNC))
1432 		iommu_dma_sync_sg_for_device(dev, sg, nents, dir);
1433 
1434 	/*
1435 	 * Work out how much IOVA space we need, and align the segments to
1436 	 * IOVA granules for the IOMMU driver to handle. With some clever
1437 	 * trickery we can modify the list in-place, but reversibly, by
1438 	 * stashing the unaligned parts in the as-yet-unused DMA fields.
1439 	 */
1440 	for_each_sg(sg, s, nents, i) {
1441 		size_t s_iova_off = iova_offset(iovad, s->offset);
1442 		size_t s_length = s->length;
1443 		size_t pad_len = (mask - iova_len + 1) & mask;
1444 
1445 		switch (pci_p2pdma_state(&p2pdma_state, dev, sg_page(s))) {
1446 		case PCI_P2PDMA_MAP_THRU_HOST_BRIDGE:
1447 			/*
1448 			 * Mapping through host bridge should be mapped with
1449 			 * regular IOVAs, thus we do nothing here and continue
1450 			 * below.
1451 			 */
1452 			break;
1453 		case PCI_P2PDMA_MAP_NONE:
1454 			break;
1455 		case PCI_P2PDMA_MAP_BUS_ADDR:
1456 			/*
1457 			 * iommu_map_sg() will skip this segment as it is marked
1458 			 * as a bus address, __finalise_sg() will copy the dma
1459 			 * address into the output segment.
1460 			 */
1461 			s->dma_address = pci_p2pdma_bus_addr_map(&p2pdma_state,
1462 						sg_phys(s));
1463 			sg_dma_len(s) = sg->length;
1464 			sg_dma_mark_bus_address(s);
1465 			continue;
1466 		default:
1467 			ret = -EREMOTEIO;
1468 			goto out_restore_sg;
1469 		}
1470 
1471 		sg_dma_address(s) = s_iova_off;
1472 		sg_dma_len(s) = s_length;
1473 		s->offset -= s_iova_off;
1474 		s_length = iova_align(iovad, s_length + s_iova_off);
1475 		s->length = s_length;
1476 
1477 		/*
1478 		 * Due to the alignment of our single IOVA allocation, we can
1479 		 * depend on these assumptions about the segment boundary mask:
1480 		 * - If mask size >= IOVA size, then the IOVA range cannot
1481 		 *   possibly fall across a boundary, so we don't care.
1482 		 * - If mask size < IOVA size, then the IOVA range must start
1483 		 *   exactly on a boundary, therefore we can lay things out
1484 		 *   based purely on segment lengths without needing to know
1485 		 *   the actual addresses beforehand.
1486 		 * - The mask must be a power of 2, so pad_len == 0 if
1487 		 *   iova_len == 0, thus we cannot dereference prev the first
1488 		 *   time through here (i.e. before it has a meaningful value).
1489 		 */
1490 		if (pad_len && pad_len < s_length - 1) {
1491 			prev->length += pad_len;
1492 			iova_len += pad_len;
1493 		}
1494 
1495 		iova_len += s_length;
1496 		prev = s;
1497 	}
1498 
1499 	if (!iova_len)
1500 		return __finalise_sg(dev, sg, nents, 0);
1501 
1502 	iova = iommu_dma_alloc_iova(domain, iova_len, dma_get_mask(dev), dev);
1503 	if (!iova) {
1504 		ret = -ENOMEM;
1505 		goto out_restore_sg;
1506 	}
1507 
1508 	/*
1509 	 * We'll leave any physical concatenation to the IOMMU driver's
1510 	 * implementation - it knows better than we do.
1511 	 */
1512 	ret = iommu_map_sg(domain, iova, sg, nents, prot, GFP_ATOMIC);
1513 	if (ret < 0 || ret < iova_len)
1514 		goto out_free_iova;
1515 
1516 	return __finalise_sg(dev, sg, nents, iova);
1517 
1518 out_free_iova:
1519 	iommu_dma_free_iova(cookie, iova, iova_len, NULL);
1520 out_restore_sg:
1521 	__invalidate_sg(sg, nents);
1522 out:
1523 	if (ret != -ENOMEM && ret != -EREMOTEIO)
1524 		return -EINVAL;
1525 	return ret;
1526 }
1527 
iommu_dma_unmap_sg(struct device * dev,struct scatterlist * sg,int nents,enum dma_data_direction dir,unsigned long attrs)1528 void iommu_dma_unmap_sg(struct device *dev, struct scatterlist *sg, int nents,
1529 		enum dma_data_direction dir, unsigned long attrs)
1530 {
1531 	dma_addr_t end = 0, start;
1532 	struct scatterlist *tmp;
1533 	int i;
1534 
1535 	if (sg_dma_is_swiotlb(sg)) {
1536 		iommu_dma_unmap_sg_swiotlb(dev, sg, nents, dir, attrs);
1537 		return;
1538 	}
1539 
1540 	if (!(attrs & DMA_ATTR_SKIP_CPU_SYNC))
1541 		iommu_dma_sync_sg_for_cpu(dev, sg, nents, dir);
1542 
1543 	/*
1544 	 * The scatterlist segments are mapped into a single
1545 	 * contiguous IOVA allocation, the start and end points
1546 	 * just have to be determined.
1547 	 */
1548 	for_each_sg(sg, tmp, nents, i) {
1549 		if (sg_dma_is_bus_address(tmp)) {
1550 			sg_dma_unmark_bus_address(tmp);
1551 			continue;
1552 		}
1553 
1554 		if (sg_dma_len(tmp) == 0)
1555 			break;
1556 
1557 		start = sg_dma_address(tmp);
1558 		break;
1559 	}
1560 
1561 	nents -= i;
1562 	for_each_sg(tmp, tmp, nents, i) {
1563 		if (sg_dma_is_bus_address(tmp)) {
1564 			sg_dma_unmark_bus_address(tmp);
1565 			continue;
1566 		}
1567 
1568 		if (sg_dma_len(tmp) == 0)
1569 			break;
1570 
1571 		end = sg_dma_address(tmp) + sg_dma_len(tmp);
1572 	}
1573 
1574 	if (end)
1575 		__iommu_dma_unmap(dev, start, end - start);
1576 }
1577 
iommu_dma_map_resource(struct device * dev,phys_addr_t phys,size_t size,enum dma_data_direction dir,unsigned long attrs)1578 dma_addr_t iommu_dma_map_resource(struct device *dev, phys_addr_t phys,
1579 		size_t size, enum dma_data_direction dir, unsigned long attrs)
1580 {
1581 	return __iommu_dma_map(dev, phys, size,
1582 			dma_info_to_prot(dir, false, attrs) | IOMMU_MMIO,
1583 			dma_get_mask(dev));
1584 }
1585 
iommu_dma_unmap_resource(struct device * dev,dma_addr_t handle,size_t size,enum dma_data_direction dir,unsigned long attrs)1586 void iommu_dma_unmap_resource(struct device *dev, dma_addr_t handle,
1587 		size_t size, enum dma_data_direction dir, unsigned long attrs)
1588 {
1589 	__iommu_dma_unmap(dev, handle, size);
1590 }
1591 
__iommu_dma_free(struct device * dev,size_t size,void * cpu_addr)1592 static void __iommu_dma_free(struct device *dev, size_t size, void *cpu_addr)
1593 {
1594 	size_t alloc_size = PAGE_ALIGN(size);
1595 	int count = alloc_size >> PAGE_SHIFT;
1596 	struct page *page = NULL, **pages = NULL;
1597 
1598 	/* Non-coherent atomic allocation? Easy */
1599 	if (IS_ENABLED(CONFIG_DMA_DIRECT_REMAP) &&
1600 	    dma_free_from_pool(dev, cpu_addr, alloc_size))
1601 		return;
1602 
1603 	if (is_vmalloc_addr(cpu_addr)) {
1604 		/*
1605 		 * If it the address is remapped, then it's either non-coherent
1606 		 * or highmem CMA, or an iommu_dma_alloc_remap() construction.
1607 		 */
1608 		pages = dma_common_find_pages(cpu_addr);
1609 		if (!pages)
1610 			page = vmalloc_to_page(cpu_addr);
1611 		dma_common_free_remap(cpu_addr, alloc_size);
1612 	} else {
1613 		/* Lowmem means a coherent atomic or CMA allocation */
1614 		page = virt_to_page(cpu_addr);
1615 	}
1616 
1617 	if (pages)
1618 		__iommu_dma_free_pages(pages, count);
1619 	if (page)
1620 		dma_free_contiguous(dev, page, alloc_size);
1621 }
1622 
iommu_dma_free(struct device * dev,size_t size,void * cpu_addr,dma_addr_t handle,unsigned long attrs)1623 void iommu_dma_free(struct device *dev, size_t size, void *cpu_addr,
1624 		dma_addr_t handle, unsigned long attrs)
1625 {
1626 	__iommu_dma_unmap(dev, handle, size);
1627 	__iommu_dma_free(dev, size, cpu_addr);
1628 }
1629 
iommu_dma_alloc_pages(struct device * dev,size_t size,struct page ** pagep,gfp_t gfp,unsigned long attrs)1630 static void *iommu_dma_alloc_pages(struct device *dev, size_t size,
1631 		struct page **pagep, gfp_t gfp, unsigned long attrs)
1632 {
1633 	bool coherent = dev_is_dma_coherent(dev);
1634 	size_t alloc_size = PAGE_ALIGN(size);
1635 	int node = dev_to_node(dev);
1636 	struct page *page = NULL;
1637 	void *cpu_addr;
1638 
1639 	page = dma_alloc_contiguous(dev, alloc_size, gfp);
1640 	if (!page)
1641 		page = alloc_pages_node(node, gfp, get_order(alloc_size));
1642 	if (!page)
1643 		return NULL;
1644 
1645 	if (!coherent || PageHighMem(page)) {
1646 		pgprot_t prot = dma_pgprot(dev, PAGE_KERNEL, attrs);
1647 
1648 		cpu_addr = dma_common_contiguous_remap(page, alloc_size,
1649 				prot, __builtin_return_address(0));
1650 		if (!cpu_addr)
1651 			goto out_free_pages;
1652 
1653 		if (!coherent)
1654 			arch_dma_prep_coherent(page, size);
1655 	} else {
1656 		cpu_addr = page_address(page);
1657 	}
1658 
1659 	*pagep = page;
1660 	memset(cpu_addr, 0, alloc_size);
1661 	return cpu_addr;
1662 out_free_pages:
1663 	dma_free_contiguous(dev, page, alloc_size);
1664 	return NULL;
1665 }
1666 
iommu_dma_alloc(struct device * dev,size_t size,dma_addr_t * handle,gfp_t gfp,unsigned long attrs)1667 void *iommu_dma_alloc(struct device *dev, size_t size, dma_addr_t *handle,
1668 		gfp_t gfp, unsigned long attrs)
1669 {
1670 	bool coherent = dev_is_dma_coherent(dev);
1671 	int ioprot = dma_info_to_prot(DMA_BIDIRECTIONAL, coherent, attrs);
1672 	struct page *page = NULL;
1673 	void *cpu_addr;
1674 
1675 	gfp |= __GFP_ZERO;
1676 
1677 	if (gfpflags_allow_blocking(gfp) &&
1678 	    !(attrs & DMA_ATTR_FORCE_CONTIGUOUS)) {
1679 		return iommu_dma_alloc_remap(dev, size, handle, gfp, attrs);
1680 	}
1681 
1682 	if (IS_ENABLED(CONFIG_DMA_DIRECT_REMAP) &&
1683 	    !gfpflags_allow_blocking(gfp) && !coherent)
1684 		page = dma_alloc_from_pool(dev, PAGE_ALIGN(size), &cpu_addr,
1685 					       gfp, NULL);
1686 	else
1687 		cpu_addr = iommu_dma_alloc_pages(dev, size, &page, gfp, attrs);
1688 	if (!cpu_addr)
1689 		return NULL;
1690 
1691 	*handle = __iommu_dma_map(dev, page_to_phys(page), size, ioprot,
1692 			dev->coherent_dma_mask);
1693 	if (*handle == DMA_MAPPING_ERROR) {
1694 		__iommu_dma_free(dev, size, cpu_addr);
1695 		return NULL;
1696 	}
1697 
1698 	return cpu_addr;
1699 }
1700 
iommu_dma_mmap(struct device * dev,struct vm_area_struct * vma,void * cpu_addr,dma_addr_t dma_addr,size_t size,unsigned long attrs)1701 int iommu_dma_mmap(struct device *dev, struct vm_area_struct *vma,
1702 		void *cpu_addr, dma_addr_t dma_addr, size_t size,
1703 		unsigned long attrs)
1704 {
1705 	unsigned long nr_pages = PAGE_ALIGN(size) >> PAGE_SHIFT;
1706 	unsigned long pfn, off = vma->vm_pgoff;
1707 	int ret;
1708 
1709 	vma->vm_page_prot = dma_pgprot(dev, vma->vm_page_prot, attrs);
1710 
1711 	if (dma_mmap_from_dev_coherent(dev, vma, cpu_addr, size, &ret))
1712 		return ret;
1713 
1714 	if (off >= nr_pages || vma_pages(vma) > nr_pages - off)
1715 		return -ENXIO;
1716 
1717 	if (is_vmalloc_addr(cpu_addr)) {
1718 		struct page **pages = dma_common_find_pages(cpu_addr);
1719 
1720 		if (pages)
1721 			return vm_map_pages(vma, pages, nr_pages);
1722 		pfn = vmalloc_to_pfn(cpu_addr);
1723 	} else {
1724 		pfn = page_to_pfn(virt_to_page(cpu_addr));
1725 	}
1726 
1727 	return remap_pfn_range(vma, vma->vm_start, pfn + off,
1728 			       vma->vm_end - vma->vm_start,
1729 			       vma->vm_page_prot);
1730 }
1731 
iommu_dma_get_sgtable(struct device * dev,struct sg_table * sgt,void * cpu_addr,dma_addr_t dma_addr,size_t size,unsigned long attrs)1732 int iommu_dma_get_sgtable(struct device *dev, struct sg_table *sgt,
1733 		void *cpu_addr, dma_addr_t dma_addr, size_t size,
1734 		unsigned long attrs)
1735 {
1736 	struct page *page;
1737 	int ret;
1738 
1739 	if (is_vmalloc_addr(cpu_addr)) {
1740 		struct page **pages = dma_common_find_pages(cpu_addr);
1741 
1742 		if (pages) {
1743 			return sg_alloc_table_from_pages(sgt, pages,
1744 					PAGE_ALIGN(size) >> PAGE_SHIFT,
1745 					0, size, GFP_KERNEL);
1746 		}
1747 
1748 		page = vmalloc_to_page(cpu_addr);
1749 	} else {
1750 		page = virt_to_page(cpu_addr);
1751 	}
1752 
1753 	ret = sg_alloc_table(sgt, 1, GFP_KERNEL);
1754 	if (!ret)
1755 		sg_set_page(sgt->sgl, page, PAGE_ALIGN(size), 0);
1756 	return ret;
1757 }
1758 
iommu_dma_get_merge_boundary(struct device * dev)1759 unsigned long iommu_dma_get_merge_boundary(struct device *dev)
1760 {
1761 	struct iommu_domain *domain = iommu_get_dma_domain(dev);
1762 
1763 	return (1UL << __ffs(domain->pgsize_bitmap)) - 1;
1764 }
1765 
iommu_dma_opt_mapping_size(void)1766 size_t iommu_dma_opt_mapping_size(void)
1767 {
1768 	return iova_rcache_range();
1769 }
1770 
iommu_dma_max_mapping_size(struct device * dev)1771 size_t iommu_dma_max_mapping_size(struct device *dev)
1772 {
1773 	if (dev_requires_dma_protection(dev))
1774 		return swiotlb_max_mapping_size(dev);
1775 
1776 	return SIZE_MAX;
1777 }
1778 
1779 /**
1780  * dma_iova_try_alloc - Try to allocate an IOVA space
1781  * @dev: Device to allocate the IOVA space for
1782  * @state: IOVA state
1783  * @phys: physical address
1784  * @size: IOVA size
1785  *
1786  * Check if @dev supports the IOVA-based DMA API, and if yes allocate IOVA space
1787  * for the given base address and size.
1788  *
1789  * Note: @phys is only used to calculate the IOVA alignment. Callers that always
1790  * do PAGE_SIZE aligned transfers can safely pass 0 here.
1791  *
1792  * Returns %true if the IOVA-based DMA API can be used and IOVA space has been
1793  * allocated, or %false if the regular DMA API should be used.
1794  */
dma_iova_try_alloc(struct device * dev,struct dma_iova_state * state,phys_addr_t phys,size_t size)1795 bool dma_iova_try_alloc(struct device *dev, struct dma_iova_state *state,
1796 		phys_addr_t phys, size_t size)
1797 {
1798 	struct iommu_dma_cookie *cookie;
1799 	struct iommu_domain *domain;
1800 	struct iova_domain *iovad;
1801 	size_t iova_off;
1802 	dma_addr_t addr;
1803 
1804 	memset(state, 0, sizeof(*state));
1805 	if (!use_dma_iommu(dev))
1806 		return false;
1807 
1808 	domain = iommu_get_dma_domain(dev);
1809 	cookie = domain->iova_cookie;
1810 	iovad = &cookie->iovad;
1811 	iova_off = iova_offset(iovad, phys);
1812 
1813 	if (static_branch_unlikely(&iommu_deferred_attach_enabled) &&
1814 	    iommu_deferred_attach(dev, iommu_get_domain_for_dev(dev)))
1815 		return false;
1816 
1817 	if (WARN_ON_ONCE(!size))
1818 		return false;
1819 
1820 	/*
1821 	 * DMA_IOVA_USE_SWIOTLB is flag which is set by dma-iommu
1822 	 * internals, make sure that caller didn't set it and/or
1823 	 * didn't use this interface to map SIZE_MAX.
1824 	 */
1825 	if (WARN_ON_ONCE((u64)size & DMA_IOVA_USE_SWIOTLB))
1826 		return false;
1827 
1828 	addr = iommu_dma_alloc_iova(domain,
1829 			iova_align(iovad, size + iova_off),
1830 			dma_get_mask(dev), dev);
1831 	if (!addr)
1832 		return false;
1833 
1834 	state->addr = addr + iova_off;
1835 	state->__size = size;
1836 	return true;
1837 }
1838 EXPORT_SYMBOL_GPL(dma_iova_try_alloc);
1839 
1840 /**
1841  * dma_iova_free - Free an IOVA space
1842  * @dev: Device to free the IOVA space for
1843  * @state: IOVA state
1844  *
1845  * Undoes a successful dma_try_iova_alloc().
1846  *
1847  * Note that all dma_iova_link() calls need to be undone first.  For callers
1848  * that never call dma_iova_unlink(), dma_iova_destroy() can be used instead
1849  * which unlinks all ranges and frees the IOVA space in a single efficient
1850  * operation.
1851  */
dma_iova_free(struct device * dev,struct dma_iova_state * state)1852 void dma_iova_free(struct device *dev, struct dma_iova_state *state)
1853 {
1854 	struct iommu_domain *domain = iommu_get_dma_domain(dev);
1855 	struct iommu_dma_cookie *cookie = domain->iova_cookie;
1856 	struct iova_domain *iovad = &cookie->iovad;
1857 	size_t iova_start_pad = iova_offset(iovad, state->addr);
1858 	size_t size = dma_iova_size(state);
1859 
1860 	iommu_dma_free_iova(cookie, state->addr - iova_start_pad,
1861 			iova_align(iovad, size + iova_start_pad), NULL);
1862 }
1863 EXPORT_SYMBOL_GPL(dma_iova_free);
1864 
__dma_iova_link(struct device * dev,dma_addr_t addr,phys_addr_t phys,size_t size,enum dma_data_direction dir,unsigned long attrs)1865 static int __dma_iova_link(struct device *dev, dma_addr_t addr,
1866 		phys_addr_t phys, size_t size, enum dma_data_direction dir,
1867 		unsigned long attrs)
1868 {
1869 	bool coherent = dev_is_dma_coherent(dev);
1870 
1871 	if (!coherent && !(attrs & DMA_ATTR_SKIP_CPU_SYNC))
1872 		arch_sync_dma_for_device(phys, size, dir);
1873 
1874 	return iommu_map_nosync(iommu_get_dma_domain(dev), addr, phys, size,
1875 			dma_info_to_prot(dir, coherent, attrs), GFP_ATOMIC);
1876 }
1877 
iommu_dma_iova_bounce_and_link(struct device * dev,dma_addr_t addr,phys_addr_t phys,size_t bounce_len,enum dma_data_direction dir,unsigned long attrs,size_t iova_start_pad)1878 static int iommu_dma_iova_bounce_and_link(struct device *dev, dma_addr_t addr,
1879 		phys_addr_t phys, size_t bounce_len,
1880 		enum dma_data_direction dir, unsigned long attrs,
1881 		size_t iova_start_pad)
1882 {
1883 	struct iommu_domain *domain = iommu_get_dma_domain(dev);
1884 	struct iova_domain *iovad = &domain->iova_cookie->iovad;
1885 	phys_addr_t bounce_phys;
1886 	int error;
1887 
1888 	bounce_phys = iommu_dma_map_swiotlb(dev, phys, bounce_len, dir, attrs);
1889 	if (bounce_phys == DMA_MAPPING_ERROR)
1890 		return -ENOMEM;
1891 
1892 	error = __dma_iova_link(dev, addr - iova_start_pad,
1893 			bounce_phys - iova_start_pad,
1894 			iova_align(iovad, bounce_len), dir, attrs);
1895 	if (error)
1896 		swiotlb_tbl_unmap_single(dev, bounce_phys, bounce_len, dir,
1897 				attrs);
1898 	return error;
1899 }
1900 
iommu_dma_iova_link_swiotlb(struct device * dev,struct dma_iova_state * state,phys_addr_t phys,size_t offset,size_t size,enum dma_data_direction dir,unsigned long attrs)1901 static int iommu_dma_iova_link_swiotlb(struct device *dev,
1902 		struct dma_iova_state *state, phys_addr_t phys, size_t offset,
1903 		size_t size, enum dma_data_direction dir, unsigned long attrs)
1904 {
1905 	struct iommu_domain *domain = iommu_get_dma_domain(dev);
1906 	struct iommu_dma_cookie *cookie = domain->iova_cookie;
1907 	struct iova_domain *iovad = &cookie->iovad;
1908 	size_t iova_start_pad = iova_offset(iovad, phys);
1909 	size_t iova_end_pad = iova_offset(iovad, phys + size);
1910 	dma_addr_t addr = state->addr + offset;
1911 	size_t mapped = 0;
1912 	int error;
1913 
1914 	if (iova_start_pad) {
1915 		size_t bounce_len = min(size, iovad->granule - iova_start_pad);
1916 
1917 		error = iommu_dma_iova_bounce_and_link(dev, addr, phys,
1918 				bounce_len, dir, attrs, iova_start_pad);
1919 		if (error)
1920 			return error;
1921 		state->__size |= DMA_IOVA_USE_SWIOTLB;
1922 
1923 		mapped += bounce_len;
1924 		size -= bounce_len;
1925 		if (!size)
1926 			return 0;
1927 	}
1928 
1929 	size -= iova_end_pad;
1930 	error = __dma_iova_link(dev, addr + mapped, phys + mapped, size, dir,
1931 			attrs);
1932 	if (error)
1933 		goto out_unmap;
1934 	mapped += size;
1935 
1936 	if (iova_end_pad) {
1937 		error = iommu_dma_iova_bounce_and_link(dev, addr + mapped,
1938 				phys + mapped, iova_end_pad, dir, attrs, 0);
1939 		if (error)
1940 			goto out_unmap;
1941 		state->__size |= DMA_IOVA_USE_SWIOTLB;
1942 	}
1943 
1944 	return 0;
1945 
1946 out_unmap:
1947 	dma_iova_unlink(dev, state, 0, mapped, dir, attrs);
1948 	return error;
1949 }
1950 
1951 /**
1952  * dma_iova_link - Link a range of IOVA space
1953  * @dev: DMA device
1954  * @state: IOVA state
1955  * @phys: physical address to link
1956  * @offset: offset into the IOVA state to map into
1957  * @size: size of the buffer
1958  * @dir: DMA direction
1959  * @attrs: attributes of mapping properties
1960  *
1961  * Link a range of IOVA space for the given IOVA state without IOTLB sync.
1962  * This function is used to link multiple physical addresses in contiguous
1963  * IOVA space without performing costly IOTLB sync.
1964  *
1965  * The caller is responsible to call to dma_iova_sync() to sync IOTLB at
1966  * the end of linkage.
1967  */
dma_iova_link(struct device * dev,struct dma_iova_state * state,phys_addr_t phys,size_t offset,size_t size,enum dma_data_direction dir,unsigned long attrs)1968 int dma_iova_link(struct device *dev, struct dma_iova_state *state,
1969 		phys_addr_t phys, size_t offset, size_t size,
1970 		enum dma_data_direction dir, unsigned long attrs)
1971 {
1972 	struct iommu_domain *domain = iommu_get_dma_domain(dev);
1973 	struct iommu_dma_cookie *cookie = domain->iova_cookie;
1974 	struct iova_domain *iovad = &cookie->iovad;
1975 	size_t iova_start_pad = iova_offset(iovad, phys);
1976 
1977 	if (WARN_ON_ONCE(iova_start_pad && offset > 0))
1978 		return -EIO;
1979 
1980 	if (dev_use_swiotlb(dev, size, dir) &&
1981 	    iova_unaligned(iovad, phys, size))
1982 		return iommu_dma_iova_link_swiotlb(dev, state, phys, offset,
1983 				size, dir, attrs);
1984 
1985 	return __dma_iova_link(dev, state->addr + offset - iova_start_pad,
1986 			phys - iova_start_pad,
1987 			iova_align(iovad, size + iova_start_pad), dir, attrs);
1988 }
1989 EXPORT_SYMBOL_GPL(dma_iova_link);
1990 
1991 /**
1992  * dma_iova_sync - Sync IOTLB
1993  * @dev: DMA device
1994  * @state: IOVA state
1995  * @offset: offset into the IOVA state to sync
1996  * @size: size of the buffer
1997  *
1998  * Sync IOTLB for the given IOVA state. This function should be called on
1999  * the IOVA-contiguous range created by one ore more dma_iova_link() calls
2000  * to sync the IOTLB.
2001  */
dma_iova_sync(struct device * dev,struct dma_iova_state * state,size_t offset,size_t size)2002 int dma_iova_sync(struct device *dev, struct dma_iova_state *state,
2003 		size_t offset, size_t size)
2004 {
2005 	struct iommu_domain *domain = iommu_get_dma_domain(dev);
2006 	struct iommu_dma_cookie *cookie = domain->iova_cookie;
2007 	struct iova_domain *iovad = &cookie->iovad;
2008 	dma_addr_t addr = state->addr + offset;
2009 	size_t iova_start_pad = iova_offset(iovad, addr);
2010 
2011 	return iommu_sync_map(domain, addr - iova_start_pad,
2012 		      iova_align(iovad, size + iova_start_pad));
2013 }
2014 EXPORT_SYMBOL_GPL(dma_iova_sync);
2015 
iommu_dma_iova_unlink_range_slow(struct device * dev,dma_addr_t addr,size_t size,enum dma_data_direction dir,unsigned long attrs)2016 static void iommu_dma_iova_unlink_range_slow(struct device *dev,
2017 		dma_addr_t addr, size_t size, enum dma_data_direction dir,
2018 		unsigned long attrs)
2019 {
2020 	struct iommu_domain *domain = iommu_get_dma_domain(dev);
2021 	struct iommu_dma_cookie *cookie = domain->iova_cookie;
2022 	struct iova_domain *iovad = &cookie->iovad;
2023 	size_t iova_start_pad = iova_offset(iovad, addr);
2024 	dma_addr_t end = addr + size;
2025 
2026 	do {
2027 		phys_addr_t phys;
2028 		size_t len;
2029 
2030 		phys = iommu_iova_to_phys(domain, addr);
2031 		if (WARN_ON(!phys))
2032 			/* Something very horrible happen here */
2033 			return;
2034 
2035 		len = min_t(size_t,
2036 			end - addr, iovad->granule - iova_start_pad);
2037 
2038 		if (!dev_is_dma_coherent(dev) &&
2039 		    !(attrs & DMA_ATTR_SKIP_CPU_SYNC))
2040 			arch_sync_dma_for_cpu(phys, len, dir);
2041 
2042 		swiotlb_tbl_unmap_single(dev, phys, len, dir, attrs);
2043 
2044 		addr += len;
2045 		iova_start_pad = 0;
2046 	} while (addr < end);
2047 }
2048 
__iommu_dma_iova_unlink(struct device * dev,struct dma_iova_state * state,size_t offset,size_t size,enum dma_data_direction dir,unsigned long attrs,bool free_iova)2049 static void __iommu_dma_iova_unlink(struct device *dev,
2050 		struct dma_iova_state *state, size_t offset, size_t size,
2051 		enum dma_data_direction dir, unsigned long attrs,
2052 		bool free_iova)
2053 {
2054 	struct iommu_domain *domain = iommu_get_dma_domain(dev);
2055 	struct iommu_dma_cookie *cookie = domain->iova_cookie;
2056 	struct iova_domain *iovad = &cookie->iovad;
2057 	dma_addr_t addr = state->addr + offset;
2058 	size_t iova_start_pad = iova_offset(iovad, addr);
2059 	struct iommu_iotlb_gather iotlb_gather;
2060 	size_t unmapped;
2061 
2062 	if ((state->__size & DMA_IOVA_USE_SWIOTLB) ||
2063 	    (!dev_is_dma_coherent(dev) && !(attrs & DMA_ATTR_SKIP_CPU_SYNC)))
2064 		iommu_dma_iova_unlink_range_slow(dev, addr, size, dir, attrs);
2065 
2066 	iommu_iotlb_gather_init(&iotlb_gather);
2067 	iotlb_gather.queued = free_iova && READ_ONCE(cookie->fq_domain);
2068 
2069 	size = iova_align(iovad, size + iova_start_pad);
2070 	addr -= iova_start_pad;
2071 	unmapped = iommu_unmap_fast(domain, addr, size, &iotlb_gather);
2072 	WARN_ON(unmapped != size);
2073 
2074 	if (!iotlb_gather.queued)
2075 		iommu_iotlb_sync(domain, &iotlb_gather);
2076 	if (free_iova)
2077 		iommu_dma_free_iova(cookie, addr, size, &iotlb_gather);
2078 }
2079 
2080 /**
2081  * dma_iova_unlink - Unlink a range of IOVA space
2082  * @dev: DMA device
2083  * @state: IOVA state
2084  * @offset: offset into the IOVA state to unlink
2085  * @size: size of the buffer
2086  * @dir: DMA direction
2087  * @attrs: attributes of mapping properties
2088  *
2089  * Unlink a range of IOVA space for the given IOVA state.
2090  */
dma_iova_unlink(struct device * dev,struct dma_iova_state * state,size_t offset,size_t size,enum dma_data_direction dir,unsigned long attrs)2091 void dma_iova_unlink(struct device *dev, struct dma_iova_state *state,
2092 		size_t offset, size_t size, enum dma_data_direction dir,
2093 		unsigned long attrs)
2094 {
2095 	 __iommu_dma_iova_unlink(dev, state, offset, size, dir, attrs, false);
2096 }
2097 EXPORT_SYMBOL_GPL(dma_iova_unlink);
2098 
2099 /**
2100  * dma_iova_destroy - Finish a DMA mapping transaction
2101  * @dev: DMA device
2102  * @state: IOVA state
2103  * @mapped_len: number of bytes to unmap
2104  * @dir: DMA direction
2105  * @attrs: attributes of mapping properties
2106  *
2107  * Unlink the IOVA range up to @mapped_len and free the entire IOVA space. The
2108  * range of IOVA from dma_addr to @mapped_len must all be linked, and be the
2109  * only linked IOVA in state.
2110  */
dma_iova_destroy(struct device * dev,struct dma_iova_state * state,size_t mapped_len,enum dma_data_direction dir,unsigned long attrs)2111 void dma_iova_destroy(struct device *dev, struct dma_iova_state *state,
2112 		size_t mapped_len, enum dma_data_direction dir,
2113 		unsigned long attrs)
2114 {
2115 	if (mapped_len)
2116 		__iommu_dma_iova_unlink(dev, state, 0, mapped_len, dir, attrs,
2117 				true);
2118 	else
2119 		/*
2120 		 * We can be here if first call to dma_iova_link() failed and
2121 		 * there is nothing to unlink, so let's be more clear.
2122 		 */
2123 		dma_iova_free(dev, state);
2124 }
2125 EXPORT_SYMBOL_GPL(dma_iova_destroy);
2126 
iommu_setup_dma_ops(struct device * dev)2127 void iommu_setup_dma_ops(struct device *dev)
2128 {
2129 	struct iommu_domain *domain = iommu_get_domain_for_dev(dev);
2130 
2131 	if (dev_is_pci(dev))
2132 		dev->iommu->pci_32bit_workaround = !iommu_dma_forcedac;
2133 
2134 	dev->dma_iommu = iommu_is_dma_domain(domain);
2135 	if (dev->dma_iommu && iommu_dma_init_domain(domain, dev))
2136 		goto out_err;
2137 
2138 	trace_android_rvh_iommu_setup_dma_ops(dev);
2139 
2140 	return;
2141 out_err:
2142 	pr_warn("Failed to set up IOMMU for device %s; retaining platform DMA ops\n",
2143 		dev_name(dev));
2144 	dev->dma_iommu = false;
2145 }
2146 
iommu_dma_get_msi_page(struct device * dev,phys_addr_t msi_addr,struct iommu_domain * domain)2147 static struct iommu_dma_msi_page *iommu_dma_get_msi_page(struct device *dev,
2148 		phys_addr_t msi_addr, struct iommu_domain *domain)
2149 {
2150 	struct iommu_dma_cookie *cookie = domain->iova_cookie;
2151 	struct iommu_dma_msi_page *msi_page;
2152 	dma_addr_t iova;
2153 	int prot = IOMMU_WRITE | IOMMU_NOEXEC | IOMMU_MMIO;
2154 	size_t size = cookie_msi_granule(cookie);
2155 
2156 	msi_addr &= ~(phys_addr_t)(size - 1);
2157 	list_for_each_entry(msi_page, &cookie->msi_page_list, list)
2158 		if (msi_page->phys == msi_addr)
2159 			return msi_page;
2160 
2161 	msi_page = kzalloc(sizeof(*msi_page), GFP_KERNEL);
2162 	if (!msi_page)
2163 		return NULL;
2164 
2165 	iova = iommu_dma_alloc_iova(domain, size, dma_get_mask(dev), dev);
2166 	if (!iova)
2167 		goto out_free_page;
2168 
2169 	if (iommu_map(domain, iova, msi_addr, size, prot, GFP_KERNEL))
2170 		goto out_free_iova;
2171 
2172 	INIT_LIST_HEAD(&msi_page->list);
2173 	msi_page->phys = msi_addr;
2174 	msi_page->iova = iova;
2175 	list_add(&msi_page->list, &cookie->msi_page_list);
2176 	return msi_page;
2177 
2178 out_free_iova:
2179 	iommu_dma_free_iova(cookie, iova, size, NULL);
2180 out_free_page:
2181 	kfree(msi_page);
2182 	return NULL;
2183 }
2184 
2185 /**
2186  * iommu_dma_prepare_msi() - Map the MSI page in the IOMMU domain
2187  * @desc: MSI descriptor, will store the MSI page
2188  * @msi_addr: MSI target address to be mapped
2189  *
2190  * Return: 0 on success or negative error code if the mapping failed.
2191  */
iommu_dma_prepare_msi(struct msi_desc * desc,phys_addr_t msi_addr)2192 int iommu_dma_prepare_msi(struct msi_desc *desc, phys_addr_t msi_addr)
2193 {
2194 	struct device *dev = msi_desc_to_dev(desc);
2195 	struct iommu_domain *domain = iommu_get_domain_for_dev(dev);
2196 	struct iommu_dma_msi_page *msi_page;
2197 	static DEFINE_MUTEX(msi_prepare_lock); /* see below */
2198 
2199 	if (!domain || !domain->iova_cookie) {
2200 		desc->iommu_cookie = NULL;
2201 		return 0;
2202 	}
2203 
2204 	/*
2205 	 * In fact the whole prepare operation should already be serialised by
2206 	 * irq_domain_mutex further up the callchain, but that's pretty subtle
2207 	 * on its own, so consider this locking as failsafe documentation...
2208 	 */
2209 	mutex_lock(&msi_prepare_lock);
2210 	msi_page = iommu_dma_get_msi_page(dev, msi_addr, domain);
2211 	mutex_unlock(&msi_prepare_lock);
2212 
2213 	msi_desc_set_iommu_cookie(desc, msi_page);
2214 
2215 	if (!msi_page)
2216 		return -ENOMEM;
2217 	return 0;
2218 }
2219 
2220 /**
2221  * iommu_dma_compose_msi_msg() - Apply translation to an MSI message
2222  * @desc: MSI descriptor prepared by iommu_dma_prepare_msi()
2223  * @msg: MSI message containing target physical address
2224  */
iommu_dma_compose_msi_msg(struct msi_desc * desc,struct msi_msg * msg)2225 void iommu_dma_compose_msi_msg(struct msi_desc *desc, struct msi_msg *msg)
2226 {
2227 	struct device *dev = msi_desc_to_dev(desc);
2228 	const struct iommu_domain *domain = iommu_get_domain_for_dev(dev);
2229 	const struct iommu_dma_msi_page *msi_page;
2230 
2231 	msi_page = msi_desc_get_iommu_cookie(desc);
2232 
2233 	if (!domain || !domain->iova_cookie || WARN_ON(!msi_page))
2234 		return;
2235 
2236 	msg->address_hi = upper_32_bits(msi_page->iova);
2237 	msg->address_lo &= cookie_msi_granule(domain->iova_cookie) - 1;
2238 	msg->address_lo += lower_32_bits(msi_page->iova);
2239 }
2240 
iommu_dma_init(void)2241 static int iommu_dma_init(void)
2242 {
2243 	if (is_kdump_kernel())
2244 		static_branch_enable(&iommu_deferred_attach_enabled);
2245 
2246 	return iova_cache_get();
2247 }
2248 arch_initcall(iommu_dma_init);
2249