• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2001, 2002 Sistina Software (UK) Limited.
4  * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved.
5  *
6  * This file is released under the GPL.
7  */
8 
9 #include "dm-core.h"
10 #include "dm-rq.h"
11 #include "dm-uevent.h"
12 #include "dm-ima.h"
13 
14 #include <linux/bio-integrity.h>
15 #include <linux/init.h>
16 #include <linux/module.h>
17 #include <linux/mutex.h>
18 #include <linux/sched/mm.h>
19 #include <linux/sched/signal.h>
20 #include <linux/blkpg.h>
21 #include <linux/bio.h>
22 #include <linux/mempool.h>
23 #include <linux/dax.h>
24 #include <linux/slab.h>
25 #include <linux/idr.h>
26 #include <linux/uio.h>
27 #include <linux/hdreg.h>
28 #include <linux/delay.h>
29 #include <linux/wait.h>
30 #include <linux/pr.h>
31 #include <linux/refcount.h>
32 #include <linux/part_stat.h>
33 #include <linux/blk-crypto.h>
34 #include <linux/blk-crypto-profile.h>
35 
36 #define DM_MSG_PREFIX "core"
37 
38 /*
39  * Cookies are numeric values sent with CHANGE and REMOVE
40  * uevents while resuming, removing or renaming the device.
41  */
42 #define DM_COOKIE_ENV_VAR_NAME "DM_COOKIE"
43 #define DM_COOKIE_LENGTH 24
44 
45 /*
46  * For REQ_POLLED fs bio, this flag is set if we link mapped underlying
47  * dm_io into one list, and reuse bio->bi_private as the list head. Before
48  * ending this fs bio, we will recover its ->bi_private.
49  */
50 #define REQ_DM_POLL_LIST	REQ_DRV
51 
52 static const char *_name = DM_NAME;
53 
54 static unsigned int major;
55 static unsigned int _major;
56 
57 static DEFINE_IDR(_minor_idr);
58 
59 static DEFINE_SPINLOCK(_minor_lock);
60 
61 static void do_deferred_remove(struct work_struct *w);
62 
63 static DECLARE_WORK(deferred_remove_work, do_deferred_remove);
64 
65 static struct workqueue_struct *deferred_remove_workqueue;
66 
67 atomic_t dm_global_event_nr = ATOMIC_INIT(0);
68 DECLARE_WAIT_QUEUE_HEAD(dm_global_eventq);
69 
dm_issue_global_event(void)70 void dm_issue_global_event(void)
71 {
72 	atomic_inc(&dm_global_event_nr);
73 	wake_up(&dm_global_eventq);
74 }
75 
76 DEFINE_STATIC_KEY_FALSE(stats_enabled);
77 DEFINE_STATIC_KEY_FALSE(swap_bios_enabled);
78 DEFINE_STATIC_KEY_FALSE(zoned_enabled);
79 
80 /*
81  * One of these is allocated (on-stack) per original bio.
82  */
83 struct clone_info {
84 	struct dm_table *map;
85 	struct bio *bio;
86 	struct dm_io *io;
87 	sector_t sector;
88 	unsigned int sector_count;
89 	bool is_abnormal_io:1;
90 	bool submit_as_polled:1;
91 };
92 
clone_to_tio(struct bio * clone)93 static inline struct dm_target_io *clone_to_tio(struct bio *clone)
94 {
95 	return container_of(clone, struct dm_target_io, clone);
96 }
97 
dm_per_bio_data(struct bio * bio,size_t data_size)98 void *dm_per_bio_data(struct bio *bio, size_t data_size)
99 {
100 	if (!dm_tio_flagged(clone_to_tio(bio), DM_TIO_INSIDE_DM_IO))
101 		return (char *)bio - DM_TARGET_IO_BIO_OFFSET - data_size;
102 	return (char *)bio - DM_IO_BIO_OFFSET - data_size;
103 }
104 EXPORT_SYMBOL_GPL(dm_per_bio_data);
105 
dm_bio_from_per_bio_data(void * data,size_t data_size)106 struct bio *dm_bio_from_per_bio_data(void *data, size_t data_size)
107 {
108 	struct dm_io *io = (struct dm_io *)((char *)data + data_size);
109 
110 	if (io->magic == DM_IO_MAGIC)
111 		return (struct bio *)((char *)io + DM_IO_BIO_OFFSET);
112 	BUG_ON(io->magic != DM_TIO_MAGIC);
113 	return (struct bio *)((char *)io + DM_TARGET_IO_BIO_OFFSET);
114 }
115 EXPORT_SYMBOL_GPL(dm_bio_from_per_bio_data);
116 
dm_bio_get_target_bio_nr(const struct bio * bio)117 unsigned int dm_bio_get_target_bio_nr(const struct bio *bio)
118 {
119 	return container_of(bio, struct dm_target_io, clone)->target_bio_nr;
120 }
121 EXPORT_SYMBOL_GPL(dm_bio_get_target_bio_nr);
122 
123 #define MINOR_ALLOCED ((void *)-1)
124 
125 #define DM_NUMA_NODE NUMA_NO_NODE
126 static int dm_numa_node = DM_NUMA_NODE;
127 
128 #define DEFAULT_SWAP_BIOS	(8 * 1048576 / PAGE_SIZE)
129 static int swap_bios = DEFAULT_SWAP_BIOS;
get_swap_bios(void)130 static int get_swap_bios(void)
131 {
132 	int latch = READ_ONCE(swap_bios);
133 
134 	if (unlikely(latch <= 0))
135 		latch = DEFAULT_SWAP_BIOS;
136 	return latch;
137 }
138 
139 struct table_device {
140 	struct list_head list;
141 	refcount_t count;
142 	struct dm_dev dm_dev;
143 };
144 
145 /*
146  * Bio-based DM's mempools' reserved IOs set by the user.
147  */
148 #define RESERVED_BIO_BASED_IOS		16
149 static unsigned int reserved_bio_based_ios = RESERVED_BIO_BASED_IOS;
150 
__dm_get_module_param_int(int * module_param,int min,int max)151 static int __dm_get_module_param_int(int *module_param, int min, int max)
152 {
153 	int param = READ_ONCE(*module_param);
154 	int modified_param = 0;
155 	bool modified = true;
156 
157 	if (param < min)
158 		modified_param = min;
159 	else if (param > max)
160 		modified_param = max;
161 	else
162 		modified = false;
163 
164 	if (modified) {
165 		(void)cmpxchg(module_param, param, modified_param);
166 		param = modified_param;
167 	}
168 
169 	return param;
170 }
171 
__dm_get_module_param(unsigned int * module_param,unsigned int def,unsigned int max)172 unsigned int __dm_get_module_param(unsigned int *module_param, unsigned int def, unsigned int max)
173 {
174 	unsigned int param = READ_ONCE(*module_param);
175 	unsigned int modified_param = 0;
176 
177 	if (!param)
178 		modified_param = def;
179 	else if (param > max)
180 		modified_param = max;
181 
182 	if (modified_param) {
183 		(void)cmpxchg(module_param, param, modified_param);
184 		param = modified_param;
185 	}
186 
187 	return param;
188 }
189 
dm_get_reserved_bio_based_ios(void)190 unsigned int dm_get_reserved_bio_based_ios(void)
191 {
192 	return __dm_get_module_param(&reserved_bio_based_ios,
193 				     RESERVED_BIO_BASED_IOS, DM_RESERVED_MAX_IOS);
194 }
195 EXPORT_SYMBOL_GPL(dm_get_reserved_bio_based_ios);
196 
dm_get_numa_node(void)197 static unsigned int dm_get_numa_node(void)
198 {
199 	return __dm_get_module_param_int(&dm_numa_node,
200 					 DM_NUMA_NODE, num_online_nodes() - 1);
201 }
202 
local_init(void)203 static int __init local_init(void)
204 {
205 	int r;
206 
207 	r = dm_uevent_init();
208 	if (r)
209 		return r;
210 
211 	deferred_remove_workqueue = alloc_ordered_workqueue("kdmremove", 0);
212 	if (!deferred_remove_workqueue) {
213 		r = -ENOMEM;
214 		goto out_uevent_exit;
215 	}
216 
217 	_major = major;
218 	r = register_blkdev(_major, _name);
219 	if (r < 0)
220 		goto out_free_workqueue;
221 
222 	if (!_major)
223 		_major = r;
224 
225 	return 0;
226 
227 out_free_workqueue:
228 	destroy_workqueue(deferred_remove_workqueue);
229 out_uevent_exit:
230 	dm_uevent_exit();
231 
232 	return r;
233 }
234 
local_exit(void)235 static void local_exit(void)
236 {
237 	destroy_workqueue(deferred_remove_workqueue);
238 
239 	unregister_blkdev(_major, _name);
240 	dm_uevent_exit();
241 
242 	_major = 0;
243 
244 	DMINFO("cleaned up");
245 }
246 
247 static int (*_inits[])(void) __initdata = {
248 	local_init,
249 	dm_target_init,
250 	dm_linear_init,
251 	dm_stripe_init,
252 	dm_io_init,
253 	dm_kcopyd_init,
254 	dm_interface_init,
255 	dm_statistics_init,
256 };
257 
258 static void (*_exits[])(void) = {
259 	local_exit,
260 	dm_target_exit,
261 	dm_linear_exit,
262 	dm_stripe_exit,
263 	dm_io_exit,
264 	dm_kcopyd_exit,
265 	dm_interface_exit,
266 	dm_statistics_exit,
267 };
268 
dm_init(void)269 static int __init dm_init(void)
270 {
271 	const int count = ARRAY_SIZE(_inits);
272 	int r, i;
273 
274 #if (IS_ENABLED(CONFIG_IMA) && !IS_ENABLED(CONFIG_IMA_DISABLE_HTABLE))
275 	DMWARN("CONFIG_IMA_DISABLE_HTABLE is disabled."
276 	       " Duplicate IMA measurements will not be recorded in the IMA log.");
277 #endif
278 
279 	for (i = 0; i < count; i++) {
280 		r = _inits[i]();
281 		if (r)
282 			goto bad;
283 	}
284 
285 	return 0;
286 bad:
287 	while (i--)
288 		_exits[i]();
289 
290 	return r;
291 }
292 
dm_exit(void)293 static void __exit dm_exit(void)
294 {
295 	int i = ARRAY_SIZE(_exits);
296 
297 	while (i--)
298 		_exits[i]();
299 
300 	/*
301 	 * Should be empty by this point.
302 	 */
303 	idr_destroy(&_minor_idr);
304 }
305 
306 /*
307  * Block device functions
308  */
dm_deleting_md(struct mapped_device * md)309 int dm_deleting_md(struct mapped_device *md)
310 {
311 	return test_bit(DMF_DELETING, &md->flags);
312 }
313 
dm_blk_open(struct gendisk * disk,blk_mode_t mode)314 static int dm_blk_open(struct gendisk *disk, blk_mode_t mode)
315 {
316 	struct mapped_device *md;
317 
318 	spin_lock(&_minor_lock);
319 
320 	md = disk->private_data;
321 	if (!md)
322 		goto out;
323 
324 	if (test_bit(DMF_FREEING, &md->flags) ||
325 	    dm_deleting_md(md)) {
326 		md = NULL;
327 		goto out;
328 	}
329 
330 	dm_get(md);
331 	atomic_inc(&md->open_count);
332 out:
333 	spin_unlock(&_minor_lock);
334 
335 	return md ? 0 : -ENXIO;
336 }
337 
dm_blk_close(struct gendisk * disk)338 static void dm_blk_close(struct gendisk *disk)
339 {
340 	struct mapped_device *md;
341 
342 	spin_lock(&_minor_lock);
343 
344 	md = disk->private_data;
345 	if (WARN_ON(!md))
346 		goto out;
347 
348 	if (atomic_dec_and_test(&md->open_count) &&
349 	    (test_bit(DMF_DEFERRED_REMOVE, &md->flags)))
350 		queue_work(deferred_remove_workqueue, &deferred_remove_work);
351 
352 	dm_put(md);
353 out:
354 	spin_unlock(&_minor_lock);
355 }
356 
dm_open_count(struct mapped_device * md)357 int dm_open_count(struct mapped_device *md)
358 {
359 	return atomic_read(&md->open_count);
360 }
361 
362 /*
363  * Guarantees nothing is using the device before it's deleted.
364  */
dm_lock_for_deletion(struct mapped_device * md,bool mark_deferred,bool only_deferred)365 int dm_lock_for_deletion(struct mapped_device *md, bool mark_deferred, bool only_deferred)
366 {
367 	int r = 0;
368 
369 	spin_lock(&_minor_lock);
370 
371 	if (dm_open_count(md)) {
372 		r = -EBUSY;
373 		if (mark_deferred)
374 			set_bit(DMF_DEFERRED_REMOVE, &md->flags);
375 	} else if (only_deferred && !test_bit(DMF_DEFERRED_REMOVE, &md->flags))
376 		r = -EEXIST;
377 	else
378 		set_bit(DMF_DELETING, &md->flags);
379 
380 	spin_unlock(&_minor_lock);
381 
382 	return r;
383 }
384 
dm_cancel_deferred_remove(struct mapped_device * md)385 int dm_cancel_deferred_remove(struct mapped_device *md)
386 {
387 	int r = 0;
388 
389 	spin_lock(&_minor_lock);
390 
391 	if (test_bit(DMF_DELETING, &md->flags))
392 		r = -EBUSY;
393 	else
394 		clear_bit(DMF_DEFERRED_REMOVE, &md->flags);
395 
396 	spin_unlock(&_minor_lock);
397 
398 	return r;
399 }
400 
do_deferred_remove(struct work_struct * w)401 static void do_deferred_remove(struct work_struct *w)
402 {
403 	dm_deferred_remove();
404 }
405 
dm_blk_getgeo(struct block_device * bdev,struct hd_geometry * geo)406 static int dm_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo)
407 {
408 	struct mapped_device *md = bdev->bd_disk->private_data;
409 
410 	return dm_get_geometry(md, geo);
411 }
412 
dm_prepare_ioctl(struct mapped_device * md,int * srcu_idx,struct block_device ** bdev)413 static int dm_prepare_ioctl(struct mapped_device *md, int *srcu_idx,
414 			    struct block_device **bdev)
415 {
416 	struct dm_target *ti;
417 	struct dm_table *map;
418 	int r;
419 
420 retry:
421 	r = -ENOTTY;
422 	map = dm_get_live_table(md, srcu_idx);
423 	if (!map || !dm_table_get_size(map))
424 		return r;
425 
426 	/* We only support devices that have a single target */
427 	if (map->num_targets != 1)
428 		return r;
429 
430 	ti = dm_table_get_target(map, 0);
431 	if (!ti->type->prepare_ioctl)
432 		return r;
433 
434 	if (dm_suspended_md(md))
435 		return -EAGAIN;
436 
437 	r = ti->type->prepare_ioctl(ti, bdev);
438 	if (r == -ENOTCONN && !fatal_signal_pending(current)) {
439 		dm_put_live_table(md, *srcu_idx);
440 		fsleep(10000);
441 		goto retry;
442 	}
443 
444 	return r;
445 }
446 
dm_unprepare_ioctl(struct mapped_device * md,int srcu_idx)447 static void dm_unprepare_ioctl(struct mapped_device *md, int srcu_idx)
448 {
449 	dm_put_live_table(md, srcu_idx);
450 }
451 
dm_blk_ioctl(struct block_device * bdev,blk_mode_t mode,unsigned int cmd,unsigned long arg)452 static int dm_blk_ioctl(struct block_device *bdev, blk_mode_t mode,
453 			unsigned int cmd, unsigned long arg)
454 {
455 	struct mapped_device *md = bdev->bd_disk->private_data;
456 	int r, srcu_idx;
457 
458 	r = dm_prepare_ioctl(md, &srcu_idx, &bdev);
459 	if (r < 0)
460 		goto out;
461 
462 	if (r > 0) {
463 		/*
464 		 * Target determined this ioctl is being issued against a
465 		 * subset of the parent bdev; require extra privileges.
466 		 */
467 		if (!capable(CAP_SYS_RAWIO)) {
468 			DMDEBUG_LIMIT(
469 	"%s: sending ioctl %x to DM device without required privilege.",
470 				current->comm, cmd);
471 			r = -ENOIOCTLCMD;
472 			goto out;
473 		}
474 	}
475 
476 	if (!bdev->bd_disk->fops->ioctl)
477 		r = -ENOTTY;
478 	else
479 		r = bdev->bd_disk->fops->ioctl(bdev, mode, cmd, arg);
480 out:
481 	dm_unprepare_ioctl(md, srcu_idx);
482 	return r;
483 }
484 
dm_start_time_ns_from_clone(struct bio * bio)485 u64 dm_start_time_ns_from_clone(struct bio *bio)
486 {
487 	return jiffies_to_nsecs(clone_to_tio(bio)->io->start_time);
488 }
489 EXPORT_SYMBOL_GPL(dm_start_time_ns_from_clone);
490 
bio_is_flush_with_data(struct bio * bio)491 static inline bool bio_is_flush_with_data(struct bio *bio)
492 {
493 	return ((bio->bi_opf & REQ_PREFLUSH) && bio->bi_iter.bi_size);
494 }
495 
dm_io_sectors(struct dm_io * io,struct bio * bio)496 static inline unsigned int dm_io_sectors(struct dm_io *io, struct bio *bio)
497 {
498 	/*
499 	 * If REQ_PREFLUSH set, don't account payload, it will be
500 	 * submitted (and accounted) after this flush completes.
501 	 */
502 	if (bio_is_flush_with_data(bio))
503 		return 0;
504 	if (unlikely(dm_io_flagged(io, DM_IO_WAS_SPLIT)))
505 		return io->sectors;
506 	return bio_sectors(bio);
507 }
508 
dm_io_acct(struct dm_io * io,bool end)509 static void dm_io_acct(struct dm_io *io, bool end)
510 {
511 	struct bio *bio = io->orig_bio;
512 
513 	if (dm_io_flagged(io, DM_IO_BLK_STAT)) {
514 		if (!end)
515 			bdev_start_io_acct(bio->bi_bdev, bio_op(bio),
516 					   io->start_time);
517 		else
518 			bdev_end_io_acct(bio->bi_bdev, bio_op(bio),
519 					 dm_io_sectors(io, bio),
520 					 io->start_time);
521 	}
522 
523 	if (static_branch_unlikely(&stats_enabled) &&
524 	    unlikely(dm_stats_used(&io->md->stats))) {
525 		sector_t sector;
526 
527 		if (unlikely(dm_io_flagged(io, DM_IO_WAS_SPLIT)))
528 			sector = bio_end_sector(bio) - io->sector_offset;
529 		else
530 			sector = bio->bi_iter.bi_sector;
531 
532 		dm_stats_account_io(&io->md->stats, bio_data_dir(bio),
533 				    sector, dm_io_sectors(io, bio),
534 				    end, io->start_time, &io->stats_aux);
535 	}
536 }
537 
__dm_start_io_acct(struct dm_io * io)538 static void __dm_start_io_acct(struct dm_io *io)
539 {
540 	dm_io_acct(io, false);
541 }
542 
dm_start_io_acct(struct dm_io * io,struct bio * clone)543 static void dm_start_io_acct(struct dm_io *io, struct bio *clone)
544 {
545 	/*
546 	 * Ensure IO accounting is only ever started once.
547 	 */
548 	if (dm_io_flagged(io, DM_IO_ACCOUNTED))
549 		return;
550 
551 	/* Expect no possibility for race unless DM_TIO_IS_DUPLICATE_BIO. */
552 	if (!clone || likely(dm_tio_is_normal(clone_to_tio(clone)))) {
553 		dm_io_set_flag(io, DM_IO_ACCOUNTED);
554 	} else {
555 		unsigned long flags;
556 		/* Can afford locking given DM_TIO_IS_DUPLICATE_BIO */
557 		spin_lock_irqsave(&io->lock, flags);
558 		if (dm_io_flagged(io, DM_IO_ACCOUNTED)) {
559 			spin_unlock_irqrestore(&io->lock, flags);
560 			return;
561 		}
562 		dm_io_set_flag(io, DM_IO_ACCOUNTED);
563 		spin_unlock_irqrestore(&io->lock, flags);
564 	}
565 
566 	__dm_start_io_acct(io);
567 }
568 
dm_end_io_acct(struct dm_io * io)569 static void dm_end_io_acct(struct dm_io *io)
570 {
571 	dm_io_acct(io, true);
572 }
573 
alloc_io(struct mapped_device * md,struct bio * bio,gfp_t gfp_mask)574 static struct dm_io *alloc_io(struct mapped_device *md, struct bio *bio, gfp_t gfp_mask)
575 {
576 	struct dm_io *io;
577 	struct dm_target_io *tio;
578 	struct bio *clone;
579 
580 	clone = bio_alloc_clone(NULL, bio, gfp_mask, &md->mempools->io_bs);
581 	if (unlikely(!clone))
582 		return NULL;
583 	tio = clone_to_tio(clone);
584 	tio->flags = 0;
585 	dm_tio_set_flag(tio, DM_TIO_INSIDE_DM_IO);
586 	tio->io = NULL;
587 
588 	io = container_of(tio, struct dm_io, tio);
589 	io->magic = DM_IO_MAGIC;
590 	io->status = BLK_STS_OK;
591 
592 	/* one ref is for submission, the other is for completion */
593 	atomic_set(&io->io_count, 2);
594 	this_cpu_inc(*md->pending_io);
595 	io->orig_bio = bio;
596 	io->md = md;
597 	spin_lock_init(&io->lock);
598 	io->start_time = jiffies;
599 	io->flags = 0;
600 	if (blk_queue_io_stat(md->queue))
601 		dm_io_set_flag(io, DM_IO_BLK_STAT);
602 
603 	if (static_branch_unlikely(&stats_enabled) &&
604 	    unlikely(dm_stats_used(&md->stats)))
605 		dm_stats_record_start(&md->stats, &io->stats_aux);
606 
607 	return io;
608 }
609 
free_io(struct dm_io * io)610 static void free_io(struct dm_io *io)
611 {
612 	bio_put(&io->tio.clone);
613 }
614 
alloc_tio(struct clone_info * ci,struct dm_target * ti,unsigned int target_bio_nr,unsigned int * len,gfp_t gfp_mask)615 static struct bio *alloc_tio(struct clone_info *ci, struct dm_target *ti,
616 			     unsigned int target_bio_nr, unsigned int *len, gfp_t gfp_mask)
617 {
618 	struct mapped_device *md = ci->io->md;
619 	struct dm_target_io *tio;
620 	struct bio *clone;
621 
622 	if (!ci->io->tio.io) {
623 		/* the dm_target_io embedded in ci->io is available */
624 		tio = &ci->io->tio;
625 		/* alloc_io() already initialized embedded clone */
626 		clone = &tio->clone;
627 	} else {
628 		clone = bio_alloc_clone(NULL, ci->bio, gfp_mask,
629 					&md->mempools->bs);
630 		if (!clone)
631 			return NULL;
632 
633 		/* REQ_DM_POLL_LIST shouldn't be inherited */
634 		clone->bi_opf &= ~REQ_DM_POLL_LIST;
635 
636 		tio = clone_to_tio(clone);
637 		tio->flags = 0; /* also clears DM_TIO_INSIDE_DM_IO */
638 	}
639 
640 	tio->magic = DM_TIO_MAGIC;
641 	tio->io = ci->io;
642 	tio->ti = ti;
643 	tio->target_bio_nr = target_bio_nr;
644 	tio->len_ptr = len;
645 	tio->old_sector = 0;
646 
647 	/* Set default bdev, but target must bio_set_dev() before issuing IO */
648 	clone->bi_bdev = md->disk->part0;
649 	if (likely(ti != NULL) && unlikely(ti->needs_bio_set_dev))
650 		bio_set_dev(clone, md->disk->part0);
651 
652 	if (len) {
653 		clone->bi_iter.bi_size = to_bytes(*len);
654 		if (bio_integrity(clone))
655 			bio_integrity_trim(clone);
656 	}
657 
658 	return clone;
659 }
660 
free_tio(struct bio * clone)661 static void free_tio(struct bio *clone)
662 {
663 	if (dm_tio_flagged(clone_to_tio(clone), DM_TIO_INSIDE_DM_IO))
664 		return;
665 	bio_put(clone);
666 }
667 
668 /*
669  * Add the bio to the list of deferred io.
670  */
queue_io(struct mapped_device * md,struct bio * bio)671 static void queue_io(struct mapped_device *md, struct bio *bio)
672 {
673 	unsigned long flags;
674 
675 	spin_lock_irqsave(&md->deferred_lock, flags);
676 	bio_list_add(&md->deferred, bio);
677 	spin_unlock_irqrestore(&md->deferred_lock, flags);
678 	queue_work(md->wq, &md->work);
679 }
680 
681 /*
682  * Everyone (including functions in this file), should use this
683  * function to access the md->map field, and make sure they call
684  * dm_put_live_table() when finished.
685  */
dm_get_live_table(struct mapped_device * md,int * srcu_idx)686 struct dm_table *dm_get_live_table(struct mapped_device *md,
687 				   int *srcu_idx) __acquires(md->io_barrier)
688 {
689 	*srcu_idx = srcu_read_lock(&md->io_barrier);
690 
691 	return srcu_dereference(md->map, &md->io_barrier);
692 }
693 
dm_put_live_table(struct mapped_device * md,int srcu_idx)694 void dm_put_live_table(struct mapped_device *md,
695 		       int srcu_idx) __releases(md->io_barrier)
696 {
697 	srcu_read_unlock(&md->io_barrier, srcu_idx);
698 }
699 
dm_sync_table(struct mapped_device * md)700 void dm_sync_table(struct mapped_device *md)
701 {
702 	synchronize_srcu(&md->io_barrier);
703 	synchronize_rcu_expedited();
704 }
705 
706 /*
707  * A fast alternative to dm_get_live_table/dm_put_live_table.
708  * The caller must not block between these two functions.
709  */
dm_get_live_table_fast(struct mapped_device * md)710 static struct dm_table *dm_get_live_table_fast(struct mapped_device *md) __acquires(RCU)
711 {
712 	rcu_read_lock();
713 	return rcu_dereference(md->map);
714 }
715 
dm_put_live_table_fast(struct mapped_device * md)716 static void dm_put_live_table_fast(struct mapped_device *md) __releases(RCU)
717 {
718 	rcu_read_unlock();
719 }
720 
721 static char *_dm_claim_ptr = "I belong to device-mapper";
722 
723 /*
724  * Open a table device so we can use it as a map destination.
725  */
open_table_device(struct mapped_device * md,dev_t dev,blk_mode_t mode)726 static struct table_device *open_table_device(struct mapped_device *md,
727 		dev_t dev, blk_mode_t mode)
728 {
729 	struct table_device *td;
730 	struct file *bdev_file;
731 	struct block_device *bdev;
732 	u64 part_off;
733 	int r;
734 
735 	td = kmalloc_node(sizeof(*td), GFP_KERNEL, md->numa_node_id);
736 	if (!td)
737 		return ERR_PTR(-ENOMEM);
738 	refcount_set(&td->count, 1);
739 
740 	bdev_file = bdev_file_open_by_dev(dev, mode, _dm_claim_ptr, NULL);
741 	if (IS_ERR(bdev_file)) {
742 		r = PTR_ERR(bdev_file);
743 		goto out_free_td;
744 	}
745 
746 	bdev = file_bdev(bdev_file);
747 
748 	/*
749 	 * We can be called before the dm disk is added.  In that case we can't
750 	 * register the holder relation here.  It will be done once add_disk was
751 	 * called.
752 	 */
753 	if (md->disk->slave_dir) {
754 		r = bd_link_disk_holder(bdev, md->disk);
755 		if (r)
756 			goto out_blkdev_put;
757 	}
758 
759 	td->dm_dev.mode = mode;
760 	td->dm_dev.bdev = bdev;
761 	td->dm_dev.bdev_file = bdev_file;
762 	td->dm_dev.dax_dev = fs_dax_get_by_bdev(bdev, &part_off,
763 						NULL, NULL);
764 	format_dev_t(td->dm_dev.name, dev);
765 	list_add(&td->list, &md->table_devices);
766 	return td;
767 
768 out_blkdev_put:
769 	__fput_sync(bdev_file);
770 out_free_td:
771 	kfree(td);
772 	return ERR_PTR(r);
773 }
774 
775 /*
776  * Close a table device that we've been using.
777  */
close_table_device(struct table_device * td,struct mapped_device * md)778 static void close_table_device(struct table_device *td, struct mapped_device *md)
779 {
780 	if (md->disk->slave_dir)
781 		bd_unlink_disk_holder(td->dm_dev.bdev, md->disk);
782 
783 	/* Leverage async fput() if DMF_DEFERRED_REMOVE set */
784 	if (unlikely(test_bit(DMF_DEFERRED_REMOVE, &md->flags)))
785 		fput(td->dm_dev.bdev_file);
786 	else
787 		__fput_sync(td->dm_dev.bdev_file);
788 
789 	put_dax(td->dm_dev.dax_dev);
790 	list_del(&td->list);
791 	kfree(td);
792 }
793 
find_table_device(struct list_head * l,dev_t dev,blk_mode_t mode)794 static struct table_device *find_table_device(struct list_head *l, dev_t dev,
795 					      blk_mode_t mode)
796 {
797 	struct table_device *td;
798 
799 	list_for_each_entry(td, l, list)
800 		if (td->dm_dev.bdev->bd_dev == dev && td->dm_dev.mode == mode)
801 			return td;
802 
803 	return NULL;
804 }
805 
dm_get_table_device(struct mapped_device * md,dev_t dev,blk_mode_t mode,struct dm_dev ** result)806 int dm_get_table_device(struct mapped_device *md, dev_t dev, blk_mode_t mode,
807 			struct dm_dev **result)
808 {
809 	struct table_device *td;
810 
811 	mutex_lock(&md->table_devices_lock);
812 	td = find_table_device(&md->table_devices, dev, mode);
813 	if (!td) {
814 		td = open_table_device(md, dev, mode);
815 		if (IS_ERR(td)) {
816 			mutex_unlock(&md->table_devices_lock);
817 			return PTR_ERR(td);
818 		}
819 	} else {
820 		refcount_inc(&td->count);
821 	}
822 	mutex_unlock(&md->table_devices_lock);
823 
824 	*result = &td->dm_dev;
825 	return 0;
826 }
827 
dm_put_table_device(struct mapped_device * md,struct dm_dev * d)828 void dm_put_table_device(struct mapped_device *md, struct dm_dev *d)
829 {
830 	struct table_device *td = container_of(d, struct table_device, dm_dev);
831 
832 	mutex_lock(&md->table_devices_lock);
833 	if (refcount_dec_and_test(&td->count))
834 		close_table_device(td, md);
835 	mutex_unlock(&md->table_devices_lock);
836 }
837 
838 /*
839  * Get the geometry associated with a dm device
840  */
dm_get_geometry(struct mapped_device * md,struct hd_geometry * geo)841 int dm_get_geometry(struct mapped_device *md, struct hd_geometry *geo)
842 {
843 	*geo = md->geometry;
844 
845 	return 0;
846 }
847 
848 /*
849  * Set the geometry of a device.
850  */
dm_set_geometry(struct mapped_device * md,struct hd_geometry * geo)851 int dm_set_geometry(struct mapped_device *md, struct hd_geometry *geo)
852 {
853 	sector_t sz = (sector_t)geo->cylinders * geo->heads * geo->sectors;
854 
855 	if (geo->start > sz) {
856 		DMERR("Start sector is beyond the geometry limits.");
857 		return -EINVAL;
858 	}
859 
860 	md->geometry = *geo;
861 
862 	return 0;
863 }
864 
__noflush_suspending(struct mapped_device * md)865 static int __noflush_suspending(struct mapped_device *md)
866 {
867 	return test_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
868 }
869 
dm_requeue_add_io(struct dm_io * io,bool first_stage)870 static void dm_requeue_add_io(struct dm_io *io, bool first_stage)
871 {
872 	struct mapped_device *md = io->md;
873 
874 	if (first_stage) {
875 		struct dm_io *next = md->requeue_list;
876 
877 		md->requeue_list = io;
878 		io->next = next;
879 	} else {
880 		bio_list_add_head(&md->deferred, io->orig_bio);
881 	}
882 }
883 
dm_kick_requeue(struct mapped_device * md,bool first_stage)884 static void dm_kick_requeue(struct mapped_device *md, bool first_stage)
885 {
886 	if (first_stage)
887 		queue_work(md->wq, &md->requeue_work);
888 	else
889 		queue_work(md->wq, &md->work);
890 }
891 
892 /*
893  * Return true if the dm_io's original bio is requeued.
894  * io->status is updated with error if requeue disallowed.
895  */
dm_handle_requeue(struct dm_io * io,bool first_stage)896 static bool dm_handle_requeue(struct dm_io *io, bool first_stage)
897 {
898 	struct bio *bio = io->orig_bio;
899 	bool handle_requeue = (io->status == BLK_STS_DM_REQUEUE);
900 	bool handle_polled_eagain = ((io->status == BLK_STS_AGAIN) &&
901 				     (bio->bi_opf & REQ_POLLED));
902 	struct mapped_device *md = io->md;
903 	bool requeued = false;
904 
905 	if (handle_requeue || handle_polled_eagain) {
906 		unsigned long flags;
907 
908 		if (bio->bi_opf & REQ_POLLED) {
909 			/*
910 			 * Upper layer won't help us poll split bio
911 			 * (io->orig_bio may only reflect a subset of the
912 			 * pre-split original) so clear REQ_POLLED.
913 			 */
914 			bio_clear_polled(bio);
915 		}
916 
917 		/*
918 		 * Target requested pushing back the I/O or
919 		 * polled IO hit BLK_STS_AGAIN.
920 		 */
921 		spin_lock_irqsave(&md->deferred_lock, flags);
922 		if ((__noflush_suspending(md) &&
923 		     !WARN_ON_ONCE(dm_is_zone_write(md, bio))) ||
924 		    handle_polled_eagain || first_stage) {
925 			dm_requeue_add_io(io, first_stage);
926 			requeued = true;
927 		} else {
928 			/*
929 			 * noflush suspend was interrupted or this is
930 			 * a write to a zoned target.
931 			 */
932 			io->status = BLK_STS_IOERR;
933 		}
934 		spin_unlock_irqrestore(&md->deferred_lock, flags);
935 	}
936 
937 	if (requeued)
938 		dm_kick_requeue(md, first_stage);
939 
940 	return requeued;
941 }
942 
__dm_io_complete(struct dm_io * io,bool first_stage)943 static void __dm_io_complete(struct dm_io *io, bool first_stage)
944 {
945 	struct bio *bio = io->orig_bio;
946 	struct mapped_device *md = io->md;
947 	blk_status_t io_error;
948 	bool requeued;
949 
950 	requeued = dm_handle_requeue(io, first_stage);
951 	if (requeued && first_stage)
952 		return;
953 
954 	io_error = io->status;
955 	if (dm_io_flagged(io, DM_IO_ACCOUNTED))
956 		dm_end_io_acct(io);
957 	else if (!io_error) {
958 		/*
959 		 * Must handle target that DM_MAPIO_SUBMITTED only to
960 		 * then bio_endio() rather than dm_submit_bio_remap()
961 		 */
962 		__dm_start_io_acct(io);
963 		dm_end_io_acct(io);
964 	}
965 	free_io(io);
966 	smp_wmb();
967 	this_cpu_dec(*md->pending_io);
968 
969 	/* nudge anyone waiting on suspend queue */
970 	if (unlikely(wq_has_sleeper(&md->wait)))
971 		wake_up(&md->wait);
972 
973 	/* Return early if the original bio was requeued */
974 	if (requeued)
975 		return;
976 
977 	if (bio_is_flush_with_data(bio)) {
978 		/*
979 		 * Preflush done for flush with data, reissue
980 		 * without REQ_PREFLUSH.
981 		 */
982 		bio->bi_opf &= ~REQ_PREFLUSH;
983 		queue_io(md, bio);
984 	} else {
985 		/* done with normal IO or empty flush */
986 		if (io_error)
987 			bio->bi_status = io_error;
988 		bio_endio(bio);
989 	}
990 }
991 
dm_wq_requeue_work(struct work_struct * work)992 static void dm_wq_requeue_work(struct work_struct *work)
993 {
994 	struct mapped_device *md = container_of(work, struct mapped_device,
995 						requeue_work);
996 	unsigned long flags;
997 	struct dm_io *io;
998 
999 	/* reuse deferred lock to simplify dm_handle_requeue */
1000 	spin_lock_irqsave(&md->deferred_lock, flags);
1001 	io = md->requeue_list;
1002 	md->requeue_list = NULL;
1003 	spin_unlock_irqrestore(&md->deferred_lock, flags);
1004 
1005 	while (io) {
1006 		struct dm_io *next = io->next;
1007 
1008 		dm_io_rewind(io, &md->disk->bio_split);
1009 
1010 		io->next = NULL;
1011 		__dm_io_complete(io, false);
1012 		io = next;
1013 		cond_resched();
1014 	}
1015 }
1016 
1017 /*
1018  * Two staged requeue:
1019  *
1020  * 1) io->orig_bio points to the real original bio, and the part mapped to
1021  *    this io must be requeued, instead of other parts of the original bio.
1022  *
1023  * 2) io->orig_bio points to new cloned bio which matches the requeued dm_io.
1024  */
dm_io_complete(struct dm_io * io)1025 static void dm_io_complete(struct dm_io *io)
1026 {
1027 	bool first_requeue;
1028 
1029 	/*
1030 	 * Only dm_io that has been split needs two stage requeue, otherwise
1031 	 * we may run into long bio clone chain during suspend and OOM could
1032 	 * be triggered.
1033 	 *
1034 	 * Also flush data dm_io won't be marked as DM_IO_WAS_SPLIT, so they
1035 	 * also aren't handled via the first stage requeue.
1036 	 */
1037 	if (dm_io_flagged(io, DM_IO_WAS_SPLIT))
1038 		first_requeue = true;
1039 	else
1040 		first_requeue = false;
1041 
1042 	__dm_io_complete(io, first_requeue);
1043 }
1044 
1045 /*
1046  * Decrements the number of outstanding ios that a bio has been
1047  * cloned into, completing the original io if necc.
1048  */
__dm_io_dec_pending(struct dm_io * io)1049 static inline void __dm_io_dec_pending(struct dm_io *io)
1050 {
1051 	if (atomic_dec_and_test(&io->io_count))
1052 		dm_io_complete(io);
1053 }
1054 
dm_io_set_error(struct dm_io * io,blk_status_t error)1055 static void dm_io_set_error(struct dm_io *io, blk_status_t error)
1056 {
1057 	unsigned long flags;
1058 
1059 	/* Push-back supersedes any I/O errors */
1060 	spin_lock_irqsave(&io->lock, flags);
1061 	if (!(io->status == BLK_STS_DM_REQUEUE &&
1062 	      __noflush_suspending(io->md))) {
1063 		io->status = error;
1064 	}
1065 	spin_unlock_irqrestore(&io->lock, flags);
1066 }
1067 
dm_io_dec_pending(struct dm_io * io,blk_status_t error)1068 static void dm_io_dec_pending(struct dm_io *io, blk_status_t error)
1069 {
1070 	if (unlikely(error))
1071 		dm_io_set_error(io, error);
1072 
1073 	__dm_io_dec_pending(io);
1074 }
1075 
1076 /*
1077  * The queue_limits are only valid as long as you have a reference
1078  * count on 'md'. But _not_ imposing verification to avoid atomic_read(),
1079  */
dm_get_queue_limits(struct mapped_device * md)1080 static inline struct queue_limits *dm_get_queue_limits(struct mapped_device *md)
1081 {
1082 	return &md->queue->limits;
1083 }
1084 
disable_discard(struct mapped_device * md)1085 void disable_discard(struct mapped_device *md)
1086 {
1087 	struct queue_limits *limits = dm_get_queue_limits(md);
1088 
1089 	/* device doesn't really support DISCARD, disable it */
1090 	limits->max_hw_discard_sectors = 0;
1091 }
1092 
disable_write_zeroes(struct mapped_device * md)1093 void disable_write_zeroes(struct mapped_device *md)
1094 {
1095 	struct queue_limits *limits = dm_get_queue_limits(md);
1096 
1097 	/* device doesn't really support WRITE ZEROES, disable it */
1098 	limits->max_write_zeroes_sectors = 0;
1099 }
1100 
swap_bios_limit(struct dm_target * ti,struct bio * bio)1101 static bool swap_bios_limit(struct dm_target *ti, struct bio *bio)
1102 {
1103 	return unlikely((bio->bi_opf & REQ_SWAP) != 0) && unlikely(ti->limit_swap_bios);
1104 }
1105 
clone_endio(struct bio * bio)1106 static void clone_endio(struct bio *bio)
1107 {
1108 	blk_status_t error = bio->bi_status;
1109 	struct dm_target_io *tio = clone_to_tio(bio);
1110 	struct dm_target *ti = tio->ti;
1111 	dm_endio_fn endio = likely(ti != NULL) ? ti->type->end_io : NULL;
1112 	struct dm_io *io = tio->io;
1113 	struct mapped_device *md = io->md;
1114 
1115 	if (unlikely(error == BLK_STS_TARGET)) {
1116 		if (bio_op(bio) == REQ_OP_DISCARD &&
1117 		    !bdev_max_discard_sectors(bio->bi_bdev))
1118 			disable_discard(md);
1119 		else if (bio_op(bio) == REQ_OP_WRITE_ZEROES &&
1120 			 !bdev_write_zeroes_sectors(bio->bi_bdev))
1121 			disable_write_zeroes(md);
1122 	}
1123 
1124 	if (static_branch_unlikely(&zoned_enabled) &&
1125 	    unlikely(bdev_is_zoned(bio->bi_bdev)))
1126 		dm_zone_endio(io, bio);
1127 
1128 	if (endio) {
1129 		int r = endio(ti, bio, &error);
1130 
1131 		switch (r) {
1132 		case DM_ENDIO_REQUEUE:
1133 			if (static_branch_unlikely(&zoned_enabled)) {
1134 				/*
1135 				 * Requeuing writes to a sequential zone of a zoned
1136 				 * target will break the sequential write pattern:
1137 				 * fail such IO.
1138 				 */
1139 				if (WARN_ON_ONCE(dm_is_zone_write(md, bio)))
1140 					error = BLK_STS_IOERR;
1141 				else
1142 					error = BLK_STS_DM_REQUEUE;
1143 			} else
1144 				error = BLK_STS_DM_REQUEUE;
1145 			fallthrough;
1146 		case DM_ENDIO_DONE:
1147 			break;
1148 		case DM_ENDIO_INCOMPLETE:
1149 			/* The target will handle the io */
1150 			return;
1151 		default:
1152 			DMCRIT("unimplemented target endio return value: %d", r);
1153 			BUG();
1154 		}
1155 	}
1156 
1157 	if (static_branch_unlikely(&swap_bios_enabled) &&
1158 	    likely(ti != NULL) && unlikely(swap_bios_limit(ti, bio)))
1159 		up(&md->swap_bios_semaphore);
1160 
1161 	free_tio(bio);
1162 	dm_io_dec_pending(io, error);
1163 }
1164 
1165 /*
1166  * Return maximum size of I/O possible at the supplied sector up to the current
1167  * target boundary.
1168  */
max_io_len_target_boundary(struct dm_target * ti,sector_t target_offset)1169 static inline sector_t max_io_len_target_boundary(struct dm_target *ti,
1170 						  sector_t target_offset)
1171 {
1172 	return ti->len - target_offset;
1173 }
1174 
__max_io_len(struct dm_target * ti,sector_t sector,unsigned int max_granularity,unsigned int max_sectors)1175 static sector_t __max_io_len(struct dm_target *ti, sector_t sector,
1176 			     unsigned int max_granularity,
1177 			     unsigned int max_sectors)
1178 {
1179 	sector_t target_offset = dm_target_offset(ti, sector);
1180 	sector_t len = max_io_len_target_boundary(ti, target_offset);
1181 
1182 	/*
1183 	 * Does the target need to split IO even further?
1184 	 * - varied (per target) IO splitting is a tenet of DM; this
1185 	 *   explains why stacked chunk_sectors based splitting via
1186 	 *   bio_split_to_limits() isn't possible here.
1187 	 */
1188 	if (!max_granularity)
1189 		return len;
1190 	return min_t(sector_t, len,
1191 		min(max_sectors ? : queue_max_sectors(ti->table->md->queue),
1192 		    blk_boundary_sectors_left(target_offset, max_granularity)));
1193 }
1194 
max_io_len(struct dm_target * ti,sector_t sector)1195 static inline sector_t max_io_len(struct dm_target *ti, sector_t sector)
1196 {
1197 	return __max_io_len(ti, sector, ti->max_io_len, 0);
1198 }
1199 
dm_set_target_max_io_len(struct dm_target * ti,sector_t len)1200 int dm_set_target_max_io_len(struct dm_target *ti, sector_t len)
1201 {
1202 	if (len > UINT_MAX) {
1203 		DMERR("Specified maximum size of target IO (%llu) exceeds limit (%u)",
1204 		      (unsigned long long)len, UINT_MAX);
1205 		ti->error = "Maximum size of target IO is too large";
1206 		return -EINVAL;
1207 	}
1208 
1209 	ti->max_io_len = (uint32_t) len;
1210 
1211 	return 0;
1212 }
1213 EXPORT_SYMBOL_GPL(dm_set_target_max_io_len);
1214 
dm_dax_get_live_target(struct mapped_device * md,sector_t sector,int * srcu_idx)1215 static struct dm_target *dm_dax_get_live_target(struct mapped_device *md,
1216 						sector_t sector, int *srcu_idx)
1217 	__acquires(md->io_barrier)
1218 {
1219 	struct dm_table *map;
1220 	struct dm_target *ti;
1221 
1222 	map = dm_get_live_table(md, srcu_idx);
1223 	if (!map)
1224 		return NULL;
1225 
1226 	ti = dm_table_find_target(map, sector);
1227 	if (!ti)
1228 		return NULL;
1229 
1230 	return ti;
1231 }
1232 
dm_dax_direct_access(struct dax_device * dax_dev,pgoff_t pgoff,long nr_pages,enum dax_access_mode mode,void ** kaddr,pfn_t * pfn)1233 static long dm_dax_direct_access(struct dax_device *dax_dev, pgoff_t pgoff,
1234 		long nr_pages, enum dax_access_mode mode, void **kaddr,
1235 		pfn_t *pfn)
1236 {
1237 	struct mapped_device *md = dax_get_private(dax_dev);
1238 	sector_t sector = pgoff * PAGE_SECTORS;
1239 	struct dm_target *ti;
1240 	long len, ret = -EIO;
1241 	int srcu_idx;
1242 
1243 	ti = dm_dax_get_live_target(md, sector, &srcu_idx);
1244 
1245 	if (!ti)
1246 		goto out;
1247 	if (!ti->type->direct_access)
1248 		goto out;
1249 	len = max_io_len(ti, sector) / PAGE_SECTORS;
1250 	if (len < 1)
1251 		goto out;
1252 	nr_pages = min(len, nr_pages);
1253 	ret = ti->type->direct_access(ti, pgoff, nr_pages, mode, kaddr, pfn);
1254 
1255  out:
1256 	dm_put_live_table(md, srcu_idx);
1257 
1258 	return ret;
1259 }
1260 
dm_dax_zero_page_range(struct dax_device * dax_dev,pgoff_t pgoff,size_t nr_pages)1261 static int dm_dax_zero_page_range(struct dax_device *dax_dev, pgoff_t pgoff,
1262 				  size_t nr_pages)
1263 {
1264 	struct mapped_device *md = dax_get_private(dax_dev);
1265 	sector_t sector = pgoff * PAGE_SECTORS;
1266 	struct dm_target *ti;
1267 	int ret = -EIO;
1268 	int srcu_idx;
1269 
1270 	ti = dm_dax_get_live_target(md, sector, &srcu_idx);
1271 
1272 	if (!ti)
1273 		goto out;
1274 	if (WARN_ON(!ti->type->dax_zero_page_range)) {
1275 		/*
1276 		 * ->zero_page_range() is mandatory dax operation. If we are
1277 		 *  here, something is wrong.
1278 		 */
1279 		goto out;
1280 	}
1281 	ret = ti->type->dax_zero_page_range(ti, pgoff, nr_pages);
1282  out:
1283 	dm_put_live_table(md, srcu_idx);
1284 
1285 	return ret;
1286 }
1287 
dm_dax_recovery_write(struct dax_device * dax_dev,pgoff_t pgoff,void * addr,size_t bytes,struct iov_iter * i)1288 static size_t dm_dax_recovery_write(struct dax_device *dax_dev, pgoff_t pgoff,
1289 		void *addr, size_t bytes, struct iov_iter *i)
1290 {
1291 	struct mapped_device *md = dax_get_private(dax_dev);
1292 	sector_t sector = pgoff * PAGE_SECTORS;
1293 	struct dm_target *ti;
1294 	int srcu_idx;
1295 	long ret = 0;
1296 
1297 	ti = dm_dax_get_live_target(md, sector, &srcu_idx);
1298 	if (!ti || !ti->type->dax_recovery_write)
1299 		goto out;
1300 
1301 	ret = ti->type->dax_recovery_write(ti, pgoff, addr, bytes, i);
1302 out:
1303 	dm_put_live_table(md, srcu_idx);
1304 	return ret;
1305 }
1306 
1307 /*
1308  * A target may call dm_accept_partial_bio only from the map routine.  It is
1309  * allowed for all bio types except REQ_PREFLUSH, REQ_OP_ZONE_* zone management
1310  * operations, zone append writes (native with REQ_OP_ZONE_APPEND or emulated
1311  * with write BIOs flagged with BIO_EMULATES_ZONE_APPEND) and any bio serviced
1312  * by __send_duplicate_bios().
1313  *
1314  * dm_accept_partial_bio informs the dm that the target only wants to process
1315  * additional n_sectors sectors of the bio and the rest of the data should be
1316  * sent in a next bio.
1317  *
1318  * A diagram that explains the arithmetics:
1319  * +--------------------+---------------+-------+
1320  * |         1          |       2       |   3   |
1321  * +--------------------+---------------+-------+
1322  *
1323  * <-------------- *tio->len_ptr --------------->
1324  *                      <----- bio_sectors ----->
1325  *                      <-- n_sectors -->
1326  *
1327  * Region 1 was already iterated over with bio_advance or similar function.
1328  *	(it may be empty if the target doesn't use bio_advance)
1329  * Region 2 is the remaining bio size that the target wants to process.
1330  *	(it may be empty if region 1 is non-empty, although there is no reason
1331  *	 to make it empty)
1332  * The target requires that region 3 is to be sent in the next bio.
1333  *
1334  * If the target wants to receive multiple copies of the bio (via num_*bios, etc),
1335  * the partially processed part (the sum of regions 1+2) must be the same for all
1336  * copies of the bio.
1337  */
dm_accept_partial_bio(struct bio * bio,unsigned int n_sectors)1338 void dm_accept_partial_bio(struct bio *bio, unsigned int n_sectors)
1339 {
1340 	struct dm_target_io *tio = clone_to_tio(bio);
1341 	struct dm_io *io = tio->io;
1342 	unsigned int bio_sectors = bio_sectors(bio);
1343 
1344 	BUG_ON(dm_tio_flagged(tio, DM_TIO_IS_DUPLICATE_BIO));
1345 	BUG_ON(bio_sectors > *tio->len_ptr);
1346 	BUG_ON(n_sectors > bio_sectors);
1347 
1348 	if (static_branch_unlikely(&zoned_enabled) &&
1349 	    unlikely(bdev_is_zoned(bio->bi_bdev))) {
1350 		enum req_op op = bio_op(bio);
1351 
1352 		BUG_ON(op_is_zone_mgmt(op));
1353 		BUG_ON(op == REQ_OP_WRITE);
1354 		BUG_ON(op == REQ_OP_WRITE_ZEROES);
1355 		BUG_ON(op == REQ_OP_ZONE_APPEND);
1356 	}
1357 
1358 	*tio->len_ptr -= bio_sectors - n_sectors;
1359 	bio->bi_iter.bi_size = n_sectors << SECTOR_SHIFT;
1360 
1361 	/*
1362 	 * __split_and_process_bio() may have already saved mapped part
1363 	 * for accounting but it is being reduced so update accordingly.
1364 	 */
1365 	dm_io_set_flag(io, DM_IO_WAS_SPLIT);
1366 	io->sectors = n_sectors;
1367 	io->sector_offset = bio_sectors(io->orig_bio);
1368 }
1369 EXPORT_SYMBOL_GPL(dm_accept_partial_bio);
1370 
1371 /*
1372  * @clone: clone bio that DM core passed to target's .map function
1373  * @tgt_clone: clone of @clone bio that target needs submitted
1374  *
1375  * Targets should use this interface to submit bios they take
1376  * ownership of when returning DM_MAPIO_SUBMITTED.
1377  *
1378  * Target should also enable ti->accounts_remapped_io
1379  */
dm_submit_bio_remap(struct bio * clone,struct bio * tgt_clone)1380 void dm_submit_bio_remap(struct bio *clone, struct bio *tgt_clone)
1381 {
1382 	struct dm_target_io *tio = clone_to_tio(clone);
1383 	struct dm_io *io = tio->io;
1384 
1385 	/* establish bio that will get submitted */
1386 	if (!tgt_clone)
1387 		tgt_clone = clone;
1388 
1389 	/*
1390 	 * Account io->origin_bio to DM dev on behalf of target
1391 	 * that took ownership of IO with DM_MAPIO_SUBMITTED.
1392 	 */
1393 	dm_start_io_acct(io, clone);
1394 
1395 	trace_block_bio_remap(tgt_clone, disk_devt(io->md->disk),
1396 			      tio->old_sector);
1397 	submit_bio_noacct(tgt_clone);
1398 }
1399 EXPORT_SYMBOL_GPL(dm_submit_bio_remap);
1400 
__set_swap_bios_limit(struct mapped_device * md,int latch)1401 static noinline void __set_swap_bios_limit(struct mapped_device *md, int latch)
1402 {
1403 	mutex_lock(&md->swap_bios_lock);
1404 	while (latch < md->swap_bios) {
1405 		cond_resched();
1406 		down(&md->swap_bios_semaphore);
1407 		md->swap_bios--;
1408 	}
1409 	while (latch > md->swap_bios) {
1410 		cond_resched();
1411 		up(&md->swap_bios_semaphore);
1412 		md->swap_bios++;
1413 	}
1414 	mutex_unlock(&md->swap_bios_lock);
1415 }
1416 
__map_bio(struct bio * clone)1417 static void __map_bio(struct bio *clone)
1418 {
1419 	struct dm_target_io *tio = clone_to_tio(clone);
1420 	struct dm_target *ti = tio->ti;
1421 	struct dm_io *io = tio->io;
1422 	struct mapped_device *md = io->md;
1423 	int r;
1424 
1425 	clone->bi_end_io = clone_endio;
1426 
1427 	/*
1428 	 * Map the clone.
1429 	 */
1430 	tio->old_sector = clone->bi_iter.bi_sector;
1431 
1432 	if (static_branch_unlikely(&swap_bios_enabled) &&
1433 	    unlikely(swap_bios_limit(ti, clone))) {
1434 		int latch = get_swap_bios();
1435 
1436 		if (unlikely(latch != md->swap_bios))
1437 			__set_swap_bios_limit(md, latch);
1438 		down(&md->swap_bios_semaphore);
1439 	}
1440 
1441 	if (likely(ti->type->map == linear_map))
1442 		r = linear_map(ti, clone);
1443 	else if (ti->type->map == stripe_map)
1444 		r = stripe_map(ti, clone);
1445 	else
1446 		r = ti->type->map(ti, clone);
1447 
1448 	switch (r) {
1449 	case DM_MAPIO_SUBMITTED:
1450 		/* target has assumed ownership of this io */
1451 		if (!ti->accounts_remapped_io)
1452 			dm_start_io_acct(io, clone);
1453 		break;
1454 	case DM_MAPIO_REMAPPED:
1455 		dm_submit_bio_remap(clone, NULL);
1456 		break;
1457 	case DM_MAPIO_KILL:
1458 	case DM_MAPIO_REQUEUE:
1459 		if (static_branch_unlikely(&swap_bios_enabled) &&
1460 		    unlikely(swap_bios_limit(ti, clone)))
1461 			up(&md->swap_bios_semaphore);
1462 		free_tio(clone);
1463 		if (r == DM_MAPIO_KILL)
1464 			dm_io_dec_pending(io, BLK_STS_IOERR);
1465 		else
1466 			dm_io_dec_pending(io, BLK_STS_DM_REQUEUE);
1467 		break;
1468 	default:
1469 		DMCRIT("unimplemented target map return value: %d", r);
1470 		BUG();
1471 	}
1472 }
1473 
setup_split_accounting(struct clone_info * ci,unsigned int len)1474 static void setup_split_accounting(struct clone_info *ci, unsigned int len)
1475 {
1476 	struct dm_io *io = ci->io;
1477 
1478 	if (ci->sector_count > len) {
1479 		/*
1480 		 * Split needed, save the mapped part for accounting.
1481 		 * NOTE: dm_accept_partial_bio() will update accordingly.
1482 		 */
1483 		dm_io_set_flag(io, DM_IO_WAS_SPLIT);
1484 		io->sectors = len;
1485 		io->sector_offset = bio_sectors(ci->bio);
1486 	}
1487 }
1488 
alloc_multiple_bios(struct bio_list * blist,struct clone_info * ci,struct dm_target * ti,unsigned int num_bios,unsigned * len,gfp_t gfp_flag)1489 static void alloc_multiple_bios(struct bio_list *blist, struct clone_info *ci,
1490 				struct dm_target *ti, unsigned int num_bios,
1491 				unsigned *len, gfp_t gfp_flag)
1492 {
1493 	struct bio *bio;
1494 	int try = (gfp_flag & GFP_NOWAIT) ? 0 : 1;
1495 
1496 	for (; try < 2; try++) {
1497 		int bio_nr;
1498 
1499 		if (try && num_bios > 1)
1500 			mutex_lock(&ci->io->md->table_devices_lock);
1501 		for (bio_nr = 0; bio_nr < num_bios; bio_nr++) {
1502 			bio = alloc_tio(ci, ti, bio_nr, len,
1503 					try ? GFP_NOIO : GFP_NOWAIT);
1504 			if (!bio)
1505 				break;
1506 
1507 			bio_list_add(blist, bio);
1508 		}
1509 		if (try && num_bios > 1)
1510 			mutex_unlock(&ci->io->md->table_devices_lock);
1511 		if (bio_nr == num_bios)
1512 			return;
1513 
1514 		while ((bio = bio_list_pop(blist)))
1515 			free_tio(bio);
1516 	}
1517 }
1518 
__send_duplicate_bios(struct clone_info * ci,struct dm_target * ti,unsigned int num_bios,unsigned int * len,gfp_t gfp_flag)1519 static unsigned int __send_duplicate_bios(struct clone_info *ci, struct dm_target *ti,
1520 					  unsigned int num_bios, unsigned int *len,
1521 					  gfp_t gfp_flag)
1522 {
1523 	struct bio_list blist = BIO_EMPTY_LIST;
1524 	struct bio *clone;
1525 	unsigned int ret = 0;
1526 
1527 	if (WARN_ON_ONCE(num_bios == 0)) /* num_bios = 0 is a bug in caller */
1528 		return 0;
1529 
1530 	/* dm_accept_partial_bio() is not supported with shared tio->len_ptr */
1531 	if (len)
1532 		setup_split_accounting(ci, *len);
1533 
1534 	/*
1535 	 * Using alloc_multiple_bios(), even if num_bios is 1, to consistently
1536 	 * support allocating using GFP_NOWAIT with GFP_NOIO fallback.
1537 	 */
1538 	alloc_multiple_bios(&blist, ci, ti, num_bios, len, gfp_flag);
1539 	while ((clone = bio_list_pop(&blist))) {
1540 		if (num_bios > 1)
1541 			dm_tio_set_flag(clone_to_tio(clone), DM_TIO_IS_DUPLICATE_BIO);
1542 		__map_bio(clone);
1543 		ret += 1;
1544 	}
1545 
1546 	return ret;
1547 }
1548 
__send_empty_flush(struct clone_info * ci)1549 static void __send_empty_flush(struct clone_info *ci)
1550 {
1551 	struct dm_table *t = ci->map;
1552 	struct bio flush_bio;
1553 	blk_opf_t opf = REQ_OP_WRITE | REQ_PREFLUSH | REQ_SYNC;
1554 
1555 	if ((ci->io->orig_bio->bi_opf & (REQ_IDLE | REQ_SYNC)) ==
1556 	    (REQ_IDLE | REQ_SYNC))
1557 		opf |= REQ_IDLE;
1558 
1559 	/*
1560 	 * Use an on-stack bio for this, it's safe since we don't
1561 	 * need to reference it after submit. It's just used as
1562 	 * the basis for the clone(s).
1563 	 */
1564 	bio_init(&flush_bio, ci->io->md->disk->part0, NULL, 0, opf);
1565 
1566 	ci->bio = &flush_bio;
1567 	ci->sector_count = 0;
1568 	ci->io->tio.clone.bi_iter.bi_size = 0;
1569 
1570 	if (!t->flush_bypasses_map) {
1571 		for (unsigned int i = 0; i < t->num_targets; i++) {
1572 			unsigned int bios;
1573 			struct dm_target *ti = dm_table_get_target(t, i);
1574 
1575 			if (unlikely(ti->num_flush_bios == 0))
1576 				continue;
1577 
1578 			atomic_add(ti->num_flush_bios, &ci->io->io_count);
1579 			bios = __send_duplicate_bios(ci, ti, ti->num_flush_bios,
1580 						     NULL, GFP_NOWAIT);
1581 			atomic_sub(ti->num_flush_bios - bios, &ci->io->io_count);
1582 		}
1583 	} else {
1584 		/*
1585 		 * Note that there's no need to grab t->devices_lock here
1586 		 * because the targets that support flush optimization don't
1587 		 * modify the list of devices.
1588 		 */
1589 		struct list_head *devices = dm_table_get_devices(t);
1590 		unsigned int len = 0;
1591 		struct dm_dev_internal *dd;
1592 		list_for_each_entry(dd, devices, list) {
1593 			struct bio *clone;
1594 			/*
1595 			 * Note that the structure dm_target_io is not
1596 			 * associated with any target (because the device may be
1597 			 * used by multiple targets), so we set tio->ti = NULL.
1598 			 * We must check for NULL in the I/O processing path, to
1599 			 * avoid NULL pointer dereference.
1600 			 */
1601 			clone = alloc_tio(ci, NULL, 0, &len, GFP_NOIO);
1602 			atomic_add(1, &ci->io->io_count);
1603 			bio_set_dev(clone, dd->dm_dev->bdev);
1604 			clone->bi_end_io = clone_endio;
1605 			dm_submit_bio_remap(clone, NULL);
1606 		}
1607 	}
1608 
1609 	/*
1610 	 * alloc_io() takes one extra reference for submission, so the
1611 	 * reference won't reach 0 without the following subtraction
1612 	 */
1613 	atomic_sub(1, &ci->io->io_count);
1614 
1615 	bio_uninit(ci->bio);
1616 }
1617 
__send_abnormal_io(struct clone_info * ci,struct dm_target * ti,unsigned int num_bios,unsigned int max_granularity,unsigned int max_sectors)1618 static void __send_abnormal_io(struct clone_info *ci, struct dm_target *ti,
1619 			       unsigned int num_bios, unsigned int max_granularity,
1620 			       unsigned int max_sectors)
1621 {
1622 	unsigned int len, bios;
1623 
1624 	len = min_t(sector_t, ci->sector_count,
1625 		    __max_io_len(ti, ci->sector, max_granularity, max_sectors));
1626 
1627 	atomic_add(num_bios, &ci->io->io_count);
1628 	bios = __send_duplicate_bios(ci, ti, num_bios, &len, GFP_NOIO);
1629 	/*
1630 	 * alloc_io() takes one extra reference for submission, so the
1631 	 * reference won't reach 0 without the following (+1) subtraction
1632 	 */
1633 	atomic_sub(num_bios - bios + 1, &ci->io->io_count);
1634 
1635 	ci->sector += len;
1636 	ci->sector_count -= len;
1637 }
1638 
is_abnormal_io(struct bio * bio)1639 static bool is_abnormal_io(struct bio *bio)
1640 {
1641 	switch (bio_op(bio)) {
1642 	case REQ_OP_READ:
1643 	case REQ_OP_WRITE:
1644 	case REQ_OP_FLUSH:
1645 		return false;
1646 	case REQ_OP_DISCARD:
1647 	case REQ_OP_SECURE_ERASE:
1648 	case REQ_OP_WRITE_ZEROES:
1649 	case REQ_OP_ZONE_RESET_ALL:
1650 		return true;
1651 	default:
1652 		return false;
1653 	}
1654 }
1655 
__process_abnormal_io(struct clone_info * ci,struct dm_target * ti)1656 static blk_status_t __process_abnormal_io(struct clone_info *ci,
1657 					  struct dm_target *ti)
1658 {
1659 	unsigned int num_bios = 0;
1660 	unsigned int max_granularity = 0;
1661 	unsigned int max_sectors = 0;
1662 	struct queue_limits *limits = dm_get_queue_limits(ti->table->md);
1663 
1664 	switch (bio_op(ci->bio)) {
1665 	case REQ_OP_DISCARD:
1666 		num_bios = ti->num_discard_bios;
1667 		max_sectors = limits->max_discard_sectors;
1668 		if (ti->max_discard_granularity)
1669 			max_granularity = max_sectors;
1670 		break;
1671 	case REQ_OP_SECURE_ERASE:
1672 		num_bios = ti->num_secure_erase_bios;
1673 		max_sectors = limits->max_secure_erase_sectors;
1674 		break;
1675 	case REQ_OP_WRITE_ZEROES:
1676 		num_bios = ti->num_write_zeroes_bios;
1677 		max_sectors = limits->max_write_zeroes_sectors;
1678 		break;
1679 	default:
1680 		break;
1681 	}
1682 
1683 	/*
1684 	 * Even though the device advertised support for this type of
1685 	 * request, that does not mean every target supports it, and
1686 	 * reconfiguration might also have changed that since the
1687 	 * check was performed.
1688 	 */
1689 	if (unlikely(!num_bios))
1690 		return BLK_STS_NOTSUPP;
1691 
1692 	__send_abnormal_io(ci, ti, num_bios, max_granularity, max_sectors);
1693 
1694 	return BLK_STS_OK;
1695 }
1696 
1697 /*
1698  * Reuse ->bi_private as dm_io list head for storing all dm_io instances
1699  * associated with this bio, and this bio's bi_private needs to be
1700  * stored in dm_io->data before the reuse.
1701  *
1702  * bio->bi_private is owned by fs or upper layer, so block layer won't
1703  * touch it after splitting. Meantime it won't be changed by anyone after
1704  * bio is submitted. So this reuse is safe.
1705  */
dm_poll_list_head(struct bio * bio)1706 static inline struct dm_io **dm_poll_list_head(struct bio *bio)
1707 {
1708 	return (struct dm_io **)&bio->bi_private;
1709 }
1710 
dm_queue_poll_io(struct bio * bio,struct dm_io * io)1711 static void dm_queue_poll_io(struct bio *bio, struct dm_io *io)
1712 {
1713 	struct dm_io **head = dm_poll_list_head(bio);
1714 
1715 	if (!(bio->bi_opf & REQ_DM_POLL_LIST)) {
1716 		bio->bi_opf |= REQ_DM_POLL_LIST;
1717 		/*
1718 		 * Save .bi_private into dm_io, so that we can reuse
1719 		 * .bi_private as dm_io list head for storing dm_io list
1720 		 */
1721 		io->data = bio->bi_private;
1722 
1723 		/* tell block layer to poll for completion */
1724 		bio->bi_cookie = ~BLK_QC_T_NONE;
1725 
1726 		io->next = NULL;
1727 	} else {
1728 		/*
1729 		 * bio recursed due to split, reuse original poll list,
1730 		 * and save bio->bi_private too.
1731 		 */
1732 		io->data = (*head)->data;
1733 		io->next = *head;
1734 	}
1735 
1736 	*head = io;
1737 }
1738 
1739 /*
1740  * Select the correct strategy for processing a non-flush bio.
1741  */
__split_and_process_bio(struct clone_info * ci)1742 static blk_status_t __split_and_process_bio(struct clone_info *ci)
1743 {
1744 	struct bio *clone;
1745 	struct dm_target *ti;
1746 	unsigned int len;
1747 
1748 	ti = dm_table_find_target(ci->map, ci->sector);
1749 	if (unlikely(!ti))
1750 		return BLK_STS_IOERR;
1751 
1752 	if (unlikely(ci->is_abnormal_io))
1753 		return __process_abnormal_io(ci, ti);
1754 
1755 	/*
1756 	 * Only support bio polling for normal IO, and the target io is
1757 	 * exactly inside the dm_io instance (verified in dm_poll_dm_io)
1758 	 */
1759 	ci->submit_as_polled = !!(ci->bio->bi_opf & REQ_POLLED);
1760 
1761 	len = min_t(sector_t, max_io_len(ti, ci->sector), ci->sector_count);
1762 	setup_split_accounting(ci, len);
1763 
1764 	if (unlikely(ci->bio->bi_opf & REQ_NOWAIT)) {
1765 		if (unlikely(!dm_target_supports_nowait(ti->type)))
1766 			return BLK_STS_NOTSUPP;
1767 
1768 		clone = alloc_tio(ci, ti, 0, &len, GFP_NOWAIT);
1769 		if (unlikely(!clone))
1770 			return BLK_STS_AGAIN;
1771 	} else {
1772 		clone = alloc_tio(ci, ti, 0, &len, GFP_NOIO);
1773 	}
1774 	__map_bio(clone);
1775 
1776 	ci->sector += len;
1777 	ci->sector_count -= len;
1778 
1779 	return BLK_STS_OK;
1780 }
1781 
init_clone_info(struct clone_info * ci,struct dm_io * io,struct dm_table * map,struct bio * bio,bool is_abnormal)1782 static void init_clone_info(struct clone_info *ci, struct dm_io *io,
1783 			    struct dm_table *map, struct bio *bio, bool is_abnormal)
1784 {
1785 	ci->map = map;
1786 	ci->io = io;
1787 	ci->bio = bio;
1788 	ci->is_abnormal_io = is_abnormal;
1789 	ci->submit_as_polled = false;
1790 	ci->sector = bio->bi_iter.bi_sector;
1791 	ci->sector_count = bio_sectors(bio);
1792 
1793 	/* Shouldn't happen but sector_count was being set to 0 so... */
1794 	if (static_branch_unlikely(&zoned_enabled) &&
1795 	    WARN_ON_ONCE(op_is_zone_mgmt(bio_op(bio)) && ci->sector_count))
1796 		ci->sector_count = 0;
1797 }
1798 
1799 #ifdef CONFIG_BLK_DEV_ZONED
dm_zone_bio_needs_split(struct bio * bio)1800 static inline bool dm_zone_bio_needs_split(struct bio *bio)
1801 {
1802 	/*
1803 	 * Special case the zone operations that cannot or should not be split.
1804 	 */
1805 	switch (bio_op(bio)) {
1806 	case REQ_OP_ZONE_APPEND:
1807 	case REQ_OP_ZONE_FINISH:
1808 	case REQ_OP_ZONE_RESET:
1809 	case REQ_OP_ZONE_RESET_ALL:
1810 		return false;
1811 	default:
1812 		break;
1813 	}
1814 
1815 	/*
1816 	 * When mapped devices use the block layer zone write plugging, we must
1817 	 * split any large BIO to the mapped device limits to not submit BIOs
1818 	 * that span zone boundaries and to avoid potential deadlocks with
1819 	 * queue freeze operations.
1820 	 */
1821 	return bio_needs_zone_write_plugging(bio) || bio_straddles_zones(bio);
1822 }
1823 
dm_zone_plug_bio(struct mapped_device * md,struct bio * bio)1824 static inline bool dm_zone_plug_bio(struct mapped_device *md, struct bio *bio)
1825 {
1826 	if (!bio_needs_zone_write_plugging(bio))
1827 		return false;
1828 	return blk_zone_plug_bio(bio, 0);
1829 }
1830 
__send_zone_reset_all_emulated(struct clone_info * ci,struct dm_target * ti)1831 static blk_status_t __send_zone_reset_all_emulated(struct clone_info *ci,
1832 						   struct dm_target *ti)
1833 {
1834 	struct bio_list blist = BIO_EMPTY_LIST;
1835 	struct mapped_device *md = ci->io->md;
1836 	unsigned int zone_sectors = md->disk->queue->limits.chunk_sectors;
1837 	unsigned long *need_reset;
1838 	unsigned int i, nr_zones, nr_reset;
1839 	unsigned int num_bios = 0;
1840 	blk_status_t sts = BLK_STS_OK;
1841 	sector_t sector = ti->begin;
1842 	struct bio *clone;
1843 	int ret;
1844 
1845 	nr_zones = ti->len >> ilog2(zone_sectors);
1846 	need_reset = bitmap_zalloc(nr_zones, GFP_NOIO);
1847 	if (!need_reset)
1848 		return BLK_STS_RESOURCE;
1849 
1850 	ret = dm_zone_get_reset_bitmap(md, ci->map, ti->begin,
1851 				       nr_zones, need_reset);
1852 	if (ret) {
1853 		sts = BLK_STS_IOERR;
1854 		goto free_bitmap;
1855 	}
1856 
1857 	/* If we have no zone to reset, we are done. */
1858 	nr_reset = bitmap_weight(need_reset, nr_zones);
1859 	if (!nr_reset)
1860 		goto free_bitmap;
1861 
1862 	atomic_add(nr_zones, &ci->io->io_count);
1863 
1864 	for (i = 0; i < nr_zones; i++) {
1865 
1866 		if (!test_bit(i, need_reset)) {
1867 			sector += zone_sectors;
1868 			continue;
1869 		}
1870 
1871 		if (bio_list_empty(&blist)) {
1872 			/* This may take a while, so be nice to others */
1873 			if (num_bios)
1874 				cond_resched();
1875 
1876 			/*
1877 			 * We may need to reset thousands of zones, so let's
1878 			 * not go crazy with the clone allocation.
1879 			 */
1880 			alloc_multiple_bios(&blist, ci, ti, min(nr_reset, 32),
1881 					    NULL, GFP_NOIO);
1882 		}
1883 
1884 		/* Get a clone and change it to a regular reset operation. */
1885 		clone = bio_list_pop(&blist);
1886 		clone->bi_opf &= ~REQ_OP_MASK;
1887 		clone->bi_opf |= REQ_OP_ZONE_RESET | REQ_SYNC;
1888 		clone->bi_iter.bi_sector = sector;
1889 		clone->bi_iter.bi_size = 0;
1890 		__map_bio(clone);
1891 
1892 		sector += zone_sectors;
1893 		num_bios++;
1894 		nr_reset--;
1895 	}
1896 
1897 	WARN_ON_ONCE(!bio_list_empty(&blist));
1898 	atomic_sub(nr_zones - num_bios, &ci->io->io_count);
1899 	ci->sector_count = 0;
1900 
1901 free_bitmap:
1902 	bitmap_free(need_reset);
1903 
1904 	return sts;
1905 }
1906 
__send_zone_reset_all_native(struct clone_info * ci,struct dm_target * ti)1907 static void __send_zone_reset_all_native(struct clone_info *ci,
1908 					 struct dm_target *ti)
1909 {
1910 	unsigned int bios;
1911 
1912 	atomic_add(1, &ci->io->io_count);
1913 	bios = __send_duplicate_bios(ci, ti, 1, NULL, GFP_NOIO);
1914 	atomic_sub(1 - bios, &ci->io->io_count);
1915 
1916 	ci->sector_count = 0;
1917 }
1918 
__send_zone_reset_all(struct clone_info * ci)1919 static blk_status_t __send_zone_reset_all(struct clone_info *ci)
1920 {
1921 	struct dm_table *t = ci->map;
1922 	blk_status_t sts = BLK_STS_OK;
1923 
1924 	for (unsigned int i = 0; i < t->num_targets; i++) {
1925 		struct dm_target *ti = dm_table_get_target(t, i);
1926 
1927 		if (ti->zone_reset_all_supported) {
1928 			__send_zone_reset_all_native(ci, ti);
1929 			continue;
1930 		}
1931 
1932 		sts = __send_zone_reset_all_emulated(ci, ti);
1933 		if (sts != BLK_STS_OK)
1934 			break;
1935 	}
1936 
1937 	/* Release the reference that alloc_io() took for submission. */
1938 	atomic_sub(1, &ci->io->io_count);
1939 
1940 	return sts;
1941 }
1942 
1943 #else
dm_zone_bio_needs_split(struct bio * bio)1944 static inline bool dm_zone_bio_needs_split(struct bio *bio)
1945 {
1946 	return false;
1947 }
dm_zone_plug_bio(struct mapped_device * md,struct bio * bio)1948 static inline bool dm_zone_plug_bio(struct mapped_device *md, struct bio *bio)
1949 {
1950 	return false;
1951 }
__send_zone_reset_all(struct clone_info * ci)1952 static blk_status_t __send_zone_reset_all(struct clone_info *ci)
1953 {
1954 	return BLK_STS_NOTSUPP;
1955 }
1956 #endif
1957 
1958 /*
1959  * Entry point to split a bio into clones and submit them to the targets.
1960  */
dm_split_and_process_bio(struct mapped_device * md,struct dm_table * map,struct bio * bio)1961 static void dm_split_and_process_bio(struct mapped_device *md,
1962 				     struct dm_table *map, struct bio *bio)
1963 {
1964 	struct clone_info ci;
1965 	struct dm_io *io;
1966 	blk_status_t error = BLK_STS_OK;
1967 	bool is_abnormal, need_split;
1968 
1969 	is_abnormal = is_abnormal_io(bio);
1970 	if (static_branch_unlikely(&zoned_enabled)) {
1971 		need_split = is_abnormal || dm_zone_bio_needs_split(bio);
1972 	} else {
1973 		need_split = is_abnormal;
1974 	}
1975 
1976 	if (unlikely(need_split)) {
1977 		/*
1978 		 * Use bio_split_to_limits() for abnormal IO (e.g. discard, etc)
1979 		 * otherwise associated queue_limits won't be imposed.
1980 		 * Also split the BIO for mapped devices needing zone append
1981 		 * emulation to ensure that the BIO does not cross zone
1982 		 * boundaries.
1983 		 */
1984 		bio = bio_split_to_limits(bio);
1985 		if (!bio)
1986 			return;
1987 	}
1988 
1989 	/*
1990 	 * Use the block layer zone write plugging for mapped devices that
1991 	 * need zone append emulation (e.g. dm-crypt).
1992 	 */
1993 	if (static_branch_unlikely(&zoned_enabled) && dm_zone_plug_bio(md, bio))
1994 		return;
1995 
1996 	/* Only support nowait for normal IO */
1997 	if (unlikely(bio->bi_opf & REQ_NOWAIT) && !is_abnormal) {
1998 		io = alloc_io(md, bio, GFP_NOWAIT);
1999 		if (unlikely(!io)) {
2000 			/* Unable to do anything without dm_io. */
2001 			bio_wouldblock_error(bio);
2002 			return;
2003 		}
2004 	} else {
2005 		io = alloc_io(md, bio, GFP_NOIO);
2006 	}
2007 	init_clone_info(&ci, io, map, bio, is_abnormal);
2008 
2009 	if (bio->bi_opf & REQ_PREFLUSH) {
2010 		__send_empty_flush(&ci);
2011 		/* dm_io_complete submits any data associated with flush */
2012 		goto out;
2013 	}
2014 
2015 	if (static_branch_unlikely(&zoned_enabled) &&
2016 	    (bio_op(bio) == REQ_OP_ZONE_RESET_ALL)) {
2017 		error = __send_zone_reset_all(&ci);
2018 		goto out;
2019 	}
2020 
2021 	error = __split_and_process_bio(&ci);
2022 	if (error || !ci.sector_count)
2023 		goto out;
2024 	/*
2025 	 * Remainder must be passed to submit_bio_noacct() so it gets handled
2026 	 * *after* bios already submitted have been completely processed.
2027 	 */
2028 	bio_trim(bio, io->sectors, ci.sector_count);
2029 	trace_block_split(bio, bio->bi_iter.bi_sector);
2030 	bio_inc_remaining(bio);
2031 	submit_bio_noacct(bio);
2032 out:
2033 	/*
2034 	 * Drop the extra reference count for non-POLLED bio, and hold one
2035 	 * reference for POLLED bio, which will be released in dm_poll_bio
2036 	 *
2037 	 * Add every dm_io instance into the dm_io list head which is stored
2038 	 * in bio->bi_private, so that dm_poll_bio can poll them all.
2039 	 */
2040 	if (error || !ci.submit_as_polled) {
2041 		/*
2042 		 * In case of submission failure, the extra reference for
2043 		 * submitting io isn't consumed yet
2044 		 */
2045 		if (error)
2046 			atomic_dec(&io->io_count);
2047 		dm_io_dec_pending(io, error);
2048 	} else
2049 		dm_queue_poll_io(bio, io);
2050 }
2051 
dm_submit_bio(struct bio * bio)2052 static void dm_submit_bio(struct bio *bio)
2053 {
2054 	struct mapped_device *md = bio->bi_bdev->bd_disk->private_data;
2055 	int srcu_idx;
2056 	struct dm_table *map;
2057 
2058 	map = dm_get_live_table(md, &srcu_idx);
2059 	if (unlikely(!map)) {
2060 		DMERR_LIMIT("%s: mapping table unavailable, erroring io",
2061 			    dm_device_name(md));
2062 		bio_io_error(bio);
2063 		goto out;
2064 	}
2065 
2066 	/* If suspended, queue this IO for later */
2067 	if (unlikely(test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags))) {
2068 		if (bio->bi_opf & REQ_NOWAIT)
2069 			bio_wouldblock_error(bio);
2070 		else if (bio->bi_opf & REQ_RAHEAD)
2071 			bio_io_error(bio);
2072 		else
2073 			queue_io(md, bio);
2074 		goto out;
2075 	}
2076 
2077 	dm_split_and_process_bio(md, map, bio);
2078 out:
2079 	dm_put_live_table(md, srcu_idx);
2080 }
2081 
dm_poll_dm_io(struct dm_io * io,struct io_comp_batch * iob,unsigned int flags)2082 static bool dm_poll_dm_io(struct dm_io *io, struct io_comp_batch *iob,
2083 			  unsigned int flags)
2084 {
2085 	WARN_ON_ONCE(!dm_tio_is_normal(&io->tio));
2086 
2087 	/* don't poll if the mapped io is done */
2088 	if (atomic_read(&io->io_count) > 1)
2089 		bio_poll(&io->tio.clone, iob, flags);
2090 
2091 	/* bio_poll holds the last reference */
2092 	return atomic_read(&io->io_count) == 1;
2093 }
2094 
dm_poll_bio(struct bio * bio,struct io_comp_batch * iob,unsigned int flags)2095 static int dm_poll_bio(struct bio *bio, struct io_comp_batch *iob,
2096 		       unsigned int flags)
2097 {
2098 	struct dm_io **head = dm_poll_list_head(bio);
2099 	struct dm_io *list = *head;
2100 	struct dm_io *tmp = NULL;
2101 	struct dm_io *curr, *next;
2102 
2103 	/* Only poll normal bio which was marked as REQ_DM_POLL_LIST */
2104 	if (!(bio->bi_opf & REQ_DM_POLL_LIST))
2105 		return 0;
2106 
2107 	WARN_ON_ONCE(!list);
2108 
2109 	/*
2110 	 * Restore .bi_private before possibly completing dm_io.
2111 	 *
2112 	 * bio_poll() is only possible once @bio has been completely
2113 	 * submitted via submit_bio_noacct()'s depth-first submission.
2114 	 * So there is no dm_queue_poll_io() race associated with
2115 	 * clearing REQ_DM_POLL_LIST here.
2116 	 */
2117 	bio->bi_opf &= ~REQ_DM_POLL_LIST;
2118 	bio->bi_private = list->data;
2119 
2120 	for (curr = list, next = curr->next; curr; curr = next, next =
2121 			curr ? curr->next : NULL) {
2122 		if (dm_poll_dm_io(curr, iob, flags)) {
2123 			/*
2124 			 * clone_endio() has already occurred, so no
2125 			 * error handling is needed here.
2126 			 */
2127 			__dm_io_dec_pending(curr);
2128 		} else {
2129 			curr->next = tmp;
2130 			tmp = curr;
2131 		}
2132 	}
2133 
2134 	/* Not done? */
2135 	if (tmp) {
2136 		bio->bi_opf |= REQ_DM_POLL_LIST;
2137 		/* Reset bio->bi_private to dm_io list head */
2138 		*head = tmp;
2139 		return 0;
2140 	}
2141 	return 1;
2142 }
2143 
2144 /*
2145  *---------------------------------------------------------------
2146  * An IDR is used to keep track of allocated minor numbers.
2147  *---------------------------------------------------------------
2148  */
free_minor(int minor)2149 static void free_minor(int minor)
2150 {
2151 	spin_lock(&_minor_lock);
2152 	idr_remove(&_minor_idr, minor);
2153 	spin_unlock(&_minor_lock);
2154 }
2155 
2156 /*
2157  * See if the device with a specific minor # is free.
2158  */
specific_minor(int minor)2159 static int specific_minor(int minor)
2160 {
2161 	int r;
2162 
2163 	if (minor >= (1 << MINORBITS))
2164 		return -EINVAL;
2165 
2166 	idr_preload(GFP_KERNEL);
2167 	spin_lock(&_minor_lock);
2168 
2169 	r = idr_alloc(&_minor_idr, MINOR_ALLOCED, minor, minor + 1, GFP_NOWAIT);
2170 
2171 	spin_unlock(&_minor_lock);
2172 	idr_preload_end();
2173 	if (r < 0)
2174 		return r == -ENOSPC ? -EBUSY : r;
2175 	return 0;
2176 }
2177 
next_free_minor(int * minor)2178 static int next_free_minor(int *minor)
2179 {
2180 	int r;
2181 
2182 	idr_preload(GFP_KERNEL);
2183 	spin_lock(&_minor_lock);
2184 
2185 	r = idr_alloc(&_minor_idr, MINOR_ALLOCED, 0, 1 << MINORBITS, GFP_NOWAIT);
2186 
2187 	spin_unlock(&_minor_lock);
2188 	idr_preload_end();
2189 	if (r < 0)
2190 		return r;
2191 	*minor = r;
2192 	return 0;
2193 }
2194 
2195 static const struct block_device_operations dm_blk_dops;
2196 static const struct block_device_operations dm_rq_blk_dops;
2197 static const struct dax_operations dm_dax_ops;
2198 
2199 static void dm_wq_work(struct work_struct *work);
2200 
2201 #ifdef CONFIG_BLK_INLINE_ENCRYPTION
dm_queue_destroy_crypto_profile(struct request_queue * q)2202 static void dm_queue_destroy_crypto_profile(struct request_queue *q)
2203 {
2204 	dm_destroy_crypto_profile(q->crypto_profile);
2205 }
2206 
2207 #else /* CONFIG_BLK_INLINE_ENCRYPTION */
2208 
dm_queue_destroy_crypto_profile(struct request_queue * q)2209 static inline void dm_queue_destroy_crypto_profile(struct request_queue *q)
2210 {
2211 }
2212 #endif /* !CONFIG_BLK_INLINE_ENCRYPTION */
2213 
cleanup_mapped_device(struct mapped_device * md)2214 static void cleanup_mapped_device(struct mapped_device *md)
2215 {
2216 	if (md->wq)
2217 		destroy_workqueue(md->wq);
2218 	dm_free_md_mempools(md->mempools);
2219 
2220 	if (md->dax_dev) {
2221 		dax_remove_host(md->disk);
2222 		kill_dax(md->dax_dev);
2223 		put_dax(md->dax_dev);
2224 		md->dax_dev = NULL;
2225 	}
2226 
2227 	if (md->disk) {
2228 		spin_lock(&_minor_lock);
2229 		md->disk->private_data = NULL;
2230 		spin_unlock(&_minor_lock);
2231 		if (dm_get_md_type(md) != DM_TYPE_NONE) {
2232 			struct table_device *td;
2233 
2234 			dm_sysfs_exit(md);
2235 			list_for_each_entry(td, &md->table_devices, list) {
2236 				bd_unlink_disk_holder(td->dm_dev.bdev,
2237 						      md->disk);
2238 			}
2239 
2240 			/*
2241 			 * Hold lock to make sure del_gendisk() won't concurrent
2242 			 * with open/close_table_device().
2243 			 */
2244 			mutex_lock(&md->table_devices_lock);
2245 			del_gendisk(md->disk);
2246 			mutex_unlock(&md->table_devices_lock);
2247 		}
2248 		dm_queue_destroy_crypto_profile(md->queue);
2249 		put_disk(md->disk);
2250 	}
2251 
2252 	if (md->pending_io) {
2253 		free_percpu(md->pending_io);
2254 		md->pending_io = NULL;
2255 	}
2256 
2257 	cleanup_srcu_struct(&md->io_barrier);
2258 
2259 	mutex_destroy(&md->suspend_lock);
2260 	mutex_destroy(&md->type_lock);
2261 	mutex_destroy(&md->table_devices_lock);
2262 	mutex_destroy(&md->swap_bios_lock);
2263 
2264 	dm_mq_cleanup_mapped_device(md);
2265 }
2266 
2267 /*
2268  * Allocate and initialise a blank device with a given minor.
2269  */
alloc_dev(int minor)2270 static struct mapped_device *alloc_dev(int minor)
2271 {
2272 	int r, numa_node_id = dm_get_numa_node();
2273 	struct dax_device *dax_dev;
2274 	struct mapped_device *md;
2275 	void *old_md;
2276 
2277 	md = kvzalloc_node(sizeof(*md), GFP_KERNEL, numa_node_id);
2278 	if (!md) {
2279 		DMERR("unable to allocate device, out of memory.");
2280 		return NULL;
2281 	}
2282 
2283 	if (!try_module_get(THIS_MODULE))
2284 		goto bad_module_get;
2285 
2286 	/* get a minor number for the dev */
2287 	if (minor == DM_ANY_MINOR)
2288 		r = next_free_minor(&minor);
2289 	else
2290 		r = specific_minor(minor);
2291 	if (r < 0)
2292 		goto bad_minor;
2293 
2294 	r = init_srcu_struct(&md->io_barrier);
2295 	if (r < 0)
2296 		goto bad_io_barrier;
2297 
2298 	md->numa_node_id = numa_node_id;
2299 	md->init_tio_pdu = false;
2300 	md->type = DM_TYPE_NONE;
2301 	mutex_init(&md->suspend_lock);
2302 	mutex_init(&md->type_lock);
2303 	mutex_init(&md->table_devices_lock);
2304 	spin_lock_init(&md->deferred_lock);
2305 	atomic_set(&md->holders, 1);
2306 	atomic_set(&md->open_count, 0);
2307 	atomic_set(&md->event_nr, 0);
2308 	atomic_set(&md->uevent_seq, 0);
2309 	INIT_LIST_HEAD(&md->uevent_list);
2310 	INIT_LIST_HEAD(&md->table_devices);
2311 	spin_lock_init(&md->uevent_lock);
2312 
2313 	/*
2314 	 * default to bio-based until DM table is loaded and md->type
2315 	 * established. If request-based table is loaded: blk-mq will
2316 	 * override accordingly.
2317 	 */
2318 	md->disk = blk_alloc_disk(NULL, md->numa_node_id);
2319 	if (IS_ERR(md->disk)) {
2320 		md->disk = NULL;
2321 		goto bad;
2322 	}
2323 	md->queue = md->disk->queue;
2324 
2325 	init_waitqueue_head(&md->wait);
2326 	INIT_WORK(&md->work, dm_wq_work);
2327 	INIT_WORK(&md->requeue_work, dm_wq_requeue_work);
2328 	init_waitqueue_head(&md->eventq);
2329 	init_completion(&md->kobj_holder.completion);
2330 
2331 	md->requeue_list = NULL;
2332 	md->swap_bios = get_swap_bios();
2333 	sema_init(&md->swap_bios_semaphore, md->swap_bios);
2334 	mutex_init(&md->swap_bios_lock);
2335 
2336 	md->disk->major = _major;
2337 	md->disk->first_minor = minor;
2338 	md->disk->minors = 1;
2339 	md->disk->flags |= GENHD_FL_NO_PART;
2340 	md->disk->fops = &dm_blk_dops;
2341 	md->disk->private_data = md;
2342 	sprintf(md->disk->disk_name, "dm-%d", minor);
2343 
2344 	dax_dev = alloc_dax(md, &dm_dax_ops);
2345 	if (IS_ERR(dax_dev)) {
2346 		if (PTR_ERR(dax_dev) != -EOPNOTSUPP)
2347 			goto bad;
2348 	} else {
2349 		set_dax_nocache(dax_dev);
2350 		set_dax_nomc(dax_dev);
2351 		md->dax_dev = dax_dev;
2352 		if (dax_add_host(dax_dev, md->disk))
2353 			goto bad;
2354 	}
2355 
2356 	format_dev_t(md->name, MKDEV(_major, minor));
2357 
2358 	md->wq = alloc_workqueue("kdmflush/%s", WQ_MEM_RECLAIM, 0, md->name);
2359 	if (!md->wq)
2360 		goto bad;
2361 
2362 	md->pending_io = alloc_percpu(unsigned long);
2363 	if (!md->pending_io)
2364 		goto bad;
2365 
2366 	r = dm_stats_init(&md->stats);
2367 	if (r < 0)
2368 		goto bad;
2369 
2370 	/* Populate the mapping, nobody knows we exist yet */
2371 	spin_lock(&_minor_lock);
2372 	old_md = idr_replace(&_minor_idr, md, minor);
2373 	spin_unlock(&_minor_lock);
2374 
2375 	BUG_ON(old_md != MINOR_ALLOCED);
2376 
2377 	return md;
2378 
2379 bad:
2380 	cleanup_mapped_device(md);
2381 bad_io_barrier:
2382 	free_minor(minor);
2383 bad_minor:
2384 	module_put(THIS_MODULE);
2385 bad_module_get:
2386 	kvfree(md);
2387 	return NULL;
2388 }
2389 
2390 static void unlock_fs(struct mapped_device *md);
2391 
free_dev(struct mapped_device * md)2392 static void free_dev(struct mapped_device *md)
2393 {
2394 	int minor = MINOR(disk_devt(md->disk));
2395 
2396 	unlock_fs(md);
2397 
2398 	cleanup_mapped_device(md);
2399 
2400 	WARN_ON_ONCE(!list_empty(&md->table_devices));
2401 	dm_stats_cleanup(&md->stats);
2402 	free_minor(minor);
2403 
2404 	module_put(THIS_MODULE);
2405 	kvfree(md);
2406 }
2407 
2408 /*
2409  * Bind a table to the device.
2410  */
event_callback(void * context)2411 static void event_callback(void *context)
2412 {
2413 	unsigned long flags;
2414 	LIST_HEAD(uevents);
2415 	struct mapped_device *md = context;
2416 
2417 	spin_lock_irqsave(&md->uevent_lock, flags);
2418 	list_splice_init(&md->uevent_list, &uevents);
2419 	spin_unlock_irqrestore(&md->uevent_lock, flags);
2420 
2421 	dm_send_uevents(&uevents, &disk_to_dev(md->disk)->kobj);
2422 
2423 	atomic_inc(&md->event_nr);
2424 	wake_up(&md->eventq);
2425 	dm_issue_global_event();
2426 }
2427 
2428 /*
2429  * Returns old map, which caller must destroy.
2430  */
__bind(struct mapped_device * md,struct dm_table * t,struct queue_limits * limits)2431 static struct dm_table *__bind(struct mapped_device *md, struct dm_table *t,
2432 			       struct queue_limits *limits)
2433 {
2434 	struct dm_table *old_map;
2435 	sector_t size, old_size;
2436 	int ret;
2437 
2438 	lockdep_assert_held(&md->suspend_lock);
2439 
2440 	size = dm_table_get_size(t);
2441 
2442 	old_size = dm_get_size(md);
2443 	set_capacity(md->disk, size);
2444 
2445 	ret = dm_table_set_restrictions(t, md->queue, limits);
2446 	if (ret) {
2447 		set_capacity(md->disk, old_size);
2448 		old_map = ERR_PTR(ret);
2449 		goto out;
2450 	}
2451 
2452 	/*
2453 	 * Wipe any geometry if the size of the table changed.
2454 	 */
2455 	if (size != old_size)
2456 		memset(&md->geometry, 0, sizeof(md->geometry));
2457 
2458 	dm_table_event_callback(t, event_callback, md);
2459 
2460 	if (dm_table_request_based(t)) {
2461 		/*
2462 		 * Leverage the fact that request-based DM targets are
2463 		 * immutable singletons - used to optimize dm_mq_queue_rq.
2464 		 */
2465 		md->immutable_target = dm_table_get_immutable_target(t);
2466 
2467 		/*
2468 		 * There is no need to reload with request-based dm because the
2469 		 * size of front_pad doesn't change.
2470 		 *
2471 		 * Note for future: If you are to reload bioset, prep-ed
2472 		 * requests in the queue may refer to bio from the old bioset,
2473 		 * so you must walk through the queue to unprep.
2474 		 */
2475 		if (!md->mempools)
2476 			md->mempools = t->mempools;
2477 		else
2478 			dm_free_md_mempools(t->mempools);
2479 	} else {
2480 		/*
2481 		 * The md may already have mempools that need changing.
2482 		 * If so, reload bioset because front_pad may have changed
2483 		 * because a different table was loaded.
2484 		 */
2485 		dm_free_md_mempools(md->mempools);
2486 		md->mempools = t->mempools;
2487 	}
2488 	t->mempools = NULL;
2489 
2490 	old_map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2491 	rcu_assign_pointer(md->map, (void *)t);
2492 	md->immutable_target_type = dm_table_get_immutable_target_type(t);
2493 
2494 	if (old_map)
2495 		dm_sync_table(md);
2496 out:
2497 	return old_map;
2498 }
2499 
2500 /*
2501  * Returns unbound table for the caller to free.
2502  */
__unbind(struct mapped_device * md)2503 static struct dm_table *__unbind(struct mapped_device *md)
2504 {
2505 	struct dm_table *map = rcu_dereference_protected(md->map, 1);
2506 
2507 	if (!map)
2508 		return NULL;
2509 
2510 	dm_table_event_callback(map, NULL, NULL);
2511 	RCU_INIT_POINTER(md->map, NULL);
2512 	dm_sync_table(md);
2513 
2514 	return map;
2515 }
2516 
2517 /*
2518  * Constructor for a new device.
2519  */
dm_create(int minor,struct mapped_device ** result)2520 int dm_create(int minor, struct mapped_device **result)
2521 {
2522 	struct mapped_device *md;
2523 
2524 	md = alloc_dev(minor);
2525 	if (!md)
2526 		return -ENXIO;
2527 
2528 	dm_ima_reset_data(md);
2529 
2530 	*result = md;
2531 	return 0;
2532 }
2533 
2534 /*
2535  * Functions to manage md->type.
2536  * All are required to hold md->type_lock.
2537  */
dm_lock_md_type(struct mapped_device * md)2538 void dm_lock_md_type(struct mapped_device *md)
2539 {
2540 	mutex_lock(&md->type_lock);
2541 }
2542 
dm_unlock_md_type(struct mapped_device * md)2543 void dm_unlock_md_type(struct mapped_device *md)
2544 {
2545 	mutex_unlock(&md->type_lock);
2546 }
2547 
dm_set_md_type(struct mapped_device * md,enum dm_queue_mode type)2548 void dm_set_md_type(struct mapped_device *md, enum dm_queue_mode type)
2549 {
2550 	BUG_ON(!mutex_is_locked(&md->type_lock));
2551 	md->type = type;
2552 }
2553 
dm_get_md_type(struct mapped_device * md)2554 enum dm_queue_mode dm_get_md_type(struct mapped_device *md)
2555 {
2556 	return md->type;
2557 }
2558 
dm_get_immutable_target_type(struct mapped_device * md)2559 struct target_type *dm_get_immutable_target_type(struct mapped_device *md)
2560 {
2561 	return md->immutable_target_type;
2562 }
2563 
2564 /*
2565  * Setup the DM device's queue based on md's type
2566  */
dm_setup_md_queue(struct mapped_device * md,struct dm_table * t)2567 int dm_setup_md_queue(struct mapped_device *md, struct dm_table *t)
2568 {
2569 	enum dm_queue_mode type = dm_table_get_type(t);
2570 	struct queue_limits limits;
2571 	struct table_device *td;
2572 	int r;
2573 
2574 	WARN_ON_ONCE(type == DM_TYPE_NONE);
2575 
2576 	if (type == DM_TYPE_REQUEST_BASED) {
2577 		md->disk->fops = &dm_rq_blk_dops;
2578 		r = dm_mq_init_request_queue(md, t);
2579 		if (r) {
2580 			DMERR("Cannot initialize queue for request-based dm mapped device");
2581 			return r;
2582 		}
2583 	}
2584 
2585 	r = dm_calculate_queue_limits(t, &limits);
2586 	if (r) {
2587 		DMERR("Cannot calculate initial queue limits");
2588 		return r;
2589 	}
2590 	r = dm_table_set_restrictions(t, md->queue, &limits);
2591 	if (r)
2592 		return r;
2593 
2594 	/*
2595 	 * Hold lock to make sure add_disk() and del_gendisk() won't concurrent
2596 	 * with open_table_device() and close_table_device().
2597 	 */
2598 	mutex_lock(&md->table_devices_lock);
2599 	r = add_disk(md->disk);
2600 	mutex_unlock(&md->table_devices_lock);
2601 	if (r)
2602 		return r;
2603 
2604 	/*
2605 	 * Register the holder relationship for devices added before the disk
2606 	 * was live.
2607 	 */
2608 	list_for_each_entry(td, &md->table_devices, list) {
2609 		r = bd_link_disk_holder(td->dm_dev.bdev, md->disk);
2610 		if (r)
2611 			goto out_undo_holders;
2612 	}
2613 
2614 	r = dm_sysfs_init(md);
2615 	if (r)
2616 		goto out_undo_holders;
2617 
2618 	md->type = type;
2619 	return 0;
2620 
2621 out_undo_holders:
2622 	list_for_each_entry_continue_reverse(td, &md->table_devices, list)
2623 		bd_unlink_disk_holder(td->dm_dev.bdev, md->disk);
2624 	mutex_lock(&md->table_devices_lock);
2625 	del_gendisk(md->disk);
2626 	mutex_unlock(&md->table_devices_lock);
2627 	return r;
2628 }
2629 
dm_get_md(dev_t dev)2630 struct mapped_device *dm_get_md(dev_t dev)
2631 {
2632 	struct mapped_device *md;
2633 	unsigned int minor = MINOR(dev);
2634 
2635 	if (MAJOR(dev) != _major || minor >= (1 << MINORBITS))
2636 		return NULL;
2637 
2638 	spin_lock(&_minor_lock);
2639 
2640 	md = idr_find(&_minor_idr, minor);
2641 	if (!md || md == MINOR_ALLOCED || (MINOR(disk_devt(dm_disk(md))) != minor) ||
2642 	    test_bit(DMF_FREEING, &md->flags) || dm_deleting_md(md)) {
2643 		md = NULL;
2644 		goto out;
2645 	}
2646 	dm_get(md);
2647 out:
2648 	spin_unlock(&_minor_lock);
2649 
2650 	return md;
2651 }
2652 EXPORT_SYMBOL_GPL(dm_get_md);
2653 
dm_get_mdptr(struct mapped_device * md)2654 void *dm_get_mdptr(struct mapped_device *md)
2655 {
2656 	return md->interface_ptr;
2657 }
2658 
dm_set_mdptr(struct mapped_device * md,void * ptr)2659 void dm_set_mdptr(struct mapped_device *md, void *ptr)
2660 {
2661 	md->interface_ptr = ptr;
2662 }
2663 
dm_get(struct mapped_device * md)2664 void dm_get(struct mapped_device *md)
2665 {
2666 	atomic_inc(&md->holders);
2667 	BUG_ON(test_bit(DMF_FREEING, &md->flags));
2668 }
2669 
dm_hold(struct mapped_device * md)2670 int dm_hold(struct mapped_device *md)
2671 {
2672 	spin_lock(&_minor_lock);
2673 	if (test_bit(DMF_FREEING, &md->flags)) {
2674 		spin_unlock(&_minor_lock);
2675 		return -EBUSY;
2676 	}
2677 	dm_get(md);
2678 	spin_unlock(&_minor_lock);
2679 	return 0;
2680 }
2681 EXPORT_SYMBOL_GPL(dm_hold);
2682 
dm_device_name(struct mapped_device * md)2683 const char *dm_device_name(struct mapped_device *md)
2684 {
2685 	return md->name;
2686 }
2687 EXPORT_SYMBOL_GPL(dm_device_name);
2688 
__dm_destroy(struct mapped_device * md,bool wait)2689 static void __dm_destroy(struct mapped_device *md, bool wait)
2690 {
2691 	struct dm_table *map;
2692 	int srcu_idx;
2693 
2694 	might_sleep();
2695 
2696 	spin_lock(&_minor_lock);
2697 	idr_replace(&_minor_idr, MINOR_ALLOCED, MINOR(disk_devt(dm_disk(md))));
2698 	set_bit(DMF_FREEING, &md->flags);
2699 	spin_unlock(&_minor_lock);
2700 
2701 	blk_mark_disk_dead(md->disk);
2702 
2703 	/*
2704 	 * Take suspend_lock so that presuspend and postsuspend methods
2705 	 * do not race with internal suspend.
2706 	 */
2707 	mutex_lock(&md->suspend_lock);
2708 	map = dm_get_live_table(md, &srcu_idx);
2709 	if (!dm_suspended_md(md)) {
2710 		dm_table_presuspend_targets(map);
2711 		set_bit(DMF_SUSPENDED, &md->flags);
2712 		set_bit(DMF_POST_SUSPENDING, &md->flags);
2713 		dm_table_postsuspend_targets(map);
2714 	}
2715 	/* dm_put_live_table must be before fsleep, otherwise deadlock is possible */
2716 	dm_put_live_table(md, srcu_idx);
2717 	mutex_unlock(&md->suspend_lock);
2718 
2719 	/*
2720 	 * Rare, but there may be I/O requests still going to complete,
2721 	 * for example.  Wait for all references to disappear.
2722 	 * No one should increment the reference count of the mapped_device,
2723 	 * after the mapped_device state becomes DMF_FREEING.
2724 	 */
2725 	if (wait)
2726 		while (atomic_read(&md->holders))
2727 			fsleep(1000);
2728 	else if (atomic_read(&md->holders))
2729 		DMWARN("%s: Forcibly removing mapped_device still in use! (%d users)",
2730 		       dm_device_name(md), atomic_read(&md->holders));
2731 
2732 	dm_table_destroy(__unbind(md));
2733 	free_dev(md);
2734 }
2735 
dm_destroy(struct mapped_device * md)2736 void dm_destroy(struct mapped_device *md)
2737 {
2738 	__dm_destroy(md, true);
2739 }
2740 
dm_destroy_immediate(struct mapped_device * md)2741 void dm_destroy_immediate(struct mapped_device *md)
2742 {
2743 	__dm_destroy(md, false);
2744 }
2745 
dm_put(struct mapped_device * md)2746 void dm_put(struct mapped_device *md)
2747 {
2748 	atomic_dec(&md->holders);
2749 }
2750 EXPORT_SYMBOL_GPL(dm_put);
2751 
dm_in_flight_bios(struct mapped_device * md)2752 static bool dm_in_flight_bios(struct mapped_device *md)
2753 {
2754 	int cpu;
2755 	unsigned long sum = 0;
2756 
2757 	for_each_possible_cpu(cpu)
2758 		sum += *per_cpu_ptr(md->pending_io, cpu);
2759 
2760 	return sum != 0;
2761 }
2762 
dm_wait_for_bios_completion(struct mapped_device * md,unsigned int task_state)2763 static int dm_wait_for_bios_completion(struct mapped_device *md, unsigned int task_state)
2764 {
2765 	int r = 0;
2766 	DEFINE_WAIT(wait);
2767 
2768 	while (true) {
2769 		prepare_to_wait(&md->wait, &wait, task_state);
2770 
2771 		if (!dm_in_flight_bios(md))
2772 			break;
2773 
2774 		if (signal_pending_state(task_state, current)) {
2775 			r = -ERESTARTSYS;
2776 			break;
2777 		}
2778 
2779 		io_schedule();
2780 	}
2781 	finish_wait(&md->wait, &wait);
2782 
2783 	smp_rmb();
2784 
2785 	return r;
2786 }
2787 
dm_wait_for_completion(struct mapped_device * md,unsigned int task_state)2788 static int dm_wait_for_completion(struct mapped_device *md, unsigned int task_state)
2789 {
2790 	int r = 0;
2791 
2792 	if (!queue_is_mq(md->queue))
2793 		return dm_wait_for_bios_completion(md, task_state);
2794 
2795 	while (true) {
2796 		if (!blk_mq_queue_inflight(md->queue))
2797 			break;
2798 
2799 		if (signal_pending_state(task_state, current)) {
2800 			r = -ERESTARTSYS;
2801 			break;
2802 		}
2803 
2804 		fsleep(5000);
2805 	}
2806 
2807 	return r;
2808 }
2809 
2810 /*
2811  * Process the deferred bios
2812  */
dm_wq_work(struct work_struct * work)2813 static void dm_wq_work(struct work_struct *work)
2814 {
2815 	struct mapped_device *md = container_of(work, struct mapped_device, work);
2816 	struct bio *bio;
2817 
2818 	while (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) {
2819 		spin_lock_irq(&md->deferred_lock);
2820 		bio = bio_list_pop(&md->deferred);
2821 		spin_unlock_irq(&md->deferred_lock);
2822 
2823 		if (!bio)
2824 			break;
2825 
2826 		submit_bio_noacct(bio);
2827 		cond_resched();
2828 	}
2829 }
2830 
dm_queue_flush(struct mapped_device * md)2831 static void dm_queue_flush(struct mapped_device *md)
2832 {
2833 	clear_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2834 	smp_mb__after_atomic();
2835 	queue_work(md->wq, &md->work);
2836 }
2837 
2838 /*
2839  * Swap in a new table, returning the old one for the caller to destroy.
2840  */
dm_swap_table(struct mapped_device * md,struct dm_table * table)2841 struct dm_table *dm_swap_table(struct mapped_device *md, struct dm_table *table)
2842 {
2843 	struct dm_table *live_map = NULL, *map = ERR_PTR(-EINVAL);
2844 	struct queue_limits limits;
2845 	int r;
2846 
2847 	mutex_lock(&md->suspend_lock);
2848 
2849 	/* device must be suspended */
2850 	if (!dm_suspended_md(md))
2851 		goto out;
2852 
2853 	/*
2854 	 * If the new table has no data devices, retain the existing limits.
2855 	 * This helps multipath with queue_if_no_path if all paths disappear,
2856 	 * then new I/O is queued based on these limits, and then some paths
2857 	 * reappear.
2858 	 */
2859 	if (dm_table_has_no_data_devices(table)) {
2860 		live_map = dm_get_live_table_fast(md);
2861 		if (live_map)
2862 			limits = md->queue->limits;
2863 		dm_put_live_table_fast(md);
2864 	}
2865 
2866 	if (!live_map) {
2867 		r = dm_calculate_queue_limits(table, &limits);
2868 		if (r) {
2869 			map = ERR_PTR(r);
2870 			goto out;
2871 		}
2872 	}
2873 
2874 	map = __bind(md, table, &limits);
2875 	dm_issue_global_event();
2876 
2877 out:
2878 	mutex_unlock(&md->suspend_lock);
2879 	return map;
2880 }
2881 
2882 /*
2883  * Functions to lock and unlock any filesystem running on the
2884  * device.
2885  */
lock_fs(struct mapped_device * md)2886 static int lock_fs(struct mapped_device *md)
2887 {
2888 	int r;
2889 
2890 	WARN_ON(test_bit(DMF_FROZEN, &md->flags));
2891 
2892 	r = bdev_freeze(md->disk->part0);
2893 	if (!r)
2894 		set_bit(DMF_FROZEN, &md->flags);
2895 	return r;
2896 }
2897 
unlock_fs(struct mapped_device * md)2898 static void unlock_fs(struct mapped_device *md)
2899 {
2900 	if (!test_bit(DMF_FROZEN, &md->flags))
2901 		return;
2902 	bdev_thaw(md->disk->part0);
2903 	clear_bit(DMF_FROZEN, &md->flags);
2904 }
2905 
2906 /*
2907  * @suspend_flags: DM_SUSPEND_LOCKFS_FLAG and/or DM_SUSPEND_NOFLUSH_FLAG
2908  * @task_state: e.g. TASK_INTERRUPTIBLE or TASK_UNINTERRUPTIBLE
2909  * @dmf_suspended_flag: DMF_SUSPENDED or DMF_SUSPENDED_INTERNALLY
2910  *
2911  * If __dm_suspend returns 0, the device is completely quiescent
2912  * now. There is no request-processing activity. All new requests
2913  * are being added to md->deferred list.
2914  */
__dm_suspend(struct mapped_device * md,struct dm_table * map,unsigned int suspend_flags,unsigned int task_state,int dmf_suspended_flag)2915 static int __dm_suspend(struct mapped_device *md, struct dm_table *map,
2916 			unsigned int suspend_flags, unsigned int task_state,
2917 			int dmf_suspended_flag)
2918 {
2919 	bool do_lockfs = suspend_flags & DM_SUSPEND_LOCKFS_FLAG;
2920 	bool noflush = suspend_flags & DM_SUSPEND_NOFLUSH_FLAG;
2921 	int r;
2922 
2923 	lockdep_assert_held(&md->suspend_lock);
2924 
2925 	/*
2926 	 * DMF_NOFLUSH_SUSPENDING must be set before presuspend.
2927 	 * This flag is cleared before dm_suspend returns.
2928 	 */
2929 	if (noflush)
2930 		set_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
2931 	else
2932 		DMDEBUG("%s: suspending with flush", dm_device_name(md));
2933 
2934 	/*
2935 	 * This gets reverted if there's an error later and the targets
2936 	 * provide the .presuspend_undo hook.
2937 	 */
2938 	dm_table_presuspend_targets(map);
2939 
2940 	/*
2941 	 * Flush I/O to the device.
2942 	 * Any I/O submitted after lock_fs() may not be flushed.
2943 	 * noflush takes precedence over do_lockfs.
2944 	 * (lock_fs() flushes I/Os and waits for them to complete.)
2945 	 */
2946 	if (!noflush && do_lockfs) {
2947 		r = lock_fs(md);
2948 		if (r) {
2949 			dm_table_presuspend_undo_targets(map);
2950 			return r;
2951 		}
2952 	}
2953 
2954 	/*
2955 	 * Here we must make sure that no processes are submitting requests
2956 	 * to target drivers i.e. no one may be executing
2957 	 * dm_split_and_process_bio from dm_submit_bio.
2958 	 *
2959 	 * To get all processes out of dm_split_and_process_bio in dm_submit_bio,
2960 	 * we take the write lock. To prevent any process from reentering
2961 	 * dm_split_and_process_bio from dm_submit_bio and quiesce the thread
2962 	 * (dm_wq_work), we set DMF_BLOCK_IO_FOR_SUSPEND and call
2963 	 * flush_workqueue(md->wq).
2964 	 */
2965 	set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2966 	if (map)
2967 		synchronize_srcu(&md->io_barrier);
2968 
2969 	/*
2970 	 * Stop md->queue before flushing md->wq in case request-based
2971 	 * dm defers requests to md->wq from md->queue.
2972 	 */
2973 	if (dm_request_based(md))
2974 		dm_stop_queue(md->queue);
2975 
2976 	flush_workqueue(md->wq);
2977 
2978 	/*
2979 	 * At this point no more requests are entering target request routines.
2980 	 * We call dm_wait_for_completion to wait for all existing requests
2981 	 * to finish.
2982 	 */
2983 	r = dm_wait_for_completion(md, task_state);
2984 	if (!r)
2985 		set_bit(dmf_suspended_flag, &md->flags);
2986 
2987 	if (noflush)
2988 		clear_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
2989 	if (map)
2990 		synchronize_srcu(&md->io_barrier);
2991 
2992 	/* were we interrupted ? */
2993 	if (r < 0) {
2994 		dm_queue_flush(md);
2995 
2996 		if (dm_request_based(md))
2997 			dm_start_queue(md->queue);
2998 
2999 		unlock_fs(md);
3000 		dm_table_presuspend_undo_targets(map);
3001 		/* pushback list is already flushed, so skip flush */
3002 	}
3003 
3004 	return r;
3005 }
3006 
3007 /*
3008  * We need to be able to change a mapping table under a mounted
3009  * filesystem.  For example we might want to move some data in
3010  * the background.  Before the table can be swapped with
3011  * dm_bind_table, dm_suspend must be called to flush any in
3012  * flight bios and ensure that any further io gets deferred.
3013  */
3014 /*
3015  * Suspend mechanism in request-based dm.
3016  *
3017  * 1. Flush all I/Os by lock_fs() if needed.
3018  * 2. Stop dispatching any I/O by stopping the request_queue.
3019  * 3. Wait for all in-flight I/Os to be completed or requeued.
3020  *
3021  * To abort suspend, start the request_queue.
3022  */
dm_suspend(struct mapped_device * md,unsigned int suspend_flags)3023 int dm_suspend(struct mapped_device *md, unsigned int suspend_flags)
3024 {
3025 	struct dm_table *map = NULL;
3026 	int r = 0;
3027 
3028 retry:
3029 	mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING);
3030 
3031 	if (dm_suspended_md(md)) {
3032 		r = -EINVAL;
3033 		goto out_unlock;
3034 	}
3035 
3036 	if (dm_suspended_internally_md(md)) {
3037 		/* already internally suspended, wait for internal resume */
3038 		mutex_unlock(&md->suspend_lock);
3039 		r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE);
3040 		if (r)
3041 			return r;
3042 		goto retry;
3043 	}
3044 
3045 	map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
3046 	if (!map) {
3047 		/* avoid deadlock with fs/namespace.c:do_mount() */
3048 		suspend_flags &= ~DM_SUSPEND_LOCKFS_FLAG;
3049 	}
3050 
3051 	r = __dm_suspend(md, map, suspend_flags, TASK_INTERRUPTIBLE, DMF_SUSPENDED);
3052 	if (r)
3053 		goto out_unlock;
3054 
3055 	set_bit(DMF_POST_SUSPENDING, &md->flags);
3056 	dm_table_postsuspend_targets(map);
3057 	clear_bit(DMF_POST_SUSPENDING, &md->flags);
3058 
3059 out_unlock:
3060 	mutex_unlock(&md->suspend_lock);
3061 	return r;
3062 }
3063 
__dm_resume(struct mapped_device * md,struct dm_table * map)3064 static int __dm_resume(struct mapped_device *md, struct dm_table *map)
3065 {
3066 	if (map) {
3067 		int r = dm_table_resume_targets(map);
3068 
3069 		if (r)
3070 			return r;
3071 	}
3072 
3073 	dm_queue_flush(md);
3074 
3075 	/*
3076 	 * Flushing deferred I/Os must be done after targets are resumed
3077 	 * so that mapping of targets can work correctly.
3078 	 * Request-based dm is queueing the deferred I/Os in its request_queue.
3079 	 */
3080 	if (dm_request_based(md))
3081 		dm_start_queue(md->queue);
3082 
3083 	unlock_fs(md);
3084 
3085 	return 0;
3086 }
3087 
dm_resume(struct mapped_device * md)3088 int dm_resume(struct mapped_device *md)
3089 {
3090 	int r;
3091 	struct dm_table *map = NULL;
3092 
3093 retry:
3094 	r = -EINVAL;
3095 	mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING);
3096 
3097 	if (!dm_suspended_md(md))
3098 		goto out;
3099 
3100 	if (dm_suspended_internally_md(md)) {
3101 		/* already internally suspended, wait for internal resume */
3102 		mutex_unlock(&md->suspend_lock);
3103 		r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE);
3104 		if (r)
3105 			return r;
3106 		goto retry;
3107 	}
3108 
3109 	map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
3110 	if (!map || !dm_table_get_size(map))
3111 		goto out;
3112 
3113 	r = __dm_resume(md, map);
3114 	if (r)
3115 		goto out;
3116 
3117 	clear_bit(DMF_SUSPENDED, &md->flags);
3118 out:
3119 	mutex_unlock(&md->suspend_lock);
3120 
3121 	return r;
3122 }
3123 
3124 /*
3125  * Internal suspend/resume works like userspace-driven suspend. It waits
3126  * until all bios finish and prevents issuing new bios to the target drivers.
3127  * It may be used only from the kernel.
3128  */
3129 
__dm_internal_suspend(struct mapped_device * md,unsigned int suspend_flags)3130 static void __dm_internal_suspend(struct mapped_device *md, unsigned int suspend_flags)
3131 {
3132 	struct dm_table *map = NULL;
3133 
3134 	lockdep_assert_held(&md->suspend_lock);
3135 
3136 	if (md->internal_suspend_count++)
3137 		return; /* nested internal suspend */
3138 
3139 	if (dm_suspended_md(md)) {
3140 		set_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
3141 		return; /* nest suspend */
3142 	}
3143 
3144 	map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
3145 
3146 	/*
3147 	 * Using TASK_UNINTERRUPTIBLE because only NOFLUSH internal suspend is
3148 	 * supported.  Properly supporting a TASK_INTERRUPTIBLE internal suspend
3149 	 * would require changing .presuspend to return an error -- avoid this
3150 	 * until there is a need for more elaborate variants of internal suspend.
3151 	 */
3152 	(void) __dm_suspend(md, map, suspend_flags, TASK_UNINTERRUPTIBLE,
3153 			    DMF_SUSPENDED_INTERNALLY);
3154 
3155 	set_bit(DMF_POST_SUSPENDING, &md->flags);
3156 	dm_table_postsuspend_targets(map);
3157 	clear_bit(DMF_POST_SUSPENDING, &md->flags);
3158 }
3159 
__dm_internal_resume(struct mapped_device * md)3160 static void __dm_internal_resume(struct mapped_device *md)
3161 {
3162 	int r;
3163 	struct dm_table *map;
3164 
3165 	BUG_ON(!md->internal_suspend_count);
3166 
3167 	if (--md->internal_suspend_count)
3168 		return; /* resume from nested internal suspend */
3169 
3170 	if (dm_suspended_md(md))
3171 		goto done; /* resume from nested suspend */
3172 
3173 	map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
3174 	r = __dm_resume(md, map);
3175 	if (r) {
3176 		/*
3177 		 * If a preresume method of some target failed, we are in a
3178 		 * tricky situation. We can't return an error to the caller. We
3179 		 * can't fake success because then the "resume" and
3180 		 * "postsuspend" methods would not be paired correctly, and it
3181 		 * would break various targets, for example it would cause list
3182 		 * corruption in the "origin" target.
3183 		 *
3184 		 * So, we fake normal suspend here, to make sure that the
3185 		 * "resume" and "postsuspend" methods will be paired correctly.
3186 		 */
3187 		DMERR("Preresume method failed: %d", r);
3188 		set_bit(DMF_SUSPENDED, &md->flags);
3189 	}
3190 done:
3191 	clear_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
3192 	smp_mb__after_atomic();
3193 	wake_up_bit(&md->flags, DMF_SUSPENDED_INTERNALLY);
3194 }
3195 
dm_internal_suspend_noflush(struct mapped_device * md)3196 void dm_internal_suspend_noflush(struct mapped_device *md)
3197 {
3198 	mutex_lock(&md->suspend_lock);
3199 	__dm_internal_suspend(md, DM_SUSPEND_NOFLUSH_FLAG);
3200 	mutex_unlock(&md->suspend_lock);
3201 }
3202 EXPORT_SYMBOL_GPL(dm_internal_suspend_noflush);
3203 
dm_internal_resume(struct mapped_device * md)3204 void dm_internal_resume(struct mapped_device *md)
3205 {
3206 	mutex_lock(&md->suspend_lock);
3207 	__dm_internal_resume(md);
3208 	mutex_unlock(&md->suspend_lock);
3209 }
3210 EXPORT_SYMBOL_GPL(dm_internal_resume);
3211 
3212 /*
3213  * Fast variants of internal suspend/resume hold md->suspend_lock,
3214  * which prevents interaction with userspace-driven suspend.
3215  */
3216 
dm_internal_suspend_fast(struct mapped_device * md)3217 void dm_internal_suspend_fast(struct mapped_device *md)
3218 {
3219 	mutex_lock(&md->suspend_lock);
3220 	if (dm_suspended_md(md) || dm_suspended_internally_md(md))
3221 		return;
3222 
3223 	set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
3224 	synchronize_srcu(&md->io_barrier);
3225 	flush_workqueue(md->wq);
3226 	dm_wait_for_completion(md, TASK_UNINTERRUPTIBLE);
3227 }
3228 EXPORT_SYMBOL_GPL(dm_internal_suspend_fast);
3229 
dm_internal_resume_fast(struct mapped_device * md)3230 void dm_internal_resume_fast(struct mapped_device *md)
3231 {
3232 	if (dm_suspended_md(md) || dm_suspended_internally_md(md))
3233 		goto done;
3234 
3235 	dm_queue_flush(md);
3236 
3237 done:
3238 	mutex_unlock(&md->suspend_lock);
3239 }
3240 EXPORT_SYMBOL_GPL(dm_internal_resume_fast);
3241 
3242 /*
3243  *---------------------------------------------------------------
3244  * Event notification.
3245  *---------------------------------------------------------------
3246  */
dm_kobject_uevent(struct mapped_device * md,enum kobject_action action,unsigned int cookie,bool need_resize_uevent)3247 int dm_kobject_uevent(struct mapped_device *md, enum kobject_action action,
3248 		      unsigned int cookie, bool need_resize_uevent)
3249 {
3250 	int r;
3251 	unsigned int noio_flag;
3252 	char udev_cookie[DM_COOKIE_LENGTH];
3253 	char *envp[3] = { NULL, NULL, NULL };
3254 	char **envpp = envp;
3255 	if (cookie) {
3256 		snprintf(udev_cookie, DM_COOKIE_LENGTH, "%s=%u",
3257 			 DM_COOKIE_ENV_VAR_NAME, cookie);
3258 		*envpp++ = udev_cookie;
3259 	}
3260 	if (need_resize_uevent) {
3261 		*envpp++ = "RESIZE=1";
3262 	}
3263 
3264 	noio_flag = memalloc_noio_save();
3265 
3266 	r = kobject_uevent_env(&disk_to_dev(md->disk)->kobj, action, envp);
3267 
3268 	memalloc_noio_restore(noio_flag);
3269 
3270 	return r;
3271 }
3272 
dm_next_uevent_seq(struct mapped_device * md)3273 uint32_t dm_next_uevent_seq(struct mapped_device *md)
3274 {
3275 	return atomic_add_return(1, &md->uevent_seq);
3276 }
3277 
dm_get_event_nr(struct mapped_device * md)3278 uint32_t dm_get_event_nr(struct mapped_device *md)
3279 {
3280 	return atomic_read(&md->event_nr);
3281 }
3282 
dm_wait_event(struct mapped_device * md,int event_nr)3283 int dm_wait_event(struct mapped_device *md, int event_nr)
3284 {
3285 	return wait_event_interruptible(md->eventq,
3286 			(event_nr != atomic_read(&md->event_nr)));
3287 }
3288 
dm_uevent_add(struct mapped_device * md,struct list_head * elist)3289 void dm_uevent_add(struct mapped_device *md, struct list_head *elist)
3290 {
3291 	unsigned long flags;
3292 
3293 	spin_lock_irqsave(&md->uevent_lock, flags);
3294 	list_add(elist, &md->uevent_list);
3295 	spin_unlock_irqrestore(&md->uevent_lock, flags);
3296 }
3297 
3298 /*
3299  * The gendisk is only valid as long as you have a reference
3300  * count on 'md'.
3301  */
dm_disk(struct mapped_device * md)3302 struct gendisk *dm_disk(struct mapped_device *md)
3303 {
3304 	return md->disk;
3305 }
3306 EXPORT_SYMBOL_GPL(dm_disk);
3307 
dm_kobject(struct mapped_device * md)3308 struct kobject *dm_kobject(struct mapped_device *md)
3309 {
3310 	return &md->kobj_holder.kobj;
3311 }
3312 
dm_get_from_kobject(struct kobject * kobj)3313 struct mapped_device *dm_get_from_kobject(struct kobject *kobj)
3314 {
3315 	struct mapped_device *md;
3316 
3317 	md = container_of(kobj, struct mapped_device, kobj_holder.kobj);
3318 
3319 	spin_lock(&_minor_lock);
3320 	if (test_bit(DMF_FREEING, &md->flags) || dm_deleting_md(md)) {
3321 		md = NULL;
3322 		goto out;
3323 	}
3324 	dm_get(md);
3325 out:
3326 	spin_unlock(&_minor_lock);
3327 
3328 	return md;
3329 }
3330 
dm_suspended_md(struct mapped_device * md)3331 int dm_suspended_md(struct mapped_device *md)
3332 {
3333 	return test_bit(DMF_SUSPENDED, &md->flags);
3334 }
3335 
dm_post_suspending_md(struct mapped_device * md)3336 static int dm_post_suspending_md(struct mapped_device *md)
3337 {
3338 	return test_bit(DMF_POST_SUSPENDING, &md->flags);
3339 }
3340 
dm_suspended_internally_md(struct mapped_device * md)3341 int dm_suspended_internally_md(struct mapped_device *md)
3342 {
3343 	return test_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
3344 }
3345 
dm_test_deferred_remove_flag(struct mapped_device * md)3346 int dm_test_deferred_remove_flag(struct mapped_device *md)
3347 {
3348 	return test_bit(DMF_DEFERRED_REMOVE, &md->flags);
3349 }
3350 
dm_suspended(struct dm_target * ti)3351 int dm_suspended(struct dm_target *ti)
3352 {
3353 	return dm_suspended_md(ti->table->md);
3354 }
3355 EXPORT_SYMBOL_GPL(dm_suspended);
3356 
dm_post_suspending(struct dm_target * ti)3357 int dm_post_suspending(struct dm_target *ti)
3358 {
3359 	return dm_post_suspending_md(ti->table->md);
3360 }
3361 EXPORT_SYMBOL_GPL(dm_post_suspending);
3362 
dm_noflush_suspending(struct dm_target * ti)3363 int dm_noflush_suspending(struct dm_target *ti)
3364 {
3365 	return __noflush_suspending(ti->table->md);
3366 }
3367 EXPORT_SYMBOL_GPL(dm_noflush_suspending);
3368 
dm_free_md_mempools(struct dm_md_mempools * pools)3369 void dm_free_md_mempools(struct dm_md_mempools *pools)
3370 {
3371 	if (!pools)
3372 		return;
3373 
3374 	bioset_exit(&pools->bs);
3375 	bioset_exit(&pools->io_bs);
3376 
3377 	kfree(pools);
3378 }
3379 
3380 struct dm_pr {
3381 	u64	old_key;
3382 	u64	new_key;
3383 	u32	flags;
3384 	bool	abort;
3385 	bool	fail_early;
3386 	int	ret;
3387 	enum pr_type type;
3388 	struct pr_keys *read_keys;
3389 	struct pr_held_reservation *rsv;
3390 };
3391 
dm_call_pr(struct block_device * bdev,iterate_devices_callout_fn fn,struct dm_pr * pr)3392 static int dm_call_pr(struct block_device *bdev, iterate_devices_callout_fn fn,
3393 		      struct dm_pr *pr)
3394 {
3395 	struct mapped_device *md = bdev->bd_disk->private_data;
3396 	struct dm_table *table;
3397 	struct dm_target *ti;
3398 	int ret = -ENOTTY, srcu_idx;
3399 
3400 	table = dm_get_live_table(md, &srcu_idx);
3401 	if (!table || !dm_table_get_size(table))
3402 		goto out;
3403 
3404 	/* We only support devices that have a single target */
3405 	if (table->num_targets != 1)
3406 		goto out;
3407 	ti = dm_table_get_target(table, 0);
3408 
3409 	if (dm_suspended_md(md)) {
3410 		ret = -EAGAIN;
3411 		goto out;
3412 	}
3413 
3414 	ret = -EINVAL;
3415 	if (!ti->type->iterate_devices)
3416 		goto out;
3417 
3418 	ti->type->iterate_devices(ti, fn, pr);
3419 	ret = 0;
3420 out:
3421 	dm_put_live_table(md, srcu_idx);
3422 	return ret;
3423 }
3424 
3425 /*
3426  * For register / unregister we need to manually call out to every path.
3427  */
__dm_pr_register(struct dm_target * ti,struct dm_dev * dev,sector_t start,sector_t len,void * data)3428 static int __dm_pr_register(struct dm_target *ti, struct dm_dev *dev,
3429 			    sector_t start, sector_t len, void *data)
3430 {
3431 	struct dm_pr *pr = data;
3432 	const struct pr_ops *ops = dev->bdev->bd_disk->fops->pr_ops;
3433 	int ret;
3434 
3435 	if (!ops || !ops->pr_register) {
3436 		pr->ret = -EOPNOTSUPP;
3437 		return -1;
3438 	}
3439 
3440 	ret = ops->pr_register(dev->bdev, pr->old_key, pr->new_key, pr->flags);
3441 	if (!ret)
3442 		return 0;
3443 
3444 	if (!pr->ret)
3445 		pr->ret = ret;
3446 
3447 	if (pr->fail_early)
3448 		return -1;
3449 
3450 	return 0;
3451 }
3452 
dm_pr_register(struct block_device * bdev,u64 old_key,u64 new_key,u32 flags)3453 static int dm_pr_register(struct block_device *bdev, u64 old_key, u64 new_key,
3454 			  u32 flags)
3455 {
3456 	struct dm_pr pr = {
3457 		.old_key	= old_key,
3458 		.new_key	= new_key,
3459 		.flags		= flags,
3460 		.fail_early	= true,
3461 		.ret		= 0,
3462 	};
3463 	int ret;
3464 
3465 	ret = dm_call_pr(bdev, __dm_pr_register, &pr);
3466 	if (ret) {
3467 		/* Didn't even get to register a path */
3468 		return ret;
3469 	}
3470 
3471 	if (!pr.ret)
3472 		return 0;
3473 	ret = pr.ret;
3474 
3475 	if (!new_key)
3476 		return ret;
3477 
3478 	/* unregister all paths if we failed to register any path */
3479 	pr.old_key = new_key;
3480 	pr.new_key = 0;
3481 	pr.flags = 0;
3482 	pr.fail_early = false;
3483 	(void) dm_call_pr(bdev, __dm_pr_register, &pr);
3484 	return ret;
3485 }
3486 
3487 
__dm_pr_reserve(struct dm_target * ti,struct dm_dev * dev,sector_t start,sector_t len,void * data)3488 static int __dm_pr_reserve(struct dm_target *ti, struct dm_dev *dev,
3489 			   sector_t start, sector_t len, void *data)
3490 {
3491 	struct dm_pr *pr = data;
3492 	const struct pr_ops *ops = dev->bdev->bd_disk->fops->pr_ops;
3493 
3494 	if (!ops || !ops->pr_reserve) {
3495 		pr->ret = -EOPNOTSUPP;
3496 		return -1;
3497 	}
3498 
3499 	pr->ret = ops->pr_reserve(dev->bdev, pr->old_key, pr->type, pr->flags);
3500 	if (!pr->ret)
3501 		return -1;
3502 
3503 	return 0;
3504 }
3505 
dm_pr_reserve(struct block_device * bdev,u64 key,enum pr_type type,u32 flags)3506 static int dm_pr_reserve(struct block_device *bdev, u64 key, enum pr_type type,
3507 			 u32 flags)
3508 {
3509 	struct dm_pr pr = {
3510 		.old_key	= key,
3511 		.flags		= flags,
3512 		.type		= type,
3513 		.fail_early	= false,
3514 		.ret		= 0,
3515 	};
3516 	int ret;
3517 
3518 	ret = dm_call_pr(bdev, __dm_pr_reserve, &pr);
3519 	if (ret)
3520 		return ret;
3521 
3522 	return pr.ret;
3523 }
3524 
3525 /*
3526  * If there is a non-All Registrants type of reservation, the release must be
3527  * sent down the holding path. For the cases where there is no reservation or
3528  * the path is not the holder the device will also return success, so we must
3529  * try each path to make sure we got the correct path.
3530  */
__dm_pr_release(struct dm_target * ti,struct dm_dev * dev,sector_t start,sector_t len,void * data)3531 static int __dm_pr_release(struct dm_target *ti, struct dm_dev *dev,
3532 			   sector_t start, sector_t len, void *data)
3533 {
3534 	struct dm_pr *pr = data;
3535 	const struct pr_ops *ops = dev->bdev->bd_disk->fops->pr_ops;
3536 
3537 	if (!ops || !ops->pr_release) {
3538 		pr->ret = -EOPNOTSUPP;
3539 		return -1;
3540 	}
3541 
3542 	pr->ret = ops->pr_release(dev->bdev, pr->old_key, pr->type);
3543 	if (pr->ret)
3544 		return -1;
3545 
3546 	return 0;
3547 }
3548 
dm_pr_release(struct block_device * bdev,u64 key,enum pr_type type)3549 static int dm_pr_release(struct block_device *bdev, u64 key, enum pr_type type)
3550 {
3551 	struct dm_pr pr = {
3552 		.old_key	= key,
3553 		.type		= type,
3554 		.fail_early	= false,
3555 	};
3556 	int ret;
3557 
3558 	ret = dm_call_pr(bdev, __dm_pr_release, &pr);
3559 	if (ret)
3560 		return ret;
3561 
3562 	return pr.ret;
3563 }
3564 
__dm_pr_preempt(struct dm_target * ti,struct dm_dev * dev,sector_t start,sector_t len,void * data)3565 static int __dm_pr_preempt(struct dm_target *ti, struct dm_dev *dev,
3566 			   sector_t start, sector_t len, void *data)
3567 {
3568 	struct dm_pr *pr = data;
3569 	const struct pr_ops *ops = dev->bdev->bd_disk->fops->pr_ops;
3570 
3571 	if (!ops || !ops->pr_preempt) {
3572 		pr->ret = -EOPNOTSUPP;
3573 		return -1;
3574 	}
3575 
3576 	pr->ret = ops->pr_preempt(dev->bdev, pr->old_key, pr->new_key, pr->type,
3577 				  pr->abort);
3578 	if (!pr->ret)
3579 		return -1;
3580 
3581 	return 0;
3582 }
3583 
dm_pr_preempt(struct block_device * bdev,u64 old_key,u64 new_key,enum pr_type type,bool abort)3584 static int dm_pr_preempt(struct block_device *bdev, u64 old_key, u64 new_key,
3585 			 enum pr_type type, bool abort)
3586 {
3587 	struct dm_pr pr = {
3588 		.new_key	= new_key,
3589 		.old_key	= old_key,
3590 		.type		= type,
3591 		.fail_early	= false,
3592 	};
3593 	int ret;
3594 
3595 	ret = dm_call_pr(bdev, __dm_pr_preempt, &pr);
3596 	if (ret)
3597 		return ret;
3598 
3599 	return pr.ret;
3600 }
3601 
dm_pr_clear(struct block_device * bdev,u64 key)3602 static int dm_pr_clear(struct block_device *bdev, u64 key)
3603 {
3604 	struct mapped_device *md = bdev->bd_disk->private_data;
3605 	const struct pr_ops *ops;
3606 	int r, srcu_idx;
3607 
3608 	r = dm_prepare_ioctl(md, &srcu_idx, &bdev);
3609 	if (r < 0)
3610 		goto out;
3611 
3612 	ops = bdev->bd_disk->fops->pr_ops;
3613 	if (ops && ops->pr_clear)
3614 		r = ops->pr_clear(bdev, key);
3615 	else
3616 		r = -EOPNOTSUPP;
3617 out:
3618 	dm_unprepare_ioctl(md, srcu_idx);
3619 	return r;
3620 }
3621 
__dm_pr_read_keys(struct dm_target * ti,struct dm_dev * dev,sector_t start,sector_t len,void * data)3622 static int __dm_pr_read_keys(struct dm_target *ti, struct dm_dev *dev,
3623 			     sector_t start, sector_t len, void *data)
3624 {
3625 	struct dm_pr *pr = data;
3626 	const struct pr_ops *ops = dev->bdev->bd_disk->fops->pr_ops;
3627 
3628 	if (!ops || !ops->pr_read_keys) {
3629 		pr->ret = -EOPNOTSUPP;
3630 		return -1;
3631 	}
3632 
3633 	pr->ret = ops->pr_read_keys(dev->bdev, pr->read_keys);
3634 	if (!pr->ret)
3635 		return -1;
3636 
3637 	return 0;
3638 }
3639 
dm_pr_read_keys(struct block_device * bdev,struct pr_keys * keys)3640 static int dm_pr_read_keys(struct block_device *bdev, struct pr_keys *keys)
3641 {
3642 	struct dm_pr pr = {
3643 		.read_keys = keys,
3644 	};
3645 	int ret;
3646 
3647 	ret = dm_call_pr(bdev, __dm_pr_read_keys, &pr);
3648 	if (ret)
3649 		return ret;
3650 
3651 	return pr.ret;
3652 }
3653 
__dm_pr_read_reservation(struct dm_target * ti,struct dm_dev * dev,sector_t start,sector_t len,void * data)3654 static int __dm_pr_read_reservation(struct dm_target *ti, struct dm_dev *dev,
3655 				    sector_t start, sector_t len, void *data)
3656 {
3657 	struct dm_pr *pr = data;
3658 	const struct pr_ops *ops = dev->bdev->bd_disk->fops->pr_ops;
3659 
3660 	if (!ops || !ops->pr_read_reservation) {
3661 		pr->ret = -EOPNOTSUPP;
3662 		return -1;
3663 	}
3664 
3665 	pr->ret = ops->pr_read_reservation(dev->bdev, pr->rsv);
3666 	if (!pr->ret)
3667 		return -1;
3668 
3669 	return 0;
3670 }
3671 
dm_pr_read_reservation(struct block_device * bdev,struct pr_held_reservation * rsv)3672 static int dm_pr_read_reservation(struct block_device *bdev,
3673 				  struct pr_held_reservation *rsv)
3674 {
3675 	struct dm_pr pr = {
3676 		.rsv = rsv,
3677 	};
3678 	int ret;
3679 
3680 	ret = dm_call_pr(bdev, __dm_pr_read_reservation, &pr);
3681 	if (ret)
3682 		return ret;
3683 
3684 	return pr.ret;
3685 }
3686 
3687 static const struct pr_ops dm_pr_ops = {
3688 	.pr_register	= dm_pr_register,
3689 	.pr_reserve	= dm_pr_reserve,
3690 	.pr_release	= dm_pr_release,
3691 	.pr_preempt	= dm_pr_preempt,
3692 	.pr_clear	= dm_pr_clear,
3693 	.pr_read_keys	= dm_pr_read_keys,
3694 	.pr_read_reservation = dm_pr_read_reservation,
3695 };
3696 
3697 static const struct block_device_operations dm_blk_dops = {
3698 	.submit_bio = dm_submit_bio,
3699 	.poll_bio = dm_poll_bio,
3700 	.open = dm_blk_open,
3701 	.release = dm_blk_close,
3702 	.ioctl = dm_blk_ioctl,
3703 	.getgeo = dm_blk_getgeo,
3704 	.report_zones = dm_blk_report_zones,
3705 	.pr_ops = &dm_pr_ops,
3706 	.owner = THIS_MODULE
3707 };
3708 
3709 static const struct block_device_operations dm_rq_blk_dops = {
3710 	.open = dm_blk_open,
3711 	.release = dm_blk_close,
3712 	.ioctl = dm_blk_ioctl,
3713 	.getgeo = dm_blk_getgeo,
3714 	.pr_ops = &dm_pr_ops,
3715 	.owner = THIS_MODULE
3716 };
3717 
3718 static const struct dax_operations dm_dax_ops = {
3719 	.direct_access = dm_dax_direct_access,
3720 	.zero_page_range = dm_dax_zero_page_range,
3721 	.recovery_write = dm_dax_recovery_write,
3722 };
3723 
3724 /*
3725  * module hooks
3726  */
3727 module_init(dm_init);
3728 module_exit(dm_exit);
3729 
3730 module_param(major, uint, 0);
3731 MODULE_PARM_DESC(major, "The major number of the device mapper");
3732 
3733 module_param(reserved_bio_based_ios, uint, 0644);
3734 MODULE_PARM_DESC(reserved_bio_based_ios, "Reserved IOs in bio-based mempools");
3735 
3736 module_param(dm_numa_node, int, 0644);
3737 MODULE_PARM_DESC(dm_numa_node, "NUMA node for DM device memory allocations");
3738 
3739 module_param(swap_bios, int, 0644);
3740 MODULE_PARM_DESC(swap_bios, "Maximum allowed inflight swap IOs");
3741 
3742 MODULE_DESCRIPTION(DM_NAME " driver");
3743 MODULE_AUTHOR("Joe Thornber <dm-devel@lists.linux.dev>");
3744 MODULE_LICENSE("GPL");
3745