1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Copyright (C) 2001, 2002 Sistina Software (UK) Limited.
4 * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved.
5 *
6 * This file is released under the GPL.
7 */
8
9 #include "dm-core.h"
10 #include "dm-rq.h"
11 #include "dm-uevent.h"
12 #include "dm-ima.h"
13
14 #include <linux/bio-integrity.h>
15 #include <linux/init.h>
16 #include <linux/module.h>
17 #include <linux/mutex.h>
18 #include <linux/sched/mm.h>
19 #include <linux/sched/signal.h>
20 #include <linux/blkpg.h>
21 #include <linux/bio.h>
22 #include <linux/mempool.h>
23 #include <linux/dax.h>
24 #include <linux/slab.h>
25 #include <linux/idr.h>
26 #include <linux/uio.h>
27 #include <linux/hdreg.h>
28 #include <linux/delay.h>
29 #include <linux/wait.h>
30 #include <linux/pr.h>
31 #include <linux/refcount.h>
32 #include <linux/part_stat.h>
33 #include <linux/blk-crypto.h>
34 #include <linux/blk-crypto-profile.h>
35
36 #define DM_MSG_PREFIX "core"
37
38 /*
39 * Cookies are numeric values sent with CHANGE and REMOVE
40 * uevents while resuming, removing or renaming the device.
41 */
42 #define DM_COOKIE_ENV_VAR_NAME "DM_COOKIE"
43 #define DM_COOKIE_LENGTH 24
44
45 /*
46 * For REQ_POLLED fs bio, this flag is set if we link mapped underlying
47 * dm_io into one list, and reuse bio->bi_private as the list head. Before
48 * ending this fs bio, we will recover its ->bi_private.
49 */
50 #define REQ_DM_POLL_LIST REQ_DRV
51
52 static const char *_name = DM_NAME;
53
54 static unsigned int major;
55 static unsigned int _major;
56
57 static DEFINE_IDR(_minor_idr);
58
59 static DEFINE_SPINLOCK(_minor_lock);
60
61 static void do_deferred_remove(struct work_struct *w);
62
63 static DECLARE_WORK(deferred_remove_work, do_deferred_remove);
64
65 static struct workqueue_struct *deferred_remove_workqueue;
66
67 atomic_t dm_global_event_nr = ATOMIC_INIT(0);
68 DECLARE_WAIT_QUEUE_HEAD(dm_global_eventq);
69
dm_issue_global_event(void)70 void dm_issue_global_event(void)
71 {
72 atomic_inc(&dm_global_event_nr);
73 wake_up(&dm_global_eventq);
74 }
75
76 DEFINE_STATIC_KEY_FALSE(stats_enabled);
77 DEFINE_STATIC_KEY_FALSE(swap_bios_enabled);
78 DEFINE_STATIC_KEY_FALSE(zoned_enabled);
79
80 /*
81 * One of these is allocated (on-stack) per original bio.
82 */
83 struct clone_info {
84 struct dm_table *map;
85 struct bio *bio;
86 struct dm_io *io;
87 sector_t sector;
88 unsigned int sector_count;
89 bool is_abnormal_io:1;
90 bool submit_as_polled:1;
91 };
92
clone_to_tio(struct bio * clone)93 static inline struct dm_target_io *clone_to_tio(struct bio *clone)
94 {
95 return container_of(clone, struct dm_target_io, clone);
96 }
97
dm_per_bio_data(struct bio * bio,size_t data_size)98 void *dm_per_bio_data(struct bio *bio, size_t data_size)
99 {
100 if (!dm_tio_flagged(clone_to_tio(bio), DM_TIO_INSIDE_DM_IO))
101 return (char *)bio - DM_TARGET_IO_BIO_OFFSET - data_size;
102 return (char *)bio - DM_IO_BIO_OFFSET - data_size;
103 }
104 EXPORT_SYMBOL_GPL(dm_per_bio_data);
105
dm_bio_from_per_bio_data(void * data,size_t data_size)106 struct bio *dm_bio_from_per_bio_data(void *data, size_t data_size)
107 {
108 struct dm_io *io = (struct dm_io *)((char *)data + data_size);
109
110 if (io->magic == DM_IO_MAGIC)
111 return (struct bio *)((char *)io + DM_IO_BIO_OFFSET);
112 BUG_ON(io->magic != DM_TIO_MAGIC);
113 return (struct bio *)((char *)io + DM_TARGET_IO_BIO_OFFSET);
114 }
115 EXPORT_SYMBOL_GPL(dm_bio_from_per_bio_data);
116
dm_bio_get_target_bio_nr(const struct bio * bio)117 unsigned int dm_bio_get_target_bio_nr(const struct bio *bio)
118 {
119 return container_of(bio, struct dm_target_io, clone)->target_bio_nr;
120 }
121 EXPORT_SYMBOL_GPL(dm_bio_get_target_bio_nr);
122
123 #define MINOR_ALLOCED ((void *)-1)
124
125 #define DM_NUMA_NODE NUMA_NO_NODE
126 static int dm_numa_node = DM_NUMA_NODE;
127
128 #define DEFAULT_SWAP_BIOS (8 * 1048576 / PAGE_SIZE)
129 static int swap_bios = DEFAULT_SWAP_BIOS;
get_swap_bios(void)130 static int get_swap_bios(void)
131 {
132 int latch = READ_ONCE(swap_bios);
133
134 if (unlikely(latch <= 0))
135 latch = DEFAULT_SWAP_BIOS;
136 return latch;
137 }
138
139 struct table_device {
140 struct list_head list;
141 refcount_t count;
142 struct dm_dev dm_dev;
143 };
144
145 /*
146 * Bio-based DM's mempools' reserved IOs set by the user.
147 */
148 #define RESERVED_BIO_BASED_IOS 16
149 static unsigned int reserved_bio_based_ios = RESERVED_BIO_BASED_IOS;
150
__dm_get_module_param_int(int * module_param,int min,int max)151 static int __dm_get_module_param_int(int *module_param, int min, int max)
152 {
153 int param = READ_ONCE(*module_param);
154 int modified_param = 0;
155 bool modified = true;
156
157 if (param < min)
158 modified_param = min;
159 else if (param > max)
160 modified_param = max;
161 else
162 modified = false;
163
164 if (modified) {
165 (void)cmpxchg(module_param, param, modified_param);
166 param = modified_param;
167 }
168
169 return param;
170 }
171
__dm_get_module_param(unsigned int * module_param,unsigned int def,unsigned int max)172 unsigned int __dm_get_module_param(unsigned int *module_param, unsigned int def, unsigned int max)
173 {
174 unsigned int param = READ_ONCE(*module_param);
175 unsigned int modified_param = 0;
176
177 if (!param)
178 modified_param = def;
179 else if (param > max)
180 modified_param = max;
181
182 if (modified_param) {
183 (void)cmpxchg(module_param, param, modified_param);
184 param = modified_param;
185 }
186
187 return param;
188 }
189
dm_get_reserved_bio_based_ios(void)190 unsigned int dm_get_reserved_bio_based_ios(void)
191 {
192 return __dm_get_module_param(&reserved_bio_based_ios,
193 RESERVED_BIO_BASED_IOS, DM_RESERVED_MAX_IOS);
194 }
195 EXPORT_SYMBOL_GPL(dm_get_reserved_bio_based_ios);
196
dm_get_numa_node(void)197 static unsigned int dm_get_numa_node(void)
198 {
199 return __dm_get_module_param_int(&dm_numa_node,
200 DM_NUMA_NODE, num_online_nodes() - 1);
201 }
202
local_init(void)203 static int __init local_init(void)
204 {
205 int r;
206
207 r = dm_uevent_init();
208 if (r)
209 return r;
210
211 deferred_remove_workqueue = alloc_ordered_workqueue("kdmremove", 0);
212 if (!deferred_remove_workqueue) {
213 r = -ENOMEM;
214 goto out_uevent_exit;
215 }
216
217 _major = major;
218 r = register_blkdev(_major, _name);
219 if (r < 0)
220 goto out_free_workqueue;
221
222 if (!_major)
223 _major = r;
224
225 return 0;
226
227 out_free_workqueue:
228 destroy_workqueue(deferred_remove_workqueue);
229 out_uevent_exit:
230 dm_uevent_exit();
231
232 return r;
233 }
234
local_exit(void)235 static void local_exit(void)
236 {
237 destroy_workqueue(deferred_remove_workqueue);
238
239 unregister_blkdev(_major, _name);
240 dm_uevent_exit();
241
242 _major = 0;
243
244 DMINFO("cleaned up");
245 }
246
247 static int (*_inits[])(void) __initdata = {
248 local_init,
249 dm_target_init,
250 dm_linear_init,
251 dm_stripe_init,
252 dm_io_init,
253 dm_kcopyd_init,
254 dm_interface_init,
255 dm_statistics_init,
256 };
257
258 static void (*_exits[])(void) = {
259 local_exit,
260 dm_target_exit,
261 dm_linear_exit,
262 dm_stripe_exit,
263 dm_io_exit,
264 dm_kcopyd_exit,
265 dm_interface_exit,
266 dm_statistics_exit,
267 };
268
dm_init(void)269 static int __init dm_init(void)
270 {
271 const int count = ARRAY_SIZE(_inits);
272 int r, i;
273
274 #if (IS_ENABLED(CONFIG_IMA) && !IS_ENABLED(CONFIG_IMA_DISABLE_HTABLE))
275 DMWARN("CONFIG_IMA_DISABLE_HTABLE is disabled."
276 " Duplicate IMA measurements will not be recorded in the IMA log.");
277 #endif
278
279 for (i = 0; i < count; i++) {
280 r = _inits[i]();
281 if (r)
282 goto bad;
283 }
284
285 return 0;
286 bad:
287 while (i--)
288 _exits[i]();
289
290 return r;
291 }
292
dm_exit(void)293 static void __exit dm_exit(void)
294 {
295 int i = ARRAY_SIZE(_exits);
296
297 while (i--)
298 _exits[i]();
299
300 /*
301 * Should be empty by this point.
302 */
303 idr_destroy(&_minor_idr);
304 }
305
306 /*
307 * Block device functions
308 */
dm_deleting_md(struct mapped_device * md)309 int dm_deleting_md(struct mapped_device *md)
310 {
311 return test_bit(DMF_DELETING, &md->flags);
312 }
313
dm_blk_open(struct gendisk * disk,blk_mode_t mode)314 static int dm_blk_open(struct gendisk *disk, blk_mode_t mode)
315 {
316 struct mapped_device *md;
317
318 spin_lock(&_minor_lock);
319
320 md = disk->private_data;
321 if (!md)
322 goto out;
323
324 if (test_bit(DMF_FREEING, &md->flags) ||
325 dm_deleting_md(md)) {
326 md = NULL;
327 goto out;
328 }
329
330 dm_get(md);
331 atomic_inc(&md->open_count);
332 out:
333 spin_unlock(&_minor_lock);
334
335 return md ? 0 : -ENXIO;
336 }
337
dm_blk_close(struct gendisk * disk)338 static void dm_blk_close(struct gendisk *disk)
339 {
340 struct mapped_device *md;
341
342 spin_lock(&_minor_lock);
343
344 md = disk->private_data;
345 if (WARN_ON(!md))
346 goto out;
347
348 if (atomic_dec_and_test(&md->open_count) &&
349 (test_bit(DMF_DEFERRED_REMOVE, &md->flags)))
350 queue_work(deferred_remove_workqueue, &deferred_remove_work);
351
352 dm_put(md);
353 out:
354 spin_unlock(&_minor_lock);
355 }
356
dm_open_count(struct mapped_device * md)357 int dm_open_count(struct mapped_device *md)
358 {
359 return atomic_read(&md->open_count);
360 }
361
362 /*
363 * Guarantees nothing is using the device before it's deleted.
364 */
dm_lock_for_deletion(struct mapped_device * md,bool mark_deferred,bool only_deferred)365 int dm_lock_for_deletion(struct mapped_device *md, bool mark_deferred, bool only_deferred)
366 {
367 int r = 0;
368
369 spin_lock(&_minor_lock);
370
371 if (dm_open_count(md)) {
372 r = -EBUSY;
373 if (mark_deferred)
374 set_bit(DMF_DEFERRED_REMOVE, &md->flags);
375 } else if (only_deferred && !test_bit(DMF_DEFERRED_REMOVE, &md->flags))
376 r = -EEXIST;
377 else
378 set_bit(DMF_DELETING, &md->flags);
379
380 spin_unlock(&_minor_lock);
381
382 return r;
383 }
384
dm_cancel_deferred_remove(struct mapped_device * md)385 int dm_cancel_deferred_remove(struct mapped_device *md)
386 {
387 int r = 0;
388
389 spin_lock(&_minor_lock);
390
391 if (test_bit(DMF_DELETING, &md->flags))
392 r = -EBUSY;
393 else
394 clear_bit(DMF_DEFERRED_REMOVE, &md->flags);
395
396 spin_unlock(&_minor_lock);
397
398 return r;
399 }
400
do_deferred_remove(struct work_struct * w)401 static void do_deferred_remove(struct work_struct *w)
402 {
403 dm_deferred_remove();
404 }
405
dm_blk_getgeo(struct block_device * bdev,struct hd_geometry * geo)406 static int dm_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo)
407 {
408 struct mapped_device *md = bdev->bd_disk->private_data;
409
410 return dm_get_geometry(md, geo);
411 }
412
dm_prepare_ioctl(struct mapped_device * md,int * srcu_idx,struct block_device ** bdev)413 static int dm_prepare_ioctl(struct mapped_device *md, int *srcu_idx,
414 struct block_device **bdev)
415 {
416 struct dm_target *ti;
417 struct dm_table *map;
418 int r;
419
420 retry:
421 r = -ENOTTY;
422 map = dm_get_live_table(md, srcu_idx);
423 if (!map || !dm_table_get_size(map))
424 return r;
425
426 /* We only support devices that have a single target */
427 if (map->num_targets != 1)
428 return r;
429
430 ti = dm_table_get_target(map, 0);
431 if (!ti->type->prepare_ioctl)
432 return r;
433
434 if (dm_suspended_md(md))
435 return -EAGAIN;
436
437 r = ti->type->prepare_ioctl(ti, bdev);
438 if (r == -ENOTCONN && !fatal_signal_pending(current)) {
439 dm_put_live_table(md, *srcu_idx);
440 fsleep(10000);
441 goto retry;
442 }
443
444 return r;
445 }
446
dm_unprepare_ioctl(struct mapped_device * md,int srcu_idx)447 static void dm_unprepare_ioctl(struct mapped_device *md, int srcu_idx)
448 {
449 dm_put_live_table(md, srcu_idx);
450 }
451
dm_blk_ioctl(struct block_device * bdev,blk_mode_t mode,unsigned int cmd,unsigned long arg)452 static int dm_blk_ioctl(struct block_device *bdev, blk_mode_t mode,
453 unsigned int cmd, unsigned long arg)
454 {
455 struct mapped_device *md = bdev->bd_disk->private_data;
456 int r, srcu_idx;
457
458 r = dm_prepare_ioctl(md, &srcu_idx, &bdev);
459 if (r < 0)
460 goto out;
461
462 if (r > 0) {
463 /*
464 * Target determined this ioctl is being issued against a
465 * subset of the parent bdev; require extra privileges.
466 */
467 if (!capable(CAP_SYS_RAWIO)) {
468 DMDEBUG_LIMIT(
469 "%s: sending ioctl %x to DM device without required privilege.",
470 current->comm, cmd);
471 r = -ENOIOCTLCMD;
472 goto out;
473 }
474 }
475
476 if (!bdev->bd_disk->fops->ioctl)
477 r = -ENOTTY;
478 else
479 r = bdev->bd_disk->fops->ioctl(bdev, mode, cmd, arg);
480 out:
481 dm_unprepare_ioctl(md, srcu_idx);
482 return r;
483 }
484
dm_start_time_ns_from_clone(struct bio * bio)485 u64 dm_start_time_ns_from_clone(struct bio *bio)
486 {
487 return jiffies_to_nsecs(clone_to_tio(bio)->io->start_time);
488 }
489 EXPORT_SYMBOL_GPL(dm_start_time_ns_from_clone);
490
bio_is_flush_with_data(struct bio * bio)491 static inline bool bio_is_flush_with_data(struct bio *bio)
492 {
493 return ((bio->bi_opf & REQ_PREFLUSH) && bio->bi_iter.bi_size);
494 }
495
dm_io_sectors(struct dm_io * io,struct bio * bio)496 static inline unsigned int dm_io_sectors(struct dm_io *io, struct bio *bio)
497 {
498 /*
499 * If REQ_PREFLUSH set, don't account payload, it will be
500 * submitted (and accounted) after this flush completes.
501 */
502 if (bio_is_flush_with_data(bio))
503 return 0;
504 if (unlikely(dm_io_flagged(io, DM_IO_WAS_SPLIT)))
505 return io->sectors;
506 return bio_sectors(bio);
507 }
508
dm_io_acct(struct dm_io * io,bool end)509 static void dm_io_acct(struct dm_io *io, bool end)
510 {
511 struct bio *bio = io->orig_bio;
512
513 if (dm_io_flagged(io, DM_IO_BLK_STAT)) {
514 if (!end)
515 bdev_start_io_acct(bio->bi_bdev, bio_op(bio),
516 io->start_time);
517 else
518 bdev_end_io_acct(bio->bi_bdev, bio_op(bio),
519 dm_io_sectors(io, bio),
520 io->start_time);
521 }
522
523 if (static_branch_unlikely(&stats_enabled) &&
524 unlikely(dm_stats_used(&io->md->stats))) {
525 sector_t sector;
526
527 if (unlikely(dm_io_flagged(io, DM_IO_WAS_SPLIT)))
528 sector = bio_end_sector(bio) - io->sector_offset;
529 else
530 sector = bio->bi_iter.bi_sector;
531
532 dm_stats_account_io(&io->md->stats, bio_data_dir(bio),
533 sector, dm_io_sectors(io, bio),
534 end, io->start_time, &io->stats_aux);
535 }
536 }
537
__dm_start_io_acct(struct dm_io * io)538 static void __dm_start_io_acct(struct dm_io *io)
539 {
540 dm_io_acct(io, false);
541 }
542
dm_start_io_acct(struct dm_io * io,struct bio * clone)543 static void dm_start_io_acct(struct dm_io *io, struct bio *clone)
544 {
545 /*
546 * Ensure IO accounting is only ever started once.
547 */
548 if (dm_io_flagged(io, DM_IO_ACCOUNTED))
549 return;
550
551 /* Expect no possibility for race unless DM_TIO_IS_DUPLICATE_BIO. */
552 if (!clone || likely(dm_tio_is_normal(clone_to_tio(clone)))) {
553 dm_io_set_flag(io, DM_IO_ACCOUNTED);
554 } else {
555 unsigned long flags;
556 /* Can afford locking given DM_TIO_IS_DUPLICATE_BIO */
557 spin_lock_irqsave(&io->lock, flags);
558 if (dm_io_flagged(io, DM_IO_ACCOUNTED)) {
559 spin_unlock_irqrestore(&io->lock, flags);
560 return;
561 }
562 dm_io_set_flag(io, DM_IO_ACCOUNTED);
563 spin_unlock_irqrestore(&io->lock, flags);
564 }
565
566 __dm_start_io_acct(io);
567 }
568
dm_end_io_acct(struct dm_io * io)569 static void dm_end_io_acct(struct dm_io *io)
570 {
571 dm_io_acct(io, true);
572 }
573
alloc_io(struct mapped_device * md,struct bio * bio,gfp_t gfp_mask)574 static struct dm_io *alloc_io(struct mapped_device *md, struct bio *bio, gfp_t gfp_mask)
575 {
576 struct dm_io *io;
577 struct dm_target_io *tio;
578 struct bio *clone;
579
580 clone = bio_alloc_clone(NULL, bio, gfp_mask, &md->mempools->io_bs);
581 if (unlikely(!clone))
582 return NULL;
583 tio = clone_to_tio(clone);
584 tio->flags = 0;
585 dm_tio_set_flag(tio, DM_TIO_INSIDE_DM_IO);
586 tio->io = NULL;
587
588 io = container_of(tio, struct dm_io, tio);
589 io->magic = DM_IO_MAGIC;
590 io->status = BLK_STS_OK;
591
592 /* one ref is for submission, the other is for completion */
593 atomic_set(&io->io_count, 2);
594 this_cpu_inc(*md->pending_io);
595 io->orig_bio = bio;
596 io->md = md;
597 spin_lock_init(&io->lock);
598 io->start_time = jiffies;
599 io->flags = 0;
600 if (blk_queue_io_stat(md->queue))
601 dm_io_set_flag(io, DM_IO_BLK_STAT);
602
603 if (static_branch_unlikely(&stats_enabled) &&
604 unlikely(dm_stats_used(&md->stats)))
605 dm_stats_record_start(&md->stats, &io->stats_aux);
606
607 return io;
608 }
609
free_io(struct dm_io * io)610 static void free_io(struct dm_io *io)
611 {
612 bio_put(&io->tio.clone);
613 }
614
alloc_tio(struct clone_info * ci,struct dm_target * ti,unsigned int target_bio_nr,unsigned int * len,gfp_t gfp_mask)615 static struct bio *alloc_tio(struct clone_info *ci, struct dm_target *ti,
616 unsigned int target_bio_nr, unsigned int *len, gfp_t gfp_mask)
617 {
618 struct mapped_device *md = ci->io->md;
619 struct dm_target_io *tio;
620 struct bio *clone;
621
622 if (!ci->io->tio.io) {
623 /* the dm_target_io embedded in ci->io is available */
624 tio = &ci->io->tio;
625 /* alloc_io() already initialized embedded clone */
626 clone = &tio->clone;
627 } else {
628 clone = bio_alloc_clone(NULL, ci->bio, gfp_mask,
629 &md->mempools->bs);
630 if (!clone)
631 return NULL;
632
633 /* REQ_DM_POLL_LIST shouldn't be inherited */
634 clone->bi_opf &= ~REQ_DM_POLL_LIST;
635
636 tio = clone_to_tio(clone);
637 tio->flags = 0; /* also clears DM_TIO_INSIDE_DM_IO */
638 }
639
640 tio->magic = DM_TIO_MAGIC;
641 tio->io = ci->io;
642 tio->ti = ti;
643 tio->target_bio_nr = target_bio_nr;
644 tio->len_ptr = len;
645 tio->old_sector = 0;
646
647 /* Set default bdev, but target must bio_set_dev() before issuing IO */
648 clone->bi_bdev = md->disk->part0;
649 if (likely(ti != NULL) && unlikely(ti->needs_bio_set_dev))
650 bio_set_dev(clone, md->disk->part0);
651
652 if (len) {
653 clone->bi_iter.bi_size = to_bytes(*len);
654 if (bio_integrity(clone))
655 bio_integrity_trim(clone);
656 }
657
658 return clone;
659 }
660
free_tio(struct bio * clone)661 static void free_tio(struct bio *clone)
662 {
663 if (dm_tio_flagged(clone_to_tio(clone), DM_TIO_INSIDE_DM_IO))
664 return;
665 bio_put(clone);
666 }
667
668 /*
669 * Add the bio to the list of deferred io.
670 */
queue_io(struct mapped_device * md,struct bio * bio)671 static void queue_io(struct mapped_device *md, struct bio *bio)
672 {
673 unsigned long flags;
674
675 spin_lock_irqsave(&md->deferred_lock, flags);
676 bio_list_add(&md->deferred, bio);
677 spin_unlock_irqrestore(&md->deferred_lock, flags);
678 queue_work(md->wq, &md->work);
679 }
680
681 /*
682 * Everyone (including functions in this file), should use this
683 * function to access the md->map field, and make sure they call
684 * dm_put_live_table() when finished.
685 */
dm_get_live_table(struct mapped_device * md,int * srcu_idx)686 struct dm_table *dm_get_live_table(struct mapped_device *md,
687 int *srcu_idx) __acquires(md->io_barrier)
688 {
689 *srcu_idx = srcu_read_lock(&md->io_barrier);
690
691 return srcu_dereference(md->map, &md->io_barrier);
692 }
693
dm_put_live_table(struct mapped_device * md,int srcu_idx)694 void dm_put_live_table(struct mapped_device *md,
695 int srcu_idx) __releases(md->io_barrier)
696 {
697 srcu_read_unlock(&md->io_barrier, srcu_idx);
698 }
699
dm_sync_table(struct mapped_device * md)700 void dm_sync_table(struct mapped_device *md)
701 {
702 synchronize_srcu(&md->io_barrier);
703 synchronize_rcu_expedited();
704 }
705
706 /*
707 * A fast alternative to dm_get_live_table/dm_put_live_table.
708 * The caller must not block between these two functions.
709 */
dm_get_live_table_fast(struct mapped_device * md)710 static struct dm_table *dm_get_live_table_fast(struct mapped_device *md) __acquires(RCU)
711 {
712 rcu_read_lock();
713 return rcu_dereference(md->map);
714 }
715
dm_put_live_table_fast(struct mapped_device * md)716 static void dm_put_live_table_fast(struct mapped_device *md) __releases(RCU)
717 {
718 rcu_read_unlock();
719 }
720
721 static char *_dm_claim_ptr = "I belong to device-mapper";
722
723 /*
724 * Open a table device so we can use it as a map destination.
725 */
open_table_device(struct mapped_device * md,dev_t dev,blk_mode_t mode)726 static struct table_device *open_table_device(struct mapped_device *md,
727 dev_t dev, blk_mode_t mode)
728 {
729 struct table_device *td;
730 struct file *bdev_file;
731 struct block_device *bdev;
732 u64 part_off;
733 int r;
734
735 td = kmalloc_node(sizeof(*td), GFP_KERNEL, md->numa_node_id);
736 if (!td)
737 return ERR_PTR(-ENOMEM);
738 refcount_set(&td->count, 1);
739
740 bdev_file = bdev_file_open_by_dev(dev, mode, _dm_claim_ptr, NULL);
741 if (IS_ERR(bdev_file)) {
742 r = PTR_ERR(bdev_file);
743 goto out_free_td;
744 }
745
746 bdev = file_bdev(bdev_file);
747
748 /*
749 * We can be called before the dm disk is added. In that case we can't
750 * register the holder relation here. It will be done once add_disk was
751 * called.
752 */
753 if (md->disk->slave_dir) {
754 r = bd_link_disk_holder(bdev, md->disk);
755 if (r)
756 goto out_blkdev_put;
757 }
758
759 td->dm_dev.mode = mode;
760 td->dm_dev.bdev = bdev;
761 td->dm_dev.bdev_file = bdev_file;
762 td->dm_dev.dax_dev = fs_dax_get_by_bdev(bdev, &part_off,
763 NULL, NULL);
764 format_dev_t(td->dm_dev.name, dev);
765 list_add(&td->list, &md->table_devices);
766 return td;
767
768 out_blkdev_put:
769 __fput_sync(bdev_file);
770 out_free_td:
771 kfree(td);
772 return ERR_PTR(r);
773 }
774
775 /*
776 * Close a table device that we've been using.
777 */
close_table_device(struct table_device * td,struct mapped_device * md)778 static void close_table_device(struct table_device *td, struct mapped_device *md)
779 {
780 if (md->disk->slave_dir)
781 bd_unlink_disk_holder(td->dm_dev.bdev, md->disk);
782
783 /* Leverage async fput() if DMF_DEFERRED_REMOVE set */
784 if (unlikely(test_bit(DMF_DEFERRED_REMOVE, &md->flags)))
785 fput(td->dm_dev.bdev_file);
786 else
787 __fput_sync(td->dm_dev.bdev_file);
788
789 put_dax(td->dm_dev.dax_dev);
790 list_del(&td->list);
791 kfree(td);
792 }
793
find_table_device(struct list_head * l,dev_t dev,blk_mode_t mode)794 static struct table_device *find_table_device(struct list_head *l, dev_t dev,
795 blk_mode_t mode)
796 {
797 struct table_device *td;
798
799 list_for_each_entry(td, l, list)
800 if (td->dm_dev.bdev->bd_dev == dev && td->dm_dev.mode == mode)
801 return td;
802
803 return NULL;
804 }
805
dm_get_table_device(struct mapped_device * md,dev_t dev,blk_mode_t mode,struct dm_dev ** result)806 int dm_get_table_device(struct mapped_device *md, dev_t dev, blk_mode_t mode,
807 struct dm_dev **result)
808 {
809 struct table_device *td;
810
811 mutex_lock(&md->table_devices_lock);
812 td = find_table_device(&md->table_devices, dev, mode);
813 if (!td) {
814 td = open_table_device(md, dev, mode);
815 if (IS_ERR(td)) {
816 mutex_unlock(&md->table_devices_lock);
817 return PTR_ERR(td);
818 }
819 } else {
820 refcount_inc(&td->count);
821 }
822 mutex_unlock(&md->table_devices_lock);
823
824 *result = &td->dm_dev;
825 return 0;
826 }
827
dm_put_table_device(struct mapped_device * md,struct dm_dev * d)828 void dm_put_table_device(struct mapped_device *md, struct dm_dev *d)
829 {
830 struct table_device *td = container_of(d, struct table_device, dm_dev);
831
832 mutex_lock(&md->table_devices_lock);
833 if (refcount_dec_and_test(&td->count))
834 close_table_device(td, md);
835 mutex_unlock(&md->table_devices_lock);
836 }
837
838 /*
839 * Get the geometry associated with a dm device
840 */
dm_get_geometry(struct mapped_device * md,struct hd_geometry * geo)841 int dm_get_geometry(struct mapped_device *md, struct hd_geometry *geo)
842 {
843 *geo = md->geometry;
844
845 return 0;
846 }
847
848 /*
849 * Set the geometry of a device.
850 */
dm_set_geometry(struct mapped_device * md,struct hd_geometry * geo)851 int dm_set_geometry(struct mapped_device *md, struct hd_geometry *geo)
852 {
853 sector_t sz = (sector_t)geo->cylinders * geo->heads * geo->sectors;
854
855 if (geo->start > sz) {
856 DMERR("Start sector is beyond the geometry limits.");
857 return -EINVAL;
858 }
859
860 md->geometry = *geo;
861
862 return 0;
863 }
864
__noflush_suspending(struct mapped_device * md)865 static int __noflush_suspending(struct mapped_device *md)
866 {
867 return test_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
868 }
869
dm_requeue_add_io(struct dm_io * io,bool first_stage)870 static void dm_requeue_add_io(struct dm_io *io, bool first_stage)
871 {
872 struct mapped_device *md = io->md;
873
874 if (first_stage) {
875 struct dm_io *next = md->requeue_list;
876
877 md->requeue_list = io;
878 io->next = next;
879 } else {
880 bio_list_add_head(&md->deferred, io->orig_bio);
881 }
882 }
883
dm_kick_requeue(struct mapped_device * md,bool first_stage)884 static void dm_kick_requeue(struct mapped_device *md, bool first_stage)
885 {
886 if (first_stage)
887 queue_work(md->wq, &md->requeue_work);
888 else
889 queue_work(md->wq, &md->work);
890 }
891
892 /*
893 * Return true if the dm_io's original bio is requeued.
894 * io->status is updated with error if requeue disallowed.
895 */
dm_handle_requeue(struct dm_io * io,bool first_stage)896 static bool dm_handle_requeue(struct dm_io *io, bool first_stage)
897 {
898 struct bio *bio = io->orig_bio;
899 bool handle_requeue = (io->status == BLK_STS_DM_REQUEUE);
900 bool handle_polled_eagain = ((io->status == BLK_STS_AGAIN) &&
901 (bio->bi_opf & REQ_POLLED));
902 struct mapped_device *md = io->md;
903 bool requeued = false;
904
905 if (handle_requeue || handle_polled_eagain) {
906 unsigned long flags;
907
908 if (bio->bi_opf & REQ_POLLED) {
909 /*
910 * Upper layer won't help us poll split bio
911 * (io->orig_bio may only reflect a subset of the
912 * pre-split original) so clear REQ_POLLED.
913 */
914 bio_clear_polled(bio);
915 }
916
917 /*
918 * Target requested pushing back the I/O or
919 * polled IO hit BLK_STS_AGAIN.
920 */
921 spin_lock_irqsave(&md->deferred_lock, flags);
922 if ((__noflush_suspending(md) &&
923 !WARN_ON_ONCE(dm_is_zone_write(md, bio))) ||
924 handle_polled_eagain || first_stage) {
925 dm_requeue_add_io(io, first_stage);
926 requeued = true;
927 } else {
928 /*
929 * noflush suspend was interrupted or this is
930 * a write to a zoned target.
931 */
932 io->status = BLK_STS_IOERR;
933 }
934 spin_unlock_irqrestore(&md->deferred_lock, flags);
935 }
936
937 if (requeued)
938 dm_kick_requeue(md, first_stage);
939
940 return requeued;
941 }
942
__dm_io_complete(struct dm_io * io,bool first_stage)943 static void __dm_io_complete(struct dm_io *io, bool first_stage)
944 {
945 struct bio *bio = io->orig_bio;
946 struct mapped_device *md = io->md;
947 blk_status_t io_error;
948 bool requeued;
949
950 requeued = dm_handle_requeue(io, first_stage);
951 if (requeued && first_stage)
952 return;
953
954 io_error = io->status;
955 if (dm_io_flagged(io, DM_IO_ACCOUNTED))
956 dm_end_io_acct(io);
957 else if (!io_error) {
958 /*
959 * Must handle target that DM_MAPIO_SUBMITTED only to
960 * then bio_endio() rather than dm_submit_bio_remap()
961 */
962 __dm_start_io_acct(io);
963 dm_end_io_acct(io);
964 }
965 free_io(io);
966 smp_wmb();
967 this_cpu_dec(*md->pending_io);
968
969 /* nudge anyone waiting on suspend queue */
970 if (unlikely(wq_has_sleeper(&md->wait)))
971 wake_up(&md->wait);
972
973 /* Return early if the original bio was requeued */
974 if (requeued)
975 return;
976
977 if (bio_is_flush_with_data(bio)) {
978 /*
979 * Preflush done for flush with data, reissue
980 * without REQ_PREFLUSH.
981 */
982 bio->bi_opf &= ~REQ_PREFLUSH;
983 queue_io(md, bio);
984 } else {
985 /* done with normal IO or empty flush */
986 if (io_error)
987 bio->bi_status = io_error;
988 bio_endio(bio);
989 }
990 }
991
dm_wq_requeue_work(struct work_struct * work)992 static void dm_wq_requeue_work(struct work_struct *work)
993 {
994 struct mapped_device *md = container_of(work, struct mapped_device,
995 requeue_work);
996 unsigned long flags;
997 struct dm_io *io;
998
999 /* reuse deferred lock to simplify dm_handle_requeue */
1000 spin_lock_irqsave(&md->deferred_lock, flags);
1001 io = md->requeue_list;
1002 md->requeue_list = NULL;
1003 spin_unlock_irqrestore(&md->deferred_lock, flags);
1004
1005 while (io) {
1006 struct dm_io *next = io->next;
1007
1008 dm_io_rewind(io, &md->disk->bio_split);
1009
1010 io->next = NULL;
1011 __dm_io_complete(io, false);
1012 io = next;
1013 cond_resched();
1014 }
1015 }
1016
1017 /*
1018 * Two staged requeue:
1019 *
1020 * 1) io->orig_bio points to the real original bio, and the part mapped to
1021 * this io must be requeued, instead of other parts of the original bio.
1022 *
1023 * 2) io->orig_bio points to new cloned bio which matches the requeued dm_io.
1024 */
dm_io_complete(struct dm_io * io)1025 static void dm_io_complete(struct dm_io *io)
1026 {
1027 bool first_requeue;
1028
1029 /*
1030 * Only dm_io that has been split needs two stage requeue, otherwise
1031 * we may run into long bio clone chain during suspend and OOM could
1032 * be triggered.
1033 *
1034 * Also flush data dm_io won't be marked as DM_IO_WAS_SPLIT, so they
1035 * also aren't handled via the first stage requeue.
1036 */
1037 if (dm_io_flagged(io, DM_IO_WAS_SPLIT))
1038 first_requeue = true;
1039 else
1040 first_requeue = false;
1041
1042 __dm_io_complete(io, first_requeue);
1043 }
1044
1045 /*
1046 * Decrements the number of outstanding ios that a bio has been
1047 * cloned into, completing the original io if necc.
1048 */
__dm_io_dec_pending(struct dm_io * io)1049 static inline void __dm_io_dec_pending(struct dm_io *io)
1050 {
1051 if (atomic_dec_and_test(&io->io_count))
1052 dm_io_complete(io);
1053 }
1054
dm_io_set_error(struct dm_io * io,blk_status_t error)1055 static void dm_io_set_error(struct dm_io *io, blk_status_t error)
1056 {
1057 unsigned long flags;
1058
1059 /* Push-back supersedes any I/O errors */
1060 spin_lock_irqsave(&io->lock, flags);
1061 if (!(io->status == BLK_STS_DM_REQUEUE &&
1062 __noflush_suspending(io->md))) {
1063 io->status = error;
1064 }
1065 spin_unlock_irqrestore(&io->lock, flags);
1066 }
1067
dm_io_dec_pending(struct dm_io * io,blk_status_t error)1068 static void dm_io_dec_pending(struct dm_io *io, blk_status_t error)
1069 {
1070 if (unlikely(error))
1071 dm_io_set_error(io, error);
1072
1073 __dm_io_dec_pending(io);
1074 }
1075
1076 /*
1077 * The queue_limits are only valid as long as you have a reference
1078 * count on 'md'. But _not_ imposing verification to avoid atomic_read(),
1079 */
dm_get_queue_limits(struct mapped_device * md)1080 static inline struct queue_limits *dm_get_queue_limits(struct mapped_device *md)
1081 {
1082 return &md->queue->limits;
1083 }
1084
disable_discard(struct mapped_device * md)1085 void disable_discard(struct mapped_device *md)
1086 {
1087 struct queue_limits *limits = dm_get_queue_limits(md);
1088
1089 /* device doesn't really support DISCARD, disable it */
1090 limits->max_hw_discard_sectors = 0;
1091 }
1092
disable_write_zeroes(struct mapped_device * md)1093 void disable_write_zeroes(struct mapped_device *md)
1094 {
1095 struct queue_limits *limits = dm_get_queue_limits(md);
1096
1097 /* device doesn't really support WRITE ZEROES, disable it */
1098 limits->max_write_zeroes_sectors = 0;
1099 }
1100
swap_bios_limit(struct dm_target * ti,struct bio * bio)1101 static bool swap_bios_limit(struct dm_target *ti, struct bio *bio)
1102 {
1103 return unlikely((bio->bi_opf & REQ_SWAP) != 0) && unlikely(ti->limit_swap_bios);
1104 }
1105
clone_endio(struct bio * bio)1106 static void clone_endio(struct bio *bio)
1107 {
1108 blk_status_t error = bio->bi_status;
1109 struct dm_target_io *tio = clone_to_tio(bio);
1110 struct dm_target *ti = tio->ti;
1111 dm_endio_fn endio = likely(ti != NULL) ? ti->type->end_io : NULL;
1112 struct dm_io *io = tio->io;
1113 struct mapped_device *md = io->md;
1114
1115 if (unlikely(error == BLK_STS_TARGET)) {
1116 if (bio_op(bio) == REQ_OP_DISCARD &&
1117 !bdev_max_discard_sectors(bio->bi_bdev))
1118 disable_discard(md);
1119 else if (bio_op(bio) == REQ_OP_WRITE_ZEROES &&
1120 !bdev_write_zeroes_sectors(bio->bi_bdev))
1121 disable_write_zeroes(md);
1122 }
1123
1124 if (static_branch_unlikely(&zoned_enabled) &&
1125 unlikely(bdev_is_zoned(bio->bi_bdev)))
1126 dm_zone_endio(io, bio);
1127
1128 if (endio) {
1129 int r = endio(ti, bio, &error);
1130
1131 switch (r) {
1132 case DM_ENDIO_REQUEUE:
1133 if (static_branch_unlikely(&zoned_enabled)) {
1134 /*
1135 * Requeuing writes to a sequential zone of a zoned
1136 * target will break the sequential write pattern:
1137 * fail such IO.
1138 */
1139 if (WARN_ON_ONCE(dm_is_zone_write(md, bio)))
1140 error = BLK_STS_IOERR;
1141 else
1142 error = BLK_STS_DM_REQUEUE;
1143 } else
1144 error = BLK_STS_DM_REQUEUE;
1145 fallthrough;
1146 case DM_ENDIO_DONE:
1147 break;
1148 case DM_ENDIO_INCOMPLETE:
1149 /* The target will handle the io */
1150 return;
1151 default:
1152 DMCRIT("unimplemented target endio return value: %d", r);
1153 BUG();
1154 }
1155 }
1156
1157 if (static_branch_unlikely(&swap_bios_enabled) &&
1158 likely(ti != NULL) && unlikely(swap_bios_limit(ti, bio)))
1159 up(&md->swap_bios_semaphore);
1160
1161 free_tio(bio);
1162 dm_io_dec_pending(io, error);
1163 }
1164
1165 /*
1166 * Return maximum size of I/O possible at the supplied sector up to the current
1167 * target boundary.
1168 */
max_io_len_target_boundary(struct dm_target * ti,sector_t target_offset)1169 static inline sector_t max_io_len_target_boundary(struct dm_target *ti,
1170 sector_t target_offset)
1171 {
1172 return ti->len - target_offset;
1173 }
1174
__max_io_len(struct dm_target * ti,sector_t sector,unsigned int max_granularity,unsigned int max_sectors)1175 static sector_t __max_io_len(struct dm_target *ti, sector_t sector,
1176 unsigned int max_granularity,
1177 unsigned int max_sectors)
1178 {
1179 sector_t target_offset = dm_target_offset(ti, sector);
1180 sector_t len = max_io_len_target_boundary(ti, target_offset);
1181
1182 /*
1183 * Does the target need to split IO even further?
1184 * - varied (per target) IO splitting is a tenet of DM; this
1185 * explains why stacked chunk_sectors based splitting via
1186 * bio_split_to_limits() isn't possible here.
1187 */
1188 if (!max_granularity)
1189 return len;
1190 return min_t(sector_t, len,
1191 min(max_sectors ? : queue_max_sectors(ti->table->md->queue),
1192 blk_boundary_sectors_left(target_offset, max_granularity)));
1193 }
1194
max_io_len(struct dm_target * ti,sector_t sector)1195 static inline sector_t max_io_len(struct dm_target *ti, sector_t sector)
1196 {
1197 return __max_io_len(ti, sector, ti->max_io_len, 0);
1198 }
1199
dm_set_target_max_io_len(struct dm_target * ti,sector_t len)1200 int dm_set_target_max_io_len(struct dm_target *ti, sector_t len)
1201 {
1202 if (len > UINT_MAX) {
1203 DMERR("Specified maximum size of target IO (%llu) exceeds limit (%u)",
1204 (unsigned long long)len, UINT_MAX);
1205 ti->error = "Maximum size of target IO is too large";
1206 return -EINVAL;
1207 }
1208
1209 ti->max_io_len = (uint32_t) len;
1210
1211 return 0;
1212 }
1213 EXPORT_SYMBOL_GPL(dm_set_target_max_io_len);
1214
dm_dax_get_live_target(struct mapped_device * md,sector_t sector,int * srcu_idx)1215 static struct dm_target *dm_dax_get_live_target(struct mapped_device *md,
1216 sector_t sector, int *srcu_idx)
1217 __acquires(md->io_barrier)
1218 {
1219 struct dm_table *map;
1220 struct dm_target *ti;
1221
1222 map = dm_get_live_table(md, srcu_idx);
1223 if (!map)
1224 return NULL;
1225
1226 ti = dm_table_find_target(map, sector);
1227 if (!ti)
1228 return NULL;
1229
1230 return ti;
1231 }
1232
dm_dax_direct_access(struct dax_device * dax_dev,pgoff_t pgoff,long nr_pages,enum dax_access_mode mode,void ** kaddr,pfn_t * pfn)1233 static long dm_dax_direct_access(struct dax_device *dax_dev, pgoff_t pgoff,
1234 long nr_pages, enum dax_access_mode mode, void **kaddr,
1235 pfn_t *pfn)
1236 {
1237 struct mapped_device *md = dax_get_private(dax_dev);
1238 sector_t sector = pgoff * PAGE_SECTORS;
1239 struct dm_target *ti;
1240 long len, ret = -EIO;
1241 int srcu_idx;
1242
1243 ti = dm_dax_get_live_target(md, sector, &srcu_idx);
1244
1245 if (!ti)
1246 goto out;
1247 if (!ti->type->direct_access)
1248 goto out;
1249 len = max_io_len(ti, sector) / PAGE_SECTORS;
1250 if (len < 1)
1251 goto out;
1252 nr_pages = min(len, nr_pages);
1253 ret = ti->type->direct_access(ti, pgoff, nr_pages, mode, kaddr, pfn);
1254
1255 out:
1256 dm_put_live_table(md, srcu_idx);
1257
1258 return ret;
1259 }
1260
dm_dax_zero_page_range(struct dax_device * dax_dev,pgoff_t pgoff,size_t nr_pages)1261 static int dm_dax_zero_page_range(struct dax_device *dax_dev, pgoff_t pgoff,
1262 size_t nr_pages)
1263 {
1264 struct mapped_device *md = dax_get_private(dax_dev);
1265 sector_t sector = pgoff * PAGE_SECTORS;
1266 struct dm_target *ti;
1267 int ret = -EIO;
1268 int srcu_idx;
1269
1270 ti = dm_dax_get_live_target(md, sector, &srcu_idx);
1271
1272 if (!ti)
1273 goto out;
1274 if (WARN_ON(!ti->type->dax_zero_page_range)) {
1275 /*
1276 * ->zero_page_range() is mandatory dax operation. If we are
1277 * here, something is wrong.
1278 */
1279 goto out;
1280 }
1281 ret = ti->type->dax_zero_page_range(ti, pgoff, nr_pages);
1282 out:
1283 dm_put_live_table(md, srcu_idx);
1284
1285 return ret;
1286 }
1287
dm_dax_recovery_write(struct dax_device * dax_dev,pgoff_t pgoff,void * addr,size_t bytes,struct iov_iter * i)1288 static size_t dm_dax_recovery_write(struct dax_device *dax_dev, pgoff_t pgoff,
1289 void *addr, size_t bytes, struct iov_iter *i)
1290 {
1291 struct mapped_device *md = dax_get_private(dax_dev);
1292 sector_t sector = pgoff * PAGE_SECTORS;
1293 struct dm_target *ti;
1294 int srcu_idx;
1295 long ret = 0;
1296
1297 ti = dm_dax_get_live_target(md, sector, &srcu_idx);
1298 if (!ti || !ti->type->dax_recovery_write)
1299 goto out;
1300
1301 ret = ti->type->dax_recovery_write(ti, pgoff, addr, bytes, i);
1302 out:
1303 dm_put_live_table(md, srcu_idx);
1304 return ret;
1305 }
1306
1307 /*
1308 * A target may call dm_accept_partial_bio only from the map routine. It is
1309 * allowed for all bio types except REQ_PREFLUSH, REQ_OP_ZONE_* zone management
1310 * operations, zone append writes (native with REQ_OP_ZONE_APPEND or emulated
1311 * with write BIOs flagged with BIO_EMULATES_ZONE_APPEND) and any bio serviced
1312 * by __send_duplicate_bios().
1313 *
1314 * dm_accept_partial_bio informs the dm that the target only wants to process
1315 * additional n_sectors sectors of the bio and the rest of the data should be
1316 * sent in a next bio.
1317 *
1318 * A diagram that explains the arithmetics:
1319 * +--------------------+---------------+-------+
1320 * | 1 | 2 | 3 |
1321 * +--------------------+---------------+-------+
1322 *
1323 * <-------------- *tio->len_ptr --------------->
1324 * <----- bio_sectors ----->
1325 * <-- n_sectors -->
1326 *
1327 * Region 1 was already iterated over with bio_advance or similar function.
1328 * (it may be empty if the target doesn't use bio_advance)
1329 * Region 2 is the remaining bio size that the target wants to process.
1330 * (it may be empty if region 1 is non-empty, although there is no reason
1331 * to make it empty)
1332 * The target requires that region 3 is to be sent in the next bio.
1333 *
1334 * If the target wants to receive multiple copies of the bio (via num_*bios, etc),
1335 * the partially processed part (the sum of regions 1+2) must be the same for all
1336 * copies of the bio.
1337 */
dm_accept_partial_bio(struct bio * bio,unsigned int n_sectors)1338 void dm_accept_partial_bio(struct bio *bio, unsigned int n_sectors)
1339 {
1340 struct dm_target_io *tio = clone_to_tio(bio);
1341 struct dm_io *io = tio->io;
1342 unsigned int bio_sectors = bio_sectors(bio);
1343
1344 BUG_ON(dm_tio_flagged(tio, DM_TIO_IS_DUPLICATE_BIO));
1345 BUG_ON(bio_sectors > *tio->len_ptr);
1346 BUG_ON(n_sectors > bio_sectors);
1347
1348 if (static_branch_unlikely(&zoned_enabled) &&
1349 unlikely(bdev_is_zoned(bio->bi_bdev))) {
1350 enum req_op op = bio_op(bio);
1351
1352 BUG_ON(op_is_zone_mgmt(op));
1353 BUG_ON(op == REQ_OP_WRITE);
1354 BUG_ON(op == REQ_OP_WRITE_ZEROES);
1355 BUG_ON(op == REQ_OP_ZONE_APPEND);
1356 }
1357
1358 *tio->len_ptr -= bio_sectors - n_sectors;
1359 bio->bi_iter.bi_size = n_sectors << SECTOR_SHIFT;
1360
1361 /*
1362 * __split_and_process_bio() may have already saved mapped part
1363 * for accounting but it is being reduced so update accordingly.
1364 */
1365 dm_io_set_flag(io, DM_IO_WAS_SPLIT);
1366 io->sectors = n_sectors;
1367 io->sector_offset = bio_sectors(io->orig_bio);
1368 }
1369 EXPORT_SYMBOL_GPL(dm_accept_partial_bio);
1370
1371 /*
1372 * @clone: clone bio that DM core passed to target's .map function
1373 * @tgt_clone: clone of @clone bio that target needs submitted
1374 *
1375 * Targets should use this interface to submit bios they take
1376 * ownership of when returning DM_MAPIO_SUBMITTED.
1377 *
1378 * Target should also enable ti->accounts_remapped_io
1379 */
dm_submit_bio_remap(struct bio * clone,struct bio * tgt_clone)1380 void dm_submit_bio_remap(struct bio *clone, struct bio *tgt_clone)
1381 {
1382 struct dm_target_io *tio = clone_to_tio(clone);
1383 struct dm_io *io = tio->io;
1384
1385 /* establish bio that will get submitted */
1386 if (!tgt_clone)
1387 tgt_clone = clone;
1388
1389 /*
1390 * Account io->origin_bio to DM dev on behalf of target
1391 * that took ownership of IO with DM_MAPIO_SUBMITTED.
1392 */
1393 dm_start_io_acct(io, clone);
1394
1395 trace_block_bio_remap(tgt_clone, disk_devt(io->md->disk),
1396 tio->old_sector);
1397 submit_bio_noacct(tgt_clone);
1398 }
1399 EXPORT_SYMBOL_GPL(dm_submit_bio_remap);
1400
__set_swap_bios_limit(struct mapped_device * md,int latch)1401 static noinline void __set_swap_bios_limit(struct mapped_device *md, int latch)
1402 {
1403 mutex_lock(&md->swap_bios_lock);
1404 while (latch < md->swap_bios) {
1405 cond_resched();
1406 down(&md->swap_bios_semaphore);
1407 md->swap_bios--;
1408 }
1409 while (latch > md->swap_bios) {
1410 cond_resched();
1411 up(&md->swap_bios_semaphore);
1412 md->swap_bios++;
1413 }
1414 mutex_unlock(&md->swap_bios_lock);
1415 }
1416
__map_bio(struct bio * clone)1417 static void __map_bio(struct bio *clone)
1418 {
1419 struct dm_target_io *tio = clone_to_tio(clone);
1420 struct dm_target *ti = tio->ti;
1421 struct dm_io *io = tio->io;
1422 struct mapped_device *md = io->md;
1423 int r;
1424
1425 clone->bi_end_io = clone_endio;
1426
1427 /*
1428 * Map the clone.
1429 */
1430 tio->old_sector = clone->bi_iter.bi_sector;
1431
1432 if (static_branch_unlikely(&swap_bios_enabled) &&
1433 unlikely(swap_bios_limit(ti, clone))) {
1434 int latch = get_swap_bios();
1435
1436 if (unlikely(latch != md->swap_bios))
1437 __set_swap_bios_limit(md, latch);
1438 down(&md->swap_bios_semaphore);
1439 }
1440
1441 if (likely(ti->type->map == linear_map))
1442 r = linear_map(ti, clone);
1443 else if (ti->type->map == stripe_map)
1444 r = stripe_map(ti, clone);
1445 else
1446 r = ti->type->map(ti, clone);
1447
1448 switch (r) {
1449 case DM_MAPIO_SUBMITTED:
1450 /* target has assumed ownership of this io */
1451 if (!ti->accounts_remapped_io)
1452 dm_start_io_acct(io, clone);
1453 break;
1454 case DM_MAPIO_REMAPPED:
1455 dm_submit_bio_remap(clone, NULL);
1456 break;
1457 case DM_MAPIO_KILL:
1458 case DM_MAPIO_REQUEUE:
1459 if (static_branch_unlikely(&swap_bios_enabled) &&
1460 unlikely(swap_bios_limit(ti, clone)))
1461 up(&md->swap_bios_semaphore);
1462 free_tio(clone);
1463 if (r == DM_MAPIO_KILL)
1464 dm_io_dec_pending(io, BLK_STS_IOERR);
1465 else
1466 dm_io_dec_pending(io, BLK_STS_DM_REQUEUE);
1467 break;
1468 default:
1469 DMCRIT("unimplemented target map return value: %d", r);
1470 BUG();
1471 }
1472 }
1473
setup_split_accounting(struct clone_info * ci,unsigned int len)1474 static void setup_split_accounting(struct clone_info *ci, unsigned int len)
1475 {
1476 struct dm_io *io = ci->io;
1477
1478 if (ci->sector_count > len) {
1479 /*
1480 * Split needed, save the mapped part for accounting.
1481 * NOTE: dm_accept_partial_bio() will update accordingly.
1482 */
1483 dm_io_set_flag(io, DM_IO_WAS_SPLIT);
1484 io->sectors = len;
1485 io->sector_offset = bio_sectors(ci->bio);
1486 }
1487 }
1488
alloc_multiple_bios(struct bio_list * blist,struct clone_info * ci,struct dm_target * ti,unsigned int num_bios,unsigned * len,gfp_t gfp_flag)1489 static void alloc_multiple_bios(struct bio_list *blist, struct clone_info *ci,
1490 struct dm_target *ti, unsigned int num_bios,
1491 unsigned *len, gfp_t gfp_flag)
1492 {
1493 struct bio *bio;
1494 int try = (gfp_flag & GFP_NOWAIT) ? 0 : 1;
1495
1496 for (; try < 2; try++) {
1497 int bio_nr;
1498
1499 if (try && num_bios > 1)
1500 mutex_lock(&ci->io->md->table_devices_lock);
1501 for (bio_nr = 0; bio_nr < num_bios; bio_nr++) {
1502 bio = alloc_tio(ci, ti, bio_nr, len,
1503 try ? GFP_NOIO : GFP_NOWAIT);
1504 if (!bio)
1505 break;
1506
1507 bio_list_add(blist, bio);
1508 }
1509 if (try && num_bios > 1)
1510 mutex_unlock(&ci->io->md->table_devices_lock);
1511 if (bio_nr == num_bios)
1512 return;
1513
1514 while ((bio = bio_list_pop(blist)))
1515 free_tio(bio);
1516 }
1517 }
1518
__send_duplicate_bios(struct clone_info * ci,struct dm_target * ti,unsigned int num_bios,unsigned int * len,gfp_t gfp_flag)1519 static unsigned int __send_duplicate_bios(struct clone_info *ci, struct dm_target *ti,
1520 unsigned int num_bios, unsigned int *len,
1521 gfp_t gfp_flag)
1522 {
1523 struct bio_list blist = BIO_EMPTY_LIST;
1524 struct bio *clone;
1525 unsigned int ret = 0;
1526
1527 if (WARN_ON_ONCE(num_bios == 0)) /* num_bios = 0 is a bug in caller */
1528 return 0;
1529
1530 /* dm_accept_partial_bio() is not supported with shared tio->len_ptr */
1531 if (len)
1532 setup_split_accounting(ci, *len);
1533
1534 /*
1535 * Using alloc_multiple_bios(), even if num_bios is 1, to consistently
1536 * support allocating using GFP_NOWAIT with GFP_NOIO fallback.
1537 */
1538 alloc_multiple_bios(&blist, ci, ti, num_bios, len, gfp_flag);
1539 while ((clone = bio_list_pop(&blist))) {
1540 if (num_bios > 1)
1541 dm_tio_set_flag(clone_to_tio(clone), DM_TIO_IS_DUPLICATE_BIO);
1542 __map_bio(clone);
1543 ret += 1;
1544 }
1545
1546 return ret;
1547 }
1548
__send_empty_flush(struct clone_info * ci)1549 static void __send_empty_flush(struct clone_info *ci)
1550 {
1551 struct dm_table *t = ci->map;
1552 struct bio flush_bio;
1553 blk_opf_t opf = REQ_OP_WRITE | REQ_PREFLUSH | REQ_SYNC;
1554
1555 if ((ci->io->orig_bio->bi_opf & (REQ_IDLE | REQ_SYNC)) ==
1556 (REQ_IDLE | REQ_SYNC))
1557 opf |= REQ_IDLE;
1558
1559 /*
1560 * Use an on-stack bio for this, it's safe since we don't
1561 * need to reference it after submit. It's just used as
1562 * the basis for the clone(s).
1563 */
1564 bio_init(&flush_bio, ci->io->md->disk->part0, NULL, 0, opf);
1565
1566 ci->bio = &flush_bio;
1567 ci->sector_count = 0;
1568 ci->io->tio.clone.bi_iter.bi_size = 0;
1569
1570 if (!t->flush_bypasses_map) {
1571 for (unsigned int i = 0; i < t->num_targets; i++) {
1572 unsigned int bios;
1573 struct dm_target *ti = dm_table_get_target(t, i);
1574
1575 if (unlikely(ti->num_flush_bios == 0))
1576 continue;
1577
1578 atomic_add(ti->num_flush_bios, &ci->io->io_count);
1579 bios = __send_duplicate_bios(ci, ti, ti->num_flush_bios,
1580 NULL, GFP_NOWAIT);
1581 atomic_sub(ti->num_flush_bios - bios, &ci->io->io_count);
1582 }
1583 } else {
1584 /*
1585 * Note that there's no need to grab t->devices_lock here
1586 * because the targets that support flush optimization don't
1587 * modify the list of devices.
1588 */
1589 struct list_head *devices = dm_table_get_devices(t);
1590 unsigned int len = 0;
1591 struct dm_dev_internal *dd;
1592 list_for_each_entry(dd, devices, list) {
1593 struct bio *clone;
1594 /*
1595 * Note that the structure dm_target_io is not
1596 * associated with any target (because the device may be
1597 * used by multiple targets), so we set tio->ti = NULL.
1598 * We must check for NULL in the I/O processing path, to
1599 * avoid NULL pointer dereference.
1600 */
1601 clone = alloc_tio(ci, NULL, 0, &len, GFP_NOIO);
1602 atomic_add(1, &ci->io->io_count);
1603 bio_set_dev(clone, dd->dm_dev->bdev);
1604 clone->bi_end_io = clone_endio;
1605 dm_submit_bio_remap(clone, NULL);
1606 }
1607 }
1608
1609 /*
1610 * alloc_io() takes one extra reference for submission, so the
1611 * reference won't reach 0 without the following subtraction
1612 */
1613 atomic_sub(1, &ci->io->io_count);
1614
1615 bio_uninit(ci->bio);
1616 }
1617
__send_abnormal_io(struct clone_info * ci,struct dm_target * ti,unsigned int num_bios,unsigned int max_granularity,unsigned int max_sectors)1618 static void __send_abnormal_io(struct clone_info *ci, struct dm_target *ti,
1619 unsigned int num_bios, unsigned int max_granularity,
1620 unsigned int max_sectors)
1621 {
1622 unsigned int len, bios;
1623
1624 len = min_t(sector_t, ci->sector_count,
1625 __max_io_len(ti, ci->sector, max_granularity, max_sectors));
1626
1627 atomic_add(num_bios, &ci->io->io_count);
1628 bios = __send_duplicate_bios(ci, ti, num_bios, &len, GFP_NOIO);
1629 /*
1630 * alloc_io() takes one extra reference for submission, so the
1631 * reference won't reach 0 without the following (+1) subtraction
1632 */
1633 atomic_sub(num_bios - bios + 1, &ci->io->io_count);
1634
1635 ci->sector += len;
1636 ci->sector_count -= len;
1637 }
1638
is_abnormal_io(struct bio * bio)1639 static bool is_abnormal_io(struct bio *bio)
1640 {
1641 switch (bio_op(bio)) {
1642 case REQ_OP_READ:
1643 case REQ_OP_WRITE:
1644 case REQ_OP_FLUSH:
1645 return false;
1646 case REQ_OP_DISCARD:
1647 case REQ_OP_SECURE_ERASE:
1648 case REQ_OP_WRITE_ZEROES:
1649 case REQ_OP_ZONE_RESET_ALL:
1650 return true;
1651 default:
1652 return false;
1653 }
1654 }
1655
__process_abnormal_io(struct clone_info * ci,struct dm_target * ti)1656 static blk_status_t __process_abnormal_io(struct clone_info *ci,
1657 struct dm_target *ti)
1658 {
1659 unsigned int num_bios = 0;
1660 unsigned int max_granularity = 0;
1661 unsigned int max_sectors = 0;
1662 struct queue_limits *limits = dm_get_queue_limits(ti->table->md);
1663
1664 switch (bio_op(ci->bio)) {
1665 case REQ_OP_DISCARD:
1666 num_bios = ti->num_discard_bios;
1667 max_sectors = limits->max_discard_sectors;
1668 if (ti->max_discard_granularity)
1669 max_granularity = max_sectors;
1670 break;
1671 case REQ_OP_SECURE_ERASE:
1672 num_bios = ti->num_secure_erase_bios;
1673 max_sectors = limits->max_secure_erase_sectors;
1674 break;
1675 case REQ_OP_WRITE_ZEROES:
1676 num_bios = ti->num_write_zeroes_bios;
1677 max_sectors = limits->max_write_zeroes_sectors;
1678 break;
1679 default:
1680 break;
1681 }
1682
1683 /*
1684 * Even though the device advertised support for this type of
1685 * request, that does not mean every target supports it, and
1686 * reconfiguration might also have changed that since the
1687 * check was performed.
1688 */
1689 if (unlikely(!num_bios))
1690 return BLK_STS_NOTSUPP;
1691
1692 __send_abnormal_io(ci, ti, num_bios, max_granularity, max_sectors);
1693
1694 return BLK_STS_OK;
1695 }
1696
1697 /*
1698 * Reuse ->bi_private as dm_io list head for storing all dm_io instances
1699 * associated with this bio, and this bio's bi_private needs to be
1700 * stored in dm_io->data before the reuse.
1701 *
1702 * bio->bi_private is owned by fs or upper layer, so block layer won't
1703 * touch it after splitting. Meantime it won't be changed by anyone after
1704 * bio is submitted. So this reuse is safe.
1705 */
dm_poll_list_head(struct bio * bio)1706 static inline struct dm_io **dm_poll_list_head(struct bio *bio)
1707 {
1708 return (struct dm_io **)&bio->bi_private;
1709 }
1710
dm_queue_poll_io(struct bio * bio,struct dm_io * io)1711 static void dm_queue_poll_io(struct bio *bio, struct dm_io *io)
1712 {
1713 struct dm_io **head = dm_poll_list_head(bio);
1714
1715 if (!(bio->bi_opf & REQ_DM_POLL_LIST)) {
1716 bio->bi_opf |= REQ_DM_POLL_LIST;
1717 /*
1718 * Save .bi_private into dm_io, so that we can reuse
1719 * .bi_private as dm_io list head for storing dm_io list
1720 */
1721 io->data = bio->bi_private;
1722
1723 /* tell block layer to poll for completion */
1724 bio->bi_cookie = ~BLK_QC_T_NONE;
1725
1726 io->next = NULL;
1727 } else {
1728 /*
1729 * bio recursed due to split, reuse original poll list,
1730 * and save bio->bi_private too.
1731 */
1732 io->data = (*head)->data;
1733 io->next = *head;
1734 }
1735
1736 *head = io;
1737 }
1738
1739 /*
1740 * Select the correct strategy for processing a non-flush bio.
1741 */
__split_and_process_bio(struct clone_info * ci)1742 static blk_status_t __split_and_process_bio(struct clone_info *ci)
1743 {
1744 struct bio *clone;
1745 struct dm_target *ti;
1746 unsigned int len;
1747
1748 ti = dm_table_find_target(ci->map, ci->sector);
1749 if (unlikely(!ti))
1750 return BLK_STS_IOERR;
1751
1752 if (unlikely(ci->is_abnormal_io))
1753 return __process_abnormal_io(ci, ti);
1754
1755 /*
1756 * Only support bio polling for normal IO, and the target io is
1757 * exactly inside the dm_io instance (verified in dm_poll_dm_io)
1758 */
1759 ci->submit_as_polled = !!(ci->bio->bi_opf & REQ_POLLED);
1760
1761 len = min_t(sector_t, max_io_len(ti, ci->sector), ci->sector_count);
1762 setup_split_accounting(ci, len);
1763
1764 if (unlikely(ci->bio->bi_opf & REQ_NOWAIT)) {
1765 if (unlikely(!dm_target_supports_nowait(ti->type)))
1766 return BLK_STS_NOTSUPP;
1767
1768 clone = alloc_tio(ci, ti, 0, &len, GFP_NOWAIT);
1769 if (unlikely(!clone))
1770 return BLK_STS_AGAIN;
1771 } else {
1772 clone = alloc_tio(ci, ti, 0, &len, GFP_NOIO);
1773 }
1774 __map_bio(clone);
1775
1776 ci->sector += len;
1777 ci->sector_count -= len;
1778
1779 return BLK_STS_OK;
1780 }
1781
init_clone_info(struct clone_info * ci,struct dm_io * io,struct dm_table * map,struct bio * bio,bool is_abnormal)1782 static void init_clone_info(struct clone_info *ci, struct dm_io *io,
1783 struct dm_table *map, struct bio *bio, bool is_abnormal)
1784 {
1785 ci->map = map;
1786 ci->io = io;
1787 ci->bio = bio;
1788 ci->is_abnormal_io = is_abnormal;
1789 ci->submit_as_polled = false;
1790 ci->sector = bio->bi_iter.bi_sector;
1791 ci->sector_count = bio_sectors(bio);
1792
1793 /* Shouldn't happen but sector_count was being set to 0 so... */
1794 if (static_branch_unlikely(&zoned_enabled) &&
1795 WARN_ON_ONCE(op_is_zone_mgmt(bio_op(bio)) && ci->sector_count))
1796 ci->sector_count = 0;
1797 }
1798
1799 #ifdef CONFIG_BLK_DEV_ZONED
dm_zone_bio_needs_split(struct bio * bio)1800 static inline bool dm_zone_bio_needs_split(struct bio *bio)
1801 {
1802 /*
1803 * Special case the zone operations that cannot or should not be split.
1804 */
1805 switch (bio_op(bio)) {
1806 case REQ_OP_ZONE_APPEND:
1807 case REQ_OP_ZONE_FINISH:
1808 case REQ_OP_ZONE_RESET:
1809 case REQ_OP_ZONE_RESET_ALL:
1810 return false;
1811 default:
1812 break;
1813 }
1814
1815 /*
1816 * When mapped devices use the block layer zone write plugging, we must
1817 * split any large BIO to the mapped device limits to not submit BIOs
1818 * that span zone boundaries and to avoid potential deadlocks with
1819 * queue freeze operations.
1820 */
1821 return bio_needs_zone_write_plugging(bio) || bio_straddles_zones(bio);
1822 }
1823
dm_zone_plug_bio(struct mapped_device * md,struct bio * bio)1824 static inline bool dm_zone_plug_bio(struct mapped_device *md, struct bio *bio)
1825 {
1826 if (!bio_needs_zone_write_plugging(bio))
1827 return false;
1828 return blk_zone_plug_bio(bio, 0);
1829 }
1830
__send_zone_reset_all_emulated(struct clone_info * ci,struct dm_target * ti)1831 static blk_status_t __send_zone_reset_all_emulated(struct clone_info *ci,
1832 struct dm_target *ti)
1833 {
1834 struct bio_list blist = BIO_EMPTY_LIST;
1835 struct mapped_device *md = ci->io->md;
1836 unsigned int zone_sectors = md->disk->queue->limits.chunk_sectors;
1837 unsigned long *need_reset;
1838 unsigned int i, nr_zones, nr_reset;
1839 unsigned int num_bios = 0;
1840 blk_status_t sts = BLK_STS_OK;
1841 sector_t sector = ti->begin;
1842 struct bio *clone;
1843 int ret;
1844
1845 nr_zones = ti->len >> ilog2(zone_sectors);
1846 need_reset = bitmap_zalloc(nr_zones, GFP_NOIO);
1847 if (!need_reset)
1848 return BLK_STS_RESOURCE;
1849
1850 ret = dm_zone_get_reset_bitmap(md, ci->map, ti->begin,
1851 nr_zones, need_reset);
1852 if (ret) {
1853 sts = BLK_STS_IOERR;
1854 goto free_bitmap;
1855 }
1856
1857 /* If we have no zone to reset, we are done. */
1858 nr_reset = bitmap_weight(need_reset, nr_zones);
1859 if (!nr_reset)
1860 goto free_bitmap;
1861
1862 atomic_add(nr_zones, &ci->io->io_count);
1863
1864 for (i = 0; i < nr_zones; i++) {
1865
1866 if (!test_bit(i, need_reset)) {
1867 sector += zone_sectors;
1868 continue;
1869 }
1870
1871 if (bio_list_empty(&blist)) {
1872 /* This may take a while, so be nice to others */
1873 if (num_bios)
1874 cond_resched();
1875
1876 /*
1877 * We may need to reset thousands of zones, so let's
1878 * not go crazy with the clone allocation.
1879 */
1880 alloc_multiple_bios(&blist, ci, ti, min(nr_reset, 32),
1881 NULL, GFP_NOIO);
1882 }
1883
1884 /* Get a clone and change it to a regular reset operation. */
1885 clone = bio_list_pop(&blist);
1886 clone->bi_opf &= ~REQ_OP_MASK;
1887 clone->bi_opf |= REQ_OP_ZONE_RESET | REQ_SYNC;
1888 clone->bi_iter.bi_sector = sector;
1889 clone->bi_iter.bi_size = 0;
1890 __map_bio(clone);
1891
1892 sector += zone_sectors;
1893 num_bios++;
1894 nr_reset--;
1895 }
1896
1897 WARN_ON_ONCE(!bio_list_empty(&blist));
1898 atomic_sub(nr_zones - num_bios, &ci->io->io_count);
1899 ci->sector_count = 0;
1900
1901 free_bitmap:
1902 bitmap_free(need_reset);
1903
1904 return sts;
1905 }
1906
__send_zone_reset_all_native(struct clone_info * ci,struct dm_target * ti)1907 static void __send_zone_reset_all_native(struct clone_info *ci,
1908 struct dm_target *ti)
1909 {
1910 unsigned int bios;
1911
1912 atomic_add(1, &ci->io->io_count);
1913 bios = __send_duplicate_bios(ci, ti, 1, NULL, GFP_NOIO);
1914 atomic_sub(1 - bios, &ci->io->io_count);
1915
1916 ci->sector_count = 0;
1917 }
1918
__send_zone_reset_all(struct clone_info * ci)1919 static blk_status_t __send_zone_reset_all(struct clone_info *ci)
1920 {
1921 struct dm_table *t = ci->map;
1922 blk_status_t sts = BLK_STS_OK;
1923
1924 for (unsigned int i = 0; i < t->num_targets; i++) {
1925 struct dm_target *ti = dm_table_get_target(t, i);
1926
1927 if (ti->zone_reset_all_supported) {
1928 __send_zone_reset_all_native(ci, ti);
1929 continue;
1930 }
1931
1932 sts = __send_zone_reset_all_emulated(ci, ti);
1933 if (sts != BLK_STS_OK)
1934 break;
1935 }
1936
1937 /* Release the reference that alloc_io() took for submission. */
1938 atomic_sub(1, &ci->io->io_count);
1939
1940 return sts;
1941 }
1942
1943 #else
dm_zone_bio_needs_split(struct bio * bio)1944 static inline bool dm_zone_bio_needs_split(struct bio *bio)
1945 {
1946 return false;
1947 }
dm_zone_plug_bio(struct mapped_device * md,struct bio * bio)1948 static inline bool dm_zone_plug_bio(struct mapped_device *md, struct bio *bio)
1949 {
1950 return false;
1951 }
__send_zone_reset_all(struct clone_info * ci)1952 static blk_status_t __send_zone_reset_all(struct clone_info *ci)
1953 {
1954 return BLK_STS_NOTSUPP;
1955 }
1956 #endif
1957
1958 /*
1959 * Entry point to split a bio into clones and submit them to the targets.
1960 */
dm_split_and_process_bio(struct mapped_device * md,struct dm_table * map,struct bio * bio)1961 static void dm_split_and_process_bio(struct mapped_device *md,
1962 struct dm_table *map, struct bio *bio)
1963 {
1964 struct clone_info ci;
1965 struct dm_io *io;
1966 blk_status_t error = BLK_STS_OK;
1967 bool is_abnormal, need_split;
1968
1969 is_abnormal = is_abnormal_io(bio);
1970 if (static_branch_unlikely(&zoned_enabled)) {
1971 need_split = is_abnormal || dm_zone_bio_needs_split(bio);
1972 } else {
1973 need_split = is_abnormal;
1974 }
1975
1976 if (unlikely(need_split)) {
1977 /*
1978 * Use bio_split_to_limits() for abnormal IO (e.g. discard, etc)
1979 * otherwise associated queue_limits won't be imposed.
1980 * Also split the BIO for mapped devices needing zone append
1981 * emulation to ensure that the BIO does not cross zone
1982 * boundaries.
1983 */
1984 bio = bio_split_to_limits(bio);
1985 if (!bio)
1986 return;
1987 }
1988
1989 /*
1990 * Use the block layer zone write plugging for mapped devices that
1991 * need zone append emulation (e.g. dm-crypt).
1992 */
1993 if (static_branch_unlikely(&zoned_enabled) && dm_zone_plug_bio(md, bio))
1994 return;
1995
1996 /* Only support nowait for normal IO */
1997 if (unlikely(bio->bi_opf & REQ_NOWAIT) && !is_abnormal) {
1998 io = alloc_io(md, bio, GFP_NOWAIT);
1999 if (unlikely(!io)) {
2000 /* Unable to do anything without dm_io. */
2001 bio_wouldblock_error(bio);
2002 return;
2003 }
2004 } else {
2005 io = alloc_io(md, bio, GFP_NOIO);
2006 }
2007 init_clone_info(&ci, io, map, bio, is_abnormal);
2008
2009 if (bio->bi_opf & REQ_PREFLUSH) {
2010 __send_empty_flush(&ci);
2011 /* dm_io_complete submits any data associated with flush */
2012 goto out;
2013 }
2014
2015 if (static_branch_unlikely(&zoned_enabled) &&
2016 (bio_op(bio) == REQ_OP_ZONE_RESET_ALL)) {
2017 error = __send_zone_reset_all(&ci);
2018 goto out;
2019 }
2020
2021 error = __split_and_process_bio(&ci);
2022 if (error || !ci.sector_count)
2023 goto out;
2024 /*
2025 * Remainder must be passed to submit_bio_noacct() so it gets handled
2026 * *after* bios already submitted have been completely processed.
2027 */
2028 bio_trim(bio, io->sectors, ci.sector_count);
2029 trace_block_split(bio, bio->bi_iter.bi_sector);
2030 bio_inc_remaining(bio);
2031 submit_bio_noacct(bio);
2032 out:
2033 /*
2034 * Drop the extra reference count for non-POLLED bio, and hold one
2035 * reference for POLLED bio, which will be released in dm_poll_bio
2036 *
2037 * Add every dm_io instance into the dm_io list head which is stored
2038 * in bio->bi_private, so that dm_poll_bio can poll them all.
2039 */
2040 if (error || !ci.submit_as_polled) {
2041 /*
2042 * In case of submission failure, the extra reference for
2043 * submitting io isn't consumed yet
2044 */
2045 if (error)
2046 atomic_dec(&io->io_count);
2047 dm_io_dec_pending(io, error);
2048 } else
2049 dm_queue_poll_io(bio, io);
2050 }
2051
dm_submit_bio(struct bio * bio)2052 static void dm_submit_bio(struct bio *bio)
2053 {
2054 struct mapped_device *md = bio->bi_bdev->bd_disk->private_data;
2055 int srcu_idx;
2056 struct dm_table *map;
2057
2058 map = dm_get_live_table(md, &srcu_idx);
2059 if (unlikely(!map)) {
2060 DMERR_LIMIT("%s: mapping table unavailable, erroring io",
2061 dm_device_name(md));
2062 bio_io_error(bio);
2063 goto out;
2064 }
2065
2066 /* If suspended, queue this IO for later */
2067 if (unlikely(test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags))) {
2068 if (bio->bi_opf & REQ_NOWAIT)
2069 bio_wouldblock_error(bio);
2070 else if (bio->bi_opf & REQ_RAHEAD)
2071 bio_io_error(bio);
2072 else
2073 queue_io(md, bio);
2074 goto out;
2075 }
2076
2077 dm_split_and_process_bio(md, map, bio);
2078 out:
2079 dm_put_live_table(md, srcu_idx);
2080 }
2081
dm_poll_dm_io(struct dm_io * io,struct io_comp_batch * iob,unsigned int flags)2082 static bool dm_poll_dm_io(struct dm_io *io, struct io_comp_batch *iob,
2083 unsigned int flags)
2084 {
2085 WARN_ON_ONCE(!dm_tio_is_normal(&io->tio));
2086
2087 /* don't poll if the mapped io is done */
2088 if (atomic_read(&io->io_count) > 1)
2089 bio_poll(&io->tio.clone, iob, flags);
2090
2091 /* bio_poll holds the last reference */
2092 return atomic_read(&io->io_count) == 1;
2093 }
2094
dm_poll_bio(struct bio * bio,struct io_comp_batch * iob,unsigned int flags)2095 static int dm_poll_bio(struct bio *bio, struct io_comp_batch *iob,
2096 unsigned int flags)
2097 {
2098 struct dm_io **head = dm_poll_list_head(bio);
2099 struct dm_io *list = *head;
2100 struct dm_io *tmp = NULL;
2101 struct dm_io *curr, *next;
2102
2103 /* Only poll normal bio which was marked as REQ_DM_POLL_LIST */
2104 if (!(bio->bi_opf & REQ_DM_POLL_LIST))
2105 return 0;
2106
2107 WARN_ON_ONCE(!list);
2108
2109 /*
2110 * Restore .bi_private before possibly completing dm_io.
2111 *
2112 * bio_poll() is only possible once @bio has been completely
2113 * submitted via submit_bio_noacct()'s depth-first submission.
2114 * So there is no dm_queue_poll_io() race associated with
2115 * clearing REQ_DM_POLL_LIST here.
2116 */
2117 bio->bi_opf &= ~REQ_DM_POLL_LIST;
2118 bio->bi_private = list->data;
2119
2120 for (curr = list, next = curr->next; curr; curr = next, next =
2121 curr ? curr->next : NULL) {
2122 if (dm_poll_dm_io(curr, iob, flags)) {
2123 /*
2124 * clone_endio() has already occurred, so no
2125 * error handling is needed here.
2126 */
2127 __dm_io_dec_pending(curr);
2128 } else {
2129 curr->next = tmp;
2130 tmp = curr;
2131 }
2132 }
2133
2134 /* Not done? */
2135 if (tmp) {
2136 bio->bi_opf |= REQ_DM_POLL_LIST;
2137 /* Reset bio->bi_private to dm_io list head */
2138 *head = tmp;
2139 return 0;
2140 }
2141 return 1;
2142 }
2143
2144 /*
2145 *---------------------------------------------------------------
2146 * An IDR is used to keep track of allocated minor numbers.
2147 *---------------------------------------------------------------
2148 */
free_minor(int minor)2149 static void free_minor(int minor)
2150 {
2151 spin_lock(&_minor_lock);
2152 idr_remove(&_minor_idr, minor);
2153 spin_unlock(&_minor_lock);
2154 }
2155
2156 /*
2157 * See if the device with a specific minor # is free.
2158 */
specific_minor(int minor)2159 static int specific_minor(int minor)
2160 {
2161 int r;
2162
2163 if (minor >= (1 << MINORBITS))
2164 return -EINVAL;
2165
2166 idr_preload(GFP_KERNEL);
2167 spin_lock(&_minor_lock);
2168
2169 r = idr_alloc(&_minor_idr, MINOR_ALLOCED, minor, minor + 1, GFP_NOWAIT);
2170
2171 spin_unlock(&_minor_lock);
2172 idr_preload_end();
2173 if (r < 0)
2174 return r == -ENOSPC ? -EBUSY : r;
2175 return 0;
2176 }
2177
next_free_minor(int * minor)2178 static int next_free_minor(int *minor)
2179 {
2180 int r;
2181
2182 idr_preload(GFP_KERNEL);
2183 spin_lock(&_minor_lock);
2184
2185 r = idr_alloc(&_minor_idr, MINOR_ALLOCED, 0, 1 << MINORBITS, GFP_NOWAIT);
2186
2187 spin_unlock(&_minor_lock);
2188 idr_preload_end();
2189 if (r < 0)
2190 return r;
2191 *minor = r;
2192 return 0;
2193 }
2194
2195 static const struct block_device_operations dm_blk_dops;
2196 static const struct block_device_operations dm_rq_blk_dops;
2197 static const struct dax_operations dm_dax_ops;
2198
2199 static void dm_wq_work(struct work_struct *work);
2200
2201 #ifdef CONFIG_BLK_INLINE_ENCRYPTION
dm_queue_destroy_crypto_profile(struct request_queue * q)2202 static void dm_queue_destroy_crypto_profile(struct request_queue *q)
2203 {
2204 dm_destroy_crypto_profile(q->crypto_profile);
2205 }
2206
2207 #else /* CONFIG_BLK_INLINE_ENCRYPTION */
2208
dm_queue_destroy_crypto_profile(struct request_queue * q)2209 static inline void dm_queue_destroy_crypto_profile(struct request_queue *q)
2210 {
2211 }
2212 #endif /* !CONFIG_BLK_INLINE_ENCRYPTION */
2213
cleanup_mapped_device(struct mapped_device * md)2214 static void cleanup_mapped_device(struct mapped_device *md)
2215 {
2216 if (md->wq)
2217 destroy_workqueue(md->wq);
2218 dm_free_md_mempools(md->mempools);
2219
2220 if (md->dax_dev) {
2221 dax_remove_host(md->disk);
2222 kill_dax(md->dax_dev);
2223 put_dax(md->dax_dev);
2224 md->dax_dev = NULL;
2225 }
2226
2227 if (md->disk) {
2228 spin_lock(&_minor_lock);
2229 md->disk->private_data = NULL;
2230 spin_unlock(&_minor_lock);
2231 if (dm_get_md_type(md) != DM_TYPE_NONE) {
2232 struct table_device *td;
2233
2234 dm_sysfs_exit(md);
2235 list_for_each_entry(td, &md->table_devices, list) {
2236 bd_unlink_disk_holder(td->dm_dev.bdev,
2237 md->disk);
2238 }
2239
2240 /*
2241 * Hold lock to make sure del_gendisk() won't concurrent
2242 * with open/close_table_device().
2243 */
2244 mutex_lock(&md->table_devices_lock);
2245 del_gendisk(md->disk);
2246 mutex_unlock(&md->table_devices_lock);
2247 }
2248 dm_queue_destroy_crypto_profile(md->queue);
2249 put_disk(md->disk);
2250 }
2251
2252 if (md->pending_io) {
2253 free_percpu(md->pending_io);
2254 md->pending_io = NULL;
2255 }
2256
2257 cleanup_srcu_struct(&md->io_barrier);
2258
2259 mutex_destroy(&md->suspend_lock);
2260 mutex_destroy(&md->type_lock);
2261 mutex_destroy(&md->table_devices_lock);
2262 mutex_destroy(&md->swap_bios_lock);
2263
2264 dm_mq_cleanup_mapped_device(md);
2265 }
2266
2267 /*
2268 * Allocate and initialise a blank device with a given minor.
2269 */
alloc_dev(int minor)2270 static struct mapped_device *alloc_dev(int minor)
2271 {
2272 int r, numa_node_id = dm_get_numa_node();
2273 struct dax_device *dax_dev;
2274 struct mapped_device *md;
2275 void *old_md;
2276
2277 md = kvzalloc_node(sizeof(*md), GFP_KERNEL, numa_node_id);
2278 if (!md) {
2279 DMERR("unable to allocate device, out of memory.");
2280 return NULL;
2281 }
2282
2283 if (!try_module_get(THIS_MODULE))
2284 goto bad_module_get;
2285
2286 /* get a minor number for the dev */
2287 if (minor == DM_ANY_MINOR)
2288 r = next_free_minor(&minor);
2289 else
2290 r = specific_minor(minor);
2291 if (r < 0)
2292 goto bad_minor;
2293
2294 r = init_srcu_struct(&md->io_barrier);
2295 if (r < 0)
2296 goto bad_io_barrier;
2297
2298 md->numa_node_id = numa_node_id;
2299 md->init_tio_pdu = false;
2300 md->type = DM_TYPE_NONE;
2301 mutex_init(&md->suspend_lock);
2302 mutex_init(&md->type_lock);
2303 mutex_init(&md->table_devices_lock);
2304 spin_lock_init(&md->deferred_lock);
2305 atomic_set(&md->holders, 1);
2306 atomic_set(&md->open_count, 0);
2307 atomic_set(&md->event_nr, 0);
2308 atomic_set(&md->uevent_seq, 0);
2309 INIT_LIST_HEAD(&md->uevent_list);
2310 INIT_LIST_HEAD(&md->table_devices);
2311 spin_lock_init(&md->uevent_lock);
2312
2313 /*
2314 * default to bio-based until DM table is loaded and md->type
2315 * established. If request-based table is loaded: blk-mq will
2316 * override accordingly.
2317 */
2318 md->disk = blk_alloc_disk(NULL, md->numa_node_id);
2319 if (IS_ERR(md->disk)) {
2320 md->disk = NULL;
2321 goto bad;
2322 }
2323 md->queue = md->disk->queue;
2324
2325 init_waitqueue_head(&md->wait);
2326 INIT_WORK(&md->work, dm_wq_work);
2327 INIT_WORK(&md->requeue_work, dm_wq_requeue_work);
2328 init_waitqueue_head(&md->eventq);
2329 init_completion(&md->kobj_holder.completion);
2330
2331 md->requeue_list = NULL;
2332 md->swap_bios = get_swap_bios();
2333 sema_init(&md->swap_bios_semaphore, md->swap_bios);
2334 mutex_init(&md->swap_bios_lock);
2335
2336 md->disk->major = _major;
2337 md->disk->first_minor = minor;
2338 md->disk->minors = 1;
2339 md->disk->flags |= GENHD_FL_NO_PART;
2340 md->disk->fops = &dm_blk_dops;
2341 md->disk->private_data = md;
2342 sprintf(md->disk->disk_name, "dm-%d", minor);
2343
2344 dax_dev = alloc_dax(md, &dm_dax_ops);
2345 if (IS_ERR(dax_dev)) {
2346 if (PTR_ERR(dax_dev) != -EOPNOTSUPP)
2347 goto bad;
2348 } else {
2349 set_dax_nocache(dax_dev);
2350 set_dax_nomc(dax_dev);
2351 md->dax_dev = dax_dev;
2352 if (dax_add_host(dax_dev, md->disk))
2353 goto bad;
2354 }
2355
2356 format_dev_t(md->name, MKDEV(_major, minor));
2357
2358 md->wq = alloc_workqueue("kdmflush/%s", WQ_MEM_RECLAIM, 0, md->name);
2359 if (!md->wq)
2360 goto bad;
2361
2362 md->pending_io = alloc_percpu(unsigned long);
2363 if (!md->pending_io)
2364 goto bad;
2365
2366 r = dm_stats_init(&md->stats);
2367 if (r < 0)
2368 goto bad;
2369
2370 /* Populate the mapping, nobody knows we exist yet */
2371 spin_lock(&_minor_lock);
2372 old_md = idr_replace(&_minor_idr, md, minor);
2373 spin_unlock(&_minor_lock);
2374
2375 BUG_ON(old_md != MINOR_ALLOCED);
2376
2377 return md;
2378
2379 bad:
2380 cleanup_mapped_device(md);
2381 bad_io_barrier:
2382 free_minor(minor);
2383 bad_minor:
2384 module_put(THIS_MODULE);
2385 bad_module_get:
2386 kvfree(md);
2387 return NULL;
2388 }
2389
2390 static void unlock_fs(struct mapped_device *md);
2391
free_dev(struct mapped_device * md)2392 static void free_dev(struct mapped_device *md)
2393 {
2394 int minor = MINOR(disk_devt(md->disk));
2395
2396 unlock_fs(md);
2397
2398 cleanup_mapped_device(md);
2399
2400 WARN_ON_ONCE(!list_empty(&md->table_devices));
2401 dm_stats_cleanup(&md->stats);
2402 free_minor(minor);
2403
2404 module_put(THIS_MODULE);
2405 kvfree(md);
2406 }
2407
2408 /*
2409 * Bind a table to the device.
2410 */
event_callback(void * context)2411 static void event_callback(void *context)
2412 {
2413 unsigned long flags;
2414 LIST_HEAD(uevents);
2415 struct mapped_device *md = context;
2416
2417 spin_lock_irqsave(&md->uevent_lock, flags);
2418 list_splice_init(&md->uevent_list, &uevents);
2419 spin_unlock_irqrestore(&md->uevent_lock, flags);
2420
2421 dm_send_uevents(&uevents, &disk_to_dev(md->disk)->kobj);
2422
2423 atomic_inc(&md->event_nr);
2424 wake_up(&md->eventq);
2425 dm_issue_global_event();
2426 }
2427
2428 /*
2429 * Returns old map, which caller must destroy.
2430 */
__bind(struct mapped_device * md,struct dm_table * t,struct queue_limits * limits)2431 static struct dm_table *__bind(struct mapped_device *md, struct dm_table *t,
2432 struct queue_limits *limits)
2433 {
2434 struct dm_table *old_map;
2435 sector_t size, old_size;
2436 int ret;
2437
2438 lockdep_assert_held(&md->suspend_lock);
2439
2440 size = dm_table_get_size(t);
2441
2442 old_size = dm_get_size(md);
2443 set_capacity(md->disk, size);
2444
2445 ret = dm_table_set_restrictions(t, md->queue, limits);
2446 if (ret) {
2447 set_capacity(md->disk, old_size);
2448 old_map = ERR_PTR(ret);
2449 goto out;
2450 }
2451
2452 /*
2453 * Wipe any geometry if the size of the table changed.
2454 */
2455 if (size != old_size)
2456 memset(&md->geometry, 0, sizeof(md->geometry));
2457
2458 dm_table_event_callback(t, event_callback, md);
2459
2460 if (dm_table_request_based(t)) {
2461 /*
2462 * Leverage the fact that request-based DM targets are
2463 * immutable singletons - used to optimize dm_mq_queue_rq.
2464 */
2465 md->immutable_target = dm_table_get_immutable_target(t);
2466
2467 /*
2468 * There is no need to reload with request-based dm because the
2469 * size of front_pad doesn't change.
2470 *
2471 * Note for future: If you are to reload bioset, prep-ed
2472 * requests in the queue may refer to bio from the old bioset,
2473 * so you must walk through the queue to unprep.
2474 */
2475 if (!md->mempools)
2476 md->mempools = t->mempools;
2477 else
2478 dm_free_md_mempools(t->mempools);
2479 } else {
2480 /*
2481 * The md may already have mempools that need changing.
2482 * If so, reload bioset because front_pad may have changed
2483 * because a different table was loaded.
2484 */
2485 dm_free_md_mempools(md->mempools);
2486 md->mempools = t->mempools;
2487 }
2488 t->mempools = NULL;
2489
2490 old_map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2491 rcu_assign_pointer(md->map, (void *)t);
2492 md->immutable_target_type = dm_table_get_immutable_target_type(t);
2493
2494 if (old_map)
2495 dm_sync_table(md);
2496 out:
2497 return old_map;
2498 }
2499
2500 /*
2501 * Returns unbound table for the caller to free.
2502 */
__unbind(struct mapped_device * md)2503 static struct dm_table *__unbind(struct mapped_device *md)
2504 {
2505 struct dm_table *map = rcu_dereference_protected(md->map, 1);
2506
2507 if (!map)
2508 return NULL;
2509
2510 dm_table_event_callback(map, NULL, NULL);
2511 RCU_INIT_POINTER(md->map, NULL);
2512 dm_sync_table(md);
2513
2514 return map;
2515 }
2516
2517 /*
2518 * Constructor for a new device.
2519 */
dm_create(int minor,struct mapped_device ** result)2520 int dm_create(int minor, struct mapped_device **result)
2521 {
2522 struct mapped_device *md;
2523
2524 md = alloc_dev(minor);
2525 if (!md)
2526 return -ENXIO;
2527
2528 dm_ima_reset_data(md);
2529
2530 *result = md;
2531 return 0;
2532 }
2533
2534 /*
2535 * Functions to manage md->type.
2536 * All are required to hold md->type_lock.
2537 */
dm_lock_md_type(struct mapped_device * md)2538 void dm_lock_md_type(struct mapped_device *md)
2539 {
2540 mutex_lock(&md->type_lock);
2541 }
2542
dm_unlock_md_type(struct mapped_device * md)2543 void dm_unlock_md_type(struct mapped_device *md)
2544 {
2545 mutex_unlock(&md->type_lock);
2546 }
2547
dm_set_md_type(struct mapped_device * md,enum dm_queue_mode type)2548 void dm_set_md_type(struct mapped_device *md, enum dm_queue_mode type)
2549 {
2550 BUG_ON(!mutex_is_locked(&md->type_lock));
2551 md->type = type;
2552 }
2553
dm_get_md_type(struct mapped_device * md)2554 enum dm_queue_mode dm_get_md_type(struct mapped_device *md)
2555 {
2556 return md->type;
2557 }
2558
dm_get_immutable_target_type(struct mapped_device * md)2559 struct target_type *dm_get_immutable_target_type(struct mapped_device *md)
2560 {
2561 return md->immutable_target_type;
2562 }
2563
2564 /*
2565 * Setup the DM device's queue based on md's type
2566 */
dm_setup_md_queue(struct mapped_device * md,struct dm_table * t)2567 int dm_setup_md_queue(struct mapped_device *md, struct dm_table *t)
2568 {
2569 enum dm_queue_mode type = dm_table_get_type(t);
2570 struct queue_limits limits;
2571 struct table_device *td;
2572 int r;
2573
2574 WARN_ON_ONCE(type == DM_TYPE_NONE);
2575
2576 if (type == DM_TYPE_REQUEST_BASED) {
2577 md->disk->fops = &dm_rq_blk_dops;
2578 r = dm_mq_init_request_queue(md, t);
2579 if (r) {
2580 DMERR("Cannot initialize queue for request-based dm mapped device");
2581 return r;
2582 }
2583 }
2584
2585 r = dm_calculate_queue_limits(t, &limits);
2586 if (r) {
2587 DMERR("Cannot calculate initial queue limits");
2588 return r;
2589 }
2590 r = dm_table_set_restrictions(t, md->queue, &limits);
2591 if (r)
2592 return r;
2593
2594 /*
2595 * Hold lock to make sure add_disk() and del_gendisk() won't concurrent
2596 * with open_table_device() and close_table_device().
2597 */
2598 mutex_lock(&md->table_devices_lock);
2599 r = add_disk(md->disk);
2600 mutex_unlock(&md->table_devices_lock);
2601 if (r)
2602 return r;
2603
2604 /*
2605 * Register the holder relationship for devices added before the disk
2606 * was live.
2607 */
2608 list_for_each_entry(td, &md->table_devices, list) {
2609 r = bd_link_disk_holder(td->dm_dev.bdev, md->disk);
2610 if (r)
2611 goto out_undo_holders;
2612 }
2613
2614 r = dm_sysfs_init(md);
2615 if (r)
2616 goto out_undo_holders;
2617
2618 md->type = type;
2619 return 0;
2620
2621 out_undo_holders:
2622 list_for_each_entry_continue_reverse(td, &md->table_devices, list)
2623 bd_unlink_disk_holder(td->dm_dev.bdev, md->disk);
2624 mutex_lock(&md->table_devices_lock);
2625 del_gendisk(md->disk);
2626 mutex_unlock(&md->table_devices_lock);
2627 return r;
2628 }
2629
dm_get_md(dev_t dev)2630 struct mapped_device *dm_get_md(dev_t dev)
2631 {
2632 struct mapped_device *md;
2633 unsigned int minor = MINOR(dev);
2634
2635 if (MAJOR(dev) != _major || minor >= (1 << MINORBITS))
2636 return NULL;
2637
2638 spin_lock(&_minor_lock);
2639
2640 md = idr_find(&_minor_idr, minor);
2641 if (!md || md == MINOR_ALLOCED || (MINOR(disk_devt(dm_disk(md))) != minor) ||
2642 test_bit(DMF_FREEING, &md->flags) || dm_deleting_md(md)) {
2643 md = NULL;
2644 goto out;
2645 }
2646 dm_get(md);
2647 out:
2648 spin_unlock(&_minor_lock);
2649
2650 return md;
2651 }
2652 EXPORT_SYMBOL_GPL(dm_get_md);
2653
dm_get_mdptr(struct mapped_device * md)2654 void *dm_get_mdptr(struct mapped_device *md)
2655 {
2656 return md->interface_ptr;
2657 }
2658
dm_set_mdptr(struct mapped_device * md,void * ptr)2659 void dm_set_mdptr(struct mapped_device *md, void *ptr)
2660 {
2661 md->interface_ptr = ptr;
2662 }
2663
dm_get(struct mapped_device * md)2664 void dm_get(struct mapped_device *md)
2665 {
2666 atomic_inc(&md->holders);
2667 BUG_ON(test_bit(DMF_FREEING, &md->flags));
2668 }
2669
dm_hold(struct mapped_device * md)2670 int dm_hold(struct mapped_device *md)
2671 {
2672 spin_lock(&_minor_lock);
2673 if (test_bit(DMF_FREEING, &md->flags)) {
2674 spin_unlock(&_minor_lock);
2675 return -EBUSY;
2676 }
2677 dm_get(md);
2678 spin_unlock(&_minor_lock);
2679 return 0;
2680 }
2681 EXPORT_SYMBOL_GPL(dm_hold);
2682
dm_device_name(struct mapped_device * md)2683 const char *dm_device_name(struct mapped_device *md)
2684 {
2685 return md->name;
2686 }
2687 EXPORT_SYMBOL_GPL(dm_device_name);
2688
__dm_destroy(struct mapped_device * md,bool wait)2689 static void __dm_destroy(struct mapped_device *md, bool wait)
2690 {
2691 struct dm_table *map;
2692 int srcu_idx;
2693
2694 might_sleep();
2695
2696 spin_lock(&_minor_lock);
2697 idr_replace(&_minor_idr, MINOR_ALLOCED, MINOR(disk_devt(dm_disk(md))));
2698 set_bit(DMF_FREEING, &md->flags);
2699 spin_unlock(&_minor_lock);
2700
2701 blk_mark_disk_dead(md->disk);
2702
2703 /*
2704 * Take suspend_lock so that presuspend and postsuspend methods
2705 * do not race with internal suspend.
2706 */
2707 mutex_lock(&md->suspend_lock);
2708 map = dm_get_live_table(md, &srcu_idx);
2709 if (!dm_suspended_md(md)) {
2710 dm_table_presuspend_targets(map);
2711 set_bit(DMF_SUSPENDED, &md->flags);
2712 set_bit(DMF_POST_SUSPENDING, &md->flags);
2713 dm_table_postsuspend_targets(map);
2714 }
2715 /* dm_put_live_table must be before fsleep, otherwise deadlock is possible */
2716 dm_put_live_table(md, srcu_idx);
2717 mutex_unlock(&md->suspend_lock);
2718
2719 /*
2720 * Rare, but there may be I/O requests still going to complete,
2721 * for example. Wait for all references to disappear.
2722 * No one should increment the reference count of the mapped_device,
2723 * after the mapped_device state becomes DMF_FREEING.
2724 */
2725 if (wait)
2726 while (atomic_read(&md->holders))
2727 fsleep(1000);
2728 else if (atomic_read(&md->holders))
2729 DMWARN("%s: Forcibly removing mapped_device still in use! (%d users)",
2730 dm_device_name(md), atomic_read(&md->holders));
2731
2732 dm_table_destroy(__unbind(md));
2733 free_dev(md);
2734 }
2735
dm_destroy(struct mapped_device * md)2736 void dm_destroy(struct mapped_device *md)
2737 {
2738 __dm_destroy(md, true);
2739 }
2740
dm_destroy_immediate(struct mapped_device * md)2741 void dm_destroy_immediate(struct mapped_device *md)
2742 {
2743 __dm_destroy(md, false);
2744 }
2745
dm_put(struct mapped_device * md)2746 void dm_put(struct mapped_device *md)
2747 {
2748 atomic_dec(&md->holders);
2749 }
2750 EXPORT_SYMBOL_GPL(dm_put);
2751
dm_in_flight_bios(struct mapped_device * md)2752 static bool dm_in_flight_bios(struct mapped_device *md)
2753 {
2754 int cpu;
2755 unsigned long sum = 0;
2756
2757 for_each_possible_cpu(cpu)
2758 sum += *per_cpu_ptr(md->pending_io, cpu);
2759
2760 return sum != 0;
2761 }
2762
dm_wait_for_bios_completion(struct mapped_device * md,unsigned int task_state)2763 static int dm_wait_for_bios_completion(struct mapped_device *md, unsigned int task_state)
2764 {
2765 int r = 0;
2766 DEFINE_WAIT(wait);
2767
2768 while (true) {
2769 prepare_to_wait(&md->wait, &wait, task_state);
2770
2771 if (!dm_in_flight_bios(md))
2772 break;
2773
2774 if (signal_pending_state(task_state, current)) {
2775 r = -ERESTARTSYS;
2776 break;
2777 }
2778
2779 io_schedule();
2780 }
2781 finish_wait(&md->wait, &wait);
2782
2783 smp_rmb();
2784
2785 return r;
2786 }
2787
dm_wait_for_completion(struct mapped_device * md,unsigned int task_state)2788 static int dm_wait_for_completion(struct mapped_device *md, unsigned int task_state)
2789 {
2790 int r = 0;
2791
2792 if (!queue_is_mq(md->queue))
2793 return dm_wait_for_bios_completion(md, task_state);
2794
2795 while (true) {
2796 if (!blk_mq_queue_inflight(md->queue))
2797 break;
2798
2799 if (signal_pending_state(task_state, current)) {
2800 r = -ERESTARTSYS;
2801 break;
2802 }
2803
2804 fsleep(5000);
2805 }
2806
2807 return r;
2808 }
2809
2810 /*
2811 * Process the deferred bios
2812 */
dm_wq_work(struct work_struct * work)2813 static void dm_wq_work(struct work_struct *work)
2814 {
2815 struct mapped_device *md = container_of(work, struct mapped_device, work);
2816 struct bio *bio;
2817
2818 while (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) {
2819 spin_lock_irq(&md->deferred_lock);
2820 bio = bio_list_pop(&md->deferred);
2821 spin_unlock_irq(&md->deferred_lock);
2822
2823 if (!bio)
2824 break;
2825
2826 submit_bio_noacct(bio);
2827 cond_resched();
2828 }
2829 }
2830
dm_queue_flush(struct mapped_device * md)2831 static void dm_queue_flush(struct mapped_device *md)
2832 {
2833 clear_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2834 smp_mb__after_atomic();
2835 queue_work(md->wq, &md->work);
2836 }
2837
2838 /*
2839 * Swap in a new table, returning the old one for the caller to destroy.
2840 */
dm_swap_table(struct mapped_device * md,struct dm_table * table)2841 struct dm_table *dm_swap_table(struct mapped_device *md, struct dm_table *table)
2842 {
2843 struct dm_table *live_map = NULL, *map = ERR_PTR(-EINVAL);
2844 struct queue_limits limits;
2845 int r;
2846
2847 mutex_lock(&md->suspend_lock);
2848
2849 /* device must be suspended */
2850 if (!dm_suspended_md(md))
2851 goto out;
2852
2853 /*
2854 * If the new table has no data devices, retain the existing limits.
2855 * This helps multipath with queue_if_no_path if all paths disappear,
2856 * then new I/O is queued based on these limits, and then some paths
2857 * reappear.
2858 */
2859 if (dm_table_has_no_data_devices(table)) {
2860 live_map = dm_get_live_table_fast(md);
2861 if (live_map)
2862 limits = md->queue->limits;
2863 dm_put_live_table_fast(md);
2864 }
2865
2866 if (!live_map) {
2867 r = dm_calculate_queue_limits(table, &limits);
2868 if (r) {
2869 map = ERR_PTR(r);
2870 goto out;
2871 }
2872 }
2873
2874 map = __bind(md, table, &limits);
2875 dm_issue_global_event();
2876
2877 out:
2878 mutex_unlock(&md->suspend_lock);
2879 return map;
2880 }
2881
2882 /*
2883 * Functions to lock and unlock any filesystem running on the
2884 * device.
2885 */
lock_fs(struct mapped_device * md)2886 static int lock_fs(struct mapped_device *md)
2887 {
2888 int r;
2889
2890 WARN_ON(test_bit(DMF_FROZEN, &md->flags));
2891
2892 r = bdev_freeze(md->disk->part0);
2893 if (!r)
2894 set_bit(DMF_FROZEN, &md->flags);
2895 return r;
2896 }
2897
unlock_fs(struct mapped_device * md)2898 static void unlock_fs(struct mapped_device *md)
2899 {
2900 if (!test_bit(DMF_FROZEN, &md->flags))
2901 return;
2902 bdev_thaw(md->disk->part0);
2903 clear_bit(DMF_FROZEN, &md->flags);
2904 }
2905
2906 /*
2907 * @suspend_flags: DM_SUSPEND_LOCKFS_FLAG and/or DM_SUSPEND_NOFLUSH_FLAG
2908 * @task_state: e.g. TASK_INTERRUPTIBLE or TASK_UNINTERRUPTIBLE
2909 * @dmf_suspended_flag: DMF_SUSPENDED or DMF_SUSPENDED_INTERNALLY
2910 *
2911 * If __dm_suspend returns 0, the device is completely quiescent
2912 * now. There is no request-processing activity. All new requests
2913 * are being added to md->deferred list.
2914 */
__dm_suspend(struct mapped_device * md,struct dm_table * map,unsigned int suspend_flags,unsigned int task_state,int dmf_suspended_flag)2915 static int __dm_suspend(struct mapped_device *md, struct dm_table *map,
2916 unsigned int suspend_flags, unsigned int task_state,
2917 int dmf_suspended_flag)
2918 {
2919 bool do_lockfs = suspend_flags & DM_SUSPEND_LOCKFS_FLAG;
2920 bool noflush = suspend_flags & DM_SUSPEND_NOFLUSH_FLAG;
2921 int r;
2922
2923 lockdep_assert_held(&md->suspend_lock);
2924
2925 /*
2926 * DMF_NOFLUSH_SUSPENDING must be set before presuspend.
2927 * This flag is cleared before dm_suspend returns.
2928 */
2929 if (noflush)
2930 set_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
2931 else
2932 DMDEBUG("%s: suspending with flush", dm_device_name(md));
2933
2934 /*
2935 * This gets reverted if there's an error later and the targets
2936 * provide the .presuspend_undo hook.
2937 */
2938 dm_table_presuspend_targets(map);
2939
2940 /*
2941 * Flush I/O to the device.
2942 * Any I/O submitted after lock_fs() may not be flushed.
2943 * noflush takes precedence over do_lockfs.
2944 * (lock_fs() flushes I/Os and waits for them to complete.)
2945 */
2946 if (!noflush && do_lockfs) {
2947 r = lock_fs(md);
2948 if (r) {
2949 dm_table_presuspend_undo_targets(map);
2950 return r;
2951 }
2952 }
2953
2954 /*
2955 * Here we must make sure that no processes are submitting requests
2956 * to target drivers i.e. no one may be executing
2957 * dm_split_and_process_bio from dm_submit_bio.
2958 *
2959 * To get all processes out of dm_split_and_process_bio in dm_submit_bio,
2960 * we take the write lock. To prevent any process from reentering
2961 * dm_split_and_process_bio from dm_submit_bio and quiesce the thread
2962 * (dm_wq_work), we set DMF_BLOCK_IO_FOR_SUSPEND and call
2963 * flush_workqueue(md->wq).
2964 */
2965 set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2966 if (map)
2967 synchronize_srcu(&md->io_barrier);
2968
2969 /*
2970 * Stop md->queue before flushing md->wq in case request-based
2971 * dm defers requests to md->wq from md->queue.
2972 */
2973 if (dm_request_based(md))
2974 dm_stop_queue(md->queue);
2975
2976 flush_workqueue(md->wq);
2977
2978 /*
2979 * At this point no more requests are entering target request routines.
2980 * We call dm_wait_for_completion to wait for all existing requests
2981 * to finish.
2982 */
2983 r = dm_wait_for_completion(md, task_state);
2984 if (!r)
2985 set_bit(dmf_suspended_flag, &md->flags);
2986
2987 if (noflush)
2988 clear_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
2989 if (map)
2990 synchronize_srcu(&md->io_barrier);
2991
2992 /* were we interrupted ? */
2993 if (r < 0) {
2994 dm_queue_flush(md);
2995
2996 if (dm_request_based(md))
2997 dm_start_queue(md->queue);
2998
2999 unlock_fs(md);
3000 dm_table_presuspend_undo_targets(map);
3001 /* pushback list is already flushed, so skip flush */
3002 }
3003
3004 return r;
3005 }
3006
3007 /*
3008 * We need to be able to change a mapping table under a mounted
3009 * filesystem. For example we might want to move some data in
3010 * the background. Before the table can be swapped with
3011 * dm_bind_table, dm_suspend must be called to flush any in
3012 * flight bios and ensure that any further io gets deferred.
3013 */
3014 /*
3015 * Suspend mechanism in request-based dm.
3016 *
3017 * 1. Flush all I/Os by lock_fs() if needed.
3018 * 2. Stop dispatching any I/O by stopping the request_queue.
3019 * 3. Wait for all in-flight I/Os to be completed or requeued.
3020 *
3021 * To abort suspend, start the request_queue.
3022 */
dm_suspend(struct mapped_device * md,unsigned int suspend_flags)3023 int dm_suspend(struct mapped_device *md, unsigned int suspend_flags)
3024 {
3025 struct dm_table *map = NULL;
3026 int r = 0;
3027
3028 retry:
3029 mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING);
3030
3031 if (dm_suspended_md(md)) {
3032 r = -EINVAL;
3033 goto out_unlock;
3034 }
3035
3036 if (dm_suspended_internally_md(md)) {
3037 /* already internally suspended, wait for internal resume */
3038 mutex_unlock(&md->suspend_lock);
3039 r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE);
3040 if (r)
3041 return r;
3042 goto retry;
3043 }
3044
3045 map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
3046 if (!map) {
3047 /* avoid deadlock with fs/namespace.c:do_mount() */
3048 suspend_flags &= ~DM_SUSPEND_LOCKFS_FLAG;
3049 }
3050
3051 r = __dm_suspend(md, map, suspend_flags, TASK_INTERRUPTIBLE, DMF_SUSPENDED);
3052 if (r)
3053 goto out_unlock;
3054
3055 set_bit(DMF_POST_SUSPENDING, &md->flags);
3056 dm_table_postsuspend_targets(map);
3057 clear_bit(DMF_POST_SUSPENDING, &md->flags);
3058
3059 out_unlock:
3060 mutex_unlock(&md->suspend_lock);
3061 return r;
3062 }
3063
__dm_resume(struct mapped_device * md,struct dm_table * map)3064 static int __dm_resume(struct mapped_device *md, struct dm_table *map)
3065 {
3066 if (map) {
3067 int r = dm_table_resume_targets(map);
3068
3069 if (r)
3070 return r;
3071 }
3072
3073 dm_queue_flush(md);
3074
3075 /*
3076 * Flushing deferred I/Os must be done after targets are resumed
3077 * so that mapping of targets can work correctly.
3078 * Request-based dm is queueing the deferred I/Os in its request_queue.
3079 */
3080 if (dm_request_based(md))
3081 dm_start_queue(md->queue);
3082
3083 unlock_fs(md);
3084
3085 return 0;
3086 }
3087
dm_resume(struct mapped_device * md)3088 int dm_resume(struct mapped_device *md)
3089 {
3090 int r;
3091 struct dm_table *map = NULL;
3092
3093 retry:
3094 r = -EINVAL;
3095 mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING);
3096
3097 if (!dm_suspended_md(md))
3098 goto out;
3099
3100 if (dm_suspended_internally_md(md)) {
3101 /* already internally suspended, wait for internal resume */
3102 mutex_unlock(&md->suspend_lock);
3103 r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE);
3104 if (r)
3105 return r;
3106 goto retry;
3107 }
3108
3109 map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
3110 if (!map || !dm_table_get_size(map))
3111 goto out;
3112
3113 r = __dm_resume(md, map);
3114 if (r)
3115 goto out;
3116
3117 clear_bit(DMF_SUSPENDED, &md->flags);
3118 out:
3119 mutex_unlock(&md->suspend_lock);
3120
3121 return r;
3122 }
3123
3124 /*
3125 * Internal suspend/resume works like userspace-driven suspend. It waits
3126 * until all bios finish and prevents issuing new bios to the target drivers.
3127 * It may be used only from the kernel.
3128 */
3129
__dm_internal_suspend(struct mapped_device * md,unsigned int suspend_flags)3130 static void __dm_internal_suspend(struct mapped_device *md, unsigned int suspend_flags)
3131 {
3132 struct dm_table *map = NULL;
3133
3134 lockdep_assert_held(&md->suspend_lock);
3135
3136 if (md->internal_suspend_count++)
3137 return; /* nested internal suspend */
3138
3139 if (dm_suspended_md(md)) {
3140 set_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
3141 return; /* nest suspend */
3142 }
3143
3144 map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
3145
3146 /*
3147 * Using TASK_UNINTERRUPTIBLE because only NOFLUSH internal suspend is
3148 * supported. Properly supporting a TASK_INTERRUPTIBLE internal suspend
3149 * would require changing .presuspend to return an error -- avoid this
3150 * until there is a need for more elaborate variants of internal suspend.
3151 */
3152 (void) __dm_suspend(md, map, suspend_flags, TASK_UNINTERRUPTIBLE,
3153 DMF_SUSPENDED_INTERNALLY);
3154
3155 set_bit(DMF_POST_SUSPENDING, &md->flags);
3156 dm_table_postsuspend_targets(map);
3157 clear_bit(DMF_POST_SUSPENDING, &md->flags);
3158 }
3159
__dm_internal_resume(struct mapped_device * md)3160 static void __dm_internal_resume(struct mapped_device *md)
3161 {
3162 int r;
3163 struct dm_table *map;
3164
3165 BUG_ON(!md->internal_suspend_count);
3166
3167 if (--md->internal_suspend_count)
3168 return; /* resume from nested internal suspend */
3169
3170 if (dm_suspended_md(md))
3171 goto done; /* resume from nested suspend */
3172
3173 map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
3174 r = __dm_resume(md, map);
3175 if (r) {
3176 /*
3177 * If a preresume method of some target failed, we are in a
3178 * tricky situation. We can't return an error to the caller. We
3179 * can't fake success because then the "resume" and
3180 * "postsuspend" methods would not be paired correctly, and it
3181 * would break various targets, for example it would cause list
3182 * corruption in the "origin" target.
3183 *
3184 * So, we fake normal suspend here, to make sure that the
3185 * "resume" and "postsuspend" methods will be paired correctly.
3186 */
3187 DMERR("Preresume method failed: %d", r);
3188 set_bit(DMF_SUSPENDED, &md->flags);
3189 }
3190 done:
3191 clear_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
3192 smp_mb__after_atomic();
3193 wake_up_bit(&md->flags, DMF_SUSPENDED_INTERNALLY);
3194 }
3195
dm_internal_suspend_noflush(struct mapped_device * md)3196 void dm_internal_suspend_noflush(struct mapped_device *md)
3197 {
3198 mutex_lock(&md->suspend_lock);
3199 __dm_internal_suspend(md, DM_SUSPEND_NOFLUSH_FLAG);
3200 mutex_unlock(&md->suspend_lock);
3201 }
3202 EXPORT_SYMBOL_GPL(dm_internal_suspend_noflush);
3203
dm_internal_resume(struct mapped_device * md)3204 void dm_internal_resume(struct mapped_device *md)
3205 {
3206 mutex_lock(&md->suspend_lock);
3207 __dm_internal_resume(md);
3208 mutex_unlock(&md->suspend_lock);
3209 }
3210 EXPORT_SYMBOL_GPL(dm_internal_resume);
3211
3212 /*
3213 * Fast variants of internal suspend/resume hold md->suspend_lock,
3214 * which prevents interaction with userspace-driven suspend.
3215 */
3216
dm_internal_suspend_fast(struct mapped_device * md)3217 void dm_internal_suspend_fast(struct mapped_device *md)
3218 {
3219 mutex_lock(&md->suspend_lock);
3220 if (dm_suspended_md(md) || dm_suspended_internally_md(md))
3221 return;
3222
3223 set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
3224 synchronize_srcu(&md->io_barrier);
3225 flush_workqueue(md->wq);
3226 dm_wait_for_completion(md, TASK_UNINTERRUPTIBLE);
3227 }
3228 EXPORT_SYMBOL_GPL(dm_internal_suspend_fast);
3229
dm_internal_resume_fast(struct mapped_device * md)3230 void dm_internal_resume_fast(struct mapped_device *md)
3231 {
3232 if (dm_suspended_md(md) || dm_suspended_internally_md(md))
3233 goto done;
3234
3235 dm_queue_flush(md);
3236
3237 done:
3238 mutex_unlock(&md->suspend_lock);
3239 }
3240 EXPORT_SYMBOL_GPL(dm_internal_resume_fast);
3241
3242 /*
3243 *---------------------------------------------------------------
3244 * Event notification.
3245 *---------------------------------------------------------------
3246 */
dm_kobject_uevent(struct mapped_device * md,enum kobject_action action,unsigned int cookie,bool need_resize_uevent)3247 int dm_kobject_uevent(struct mapped_device *md, enum kobject_action action,
3248 unsigned int cookie, bool need_resize_uevent)
3249 {
3250 int r;
3251 unsigned int noio_flag;
3252 char udev_cookie[DM_COOKIE_LENGTH];
3253 char *envp[3] = { NULL, NULL, NULL };
3254 char **envpp = envp;
3255 if (cookie) {
3256 snprintf(udev_cookie, DM_COOKIE_LENGTH, "%s=%u",
3257 DM_COOKIE_ENV_VAR_NAME, cookie);
3258 *envpp++ = udev_cookie;
3259 }
3260 if (need_resize_uevent) {
3261 *envpp++ = "RESIZE=1";
3262 }
3263
3264 noio_flag = memalloc_noio_save();
3265
3266 r = kobject_uevent_env(&disk_to_dev(md->disk)->kobj, action, envp);
3267
3268 memalloc_noio_restore(noio_flag);
3269
3270 return r;
3271 }
3272
dm_next_uevent_seq(struct mapped_device * md)3273 uint32_t dm_next_uevent_seq(struct mapped_device *md)
3274 {
3275 return atomic_add_return(1, &md->uevent_seq);
3276 }
3277
dm_get_event_nr(struct mapped_device * md)3278 uint32_t dm_get_event_nr(struct mapped_device *md)
3279 {
3280 return atomic_read(&md->event_nr);
3281 }
3282
dm_wait_event(struct mapped_device * md,int event_nr)3283 int dm_wait_event(struct mapped_device *md, int event_nr)
3284 {
3285 return wait_event_interruptible(md->eventq,
3286 (event_nr != atomic_read(&md->event_nr)));
3287 }
3288
dm_uevent_add(struct mapped_device * md,struct list_head * elist)3289 void dm_uevent_add(struct mapped_device *md, struct list_head *elist)
3290 {
3291 unsigned long flags;
3292
3293 spin_lock_irqsave(&md->uevent_lock, flags);
3294 list_add(elist, &md->uevent_list);
3295 spin_unlock_irqrestore(&md->uevent_lock, flags);
3296 }
3297
3298 /*
3299 * The gendisk is only valid as long as you have a reference
3300 * count on 'md'.
3301 */
dm_disk(struct mapped_device * md)3302 struct gendisk *dm_disk(struct mapped_device *md)
3303 {
3304 return md->disk;
3305 }
3306 EXPORT_SYMBOL_GPL(dm_disk);
3307
dm_kobject(struct mapped_device * md)3308 struct kobject *dm_kobject(struct mapped_device *md)
3309 {
3310 return &md->kobj_holder.kobj;
3311 }
3312
dm_get_from_kobject(struct kobject * kobj)3313 struct mapped_device *dm_get_from_kobject(struct kobject *kobj)
3314 {
3315 struct mapped_device *md;
3316
3317 md = container_of(kobj, struct mapped_device, kobj_holder.kobj);
3318
3319 spin_lock(&_minor_lock);
3320 if (test_bit(DMF_FREEING, &md->flags) || dm_deleting_md(md)) {
3321 md = NULL;
3322 goto out;
3323 }
3324 dm_get(md);
3325 out:
3326 spin_unlock(&_minor_lock);
3327
3328 return md;
3329 }
3330
dm_suspended_md(struct mapped_device * md)3331 int dm_suspended_md(struct mapped_device *md)
3332 {
3333 return test_bit(DMF_SUSPENDED, &md->flags);
3334 }
3335
dm_post_suspending_md(struct mapped_device * md)3336 static int dm_post_suspending_md(struct mapped_device *md)
3337 {
3338 return test_bit(DMF_POST_SUSPENDING, &md->flags);
3339 }
3340
dm_suspended_internally_md(struct mapped_device * md)3341 int dm_suspended_internally_md(struct mapped_device *md)
3342 {
3343 return test_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
3344 }
3345
dm_test_deferred_remove_flag(struct mapped_device * md)3346 int dm_test_deferred_remove_flag(struct mapped_device *md)
3347 {
3348 return test_bit(DMF_DEFERRED_REMOVE, &md->flags);
3349 }
3350
dm_suspended(struct dm_target * ti)3351 int dm_suspended(struct dm_target *ti)
3352 {
3353 return dm_suspended_md(ti->table->md);
3354 }
3355 EXPORT_SYMBOL_GPL(dm_suspended);
3356
dm_post_suspending(struct dm_target * ti)3357 int dm_post_suspending(struct dm_target *ti)
3358 {
3359 return dm_post_suspending_md(ti->table->md);
3360 }
3361 EXPORT_SYMBOL_GPL(dm_post_suspending);
3362
dm_noflush_suspending(struct dm_target * ti)3363 int dm_noflush_suspending(struct dm_target *ti)
3364 {
3365 return __noflush_suspending(ti->table->md);
3366 }
3367 EXPORT_SYMBOL_GPL(dm_noflush_suspending);
3368
dm_free_md_mempools(struct dm_md_mempools * pools)3369 void dm_free_md_mempools(struct dm_md_mempools *pools)
3370 {
3371 if (!pools)
3372 return;
3373
3374 bioset_exit(&pools->bs);
3375 bioset_exit(&pools->io_bs);
3376
3377 kfree(pools);
3378 }
3379
3380 struct dm_pr {
3381 u64 old_key;
3382 u64 new_key;
3383 u32 flags;
3384 bool abort;
3385 bool fail_early;
3386 int ret;
3387 enum pr_type type;
3388 struct pr_keys *read_keys;
3389 struct pr_held_reservation *rsv;
3390 };
3391
dm_call_pr(struct block_device * bdev,iterate_devices_callout_fn fn,struct dm_pr * pr)3392 static int dm_call_pr(struct block_device *bdev, iterate_devices_callout_fn fn,
3393 struct dm_pr *pr)
3394 {
3395 struct mapped_device *md = bdev->bd_disk->private_data;
3396 struct dm_table *table;
3397 struct dm_target *ti;
3398 int ret = -ENOTTY, srcu_idx;
3399
3400 table = dm_get_live_table(md, &srcu_idx);
3401 if (!table || !dm_table_get_size(table))
3402 goto out;
3403
3404 /* We only support devices that have a single target */
3405 if (table->num_targets != 1)
3406 goto out;
3407 ti = dm_table_get_target(table, 0);
3408
3409 if (dm_suspended_md(md)) {
3410 ret = -EAGAIN;
3411 goto out;
3412 }
3413
3414 ret = -EINVAL;
3415 if (!ti->type->iterate_devices)
3416 goto out;
3417
3418 ti->type->iterate_devices(ti, fn, pr);
3419 ret = 0;
3420 out:
3421 dm_put_live_table(md, srcu_idx);
3422 return ret;
3423 }
3424
3425 /*
3426 * For register / unregister we need to manually call out to every path.
3427 */
__dm_pr_register(struct dm_target * ti,struct dm_dev * dev,sector_t start,sector_t len,void * data)3428 static int __dm_pr_register(struct dm_target *ti, struct dm_dev *dev,
3429 sector_t start, sector_t len, void *data)
3430 {
3431 struct dm_pr *pr = data;
3432 const struct pr_ops *ops = dev->bdev->bd_disk->fops->pr_ops;
3433 int ret;
3434
3435 if (!ops || !ops->pr_register) {
3436 pr->ret = -EOPNOTSUPP;
3437 return -1;
3438 }
3439
3440 ret = ops->pr_register(dev->bdev, pr->old_key, pr->new_key, pr->flags);
3441 if (!ret)
3442 return 0;
3443
3444 if (!pr->ret)
3445 pr->ret = ret;
3446
3447 if (pr->fail_early)
3448 return -1;
3449
3450 return 0;
3451 }
3452
dm_pr_register(struct block_device * bdev,u64 old_key,u64 new_key,u32 flags)3453 static int dm_pr_register(struct block_device *bdev, u64 old_key, u64 new_key,
3454 u32 flags)
3455 {
3456 struct dm_pr pr = {
3457 .old_key = old_key,
3458 .new_key = new_key,
3459 .flags = flags,
3460 .fail_early = true,
3461 .ret = 0,
3462 };
3463 int ret;
3464
3465 ret = dm_call_pr(bdev, __dm_pr_register, &pr);
3466 if (ret) {
3467 /* Didn't even get to register a path */
3468 return ret;
3469 }
3470
3471 if (!pr.ret)
3472 return 0;
3473 ret = pr.ret;
3474
3475 if (!new_key)
3476 return ret;
3477
3478 /* unregister all paths if we failed to register any path */
3479 pr.old_key = new_key;
3480 pr.new_key = 0;
3481 pr.flags = 0;
3482 pr.fail_early = false;
3483 (void) dm_call_pr(bdev, __dm_pr_register, &pr);
3484 return ret;
3485 }
3486
3487
__dm_pr_reserve(struct dm_target * ti,struct dm_dev * dev,sector_t start,sector_t len,void * data)3488 static int __dm_pr_reserve(struct dm_target *ti, struct dm_dev *dev,
3489 sector_t start, sector_t len, void *data)
3490 {
3491 struct dm_pr *pr = data;
3492 const struct pr_ops *ops = dev->bdev->bd_disk->fops->pr_ops;
3493
3494 if (!ops || !ops->pr_reserve) {
3495 pr->ret = -EOPNOTSUPP;
3496 return -1;
3497 }
3498
3499 pr->ret = ops->pr_reserve(dev->bdev, pr->old_key, pr->type, pr->flags);
3500 if (!pr->ret)
3501 return -1;
3502
3503 return 0;
3504 }
3505
dm_pr_reserve(struct block_device * bdev,u64 key,enum pr_type type,u32 flags)3506 static int dm_pr_reserve(struct block_device *bdev, u64 key, enum pr_type type,
3507 u32 flags)
3508 {
3509 struct dm_pr pr = {
3510 .old_key = key,
3511 .flags = flags,
3512 .type = type,
3513 .fail_early = false,
3514 .ret = 0,
3515 };
3516 int ret;
3517
3518 ret = dm_call_pr(bdev, __dm_pr_reserve, &pr);
3519 if (ret)
3520 return ret;
3521
3522 return pr.ret;
3523 }
3524
3525 /*
3526 * If there is a non-All Registrants type of reservation, the release must be
3527 * sent down the holding path. For the cases where there is no reservation or
3528 * the path is not the holder the device will also return success, so we must
3529 * try each path to make sure we got the correct path.
3530 */
__dm_pr_release(struct dm_target * ti,struct dm_dev * dev,sector_t start,sector_t len,void * data)3531 static int __dm_pr_release(struct dm_target *ti, struct dm_dev *dev,
3532 sector_t start, sector_t len, void *data)
3533 {
3534 struct dm_pr *pr = data;
3535 const struct pr_ops *ops = dev->bdev->bd_disk->fops->pr_ops;
3536
3537 if (!ops || !ops->pr_release) {
3538 pr->ret = -EOPNOTSUPP;
3539 return -1;
3540 }
3541
3542 pr->ret = ops->pr_release(dev->bdev, pr->old_key, pr->type);
3543 if (pr->ret)
3544 return -1;
3545
3546 return 0;
3547 }
3548
dm_pr_release(struct block_device * bdev,u64 key,enum pr_type type)3549 static int dm_pr_release(struct block_device *bdev, u64 key, enum pr_type type)
3550 {
3551 struct dm_pr pr = {
3552 .old_key = key,
3553 .type = type,
3554 .fail_early = false,
3555 };
3556 int ret;
3557
3558 ret = dm_call_pr(bdev, __dm_pr_release, &pr);
3559 if (ret)
3560 return ret;
3561
3562 return pr.ret;
3563 }
3564
__dm_pr_preempt(struct dm_target * ti,struct dm_dev * dev,sector_t start,sector_t len,void * data)3565 static int __dm_pr_preempt(struct dm_target *ti, struct dm_dev *dev,
3566 sector_t start, sector_t len, void *data)
3567 {
3568 struct dm_pr *pr = data;
3569 const struct pr_ops *ops = dev->bdev->bd_disk->fops->pr_ops;
3570
3571 if (!ops || !ops->pr_preempt) {
3572 pr->ret = -EOPNOTSUPP;
3573 return -1;
3574 }
3575
3576 pr->ret = ops->pr_preempt(dev->bdev, pr->old_key, pr->new_key, pr->type,
3577 pr->abort);
3578 if (!pr->ret)
3579 return -1;
3580
3581 return 0;
3582 }
3583
dm_pr_preempt(struct block_device * bdev,u64 old_key,u64 new_key,enum pr_type type,bool abort)3584 static int dm_pr_preempt(struct block_device *bdev, u64 old_key, u64 new_key,
3585 enum pr_type type, bool abort)
3586 {
3587 struct dm_pr pr = {
3588 .new_key = new_key,
3589 .old_key = old_key,
3590 .type = type,
3591 .fail_early = false,
3592 };
3593 int ret;
3594
3595 ret = dm_call_pr(bdev, __dm_pr_preempt, &pr);
3596 if (ret)
3597 return ret;
3598
3599 return pr.ret;
3600 }
3601
dm_pr_clear(struct block_device * bdev,u64 key)3602 static int dm_pr_clear(struct block_device *bdev, u64 key)
3603 {
3604 struct mapped_device *md = bdev->bd_disk->private_data;
3605 const struct pr_ops *ops;
3606 int r, srcu_idx;
3607
3608 r = dm_prepare_ioctl(md, &srcu_idx, &bdev);
3609 if (r < 0)
3610 goto out;
3611
3612 ops = bdev->bd_disk->fops->pr_ops;
3613 if (ops && ops->pr_clear)
3614 r = ops->pr_clear(bdev, key);
3615 else
3616 r = -EOPNOTSUPP;
3617 out:
3618 dm_unprepare_ioctl(md, srcu_idx);
3619 return r;
3620 }
3621
__dm_pr_read_keys(struct dm_target * ti,struct dm_dev * dev,sector_t start,sector_t len,void * data)3622 static int __dm_pr_read_keys(struct dm_target *ti, struct dm_dev *dev,
3623 sector_t start, sector_t len, void *data)
3624 {
3625 struct dm_pr *pr = data;
3626 const struct pr_ops *ops = dev->bdev->bd_disk->fops->pr_ops;
3627
3628 if (!ops || !ops->pr_read_keys) {
3629 pr->ret = -EOPNOTSUPP;
3630 return -1;
3631 }
3632
3633 pr->ret = ops->pr_read_keys(dev->bdev, pr->read_keys);
3634 if (!pr->ret)
3635 return -1;
3636
3637 return 0;
3638 }
3639
dm_pr_read_keys(struct block_device * bdev,struct pr_keys * keys)3640 static int dm_pr_read_keys(struct block_device *bdev, struct pr_keys *keys)
3641 {
3642 struct dm_pr pr = {
3643 .read_keys = keys,
3644 };
3645 int ret;
3646
3647 ret = dm_call_pr(bdev, __dm_pr_read_keys, &pr);
3648 if (ret)
3649 return ret;
3650
3651 return pr.ret;
3652 }
3653
__dm_pr_read_reservation(struct dm_target * ti,struct dm_dev * dev,sector_t start,sector_t len,void * data)3654 static int __dm_pr_read_reservation(struct dm_target *ti, struct dm_dev *dev,
3655 sector_t start, sector_t len, void *data)
3656 {
3657 struct dm_pr *pr = data;
3658 const struct pr_ops *ops = dev->bdev->bd_disk->fops->pr_ops;
3659
3660 if (!ops || !ops->pr_read_reservation) {
3661 pr->ret = -EOPNOTSUPP;
3662 return -1;
3663 }
3664
3665 pr->ret = ops->pr_read_reservation(dev->bdev, pr->rsv);
3666 if (!pr->ret)
3667 return -1;
3668
3669 return 0;
3670 }
3671
dm_pr_read_reservation(struct block_device * bdev,struct pr_held_reservation * rsv)3672 static int dm_pr_read_reservation(struct block_device *bdev,
3673 struct pr_held_reservation *rsv)
3674 {
3675 struct dm_pr pr = {
3676 .rsv = rsv,
3677 };
3678 int ret;
3679
3680 ret = dm_call_pr(bdev, __dm_pr_read_reservation, &pr);
3681 if (ret)
3682 return ret;
3683
3684 return pr.ret;
3685 }
3686
3687 static const struct pr_ops dm_pr_ops = {
3688 .pr_register = dm_pr_register,
3689 .pr_reserve = dm_pr_reserve,
3690 .pr_release = dm_pr_release,
3691 .pr_preempt = dm_pr_preempt,
3692 .pr_clear = dm_pr_clear,
3693 .pr_read_keys = dm_pr_read_keys,
3694 .pr_read_reservation = dm_pr_read_reservation,
3695 };
3696
3697 static const struct block_device_operations dm_blk_dops = {
3698 .submit_bio = dm_submit_bio,
3699 .poll_bio = dm_poll_bio,
3700 .open = dm_blk_open,
3701 .release = dm_blk_close,
3702 .ioctl = dm_blk_ioctl,
3703 .getgeo = dm_blk_getgeo,
3704 .report_zones = dm_blk_report_zones,
3705 .pr_ops = &dm_pr_ops,
3706 .owner = THIS_MODULE
3707 };
3708
3709 static const struct block_device_operations dm_rq_blk_dops = {
3710 .open = dm_blk_open,
3711 .release = dm_blk_close,
3712 .ioctl = dm_blk_ioctl,
3713 .getgeo = dm_blk_getgeo,
3714 .pr_ops = &dm_pr_ops,
3715 .owner = THIS_MODULE
3716 };
3717
3718 static const struct dax_operations dm_dax_ops = {
3719 .direct_access = dm_dax_direct_access,
3720 .zero_page_range = dm_dax_zero_page_range,
3721 .recovery_write = dm_dax_recovery_write,
3722 };
3723
3724 /*
3725 * module hooks
3726 */
3727 module_init(dm_init);
3728 module_exit(dm_exit);
3729
3730 module_param(major, uint, 0);
3731 MODULE_PARM_DESC(major, "The major number of the device mapper");
3732
3733 module_param(reserved_bio_based_ios, uint, 0644);
3734 MODULE_PARM_DESC(reserved_bio_based_ios, "Reserved IOs in bio-based mempools");
3735
3736 module_param(dm_numa_node, int, 0644);
3737 MODULE_PARM_DESC(dm_numa_node, "NUMA node for DM device memory allocations");
3738
3739 module_param(swap_bios, int, 0644);
3740 MODULE_PARM_DESC(swap_bios, "Maximum allowed inflight swap IOs");
3741
3742 MODULE_DESCRIPTION(DM_NAME " driver");
3743 MODULE_AUTHOR("Joe Thornber <dm-devel@lists.linux.dev>");
3744 MODULE_LICENSE("GPL");
3745