1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * raid1.c : Multiple Devices driver for Linux
4  *
5  * Copyright (C) 1999, 2000, 2001 Ingo Molnar, Red Hat
6  *
7  * Copyright (C) 1996, 1997, 1998 Ingo Molnar, Miguel de Icaza, Gadi Oxman
8  *
9  * RAID-1 management functions.
10  *
11  * Better read-balancing code written by Mika Kuoppala <miku@iki.fi>, 2000
12  *
13  * Fixes to reconstruction by Jakob Østergaard" <jakob@ostenfeld.dk>
14  * Various fixes by Neil Brown <neilb@cse.unsw.edu.au>
15  *
16  * Changes by Peter T. Breuer <ptb@it.uc3m.es> 31/1/2003 to support
17  * bitmapped intelligence in resync:
18  *
19  *      - bitmap marked during normal i/o
20  *      - bitmap used to skip nondirty blocks during sync
21  *
22  * Additions to bitmap code, (C) 2003-2004 Paul Clements, SteelEye Technology:
23  * - persistent bitmap code
24  */
25 
26 #include <linux/slab.h>
27 #include <linux/delay.h>
28 #include <linux/blkdev.h>
29 #include <linux/module.h>
30 #include <linux/seq_file.h>
31 #include <linux/ratelimit.h>
32 #include <linux/interval_tree_generic.h>
33 
34 #include <trace/events/block.h>
35 
36 #include "md.h"
37 #include "raid1.h"
38 #include "md-bitmap.h"
39 
40 #define UNSUPPORTED_MDDEV_FLAGS		\
41 	((1L << MD_HAS_JOURNAL) |	\
42 	 (1L << MD_JOURNAL_CLEAN) |	\
43 	 (1L << MD_HAS_PPL) |		\
44 	 (1L << MD_HAS_MULTIPLE_PPLS))
45 
46 static void allow_barrier(struct r1conf *conf, sector_t sector_nr);
47 static void lower_barrier(struct r1conf *conf, sector_t sector_nr);
48 
49 #define RAID_1_10_NAME "raid1"
50 #include "raid1-10.c"
51 
52 #define START(node) ((node)->start)
53 #define LAST(node) ((node)->last)
54 INTERVAL_TREE_DEFINE(struct serial_info, node, sector_t, _subtree_last,
55 		     START, LAST, static inline, raid1_rb);
56 
check_and_add_serial(struct md_rdev * rdev,struct r1bio * r1_bio,struct serial_info * si,int idx)57 static int check_and_add_serial(struct md_rdev *rdev, struct r1bio *r1_bio,
58 				struct serial_info *si, int idx)
59 {
60 	unsigned long flags;
61 	int ret = 0;
62 	sector_t lo = r1_bio->sector;
63 	sector_t hi = lo + r1_bio->sectors;
64 	struct serial_in_rdev *serial = &rdev->serial[idx];
65 
66 	spin_lock_irqsave(&serial->serial_lock, flags);
67 	/* collision happened */
68 	if (raid1_rb_iter_first(&serial->serial_rb, lo, hi))
69 		ret = -EBUSY;
70 	else {
71 		si->start = lo;
72 		si->last = hi;
73 		raid1_rb_insert(si, &serial->serial_rb);
74 	}
75 	spin_unlock_irqrestore(&serial->serial_lock, flags);
76 
77 	return ret;
78 }
79 
wait_for_serialization(struct md_rdev * rdev,struct r1bio * r1_bio)80 static void wait_for_serialization(struct md_rdev *rdev, struct r1bio *r1_bio)
81 {
82 	struct mddev *mddev = rdev->mddev;
83 	struct serial_info *si;
84 	int idx = sector_to_idx(r1_bio->sector);
85 	struct serial_in_rdev *serial = &rdev->serial[idx];
86 
87 	if (WARN_ON(!mddev->serial_info_pool))
88 		return;
89 	si = mempool_alloc(mddev->serial_info_pool, GFP_NOIO);
90 	wait_event(serial->serial_io_wait,
91 		   check_and_add_serial(rdev, r1_bio, si, idx) == 0);
92 }
93 
remove_serial(struct md_rdev * rdev,sector_t lo,sector_t hi)94 static void remove_serial(struct md_rdev *rdev, sector_t lo, sector_t hi)
95 {
96 	struct serial_info *si;
97 	unsigned long flags;
98 	int found = 0;
99 	struct mddev *mddev = rdev->mddev;
100 	int idx = sector_to_idx(lo);
101 	struct serial_in_rdev *serial = &rdev->serial[idx];
102 
103 	spin_lock_irqsave(&serial->serial_lock, flags);
104 	for (si = raid1_rb_iter_first(&serial->serial_rb, lo, hi);
105 	     si; si = raid1_rb_iter_next(si, lo, hi)) {
106 		if (si->start == lo && si->last == hi) {
107 			raid1_rb_remove(si, &serial->serial_rb);
108 			mempool_free(si, mddev->serial_info_pool);
109 			found = 1;
110 			break;
111 		}
112 	}
113 	if (!found)
114 		WARN(1, "The write IO is not recorded for serialization\n");
115 	spin_unlock_irqrestore(&serial->serial_lock, flags);
116 	wake_up(&serial->serial_io_wait);
117 }
118 
119 /*
120  * for resync bio, r1bio pointer can be retrieved from the per-bio
121  * 'struct resync_pages'.
122  */
get_resync_r1bio(struct bio * bio)123 static inline struct r1bio *get_resync_r1bio(struct bio *bio)
124 {
125 	return get_resync_pages(bio)->raid_bio;
126 }
127 
r1bio_pool_alloc(gfp_t gfp_flags,void * data)128 static void * r1bio_pool_alloc(gfp_t gfp_flags, void *data)
129 {
130 	struct pool_info *pi = data;
131 	int size = offsetof(struct r1bio, bios[pi->raid_disks]);
132 
133 	/* allocate a r1bio with room for raid_disks entries in the bios array */
134 	return kzalloc(size, gfp_flags);
135 }
136 
137 #define RESYNC_DEPTH 32
138 #define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9)
139 #define RESYNC_WINDOW (RESYNC_BLOCK_SIZE * RESYNC_DEPTH)
140 #define RESYNC_WINDOW_SECTORS (RESYNC_WINDOW >> 9)
141 #define CLUSTER_RESYNC_WINDOW (16 * RESYNC_WINDOW)
142 #define CLUSTER_RESYNC_WINDOW_SECTORS (CLUSTER_RESYNC_WINDOW >> 9)
143 
r1buf_pool_alloc(gfp_t gfp_flags,void * data)144 static void * r1buf_pool_alloc(gfp_t gfp_flags, void *data)
145 {
146 	struct pool_info *pi = data;
147 	struct r1bio *r1_bio;
148 	struct bio *bio;
149 	int need_pages;
150 	int j;
151 	struct resync_pages *rps;
152 
153 	r1_bio = r1bio_pool_alloc(gfp_flags, pi);
154 	if (!r1_bio)
155 		return NULL;
156 
157 	rps = kmalloc_array(pi->raid_disks, sizeof(struct resync_pages),
158 			    gfp_flags);
159 	if (!rps)
160 		goto out_free_r1bio;
161 
162 	/*
163 	 * Allocate bios : 1 for reading, n-1 for writing
164 	 */
165 	for (j = pi->raid_disks ; j-- ; ) {
166 		bio = bio_kmalloc(RESYNC_PAGES, gfp_flags);
167 		if (!bio)
168 			goto out_free_bio;
169 		bio_init(bio, NULL, bio->bi_inline_vecs, RESYNC_PAGES, 0);
170 		r1_bio->bios[j] = bio;
171 	}
172 	/*
173 	 * Allocate RESYNC_PAGES data pages and attach them to
174 	 * the first bio.
175 	 * If this is a user-requested check/repair, allocate
176 	 * RESYNC_PAGES for each bio.
177 	 */
178 	if (test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery))
179 		need_pages = pi->raid_disks;
180 	else
181 		need_pages = 1;
182 	for (j = 0; j < pi->raid_disks; j++) {
183 		struct resync_pages *rp = &rps[j];
184 
185 		bio = r1_bio->bios[j];
186 
187 		if (j < need_pages) {
188 			if (resync_alloc_pages(rp, gfp_flags))
189 				goto out_free_pages;
190 		} else {
191 			memcpy(rp, &rps[0], sizeof(*rp));
192 			resync_get_all_pages(rp);
193 		}
194 
195 		rp->raid_bio = r1_bio;
196 		bio->bi_private = rp;
197 	}
198 
199 	r1_bio->master_bio = NULL;
200 
201 	return r1_bio;
202 
203 out_free_pages:
204 	while (--j >= 0)
205 		resync_free_pages(&rps[j]);
206 
207 out_free_bio:
208 	while (++j < pi->raid_disks) {
209 		bio_uninit(r1_bio->bios[j]);
210 		kfree(r1_bio->bios[j]);
211 	}
212 	kfree(rps);
213 
214 out_free_r1bio:
215 	rbio_pool_free(r1_bio, data);
216 	return NULL;
217 }
218 
r1buf_pool_free(void * __r1_bio,void * data)219 static void r1buf_pool_free(void *__r1_bio, void *data)
220 {
221 	struct pool_info *pi = data;
222 	int i;
223 	struct r1bio *r1bio = __r1_bio;
224 	struct resync_pages *rp = NULL;
225 
226 	for (i = pi->raid_disks; i--; ) {
227 		rp = get_resync_pages(r1bio->bios[i]);
228 		resync_free_pages(rp);
229 		bio_uninit(r1bio->bios[i]);
230 		kfree(r1bio->bios[i]);
231 	}
232 
233 	/* resync pages array stored in the 1st bio's .bi_private */
234 	kfree(rp);
235 
236 	rbio_pool_free(r1bio, data);
237 }
238 
put_all_bios(struct r1conf * conf,struct r1bio * r1_bio)239 static void put_all_bios(struct r1conf *conf, struct r1bio *r1_bio)
240 {
241 	int i;
242 
243 	for (i = 0; i < conf->raid_disks * 2; i++) {
244 		struct bio **bio = r1_bio->bios + i;
245 		if (!BIO_SPECIAL(*bio))
246 			bio_put(*bio);
247 		*bio = NULL;
248 	}
249 }
250 
free_r1bio(struct r1bio * r1_bio)251 static void free_r1bio(struct r1bio *r1_bio)
252 {
253 	struct r1conf *conf = r1_bio->mddev->private;
254 
255 	put_all_bios(conf, r1_bio);
256 	mempool_free(r1_bio, &conf->r1bio_pool);
257 }
258 
put_buf(struct r1bio * r1_bio)259 static void put_buf(struct r1bio *r1_bio)
260 {
261 	struct r1conf *conf = r1_bio->mddev->private;
262 	sector_t sect = r1_bio->sector;
263 	int i;
264 
265 	for (i = 0; i < conf->raid_disks * 2; i++) {
266 		struct bio *bio = r1_bio->bios[i];
267 		if (bio->bi_end_io)
268 			rdev_dec_pending(conf->mirrors[i].rdev, r1_bio->mddev);
269 	}
270 
271 	mempool_free(r1_bio, &conf->r1buf_pool);
272 
273 	lower_barrier(conf, sect);
274 }
275 
reschedule_retry(struct r1bio * r1_bio)276 static void reschedule_retry(struct r1bio *r1_bio)
277 {
278 	unsigned long flags;
279 	struct mddev *mddev = r1_bio->mddev;
280 	struct r1conf *conf = mddev->private;
281 	int idx;
282 
283 	idx = sector_to_idx(r1_bio->sector);
284 	spin_lock_irqsave(&conf->device_lock, flags);
285 	list_add(&r1_bio->retry_list, &conf->retry_list);
286 	atomic_inc(&conf->nr_queued[idx]);
287 	spin_unlock_irqrestore(&conf->device_lock, flags);
288 
289 	wake_up(&conf->wait_barrier);
290 	md_wakeup_thread(mddev->thread);
291 }
292 
293 /*
294  * raid_end_bio_io() is called when we have finished servicing a mirrored
295  * operation and are ready to return a success/failure code to the buffer
296  * cache layer.
297  */
call_bio_endio(struct r1bio * r1_bio)298 static void call_bio_endio(struct r1bio *r1_bio)
299 {
300 	struct bio *bio = r1_bio->master_bio;
301 
302 	if (!test_bit(R1BIO_Uptodate, &r1_bio->state))
303 		bio->bi_status = BLK_STS_IOERR;
304 
305 	bio_endio(bio);
306 }
307 
raid_end_bio_io(struct r1bio * r1_bio)308 static void raid_end_bio_io(struct r1bio *r1_bio)
309 {
310 	struct bio *bio = r1_bio->master_bio;
311 	struct r1conf *conf = r1_bio->mddev->private;
312 	sector_t sector = r1_bio->sector;
313 
314 	/* if nobody has done the final endio yet, do it now */
315 	if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
316 		pr_debug("raid1: sync end %s on sectors %llu-%llu\n",
317 			 (bio_data_dir(bio) == WRITE) ? "write" : "read",
318 			 (unsigned long long) bio->bi_iter.bi_sector,
319 			 (unsigned long long) bio_end_sector(bio) - 1);
320 
321 		call_bio_endio(r1_bio);
322 	}
323 
324 	free_r1bio(r1_bio);
325 	/*
326 	 * Wake up any possible resync thread that waits for the device
327 	 * to go idle.  All I/Os, even write-behind writes, are done.
328 	 */
329 	allow_barrier(conf, sector);
330 }
331 
332 /*
333  * Update disk head position estimator based on IRQ completion info.
334  */
update_head_pos(int disk,struct r1bio * r1_bio)335 static inline void update_head_pos(int disk, struct r1bio *r1_bio)
336 {
337 	struct r1conf *conf = r1_bio->mddev->private;
338 
339 	conf->mirrors[disk].head_position =
340 		r1_bio->sector + (r1_bio->sectors);
341 }
342 
343 /*
344  * Find the disk number which triggered given bio
345  */
find_bio_disk(struct r1bio * r1_bio,struct bio * bio)346 static int find_bio_disk(struct r1bio *r1_bio, struct bio *bio)
347 {
348 	int mirror;
349 	struct r1conf *conf = r1_bio->mddev->private;
350 	int raid_disks = conf->raid_disks;
351 
352 	for (mirror = 0; mirror < raid_disks * 2; mirror++)
353 		if (r1_bio->bios[mirror] == bio)
354 			break;
355 
356 	BUG_ON(mirror == raid_disks * 2);
357 	update_head_pos(mirror, r1_bio);
358 
359 	return mirror;
360 }
361 
raid1_end_read_request(struct bio * bio)362 static void raid1_end_read_request(struct bio *bio)
363 {
364 	int uptodate = !bio->bi_status;
365 	struct r1bio *r1_bio = bio->bi_private;
366 	struct r1conf *conf = r1_bio->mddev->private;
367 	struct md_rdev *rdev = conf->mirrors[r1_bio->read_disk].rdev;
368 
369 	/*
370 	 * this branch is our 'one mirror IO has finished' event handler:
371 	 */
372 	update_head_pos(r1_bio->read_disk, r1_bio);
373 
374 	if (uptodate) {
375 		set_bit(R1BIO_Uptodate, &r1_bio->state);
376 	} else if (test_bit(FailFast, &rdev->flags) &&
377 		 test_bit(R1BIO_FailFast, &r1_bio->state)) {
378 		/* This was a fail-fast read so we definitely
379 		 * want to retry */
380 		;
381 	} else if (!raid1_should_handle_error(bio)) {
382 		uptodate = 1;
383 	} else {
384 		/* If all other devices have failed, we want to return
385 		 * the error upwards rather than fail the last device.
386 		 * Here we redefine "uptodate" to mean "Don't want to retry"
387 		 */
388 		unsigned long flags;
389 		spin_lock_irqsave(&conf->device_lock, flags);
390 		if (r1_bio->mddev->degraded == conf->raid_disks ||
391 		    (r1_bio->mddev->degraded == conf->raid_disks-1 &&
392 		     test_bit(In_sync, &rdev->flags)))
393 			uptodate = 1;
394 		spin_unlock_irqrestore(&conf->device_lock, flags);
395 	}
396 
397 	if (uptodate) {
398 		raid_end_bio_io(r1_bio);
399 		rdev_dec_pending(rdev, conf->mddev);
400 	} else {
401 		/*
402 		 * oops, read error:
403 		 */
404 		pr_err_ratelimited("md/raid1:%s: %pg: rescheduling sector %llu\n",
405 				   mdname(conf->mddev),
406 				   rdev->bdev,
407 				   (unsigned long long)r1_bio->sector);
408 		set_bit(R1BIO_ReadError, &r1_bio->state);
409 		reschedule_retry(r1_bio);
410 		/* don't drop the reference on read_disk yet */
411 	}
412 }
413 
close_write(struct r1bio * r1_bio)414 static void close_write(struct r1bio *r1_bio)
415 {
416 	struct mddev *mddev = r1_bio->mddev;
417 
418 	/* it really is the end of this request */
419 	if (test_bit(R1BIO_BehindIO, &r1_bio->state)) {
420 		bio_free_pages(r1_bio->behind_master_bio);
421 		bio_put(r1_bio->behind_master_bio);
422 		r1_bio->behind_master_bio = NULL;
423 	}
424 
425 	if (test_bit(R1BIO_BehindIO, &r1_bio->state))
426 		mddev->bitmap_ops->end_behind_write(mddev);
427 	md_write_end(mddev);
428 }
429 
r1_bio_write_done(struct r1bio * r1_bio)430 static void r1_bio_write_done(struct r1bio *r1_bio)
431 {
432 	if (!atomic_dec_and_test(&r1_bio->remaining))
433 		return;
434 
435 	if (test_bit(R1BIO_WriteError, &r1_bio->state))
436 		reschedule_retry(r1_bio);
437 	else {
438 		close_write(r1_bio);
439 		if (test_bit(R1BIO_MadeGood, &r1_bio->state))
440 			reschedule_retry(r1_bio);
441 		else
442 			raid_end_bio_io(r1_bio);
443 	}
444 }
445 
raid1_end_write_request(struct bio * bio)446 static void raid1_end_write_request(struct bio *bio)
447 {
448 	struct r1bio *r1_bio = bio->bi_private;
449 	int behind = test_bit(R1BIO_BehindIO, &r1_bio->state);
450 	struct r1conf *conf = r1_bio->mddev->private;
451 	struct bio *to_put = NULL;
452 	int mirror = find_bio_disk(r1_bio, bio);
453 	struct md_rdev *rdev = conf->mirrors[mirror].rdev;
454 	sector_t lo = r1_bio->sector;
455 	sector_t hi = r1_bio->sector + r1_bio->sectors;
456 	bool ignore_error = !raid1_should_handle_error(bio) ||
457 		(bio->bi_status && bio_op(bio) == REQ_OP_DISCARD);
458 
459 	/*
460 	 * 'one mirror IO has finished' event handler:
461 	 */
462 	if (bio->bi_status && !ignore_error) {
463 		set_bit(WriteErrorSeen,	&rdev->flags);
464 		if (!test_and_set_bit(WantReplacement, &rdev->flags))
465 			set_bit(MD_RECOVERY_NEEDED, &
466 				conf->mddev->recovery);
467 
468 		if (test_bit(FailFast, &rdev->flags) &&
469 		    (bio->bi_opf & MD_FAILFAST) &&
470 		    /* We never try FailFast to WriteMostly devices */
471 		    !test_bit(WriteMostly, &rdev->flags)) {
472 			md_error(r1_bio->mddev, rdev);
473 		}
474 
475 		/*
476 		 * When the device is faulty, it is not necessary to
477 		 * handle write error.
478 		 */
479 		if (!test_bit(Faulty, &rdev->flags))
480 			set_bit(R1BIO_WriteError, &r1_bio->state);
481 		else {
482 			/* Finished with this branch */
483 			r1_bio->bios[mirror] = NULL;
484 			to_put = bio;
485 		}
486 	} else {
487 		/*
488 		 * Set R1BIO_Uptodate in our master bio, so that we
489 		 * will return a good error code for to the higher
490 		 * levels even if IO on some other mirrored buffer
491 		 * fails.
492 		 *
493 		 * The 'master' represents the composite IO operation
494 		 * to user-side. So if something waits for IO, then it
495 		 * will wait for the 'master' bio.
496 		 */
497 		r1_bio->bios[mirror] = NULL;
498 		to_put = bio;
499 		/*
500 		 * Do not set R1BIO_Uptodate if the current device is
501 		 * rebuilding or Faulty. This is because we cannot use
502 		 * such device for properly reading the data back (we could
503 		 * potentially use it, if the current write would have felt
504 		 * before rdev->recovery_offset, but for simplicity we don't
505 		 * check this here.
506 		 */
507 		if (test_bit(In_sync, &rdev->flags) &&
508 		    !test_bit(Faulty, &rdev->flags))
509 			set_bit(R1BIO_Uptodate, &r1_bio->state);
510 
511 		/* Maybe we can clear some bad blocks. */
512 		if (rdev_has_badblock(rdev, r1_bio->sector, r1_bio->sectors) &&
513 		    !ignore_error) {
514 			r1_bio->bios[mirror] = IO_MADE_GOOD;
515 			set_bit(R1BIO_MadeGood, &r1_bio->state);
516 		}
517 	}
518 
519 	if (behind) {
520 		if (test_bit(CollisionCheck, &rdev->flags))
521 			remove_serial(rdev, lo, hi);
522 		if (test_bit(WriteMostly, &rdev->flags))
523 			atomic_dec(&r1_bio->behind_remaining);
524 
525 		/*
526 		 * In behind mode, we ACK the master bio once the I/O
527 		 * has safely reached all non-writemostly
528 		 * disks. Setting the Returned bit ensures that this
529 		 * gets done only once -- we don't ever want to return
530 		 * -EIO here, instead we'll wait
531 		 */
532 		if (atomic_read(&r1_bio->behind_remaining) >= (atomic_read(&r1_bio->remaining)-1) &&
533 		    test_bit(R1BIO_Uptodate, &r1_bio->state)) {
534 			/* Maybe we can return now */
535 			if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
536 				struct bio *mbio = r1_bio->master_bio;
537 				pr_debug("raid1: behind end write sectors"
538 					 " %llu-%llu\n",
539 					 (unsigned long long) mbio->bi_iter.bi_sector,
540 					 (unsigned long long) bio_end_sector(mbio) - 1);
541 				call_bio_endio(r1_bio);
542 			}
543 		}
544 	} else if (rdev->mddev->serialize_policy)
545 		remove_serial(rdev, lo, hi);
546 	if (r1_bio->bios[mirror] == NULL)
547 		rdev_dec_pending(rdev, conf->mddev);
548 
549 	/*
550 	 * Let's see if all mirrored write operations have finished
551 	 * already.
552 	 */
553 	r1_bio_write_done(r1_bio);
554 
555 	if (to_put)
556 		bio_put(to_put);
557 }
558 
align_to_barrier_unit_end(sector_t start_sector,sector_t sectors)559 static sector_t align_to_barrier_unit_end(sector_t start_sector,
560 					  sector_t sectors)
561 {
562 	sector_t len;
563 
564 	WARN_ON(sectors == 0);
565 	/*
566 	 * len is the number of sectors from start_sector to end of the
567 	 * barrier unit which start_sector belongs to.
568 	 */
569 	len = round_up(start_sector + 1, BARRIER_UNIT_SECTOR_SIZE) -
570 	      start_sector;
571 
572 	if (len > sectors)
573 		len = sectors;
574 
575 	return len;
576 }
577 
update_read_sectors(struct r1conf * conf,int disk,sector_t this_sector,int len)578 static void update_read_sectors(struct r1conf *conf, int disk,
579 				sector_t this_sector, int len)
580 {
581 	struct raid1_info *info = &conf->mirrors[disk];
582 
583 	atomic_inc(&info->rdev->nr_pending);
584 	if (info->next_seq_sect != this_sector)
585 		info->seq_start = this_sector;
586 	info->next_seq_sect = this_sector + len;
587 }
588 
choose_first_rdev(struct r1conf * conf,struct r1bio * r1_bio,int * max_sectors)589 static int choose_first_rdev(struct r1conf *conf, struct r1bio *r1_bio,
590 			     int *max_sectors)
591 {
592 	sector_t this_sector = r1_bio->sector;
593 	int len = r1_bio->sectors;
594 	int disk;
595 
596 	for (disk = 0 ; disk < conf->raid_disks * 2 ; disk++) {
597 		struct md_rdev *rdev;
598 		int read_len;
599 
600 		if (r1_bio->bios[disk] == IO_BLOCKED)
601 			continue;
602 
603 		rdev = conf->mirrors[disk].rdev;
604 		if (!rdev || test_bit(Faulty, &rdev->flags))
605 			continue;
606 
607 		/* choose the first disk even if it has some bad blocks. */
608 		read_len = raid1_check_read_range(rdev, this_sector, &len);
609 		if (read_len > 0) {
610 			update_read_sectors(conf, disk, this_sector, read_len);
611 			*max_sectors = read_len;
612 			return disk;
613 		}
614 	}
615 
616 	return -1;
617 }
618 
rdev_in_recovery(struct md_rdev * rdev,struct r1bio * r1_bio)619 static bool rdev_in_recovery(struct md_rdev *rdev, struct r1bio *r1_bio)
620 {
621 	return !test_bit(In_sync, &rdev->flags) &&
622 	       rdev->recovery_offset < r1_bio->sector + r1_bio->sectors;
623 }
624 
choose_bb_rdev(struct r1conf * conf,struct r1bio * r1_bio,int * max_sectors)625 static int choose_bb_rdev(struct r1conf *conf, struct r1bio *r1_bio,
626 			  int *max_sectors)
627 {
628 	sector_t this_sector = r1_bio->sector;
629 	int best_disk = -1;
630 	int best_len = 0;
631 	int disk;
632 
633 	for (disk = 0 ; disk < conf->raid_disks * 2 ; disk++) {
634 		struct md_rdev *rdev;
635 		int len;
636 		int read_len;
637 
638 		if (r1_bio->bios[disk] == IO_BLOCKED)
639 			continue;
640 
641 		rdev = conf->mirrors[disk].rdev;
642 		if (!rdev || test_bit(Faulty, &rdev->flags) ||
643 		    rdev_in_recovery(rdev, r1_bio) ||
644 		    test_bit(WriteMostly, &rdev->flags))
645 			continue;
646 
647 		/* keep track of the disk with the most readable sectors. */
648 		len = r1_bio->sectors;
649 		read_len = raid1_check_read_range(rdev, this_sector, &len);
650 		if (read_len > best_len) {
651 			best_disk = disk;
652 			best_len = read_len;
653 		}
654 	}
655 
656 	if (best_disk != -1) {
657 		*max_sectors = best_len;
658 		update_read_sectors(conf, best_disk, this_sector, best_len);
659 	}
660 
661 	return best_disk;
662 }
663 
choose_slow_rdev(struct r1conf * conf,struct r1bio * r1_bio,int * max_sectors)664 static int choose_slow_rdev(struct r1conf *conf, struct r1bio *r1_bio,
665 			    int *max_sectors)
666 {
667 	sector_t this_sector = r1_bio->sector;
668 	int bb_disk = -1;
669 	int bb_read_len = 0;
670 	int disk;
671 
672 	for (disk = 0 ; disk < conf->raid_disks * 2 ; disk++) {
673 		struct md_rdev *rdev;
674 		int len;
675 		int read_len;
676 
677 		if (r1_bio->bios[disk] == IO_BLOCKED)
678 			continue;
679 
680 		rdev = conf->mirrors[disk].rdev;
681 		if (!rdev || test_bit(Faulty, &rdev->flags) ||
682 		    !test_bit(WriteMostly, &rdev->flags) ||
683 		    rdev_in_recovery(rdev, r1_bio))
684 			continue;
685 
686 		/* there are no bad blocks, we can use this disk */
687 		len = r1_bio->sectors;
688 		read_len = raid1_check_read_range(rdev, this_sector, &len);
689 		if (read_len == r1_bio->sectors) {
690 			*max_sectors = read_len;
691 			update_read_sectors(conf, disk, this_sector, read_len);
692 			return disk;
693 		}
694 
695 		/*
696 		 * there are partial bad blocks, choose the rdev with largest
697 		 * read length.
698 		 */
699 		if (read_len > bb_read_len) {
700 			bb_disk = disk;
701 			bb_read_len = read_len;
702 		}
703 	}
704 
705 	if (bb_disk != -1) {
706 		*max_sectors = bb_read_len;
707 		update_read_sectors(conf, bb_disk, this_sector, bb_read_len);
708 	}
709 
710 	return bb_disk;
711 }
712 
is_sequential(struct r1conf * conf,int disk,struct r1bio * r1_bio)713 static bool is_sequential(struct r1conf *conf, int disk, struct r1bio *r1_bio)
714 {
715 	/* TODO: address issues with this check and concurrency. */
716 	return conf->mirrors[disk].next_seq_sect == r1_bio->sector ||
717 	       conf->mirrors[disk].head_position == r1_bio->sector;
718 }
719 
720 /*
721  * If buffered sequential IO size exceeds optimal iosize, check if there is idle
722  * disk. If yes, choose the idle disk.
723  */
should_choose_next(struct r1conf * conf,int disk)724 static bool should_choose_next(struct r1conf *conf, int disk)
725 {
726 	struct raid1_info *mirror = &conf->mirrors[disk];
727 	int opt_iosize;
728 
729 	if (!test_bit(Nonrot, &mirror->rdev->flags))
730 		return false;
731 
732 	opt_iosize = bdev_io_opt(mirror->rdev->bdev) >> 9;
733 	return opt_iosize > 0 && mirror->seq_start != MaxSector &&
734 	       mirror->next_seq_sect > opt_iosize &&
735 	       mirror->next_seq_sect - opt_iosize >= mirror->seq_start;
736 }
737 
rdev_readable(struct md_rdev * rdev,struct r1bio * r1_bio)738 static bool rdev_readable(struct md_rdev *rdev, struct r1bio *r1_bio)
739 {
740 	if (!rdev || test_bit(Faulty, &rdev->flags))
741 		return false;
742 
743 	if (rdev_in_recovery(rdev, r1_bio))
744 		return false;
745 
746 	/* don't read from slow disk unless have to */
747 	if (test_bit(WriteMostly, &rdev->flags))
748 		return false;
749 
750 	/* don't split IO for bad blocks unless have to */
751 	if (rdev_has_badblock(rdev, r1_bio->sector, r1_bio->sectors))
752 		return false;
753 
754 	return true;
755 }
756 
757 struct read_balance_ctl {
758 	sector_t closest_dist;
759 	int closest_dist_disk;
760 	int min_pending;
761 	int min_pending_disk;
762 	int sequential_disk;
763 	int readable_disks;
764 };
765 
choose_best_rdev(struct r1conf * conf,struct r1bio * r1_bio)766 static int choose_best_rdev(struct r1conf *conf, struct r1bio *r1_bio)
767 {
768 	int disk;
769 	struct read_balance_ctl ctl = {
770 		.closest_dist_disk      = -1,
771 		.closest_dist           = MaxSector,
772 		.min_pending_disk       = -1,
773 		.min_pending            = UINT_MAX,
774 		.sequential_disk	= -1,
775 	};
776 
777 	for (disk = 0 ; disk < conf->raid_disks * 2 ; disk++) {
778 		struct md_rdev *rdev;
779 		sector_t dist;
780 		unsigned int pending;
781 
782 		if (r1_bio->bios[disk] == IO_BLOCKED)
783 			continue;
784 
785 		rdev = conf->mirrors[disk].rdev;
786 		if (!rdev_readable(rdev, r1_bio))
787 			continue;
788 
789 		/* At least two disks to choose from so failfast is OK */
790 		if (ctl.readable_disks++ == 1)
791 			set_bit(R1BIO_FailFast, &r1_bio->state);
792 
793 		pending = atomic_read(&rdev->nr_pending);
794 		dist = abs(r1_bio->sector - conf->mirrors[disk].head_position);
795 
796 		/* Don't change to another disk for sequential reads */
797 		if (is_sequential(conf, disk, r1_bio)) {
798 			if (!should_choose_next(conf, disk))
799 				return disk;
800 
801 			/*
802 			 * Add 'pending' to avoid choosing this disk if
803 			 * there is other idle disk.
804 			 */
805 			pending++;
806 			/*
807 			 * If there is no other idle disk, this disk
808 			 * will be chosen.
809 			 */
810 			ctl.sequential_disk = disk;
811 		}
812 
813 		if (ctl.min_pending > pending) {
814 			ctl.min_pending = pending;
815 			ctl.min_pending_disk = disk;
816 		}
817 
818 		if (ctl.closest_dist > dist) {
819 			ctl.closest_dist = dist;
820 			ctl.closest_dist_disk = disk;
821 		}
822 	}
823 
824 	/*
825 	 * sequential IO size exceeds optimal iosize, however, there is no other
826 	 * idle disk, so choose the sequential disk.
827 	 */
828 	if (ctl.sequential_disk != -1 && ctl.min_pending != 0)
829 		return ctl.sequential_disk;
830 
831 	/*
832 	 * If all disks are rotational, choose the closest disk. If any disk is
833 	 * non-rotational, choose the disk with less pending request even the
834 	 * disk is rotational, which might/might not be optimal for raids with
835 	 * mixed ratation/non-rotational disks depending on workload.
836 	 */
837 	if (ctl.min_pending_disk != -1 &&
838 	    (READ_ONCE(conf->nonrot_disks) || ctl.min_pending == 0))
839 		return ctl.min_pending_disk;
840 	else
841 		return ctl.closest_dist_disk;
842 }
843 
844 /*
845  * This routine returns the disk from which the requested read should be done.
846  *
847  * 1) If resync is in progress, find the first usable disk and use it even if it
848  * has some bad blocks.
849  *
850  * 2) Now that there is no resync, loop through all disks and skipping slow
851  * disks and disks with bad blocks for now. Only pay attention to key disk
852  * choice.
853  *
854  * 3) If we've made it this far, now look for disks with bad blocks and choose
855  * the one with most number of sectors.
856  *
857  * 4) If we are all the way at the end, we have no choice but to use a disk even
858  * if it is write mostly.
859  *
860  * The rdev for the device selected will have nr_pending incremented.
861  */
read_balance(struct r1conf * conf,struct r1bio * r1_bio,int * max_sectors)862 static int read_balance(struct r1conf *conf, struct r1bio *r1_bio,
863 			int *max_sectors)
864 {
865 	int disk;
866 
867 	clear_bit(R1BIO_FailFast, &r1_bio->state);
868 
869 	if (raid1_should_read_first(conf->mddev, r1_bio->sector,
870 				    r1_bio->sectors))
871 		return choose_first_rdev(conf, r1_bio, max_sectors);
872 
873 	disk = choose_best_rdev(conf, r1_bio);
874 	if (disk >= 0) {
875 		*max_sectors = r1_bio->sectors;
876 		update_read_sectors(conf, disk, r1_bio->sector,
877 				    r1_bio->sectors);
878 		return disk;
879 	}
880 
881 	/*
882 	 * If we are here it means we didn't find a perfectly good disk so
883 	 * now spend a bit more time trying to find one with the most good
884 	 * sectors.
885 	 */
886 	disk = choose_bb_rdev(conf, r1_bio, max_sectors);
887 	if (disk >= 0)
888 		return disk;
889 
890 	return choose_slow_rdev(conf, r1_bio, max_sectors);
891 }
892 
wake_up_barrier(struct r1conf * conf)893 static void wake_up_barrier(struct r1conf *conf)
894 {
895 	if (wq_has_sleeper(&conf->wait_barrier))
896 		wake_up(&conf->wait_barrier);
897 }
898 
flush_bio_list(struct r1conf * conf,struct bio * bio)899 static void flush_bio_list(struct r1conf *conf, struct bio *bio)
900 {
901 	/* flush any pending bitmap writes to disk before proceeding w/ I/O */
902 	raid1_prepare_flush_writes(conf->mddev);
903 	wake_up_barrier(conf);
904 
905 	while (bio) { /* submit pending writes */
906 		struct bio *next = bio->bi_next;
907 
908 		raid1_submit_write(bio);
909 		bio = next;
910 		cond_resched();
911 	}
912 }
913 
flush_pending_writes(struct r1conf * conf)914 static void flush_pending_writes(struct r1conf *conf)
915 {
916 	/* Any writes that have been queued but are awaiting
917 	 * bitmap updates get flushed here.
918 	 */
919 	spin_lock_irq(&conf->device_lock);
920 
921 	if (conf->pending_bio_list.head) {
922 		struct blk_plug plug;
923 		struct bio *bio;
924 
925 		bio = bio_list_get(&conf->pending_bio_list);
926 		spin_unlock_irq(&conf->device_lock);
927 
928 		/*
929 		 * As this is called in a wait_event() loop (see freeze_array),
930 		 * current->state might be TASK_UNINTERRUPTIBLE which will
931 		 * cause a warning when we prepare to wait again.  As it is
932 		 * rare that this path is taken, it is perfectly safe to force
933 		 * us to go around the wait_event() loop again, so the warning
934 		 * is a false-positive.  Silence the warning by resetting
935 		 * thread state
936 		 */
937 		__set_current_state(TASK_RUNNING);
938 		blk_start_plug(&plug);
939 		flush_bio_list(conf, bio);
940 		blk_finish_plug(&plug);
941 	} else
942 		spin_unlock_irq(&conf->device_lock);
943 }
944 
945 /* Barriers....
946  * Sometimes we need to suspend IO while we do something else,
947  * either some resync/recovery, or reconfigure the array.
948  * To do this we raise a 'barrier'.
949  * The 'barrier' is a counter that can be raised multiple times
950  * to count how many activities are happening which preclude
951  * normal IO.
952  * We can only raise the barrier if there is no pending IO.
953  * i.e. if nr_pending == 0.
954  * We choose only to raise the barrier if no-one is waiting for the
955  * barrier to go down.  This means that as soon as an IO request
956  * is ready, no other operations which require a barrier will start
957  * until the IO request has had a chance.
958  *
959  * So: regular IO calls 'wait_barrier'.  When that returns there
960  *    is no backgroup IO happening,  It must arrange to call
961  *    allow_barrier when it has finished its IO.
962  * backgroup IO calls must call raise_barrier.  Once that returns
963  *    there is no normal IO happeing.  It must arrange to call
964  *    lower_barrier when the particular background IO completes.
965  *
966  * If resync/recovery is interrupted, returns -EINTR;
967  * Otherwise, returns 0.
968  */
raise_barrier(struct r1conf * conf,sector_t sector_nr)969 static int raise_barrier(struct r1conf *conf, sector_t sector_nr)
970 {
971 	int idx = sector_to_idx(sector_nr);
972 
973 	spin_lock_irq(&conf->resync_lock);
974 
975 	/* Wait until no block IO is waiting */
976 	wait_event_lock_irq(conf->wait_barrier,
977 			    !atomic_read(&conf->nr_waiting[idx]),
978 			    conf->resync_lock);
979 
980 	/* block any new IO from starting */
981 	atomic_inc(&conf->barrier[idx]);
982 	/*
983 	 * In raise_barrier() we firstly increase conf->barrier[idx] then
984 	 * check conf->nr_pending[idx]. In _wait_barrier() we firstly
985 	 * increase conf->nr_pending[idx] then check conf->barrier[idx].
986 	 * A memory barrier here to make sure conf->nr_pending[idx] won't
987 	 * be fetched before conf->barrier[idx] is increased. Otherwise
988 	 * there will be a race between raise_barrier() and _wait_barrier().
989 	 */
990 	smp_mb__after_atomic();
991 
992 	/* For these conditions we must wait:
993 	 * A: while the array is in frozen state
994 	 * B: while conf->nr_pending[idx] is not 0, meaning regular I/O
995 	 *    existing in corresponding I/O barrier bucket.
996 	 * C: while conf->barrier[idx] >= RESYNC_DEPTH, meaning reaches
997 	 *    max resync count which allowed on current I/O barrier bucket.
998 	 */
999 	wait_event_lock_irq(conf->wait_barrier,
1000 			    (!conf->array_frozen &&
1001 			     !atomic_read(&conf->nr_pending[idx]) &&
1002 			     atomic_read(&conf->barrier[idx]) < RESYNC_DEPTH) ||
1003 				test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery),
1004 			    conf->resync_lock);
1005 
1006 	if (test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) {
1007 		atomic_dec(&conf->barrier[idx]);
1008 		spin_unlock_irq(&conf->resync_lock);
1009 		wake_up(&conf->wait_barrier);
1010 		return -EINTR;
1011 	}
1012 
1013 	atomic_inc(&conf->nr_sync_pending);
1014 	spin_unlock_irq(&conf->resync_lock);
1015 
1016 	return 0;
1017 }
1018 
lower_barrier(struct r1conf * conf,sector_t sector_nr)1019 static void lower_barrier(struct r1conf *conf, sector_t sector_nr)
1020 {
1021 	int idx = sector_to_idx(sector_nr);
1022 
1023 	BUG_ON(atomic_read(&conf->barrier[idx]) <= 0);
1024 
1025 	atomic_dec(&conf->barrier[idx]);
1026 	atomic_dec(&conf->nr_sync_pending);
1027 	wake_up(&conf->wait_barrier);
1028 }
1029 
_wait_barrier(struct r1conf * conf,int idx,bool nowait)1030 static bool _wait_barrier(struct r1conf *conf, int idx, bool nowait)
1031 {
1032 	bool ret = true;
1033 
1034 	/*
1035 	 * We need to increase conf->nr_pending[idx] very early here,
1036 	 * then raise_barrier() can be blocked when it waits for
1037 	 * conf->nr_pending[idx] to be 0. Then we can avoid holding
1038 	 * conf->resync_lock when there is no barrier raised in same
1039 	 * barrier unit bucket. Also if the array is frozen, I/O
1040 	 * should be blocked until array is unfrozen.
1041 	 */
1042 	atomic_inc(&conf->nr_pending[idx]);
1043 	/*
1044 	 * In _wait_barrier() we firstly increase conf->nr_pending[idx], then
1045 	 * check conf->barrier[idx]. In raise_barrier() we firstly increase
1046 	 * conf->barrier[idx], then check conf->nr_pending[idx]. A memory
1047 	 * barrier is necessary here to make sure conf->barrier[idx] won't be
1048 	 * fetched before conf->nr_pending[idx] is increased. Otherwise there
1049 	 * will be a race between _wait_barrier() and raise_barrier().
1050 	 */
1051 	smp_mb__after_atomic();
1052 
1053 	/*
1054 	 * Don't worry about checking two atomic_t variables at same time
1055 	 * here. If during we check conf->barrier[idx], the array is
1056 	 * frozen (conf->array_frozen is 1), and chonf->barrier[idx] is
1057 	 * 0, it is safe to return and make the I/O continue. Because the
1058 	 * array is frozen, all I/O returned here will eventually complete
1059 	 * or be queued, no race will happen. See code comment in
1060 	 * frozen_array().
1061 	 */
1062 	if (!READ_ONCE(conf->array_frozen) &&
1063 	    !atomic_read(&conf->barrier[idx]))
1064 		return ret;
1065 
1066 	/*
1067 	 * After holding conf->resync_lock, conf->nr_pending[idx]
1068 	 * should be decreased before waiting for barrier to drop.
1069 	 * Otherwise, we may encounter a race condition because
1070 	 * raise_barrer() might be waiting for conf->nr_pending[idx]
1071 	 * to be 0 at same time.
1072 	 */
1073 	spin_lock_irq(&conf->resync_lock);
1074 	atomic_inc(&conf->nr_waiting[idx]);
1075 	atomic_dec(&conf->nr_pending[idx]);
1076 	/*
1077 	 * In case freeze_array() is waiting for
1078 	 * get_unqueued_pending() == extra
1079 	 */
1080 	wake_up_barrier(conf);
1081 	/* Wait for the barrier in same barrier unit bucket to drop. */
1082 
1083 	/* Return false when nowait flag is set */
1084 	if (nowait) {
1085 		ret = false;
1086 	} else {
1087 		wait_event_lock_irq(conf->wait_barrier,
1088 				!conf->array_frozen &&
1089 				!atomic_read(&conf->barrier[idx]),
1090 				conf->resync_lock);
1091 		atomic_inc(&conf->nr_pending[idx]);
1092 	}
1093 
1094 	atomic_dec(&conf->nr_waiting[idx]);
1095 	spin_unlock_irq(&conf->resync_lock);
1096 	return ret;
1097 }
1098 
wait_read_barrier(struct r1conf * conf,sector_t sector_nr,bool nowait)1099 static bool wait_read_barrier(struct r1conf *conf, sector_t sector_nr, bool nowait)
1100 {
1101 	int idx = sector_to_idx(sector_nr);
1102 	bool ret = true;
1103 
1104 	/*
1105 	 * Very similar to _wait_barrier(). The difference is, for read
1106 	 * I/O we don't need wait for sync I/O, but if the whole array
1107 	 * is frozen, the read I/O still has to wait until the array is
1108 	 * unfrozen. Since there is no ordering requirement with
1109 	 * conf->barrier[idx] here, memory barrier is unnecessary as well.
1110 	 */
1111 	atomic_inc(&conf->nr_pending[idx]);
1112 
1113 	if (!READ_ONCE(conf->array_frozen))
1114 		return ret;
1115 
1116 	spin_lock_irq(&conf->resync_lock);
1117 	atomic_inc(&conf->nr_waiting[idx]);
1118 	atomic_dec(&conf->nr_pending[idx]);
1119 	/*
1120 	 * In case freeze_array() is waiting for
1121 	 * get_unqueued_pending() == extra
1122 	 */
1123 	wake_up_barrier(conf);
1124 	/* Wait for array to be unfrozen */
1125 
1126 	/* Return false when nowait flag is set */
1127 	if (nowait) {
1128 		/* Return false when nowait flag is set */
1129 		ret = false;
1130 	} else {
1131 		wait_event_lock_irq(conf->wait_barrier,
1132 				!conf->array_frozen,
1133 				conf->resync_lock);
1134 		atomic_inc(&conf->nr_pending[idx]);
1135 	}
1136 
1137 	atomic_dec(&conf->nr_waiting[idx]);
1138 	spin_unlock_irq(&conf->resync_lock);
1139 	return ret;
1140 }
1141 
wait_barrier(struct r1conf * conf,sector_t sector_nr,bool nowait)1142 static bool wait_barrier(struct r1conf *conf, sector_t sector_nr, bool nowait)
1143 {
1144 	int idx = sector_to_idx(sector_nr);
1145 
1146 	return _wait_barrier(conf, idx, nowait);
1147 }
1148 
_allow_barrier(struct r1conf * conf,int idx)1149 static void _allow_barrier(struct r1conf *conf, int idx)
1150 {
1151 	atomic_dec(&conf->nr_pending[idx]);
1152 	wake_up_barrier(conf);
1153 }
1154 
allow_barrier(struct r1conf * conf,sector_t sector_nr)1155 static void allow_barrier(struct r1conf *conf, sector_t sector_nr)
1156 {
1157 	int idx = sector_to_idx(sector_nr);
1158 
1159 	_allow_barrier(conf, idx);
1160 }
1161 
1162 /* conf->resync_lock should be held */
get_unqueued_pending(struct r1conf * conf)1163 static int get_unqueued_pending(struct r1conf *conf)
1164 {
1165 	int idx, ret;
1166 
1167 	ret = atomic_read(&conf->nr_sync_pending);
1168 	for (idx = 0; idx < BARRIER_BUCKETS_NR; idx++)
1169 		ret += atomic_read(&conf->nr_pending[idx]) -
1170 			atomic_read(&conf->nr_queued[idx]);
1171 
1172 	return ret;
1173 }
1174 
freeze_array(struct r1conf * conf,int extra)1175 static void freeze_array(struct r1conf *conf, int extra)
1176 {
1177 	/* Stop sync I/O and normal I/O and wait for everything to
1178 	 * go quiet.
1179 	 * This is called in two situations:
1180 	 * 1) management command handlers (reshape, remove disk, quiesce).
1181 	 * 2) one normal I/O request failed.
1182 
1183 	 * After array_frozen is set to 1, new sync IO will be blocked at
1184 	 * raise_barrier(), and new normal I/O will blocked at _wait_barrier()
1185 	 * or wait_read_barrier(). The flying I/Os will either complete or be
1186 	 * queued. When everything goes quite, there are only queued I/Os left.
1187 
1188 	 * Every flying I/O contributes to a conf->nr_pending[idx], idx is the
1189 	 * barrier bucket index which this I/O request hits. When all sync and
1190 	 * normal I/O are queued, sum of all conf->nr_pending[] will match sum
1191 	 * of all conf->nr_queued[]. But normal I/O failure is an exception,
1192 	 * in handle_read_error(), we may call freeze_array() before trying to
1193 	 * fix the read error. In this case, the error read I/O is not queued,
1194 	 * so get_unqueued_pending() == 1.
1195 	 *
1196 	 * Therefore before this function returns, we need to wait until
1197 	 * get_unqueued_pendings(conf) gets equal to extra. For
1198 	 * normal I/O context, extra is 1, in rested situations extra is 0.
1199 	 */
1200 	spin_lock_irq(&conf->resync_lock);
1201 	conf->array_frozen = 1;
1202 	mddev_add_trace_msg(conf->mddev, "raid1 wait freeze");
1203 	wait_event_lock_irq_cmd(
1204 		conf->wait_barrier,
1205 		get_unqueued_pending(conf) == extra,
1206 		conf->resync_lock,
1207 		flush_pending_writes(conf));
1208 	spin_unlock_irq(&conf->resync_lock);
1209 }
unfreeze_array(struct r1conf * conf)1210 static void unfreeze_array(struct r1conf *conf)
1211 {
1212 	/* reverse the effect of the freeze */
1213 	spin_lock_irq(&conf->resync_lock);
1214 	conf->array_frozen = 0;
1215 	spin_unlock_irq(&conf->resync_lock);
1216 	wake_up(&conf->wait_barrier);
1217 }
1218 
alloc_behind_master_bio(struct r1bio * r1_bio,struct bio * bio)1219 static void alloc_behind_master_bio(struct r1bio *r1_bio,
1220 					   struct bio *bio)
1221 {
1222 	int size = bio->bi_iter.bi_size;
1223 	unsigned vcnt = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
1224 	int i = 0;
1225 	struct bio *behind_bio = NULL;
1226 
1227 	behind_bio = bio_alloc_bioset(NULL, vcnt, bio->bi_opf, GFP_NOIO,
1228 				      &r1_bio->mddev->bio_set);
1229 
1230 	/* discard op, we don't support writezero/writesame yet */
1231 	if (!bio_has_data(bio)) {
1232 		behind_bio->bi_iter.bi_size = size;
1233 		goto skip_copy;
1234 	}
1235 
1236 	while (i < vcnt && size) {
1237 		struct page *page;
1238 		int len = min_t(int, PAGE_SIZE, size);
1239 
1240 		page = alloc_page(GFP_NOIO);
1241 		if (unlikely(!page))
1242 			goto free_pages;
1243 
1244 		if (!bio_add_page(behind_bio, page, len, 0)) {
1245 			put_page(page);
1246 			goto free_pages;
1247 		}
1248 
1249 		size -= len;
1250 		i++;
1251 	}
1252 
1253 	bio_copy_data(behind_bio, bio);
1254 skip_copy:
1255 	r1_bio->behind_master_bio = behind_bio;
1256 	set_bit(R1BIO_BehindIO, &r1_bio->state);
1257 
1258 	return;
1259 
1260 free_pages:
1261 	pr_debug("%dB behind alloc failed, doing sync I/O\n",
1262 		 bio->bi_iter.bi_size);
1263 	bio_free_pages(behind_bio);
1264 	bio_put(behind_bio);
1265 }
1266 
raid1_unplug(struct blk_plug_cb * cb,bool from_schedule)1267 static void raid1_unplug(struct blk_plug_cb *cb, bool from_schedule)
1268 {
1269 	struct raid1_plug_cb *plug = container_of(cb, struct raid1_plug_cb,
1270 						  cb);
1271 	struct mddev *mddev = plug->cb.data;
1272 	struct r1conf *conf = mddev->private;
1273 	struct bio *bio;
1274 
1275 	if (from_schedule) {
1276 		spin_lock_irq(&conf->device_lock);
1277 		bio_list_merge(&conf->pending_bio_list, &plug->pending);
1278 		spin_unlock_irq(&conf->device_lock);
1279 		wake_up_barrier(conf);
1280 		md_wakeup_thread(mddev->thread);
1281 		kfree(plug);
1282 		return;
1283 	}
1284 
1285 	/* we aren't scheduling, so we can do the write-out directly. */
1286 	bio = bio_list_get(&plug->pending);
1287 	flush_bio_list(conf, bio);
1288 	kfree(plug);
1289 }
1290 
init_r1bio(struct r1bio * r1_bio,struct mddev * mddev,struct bio * bio)1291 static void init_r1bio(struct r1bio *r1_bio, struct mddev *mddev, struct bio *bio)
1292 {
1293 	r1_bio->master_bio = bio;
1294 	r1_bio->sectors = bio_sectors(bio);
1295 	r1_bio->state = 0;
1296 	r1_bio->mddev = mddev;
1297 	r1_bio->sector = bio->bi_iter.bi_sector;
1298 }
1299 
1300 static inline struct r1bio *
alloc_r1bio(struct mddev * mddev,struct bio * bio)1301 alloc_r1bio(struct mddev *mddev, struct bio *bio)
1302 {
1303 	struct r1conf *conf = mddev->private;
1304 	struct r1bio *r1_bio;
1305 
1306 	r1_bio = mempool_alloc(&conf->r1bio_pool, GFP_NOIO);
1307 	/* Ensure no bio records IO_BLOCKED */
1308 	memset(r1_bio->bios, 0, conf->raid_disks * sizeof(r1_bio->bios[0]));
1309 	init_r1bio(r1_bio, mddev, bio);
1310 	return r1_bio;
1311 }
1312 
raid1_read_request(struct mddev * mddev,struct bio * bio,int max_read_sectors,struct r1bio * r1_bio)1313 static void raid1_read_request(struct mddev *mddev, struct bio *bio,
1314 			       int max_read_sectors, struct r1bio *r1_bio)
1315 {
1316 	struct r1conf *conf = mddev->private;
1317 	struct raid1_info *mirror;
1318 	struct bio *read_bio;
1319 	int max_sectors;
1320 	int rdisk;
1321 	bool r1bio_existed = !!r1_bio;
1322 
1323 	/*
1324 	 * If r1_bio is set, we are blocking the raid1d thread
1325 	 * so there is a tiny risk of deadlock.  So ask for
1326 	 * emergency memory if needed.
1327 	 */
1328 	gfp_t gfp = r1_bio ? (GFP_NOIO | __GFP_HIGH) : GFP_NOIO;
1329 
1330 	/*
1331 	 * Still need barrier for READ in case that whole
1332 	 * array is frozen.
1333 	 */
1334 	if (!wait_read_barrier(conf, bio->bi_iter.bi_sector,
1335 				bio->bi_opf & REQ_NOWAIT)) {
1336 		bio_wouldblock_error(bio);
1337 		return;
1338 	}
1339 
1340 	if (!r1_bio)
1341 		r1_bio = alloc_r1bio(mddev, bio);
1342 	else
1343 		init_r1bio(r1_bio, mddev, bio);
1344 	r1_bio->sectors = max_read_sectors;
1345 
1346 	/*
1347 	 * make_request() can abort the operation when read-ahead is being
1348 	 * used and no empty request is available.
1349 	 */
1350 	rdisk = read_balance(conf, r1_bio, &max_sectors);
1351 	if (rdisk < 0) {
1352 		/* couldn't find anywhere to read from */
1353 		if (r1bio_existed)
1354 			pr_crit_ratelimited("md/raid1:%s: %pg: unrecoverable I/O read error for block %llu\n",
1355 					    mdname(mddev),
1356 					    conf->mirrors[r1_bio->read_disk].rdev->bdev,
1357 					    r1_bio->sector);
1358 		raid_end_bio_io(r1_bio);
1359 		return;
1360 	}
1361 	mirror = conf->mirrors + rdisk;
1362 
1363 	if (r1bio_existed)
1364 		pr_info_ratelimited("md/raid1:%s: redirecting sector %llu to other mirror: %pg\n",
1365 				    mdname(mddev),
1366 				    (unsigned long long)r1_bio->sector,
1367 				    mirror->rdev->bdev);
1368 
1369 	if (test_bit(WriteMostly, &mirror->rdev->flags)) {
1370 		/*
1371 		 * Reading from a write-mostly device must take care not to
1372 		 * over-take any writes that are 'behind'
1373 		 */
1374 		mddev_add_trace_msg(mddev, "raid1 wait behind writes");
1375 		mddev->bitmap_ops->wait_behind_writes(mddev);
1376 	}
1377 
1378 	if (max_sectors < bio_sectors(bio)) {
1379 		struct bio *split = bio_split(bio, max_sectors,
1380 					      gfp, &conf->bio_split);
1381 		bio_chain(split, bio);
1382 		submit_bio_noacct(bio);
1383 		bio = split;
1384 		r1_bio->master_bio = bio;
1385 		r1_bio->sectors = max_sectors;
1386 	}
1387 
1388 	r1_bio->read_disk = rdisk;
1389 	if (!r1bio_existed) {
1390 		md_account_bio(mddev, &bio);
1391 		r1_bio->master_bio = bio;
1392 	}
1393 	read_bio = bio_alloc_clone(mirror->rdev->bdev, bio, gfp,
1394 				   &mddev->bio_set);
1395 	read_bio->bi_opf &= ~REQ_NOWAIT;
1396 	r1_bio->bios[rdisk] = read_bio;
1397 
1398 	read_bio->bi_iter.bi_sector = r1_bio->sector +
1399 		mirror->rdev->data_offset;
1400 	read_bio->bi_end_io = raid1_end_read_request;
1401 	if (test_bit(FailFast, &mirror->rdev->flags) &&
1402 	    test_bit(R1BIO_FailFast, &r1_bio->state))
1403 	        read_bio->bi_opf |= MD_FAILFAST;
1404 	read_bio->bi_private = r1_bio;
1405 	mddev_trace_remap(mddev, read_bio, r1_bio->sector);
1406 	submit_bio_noacct(read_bio);
1407 }
1408 
raid1_write_request(struct mddev * mddev,struct bio * bio,int max_write_sectors)1409 static void raid1_write_request(struct mddev *mddev, struct bio *bio,
1410 				int max_write_sectors)
1411 {
1412 	struct r1conf *conf = mddev->private;
1413 	struct r1bio *r1_bio;
1414 	int i, disks;
1415 	unsigned long flags;
1416 	struct md_rdev *blocked_rdev;
1417 	int first_clone;
1418 	int max_sectors;
1419 	bool write_behind = false;
1420 	bool is_discard = (bio_op(bio) == REQ_OP_DISCARD);
1421 
1422 	if (mddev_is_clustered(mddev) &&
1423 	     md_cluster_ops->area_resyncing(mddev, WRITE,
1424 		     bio->bi_iter.bi_sector, bio_end_sector(bio))) {
1425 
1426 		DEFINE_WAIT(w);
1427 		if (bio->bi_opf & REQ_NOWAIT) {
1428 			bio_wouldblock_error(bio);
1429 			return;
1430 		}
1431 		for (;;) {
1432 			prepare_to_wait(&conf->wait_barrier,
1433 					&w, TASK_IDLE);
1434 			if (!md_cluster_ops->area_resyncing(mddev, WRITE,
1435 							bio->bi_iter.bi_sector,
1436 							bio_end_sector(bio)))
1437 				break;
1438 			schedule();
1439 		}
1440 		finish_wait(&conf->wait_barrier, &w);
1441 	}
1442 
1443 	/*
1444 	 * Register the new request and wait if the reconstruction
1445 	 * thread has put up a bar for new requests.
1446 	 * Continue immediately if no resync is active currently.
1447 	 */
1448 	if (!wait_barrier(conf, bio->bi_iter.bi_sector,
1449 				bio->bi_opf & REQ_NOWAIT)) {
1450 		bio_wouldblock_error(bio);
1451 		return;
1452 	}
1453 
1454  retry_write:
1455 	r1_bio = alloc_r1bio(mddev, bio);
1456 	r1_bio->sectors = max_write_sectors;
1457 
1458 	/* first select target devices under rcu_lock and
1459 	 * inc refcount on their rdev.  Record them by setting
1460 	 * bios[x] to bio
1461 	 * If there are known/acknowledged bad blocks on any device on
1462 	 * which we have seen a write error, we want to avoid writing those
1463 	 * blocks.
1464 	 * This potentially requires several writes to write around
1465 	 * the bad blocks.  Each set of writes gets it's own r1bio
1466 	 * with a set of bios attached.
1467 	 */
1468 
1469 	disks = conf->raid_disks * 2;
1470 	blocked_rdev = NULL;
1471 	max_sectors = r1_bio->sectors;
1472 	for (i = 0;  i < disks; i++) {
1473 		struct md_rdev *rdev = conf->mirrors[i].rdev;
1474 
1475 		/*
1476 		 * The write-behind io is only attempted on drives marked as
1477 		 * write-mostly, which means we could allocate write behind
1478 		 * bio later.
1479 		 */
1480 		if (!is_discard && rdev && test_bit(WriteMostly, &rdev->flags))
1481 			write_behind = true;
1482 
1483 		if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
1484 			atomic_inc(&rdev->nr_pending);
1485 			blocked_rdev = rdev;
1486 			break;
1487 		}
1488 		r1_bio->bios[i] = NULL;
1489 		if (!rdev || test_bit(Faulty, &rdev->flags))
1490 			continue;
1491 
1492 		atomic_inc(&rdev->nr_pending);
1493 		if (test_bit(WriteErrorSeen, &rdev->flags)) {
1494 			sector_t first_bad;
1495 			int bad_sectors;
1496 			int is_bad;
1497 
1498 			is_bad = is_badblock(rdev, r1_bio->sector, max_sectors,
1499 					     &first_bad, &bad_sectors);
1500 			if (is_bad < 0) {
1501 				/* mustn't write here until the bad block is
1502 				 * acknowledged*/
1503 				set_bit(BlockedBadBlocks, &rdev->flags);
1504 				blocked_rdev = rdev;
1505 				break;
1506 			}
1507 			if (is_bad && first_bad <= r1_bio->sector) {
1508 				/* Cannot write here at all */
1509 				bad_sectors -= (r1_bio->sector - first_bad);
1510 				if (bad_sectors < max_sectors)
1511 					/* mustn't write more than bad_sectors
1512 					 * to other devices yet
1513 					 */
1514 					max_sectors = bad_sectors;
1515 				rdev_dec_pending(rdev, mddev);
1516 				continue;
1517 			}
1518 			if (is_bad) {
1519 				int good_sectors = first_bad - r1_bio->sector;
1520 				if (good_sectors < max_sectors)
1521 					max_sectors = good_sectors;
1522 			}
1523 		}
1524 		r1_bio->bios[i] = bio;
1525 	}
1526 
1527 	if (unlikely(blocked_rdev)) {
1528 		/* Wait for this device to become unblocked */
1529 		int j;
1530 
1531 		for (j = 0; j < i; j++)
1532 			if (r1_bio->bios[j])
1533 				rdev_dec_pending(conf->mirrors[j].rdev, mddev);
1534 		mempool_free(r1_bio, &conf->r1bio_pool);
1535 		allow_barrier(conf, bio->bi_iter.bi_sector);
1536 
1537 		if (bio->bi_opf & REQ_NOWAIT) {
1538 			bio_wouldblock_error(bio);
1539 			return;
1540 		}
1541 		mddev_add_trace_msg(mddev, "raid1 wait rdev %d blocked",
1542 				blocked_rdev->raid_disk);
1543 		md_wait_for_blocked_rdev(blocked_rdev, mddev);
1544 		wait_barrier(conf, bio->bi_iter.bi_sector, false);
1545 		goto retry_write;
1546 	}
1547 
1548 	/*
1549 	 * When using a bitmap, we may call alloc_behind_master_bio below.
1550 	 * alloc_behind_master_bio allocates a copy of the data payload a page
1551 	 * at a time and thus needs a new bio that can fit the whole payload
1552 	 * this bio in page sized chunks.
1553 	 */
1554 	if (write_behind && mddev->bitmap)
1555 		max_sectors = min_t(int, max_sectors,
1556 				    BIO_MAX_VECS * (PAGE_SIZE >> 9));
1557 	if (max_sectors < bio_sectors(bio)) {
1558 		struct bio *split = bio_split(bio, max_sectors,
1559 					      GFP_NOIO, &conf->bio_split);
1560 		bio_chain(split, bio);
1561 		submit_bio_noacct(bio);
1562 		bio = split;
1563 		r1_bio->master_bio = bio;
1564 		r1_bio->sectors = max_sectors;
1565 	}
1566 
1567 	md_account_bio(mddev, &bio);
1568 	r1_bio->master_bio = bio;
1569 	atomic_set(&r1_bio->remaining, 1);
1570 	atomic_set(&r1_bio->behind_remaining, 0);
1571 
1572 	first_clone = 1;
1573 
1574 	for (i = 0; i < disks; i++) {
1575 		struct bio *mbio = NULL;
1576 		struct md_rdev *rdev = conf->mirrors[i].rdev;
1577 		if (!r1_bio->bios[i])
1578 			continue;
1579 
1580 		if (first_clone) {
1581 			unsigned long max_write_behind =
1582 				mddev->bitmap_info.max_write_behind;
1583 			struct md_bitmap_stats stats;
1584 			int err;
1585 
1586 			/* do behind I/O ?
1587 			 * Not if there are too many, or cannot
1588 			 * allocate memory, or a reader on WriteMostly
1589 			 * is waiting for behind writes to flush */
1590 			err = mddev->bitmap_ops->get_stats(mddev->bitmap, &stats);
1591 			if (!err && write_behind && !stats.behind_wait &&
1592 			    stats.behind_writes < max_write_behind)
1593 				alloc_behind_master_bio(r1_bio, bio);
1594 
1595 			if (test_bit(R1BIO_BehindIO, &r1_bio->state))
1596 				mddev->bitmap_ops->start_behind_write(mddev);
1597 			first_clone = 0;
1598 		}
1599 
1600 		if (r1_bio->behind_master_bio) {
1601 			mbio = bio_alloc_clone(rdev->bdev,
1602 					       r1_bio->behind_master_bio,
1603 					       GFP_NOIO, &mddev->bio_set);
1604 			if (test_bit(CollisionCheck, &rdev->flags))
1605 				wait_for_serialization(rdev, r1_bio);
1606 			if (test_bit(WriteMostly, &rdev->flags))
1607 				atomic_inc(&r1_bio->behind_remaining);
1608 		} else {
1609 			mbio = bio_alloc_clone(rdev->bdev, bio, GFP_NOIO,
1610 					       &mddev->bio_set);
1611 
1612 			if (mddev->serialize_policy)
1613 				wait_for_serialization(rdev, r1_bio);
1614 		}
1615 
1616 		mbio->bi_opf &= ~REQ_NOWAIT;
1617 		r1_bio->bios[i] = mbio;
1618 
1619 		mbio->bi_iter.bi_sector	= (r1_bio->sector + rdev->data_offset);
1620 		mbio->bi_end_io	= raid1_end_write_request;
1621 		if (test_bit(FailFast, &rdev->flags) &&
1622 		    !test_bit(WriteMostly, &rdev->flags) &&
1623 		    conf->raid_disks - mddev->degraded > 1)
1624 			mbio->bi_opf |= MD_FAILFAST;
1625 		mbio->bi_private = r1_bio;
1626 
1627 		atomic_inc(&r1_bio->remaining);
1628 		mddev_trace_remap(mddev, mbio, r1_bio->sector);
1629 		/* flush_pending_writes() needs access to the rdev so...*/
1630 		mbio->bi_bdev = (void *)rdev;
1631 		if (!raid1_add_bio_to_plug(mddev, mbio, raid1_unplug, disks)) {
1632 			spin_lock_irqsave(&conf->device_lock, flags);
1633 			bio_list_add(&conf->pending_bio_list, mbio);
1634 			spin_unlock_irqrestore(&conf->device_lock, flags);
1635 			md_wakeup_thread(mddev->thread);
1636 		}
1637 	}
1638 
1639 	r1_bio_write_done(r1_bio);
1640 
1641 	/* In case raid1d snuck in to freeze_array */
1642 	wake_up_barrier(conf);
1643 }
1644 
raid1_make_request(struct mddev * mddev,struct bio * bio)1645 static bool raid1_make_request(struct mddev *mddev, struct bio *bio)
1646 {
1647 	sector_t sectors;
1648 
1649 	if (unlikely(bio->bi_opf & REQ_PREFLUSH)
1650 	    && md_flush_request(mddev, bio))
1651 		return true;
1652 
1653 	/*
1654 	 * There is a limit to the maximum size, but
1655 	 * the read/write handler might find a lower limit
1656 	 * due to bad blocks.  To avoid multiple splits,
1657 	 * we pass the maximum number of sectors down
1658 	 * and let the lower level perform the split.
1659 	 */
1660 	sectors = align_to_barrier_unit_end(
1661 		bio->bi_iter.bi_sector, bio_sectors(bio));
1662 
1663 	if (bio_data_dir(bio) == READ)
1664 		raid1_read_request(mddev, bio, sectors, NULL);
1665 	else {
1666 		md_write_start(mddev,bio);
1667 		raid1_write_request(mddev, bio, sectors);
1668 	}
1669 	return true;
1670 }
1671 
raid1_status(struct seq_file * seq,struct mddev * mddev)1672 static void raid1_status(struct seq_file *seq, struct mddev *mddev)
1673 {
1674 	struct r1conf *conf = mddev->private;
1675 	int i;
1676 
1677 	lockdep_assert_held(&mddev->lock);
1678 
1679 	seq_printf(seq, " [%d/%d] [", conf->raid_disks,
1680 		   conf->raid_disks - mddev->degraded);
1681 	for (i = 0; i < conf->raid_disks; i++) {
1682 		struct md_rdev *rdev = READ_ONCE(conf->mirrors[i].rdev);
1683 
1684 		seq_printf(seq, "%s",
1685 			   rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_");
1686 	}
1687 	seq_printf(seq, "]");
1688 }
1689 
1690 /**
1691  * raid1_error() - RAID1 error handler.
1692  * @mddev: affected md device.
1693  * @rdev: member device to fail.
1694  *
1695  * The routine acknowledges &rdev failure and determines new @mddev state.
1696  * If it failed, then:
1697  *	- &MD_BROKEN flag is set in &mddev->flags.
1698  *	- recovery is disabled.
1699  * Otherwise, it must be degraded:
1700  *	- recovery is interrupted.
1701  *	- &mddev->degraded is bumped.
1702  *
1703  * @rdev is marked as &Faulty excluding case when array is failed and
1704  * &mddev->fail_last_dev is off.
1705  */
raid1_error(struct mddev * mddev,struct md_rdev * rdev)1706 static void raid1_error(struct mddev *mddev, struct md_rdev *rdev)
1707 {
1708 	struct r1conf *conf = mddev->private;
1709 	unsigned long flags;
1710 
1711 	spin_lock_irqsave(&conf->device_lock, flags);
1712 
1713 	if (test_bit(In_sync, &rdev->flags) &&
1714 	    (conf->raid_disks - mddev->degraded) == 1) {
1715 		set_bit(MD_BROKEN, &mddev->flags);
1716 
1717 		if (!mddev->fail_last_dev) {
1718 			conf->recovery_disabled = mddev->recovery_disabled;
1719 			spin_unlock_irqrestore(&conf->device_lock, flags);
1720 			return;
1721 		}
1722 	}
1723 	set_bit(Blocked, &rdev->flags);
1724 	if (test_and_clear_bit(In_sync, &rdev->flags))
1725 		mddev->degraded++;
1726 	set_bit(Faulty, &rdev->flags);
1727 	spin_unlock_irqrestore(&conf->device_lock, flags);
1728 	/*
1729 	 * if recovery is running, make sure it aborts.
1730 	 */
1731 	set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1732 	set_mask_bits(&mddev->sb_flags, 0,
1733 		      BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING));
1734 	pr_crit("md/raid1:%s: Disk failure on %pg, disabling device.\n"
1735 		"md/raid1:%s: Operation continuing on %d devices.\n",
1736 		mdname(mddev), rdev->bdev,
1737 		mdname(mddev), conf->raid_disks - mddev->degraded);
1738 }
1739 
print_conf(struct r1conf * conf)1740 static void print_conf(struct r1conf *conf)
1741 {
1742 	int i;
1743 
1744 	pr_debug("RAID1 conf printout:\n");
1745 	if (!conf) {
1746 		pr_debug("(!conf)\n");
1747 		return;
1748 	}
1749 	pr_debug(" --- wd:%d rd:%d\n", conf->raid_disks - conf->mddev->degraded,
1750 		 conf->raid_disks);
1751 
1752 	lockdep_assert_held(&conf->mddev->reconfig_mutex);
1753 	for (i = 0; i < conf->raid_disks; i++) {
1754 		struct md_rdev *rdev = conf->mirrors[i].rdev;
1755 		if (rdev)
1756 			pr_debug(" disk %d, wo:%d, o:%d, dev:%pg\n",
1757 				 i, !test_bit(In_sync, &rdev->flags),
1758 				 !test_bit(Faulty, &rdev->flags),
1759 				 rdev->bdev);
1760 	}
1761 }
1762 
close_sync(struct r1conf * conf)1763 static void close_sync(struct r1conf *conf)
1764 {
1765 	int idx;
1766 
1767 	for (idx = 0; idx < BARRIER_BUCKETS_NR; idx++) {
1768 		_wait_barrier(conf, idx, false);
1769 		_allow_barrier(conf, idx);
1770 	}
1771 
1772 	mempool_exit(&conf->r1buf_pool);
1773 }
1774 
raid1_spare_active(struct mddev * mddev)1775 static int raid1_spare_active(struct mddev *mddev)
1776 {
1777 	int i;
1778 	struct r1conf *conf = mddev->private;
1779 	int count = 0;
1780 	unsigned long flags;
1781 
1782 	/*
1783 	 * Find all failed disks within the RAID1 configuration
1784 	 * and mark them readable.
1785 	 * Called under mddev lock, so rcu protection not needed.
1786 	 * device_lock used to avoid races with raid1_end_read_request
1787 	 * which expects 'In_sync' flags and ->degraded to be consistent.
1788 	 */
1789 	spin_lock_irqsave(&conf->device_lock, flags);
1790 	for (i = 0; i < conf->raid_disks; i++) {
1791 		struct md_rdev *rdev = conf->mirrors[i].rdev;
1792 		struct md_rdev *repl = conf->mirrors[conf->raid_disks + i].rdev;
1793 		if (repl
1794 		    && !test_bit(Candidate, &repl->flags)
1795 		    && repl->recovery_offset == MaxSector
1796 		    && !test_bit(Faulty, &repl->flags)
1797 		    && !test_and_set_bit(In_sync, &repl->flags)) {
1798 			/* replacement has just become active */
1799 			if (!rdev ||
1800 			    !test_and_clear_bit(In_sync, &rdev->flags))
1801 				count++;
1802 			if (rdev) {
1803 				/* Replaced device not technically
1804 				 * faulty, but we need to be sure
1805 				 * it gets removed and never re-added
1806 				 */
1807 				set_bit(Faulty, &rdev->flags);
1808 				sysfs_notify_dirent_safe(
1809 					rdev->sysfs_state);
1810 			}
1811 		}
1812 		if (rdev
1813 		    && rdev->recovery_offset == MaxSector
1814 		    && !test_bit(Faulty, &rdev->flags)
1815 		    && !test_and_set_bit(In_sync, &rdev->flags)) {
1816 			count++;
1817 			sysfs_notify_dirent_safe(rdev->sysfs_state);
1818 		}
1819 	}
1820 	mddev->degraded -= count;
1821 	spin_unlock_irqrestore(&conf->device_lock, flags);
1822 
1823 	print_conf(conf);
1824 	return count;
1825 }
1826 
raid1_add_conf(struct r1conf * conf,struct md_rdev * rdev,int disk,bool replacement)1827 static bool raid1_add_conf(struct r1conf *conf, struct md_rdev *rdev, int disk,
1828 			   bool replacement)
1829 {
1830 	struct raid1_info *info = conf->mirrors + disk;
1831 
1832 	if (replacement)
1833 		info += conf->raid_disks;
1834 
1835 	if (info->rdev)
1836 		return false;
1837 
1838 	if (bdev_nonrot(rdev->bdev)) {
1839 		set_bit(Nonrot, &rdev->flags);
1840 		WRITE_ONCE(conf->nonrot_disks, conf->nonrot_disks + 1);
1841 	}
1842 
1843 	rdev->raid_disk = disk;
1844 	info->head_position = 0;
1845 	info->seq_start = MaxSector;
1846 	WRITE_ONCE(info->rdev, rdev);
1847 
1848 	return true;
1849 }
1850 
raid1_remove_conf(struct r1conf * conf,int disk)1851 static bool raid1_remove_conf(struct r1conf *conf, int disk)
1852 {
1853 	struct raid1_info *info = conf->mirrors + disk;
1854 	struct md_rdev *rdev = info->rdev;
1855 
1856 	if (!rdev || test_bit(In_sync, &rdev->flags) ||
1857 	    atomic_read(&rdev->nr_pending))
1858 		return false;
1859 
1860 	/* Only remove non-faulty devices if recovery is not possible. */
1861 	if (!test_bit(Faulty, &rdev->flags) &&
1862 	    rdev->mddev->recovery_disabled != conf->recovery_disabled &&
1863 	    rdev->mddev->degraded < conf->raid_disks)
1864 		return false;
1865 
1866 	if (test_and_clear_bit(Nonrot, &rdev->flags))
1867 		WRITE_ONCE(conf->nonrot_disks, conf->nonrot_disks - 1);
1868 
1869 	WRITE_ONCE(info->rdev, NULL);
1870 	return true;
1871 }
1872 
raid1_add_disk(struct mddev * mddev,struct md_rdev * rdev)1873 static int raid1_add_disk(struct mddev *mddev, struct md_rdev *rdev)
1874 {
1875 	struct r1conf *conf = mddev->private;
1876 	int err = -EEXIST;
1877 	int mirror = 0, repl_slot = -1;
1878 	struct raid1_info *p;
1879 	int first = 0;
1880 	int last = conf->raid_disks - 1;
1881 
1882 	if (mddev->recovery_disabled == conf->recovery_disabled)
1883 		return -EBUSY;
1884 
1885 	if (rdev->raid_disk >= 0)
1886 		first = last = rdev->raid_disk;
1887 
1888 	/*
1889 	 * find the disk ... but prefer rdev->saved_raid_disk
1890 	 * if possible.
1891 	 */
1892 	if (rdev->saved_raid_disk >= 0 &&
1893 	    rdev->saved_raid_disk >= first &&
1894 	    rdev->saved_raid_disk < conf->raid_disks &&
1895 	    conf->mirrors[rdev->saved_raid_disk].rdev == NULL)
1896 		first = last = rdev->saved_raid_disk;
1897 
1898 	for (mirror = first; mirror <= last; mirror++) {
1899 		p = conf->mirrors + mirror;
1900 		if (!p->rdev) {
1901 			err = mddev_stack_new_rdev(mddev, rdev);
1902 			if (err)
1903 				return err;
1904 
1905 			raid1_add_conf(conf, rdev, mirror, false);
1906 			/* As all devices are equivalent, we don't need a full recovery
1907 			 * if this was recently any drive of the array
1908 			 */
1909 			if (rdev->saved_raid_disk < 0)
1910 				conf->fullsync = 1;
1911 			break;
1912 		}
1913 		if (test_bit(WantReplacement, &p->rdev->flags) &&
1914 		    p[conf->raid_disks].rdev == NULL && repl_slot < 0)
1915 			repl_slot = mirror;
1916 	}
1917 
1918 	if (err && repl_slot >= 0) {
1919 		/* Add this device as a replacement */
1920 		clear_bit(In_sync, &rdev->flags);
1921 		set_bit(Replacement, &rdev->flags);
1922 		raid1_add_conf(conf, rdev, repl_slot, true);
1923 		err = 0;
1924 		conf->fullsync = 1;
1925 	}
1926 
1927 	print_conf(conf);
1928 	return err;
1929 }
1930 
raid1_remove_disk(struct mddev * mddev,struct md_rdev * rdev)1931 static int raid1_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
1932 {
1933 	struct r1conf *conf = mddev->private;
1934 	int err = 0;
1935 	int number = rdev->raid_disk;
1936 	struct raid1_info *p = conf->mirrors + number;
1937 
1938 	if (unlikely(number >= conf->raid_disks))
1939 		goto abort;
1940 
1941 	if (rdev != p->rdev) {
1942 		number += conf->raid_disks;
1943 		p = conf->mirrors + number;
1944 	}
1945 
1946 	print_conf(conf);
1947 	if (rdev == p->rdev) {
1948 		if (!raid1_remove_conf(conf, number)) {
1949 			err = -EBUSY;
1950 			goto abort;
1951 		}
1952 
1953 		if (number < conf->raid_disks &&
1954 		    conf->mirrors[conf->raid_disks + number].rdev) {
1955 			/* We just removed a device that is being replaced.
1956 			 * Move down the replacement.  We drain all IO before
1957 			 * doing this to avoid confusion.
1958 			 */
1959 			struct md_rdev *repl =
1960 				conf->mirrors[conf->raid_disks + number].rdev;
1961 			freeze_array(conf, 0);
1962 			if (atomic_read(&repl->nr_pending)) {
1963 				/* It means that some queued IO of retry_list
1964 				 * hold repl. Thus, we cannot set replacement
1965 				 * as NULL, avoiding rdev NULL pointer
1966 				 * dereference in sync_request_write and
1967 				 * handle_write_finished.
1968 				 */
1969 				err = -EBUSY;
1970 				unfreeze_array(conf);
1971 				goto abort;
1972 			}
1973 			clear_bit(Replacement, &repl->flags);
1974 			WRITE_ONCE(p->rdev, repl);
1975 			conf->mirrors[conf->raid_disks + number].rdev = NULL;
1976 			unfreeze_array(conf);
1977 		}
1978 
1979 		clear_bit(WantReplacement, &rdev->flags);
1980 		err = md_integrity_register(mddev);
1981 	}
1982 abort:
1983 
1984 	print_conf(conf);
1985 	return err;
1986 }
1987 
end_sync_read(struct bio * bio)1988 static void end_sync_read(struct bio *bio)
1989 {
1990 	struct r1bio *r1_bio = get_resync_r1bio(bio);
1991 
1992 	update_head_pos(r1_bio->read_disk, r1_bio);
1993 
1994 	/*
1995 	 * we have read a block, now it needs to be re-written,
1996 	 * or re-read if the read failed.
1997 	 * We don't do much here, just schedule handling by raid1d
1998 	 */
1999 	if (!bio->bi_status)
2000 		set_bit(R1BIO_Uptodate, &r1_bio->state);
2001 
2002 	if (atomic_dec_and_test(&r1_bio->remaining))
2003 		reschedule_retry(r1_bio);
2004 }
2005 
abort_sync_write(struct mddev * mddev,struct r1bio * r1_bio)2006 static void abort_sync_write(struct mddev *mddev, struct r1bio *r1_bio)
2007 {
2008 	sector_t sync_blocks = 0;
2009 	sector_t s = r1_bio->sector;
2010 	long sectors_to_go = r1_bio->sectors;
2011 
2012 	/* make sure these bits don't get cleared. */
2013 	do {
2014 		mddev->bitmap_ops->end_sync(mddev, s, &sync_blocks);
2015 		s += sync_blocks;
2016 		sectors_to_go -= sync_blocks;
2017 	} while (sectors_to_go > 0);
2018 }
2019 
put_sync_write_buf(struct r1bio * r1_bio,int uptodate)2020 static void put_sync_write_buf(struct r1bio *r1_bio, int uptodate)
2021 {
2022 	if (atomic_dec_and_test(&r1_bio->remaining)) {
2023 		struct mddev *mddev = r1_bio->mddev;
2024 		int s = r1_bio->sectors;
2025 
2026 		if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
2027 		    test_bit(R1BIO_WriteError, &r1_bio->state))
2028 			reschedule_retry(r1_bio);
2029 		else {
2030 			put_buf(r1_bio);
2031 			md_done_sync(mddev, s, uptodate);
2032 		}
2033 	}
2034 }
2035 
end_sync_write(struct bio * bio)2036 static void end_sync_write(struct bio *bio)
2037 {
2038 	int uptodate = !bio->bi_status;
2039 	struct r1bio *r1_bio = get_resync_r1bio(bio);
2040 	struct mddev *mddev = r1_bio->mddev;
2041 	struct r1conf *conf = mddev->private;
2042 	struct md_rdev *rdev = conf->mirrors[find_bio_disk(r1_bio, bio)].rdev;
2043 
2044 	if (!uptodate) {
2045 		abort_sync_write(mddev, r1_bio);
2046 		set_bit(WriteErrorSeen, &rdev->flags);
2047 		if (!test_and_set_bit(WantReplacement, &rdev->flags))
2048 			set_bit(MD_RECOVERY_NEEDED, &
2049 				mddev->recovery);
2050 		set_bit(R1BIO_WriteError, &r1_bio->state);
2051 	} else if (rdev_has_badblock(rdev, r1_bio->sector, r1_bio->sectors) &&
2052 		   !rdev_has_badblock(conf->mirrors[r1_bio->read_disk].rdev,
2053 				      r1_bio->sector, r1_bio->sectors)) {
2054 		set_bit(R1BIO_MadeGood, &r1_bio->state);
2055 	}
2056 
2057 	put_sync_write_buf(r1_bio, uptodate);
2058 }
2059 
r1_sync_page_io(struct md_rdev * rdev,sector_t sector,int sectors,struct page * page,blk_opf_t rw)2060 static int r1_sync_page_io(struct md_rdev *rdev, sector_t sector,
2061 			   int sectors, struct page *page, blk_opf_t rw)
2062 {
2063 	if (sync_page_io(rdev, sector, sectors << 9, page, rw, false))
2064 		/* success */
2065 		return 1;
2066 	if (rw == REQ_OP_WRITE) {
2067 		set_bit(WriteErrorSeen, &rdev->flags);
2068 		if (!test_and_set_bit(WantReplacement,
2069 				      &rdev->flags))
2070 			set_bit(MD_RECOVERY_NEEDED, &
2071 				rdev->mddev->recovery);
2072 	}
2073 	/* need to record an error - either for the block or the device */
2074 	if (!rdev_set_badblocks(rdev, sector, sectors, 0))
2075 		md_error(rdev->mddev, rdev);
2076 	return 0;
2077 }
2078 
fix_sync_read_error(struct r1bio * r1_bio)2079 static int fix_sync_read_error(struct r1bio *r1_bio)
2080 {
2081 	/* Try some synchronous reads of other devices to get
2082 	 * good data, much like with normal read errors.  Only
2083 	 * read into the pages we already have so we don't
2084 	 * need to re-issue the read request.
2085 	 * We don't need to freeze the array, because being in an
2086 	 * active sync request, there is no normal IO, and
2087 	 * no overlapping syncs.
2088 	 * We don't need to check is_badblock() again as we
2089 	 * made sure that anything with a bad block in range
2090 	 * will have bi_end_io clear.
2091 	 */
2092 	struct mddev *mddev = r1_bio->mddev;
2093 	struct r1conf *conf = mddev->private;
2094 	struct bio *bio = r1_bio->bios[r1_bio->read_disk];
2095 	struct page **pages = get_resync_pages(bio)->pages;
2096 	sector_t sect = r1_bio->sector;
2097 	int sectors = r1_bio->sectors;
2098 	int idx = 0;
2099 	struct md_rdev *rdev;
2100 
2101 	rdev = conf->mirrors[r1_bio->read_disk].rdev;
2102 	if (test_bit(FailFast, &rdev->flags)) {
2103 		/* Don't try recovering from here - just fail it
2104 		 * ... unless it is the last working device of course */
2105 		md_error(mddev, rdev);
2106 		if (test_bit(Faulty, &rdev->flags))
2107 			/* Don't try to read from here, but make sure
2108 			 * put_buf does it's thing
2109 			 */
2110 			bio->bi_end_io = end_sync_write;
2111 	}
2112 
2113 	while(sectors) {
2114 		int s = sectors;
2115 		int d = r1_bio->read_disk;
2116 		int success = 0;
2117 		int start;
2118 
2119 		if (s > (PAGE_SIZE>>9))
2120 			s = PAGE_SIZE >> 9;
2121 		do {
2122 			if (r1_bio->bios[d]->bi_end_io == end_sync_read) {
2123 				/* No rcu protection needed here devices
2124 				 * can only be removed when no resync is
2125 				 * active, and resync is currently active
2126 				 */
2127 				rdev = conf->mirrors[d].rdev;
2128 				if (sync_page_io(rdev, sect, s<<9,
2129 						 pages[idx],
2130 						 REQ_OP_READ, false)) {
2131 					success = 1;
2132 					break;
2133 				}
2134 			}
2135 			d++;
2136 			if (d == conf->raid_disks * 2)
2137 				d = 0;
2138 		} while (!success && d != r1_bio->read_disk);
2139 
2140 		if (!success) {
2141 			int abort = 0;
2142 			/* Cannot read from anywhere, this block is lost.
2143 			 * Record a bad block on each device.  If that doesn't
2144 			 * work just disable and interrupt the recovery.
2145 			 * Don't fail devices as that won't really help.
2146 			 */
2147 			pr_crit_ratelimited("md/raid1:%s: %pg: unrecoverable I/O read error for block %llu\n",
2148 					    mdname(mddev), bio->bi_bdev,
2149 					    (unsigned long long)r1_bio->sector);
2150 			for (d = 0; d < conf->raid_disks * 2; d++) {
2151 				rdev = conf->mirrors[d].rdev;
2152 				if (!rdev || test_bit(Faulty, &rdev->flags))
2153 					continue;
2154 				if (!rdev_set_badblocks(rdev, sect, s, 0))
2155 					abort = 1;
2156 			}
2157 			if (abort)
2158 				return 0;
2159 
2160 			/* Try next page */
2161 			sectors -= s;
2162 			sect += s;
2163 			idx++;
2164 			continue;
2165 		}
2166 
2167 		start = d;
2168 		/* write it back and re-read */
2169 		while (d != r1_bio->read_disk) {
2170 			if (d == 0)
2171 				d = conf->raid_disks * 2;
2172 			d--;
2173 			if (r1_bio->bios[d]->bi_end_io != end_sync_read)
2174 				continue;
2175 			rdev = conf->mirrors[d].rdev;
2176 			if (r1_sync_page_io(rdev, sect, s,
2177 					    pages[idx],
2178 					    REQ_OP_WRITE) == 0) {
2179 				r1_bio->bios[d]->bi_end_io = NULL;
2180 				rdev_dec_pending(rdev, mddev);
2181 			}
2182 		}
2183 		d = start;
2184 		while (d != r1_bio->read_disk) {
2185 			if (d == 0)
2186 				d = conf->raid_disks * 2;
2187 			d--;
2188 			if (r1_bio->bios[d]->bi_end_io != end_sync_read)
2189 				continue;
2190 			rdev = conf->mirrors[d].rdev;
2191 			if (r1_sync_page_io(rdev, sect, s,
2192 					    pages[idx],
2193 					    REQ_OP_READ) != 0)
2194 				atomic_add(s, &rdev->corrected_errors);
2195 		}
2196 		sectors -= s;
2197 		sect += s;
2198 		idx ++;
2199 	}
2200 	set_bit(R1BIO_Uptodate, &r1_bio->state);
2201 	bio->bi_status = 0;
2202 	return 1;
2203 }
2204 
process_checks(struct r1bio * r1_bio)2205 static void process_checks(struct r1bio *r1_bio)
2206 {
2207 	/* We have read all readable devices.  If we haven't
2208 	 * got the block, then there is no hope left.
2209 	 * If we have, then we want to do a comparison
2210 	 * and skip the write if everything is the same.
2211 	 * If any blocks failed to read, then we need to
2212 	 * attempt an over-write
2213 	 */
2214 	struct mddev *mddev = r1_bio->mddev;
2215 	struct r1conf *conf = mddev->private;
2216 	int primary;
2217 	int i;
2218 	int vcnt;
2219 
2220 	/* Fix variable parts of all bios */
2221 	vcnt = (r1_bio->sectors + PAGE_SIZE / 512 - 1) >> (PAGE_SHIFT - 9);
2222 	for (i = 0; i < conf->raid_disks * 2; i++) {
2223 		blk_status_t status;
2224 		struct bio *b = r1_bio->bios[i];
2225 		struct resync_pages *rp = get_resync_pages(b);
2226 		if (b->bi_end_io != end_sync_read)
2227 			continue;
2228 		/* fixup the bio for reuse, but preserve errno */
2229 		status = b->bi_status;
2230 		bio_reset(b, conf->mirrors[i].rdev->bdev, REQ_OP_READ);
2231 		b->bi_status = status;
2232 		b->bi_iter.bi_sector = r1_bio->sector +
2233 			conf->mirrors[i].rdev->data_offset;
2234 		b->bi_end_io = end_sync_read;
2235 		rp->raid_bio = r1_bio;
2236 		b->bi_private = rp;
2237 
2238 		/* initialize bvec table again */
2239 		md_bio_reset_resync_pages(b, rp, r1_bio->sectors << 9);
2240 	}
2241 	for (primary = 0; primary < conf->raid_disks * 2; primary++)
2242 		if (r1_bio->bios[primary]->bi_end_io == end_sync_read &&
2243 		    !r1_bio->bios[primary]->bi_status) {
2244 			r1_bio->bios[primary]->bi_end_io = NULL;
2245 			rdev_dec_pending(conf->mirrors[primary].rdev, mddev);
2246 			break;
2247 		}
2248 	r1_bio->read_disk = primary;
2249 	for (i = 0; i < conf->raid_disks * 2; i++) {
2250 		int j = 0;
2251 		struct bio *pbio = r1_bio->bios[primary];
2252 		struct bio *sbio = r1_bio->bios[i];
2253 		blk_status_t status = sbio->bi_status;
2254 		struct page **ppages = get_resync_pages(pbio)->pages;
2255 		struct page **spages = get_resync_pages(sbio)->pages;
2256 		struct bio_vec *bi;
2257 		int page_len[RESYNC_PAGES] = { 0 };
2258 		struct bvec_iter_all iter_all;
2259 
2260 		if (sbio->bi_end_io != end_sync_read)
2261 			continue;
2262 		/* Now we can 'fixup' the error value */
2263 		sbio->bi_status = 0;
2264 
2265 		bio_for_each_segment_all(bi, sbio, iter_all)
2266 			page_len[j++] = bi->bv_len;
2267 
2268 		if (!status) {
2269 			for (j = vcnt; j-- ; ) {
2270 				if (memcmp(page_address(ppages[j]),
2271 					   page_address(spages[j]),
2272 					   page_len[j]))
2273 					break;
2274 			}
2275 		} else
2276 			j = 0;
2277 		if (j >= 0)
2278 			atomic64_add(r1_bio->sectors, &mddev->resync_mismatches);
2279 		if (j < 0 || (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)
2280 			      && !status)) {
2281 			/* No need to write to this device. */
2282 			sbio->bi_end_io = NULL;
2283 			rdev_dec_pending(conf->mirrors[i].rdev, mddev);
2284 			continue;
2285 		}
2286 
2287 		bio_copy_data(sbio, pbio);
2288 	}
2289 }
2290 
sync_request_write(struct mddev * mddev,struct r1bio * r1_bio)2291 static void sync_request_write(struct mddev *mddev, struct r1bio *r1_bio)
2292 {
2293 	struct r1conf *conf = mddev->private;
2294 	int i;
2295 	int disks = conf->raid_disks * 2;
2296 	struct bio *wbio;
2297 
2298 	if (!test_bit(R1BIO_Uptodate, &r1_bio->state)) {
2299 		/*
2300 		 * ouch - failed to read all of that.
2301 		 * No need to fix read error for check/repair
2302 		 * because all member disks are read.
2303 		 */
2304 		if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) ||
2305 		    !fix_sync_read_error(r1_bio)) {
2306 			conf->recovery_disabled = mddev->recovery_disabled;
2307 			set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2308 			md_done_sync(mddev, r1_bio->sectors, 0);
2309 			put_buf(r1_bio);
2310 			return;
2311 		}
2312 	}
2313 
2314 	if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
2315 		process_checks(r1_bio);
2316 
2317 	/*
2318 	 * schedule writes
2319 	 */
2320 	atomic_set(&r1_bio->remaining, 1);
2321 	for (i = 0; i < disks ; i++) {
2322 		wbio = r1_bio->bios[i];
2323 		if (wbio->bi_end_io == NULL ||
2324 		    (wbio->bi_end_io == end_sync_read &&
2325 		     (i == r1_bio->read_disk ||
2326 		      !test_bit(MD_RECOVERY_SYNC, &mddev->recovery))))
2327 			continue;
2328 		if (test_bit(Faulty, &conf->mirrors[i].rdev->flags)) {
2329 			abort_sync_write(mddev, r1_bio);
2330 			continue;
2331 		}
2332 
2333 		wbio->bi_opf = REQ_OP_WRITE;
2334 		if (test_bit(FailFast, &conf->mirrors[i].rdev->flags))
2335 			wbio->bi_opf |= MD_FAILFAST;
2336 
2337 		wbio->bi_end_io = end_sync_write;
2338 		atomic_inc(&r1_bio->remaining);
2339 		md_sync_acct(conf->mirrors[i].rdev->bdev, bio_sectors(wbio));
2340 
2341 		submit_bio_noacct(wbio);
2342 	}
2343 
2344 	put_sync_write_buf(r1_bio, 1);
2345 }
2346 
2347 /*
2348  * This is a kernel thread which:
2349  *
2350  *	1.	Retries failed read operations on working mirrors.
2351  *	2.	Updates the raid superblock when problems encounter.
2352  *	3.	Performs writes following reads for array synchronising.
2353  */
2354 
fix_read_error(struct r1conf * conf,struct r1bio * r1_bio)2355 static void fix_read_error(struct r1conf *conf, struct r1bio *r1_bio)
2356 {
2357 	sector_t sect = r1_bio->sector;
2358 	int sectors = r1_bio->sectors;
2359 	int read_disk = r1_bio->read_disk;
2360 	struct mddev *mddev = conf->mddev;
2361 	struct md_rdev *rdev = conf->mirrors[read_disk].rdev;
2362 
2363 	if (exceed_read_errors(mddev, rdev)) {
2364 		r1_bio->bios[r1_bio->read_disk] = IO_BLOCKED;
2365 		return;
2366 	}
2367 
2368 	while(sectors) {
2369 		int s = sectors;
2370 		int d = read_disk;
2371 		int success = 0;
2372 		int start;
2373 
2374 		if (s > (PAGE_SIZE>>9))
2375 			s = PAGE_SIZE >> 9;
2376 
2377 		do {
2378 			rdev = conf->mirrors[d].rdev;
2379 			if (rdev &&
2380 			    (test_bit(In_sync, &rdev->flags) ||
2381 			     (!test_bit(Faulty, &rdev->flags) &&
2382 			      rdev->recovery_offset >= sect + s)) &&
2383 			    rdev_has_badblock(rdev, sect, s) == 0) {
2384 				atomic_inc(&rdev->nr_pending);
2385 				if (sync_page_io(rdev, sect, s<<9,
2386 					 conf->tmppage, REQ_OP_READ, false))
2387 					success = 1;
2388 				rdev_dec_pending(rdev, mddev);
2389 				if (success)
2390 					break;
2391 			}
2392 
2393 			d++;
2394 			if (d == conf->raid_disks * 2)
2395 				d = 0;
2396 		} while (d != read_disk);
2397 
2398 		if (!success) {
2399 			/* Cannot read from anywhere - mark it bad */
2400 			struct md_rdev *rdev = conf->mirrors[read_disk].rdev;
2401 			if (!rdev_set_badblocks(rdev, sect, s, 0))
2402 				md_error(mddev, rdev);
2403 			break;
2404 		}
2405 		/* write it back and re-read */
2406 		start = d;
2407 		while (d != read_disk) {
2408 			if (d==0)
2409 				d = conf->raid_disks * 2;
2410 			d--;
2411 			rdev = conf->mirrors[d].rdev;
2412 			if (rdev &&
2413 			    !test_bit(Faulty, &rdev->flags)) {
2414 				atomic_inc(&rdev->nr_pending);
2415 				r1_sync_page_io(rdev, sect, s,
2416 						conf->tmppage, REQ_OP_WRITE);
2417 				rdev_dec_pending(rdev, mddev);
2418 			}
2419 		}
2420 		d = start;
2421 		while (d != read_disk) {
2422 			if (d==0)
2423 				d = conf->raid_disks * 2;
2424 			d--;
2425 			rdev = conf->mirrors[d].rdev;
2426 			if (rdev &&
2427 			    !test_bit(Faulty, &rdev->flags)) {
2428 				atomic_inc(&rdev->nr_pending);
2429 				if (r1_sync_page_io(rdev, sect, s,
2430 						conf->tmppage, REQ_OP_READ)) {
2431 					atomic_add(s, &rdev->corrected_errors);
2432 					pr_info("md/raid1:%s: read error corrected (%d sectors at %llu on %pg)\n",
2433 						mdname(mddev), s,
2434 						(unsigned long long)(sect +
2435 								     rdev->data_offset),
2436 						rdev->bdev);
2437 				}
2438 				rdev_dec_pending(rdev, mddev);
2439 			}
2440 		}
2441 		sectors -= s;
2442 		sect += s;
2443 	}
2444 }
2445 
narrow_write_error(struct r1bio * r1_bio,int i)2446 static int narrow_write_error(struct r1bio *r1_bio, int i)
2447 {
2448 	struct mddev *mddev = r1_bio->mddev;
2449 	struct r1conf *conf = mddev->private;
2450 	struct md_rdev *rdev = conf->mirrors[i].rdev;
2451 
2452 	/* bio has the data to be written to device 'i' where
2453 	 * we just recently had a write error.
2454 	 * We repeatedly clone the bio and trim down to one block,
2455 	 * then try the write.  Where the write fails we record
2456 	 * a bad block.
2457 	 * It is conceivable that the bio doesn't exactly align with
2458 	 * blocks.  We must handle this somehow.
2459 	 *
2460 	 * We currently own a reference on the rdev.
2461 	 */
2462 
2463 	int block_sectors;
2464 	sector_t sector;
2465 	int sectors;
2466 	int sect_to_write = r1_bio->sectors;
2467 	int ok = 1;
2468 
2469 	if (rdev->badblocks.shift < 0)
2470 		return 0;
2471 
2472 	block_sectors = roundup(1 << rdev->badblocks.shift,
2473 				bdev_logical_block_size(rdev->bdev) >> 9);
2474 	sector = r1_bio->sector;
2475 	sectors = ((sector + block_sectors)
2476 		   & ~(sector_t)(block_sectors - 1))
2477 		- sector;
2478 
2479 	while (sect_to_write) {
2480 		struct bio *wbio;
2481 		if (sectors > sect_to_write)
2482 			sectors = sect_to_write;
2483 		/* Write at 'sector' for 'sectors'*/
2484 
2485 		if (test_bit(R1BIO_BehindIO, &r1_bio->state)) {
2486 			wbio = bio_alloc_clone(rdev->bdev,
2487 					       r1_bio->behind_master_bio,
2488 					       GFP_NOIO, &mddev->bio_set);
2489 		} else {
2490 			wbio = bio_alloc_clone(rdev->bdev, r1_bio->master_bio,
2491 					       GFP_NOIO, &mddev->bio_set);
2492 		}
2493 
2494 		wbio->bi_opf = REQ_OP_WRITE;
2495 		wbio->bi_iter.bi_sector = r1_bio->sector;
2496 		wbio->bi_iter.bi_size = r1_bio->sectors << 9;
2497 
2498 		bio_trim(wbio, sector - r1_bio->sector, sectors);
2499 		wbio->bi_iter.bi_sector += rdev->data_offset;
2500 
2501 		if (submit_bio_wait(wbio) < 0)
2502 			/* failure! */
2503 			ok = rdev_set_badblocks(rdev, sector,
2504 						sectors, 0)
2505 				&& ok;
2506 
2507 		bio_put(wbio);
2508 		sect_to_write -= sectors;
2509 		sector += sectors;
2510 		sectors = block_sectors;
2511 	}
2512 	return ok;
2513 }
2514 
handle_sync_write_finished(struct r1conf * conf,struct r1bio * r1_bio)2515 static void handle_sync_write_finished(struct r1conf *conf, struct r1bio *r1_bio)
2516 {
2517 	int m;
2518 	int s = r1_bio->sectors;
2519 	for (m = 0; m < conf->raid_disks * 2 ; m++) {
2520 		struct md_rdev *rdev = conf->mirrors[m].rdev;
2521 		struct bio *bio = r1_bio->bios[m];
2522 		if (bio->bi_end_io == NULL)
2523 			continue;
2524 		if (!bio->bi_status &&
2525 		    test_bit(R1BIO_MadeGood, &r1_bio->state)) {
2526 			rdev_clear_badblocks(rdev, r1_bio->sector, s, 0);
2527 		}
2528 		if (bio->bi_status &&
2529 		    test_bit(R1BIO_WriteError, &r1_bio->state)) {
2530 			if (!rdev_set_badblocks(rdev, r1_bio->sector, s, 0))
2531 				md_error(conf->mddev, rdev);
2532 		}
2533 	}
2534 	put_buf(r1_bio);
2535 	md_done_sync(conf->mddev, s, 1);
2536 }
2537 
handle_write_finished(struct r1conf * conf,struct r1bio * r1_bio)2538 static void handle_write_finished(struct r1conf *conf, struct r1bio *r1_bio)
2539 {
2540 	int m, idx;
2541 	bool fail = false;
2542 
2543 	for (m = 0; m < conf->raid_disks * 2 ; m++)
2544 		if (r1_bio->bios[m] == IO_MADE_GOOD) {
2545 			struct md_rdev *rdev = conf->mirrors[m].rdev;
2546 			rdev_clear_badblocks(rdev,
2547 					     r1_bio->sector,
2548 					     r1_bio->sectors, 0);
2549 			rdev_dec_pending(rdev, conf->mddev);
2550 		} else if (r1_bio->bios[m] != NULL) {
2551 			/* This drive got a write error.  We need to
2552 			 * narrow down and record precise write
2553 			 * errors.
2554 			 */
2555 			fail = true;
2556 			if (!narrow_write_error(r1_bio, m))
2557 				md_error(conf->mddev,
2558 					 conf->mirrors[m].rdev);
2559 				/* an I/O failed, we can't clear the bitmap */
2560 			rdev_dec_pending(conf->mirrors[m].rdev,
2561 					 conf->mddev);
2562 		}
2563 	if (fail) {
2564 		spin_lock_irq(&conf->device_lock);
2565 		list_add(&r1_bio->retry_list, &conf->bio_end_io_list);
2566 		idx = sector_to_idx(r1_bio->sector);
2567 		atomic_inc(&conf->nr_queued[idx]);
2568 		spin_unlock_irq(&conf->device_lock);
2569 		/*
2570 		 * In case freeze_array() is waiting for condition
2571 		 * get_unqueued_pending() == extra to be true.
2572 		 */
2573 		wake_up(&conf->wait_barrier);
2574 		md_wakeup_thread(conf->mddev->thread);
2575 	} else {
2576 		if (test_bit(R1BIO_WriteError, &r1_bio->state))
2577 			close_write(r1_bio);
2578 		raid_end_bio_io(r1_bio);
2579 	}
2580 }
2581 
handle_read_error(struct r1conf * conf,struct r1bio * r1_bio)2582 static void handle_read_error(struct r1conf *conf, struct r1bio *r1_bio)
2583 {
2584 	struct mddev *mddev = conf->mddev;
2585 	struct bio *bio;
2586 	struct md_rdev *rdev;
2587 	sector_t sector;
2588 
2589 	clear_bit(R1BIO_ReadError, &r1_bio->state);
2590 	/* we got a read error. Maybe the drive is bad.  Maybe just
2591 	 * the block and we can fix it.
2592 	 * We freeze all other IO, and try reading the block from
2593 	 * other devices.  When we find one, we re-write
2594 	 * and check it that fixes the read error.
2595 	 * This is all done synchronously while the array is
2596 	 * frozen
2597 	 */
2598 
2599 	bio = r1_bio->bios[r1_bio->read_disk];
2600 	bio_put(bio);
2601 	r1_bio->bios[r1_bio->read_disk] = NULL;
2602 
2603 	rdev = conf->mirrors[r1_bio->read_disk].rdev;
2604 	if (mddev->ro == 0
2605 	    && !test_bit(FailFast, &rdev->flags)) {
2606 		freeze_array(conf, 1);
2607 		fix_read_error(conf, r1_bio);
2608 		unfreeze_array(conf);
2609 	} else if (mddev->ro == 0 && test_bit(FailFast, &rdev->flags)) {
2610 		md_error(mddev, rdev);
2611 	} else {
2612 		r1_bio->bios[r1_bio->read_disk] = IO_BLOCKED;
2613 	}
2614 
2615 	rdev_dec_pending(rdev, conf->mddev);
2616 	sector = r1_bio->sector;
2617 	bio = r1_bio->master_bio;
2618 
2619 	/* Reuse the old r1_bio so that the IO_BLOCKED settings are preserved */
2620 	r1_bio->state = 0;
2621 	raid1_read_request(mddev, bio, r1_bio->sectors, r1_bio);
2622 	allow_barrier(conf, sector);
2623 }
2624 
raid1d(struct md_thread * thread)2625 static void raid1d(struct md_thread *thread)
2626 {
2627 	struct mddev *mddev = thread->mddev;
2628 	struct r1bio *r1_bio;
2629 	unsigned long flags;
2630 	struct r1conf *conf = mddev->private;
2631 	struct list_head *head = &conf->retry_list;
2632 	struct blk_plug plug;
2633 	int idx;
2634 
2635 	md_check_recovery(mddev);
2636 
2637 	if (!list_empty_careful(&conf->bio_end_io_list) &&
2638 	    !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) {
2639 		LIST_HEAD(tmp);
2640 		spin_lock_irqsave(&conf->device_lock, flags);
2641 		if (!test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags))
2642 			list_splice_init(&conf->bio_end_io_list, &tmp);
2643 		spin_unlock_irqrestore(&conf->device_lock, flags);
2644 		while (!list_empty(&tmp)) {
2645 			r1_bio = list_first_entry(&tmp, struct r1bio,
2646 						  retry_list);
2647 			list_del(&r1_bio->retry_list);
2648 			idx = sector_to_idx(r1_bio->sector);
2649 			atomic_dec(&conf->nr_queued[idx]);
2650 			if (test_bit(R1BIO_WriteError, &r1_bio->state))
2651 				close_write(r1_bio);
2652 			raid_end_bio_io(r1_bio);
2653 		}
2654 	}
2655 
2656 	blk_start_plug(&plug);
2657 	for (;;) {
2658 
2659 		flush_pending_writes(conf);
2660 
2661 		spin_lock_irqsave(&conf->device_lock, flags);
2662 		if (list_empty(head)) {
2663 			spin_unlock_irqrestore(&conf->device_lock, flags);
2664 			break;
2665 		}
2666 		r1_bio = list_entry(head->prev, struct r1bio, retry_list);
2667 		list_del(head->prev);
2668 		idx = sector_to_idx(r1_bio->sector);
2669 		atomic_dec(&conf->nr_queued[idx]);
2670 		spin_unlock_irqrestore(&conf->device_lock, flags);
2671 
2672 		mddev = r1_bio->mddev;
2673 		conf = mddev->private;
2674 		if (test_bit(R1BIO_IsSync, &r1_bio->state)) {
2675 			if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
2676 			    test_bit(R1BIO_WriteError, &r1_bio->state))
2677 				handle_sync_write_finished(conf, r1_bio);
2678 			else
2679 				sync_request_write(mddev, r1_bio);
2680 		} else if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
2681 			   test_bit(R1BIO_WriteError, &r1_bio->state))
2682 			handle_write_finished(conf, r1_bio);
2683 		else if (test_bit(R1BIO_ReadError, &r1_bio->state))
2684 			handle_read_error(conf, r1_bio);
2685 		else
2686 			WARN_ON_ONCE(1);
2687 
2688 		cond_resched();
2689 		if (mddev->sb_flags & ~(1<<MD_SB_CHANGE_PENDING))
2690 			md_check_recovery(mddev);
2691 	}
2692 	blk_finish_plug(&plug);
2693 }
2694 
init_resync(struct r1conf * conf)2695 static int init_resync(struct r1conf *conf)
2696 {
2697 	int buffs;
2698 
2699 	buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
2700 	BUG_ON(mempool_initialized(&conf->r1buf_pool));
2701 
2702 	return mempool_init(&conf->r1buf_pool, buffs, r1buf_pool_alloc,
2703 			    r1buf_pool_free, conf->poolinfo);
2704 }
2705 
raid1_alloc_init_r1buf(struct r1conf * conf)2706 static struct r1bio *raid1_alloc_init_r1buf(struct r1conf *conf)
2707 {
2708 	struct r1bio *r1bio = mempool_alloc(&conf->r1buf_pool, GFP_NOIO);
2709 	struct resync_pages *rps;
2710 	struct bio *bio;
2711 	int i;
2712 
2713 	for (i = conf->poolinfo->raid_disks; i--; ) {
2714 		bio = r1bio->bios[i];
2715 		rps = bio->bi_private;
2716 		bio_reset(bio, NULL, 0);
2717 		bio->bi_private = rps;
2718 	}
2719 	r1bio->master_bio = NULL;
2720 	return r1bio;
2721 }
2722 
2723 /*
2724  * perform a "sync" on one "block"
2725  *
2726  * We need to make sure that no normal I/O request - particularly write
2727  * requests - conflict with active sync requests.
2728  *
2729  * This is achieved by tracking pending requests and a 'barrier' concept
2730  * that can be installed to exclude normal IO requests.
2731  */
2732 
raid1_sync_request(struct mddev * mddev,sector_t sector_nr,sector_t max_sector,int * skipped)2733 static sector_t raid1_sync_request(struct mddev *mddev, sector_t sector_nr,
2734 				   sector_t max_sector, int *skipped)
2735 {
2736 	struct r1conf *conf = mddev->private;
2737 	struct r1bio *r1_bio;
2738 	struct bio *bio;
2739 	sector_t nr_sectors;
2740 	int disk = -1;
2741 	int i;
2742 	int wonly = -1;
2743 	int write_targets = 0, read_targets = 0;
2744 	sector_t sync_blocks;
2745 	bool still_degraded = false;
2746 	int good_sectors = RESYNC_SECTORS;
2747 	int min_bad = 0; /* number of sectors that are bad in all devices */
2748 	int idx = sector_to_idx(sector_nr);
2749 	int page_idx = 0;
2750 
2751 	if (!mempool_initialized(&conf->r1buf_pool))
2752 		if (init_resync(conf))
2753 			return 0;
2754 
2755 	if (sector_nr >= max_sector) {
2756 		/* If we aborted, we need to abort the
2757 		 * sync on the 'current' bitmap chunk (there will
2758 		 * only be one in raid1 resync.
2759 		 * We can find the current addess in mddev->curr_resync
2760 		 */
2761 		if (mddev->curr_resync < max_sector) /* aborted */
2762 			mddev->bitmap_ops->end_sync(mddev, mddev->curr_resync,
2763 						    &sync_blocks);
2764 		else /* completed sync */
2765 			conf->fullsync = 0;
2766 
2767 		mddev->bitmap_ops->close_sync(mddev);
2768 		close_sync(conf);
2769 
2770 		if (mddev_is_clustered(mddev)) {
2771 			conf->cluster_sync_low = 0;
2772 			conf->cluster_sync_high = 0;
2773 		}
2774 		return 0;
2775 	}
2776 
2777 	if (mddev->bitmap == NULL &&
2778 	    mddev->recovery_cp == MaxSector &&
2779 	    !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
2780 	    conf->fullsync == 0) {
2781 		*skipped = 1;
2782 		return max_sector - sector_nr;
2783 	}
2784 	/* before building a request, check if we can skip these blocks..
2785 	 * This call the bitmap_start_sync doesn't actually record anything
2786 	 */
2787 	if (!mddev->bitmap_ops->start_sync(mddev, sector_nr, &sync_blocks, true) &&
2788 	    !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
2789 		/* We can skip this block, and probably several more */
2790 		*skipped = 1;
2791 		return sync_blocks;
2792 	}
2793 
2794 	/*
2795 	 * If there is non-resync activity waiting for a turn, then let it
2796 	 * though before starting on this new sync request.
2797 	 */
2798 	if (atomic_read(&conf->nr_waiting[idx]))
2799 		schedule_timeout_uninterruptible(1);
2800 
2801 	/* we are incrementing sector_nr below. To be safe, we check against
2802 	 * sector_nr + two times RESYNC_SECTORS
2803 	 */
2804 
2805 	mddev->bitmap_ops->cond_end_sync(mddev, sector_nr,
2806 		mddev_is_clustered(mddev) &&
2807 		(sector_nr + 2 * RESYNC_SECTORS > conf->cluster_sync_high));
2808 
2809 	if (raise_barrier(conf, sector_nr))
2810 		return 0;
2811 
2812 	r1_bio = raid1_alloc_init_r1buf(conf);
2813 
2814 	/*
2815 	 * If we get a correctably read error during resync or recovery,
2816 	 * we might want to read from a different device.  So we
2817 	 * flag all drives that could conceivably be read from for READ,
2818 	 * and any others (which will be non-In_sync devices) for WRITE.
2819 	 * If a read fails, we try reading from something else for which READ
2820 	 * is OK.
2821 	 */
2822 
2823 	r1_bio->mddev = mddev;
2824 	r1_bio->sector = sector_nr;
2825 	r1_bio->state = 0;
2826 	set_bit(R1BIO_IsSync, &r1_bio->state);
2827 	/* make sure good_sectors won't go across barrier unit boundary */
2828 	good_sectors = align_to_barrier_unit_end(sector_nr, good_sectors);
2829 
2830 	for (i = 0; i < conf->raid_disks * 2; i++) {
2831 		struct md_rdev *rdev;
2832 		bio = r1_bio->bios[i];
2833 
2834 		rdev = conf->mirrors[i].rdev;
2835 		if (rdev == NULL ||
2836 		    test_bit(Faulty, &rdev->flags)) {
2837 			if (i < conf->raid_disks)
2838 				still_degraded = true;
2839 		} else if (!test_bit(In_sync, &rdev->flags)) {
2840 			bio->bi_opf = REQ_OP_WRITE;
2841 			bio->bi_end_io = end_sync_write;
2842 			write_targets ++;
2843 		} else {
2844 			/* may need to read from here */
2845 			sector_t first_bad = MaxSector;
2846 			int bad_sectors;
2847 
2848 			if (is_badblock(rdev, sector_nr, good_sectors,
2849 					&first_bad, &bad_sectors)) {
2850 				if (first_bad > sector_nr)
2851 					good_sectors = first_bad - sector_nr;
2852 				else {
2853 					bad_sectors -= (sector_nr - first_bad);
2854 					if (min_bad == 0 ||
2855 					    min_bad > bad_sectors)
2856 						min_bad = bad_sectors;
2857 				}
2858 			}
2859 			if (sector_nr < first_bad) {
2860 				if (test_bit(WriteMostly, &rdev->flags)) {
2861 					if (wonly < 0)
2862 						wonly = i;
2863 				} else {
2864 					if (disk < 0)
2865 						disk = i;
2866 				}
2867 				bio->bi_opf = REQ_OP_READ;
2868 				bio->bi_end_io = end_sync_read;
2869 				read_targets++;
2870 			} else if (!test_bit(WriteErrorSeen, &rdev->flags) &&
2871 				test_bit(MD_RECOVERY_SYNC, &mddev->recovery) &&
2872 				!test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) {
2873 				/*
2874 				 * The device is suitable for reading (InSync),
2875 				 * but has bad block(s) here. Let's try to correct them,
2876 				 * if we are doing resync or repair. Otherwise, leave
2877 				 * this device alone for this sync request.
2878 				 */
2879 				bio->bi_opf = REQ_OP_WRITE;
2880 				bio->bi_end_io = end_sync_write;
2881 				write_targets++;
2882 			}
2883 		}
2884 		if (rdev && bio->bi_end_io) {
2885 			atomic_inc(&rdev->nr_pending);
2886 			bio->bi_iter.bi_sector = sector_nr + rdev->data_offset;
2887 			bio_set_dev(bio, rdev->bdev);
2888 			if (test_bit(FailFast, &rdev->flags))
2889 				bio->bi_opf |= MD_FAILFAST;
2890 		}
2891 	}
2892 	if (disk < 0)
2893 		disk = wonly;
2894 	r1_bio->read_disk = disk;
2895 
2896 	if (read_targets == 0 && min_bad > 0) {
2897 		/* These sectors are bad on all InSync devices, so we
2898 		 * need to mark them bad on all write targets
2899 		 */
2900 		int ok = 1;
2901 		for (i = 0 ; i < conf->raid_disks * 2 ; i++)
2902 			if (r1_bio->bios[i]->bi_end_io == end_sync_write) {
2903 				struct md_rdev *rdev = conf->mirrors[i].rdev;
2904 				ok = rdev_set_badblocks(rdev, sector_nr,
2905 							min_bad, 0
2906 					) && ok;
2907 			}
2908 		set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
2909 		*skipped = 1;
2910 		put_buf(r1_bio);
2911 
2912 		if (!ok) {
2913 			/* Cannot record the badblocks, so need to
2914 			 * abort the resync.
2915 			 * If there are multiple read targets, could just
2916 			 * fail the really bad ones ???
2917 			 */
2918 			conf->recovery_disabled = mddev->recovery_disabled;
2919 			set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2920 			return 0;
2921 		} else
2922 			return min_bad;
2923 
2924 	}
2925 	if (min_bad > 0 && min_bad < good_sectors) {
2926 		/* only resync enough to reach the next bad->good
2927 		 * transition */
2928 		good_sectors = min_bad;
2929 	}
2930 
2931 	if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) && read_targets > 0)
2932 		/* extra read targets are also write targets */
2933 		write_targets += read_targets-1;
2934 
2935 	if (write_targets == 0 || read_targets == 0) {
2936 		/* There is nowhere to write, so all non-sync
2937 		 * drives must be failed - so we are finished
2938 		 */
2939 		sector_t rv;
2940 		if (min_bad > 0)
2941 			max_sector = sector_nr + min_bad;
2942 		rv = max_sector - sector_nr;
2943 		*skipped = 1;
2944 		put_buf(r1_bio);
2945 		return rv;
2946 	}
2947 
2948 	if (max_sector > mddev->resync_max)
2949 		max_sector = mddev->resync_max; /* Don't do IO beyond here */
2950 	if (max_sector > sector_nr + good_sectors)
2951 		max_sector = sector_nr + good_sectors;
2952 	nr_sectors = 0;
2953 	sync_blocks = 0;
2954 	do {
2955 		struct page *page;
2956 		int len = PAGE_SIZE;
2957 		if (sector_nr + (len>>9) > max_sector)
2958 			len = (max_sector - sector_nr) << 9;
2959 		if (len == 0)
2960 			break;
2961 		if (sync_blocks == 0) {
2962 			if (!mddev->bitmap_ops->start_sync(mddev, sector_nr,
2963 						&sync_blocks, still_degraded) &&
2964 			    !conf->fullsync &&
2965 			    !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
2966 				break;
2967 			if ((len >> 9) > sync_blocks)
2968 				len = sync_blocks<<9;
2969 		}
2970 
2971 		for (i = 0 ; i < conf->raid_disks * 2; i++) {
2972 			struct resync_pages *rp;
2973 
2974 			bio = r1_bio->bios[i];
2975 			rp = get_resync_pages(bio);
2976 			if (bio->bi_end_io) {
2977 				page = resync_fetch_page(rp, page_idx);
2978 
2979 				/*
2980 				 * won't fail because the vec table is big
2981 				 * enough to hold all these pages
2982 				 */
2983 				__bio_add_page(bio, page, len, 0);
2984 			}
2985 		}
2986 		nr_sectors += len>>9;
2987 		sector_nr += len>>9;
2988 		sync_blocks -= (len>>9);
2989 	} while (++page_idx < RESYNC_PAGES);
2990 
2991 	r1_bio->sectors = nr_sectors;
2992 
2993 	if (mddev_is_clustered(mddev) &&
2994 			conf->cluster_sync_high < sector_nr + nr_sectors) {
2995 		conf->cluster_sync_low = mddev->curr_resync_completed;
2996 		conf->cluster_sync_high = conf->cluster_sync_low + CLUSTER_RESYNC_WINDOW_SECTORS;
2997 		/* Send resync message */
2998 		md_cluster_ops->resync_info_update(mddev,
2999 				conf->cluster_sync_low,
3000 				conf->cluster_sync_high);
3001 	}
3002 
3003 	/* For a user-requested sync, we read all readable devices and do a
3004 	 * compare
3005 	 */
3006 	if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
3007 		atomic_set(&r1_bio->remaining, read_targets);
3008 		for (i = 0; i < conf->raid_disks * 2 && read_targets; i++) {
3009 			bio = r1_bio->bios[i];
3010 			if (bio->bi_end_io == end_sync_read) {
3011 				read_targets--;
3012 				md_sync_acct_bio(bio, nr_sectors);
3013 				if (read_targets == 1)
3014 					bio->bi_opf &= ~MD_FAILFAST;
3015 				submit_bio_noacct(bio);
3016 			}
3017 		}
3018 	} else {
3019 		atomic_set(&r1_bio->remaining, 1);
3020 		bio = r1_bio->bios[r1_bio->read_disk];
3021 		md_sync_acct_bio(bio, nr_sectors);
3022 		if (read_targets == 1)
3023 			bio->bi_opf &= ~MD_FAILFAST;
3024 		submit_bio_noacct(bio);
3025 	}
3026 	return nr_sectors;
3027 }
3028 
raid1_size(struct mddev * mddev,sector_t sectors,int raid_disks)3029 static sector_t raid1_size(struct mddev *mddev, sector_t sectors, int raid_disks)
3030 {
3031 	if (sectors)
3032 		return sectors;
3033 
3034 	return mddev->dev_sectors;
3035 }
3036 
setup_conf(struct mddev * mddev)3037 static struct r1conf *setup_conf(struct mddev *mddev)
3038 {
3039 	struct r1conf *conf;
3040 	int i;
3041 	struct raid1_info *disk;
3042 	struct md_rdev *rdev;
3043 	int err = -ENOMEM;
3044 
3045 	conf = kzalloc(sizeof(struct r1conf), GFP_KERNEL);
3046 	if (!conf)
3047 		goto abort;
3048 
3049 	conf->nr_pending = kcalloc(BARRIER_BUCKETS_NR,
3050 				   sizeof(atomic_t), GFP_KERNEL);
3051 	if (!conf->nr_pending)
3052 		goto abort;
3053 
3054 	conf->nr_waiting = kcalloc(BARRIER_BUCKETS_NR,
3055 				   sizeof(atomic_t), GFP_KERNEL);
3056 	if (!conf->nr_waiting)
3057 		goto abort;
3058 
3059 	conf->nr_queued = kcalloc(BARRIER_BUCKETS_NR,
3060 				  sizeof(atomic_t), GFP_KERNEL);
3061 	if (!conf->nr_queued)
3062 		goto abort;
3063 
3064 	conf->barrier = kcalloc(BARRIER_BUCKETS_NR,
3065 				sizeof(atomic_t), GFP_KERNEL);
3066 	if (!conf->barrier)
3067 		goto abort;
3068 
3069 	conf->mirrors = kzalloc(array3_size(sizeof(struct raid1_info),
3070 					    mddev->raid_disks, 2),
3071 				GFP_KERNEL);
3072 	if (!conf->mirrors)
3073 		goto abort;
3074 
3075 	conf->tmppage = alloc_page(GFP_KERNEL);
3076 	if (!conf->tmppage)
3077 		goto abort;
3078 
3079 	conf->poolinfo = kzalloc(sizeof(*conf->poolinfo), GFP_KERNEL);
3080 	if (!conf->poolinfo)
3081 		goto abort;
3082 	conf->poolinfo->raid_disks = mddev->raid_disks * 2;
3083 	err = mempool_init(&conf->r1bio_pool, NR_RAID_BIOS, r1bio_pool_alloc,
3084 			   rbio_pool_free, conf->poolinfo);
3085 	if (err)
3086 		goto abort;
3087 
3088 	err = bioset_init(&conf->bio_split, BIO_POOL_SIZE, 0, 0);
3089 	if (err)
3090 		goto abort;
3091 
3092 	conf->poolinfo->mddev = mddev;
3093 
3094 	err = -EINVAL;
3095 	spin_lock_init(&conf->device_lock);
3096 	conf->raid_disks = mddev->raid_disks;
3097 	rdev_for_each(rdev, mddev) {
3098 		int disk_idx = rdev->raid_disk;
3099 
3100 		if (disk_idx >= conf->raid_disks || disk_idx < 0)
3101 			continue;
3102 
3103 		if (!raid1_add_conf(conf, rdev, disk_idx,
3104 				    test_bit(Replacement, &rdev->flags)))
3105 			goto abort;
3106 	}
3107 	conf->mddev = mddev;
3108 	INIT_LIST_HEAD(&conf->retry_list);
3109 	INIT_LIST_HEAD(&conf->bio_end_io_list);
3110 
3111 	spin_lock_init(&conf->resync_lock);
3112 	init_waitqueue_head(&conf->wait_barrier);
3113 
3114 	bio_list_init(&conf->pending_bio_list);
3115 	conf->recovery_disabled = mddev->recovery_disabled - 1;
3116 
3117 	err = -EIO;
3118 	for (i = 0; i < conf->raid_disks * 2; i++) {
3119 
3120 		disk = conf->mirrors + i;
3121 
3122 		if (i < conf->raid_disks &&
3123 		    disk[conf->raid_disks].rdev) {
3124 			/* This slot has a replacement. */
3125 			if (!disk->rdev) {
3126 				/* No original, just make the replacement
3127 				 * a recovering spare
3128 				 */
3129 				disk->rdev =
3130 					disk[conf->raid_disks].rdev;
3131 				disk[conf->raid_disks].rdev = NULL;
3132 			} else if (!test_bit(In_sync, &disk->rdev->flags))
3133 				/* Original is not in_sync - bad */
3134 				goto abort;
3135 		}
3136 
3137 		if (!disk->rdev ||
3138 		    !test_bit(In_sync, &disk->rdev->flags)) {
3139 			disk->head_position = 0;
3140 			if (disk->rdev &&
3141 			    (disk->rdev->saved_raid_disk < 0))
3142 				conf->fullsync = 1;
3143 		}
3144 	}
3145 
3146 	err = -ENOMEM;
3147 	rcu_assign_pointer(conf->thread,
3148 			   md_register_thread(raid1d, mddev, "raid1"));
3149 	if (!conf->thread)
3150 		goto abort;
3151 
3152 	return conf;
3153 
3154  abort:
3155 	if (conf) {
3156 		mempool_exit(&conf->r1bio_pool);
3157 		kfree(conf->mirrors);
3158 		safe_put_page(conf->tmppage);
3159 		kfree(conf->poolinfo);
3160 		kfree(conf->nr_pending);
3161 		kfree(conf->nr_waiting);
3162 		kfree(conf->nr_queued);
3163 		kfree(conf->barrier);
3164 		bioset_exit(&conf->bio_split);
3165 		kfree(conf);
3166 	}
3167 	return ERR_PTR(err);
3168 }
3169 
raid1_set_limits(struct mddev * mddev)3170 static int raid1_set_limits(struct mddev *mddev)
3171 {
3172 	struct queue_limits lim;
3173 	int err;
3174 
3175 	md_init_stacking_limits(&lim);
3176 	lim.max_write_zeroes_sectors = 0;
3177 	err = mddev_stack_rdev_limits(mddev, &lim, MDDEV_STACK_INTEGRITY);
3178 	if (err)
3179 		return err;
3180 	return queue_limits_set(mddev->gendisk->queue, &lim);
3181 }
3182 
raid1_run(struct mddev * mddev)3183 static int raid1_run(struct mddev *mddev)
3184 {
3185 	struct r1conf *conf;
3186 	int i;
3187 	int ret;
3188 
3189 	if (mddev->level != 1) {
3190 		pr_warn("md/raid1:%s: raid level not set to mirroring (%d)\n",
3191 			mdname(mddev), mddev->level);
3192 		return -EIO;
3193 	}
3194 	if (mddev->reshape_position != MaxSector) {
3195 		pr_warn("md/raid1:%s: reshape_position set but not supported\n",
3196 			mdname(mddev));
3197 		return -EIO;
3198 	}
3199 
3200 	/*
3201 	 * copy the already verified devices into our private RAID1
3202 	 * bookkeeping area. [whatever we allocate in run(),
3203 	 * should be freed in raid1_free()]
3204 	 */
3205 	if (mddev->private == NULL)
3206 		conf = setup_conf(mddev);
3207 	else
3208 		conf = mddev->private;
3209 
3210 	if (IS_ERR(conf))
3211 		return PTR_ERR(conf);
3212 
3213 	if (!mddev_is_dm(mddev)) {
3214 		ret = raid1_set_limits(mddev);
3215 		if (ret)
3216 			return ret;
3217 	}
3218 
3219 	mddev->degraded = 0;
3220 	for (i = 0; i < conf->raid_disks; i++)
3221 		if (conf->mirrors[i].rdev == NULL ||
3222 		    !test_bit(In_sync, &conf->mirrors[i].rdev->flags) ||
3223 		    test_bit(Faulty, &conf->mirrors[i].rdev->flags))
3224 			mddev->degraded++;
3225 	/*
3226 	 * RAID1 needs at least one disk in active
3227 	 */
3228 	if (conf->raid_disks - mddev->degraded < 1) {
3229 		md_unregister_thread(mddev, &conf->thread);
3230 		return -EINVAL;
3231 	}
3232 
3233 	if (conf->raid_disks - mddev->degraded == 1)
3234 		mddev->recovery_cp = MaxSector;
3235 
3236 	if (mddev->recovery_cp != MaxSector)
3237 		pr_info("md/raid1:%s: not clean -- starting background reconstruction\n",
3238 			mdname(mddev));
3239 	pr_info("md/raid1:%s: active with %d out of %d mirrors\n",
3240 		mdname(mddev), mddev->raid_disks - mddev->degraded,
3241 		mddev->raid_disks);
3242 
3243 	/*
3244 	 * Ok, everything is just fine now
3245 	 */
3246 	rcu_assign_pointer(mddev->thread, conf->thread);
3247 	rcu_assign_pointer(conf->thread, NULL);
3248 	mddev->private = conf;
3249 	set_bit(MD_FAILFAST_SUPPORTED, &mddev->flags);
3250 
3251 	md_set_array_sectors(mddev, raid1_size(mddev, 0, 0));
3252 
3253 	ret = md_integrity_register(mddev);
3254 	if (ret)
3255 		md_unregister_thread(mddev, &mddev->thread);
3256 	return ret;
3257 }
3258 
raid1_free(struct mddev * mddev,void * priv)3259 static void raid1_free(struct mddev *mddev, void *priv)
3260 {
3261 	struct r1conf *conf = priv;
3262 
3263 	mempool_exit(&conf->r1bio_pool);
3264 	kfree(conf->mirrors);
3265 	safe_put_page(conf->tmppage);
3266 	kfree(conf->poolinfo);
3267 	kfree(conf->nr_pending);
3268 	kfree(conf->nr_waiting);
3269 	kfree(conf->nr_queued);
3270 	kfree(conf->barrier);
3271 	bioset_exit(&conf->bio_split);
3272 	kfree(conf);
3273 }
3274 
raid1_resize(struct mddev * mddev,sector_t sectors)3275 static int raid1_resize(struct mddev *mddev, sector_t sectors)
3276 {
3277 	/* no resync is happening, and there is enough space
3278 	 * on all devices, so we can resize.
3279 	 * We need to make sure resync covers any new space.
3280 	 * If the array is shrinking we should possibly wait until
3281 	 * any io in the removed space completes, but it hardly seems
3282 	 * worth it.
3283 	 */
3284 	sector_t newsize = raid1_size(mddev, sectors, 0);
3285 	int ret;
3286 
3287 	if (mddev->external_size &&
3288 	    mddev->array_sectors > newsize)
3289 		return -EINVAL;
3290 
3291 	ret = mddev->bitmap_ops->resize(mddev, newsize, 0, false);
3292 	if (ret)
3293 		return ret;
3294 
3295 	md_set_array_sectors(mddev, newsize);
3296 	if (sectors > mddev->dev_sectors &&
3297 	    mddev->recovery_cp > mddev->dev_sectors) {
3298 		mddev->recovery_cp = mddev->dev_sectors;
3299 		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3300 	}
3301 	mddev->dev_sectors = sectors;
3302 	mddev->resync_max_sectors = sectors;
3303 	return 0;
3304 }
3305 
raid1_reshape(struct mddev * mddev)3306 static int raid1_reshape(struct mddev *mddev)
3307 {
3308 	/* We need to:
3309 	 * 1/ resize the r1bio_pool
3310 	 * 2/ resize conf->mirrors
3311 	 *
3312 	 * We allocate a new r1bio_pool if we can.
3313 	 * Then raise a device barrier and wait until all IO stops.
3314 	 * Then resize conf->mirrors and swap in the new r1bio pool.
3315 	 *
3316 	 * At the same time, we "pack" the devices so that all the missing
3317 	 * devices have the higher raid_disk numbers.
3318 	 */
3319 	mempool_t newpool, oldpool;
3320 	struct pool_info *newpoolinfo;
3321 	struct raid1_info *newmirrors;
3322 	struct r1conf *conf = mddev->private;
3323 	int cnt, raid_disks;
3324 	unsigned long flags;
3325 	int d, d2;
3326 	int ret;
3327 
3328 	memset(&newpool, 0, sizeof(newpool));
3329 	memset(&oldpool, 0, sizeof(oldpool));
3330 
3331 	/* Cannot change chunk_size, layout, or level */
3332 	if (mddev->chunk_sectors != mddev->new_chunk_sectors ||
3333 	    mddev->layout != mddev->new_layout ||
3334 	    mddev->level != mddev->new_level) {
3335 		mddev->new_chunk_sectors = mddev->chunk_sectors;
3336 		mddev->new_layout = mddev->layout;
3337 		mddev->new_level = mddev->level;
3338 		return -EINVAL;
3339 	}
3340 
3341 	if (!mddev_is_clustered(mddev))
3342 		md_allow_write(mddev);
3343 
3344 	raid_disks = mddev->raid_disks + mddev->delta_disks;
3345 
3346 	if (raid_disks < conf->raid_disks) {
3347 		cnt=0;
3348 		for (d= 0; d < conf->raid_disks; d++)
3349 			if (conf->mirrors[d].rdev)
3350 				cnt++;
3351 		if (cnt > raid_disks)
3352 			return -EBUSY;
3353 	}
3354 
3355 	newpoolinfo = kmalloc(sizeof(*newpoolinfo), GFP_KERNEL);
3356 	if (!newpoolinfo)
3357 		return -ENOMEM;
3358 	newpoolinfo->mddev = mddev;
3359 	newpoolinfo->raid_disks = raid_disks * 2;
3360 
3361 	ret = mempool_init(&newpool, NR_RAID_BIOS, r1bio_pool_alloc,
3362 			   rbio_pool_free, newpoolinfo);
3363 	if (ret) {
3364 		kfree(newpoolinfo);
3365 		return ret;
3366 	}
3367 	newmirrors = kzalloc(array3_size(sizeof(struct raid1_info),
3368 					 raid_disks, 2),
3369 			     GFP_KERNEL);
3370 	if (!newmirrors) {
3371 		kfree(newpoolinfo);
3372 		mempool_exit(&newpool);
3373 		return -ENOMEM;
3374 	}
3375 
3376 	freeze_array(conf, 0);
3377 
3378 	/* ok, everything is stopped */
3379 	oldpool = conf->r1bio_pool;
3380 	conf->r1bio_pool = newpool;
3381 	init_waitqueue_head(&conf->r1bio_pool.wait);
3382 
3383 	for (d = d2 = 0; d < conf->raid_disks; d++) {
3384 		struct md_rdev *rdev = conf->mirrors[d].rdev;
3385 		if (rdev && rdev->raid_disk != d2) {
3386 			sysfs_unlink_rdev(mddev, rdev);
3387 			rdev->raid_disk = d2;
3388 			sysfs_unlink_rdev(mddev, rdev);
3389 			if (sysfs_link_rdev(mddev, rdev))
3390 				pr_warn("md/raid1:%s: cannot register rd%d\n",
3391 					mdname(mddev), rdev->raid_disk);
3392 		}
3393 		if (rdev)
3394 			newmirrors[d2++].rdev = rdev;
3395 	}
3396 	kfree(conf->mirrors);
3397 	conf->mirrors = newmirrors;
3398 	kfree(conf->poolinfo);
3399 	conf->poolinfo = newpoolinfo;
3400 
3401 	spin_lock_irqsave(&conf->device_lock, flags);
3402 	mddev->degraded += (raid_disks - conf->raid_disks);
3403 	spin_unlock_irqrestore(&conf->device_lock, flags);
3404 	conf->raid_disks = mddev->raid_disks = raid_disks;
3405 	mddev->delta_disks = 0;
3406 
3407 	unfreeze_array(conf);
3408 
3409 	set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
3410 	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3411 	md_wakeup_thread(mddev->thread);
3412 
3413 	mempool_exit(&oldpool);
3414 	return 0;
3415 }
3416 
raid1_quiesce(struct mddev * mddev,int quiesce)3417 static void raid1_quiesce(struct mddev *mddev, int quiesce)
3418 {
3419 	struct r1conf *conf = mddev->private;
3420 
3421 	if (quiesce)
3422 		freeze_array(conf, 0);
3423 	else
3424 		unfreeze_array(conf);
3425 }
3426 
raid1_takeover(struct mddev * mddev)3427 static void *raid1_takeover(struct mddev *mddev)
3428 {
3429 	/* raid1 can take over:
3430 	 *  raid5 with 2 devices, any layout or chunk size
3431 	 */
3432 	if (mddev->level == 5 && mddev->raid_disks == 2) {
3433 		struct r1conf *conf;
3434 		mddev->new_level = 1;
3435 		mddev->new_layout = 0;
3436 		mddev->new_chunk_sectors = 0;
3437 		conf = setup_conf(mddev);
3438 		if (!IS_ERR(conf)) {
3439 			/* Array must appear to be quiesced */
3440 			conf->array_frozen = 1;
3441 			mddev_clear_unsupported_flags(mddev,
3442 				UNSUPPORTED_MDDEV_FLAGS);
3443 		}
3444 		return conf;
3445 	}
3446 	return ERR_PTR(-EINVAL);
3447 }
3448 
3449 static struct md_personality raid1_personality =
3450 {
3451 	.name		= "raid1",
3452 	.level		= 1,
3453 	.owner		= THIS_MODULE,
3454 	.make_request	= raid1_make_request,
3455 	.run		= raid1_run,
3456 	.free		= raid1_free,
3457 	.status		= raid1_status,
3458 	.error_handler	= raid1_error,
3459 	.hot_add_disk	= raid1_add_disk,
3460 	.hot_remove_disk= raid1_remove_disk,
3461 	.spare_active	= raid1_spare_active,
3462 	.sync_request	= raid1_sync_request,
3463 	.resize		= raid1_resize,
3464 	.size		= raid1_size,
3465 	.check_reshape	= raid1_reshape,
3466 	.quiesce	= raid1_quiesce,
3467 	.takeover	= raid1_takeover,
3468 };
3469 
raid_init(void)3470 static int __init raid_init(void)
3471 {
3472 	return register_md_personality(&raid1_personality);
3473 }
3474 
raid_exit(void)3475 static void raid_exit(void)
3476 {
3477 	unregister_md_personality(&raid1_personality);
3478 }
3479 
3480 module_init(raid_init);
3481 module_exit(raid_exit);
3482 MODULE_LICENSE("GPL");
3483 MODULE_DESCRIPTION("RAID1 (mirroring) personality for MD");
3484 MODULE_ALIAS("md-personality-3"); /* RAID1 */
3485 MODULE_ALIAS("md-raid1");
3486 MODULE_ALIAS("md-level-1");
3487