1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3 * Copyright (C) 2020 Google, Inc
4 * Copyright (C) 2020 Palmer Dabbelt <palmerdabbelt@google.com>
5 */
6
7 #include <linux/device-mapper.h>
8 #include <uapi/linux/dm-user.h>
9
10 #include <linux/bio.h>
11 #include <linux/init.h>
12 #include <linux/mempool.h>
13 #include <linux/miscdevice.h>
14 #include <linux/module.h>
15 #include <linux/poll.h>
16 #include <linux/uio.h>
17 #include <linux/wait.h>
18 #include <linux/workqueue.h>
19
20 #define DM_MSG_PREFIX "user"
21
22 #define MAX_OUTSTANDING_MESSAGES 128
23
24 static unsigned int daemon_timeout_msec = 4000;
25 module_param_named(dm_user_daemon_timeout_msec, daemon_timeout_msec, uint,
26 0644);
27 MODULE_PARM_DESC(dm_user_daemon_timeout_msec,
28 "IO Timeout in msec if daemon does not process");
29
30 /*
31 * dm-user uses four structures:
32 *
33 * - "struct target", the outermost structure, corresponds to a single device
34 * mapper target. This contains the set of outstanding BIOs that have been
35 * provided by DM and are not actively being processed by the user, along
36 * with a misc device that userspace can open to communicate with the
37 * kernel. Each time userspaces opens the misc device a new channel is
38 * created.
39 * - "struct channel", which represents a single active communication channel
40 * with userspace. Userspace may choose arbitrary read/write sizes to use
41 * when processing messages, channels form these into logical accesses.
42 * When userspace responds to a full message the channel completes the BIO
43 * and obtains a new message to process from the target.
44 * - "struct message", which wraps a BIO with the additional information
45 * required by the kernel to sort out what to do with BIOs when they return
46 * from userspace.
47 * - "struct dm_user_message", which is the exact message format that
48 * userspace sees.
49 *
50 * The hot path contains three distinct operations:
51 *
52 * - user_map(), which is provided a BIO from device mapper that is queued
53 * into the target. This allocates and enqueues a new message.
54 * - dev_read(), which dequeues a message, copies it to userspace.
55 * - dev_write(), which looks up a message (keyed by sequence number) and
56 * completes the corresponding BIO.
57 *
58 * Lock ordering (outer to inner)
59 *
60 * 1) miscdevice's global lock. This is held around dev_open, so it has to be
61 * the outermost lock.
62 * 2) target->lock
63 * 3) channel->lock
64 */
65
66 struct message {
67 /*
68 * Messages themselves do not need a lock, they're protected by either
69 * the target or channel's lock, depending on which can reference them
70 * directly.
71 */
72 struct dm_user_message msg;
73 struct bio *bio;
74 size_t posn_to_user;
75 size_t total_to_user;
76 size_t posn_from_user;
77 size_t total_from_user;
78
79 struct list_head from_user;
80 struct list_head to_user;
81
82 /*
83 * These are written back from the user. They live in the same spot in
84 * the message, but we need to either keep the old values around or
85 * call a bunch more BIO helpers. These are only valid after write has
86 * adopted the message.
87 */
88 u64 return_type;
89 u64 return_flags;
90
91 struct delayed_work work;
92 bool delayed;
93 struct target *t;
94 };
95
96 struct target {
97 /*
98 * A target has a single lock, which protects everything in the target
99 * (but does not protect the channels associated with a target).
100 */
101 struct mutex lock;
102
103 /*
104 * There is only one point at which anything blocks: userspace blocks
105 * reading a new message, which is woken up by device mapper providing
106 * a new BIO to process (or tearing down the target). The
107 * corresponding write side doesn't block, instead we treat userspace's
108 * response containing a message that has yet to be mapped as an
109 * invalid operation.
110 */
111 struct wait_queue_head wq;
112
113 /*
114 * Messages are delivered to userspace in order, but may be returned
115 * out of order. This allows userspace to schedule IO if it wants to.
116 */
117 mempool_t message_pool;
118 u64 next_seq_to_map;
119 u64 next_seq_to_user;
120 struct list_head to_user;
121
122 /*
123 * There is a misc device per target. The name is selected by
124 * userspace (via a DM create ioctl argument), and each ends up in
125 * /dev/dm-user/. It looks like a better way to do this may be to have
126 * a filesystem to manage these, but this was more expedient. The
127 * current mechanism is functional, but does result in an arbitrary
128 * number of dynamically created misc devices.
129 */
130 struct miscdevice miscdev;
131
132 /*
133 * Device mapper's target destructor triggers tearing this all down,
134 * but we can't actually free until every channel associated with this
135 * target has been destroyed. Channels each have a reference to their
136 * target, and there is an additional single reference that corresponds
137 * to both DM and the misc device (both of which are destroyed by DM).
138 *
139 * In the common case userspace will be asleep waiting for a new
140 * message when device mapper decides to destroy the target, which
141 * means no new messages will appear. The destroyed flag triggers a
142 * wakeup, which will end up removing the reference.
143 */
144 struct kref references;
145 int dm_destroyed;
146 bool daemon_terminated;
147 };
148
149 struct channel {
150 struct target *target;
151
152 /*
153 * A channel has a single lock, which prevents multiple reads (or
154 * multiple writes) from conflicting with each other.
155 */
156 struct mutex lock;
157
158 struct message *cur_to_user;
159 struct message *cur_from_user;
160 ssize_t to_user_error;
161 ssize_t from_user_error;
162
163 /*
164 * Once a message has been forwarded to userspace on a channel it must
165 * be responded to on the same channel. This allows us to error out
166 * the messages that have not yet been responded to by a channel when
167 * that channel closes, which makes handling errors more reasonable for
168 * fault-tolerant userspace daemons. It also happens to make avoiding
169 * shared locks between user_map() and dev_read() a lot easier.
170 *
171 * This does preclude a multi-threaded work stealing userspace
172 * implementation (or at least, force a degree of head-of-line blocking
173 * on the response path).
174 */
175 struct list_head from_user;
176
177 /*
178 * Responses from userspace can arrive in arbitrarily small chunks.
179 * We need some place to buffer one up until we can find the
180 * corresponding kernel-side message to continue processing, so instead
181 * of allocating them we just keep one off to the side here. This can
182 * only ever be pointer to by from_user_cur, and will never have a BIO.
183 */
184 struct message scratch_message_from_user;
185 };
186
message_kill(struct message * m,mempool_t * pool)187 static void message_kill(struct message *m, mempool_t *pool)
188 {
189 m->bio->bi_status = BLK_STS_IOERR;
190 bio_endio(m->bio);
191 mempool_free(m, pool);
192 }
193
is_user_space_thread_present(struct target * t)194 static inline bool is_user_space_thread_present(struct target *t)
195 {
196 lockdep_assert_held(&t->lock);
197 return (kref_read(&t->references) > 1);
198 }
199
process_delayed_work(struct work_struct * work)200 static void process_delayed_work(struct work_struct *work)
201 {
202 struct delayed_work *del_work = to_delayed_work(work);
203 struct message *msg = container_of(del_work, struct message, work);
204
205 struct target *t = msg->t;
206
207 mutex_lock(&t->lock);
208
209 /*
210 * There is at least one thread to process the IO.
211 */
212 if (is_user_space_thread_present(t)) {
213 mutex_unlock(&t->lock);
214 return;
215 }
216
217 /*
218 * Terminate the IO with an error
219 */
220 list_del(&msg->to_user);
221 pr_err("I/O error: sector %llu: no user-space daemon for %s target\n",
222 msg->bio->bi_iter.bi_sector,
223 t->miscdev.name);
224 message_kill(msg, &t->message_pool);
225 mutex_unlock(&t->lock);
226 }
227
enqueue_delayed_work(struct message * m,bool is_delay)228 static void enqueue_delayed_work(struct message *m, bool is_delay)
229 {
230 unsigned long delay = 0;
231
232 m->delayed = true;
233 INIT_DELAYED_WORK(&m->work, process_delayed_work);
234
235 /*
236 * Snapuserd daemon is the user-space process
237 * which processes IO request from dm-user
238 * when OTA is applied. Per the current design,
239 * when a dm-user target is created, daemon
240 * attaches to target and starts processing
241 * the IO's. Daemon is terminated only when
242 * dm-user target is destroyed.
243 *
244 * If for some reason, daemon crashes or terminates early,
245 * without destroying the dm-user target; then
246 * there is no mechanism to restart the daemon
247 * and start processing the IO's from the same target.
248 * Theoretically, it is possible but that infrastructure
249 * doesn't exist in the android ecosystem.
250 *
251 * Thus, when the daemon terminates, there is no way the IO's
252 * issued on that target will be processed. Hence,
253 * we set the delay to 0 and fail the IO's immediately.
254 *
255 * On the other hand, when a new dm-user target is created,
256 * we wait for the daemon to get attached for the first time.
257 * This primarily happens when init first stage spins up
258 * the daemon. At this point, since the snapshot device is mounted
259 * of a root filesystem, dm-user target may receive IO request
260 * even though daemon is not fully launched. We don't want
261 * to fail those IO requests immediately. Thus, we queue these
262 * requests with a timeout so that daemon is ready to process
263 * those IO requests. Again, if the daemon fails to launch within
264 * the timeout period, then IO's will be failed.
265 */
266 if (is_delay)
267 delay = msecs_to_jiffies(daemon_timeout_msec);
268
269 queue_delayed_work(system_wq, &m->work, delay);
270 }
271
target_from_target(struct dm_target * target)272 static inline struct target *target_from_target(struct dm_target *target)
273 {
274 WARN_ON(target->private == NULL);
275 return target->private;
276 }
277
target_from_miscdev(struct miscdevice * miscdev)278 static inline struct target *target_from_miscdev(struct miscdevice *miscdev)
279 {
280 return container_of(miscdev, struct target, miscdev);
281 }
282
channel_from_file(struct file * file)283 static inline struct channel *channel_from_file(struct file *file)
284 {
285 WARN_ON(file->private_data == NULL);
286 return file->private_data;
287 }
288
target_from_channel(struct channel * c)289 static inline struct target *target_from_channel(struct channel *c)
290 {
291 WARN_ON(c->target == NULL);
292 return c->target;
293 }
294
bio_size(struct bio * bio)295 static inline size_t bio_size(struct bio *bio)
296 {
297 struct bio_vec bvec;
298 struct bvec_iter iter;
299 size_t out = 0;
300
301 bio_for_each_segment (bvec, bio, iter)
302 out += bio_iter_len(bio, iter);
303 return out;
304 }
305
bio_bytes_needed_to_user(struct bio * bio)306 static inline size_t bio_bytes_needed_to_user(struct bio *bio)
307 {
308 switch (bio_op(bio)) {
309 case REQ_OP_WRITE:
310 return sizeof(struct dm_user_message) + bio_size(bio);
311 case REQ_OP_READ:
312 case REQ_OP_FLUSH:
313 case REQ_OP_DISCARD:
314 case REQ_OP_SECURE_ERASE:
315 case REQ_OP_WRITE_ZEROES:
316 return sizeof(struct dm_user_message);
317
318 /*
319 * These ops are not passed to userspace under the assumption that
320 * they're not going to be particularly useful in that context.
321 */
322 default:
323 return -EOPNOTSUPP;
324 }
325 }
326
bio_bytes_needed_from_user(struct bio * bio)327 static inline size_t bio_bytes_needed_from_user(struct bio *bio)
328 {
329 switch (bio_op(bio)) {
330 case REQ_OP_READ:
331 return sizeof(struct dm_user_message) + bio_size(bio);
332 case REQ_OP_WRITE:
333 case REQ_OP_FLUSH:
334 case REQ_OP_DISCARD:
335 case REQ_OP_SECURE_ERASE:
336 case REQ_OP_WRITE_ZEROES:
337 return sizeof(struct dm_user_message);
338
339 /*
340 * These ops are not passed to userspace under the assumption that
341 * they're not going to be particularly useful in that context.
342 */
343 default:
344 return -EOPNOTSUPP;
345 }
346 }
347
bio_type_to_user_type(struct bio * bio)348 static inline long bio_type_to_user_type(struct bio *bio)
349 {
350 switch (bio_op(bio)) {
351 case REQ_OP_READ:
352 return DM_USER_REQ_MAP_READ;
353 case REQ_OP_WRITE:
354 return DM_USER_REQ_MAP_WRITE;
355 case REQ_OP_FLUSH:
356 return DM_USER_REQ_MAP_FLUSH;
357 case REQ_OP_DISCARD:
358 return DM_USER_REQ_MAP_DISCARD;
359 case REQ_OP_SECURE_ERASE:
360 return DM_USER_REQ_MAP_SECURE_ERASE;
361 case REQ_OP_WRITE_ZEROES:
362 return DM_USER_REQ_MAP_WRITE_ZEROES;
363
364 /*
365 * These ops are not passed to userspace under the assumption that
366 * they're not going to be particularly useful in that context.
367 */
368 default:
369 return -EOPNOTSUPP;
370 }
371 }
372
bio_flags_to_user_flags(struct bio * bio)373 static inline long bio_flags_to_user_flags(struct bio *bio)
374 {
375 u64 out = 0;
376 typeof(bio->bi_opf) opf = bio->bi_opf & ~REQ_OP_MASK;
377
378 if (opf & REQ_FAILFAST_DEV) {
379 opf &= ~REQ_FAILFAST_DEV;
380 out |= DM_USER_REQ_MAP_FLAG_FAILFAST_DEV;
381 }
382
383 if (opf & REQ_FAILFAST_TRANSPORT) {
384 opf &= ~REQ_FAILFAST_TRANSPORT;
385 out |= DM_USER_REQ_MAP_FLAG_FAILFAST_TRANSPORT;
386 }
387
388 if (opf & REQ_FAILFAST_DRIVER) {
389 opf &= ~REQ_FAILFAST_DRIVER;
390 out |= DM_USER_REQ_MAP_FLAG_FAILFAST_DRIVER;
391 }
392
393 if (opf & REQ_SYNC) {
394 opf &= ~REQ_SYNC;
395 out |= DM_USER_REQ_MAP_FLAG_SYNC;
396 }
397
398 if (opf & REQ_META) {
399 opf &= ~REQ_META;
400 out |= DM_USER_REQ_MAP_FLAG_META;
401 }
402
403 if (opf & REQ_PRIO) {
404 opf &= ~REQ_PRIO;
405 out |= DM_USER_REQ_MAP_FLAG_PRIO;
406 }
407
408 if (opf & REQ_NOMERGE) {
409 opf &= ~REQ_NOMERGE;
410 out |= DM_USER_REQ_MAP_FLAG_NOMERGE;
411 }
412
413 if (opf & REQ_IDLE) {
414 opf &= ~REQ_IDLE;
415 out |= DM_USER_REQ_MAP_FLAG_IDLE;
416 }
417
418 if (opf & REQ_INTEGRITY) {
419 opf &= ~REQ_INTEGRITY;
420 out |= DM_USER_REQ_MAP_FLAG_INTEGRITY;
421 }
422
423 if (opf & REQ_FUA) {
424 opf &= ~REQ_FUA;
425 out |= DM_USER_REQ_MAP_FLAG_FUA;
426 }
427
428 if (opf & REQ_PREFLUSH) {
429 opf &= ~REQ_PREFLUSH;
430 out |= DM_USER_REQ_MAP_FLAG_PREFLUSH;
431 }
432
433 if (opf & REQ_RAHEAD) {
434 opf &= ~REQ_RAHEAD;
435 out |= DM_USER_REQ_MAP_FLAG_RAHEAD;
436 }
437
438 if (opf & REQ_BACKGROUND) {
439 opf &= ~REQ_BACKGROUND;
440 out |= DM_USER_REQ_MAP_FLAG_BACKGROUND;
441 }
442
443 if (opf & REQ_NOWAIT) {
444 opf &= ~REQ_NOWAIT;
445 out |= DM_USER_REQ_MAP_FLAG_NOWAIT;
446 }
447
448 if (opf & REQ_NOUNMAP) {
449 opf &= ~REQ_NOUNMAP;
450 out |= DM_USER_REQ_MAP_FLAG_NOUNMAP;
451 }
452
453 if (unlikely(opf)) {
454 pr_warn("unsupported BIO type %x\n", opf);
455 return -EOPNOTSUPP;
456 }
457 WARN_ON(out < 0);
458 return out;
459 }
460
461 /*
462 * Not quite what's in blk-map.c, but instead what I thought the functions in
463 * blk-map did. This one seems more generally useful and I think we could
464 * write the blk-map version in terms of this one. The differences are that
465 * this has a return value that counts, and blk-map uses the BIO _all iters.
466 * Neither advance the BIO iter but don't advance the IOV iter, which is a bit
467 * odd here.
468 */
bio_copy_from_iter(struct bio * bio,struct iov_iter * iter)469 static ssize_t bio_copy_from_iter(struct bio *bio, struct iov_iter *iter)
470 {
471 struct bio_vec bvec;
472 struct bvec_iter biter;
473 ssize_t out = 0;
474
475 bio_for_each_segment (bvec, bio, biter) {
476 ssize_t ret;
477
478 ret = copy_page_from_iter(bvec.bv_page, bvec.bv_offset,
479 bvec.bv_len, iter);
480
481 /*
482 * FIXME: I thought that IOV copies had a mechanism for
483 * terminating early, if for example a signal came in while
484 * sleeping waiting for a page to be mapped, but I don't see
485 * where that would happen.
486 */
487 WARN_ON(ret < 0);
488 out += ret;
489
490 if (!iov_iter_count(iter))
491 break;
492
493 if (ret < bvec.bv_len)
494 return ret;
495 }
496
497 return out;
498 }
499
bio_copy_to_iter(struct bio * bio,struct iov_iter * iter)500 static ssize_t bio_copy_to_iter(struct bio *bio, struct iov_iter *iter)
501 {
502 struct bio_vec bvec;
503 struct bvec_iter biter;
504 ssize_t out = 0;
505
506 bio_for_each_segment (bvec, bio, biter) {
507 ssize_t ret;
508
509 ret = copy_page_to_iter(bvec.bv_page, bvec.bv_offset,
510 bvec.bv_len, iter);
511
512 /* as above */
513 WARN_ON(ret < 0);
514 out += ret;
515
516 if (!iov_iter_count(iter))
517 break;
518
519 if (ret < bvec.bv_len)
520 return ret;
521 }
522
523 return out;
524 }
525
msg_copy_to_iov(struct message * msg,struct iov_iter * to)526 static ssize_t msg_copy_to_iov(struct message *msg, struct iov_iter *to)
527 {
528 ssize_t copied = 0;
529
530 if (!iov_iter_count(to))
531 return 0;
532
533 if (msg->posn_to_user < sizeof(msg->msg)) {
534 copied = copy_to_iter((char *)(&msg->msg) + msg->posn_to_user,
535 sizeof(msg->msg) - msg->posn_to_user, to);
536 } else {
537 copied = bio_copy_to_iter(msg->bio, to);
538 if (copied > 0)
539 bio_advance(msg->bio, copied);
540 }
541
542 if (copied < 0)
543 return copied;
544
545 msg->posn_to_user += copied;
546 return copied;
547 }
548
msg_copy_from_iov(struct message * msg,struct iov_iter * from)549 static ssize_t msg_copy_from_iov(struct message *msg, struct iov_iter *from)
550 {
551 ssize_t copied = 0;
552
553 if (!iov_iter_count(from))
554 return 0;
555
556 if (msg->posn_from_user < sizeof(msg->msg)) {
557 copied = copy_from_iter(
558 (char *)(&msg->msg) + msg->posn_from_user,
559 sizeof(msg->msg) - msg->posn_from_user, from);
560 } else {
561 copied = bio_copy_from_iter(msg->bio, from);
562 if (copied > 0)
563 bio_advance(msg->bio, copied);
564 }
565
566 if (copied < 0)
567 return copied;
568
569 msg->posn_from_user += copied;
570 return copied;
571 }
572
msg_get_map(struct target * t)573 static struct message *msg_get_map(struct target *t)
574 {
575 struct message *m;
576
577 lockdep_assert_held(&t->lock);
578
579 m = mempool_alloc(&t->message_pool, GFP_NOIO);
580 m->msg.seq = t->next_seq_to_map++;
581 INIT_LIST_HEAD(&m->to_user);
582 INIT_LIST_HEAD(&m->from_user);
583 return m;
584 }
585
msg_get_to_user(struct target * t)586 static struct message *msg_get_to_user(struct target *t)
587 {
588 struct message *m;
589
590 lockdep_assert_held(&t->lock);
591
592 if (list_empty(&t->to_user))
593 return NULL;
594
595 m = list_first_entry(&t->to_user, struct message, to_user);
596
597 list_del(&m->to_user);
598
599 /*
600 * If the IO was queued to workqueue since there
601 * was no daemon to service the IO, then we
602 * will have to cancel the delayed work as the
603 * IO will be processed by this user-space thread.
604 *
605 * If the delayed work was already picked up for
606 * processing, then wait for it to complete. Note
607 * that the IO will not be terminated by the work
608 * queue thread.
609 */
610 if (unlikely(m->delayed)) {
611 mutex_unlock(&t->lock);
612 cancel_delayed_work_sync(&m->work);
613 mutex_lock(&t->lock);
614 }
615 return m;
616 }
617
msg_get_from_user(struct channel * c,u64 seq)618 static struct message *msg_get_from_user(struct channel *c, u64 seq)
619 {
620 struct message *m;
621 struct list_head *cur, *tmp;
622
623 lockdep_assert_held(&c->lock);
624
625 list_for_each_safe (cur, tmp, &c->from_user) {
626 m = list_entry(cur, struct message, from_user);
627 if (m->msg.seq == seq) {
628 list_del(&m->from_user);
629 return m;
630 }
631 }
632
633 return NULL;
634 }
635
636 /*
637 * Returns 0 when there is no work left to do. This must be callable without
638 * holding the target lock, as it is part of the waitqueue's check expression.
639 * When called without the lock it may spuriously indicate there is remaining
640 * work, but when called with the lock it must be accurate.
641 */
target_poll(struct target * t)642 static int target_poll(struct target *t)
643 {
644 return !list_empty(&t->to_user) || t->dm_destroyed;
645 }
646
target_release(struct kref * ref)647 static void target_release(struct kref *ref)
648 {
649 struct target *t = container_of(ref, struct target, references);
650 struct list_head *cur, *tmp;
651
652 /*
653 * There may be outstanding BIOs that have not yet been given to
654 * userspace. At this point there's nothing we can do about them, as
655 * there are and will never be any channels.
656 */
657 list_for_each_safe (cur, tmp, &t->to_user) {
658 struct message *m = list_entry(cur, struct message, to_user);
659
660 if (unlikely(m->delayed)) {
661 bool ret;
662
663 mutex_unlock(&t->lock);
664 ret = cancel_delayed_work_sync(&m->work);
665 mutex_lock(&t->lock);
666 if (!ret)
667 continue;
668 }
669 message_kill(m, &t->message_pool);
670 }
671
672 mempool_exit(&t->message_pool);
673 mutex_unlock(&t->lock);
674 mutex_destroy(&t->lock);
675 kfree(t);
676 }
677
target_put(struct target * t)678 static void target_put(struct target *t)
679 {
680 /*
681 * This both releases a reference to the target and the lock. We leave
682 * it up to the caller to hold the lock, as they probably needed it for
683 * something else.
684 */
685 lockdep_assert_held(&t->lock);
686
687 if (!kref_put(&t->references, target_release)) {
688 /*
689 * User-space thread is getting terminated.
690 * We need to scan the list for all those
691 * pending IO's which were not processed yet
692 * and put them back to work-queue for delayed
693 * processing.
694 */
695 if (!is_user_space_thread_present(t)) {
696 struct list_head *cur, *tmp;
697
698 list_for_each_safe(cur, tmp, &t->to_user) {
699 struct message *m = list_entry(cur,
700 struct message,
701 to_user);
702 if (!m->delayed)
703 enqueue_delayed_work(m, false);
704 }
705 /*
706 * Daemon attached to this target is terminated.
707 */
708 t->daemon_terminated = true;
709 }
710 mutex_unlock(&t->lock);
711 }
712 }
713
channel_alloc(struct target * t)714 static struct channel *channel_alloc(struct target *t)
715 {
716 struct channel *c;
717
718 lockdep_assert_held(&t->lock);
719
720 c = kzalloc(sizeof(*c), GFP_KERNEL);
721 if (c == NULL)
722 return NULL;
723
724 kref_get(&t->references);
725 c->target = t;
726 c->cur_from_user = &c->scratch_message_from_user;
727 mutex_init(&c->lock);
728 INIT_LIST_HEAD(&c->from_user);
729 return c;
730 }
731
channel_free(struct channel * c)732 static void channel_free(struct channel *c)
733 {
734 struct list_head *cur, *tmp;
735
736 lockdep_assert_held(&c->lock);
737
738 /*
739 * There may be outstanding BIOs that have been given to userspace but
740 * have not yet been completed. The channel has been shut down so
741 * there's no way to process the rest of those messages, so we just go
742 * ahead and error out the BIOs. Hopefully whatever's on the other end
743 * can handle the errors. One could imagine splitting the BIOs and
744 * completing as much as we got, but that seems like overkill here.
745 *
746 * Our only other options would be to let the BIO hang around (which
747 * seems way worse) or to resubmit it to userspace in the hope there's
748 * another channel. I don't really like the idea of submitting a
749 * message twice.
750 */
751 if (c->cur_to_user != NULL)
752 message_kill(c->cur_to_user, &c->target->message_pool);
753 if (c->cur_from_user != &c->scratch_message_from_user)
754 message_kill(c->cur_from_user, &c->target->message_pool);
755 list_for_each_safe (cur, tmp, &c->from_user)
756 message_kill(list_entry(cur, struct message, from_user),
757 &c->target->message_pool);
758
759 mutex_lock(&c->target->lock);
760 target_put(c->target);
761 mutex_unlock(&c->lock);
762 mutex_destroy(&c->lock);
763 kfree(c);
764 }
765
dev_open(struct inode * inode,struct file * file)766 static int dev_open(struct inode *inode, struct file *file)
767 {
768 struct channel *c;
769 struct target *t;
770
771 /*
772 * This is called by miscdev, which sets private_data to point to the
773 * struct miscdevice that was opened. The rest of our file operations
774 * want to refer to the channel that's been opened, so we swap that
775 * pointer out with a fresh channel.
776 *
777 * This is called with the miscdev lock held, which is also held while
778 * registering/unregistering the miscdev. The miscdev must be
779 * registered for this to get called, which means there must be an
780 * outstanding reference to the target, which means it cannot be freed
781 * out from under us despite us not holding a reference yet.
782 */
783 t = container_of(file->private_data, struct target, miscdev);
784 mutex_lock(&t->lock);
785 file->private_data = c = channel_alloc(t);
786
787 if (c == NULL) {
788 mutex_unlock(&t->lock);
789 return -ENOMEM;
790 }
791
792 mutex_unlock(&t->lock);
793 return 0;
794 }
795
dev_read(struct kiocb * iocb,struct iov_iter * to)796 static ssize_t dev_read(struct kiocb *iocb, struct iov_iter *to)
797 {
798 struct channel *c = channel_from_file(iocb->ki_filp);
799 ssize_t total_processed = 0;
800 ssize_t processed;
801
802 mutex_lock(&c->lock);
803
804 if (unlikely(c->to_user_error)) {
805 total_processed = c->to_user_error;
806 goto cleanup_unlock;
807 }
808
809 if (c->cur_to_user == NULL) {
810 struct target *t = target_from_channel(c);
811
812 mutex_lock(&t->lock);
813
814 while (!target_poll(t)) {
815 int e;
816
817 mutex_unlock(&t->lock);
818 mutex_unlock(&c->lock);
819 e = wait_event_interruptible(t->wq, target_poll(t));
820 mutex_lock(&c->lock);
821 mutex_lock(&t->lock);
822
823 if (unlikely(e != 0)) {
824 /*
825 * We haven't processed any bytes in either the
826 * BIO or the IOV, so we can just terminate
827 * right now. Elsewhere in the kernel handles
828 * restarting the syscall when appropriate.
829 */
830 total_processed = e;
831 mutex_unlock(&t->lock);
832 goto cleanup_unlock;
833 }
834 }
835
836 if (unlikely(t->dm_destroyed)) {
837 /*
838 * DM has destroyed this target, so just lock
839 * the user out. There's really nothing else
840 * we can do here. Note that we don't actually
841 * tear any thing down until userspace has
842 * closed the FD, as there may still be
843 * outstanding BIOs.
844 *
845 * This is kind of a wacky error code to
846 * return. My goal was really just to try and
847 * find something that wasn't likely to be
848 * returned by anything else in the miscdev
849 * path. The message "block device required"
850 * seems like a somewhat reasonable thing to
851 * say when the target has disappeared out from
852 * under us, but "not block" isn't sensible.
853 */
854 c->to_user_error = total_processed = -ENOTBLK;
855 mutex_unlock(&t->lock);
856 goto cleanup_unlock;
857 }
858
859 /*
860 * Ensures that accesses to the message data are not ordered
861 * before the remote accesses that produce that message data.
862 *
863 * This pairs with the barrier in user_map(), via the
864 * conditional within the while loop above. Also see the lack
865 * of barrier in user_dtr(), which is why this can be after the
866 * destroyed check.
867 */
868 smp_rmb();
869
870 c->cur_to_user = msg_get_to_user(t);
871 WARN_ON(c->cur_to_user == NULL);
872 mutex_unlock(&t->lock);
873 }
874
875 processed = msg_copy_to_iov(c->cur_to_user, to);
876 total_processed += processed;
877
878 WARN_ON(c->cur_to_user->posn_to_user > c->cur_to_user->total_to_user);
879 if (c->cur_to_user->posn_to_user == c->cur_to_user->total_to_user) {
880 struct message *m = c->cur_to_user;
881
882 c->cur_to_user = NULL;
883 list_add_tail(&m->from_user, &c->from_user);
884 }
885
886 cleanup_unlock:
887 mutex_unlock(&c->lock);
888 return total_processed;
889 }
890
dev_write(struct kiocb * iocb,struct iov_iter * from)891 static ssize_t dev_write(struct kiocb *iocb, struct iov_iter *from)
892 {
893 struct channel *c = channel_from_file(iocb->ki_filp);
894 ssize_t total_processed = 0;
895 ssize_t processed;
896
897 mutex_lock(&c->lock);
898
899 if (unlikely(c->from_user_error)) {
900 total_processed = c->from_user_error;
901 goto cleanup_unlock;
902 }
903
904 /*
905 * cur_from_user can never be NULL. If there's no real message it must
906 * point to the scratch space.
907 */
908 WARN_ON(c->cur_from_user == NULL);
909 if (c->cur_from_user->posn_from_user < sizeof(struct dm_user_message)) {
910 struct message *msg, *old;
911
912 processed = msg_copy_from_iov(c->cur_from_user, from);
913 if (processed <= 0) {
914 pr_warn("msg_copy_from_iov() returned %zu\n",
915 processed);
916 c->from_user_error = -EINVAL;
917 goto cleanup_unlock;
918 }
919 total_processed += processed;
920
921 /*
922 * In the unlikely event the user has provided us a very short
923 * write, not even big enough to fill a message, just succeed.
924 * We'll eventually build up enough bytes to do something.
925 */
926 if (unlikely(c->cur_from_user->posn_from_user <
927 sizeof(struct dm_user_message)))
928 goto cleanup_unlock;
929
930 old = c->cur_from_user;
931 mutex_lock(&c->target->lock);
932 msg = msg_get_from_user(c, c->cur_from_user->msg.seq);
933 if (msg == NULL) {
934 pr_info("user provided an invalid messag seq of %llx\n",
935 old->msg.seq);
936 mutex_unlock(&c->target->lock);
937 c->from_user_error = -EINVAL;
938 goto cleanup_unlock;
939 }
940 mutex_unlock(&c->target->lock);
941
942 WARN_ON(old->posn_from_user != sizeof(struct dm_user_message));
943 msg->posn_from_user = sizeof(struct dm_user_message);
944 msg->return_type = old->msg.type;
945 msg->return_flags = old->msg.flags;
946 WARN_ON(msg->posn_from_user > msg->total_from_user);
947 c->cur_from_user = msg;
948 WARN_ON(old != &c->scratch_message_from_user);
949 }
950
951 /*
952 * Userspace can signal an error for single requests by overwriting the
953 * seq field.
954 */
955 switch (c->cur_from_user->return_type) {
956 case DM_USER_RESP_SUCCESS:
957 c->cur_from_user->bio->bi_status = BLK_STS_OK;
958 break;
959 case DM_USER_RESP_ERROR:
960 case DM_USER_RESP_UNSUPPORTED:
961 default:
962 c->cur_from_user->bio->bi_status = BLK_STS_IOERR;
963 goto finish_bio;
964 }
965
966 /*
967 * The op was a success as far as userspace is concerned, so process
968 * whatever data may come along with it. The user may provide the BIO
969 * data in multiple chunks, in which case we don't need to finish the
970 * BIO.
971 */
972 processed = msg_copy_from_iov(c->cur_from_user, from);
973 total_processed += processed;
974
975 if (c->cur_from_user->posn_from_user <
976 c->cur_from_user->total_from_user)
977 goto cleanup_unlock;
978
979 finish_bio:
980 /*
981 * When we set up this message the BIO's size matched the
982 * message size, if that's not still the case then something
983 * has gone off the rails.
984 */
985 WARN_ON(bio_size(c->cur_from_user->bio) != 0);
986 bio_endio(c->cur_from_user->bio);
987
988 /*
989 * We don't actually need to take the target lock here, as all
990 * we're doing is freeing the message and mempools have their
991 * own lock. Each channel has its ows scratch message.
992 */
993 WARN_ON(c->cur_from_user == &c->scratch_message_from_user);
994 mempool_free(c->cur_from_user, &c->target->message_pool);
995 c->scratch_message_from_user.posn_from_user = 0;
996 c->cur_from_user = &c->scratch_message_from_user;
997
998 cleanup_unlock:
999 mutex_unlock(&c->lock);
1000 return total_processed;
1001 }
1002
dev_release(struct inode * inode,struct file * file)1003 static int dev_release(struct inode *inode, struct file *file)
1004 {
1005 struct channel *c;
1006
1007 c = channel_from_file(file);
1008 mutex_lock(&c->lock);
1009 channel_free(c);
1010
1011 return 0;
1012 }
1013
1014 static const struct file_operations file_operations = {
1015 .owner = THIS_MODULE,
1016 .open = dev_open,
1017 .read_iter = dev_read,
1018 .write_iter = dev_write,
1019 .release = dev_release,
1020 };
1021
user_ctr(struct dm_target * ti,unsigned int argc,char ** argv)1022 static int user_ctr(struct dm_target *ti, unsigned int argc, char **argv)
1023 {
1024 struct target *t;
1025 int r;
1026
1027 if (argc != 3) {
1028 ti->error = "Invalid argument count";
1029 r = -EINVAL;
1030 goto cleanup_none;
1031 }
1032
1033 t = kzalloc(sizeof(*t), GFP_KERNEL);
1034 if (t == NULL) {
1035 r = -ENOMEM;
1036 goto cleanup_none;
1037 }
1038 ti->private = t;
1039
1040 /* Enable more BIO types. */
1041 ti->num_discard_bios = 1;
1042 ti->discards_supported = true;
1043 ti->num_flush_bios = 1;
1044 ti->flush_supported = true;
1045
1046 /*
1047 * We begin with a single reference to the target, which is miscdev's
1048 * reference. This ensures that the target won't be freed
1049 * until after the miscdev has been unregistered and all extant
1050 * channels have been closed.
1051 */
1052 kref_init(&t->references);
1053
1054 t->daemon_terminated = false;
1055 mutex_init(&t->lock);
1056 init_waitqueue_head(&t->wq);
1057 INIT_LIST_HEAD(&t->to_user);
1058 mempool_init_kmalloc_pool(&t->message_pool, MAX_OUTSTANDING_MESSAGES,
1059 sizeof(struct message));
1060
1061 t->miscdev.minor = MISC_DYNAMIC_MINOR;
1062 t->miscdev.fops = &file_operations;
1063 t->miscdev.name = kasprintf(GFP_KERNEL, "dm-user/%s", argv[2]);
1064 if (t->miscdev.name == NULL) {
1065 r = -ENOMEM;
1066 goto cleanup_message_pool;
1067 }
1068
1069 /*
1070 * Once the miscdev is registered it can be opened and therefor
1071 * concurrent references to the channel can happen. Holding the target
1072 * lock during misc_register() could deadlock. If registration
1073 * succeeds then we will not access the target again so we just stick a
1074 * barrier here, which pairs with taking the target lock everywhere
1075 * else the target is accessed.
1076 *
1077 * I forgot where we ended up on the RCpc/RCsc locks. IIU RCsc locks
1078 * would mean that we could take the target lock earlier and release it
1079 * here instead of the memory barrier. I'm not sure that's any better,
1080 * though, and this isn't on a hot path so it probably doesn't matter
1081 * either way.
1082 */
1083 smp_mb();
1084
1085 r = misc_register(&t->miscdev);
1086 if (r) {
1087 DMERR("Unable to register miscdev %s for dm-user",
1088 t->miscdev.name);
1089 r = -ENOMEM;
1090 goto cleanup_misc_name;
1091 }
1092
1093 return 0;
1094
1095 cleanup_misc_name:
1096 kfree(t->miscdev.name);
1097 cleanup_message_pool:
1098 mempool_exit(&t->message_pool);
1099 kfree(t);
1100 cleanup_none:
1101 return r;
1102 }
1103
user_dtr(struct dm_target * ti)1104 static void user_dtr(struct dm_target *ti)
1105 {
1106 struct target *t = target_from_target(ti);
1107
1108 /*
1109 * Removes the miscdev. This must be called without the target lock
1110 * held to avoid a possible deadlock because our open implementation is
1111 * called holding the miscdev lock and must later take the target lock.
1112 *
1113 * There is no race here because only DM can register/unregister the
1114 * miscdev, and DM ensures that doesn't happen twice. The internal
1115 * miscdev lock is sufficient to ensure there are no races between
1116 * deregistering the miscdev and open.
1117 */
1118 misc_deregister(&t->miscdev);
1119
1120 /*
1121 * We are now free to take the target's lock and drop our reference to
1122 * the target. There are almost certainly tasks sleeping in read on at
1123 * least one of the channels associated with this target, this
1124 * explicitly wakes them up and terminates the read.
1125 */
1126 mutex_lock(&t->lock);
1127 /*
1128 * No barrier here, as wait/wake ensures that the flag visibility is
1129 * correct WRT the wake/sleep state of the target tasks.
1130 */
1131 t->dm_destroyed = true;
1132 wake_up_all(&t->wq);
1133 target_put(t);
1134 }
1135
1136 /*
1137 * Consumes a BIO from device mapper, queueing it up for userspace.
1138 */
user_map(struct dm_target * ti,struct bio * bio)1139 static int user_map(struct dm_target *ti, struct bio *bio)
1140 {
1141 struct target *t;
1142 struct message *entry;
1143
1144 t = target_from_target(ti);
1145 /*
1146 * FIXME
1147 *
1148 * This seems like a bad idea. Specifically, here we're
1149 * directly on the IO path when we take the target lock, which may also
1150 * be taken from a user context. The user context doesn't actively
1151 * trigger anything that may sleep while holding the lock, but this
1152 * still seems like a bad idea.
1153 *
1154 * The obvious way to fix this would be to use a proper queue, which
1155 * would result in no shared locks between the direct IO path and user
1156 * tasks. I had a version that did this, but the head-of-line blocking
1157 * from the circular buffer resulted in us needing a fairly large
1158 * allocation in order to avoid situations in which the queue fills up
1159 * and everything goes off the rails.
1160 *
1161 * I could jump through a some hoops to avoid a shared lock while still
1162 * allowing for a large queue, but I'm not actually sure that allowing
1163 * for very large queues is the right thing to do here. Intuitively it
1164 * seems better to keep the queues small in here (essentially sized to
1165 * the user latency for performance reasons only) and rely on returning
1166 * DM_MAPIO_REQUEUE regularly, as that would give the rest of the
1167 * kernel more information.
1168 *
1169 * I'll spend some time trying to figure out what's going on with
1170 * DM_MAPIO_REQUEUE, but if someone has a better idea of how to fix
1171 * this I'm all ears.
1172 */
1173 mutex_lock(&t->lock);
1174
1175 /*
1176 * FIXME
1177 *
1178 * The assumption here is that there's no benefit to returning
1179 * DM_MAPIO_KILL as opposed to just erroring out the BIO, but I'm not
1180 * sure that's actually true -- for example, I could imagine users
1181 * expecting that submitted BIOs are unlikely to fail and therefor
1182 * relying on submission failure to indicate an unsupported type.
1183 *
1184 * There's two ways I can think of to fix this:
1185 * - Add DM arguments that are parsed during the constructor that
1186 * allow various dm_target flags to be set that indicate the op
1187 * types supported by this target. This may make sense for things
1188 * like discard, where DM can already transform the BIOs to a form
1189 * that's likely to be supported.
1190 * - Some sort of pre-filter that allows userspace to hook in here
1191 * and kill BIOs before marking them as submitted. My guess would
1192 * be that a userspace round trip is a bad idea here, but a BPF
1193 * call seems resonable.
1194 *
1195 * My guess is that we'd likely want to do both. The first one is easy
1196 * and gives DM the proper info, so it seems better. The BPF call
1197 * seems overly complex for just this, but one could imagine wanting to
1198 * sometimes return _MAPPED and a BPF filter would be the way to do
1199 * that.
1200 *
1201 * For example, in Android we have an in-kernel DM device called
1202 * "dm-bow" that takes advange of some portion of the space that has
1203 * been discarded on a device to provide opportunistic block-level
1204 * backups. While one could imagine just implementing this entirely in
1205 * userspace, that would come with an appreciable performance penalty.
1206 * Instead one could keep a BPF program that forwards most accesses
1207 * directly to the backing block device while informing a userspace
1208 * daemon of any discarded space and on writes to blocks that are to be
1209 * backed up.
1210 */
1211 if (unlikely((bio_type_to_user_type(bio) < 0) ||
1212 (bio_flags_to_user_flags(bio) < 0))) {
1213 mutex_unlock(&t->lock);
1214 return DM_MAPIO_KILL;
1215 }
1216
1217 entry = msg_get_map(t);
1218 if (unlikely(entry == NULL)) {
1219 mutex_unlock(&t->lock);
1220 return DM_MAPIO_REQUEUE;
1221 }
1222
1223 entry->msg.type = bio_type_to_user_type(bio);
1224 entry->msg.flags = bio_flags_to_user_flags(bio);
1225 entry->msg.sector = bio->bi_iter.bi_sector;
1226 entry->msg.len = bio_size(bio);
1227 entry->bio = bio;
1228 entry->posn_to_user = 0;
1229 entry->total_to_user = bio_bytes_needed_to_user(bio);
1230 entry->posn_from_user = 0;
1231 entry->total_from_user = bio_bytes_needed_from_user(bio);
1232 entry->delayed = false;
1233 entry->t = t;
1234 /* Pairs with the barrier in dev_read() */
1235 smp_wmb();
1236 list_add_tail(&entry->to_user, &t->to_user);
1237
1238 /*
1239 * If there is no daemon to process the IO's,
1240 * queue these messages into a workqueue with
1241 * a timeout.
1242 */
1243 if (!is_user_space_thread_present(t))
1244 enqueue_delayed_work(entry, !t->daemon_terminated);
1245
1246 wake_up_interruptible(&t->wq);
1247 mutex_unlock(&t->lock);
1248 return DM_MAPIO_SUBMITTED;
1249 }
1250
1251 static struct target_type user_target = {
1252 .name = "user",
1253 .version = { 1, 0, 0 },
1254 .module = THIS_MODULE,
1255 .ctr = user_ctr,
1256 .dtr = user_dtr,
1257 .map = user_map,
1258 };
1259
dm_user_init(void)1260 static int __init dm_user_init(void)
1261 {
1262 int r;
1263
1264 r = dm_register_target(&user_target);
1265 if (r) {
1266 DMERR("register failed %d", r);
1267 goto error;
1268 }
1269
1270 return 0;
1271
1272 error:
1273 return r;
1274 }
1275
dm_user_exit(void)1276 static void __exit dm_user_exit(void)
1277 {
1278 dm_unregister_target(&user_target);
1279 }
1280
1281 module_init(dm_user_init);
1282 module_exit(dm_user_exit);
1283 MODULE_AUTHOR("Palmer Dabbelt <palmerdabbelt@google.com>");
1284 MODULE_DESCRIPTION(DM_NAME " target returning blocks from userspace");
1285 MODULE_LICENSE("GPL");
1286