• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *      uvc_video.c  --  USB Video Class driver - Video handling
4  *
5  *      Copyright (C) 2005-2010
6  *          Laurent Pinchart (laurent.pinchart@ideasonboard.com)
7  */
8 
9 #include <linux/dma-mapping.h>
10 #include <linux/highmem.h>
11 #include <linux/kernel.h>
12 #include <linux/list.h>
13 #include <linux/module.h>
14 #include <linux/slab.h>
15 #include <linux/usb.h>
16 #include <linux/usb/hcd.h>
17 #include <linux/videodev2.h>
18 #include <linux/vmalloc.h>
19 #include <linux/wait.h>
20 #include <linux/atomic.h>
21 #include <linux/unaligned.h>
22 
23 #include <media/jpeg.h>
24 #include <media/v4l2-common.h>
25 
26 #include "uvcvideo.h"
27 
28 /* ------------------------------------------------------------------------
29  * UVC Controls
30  */
31 
__uvc_query_ctrl(struct uvc_device * dev,u8 query,u8 unit,u8 intfnum,u8 cs,void * data,u16 size,int timeout)32 static int __uvc_query_ctrl(struct uvc_device *dev, u8 query, u8 unit,
33 			u8 intfnum, u8 cs, void *data, u16 size,
34 			int timeout)
35 {
36 	u8 type = USB_TYPE_CLASS | USB_RECIP_INTERFACE;
37 	unsigned int pipe;
38 
39 	pipe = (query & 0x80) ? usb_rcvctrlpipe(dev->udev, 0)
40 			      : usb_sndctrlpipe(dev->udev, 0);
41 	type |= (query & 0x80) ? USB_DIR_IN : USB_DIR_OUT;
42 
43 	return usb_control_msg(dev->udev, pipe, query, type, cs << 8,
44 			unit << 8 | intfnum, data, size, timeout);
45 }
46 
uvc_query_name(u8 query)47 static const char *uvc_query_name(u8 query)
48 {
49 	switch (query) {
50 	case UVC_SET_CUR:
51 		return "SET_CUR";
52 	case UVC_GET_CUR:
53 		return "GET_CUR";
54 	case UVC_GET_MIN:
55 		return "GET_MIN";
56 	case UVC_GET_MAX:
57 		return "GET_MAX";
58 	case UVC_GET_RES:
59 		return "GET_RES";
60 	case UVC_GET_LEN:
61 		return "GET_LEN";
62 	case UVC_GET_INFO:
63 		return "GET_INFO";
64 	case UVC_GET_DEF:
65 		return "GET_DEF";
66 	default:
67 		return "<invalid>";
68 	}
69 }
70 
uvc_query_ctrl(struct uvc_device * dev,u8 query,u8 unit,u8 intfnum,u8 cs,void * data,u16 size)71 int uvc_query_ctrl(struct uvc_device *dev, u8 query, u8 unit,
72 			u8 intfnum, u8 cs, void *data, u16 size)
73 {
74 	int ret;
75 	u8 error;
76 	u8 tmp;
77 
78 	ret = __uvc_query_ctrl(dev, query, unit, intfnum, cs, data, size,
79 				UVC_CTRL_CONTROL_TIMEOUT);
80 	if (likely(ret == size))
81 		return 0;
82 
83 	/*
84 	 * Some devices return shorter USB control packets than expected if the
85 	 * returned value can fit in less bytes. Zero all the bytes that the
86 	 * device has not written.
87 	 *
88 	 * This quirk is applied to all controls, regardless of their data type.
89 	 * Most controls are little-endian integers, in which case the missing
90 	 * bytes become 0 MSBs. For other data types, a different heuristic
91 	 * could be implemented if a device is found needing it.
92 	 *
93 	 * We exclude UVC_GET_INFO from the quirk. UVC_GET_LEN does not need
94 	 * to be excluded because its size is always 1.
95 	 */
96 	if (ret > 0 && query != UVC_GET_INFO) {
97 		memset(data + ret, 0, size - ret);
98 		dev_warn_once(&dev->udev->dev,
99 			      "UVC non compliance: %s control %u on unit %u returned %d bytes when we expected %u.\n",
100 			      uvc_query_name(query), cs, unit, ret, size);
101 		return 0;
102 	}
103 
104 	if (ret != -EPIPE) {
105 		dev_err(&dev->udev->dev,
106 			"Failed to query (%s) UVC control %u on unit %u: %d (exp. %u).\n",
107 			uvc_query_name(query), cs, unit, ret, size);
108 		return ret < 0 ? ret : -EPIPE;
109 	}
110 
111 	/* Reuse data[0] to request the error code. */
112 	tmp = *(u8 *)data;
113 
114 	ret = __uvc_query_ctrl(dev, UVC_GET_CUR, 0, intfnum,
115 			       UVC_VC_REQUEST_ERROR_CODE_CONTROL, data, 1,
116 			       UVC_CTRL_CONTROL_TIMEOUT);
117 
118 	error = *(u8 *)data;
119 	*(u8 *)data = tmp;
120 
121 	if (ret != 1)
122 		return ret < 0 ? ret : -EPIPE;
123 
124 	uvc_dbg(dev, CONTROL, "Control error %u\n", error);
125 
126 	switch (error) {
127 	case 0:
128 		/* Cannot happen - we received a STALL */
129 		return -EPIPE;
130 	case 1: /* Not ready */
131 		return -EBUSY;
132 	case 2: /* Wrong state */
133 		return -EACCES;
134 	case 3: /* Power */
135 		return -EREMOTE;
136 	case 4: /* Out of range */
137 		return -ERANGE;
138 	case 5: /* Invalid unit */
139 	case 6: /* Invalid control */
140 	case 7: /* Invalid Request */
141 		/*
142 		 * The firmware has not properly implemented
143 		 * the control or there has been a HW error.
144 		 */
145 		return -EIO;
146 	case 8: /* Invalid value within range */
147 		return -EINVAL;
148 	default: /* reserved or unknown */
149 		break;
150 	}
151 
152 	return -EPIPE;
153 }
154 
155 static const struct usb_device_id elgato_cam_link_4k = {
156 	USB_DEVICE(0x0fd9, 0x0066)
157 };
158 
uvc_fixup_video_ctrl(struct uvc_streaming * stream,struct uvc_streaming_control * ctrl)159 static void uvc_fixup_video_ctrl(struct uvc_streaming *stream,
160 	struct uvc_streaming_control *ctrl)
161 {
162 	const struct uvc_format *format = NULL;
163 	const struct uvc_frame *frame = NULL;
164 	unsigned int i;
165 
166 	/*
167 	 * The response of the Elgato Cam Link 4K is incorrect: The second byte
168 	 * contains bFormatIndex (instead of being the second byte of bmHint).
169 	 * The first byte is always zero. The third byte is always 1.
170 	 *
171 	 * The UVC 1.5 class specification defines the first five bits in the
172 	 * bmHint bitfield. The remaining bits are reserved and should be zero.
173 	 * Therefore a valid bmHint will be less than 32.
174 	 *
175 	 * Latest Elgato Cam Link 4K firmware as of 2021-03-23 needs this fix.
176 	 * MCU: 20.02.19, FPGA: 67
177 	 */
178 	if (usb_match_one_id(stream->dev->intf, &elgato_cam_link_4k) &&
179 	    ctrl->bmHint > 255) {
180 		u8 corrected_format_index = ctrl->bmHint >> 8;
181 
182 		uvc_dbg(stream->dev, VIDEO,
183 			"Correct USB video probe response from {bmHint: 0x%04x, bFormatIndex: %u} to {bmHint: 0x%04x, bFormatIndex: %u}\n",
184 			ctrl->bmHint, ctrl->bFormatIndex,
185 			1, corrected_format_index);
186 		ctrl->bmHint = 1;
187 		ctrl->bFormatIndex = corrected_format_index;
188 	}
189 
190 	for (i = 0; i < stream->nformats; ++i) {
191 		if (stream->formats[i].index == ctrl->bFormatIndex) {
192 			format = &stream->formats[i];
193 			break;
194 		}
195 	}
196 
197 	if (format == NULL)
198 		return;
199 
200 	for (i = 0; i < format->nframes; ++i) {
201 		if (format->frames[i].bFrameIndex == ctrl->bFrameIndex) {
202 			frame = &format->frames[i];
203 			break;
204 		}
205 	}
206 
207 	if (frame == NULL)
208 		return;
209 
210 	if (!(format->flags & UVC_FMT_FLAG_COMPRESSED) ||
211 	     (ctrl->dwMaxVideoFrameSize == 0 &&
212 	      stream->dev->uvc_version < 0x0110))
213 		ctrl->dwMaxVideoFrameSize =
214 			frame->dwMaxVideoFrameBufferSize;
215 
216 	/*
217 	 * The "TOSHIBA Web Camera - 5M" Chicony device (04f2:b50b) seems to
218 	 * compute the bandwidth on 16 bits and erroneously sign-extend it to
219 	 * 32 bits, resulting in a huge bandwidth value. Detect and fix that
220 	 * condition by setting the 16 MSBs to 0 when they're all equal to 1.
221 	 */
222 	if ((ctrl->dwMaxPayloadTransferSize & 0xffff0000) == 0xffff0000)
223 		ctrl->dwMaxPayloadTransferSize &= ~0xffff0000;
224 
225 	if (!(format->flags & UVC_FMT_FLAG_COMPRESSED) &&
226 	    stream->dev->quirks & UVC_QUIRK_FIX_BANDWIDTH &&
227 	    stream->intf->num_altsetting > 1) {
228 		u32 interval;
229 		u32 bandwidth;
230 
231 		interval = (ctrl->dwFrameInterval > 100000)
232 			 ? ctrl->dwFrameInterval
233 			 : frame->dwFrameInterval[0];
234 
235 		/*
236 		 * Compute a bandwidth estimation by multiplying the frame
237 		 * size by the number of video frames per second, divide the
238 		 * result by the number of USB frames (or micro-frames for
239 		 * high- and super-speed devices) per second and add the UVC
240 		 * header size (assumed to be 12 bytes long).
241 		 */
242 		bandwidth = frame->wWidth * frame->wHeight / 8 * format->bpp;
243 		bandwidth *= 10000000 / interval + 1;
244 		bandwidth /= 1000;
245 		if (stream->dev->udev->speed >= USB_SPEED_HIGH)
246 			bandwidth /= 8;
247 		bandwidth += 12;
248 
249 		/*
250 		 * The bandwidth estimate is too low for many cameras. Don't use
251 		 * maximum packet sizes lower than 1024 bytes to try and work
252 		 * around the problem. According to measurements done on two
253 		 * different camera models, the value is high enough to get most
254 		 * resolutions working while not preventing two simultaneous
255 		 * VGA streams at 15 fps.
256 		 */
257 		bandwidth = max_t(u32, bandwidth, 1024);
258 
259 		ctrl->dwMaxPayloadTransferSize = bandwidth;
260 	}
261 
262 	if (stream->intf->num_altsetting > 1 &&
263 	    ctrl->dwMaxPayloadTransferSize > stream->maxpsize) {
264 		dev_warn_ratelimited(&stream->intf->dev,
265 				     "UVC non compliance: the max payload transmission size (%u) exceeds the size of the ep max packet (%u). Using the max size.\n",
266 				     ctrl->dwMaxPayloadTransferSize,
267 				     stream->maxpsize);
268 		ctrl->dwMaxPayloadTransferSize = stream->maxpsize;
269 	}
270 }
271 
uvc_video_ctrl_size(struct uvc_streaming * stream)272 static size_t uvc_video_ctrl_size(struct uvc_streaming *stream)
273 {
274 	/*
275 	 * Return the size of the video probe and commit controls, which depends
276 	 * on the protocol version.
277 	 */
278 	if (stream->dev->uvc_version < 0x0110)
279 		return 26;
280 	else if (stream->dev->uvc_version < 0x0150)
281 		return 34;
282 	else
283 		return 48;
284 }
285 
uvc_get_video_ctrl(struct uvc_streaming * stream,struct uvc_streaming_control * ctrl,int probe,u8 query)286 static int uvc_get_video_ctrl(struct uvc_streaming *stream,
287 	struct uvc_streaming_control *ctrl, int probe, u8 query)
288 {
289 	u16 size = uvc_video_ctrl_size(stream);
290 	u8 *data;
291 	int ret;
292 
293 	if ((stream->dev->quirks & UVC_QUIRK_PROBE_DEF) &&
294 			query == UVC_GET_DEF)
295 		return -EIO;
296 
297 	data = kmalloc(size, GFP_KERNEL);
298 	if (data == NULL)
299 		return -ENOMEM;
300 
301 	ret = __uvc_query_ctrl(stream->dev, query, 0, stream->intfnum,
302 		probe ? UVC_VS_PROBE_CONTROL : UVC_VS_COMMIT_CONTROL, data,
303 		size, uvc_timeout_param);
304 
305 	if ((query == UVC_GET_MIN || query == UVC_GET_MAX) && ret == 2) {
306 		/*
307 		 * Some cameras, mostly based on Bison Electronics chipsets,
308 		 * answer a GET_MIN or GET_MAX request with the wCompQuality
309 		 * field only.
310 		 */
311 		uvc_warn_once(stream->dev, UVC_WARN_MINMAX, "UVC non "
312 			"compliance - GET_MIN/MAX(PROBE) incorrectly "
313 			"supported. Enabling workaround.\n");
314 		memset(ctrl, 0, sizeof(*ctrl));
315 		ctrl->wCompQuality = le16_to_cpup((__le16 *)data);
316 		ret = 0;
317 		goto out;
318 	} else if (query == UVC_GET_DEF && probe == 1 && ret != size) {
319 		/*
320 		 * Many cameras don't support the GET_DEF request on their
321 		 * video probe control. Warn once and return, the caller will
322 		 * fall back to GET_CUR.
323 		 */
324 		uvc_warn_once(stream->dev, UVC_WARN_PROBE_DEF, "UVC non "
325 			"compliance - GET_DEF(PROBE) not supported. "
326 			"Enabling workaround.\n");
327 		ret = -EIO;
328 		goto out;
329 	} else if (ret != size) {
330 		dev_err(&stream->intf->dev,
331 			"Failed to query (%u) UVC %s control : %d (exp. %u).\n",
332 			query, probe ? "probe" : "commit", ret, size);
333 		ret = (ret == -EPROTO) ? -EPROTO : -EIO;
334 		goto out;
335 	}
336 
337 	ctrl->bmHint = le16_to_cpup((__le16 *)&data[0]);
338 	ctrl->bFormatIndex = data[2];
339 	ctrl->bFrameIndex = data[3];
340 	ctrl->dwFrameInterval = le32_to_cpup((__le32 *)&data[4]);
341 	ctrl->wKeyFrameRate = le16_to_cpup((__le16 *)&data[8]);
342 	ctrl->wPFrameRate = le16_to_cpup((__le16 *)&data[10]);
343 	ctrl->wCompQuality = le16_to_cpup((__le16 *)&data[12]);
344 	ctrl->wCompWindowSize = le16_to_cpup((__le16 *)&data[14]);
345 	ctrl->wDelay = le16_to_cpup((__le16 *)&data[16]);
346 	ctrl->dwMaxVideoFrameSize = get_unaligned_le32(&data[18]);
347 	ctrl->dwMaxPayloadTransferSize = get_unaligned_le32(&data[22]);
348 
349 	if (size >= 34) {
350 		ctrl->dwClockFrequency = get_unaligned_le32(&data[26]);
351 		ctrl->bmFramingInfo = data[30];
352 		ctrl->bPreferedVersion = data[31];
353 		ctrl->bMinVersion = data[32];
354 		ctrl->bMaxVersion = data[33];
355 	} else {
356 		ctrl->dwClockFrequency = stream->dev->clock_frequency;
357 		ctrl->bmFramingInfo = 0;
358 		ctrl->bPreferedVersion = 0;
359 		ctrl->bMinVersion = 0;
360 		ctrl->bMaxVersion = 0;
361 	}
362 
363 	/*
364 	 * Some broken devices return null or wrong dwMaxVideoFrameSize and
365 	 * dwMaxPayloadTransferSize fields. Try to get the value from the
366 	 * format and frame descriptors.
367 	 */
368 	uvc_fixup_video_ctrl(stream, ctrl);
369 	ret = 0;
370 
371 out:
372 	kfree(data);
373 	return ret;
374 }
375 
uvc_set_video_ctrl(struct uvc_streaming * stream,struct uvc_streaming_control * ctrl,int probe)376 static int uvc_set_video_ctrl(struct uvc_streaming *stream,
377 	struct uvc_streaming_control *ctrl, int probe)
378 {
379 	u16 size = uvc_video_ctrl_size(stream);
380 	u8 *data;
381 	int ret;
382 
383 	data = kzalloc(size, GFP_KERNEL);
384 	if (data == NULL)
385 		return -ENOMEM;
386 
387 	*(__le16 *)&data[0] = cpu_to_le16(ctrl->bmHint);
388 	data[2] = ctrl->bFormatIndex;
389 	data[3] = ctrl->bFrameIndex;
390 	*(__le32 *)&data[4] = cpu_to_le32(ctrl->dwFrameInterval);
391 	*(__le16 *)&data[8] = cpu_to_le16(ctrl->wKeyFrameRate);
392 	*(__le16 *)&data[10] = cpu_to_le16(ctrl->wPFrameRate);
393 	*(__le16 *)&data[12] = cpu_to_le16(ctrl->wCompQuality);
394 	*(__le16 *)&data[14] = cpu_to_le16(ctrl->wCompWindowSize);
395 	*(__le16 *)&data[16] = cpu_to_le16(ctrl->wDelay);
396 	put_unaligned_le32(ctrl->dwMaxVideoFrameSize, &data[18]);
397 	put_unaligned_le32(ctrl->dwMaxPayloadTransferSize, &data[22]);
398 
399 	if (size >= 34) {
400 		put_unaligned_le32(ctrl->dwClockFrequency, &data[26]);
401 		data[30] = ctrl->bmFramingInfo;
402 		data[31] = ctrl->bPreferedVersion;
403 		data[32] = ctrl->bMinVersion;
404 		data[33] = ctrl->bMaxVersion;
405 	}
406 
407 	ret = __uvc_query_ctrl(stream->dev, UVC_SET_CUR, 0, stream->intfnum,
408 		probe ? UVC_VS_PROBE_CONTROL : UVC_VS_COMMIT_CONTROL, data,
409 		size, uvc_timeout_param);
410 	if (ret != size) {
411 		dev_err(&stream->intf->dev,
412 			"Failed to set UVC %s control : %d (exp. %u).\n",
413 			probe ? "probe" : "commit", ret, size);
414 		ret = -EIO;
415 	}
416 
417 	kfree(data);
418 	return ret;
419 }
420 
uvc_probe_video(struct uvc_streaming * stream,struct uvc_streaming_control * probe)421 int uvc_probe_video(struct uvc_streaming *stream,
422 	struct uvc_streaming_control *probe)
423 {
424 	struct uvc_streaming_control probe_min, probe_max;
425 	unsigned int i;
426 	int ret;
427 
428 	/*
429 	 * Perform probing. The device should adjust the requested values
430 	 * according to its capabilities. However, some devices, namely the
431 	 * first generation UVC Logitech webcams, don't implement the Video
432 	 * Probe control properly, and just return the needed bandwidth. For
433 	 * that reason, if the needed bandwidth exceeds the maximum available
434 	 * bandwidth, try to lower the quality.
435 	 */
436 	ret = uvc_set_video_ctrl(stream, probe, 1);
437 	if (ret < 0)
438 		goto done;
439 
440 	/* Get the minimum and maximum values for compression settings. */
441 	if (!(stream->dev->quirks & UVC_QUIRK_PROBE_MINMAX)) {
442 		ret = uvc_get_video_ctrl(stream, &probe_min, 1, UVC_GET_MIN);
443 		if (ret < 0)
444 			goto done;
445 		ret = uvc_get_video_ctrl(stream, &probe_max, 1, UVC_GET_MAX);
446 		if (ret < 0)
447 			goto done;
448 
449 		probe->wCompQuality = probe_max.wCompQuality;
450 	}
451 
452 	for (i = 0; i < 2; ++i) {
453 		ret = uvc_set_video_ctrl(stream, probe, 1);
454 		if (ret < 0)
455 			goto done;
456 		ret = uvc_get_video_ctrl(stream, probe, 1, UVC_GET_CUR);
457 		if (ret < 0)
458 			goto done;
459 
460 		if (stream->intf->num_altsetting == 1)
461 			break;
462 
463 		if (probe->dwMaxPayloadTransferSize <= stream->maxpsize)
464 			break;
465 
466 		if (stream->dev->quirks & UVC_QUIRK_PROBE_MINMAX) {
467 			ret = -ENOSPC;
468 			goto done;
469 		}
470 
471 		/* TODO: negotiate compression parameters */
472 		probe->wKeyFrameRate = probe_min.wKeyFrameRate;
473 		probe->wPFrameRate = probe_min.wPFrameRate;
474 		probe->wCompQuality = probe_max.wCompQuality;
475 		probe->wCompWindowSize = probe_min.wCompWindowSize;
476 	}
477 
478 done:
479 	return ret;
480 }
481 
uvc_commit_video(struct uvc_streaming * stream,struct uvc_streaming_control * probe)482 static int uvc_commit_video(struct uvc_streaming *stream,
483 			    struct uvc_streaming_control *probe)
484 {
485 	return uvc_set_video_ctrl(stream, probe, 0);
486 }
487 
488 /* -----------------------------------------------------------------------------
489  * Clocks and timestamps
490  */
491 
uvc_video_get_time(void)492 static inline ktime_t uvc_video_get_time(void)
493 {
494 	if (uvc_clock_param == CLOCK_MONOTONIC)
495 		return ktime_get();
496 	else
497 		return ktime_get_real();
498 }
499 
uvc_video_clock_add_sample(struct uvc_clock * clock,const struct uvc_clock_sample * sample)500 static void uvc_video_clock_add_sample(struct uvc_clock *clock,
501 				       const struct uvc_clock_sample *sample)
502 {
503 	unsigned long flags;
504 
505 	/*
506 	 * If we write new data on the position where we had the last
507 	 * overflow, remove the overflow pointer. There is no SOF overflow
508 	 * in the whole circular buffer.
509 	 */
510 	if (clock->head == clock->last_sof_overflow)
511 		clock->last_sof_overflow = -1;
512 
513 	spin_lock_irqsave(&clock->lock, flags);
514 
515 	if (clock->count > 0 && clock->last_sof > sample->dev_sof) {
516 		/*
517 		 * Remove data from the circular buffer that is older than the
518 		 * last SOF overflow. We only support one SOF overflow per
519 		 * circular buffer.
520 		 */
521 		if (clock->last_sof_overflow != -1)
522 			clock->count = (clock->head - clock->last_sof_overflow
523 					+ clock->size) % clock->size;
524 		clock->last_sof_overflow = clock->head;
525 	}
526 
527 	/* Add sample. */
528 	clock->samples[clock->head] = *sample;
529 	clock->head = (clock->head + 1) % clock->size;
530 	clock->count = min(clock->count + 1, clock->size);
531 
532 	spin_unlock_irqrestore(&clock->lock, flags);
533 }
534 
535 static void
uvc_video_clock_decode(struct uvc_streaming * stream,struct uvc_buffer * buf,const u8 * data,int len)536 uvc_video_clock_decode(struct uvc_streaming *stream, struct uvc_buffer *buf,
537 		       const u8 *data, int len)
538 {
539 	struct uvc_clock_sample sample;
540 	unsigned int header_size;
541 	bool has_pts = false;
542 	bool has_scr = false;
543 
544 	switch (data[1] & (UVC_STREAM_PTS | UVC_STREAM_SCR)) {
545 	case UVC_STREAM_PTS | UVC_STREAM_SCR:
546 		header_size = 12;
547 		has_pts = true;
548 		has_scr = true;
549 		break;
550 	case UVC_STREAM_PTS:
551 		header_size = 6;
552 		has_pts = true;
553 		break;
554 	case UVC_STREAM_SCR:
555 		header_size = 8;
556 		has_scr = true;
557 		break;
558 	default:
559 		header_size = 2;
560 		break;
561 	}
562 
563 	/* Check for invalid headers. */
564 	if (len < header_size)
565 		return;
566 
567 	/*
568 	 * Extract the timestamps:
569 	 *
570 	 * - store the frame PTS in the buffer structure
571 	 * - if the SCR field is present, retrieve the host SOF counter and
572 	 *   kernel timestamps and store them with the SCR STC and SOF fields
573 	 *   in the ring buffer
574 	 */
575 	if (has_pts && buf != NULL)
576 		buf->pts = get_unaligned_le32(&data[2]);
577 
578 	if (!has_scr)
579 		return;
580 
581 	/*
582 	 * To limit the amount of data, drop SCRs with an SOF identical to the
583 	 * previous one. This filtering is also needed to support UVC 1.5, where
584 	 * all the data packets of the same frame contains the same SOF. In that
585 	 * case only the first one will match the host_sof.
586 	 */
587 	sample.dev_sof = get_unaligned_le16(&data[header_size - 2]);
588 	if (sample.dev_sof == stream->clock.last_sof)
589 		return;
590 
591 	sample.dev_stc = get_unaligned_le32(&data[header_size - 6]);
592 
593 	/*
594 	 * STC (Source Time Clock) is the clock used by the camera. The UVC 1.5
595 	 * standard states that it "must be captured when the first video data
596 	 * of a video frame is put on the USB bus". This is generally understood
597 	 * as requiring devices to clear the payload header's SCR bit before
598 	 * the first packet containing video data.
599 	 *
600 	 * Most vendors follow that interpretation, but some (namely SunplusIT
601 	 * on some devices) always set the `UVC_STREAM_SCR` bit, fill the SCR
602 	 * field with 0's,and expect that the driver only processes the SCR if
603 	 * there is data in the packet.
604 	 *
605 	 * Ignore all the hardware timestamp information if we haven't received
606 	 * any data for this frame yet, the packet contains no data, and both
607 	 * STC and SOF are zero. This heuristics should be safe on compliant
608 	 * devices. This should be safe with compliant devices, as in the very
609 	 * unlikely case where a UVC 1.1 device would send timing information
610 	 * only before the first packet containing data, and both STC and SOF
611 	 * happen to be zero for a particular frame, we would only miss one
612 	 * clock sample from many and the clock recovery algorithm wouldn't
613 	 * suffer from this condition.
614 	 */
615 	if (buf && buf->bytesused == 0 && len == header_size &&
616 	    sample.dev_stc == 0 && sample.dev_sof == 0)
617 		return;
618 
619 	sample.host_sof = usb_get_current_frame_number(stream->dev->udev);
620 
621 	/*
622 	 * On some devices, like the Logitech C922, the device SOF does not run
623 	 * at a stable rate of 1kHz. For those devices use the host SOF instead.
624 	 * In the tests performed so far, this improves the timestamp precision.
625 	 * This is probably explained by a small packet handling jitter from the
626 	 * host, but the exact reason hasn't been fully determined.
627 	 */
628 	if (stream->dev->quirks & UVC_QUIRK_INVALID_DEVICE_SOF)
629 		sample.dev_sof = sample.host_sof;
630 
631 	sample.host_time = uvc_video_get_time();
632 
633 	/*
634 	 * The UVC specification allows device implementations that can't obtain
635 	 * the USB frame number to keep their own frame counters as long as they
636 	 * match the size and frequency of the frame number associated with USB
637 	 * SOF tokens. The SOF values sent by such devices differ from the USB
638 	 * SOF tokens by a fixed offset that needs to be estimated and accounted
639 	 * for to make timestamp recovery as accurate as possible.
640 	 *
641 	 * The offset is estimated the first time a device SOF value is received
642 	 * as the difference between the host and device SOF values. As the two
643 	 * SOF values can differ slightly due to transmission delays, consider
644 	 * that the offset is null if the difference is not higher than 10 ms
645 	 * (negative differences can not happen and are thus considered as an
646 	 * offset). The video commit control wDelay field should be used to
647 	 * compute a dynamic threshold instead of using a fixed 10 ms value, but
648 	 * devices don't report reliable wDelay values.
649 	 *
650 	 * See uvc_video_clock_host_sof() for an explanation regarding why only
651 	 * the 8 LSBs of the delta are kept.
652 	 */
653 	if (stream->clock.sof_offset == (u16)-1) {
654 		u16 delta_sof = (sample.host_sof - sample.dev_sof) & 255;
655 		if (delta_sof >= 10)
656 			stream->clock.sof_offset = delta_sof;
657 		else
658 			stream->clock.sof_offset = 0;
659 	}
660 
661 	sample.dev_sof = (sample.dev_sof + stream->clock.sof_offset) & 2047;
662 	uvc_video_clock_add_sample(&stream->clock, &sample);
663 	stream->clock.last_sof = sample.dev_sof;
664 }
665 
uvc_video_clock_reset(struct uvc_clock * clock)666 static void uvc_video_clock_reset(struct uvc_clock *clock)
667 {
668 	clock->head = 0;
669 	clock->count = 0;
670 	clock->last_sof = -1;
671 	clock->last_sof_overflow = -1;
672 	clock->sof_offset = -1;
673 }
674 
uvc_video_clock_init(struct uvc_clock * clock)675 static int uvc_video_clock_init(struct uvc_clock *clock)
676 {
677 	spin_lock_init(&clock->lock);
678 	clock->size = 32;
679 
680 	clock->samples = kmalloc_array(clock->size, sizeof(*clock->samples),
681 				       GFP_KERNEL);
682 	if (clock->samples == NULL)
683 		return -ENOMEM;
684 
685 	uvc_video_clock_reset(clock);
686 
687 	return 0;
688 }
689 
uvc_video_clock_cleanup(struct uvc_clock * clock)690 static void uvc_video_clock_cleanup(struct uvc_clock *clock)
691 {
692 	kfree(clock->samples);
693 	clock->samples = NULL;
694 }
695 
696 /*
697  * uvc_video_clock_host_sof - Return the host SOF value for a clock sample
698  *
699  * Host SOF counters reported by usb_get_current_frame_number() usually don't
700  * cover the whole 11-bits SOF range (0-2047) but are limited to the HCI frame
701  * schedule window. They can be limited to 8, 9 or 10 bits depending on the host
702  * controller and its configuration.
703  *
704  * We thus need to recover the SOF value corresponding to the host frame number.
705  * As the device and host frame numbers are sampled in a short interval, the
706  * difference between their values should be equal to a small delta plus an
707  * integer multiple of 256 caused by the host frame number limited precision.
708  *
709  * To obtain the recovered host SOF value, compute the small delta by masking
710  * the high bits of the host frame counter and device SOF difference and add it
711  * to the device SOF value.
712  */
uvc_video_clock_host_sof(const struct uvc_clock_sample * sample)713 static u16 uvc_video_clock_host_sof(const struct uvc_clock_sample *sample)
714 {
715 	/* The delta value can be negative. */
716 	s8 delta_sof;
717 
718 	delta_sof = (sample->host_sof - sample->dev_sof) & 255;
719 
720 	return (sample->dev_sof + delta_sof) & 2047;
721 }
722 
723 /*
724  * uvc_video_clock_update - Update the buffer timestamp
725  *
726  * This function converts the buffer PTS timestamp to the host clock domain by
727  * going through the USB SOF clock domain and stores the result in the V4L2
728  * buffer timestamp field.
729  *
730  * The relationship between the device clock and the host clock isn't known.
731  * However, the device and the host share the common USB SOF clock which can be
732  * used to recover that relationship.
733  *
734  * The relationship between the device clock and the USB SOF clock is considered
735  * to be linear over the clock samples sliding window and is given by
736  *
737  * SOF = m * PTS + p
738  *
739  * Several methods to compute the slope (m) and intercept (p) can be used. As
740  * the clock drift should be small compared to the sliding window size, we
741  * assume that the line that goes through the points at both ends of the window
742  * is a good approximation. Naming those points P1 and P2, we get
743  *
744  * SOF = (SOF2 - SOF1) / (STC2 - STC1) * PTS
745  *     + (SOF1 * STC2 - SOF2 * STC1) / (STC2 - STC1)
746  *
747  * or
748  *
749  * SOF = ((SOF2 - SOF1) * PTS + SOF1 * STC2 - SOF2 * STC1) / (STC2 - STC1)   (1)
750  *
751  * to avoid losing precision in the division. Similarly, the host timestamp is
752  * computed with
753  *
754  * TS = ((TS2 - TS1) * SOF + TS1 * SOF2 - TS2 * SOF1) / (SOF2 - SOF1)	     (2)
755  *
756  * SOF values are coded on 11 bits by USB. We extend their precision with 16
757  * decimal bits, leading to a 11.16 coding.
758  *
759  * TODO: To avoid surprises with device clock values, PTS/STC timestamps should
760  * be normalized using the nominal device clock frequency reported through the
761  * UVC descriptors.
762  *
763  * Both the PTS/STC and SOF counters roll over, after a fixed but device
764  * specific amount of time for PTS/STC and after 2048ms for SOF. As long as the
765  * sliding window size is smaller than the rollover period, differences computed
766  * on unsigned integers will produce the correct result. However, the p term in
767  * the linear relations will be miscomputed.
768  *
769  * To fix the issue, we subtract a constant from the PTS and STC values to bring
770  * PTS to half the 32 bit STC range. The sliding window STC values then fit into
771  * the 32 bit range without any rollover.
772  *
773  * Similarly, we add 2048 to the device SOF values to make sure that the SOF
774  * computed by (1) will never be smaller than 0. This offset is then compensated
775  * by adding 2048 to the SOF values used in (2). However, this doesn't prevent
776  * rollovers between (1) and (2): the SOF value computed by (1) can be slightly
777  * lower than 4096, and the host SOF counters can have rolled over to 2048. This
778  * case is handled by subtracting 2048 from the SOF value if it exceeds the host
779  * SOF value at the end of the sliding window.
780  *
781  * Finally we subtract a constant from the host timestamps to bring the first
782  * timestamp of the sliding window to 1s.
783  */
uvc_video_clock_update(struct uvc_streaming * stream,struct vb2_v4l2_buffer * vbuf,struct uvc_buffer * buf)784 void uvc_video_clock_update(struct uvc_streaming *stream,
785 			    struct vb2_v4l2_buffer *vbuf,
786 			    struct uvc_buffer *buf)
787 {
788 	struct uvc_clock *clock = &stream->clock;
789 	struct uvc_clock_sample *first;
790 	struct uvc_clock_sample *last;
791 	unsigned long flags;
792 	u64 timestamp;
793 	u32 delta_stc;
794 	u32 y1;
795 	u32 x1, x2;
796 	u32 mean;
797 	u32 sof;
798 	u64 y, y2;
799 
800 	if (!uvc_hw_timestamps_param)
801 		return;
802 
803 	/*
804 	 * We will get called from __vb2_queue_cancel() if there are buffers
805 	 * done but not dequeued by the user, but the sample array has already
806 	 * been released at that time. Just bail out in that case.
807 	 */
808 	if (!clock->samples)
809 		return;
810 
811 	spin_lock_irqsave(&clock->lock, flags);
812 
813 	if (clock->count < 2)
814 		goto done;
815 
816 	first = &clock->samples[(clock->head - clock->count + clock->size) % clock->size];
817 	last = &clock->samples[(clock->head - 1 + clock->size) % clock->size];
818 
819 	/* First step, PTS to SOF conversion. */
820 	delta_stc = buf->pts - (1UL << 31);
821 	x1 = first->dev_stc - delta_stc;
822 	x2 = last->dev_stc - delta_stc;
823 	if (x1 == x2)
824 		goto done;
825 
826 	y1 = (first->dev_sof + 2048) << 16;
827 	y2 = (last->dev_sof + 2048) << 16;
828 	if (y2 < y1)
829 		y2 += 2048 << 16;
830 
831 	/*
832 	 * Have at least 1/4 of a second of timestamps before we
833 	 * try to do any calculation. Otherwise we do not have enough
834 	 * precision. This value was determined by running Android CTS
835 	 * on different devices.
836 	 *
837 	 * dev_sof runs at 1KHz, and we have a fixed point precision of
838 	 * 16 bits.
839 	 */
840 	if ((y2 - y1) < ((1000 / 4) << 16))
841 		goto done;
842 
843 	y = (u64)(y2 - y1) * (1ULL << 31) + (u64)y1 * (u64)x2
844 	  - (u64)y2 * (u64)x1;
845 	y = div_u64(y, x2 - x1);
846 
847 	sof = y;
848 
849 	uvc_dbg(stream->dev, CLOCK,
850 		"%s: PTS %u y %llu.%06llu SOF %u.%06llu (x1 %u x2 %u y1 %u y2 %llu SOF offset %u)\n",
851 		stream->dev->name, buf->pts,
852 		y >> 16, div_u64((y & 0xffff) * 1000000, 65536),
853 		sof >> 16, div_u64(((u64)sof & 0xffff) * 1000000LLU, 65536),
854 		x1, x2, y1, y2, clock->sof_offset);
855 
856 	/* Second step, SOF to host clock conversion. */
857 	x1 = (uvc_video_clock_host_sof(first) + 2048) << 16;
858 	x2 = (uvc_video_clock_host_sof(last) + 2048) << 16;
859 	if (x2 < x1)
860 		x2 += 2048 << 16;
861 	if (x1 == x2)
862 		goto done;
863 
864 	y1 = NSEC_PER_SEC;
865 	y2 = ktime_to_ns(ktime_sub(last->host_time, first->host_time)) + y1;
866 
867 	/*
868 	 * Interpolated and host SOF timestamps can wrap around at slightly
869 	 * different times. Handle this by adding or removing 2048 to or from
870 	 * the computed SOF value to keep it close to the SOF samples mean
871 	 * value.
872 	 */
873 	mean = (x1 + x2) / 2;
874 	if (mean - (1024 << 16) > sof)
875 		sof += 2048 << 16;
876 	else if (sof > mean + (1024 << 16))
877 		sof -= 2048 << 16;
878 
879 	y = (u64)(y2 - y1) * (u64)sof + (u64)y1 * (u64)x2
880 	  - (u64)y2 * (u64)x1;
881 	y = div_u64(y, x2 - x1);
882 
883 	timestamp = ktime_to_ns(first->host_time) + y - y1;
884 
885 	uvc_dbg(stream->dev, CLOCK,
886 		"%s: SOF %u.%06llu y %llu ts %llu buf ts %llu (x1 %u/%u/%u x2 %u/%u/%u y1 %u y2 %llu)\n",
887 		stream->dev->name,
888 		sof >> 16, div_u64(((u64)sof & 0xffff) * 1000000LLU, 65536),
889 		y, timestamp, vbuf->vb2_buf.timestamp,
890 		x1, first->host_sof, first->dev_sof,
891 		x2, last->host_sof, last->dev_sof, y1, y2);
892 
893 	/* Update the V4L2 buffer. */
894 	vbuf->vb2_buf.timestamp = timestamp;
895 
896 done:
897 	spin_unlock_irqrestore(&clock->lock, flags);
898 }
899 
900 /* ------------------------------------------------------------------------
901  * Stream statistics
902  */
903 
uvc_video_stats_decode(struct uvc_streaming * stream,const u8 * data,int len)904 static void uvc_video_stats_decode(struct uvc_streaming *stream,
905 		const u8 *data, int len)
906 {
907 	unsigned int header_size;
908 	bool has_pts = false;
909 	bool has_scr = false;
910 	u16 scr_sof;
911 	u32 scr_stc;
912 	u32 pts;
913 
914 	if (stream->stats.stream.nb_frames == 0 &&
915 	    stream->stats.frame.nb_packets == 0)
916 		stream->stats.stream.start_ts = ktime_get();
917 
918 	switch (data[1] & (UVC_STREAM_PTS | UVC_STREAM_SCR)) {
919 	case UVC_STREAM_PTS | UVC_STREAM_SCR:
920 		header_size = 12;
921 		has_pts = true;
922 		has_scr = true;
923 		break;
924 	case UVC_STREAM_PTS:
925 		header_size = 6;
926 		has_pts = true;
927 		break;
928 	case UVC_STREAM_SCR:
929 		header_size = 8;
930 		has_scr = true;
931 		break;
932 	default:
933 		header_size = 2;
934 		break;
935 	}
936 
937 	/* Check for invalid headers. */
938 	if (len < header_size || data[0] < header_size) {
939 		stream->stats.frame.nb_invalid++;
940 		return;
941 	}
942 
943 	/* Extract the timestamps. */
944 	if (has_pts)
945 		pts = get_unaligned_le32(&data[2]);
946 
947 	if (has_scr) {
948 		scr_stc = get_unaligned_le32(&data[header_size - 6]);
949 		scr_sof = get_unaligned_le16(&data[header_size - 2]);
950 	}
951 
952 	/* Is PTS constant through the whole frame ? */
953 	if (has_pts && stream->stats.frame.nb_pts) {
954 		if (stream->stats.frame.pts != pts) {
955 			stream->stats.frame.nb_pts_diffs++;
956 			stream->stats.frame.last_pts_diff =
957 				stream->stats.frame.nb_packets;
958 		}
959 	}
960 
961 	if (has_pts) {
962 		stream->stats.frame.nb_pts++;
963 		stream->stats.frame.pts = pts;
964 	}
965 
966 	/*
967 	 * Do all frames have a PTS in their first non-empty packet, or before
968 	 * their first empty packet ?
969 	 */
970 	if (stream->stats.frame.size == 0) {
971 		if (len > header_size)
972 			stream->stats.frame.has_initial_pts = has_pts;
973 		if (len == header_size && has_pts)
974 			stream->stats.frame.has_early_pts = true;
975 	}
976 
977 	/* Do the SCR.STC and SCR.SOF fields vary through the frame ? */
978 	if (has_scr && stream->stats.frame.nb_scr) {
979 		if (stream->stats.frame.scr_stc != scr_stc)
980 			stream->stats.frame.nb_scr_diffs++;
981 	}
982 
983 	if (has_scr) {
984 		/* Expand the SOF counter to 32 bits and store its value. */
985 		if (stream->stats.stream.nb_frames > 0 ||
986 		    stream->stats.frame.nb_scr > 0)
987 			stream->stats.stream.scr_sof_count +=
988 				(scr_sof - stream->stats.stream.scr_sof) % 2048;
989 		stream->stats.stream.scr_sof = scr_sof;
990 
991 		stream->stats.frame.nb_scr++;
992 		stream->stats.frame.scr_stc = scr_stc;
993 		stream->stats.frame.scr_sof = scr_sof;
994 
995 		if (scr_sof < stream->stats.stream.min_sof)
996 			stream->stats.stream.min_sof = scr_sof;
997 		if (scr_sof > stream->stats.stream.max_sof)
998 			stream->stats.stream.max_sof = scr_sof;
999 	}
1000 
1001 	/* Record the first non-empty packet number. */
1002 	if (stream->stats.frame.size == 0 && len > header_size)
1003 		stream->stats.frame.first_data = stream->stats.frame.nb_packets;
1004 
1005 	/* Update the frame size. */
1006 	stream->stats.frame.size += len - header_size;
1007 
1008 	/* Update the packets counters. */
1009 	stream->stats.frame.nb_packets++;
1010 	if (len <= header_size)
1011 		stream->stats.frame.nb_empty++;
1012 
1013 	if (data[1] & UVC_STREAM_ERR)
1014 		stream->stats.frame.nb_errors++;
1015 }
1016 
uvc_video_stats_update(struct uvc_streaming * stream)1017 static void uvc_video_stats_update(struct uvc_streaming *stream)
1018 {
1019 	struct uvc_stats_frame *frame = &stream->stats.frame;
1020 
1021 	uvc_dbg(stream->dev, STATS,
1022 		"frame %u stats: %u/%u/%u packets, %u/%u/%u pts (%searly %sinitial), %u/%u scr, last pts/stc/sof %u/%u/%u\n",
1023 		stream->sequence, frame->first_data,
1024 		frame->nb_packets - frame->nb_empty, frame->nb_packets,
1025 		frame->nb_pts_diffs, frame->last_pts_diff, frame->nb_pts,
1026 		frame->has_early_pts ? "" : "!",
1027 		frame->has_initial_pts ? "" : "!",
1028 		frame->nb_scr_diffs, frame->nb_scr,
1029 		frame->pts, frame->scr_stc, frame->scr_sof);
1030 
1031 	stream->stats.stream.nb_frames++;
1032 	stream->stats.stream.nb_packets += stream->stats.frame.nb_packets;
1033 	stream->stats.stream.nb_empty += stream->stats.frame.nb_empty;
1034 	stream->stats.stream.nb_errors += stream->stats.frame.nb_errors;
1035 	stream->stats.stream.nb_invalid += stream->stats.frame.nb_invalid;
1036 
1037 	if (frame->has_early_pts)
1038 		stream->stats.stream.nb_pts_early++;
1039 	if (frame->has_initial_pts)
1040 		stream->stats.stream.nb_pts_initial++;
1041 	if (frame->last_pts_diff <= frame->first_data)
1042 		stream->stats.stream.nb_pts_constant++;
1043 	if (frame->nb_scr >= frame->nb_packets - frame->nb_empty)
1044 		stream->stats.stream.nb_scr_count_ok++;
1045 	if (frame->nb_scr_diffs + 1 == frame->nb_scr)
1046 		stream->stats.stream.nb_scr_diffs_ok++;
1047 
1048 	memset(&stream->stats.frame, 0, sizeof(stream->stats.frame));
1049 }
1050 
uvc_video_stats_dump(struct uvc_streaming * stream,char * buf,size_t size)1051 size_t uvc_video_stats_dump(struct uvc_streaming *stream, char *buf,
1052 			    size_t size)
1053 {
1054 	unsigned int scr_sof_freq;
1055 	unsigned int duration;
1056 	size_t count = 0;
1057 
1058 	/*
1059 	 * Compute the SCR.SOF frequency estimate. At the nominal 1kHz SOF
1060 	 * frequency this will not overflow before more than 1h.
1061 	 */
1062 	duration = ktime_ms_delta(stream->stats.stream.stop_ts,
1063 				  stream->stats.stream.start_ts);
1064 	if (duration != 0)
1065 		scr_sof_freq = stream->stats.stream.scr_sof_count * 1000
1066 			     / duration;
1067 	else
1068 		scr_sof_freq = 0;
1069 
1070 	count += scnprintf(buf + count, size - count,
1071 			   "frames:  %u\npackets: %u\nempty:   %u\n"
1072 			   "errors:  %u\ninvalid: %u\n",
1073 			   stream->stats.stream.nb_frames,
1074 			   stream->stats.stream.nb_packets,
1075 			   stream->stats.stream.nb_empty,
1076 			   stream->stats.stream.nb_errors,
1077 			   stream->stats.stream.nb_invalid);
1078 	count += scnprintf(buf + count, size - count,
1079 			   "pts: %u early, %u initial, %u ok\n",
1080 			   stream->stats.stream.nb_pts_early,
1081 			   stream->stats.stream.nb_pts_initial,
1082 			   stream->stats.stream.nb_pts_constant);
1083 	count += scnprintf(buf + count, size - count,
1084 			   "scr: %u count ok, %u diff ok\n",
1085 			   stream->stats.stream.nb_scr_count_ok,
1086 			   stream->stats.stream.nb_scr_diffs_ok);
1087 	count += scnprintf(buf + count, size - count,
1088 			   "sof: %u <= sof <= %u, freq %u.%03u kHz\n",
1089 			   stream->stats.stream.min_sof,
1090 			   stream->stats.stream.max_sof,
1091 			   scr_sof_freq / 1000, scr_sof_freq % 1000);
1092 
1093 	return count;
1094 }
1095 
uvc_video_stats_start(struct uvc_streaming * stream)1096 static void uvc_video_stats_start(struct uvc_streaming *stream)
1097 {
1098 	memset(&stream->stats, 0, sizeof(stream->stats));
1099 	stream->stats.stream.min_sof = 2048;
1100 }
1101 
uvc_video_stats_stop(struct uvc_streaming * stream)1102 static void uvc_video_stats_stop(struct uvc_streaming *stream)
1103 {
1104 	stream->stats.stream.stop_ts = ktime_get();
1105 }
1106 
1107 /* ------------------------------------------------------------------------
1108  * Video codecs
1109  */
1110 
1111 /*
1112  * Video payload decoding is handled by uvc_video_decode_start(),
1113  * uvc_video_decode_data() and uvc_video_decode_end().
1114  *
1115  * uvc_video_decode_start is called with URB data at the start of a bulk or
1116  * isochronous payload. It processes header data and returns the header size
1117  * in bytes if successful. If an error occurs, it returns a negative error
1118  * code. The following error codes have special meanings.
1119  *
1120  * - EAGAIN informs the caller that the current video buffer should be marked
1121  *   as done, and that the function should be called again with the same data
1122  *   and a new video buffer. This is used when end of frame conditions can be
1123  *   reliably detected at the beginning of the next frame only.
1124  *
1125  * If an error other than -EAGAIN is returned, the caller will drop the current
1126  * payload. No call to uvc_video_decode_data and uvc_video_decode_end will be
1127  * made until the next payload. -ENODATA can be used to drop the current
1128  * payload if no other error code is appropriate.
1129  *
1130  * uvc_video_decode_data is called for every URB with URB data. It copies the
1131  * data to the video buffer.
1132  *
1133  * uvc_video_decode_end is called with header data at the end of a bulk or
1134  * isochronous payload. It performs any additional header data processing and
1135  * returns 0 or a negative error code if an error occurred. As header data have
1136  * already been processed by uvc_video_decode_start, this functions isn't
1137  * required to perform sanity checks a second time.
1138  *
1139  * For isochronous transfers where a payload is always transferred in a single
1140  * URB, the three functions will be called in a row.
1141  *
1142  * To let the decoder process header data and update its internal state even
1143  * when no video buffer is available, uvc_video_decode_start must be prepared
1144  * to be called with a NULL buf parameter. uvc_video_decode_data and
1145  * uvc_video_decode_end will never be called with a NULL buffer.
1146  */
uvc_video_decode_start(struct uvc_streaming * stream,struct uvc_buffer * buf,const u8 * data,int len)1147 static int uvc_video_decode_start(struct uvc_streaming *stream,
1148 		struct uvc_buffer *buf, const u8 *data, int len)
1149 {
1150 	u8 header_len;
1151 	u8 fid;
1152 
1153 	/*
1154 	 * Sanity checks:
1155 	 * - packet must be at least 2 bytes long
1156 	 * - bHeaderLength value must be at least 2 bytes (see above)
1157 	 * - bHeaderLength value can't be larger than the packet size.
1158 	 */
1159 	if (len < 2 || data[0] < 2 || data[0] > len) {
1160 		stream->stats.frame.nb_invalid++;
1161 		return -EINVAL;
1162 	}
1163 
1164 	header_len = data[0];
1165 	fid = data[1] & UVC_STREAM_FID;
1166 
1167 	/*
1168 	 * Increase the sequence number regardless of any buffer states, so
1169 	 * that discontinuous sequence numbers always indicate lost frames.
1170 	 */
1171 	if (stream->last_fid != fid) {
1172 		stream->sequence++;
1173 		if (stream->sequence)
1174 			uvc_video_stats_update(stream);
1175 	}
1176 
1177 	uvc_video_clock_decode(stream, buf, data, len);
1178 	uvc_video_stats_decode(stream, data, len);
1179 
1180 	/*
1181 	 * Store the payload FID bit and return immediately when the buffer is
1182 	 * NULL.
1183 	 */
1184 	if (buf == NULL) {
1185 		stream->last_fid = fid;
1186 		return -ENODATA;
1187 	}
1188 
1189 	/* Mark the buffer as bad if the error bit is set. */
1190 	if (data[1] & UVC_STREAM_ERR) {
1191 		uvc_dbg(stream->dev, FRAME,
1192 			"Marking buffer as bad (error bit set)\n");
1193 		buf->error = 1;
1194 	}
1195 
1196 	/*
1197 	 * Synchronize to the input stream by waiting for the FID bit to be
1198 	 * toggled when the buffer state is not UVC_BUF_STATE_ACTIVE.
1199 	 * stream->last_fid is initialized to -1, so the first isochronous
1200 	 * frame will always be in sync.
1201 	 *
1202 	 * If the device doesn't toggle the FID bit, invert stream->last_fid
1203 	 * when the EOF bit is set to force synchronisation on the next packet.
1204 	 */
1205 	if (buf->state != UVC_BUF_STATE_ACTIVE) {
1206 		if (fid == stream->last_fid) {
1207 			uvc_dbg(stream->dev, FRAME,
1208 				"Dropping payload (out of sync)\n");
1209 			if ((stream->dev->quirks & UVC_QUIRK_STREAM_NO_FID) &&
1210 			    (data[1] & UVC_STREAM_EOF))
1211 				stream->last_fid ^= UVC_STREAM_FID;
1212 			return -ENODATA;
1213 		}
1214 
1215 		buf->buf.field = V4L2_FIELD_NONE;
1216 		buf->buf.sequence = stream->sequence;
1217 		buf->buf.vb2_buf.timestamp = ktime_to_ns(uvc_video_get_time());
1218 
1219 		/* TODO: Handle PTS and SCR. */
1220 		buf->state = UVC_BUF_STATE_ACTIVE;
1221 	}
1222 
1223 	/*
1224 	 * Mark the buffer as done if we're at the beginning of a new frame.
1225 	 * End of frame detection is better implemented by checking the EOF
1226 	 * bit (FID bit toggling is delayed by one frame compared to the EOF
1227 	 * bit), but some devices don't set the bit at end of frame (and the
1228 	 * last payload can be lost anyway). We thus must check if the FID has
1229 	 * been toggled.
1230 	 *
1231 	 * stream->last_fid is initialized to -1, so the first isochronous
1232 	 * frame will never trigger an end of frame detection.
1233 	 *
1234 	 * Empty buffers (bytesused == 0) don't trigger end of frame detection
1235 	 * as it doesn't make sense to return an empty buffer. This also
1236 	 * avoids detecting end of frame conditions at FID toggling if the
1237 	 * previous payload had the EOF bit set.
1238 	 */
1239 	if (fid != stream->last_fid && buf->bytesused != 0) {
1240 		uvc_dbg(stream->dev, FRAME,
1241 			"Frame complete (FID bit toggled)\n");
1242 		buf->state = UVC_BUF_STATE_READY;
1243 		return -EAGAIN;
1244 	}
1245 
1246 	/*
1247 	 * Some cameras, when running two parallel streams (one MJPEG alongside
1248 	 * another non-MJPEG stream), are known to lose the EOF packet for a frame.
1249 	 * We can detect the end of a frame by checking for a new SOI marker, as
1250 	 * the SOI always lies on the packet boundary between two frames for
1251 	 * these devices.
1252 	 */
1253 	if (stream->dev->quirks & UVC_QUIRK_MJPEG_NO_EOF &&
1254 	    (stream->cur_format->fcc == V4L2_PIX_FMT_MJPEG ||
1255 	    stream->cur_format->fcc == V4L2_PIX_FMT_JPEG)) {
1256 		const u8 *packet = data + header_len;
1257 
1258 		if (len >= header_len + 2 &&
1259 		    packet[0] == 0xff && packet[1] == JPEG_MARKER_SOI &&
1260 		    buf->bytesused != 0) {
1261 			buf->state = UVC_BUF_STATE_READY;
1262 			buf->error = 1;
1263 			stream->last_fid ^= UVC_STREAM_FID;
1264 			return -EAGAIN;
1265 		}
1266 	}
1267 
1268 	stream->last_fid = fid;
1269 
1270 	return header_len;
1271 }
1272 
uvc_stream_dir(struct uvc_streaming * stream)1273 static inline enum dma_data_direction uvc_stream_dir(
1274 				struct uvc_streaming *stream)
1275 {
1276 	if (stream->type == V4L2_BUF_TYPE_VIDEO_CAPTURE)
1277 		return DMA_FROM_DEVICE;
1278 	else
1279 		return DMA_TO_DEVICE;
1280 }
1281 
uvc_stream_to_dmadev(struct uvc_streaming * stream)1282 static inline struct device *uvc_stream_to_dmadev(struct uvc_streaming *stream)
1283 {
1284 	return bus_to_hcd(stream->dev->udev->bus)->self.sysdev;
1285 }
1286 
uvc_submit_urb(struct uvc_urb * uvc_urb,gfp_t mem_flags)1287 static int uvc_submit_urb(struct uvc_urb *uvc_urb, gfp_t mem_flags)
1288 {
1289 	/* Sync DMA. */
1290 	dma_sync_sgtable_for_device(uvc_stream_to_dmadev(uvc_urb->stream),
1291 				    uvc_urb->sgt,
1292 				    uvc_stream_dir(uvc_urb->stream));
1293 	return usb_submit_urb(uvc_urb->urb, mem_flags);
1294 }
1295 
1296 /*
1297  * uvc_video_decode_data_work: Asynchronous memcpy processing
1298  *
1299  * Copy URB data to video buffers in process context, releasing buffer
1300  * references and requeuing the URB when done.
1301  */
uvc_video_copy_data_work(struct work_struct * work)1302 static void uvc_video_copy_data_work(struct work_struct *work)
1303 {
1304 	struct uvc_urb *uvc_urb = container_of(work, struct uvc_urb, work);
1305 	unsigned int i;
1306 	int ret;
1307 
1308 	for (i = 0; i < uvc_urb->async_operations; i++) {
1309 		struct uvc_copy_op *op = &uvc_urb->copy_operations[i];
1310 
1311 		memcpy(op->dst, op->src, op->len);
1312 
1313 		/* Release reference taken on this buffer. */
1314 		uvc_queue_buffer_release(op->buf);
1315 	}
1316 
1317 	ret = uvc_submit_urb(uvc_urb, GFP_KERNEL);
1318 	if (ret < 0)
1319 		dev_err(&uvc_urb->stream->intf->dev,
1320 			"Failed to resubmit video URB (%d).\n", ret);
1321 }
1322 
uvc_video_decode_data(struct uvc_urb * uvc_urb,struct uvc_buffer * buf,const u8 * data,int len)1323 static void uvc_video_decode_data(struct uvc_urb *uvc_urb,
1324 		struct uvc_buffer *buf, const u8 *data, int len)
1325 {
1326 	unsigned int active_op = uvc_urb->async_operations;
1327 	struct uvc_copy_op *op = &uvc_urb->copy_operations[active_op];
1328 	unsigned int maxlen;
1329 
1330 	if (len <= 0)
1331 		return;
1332 
1333 	maxlen = buf->length - buf->bytesused;
1334 
1335 	/* Take a buffer reference for async work. */
1336 	kref_get(&buf->ref);
1337 
1338 	op->buf = buf;
1339 	op->src = data;
1340 	op->dst = buf->mem + buf->bytesused;
1341 	op->len = min_t(unsigned int, len, maxlen);
1342 
1343 	buf->bytesused += op->len;
1344 
1345 	/* Complete the current frame if the buffer size was exceeded. */
1346 	if (len > maxlen) {
1347 		uvc_dbg(uvc_urb->stream->dev, FRAME,
1348 			"Frame complete (overflow)\n");
1349 		buf->error = 1;
1350 		buf->state = UVC_BUF_STATE_READY;
1351 	}
1352 
1353 	uvc_urb->async_operations++;
1354 }
1355 
uvc_video_decode_end(struct uvc_streaming * stream,struct uvc_buffer * buf,const u8 * data,int len)1356 static void uvc_video_decode_end(struct uvc_streaming *stream,
1357 		struct uvc_buffer *buf, const u8 *data, int len)
1358 {
1359 	/* Mark the buffer as done if the EOF marker is set. */
1360 	if (data[1] & UVC_STREAM_EOF && buf->bytesused != 0) {
1361 		uvc_dbg(stream->dev, FRAME, "Frame complete (EOF found)\n");
1362 		if (data[0] == len)
1363 			uvc_dbg(stream->dev, FRAME, "EOF in empty payload\n");
1364 		buf->state = UVC_BUF_STATE_READY;
1365 		if (stream->dev->quirks & UVC_QUIRK_STREAM_NO_FID)
1366 			stream->last_fid ^= UVC_STREAM_FID;
1367 	}
1368 }
1369 
1370 /*
1371  * Video payload encoding is handled by uvc_video_encode_header() and
1372  * uvc_video_encode_data(). Only bulk transfers are currently supported.
1373  *
1374  * uvc_video_encode_header is called at the start of a payload. It adds header
1375  * data to the transfer buffer and returns the header size. As the only known
1376  * UVC output device transfers a whole frame in a single payload, the EOF bit
1377  * is always set in the header.
1378  *
1379  * uvc_video_encode_data is called for every URB and copies the data from the
1380  * video buffer to the transfer buffer.
1381  */
uvc_video_encode_header(struct uvc_streaming * stream,struct uvc_buffer * buf,u8 * data,int len)1382 static int uvc_video_encode_header(struct uvc_streaming *stream,
1383 		struct uvc_buffer *buf, u8 *data, int len)
1384 {
1385 	data[0] = 2;	/* Header length */
1386 	data[1] = UVC_STREAM_EOH | UVC_STREAM_EOF
1387 		| (stream->last_fid & UVC_STREAM_FID);
1388 	return 2;
1389 }
1390 
uvc_video_encode_data(struct uvc_streaming * stream,struct uvc_buffer * buf,u8 * data,int len)1391 static int uvc_video_encode_data(struct uvc_streaming *stream,
1392 		struct uvc_buffer *buf, u8 *data, int len)
1393 {
1394 	struct uvc_video_queue *queue = &stream->queue;
1395 	unsigned int nbytes;
1396 	void *mem;
1397 
1398 	/* Copy video data to the URB buffer. */
1399 	mem = buf->mem + queue->buf_used;
1400 	nbytes = min((unsigned int)len, buf->bytesused - queue->buf_used);
1401 	nbytes = min(stream->bulk.max_payload_size - stream->bulk.payload_size,
1402 			nbytes);
1403 	memcpy(data, mem, nbytes);
1404 
1405 	queue->buf_used += nbytes;
1406 
1407 	return nbytes;
1408 }
1409 
1410 /* ------------------------------------------------------------------------
1411  * Metadata
1412  */
1413 
1414 /*
1415  * Additionally to the payload headers we also want to provide the user with USB
1416  * Frame Numbers and system time values. The resulting buffer is thus composed
1417  * of blocks, containing a 64-bit timestamp in  nanoseconds, a 16-bit USB Frame
1418  * Number, and a copy of the payload header.
1419  *
1420  * Ideally we want to capture all payload headers for each frame. However, their
1421  * number is unknown and unbound. We thus drop headers that contain no vendor
1422  * data and that either contain no SCR value or an SCR value identical to the
1423  * previous header.
1424  */
uvc_video_decode_meta(struct uvc_streaming * stream,struct uvc_buffer * meta_buf,const u8 * mem,unsigned int length)1425 static void uvc_video_decode_meta(struct uvc_streaming *stream,
1426 				  struct uvc_buffer *meta_buf,
1427 				  const u8 *mem, unsigned int length)
1428 {
1429 	struct uvc_meta_buf *meta;
1430 	size_t len_std = 2;
1431 	bool has_pts, has_scr;
1432 	unsigned long flags;
1433 	unsigned int sof;
1434 	ktime_t time;
1435 	const u8 *scr;
1436 
1437 	if (!meta_buf || length == 2)
1438 		return;
1439 
1440 	has_pts = mem[1] & UVC_STREAM_PTS;
1441 	has_scr = mem[1] & UVC_STREAM_SCR;
1442 
1443 	if (has_pts) {
1444 		len_std += 4;
1445 		scr = mem + 6;
1446 	} else {
1447 		scr = mem + 2;
1448 	}
1449 
1450 	if (has_scr)
1451 		len_std += 6;
1452 
1453 	if (stream->meta.format == V4L2_META_FMT_UVC)
1454 		length = len_std;
1455 
1456 	if (length == len_std && (!has_scr ||
1457 				  !memcmp(scr, stream->clock.last_scr, 6)))
1458 		return;
1459 
1460 	if (meta_buf->length - meta_buf->bytesused <
1461 	    length + sizeof(meta->ns) + sizeof(meta->sof)) {
1462 		meta_buf->error = 1;
1463 		return;
1464 	}
1465 
1466 	meta = (struct uvc_meta_buf *)((u8 *)meta_buf->mem + meta_buf->bytesused);
1467 	local_irq_save(flags);
1468 	time = uvc_video_get_time();
1469 	sof = usb_get_current_frame_number(stream->dev->udev);
1470 	local_irq_restore(flags);
1471 	put_unaligned(ktime_to_ns(time), &meta->ns);
1472 	put_unaligned(sof, &meta->sof);
1473 
1474 	if (has_scr)
1475 		memcpy(stream->clock.last_scr, scr, 6);
1476 
1477 	meta->length = mem[0];
1478 	meta->flags  = mem[1];
1479 	memcpy(meta->buf, &mem[2], length - 2);
1480 	meta_buf->bytesused += length + sizeof(meta->ns) + sizeof(meta->sof);
1481 
1482 	uvc_dbg(stream->dev, FRAME,
1483 		"%s(): t-sys %lluns, SOF %u, len %u, flags 0x%x, PTS %u, STC %u frame SOF %u\n",
1484 		__func__, ktime_to_ns(time), meta->sof, meta->length,
1485 		meta->flags,
1486 		has_pts ? *(u32 *)meta->buf : 0,
1487 		has_scr ? *(u32 *)scr : 0,
1488 		has_scr ? *(u32 *)(scr + 4) & 0x7ff : 0);
1489 }
1490 
1491 /* ------------------------------------------------------------------------
1492  * URB handling
1493  */
1494 
1495 /*
1496  * Set error flag for incomplete buffer.
1497  */
uvc_video_validate_buffer(const struct uvc_streaming * stream,struct uvc_buffer * buf)1498 static void uvc_video_validate_buffer(const struct uvc_streaming *stream,
1499 				      struct uvc_buffer *buf)
1500 {
1501 	if (stream->ctrl.dwMaxVideoFrameSize != buf->bytesused &&
1502 	    !(stream->cur_format->flags & UVC_FMT_FLAG_COMPRESSED))
1503 		buf->error = 1;
1504 }
1505 
1506 /*
1507  * Completion handler for video URBs.
1508  */
1509 
uvc_video_next_buffers(struct uvc_streaming * stream,struct uvc_buffer ** video_buf,struct uvc_buffer ** meta_buf)1510 static void uvc_video_next_buffers(struct uvc_streaming *stream,
1511 		struct uvc_buffer **video_buf, struct uvc_buffer **meta_buf)
1512 {
1513 	uvc_video_validate_buffer(stream, *video_buf);
1514 
1515 	if (*meta_buf) {
1516 		struct vb2_v4l2_buffer *vb2_meta = &(*meta_buf)->buf;
1517 		const struct vb2_v4l2_buffer *vb2_video = &(*video_buf)->buf;
1518 
1519 		vb2_meta->sequence = vb2_video->sequence;
1520 		vb2_meta->field = vb2_video->field;
1521 		vb2_meta->vb2_buf.timestamp = vb2_video->vb2_buf.timestamp;
1522 
1523 		(*meta_buf)->state = UVC_BUF_STATE_READY;
1524 		if (!(*meta_buf)->error)
1525 			(*meta_buf)->error = (*video_buf)->error;
1526 		*meta_buf = uvc_queue_next_buffer(&stream->meta.queue,
1527 						  *meta_buf);
1528 	}
1529 	*video_buf = uvc_queue_next_buffer(&stream->queue, *video_buf);
1530 }
1531 
uvc_video_decode_isoc(struct uvc_urb * uvc_urb,struct uvc_buffer * buf,struct uvc_buffer * meta_buf)1532 static void uvc_video_decode_isoc(struct uvc_urb *uvc_urb,
1533 			struct uvc_buffer *buf, struct uvc_buffer *meta_buf)
1534 {
1535 	struct urb *urb = uvc_urb->urb;
1536 	struct uvc_streaming *stream = uvc_urb->stream;
1537 	u8 *mem;
1538 	int ret, i;
1539 
1540 	for (i = 0; i < urb->number_of_packets; ++i) {
1541 		if (urb->iso_frame_desc[i].status < 0) {
1542 			uvc_dbg(stream->dev, FRAME,
1543 				"USB isochronous frame lost (%d)\n",
1544 				urb->iso_frame_desc[i].status);
1545 			/* Mark the buffer as faulty. */
1546 			if (buf != NULL)
1547 				buf->error = 1;
1548 			continue;
1549 		}
1550 
1551 		/* Decode the payload header. */
1552 		mem = urb->transfer_buffer + urb->iso_frame_desc[i].offset;
1553 		do {
1554 			ret = uvc_video_decode_start(stream, buf, mem,
1555 				urb->iso_frame_desc[i].actual_length);
1556 			if (ret == -EAGAIN)
1557 				uvc_video_next_buffers(stream, &buf, &meta_buf);
1558 		} while (ret == -EAGAIN);
1559 
1560 		if (ret < 0)
1561 			continue;
1562 
1563 		uvc_video_decode_meta(stream, meta_buf, mem, ret);
1564 
1565 		/* Decode the payload data. */
1566 		uvc_video_decode_data(uvc_urb, buf, mem + ret,
1567 			urb->iso_frame_desc[i].actual_length - ret);
1568 
1569 		/* Process the header again. */
1570 		uvc_video_decode_end(stream, buf, mem,
1571 			urb->iso_frame_desc[i].actual_length);
1572 
1573 		if (buf->state == UVC_BUF_STATE_READY)
1574 			uvc_video_next_buffers(stream, &buf, &meta_buf);
1575 	}
1576 }
1577 
uvc_video_decode_bulk(struct uvc_urb * uvc_urb,struct uvc_buffer * buf,struct uvc_buffer * meta_buf)1578 static void uvc_video_decode_bulk(struct uvc_urb *uvc_urb,
1579 			struct uvc_buffer *buf, struct uvc_buffer *meta_buf)
1580 {
1581 	struct urb *urb = uvc_urb->urb;
1582 	struct uvc_streaming *stream = uvc_urb->stream;
1583 	u8 *mem;
1584 	int len, ret;
1585 
1586 	/*
1587 	 * Ignore ZLPs if they're not part of a frame, otherwise process them
1588 	 * to trigger the end of payload detection.
1589 	 */
1590 	if (urb->actual_length == 0 && stream->bulk.header_size == 0)
1591 		return;
1592 
1593 	mem = urb->transfer_buffer;
1594 	len = urb->actual_length;
1595 	stream->bulk.payload_size += len;
1596 
1597 	/*
1598 	 * If the URB is the first of its payload, decode and save the
1599 	 * header.
1600 	 */
1601 	if (stream->bulk.header_size == 0 && !stream->bulk.skip_payload) {
1602 		do {
1603 			ret = uvc_video_decode_start(stream, buf, mem, len);
1604 			if (ret == -EAGAIN)
1605 				uvc_video_next_buffers(stream, &buf, &meta_buf);
1606 		} while (ret == -EAGAIN);
1607 
1608 		/* If an error occurred skip the rest of the payload. */
1609 		if (ret < 0 || buf == NULL) {
1610 			stream->bulk.skip_payload = 1;
1611 		} else {
1612 			memcpy(stream->bulk.header, mem, ret);
1613 			stream->bulk.header_size = ret;
1614 
1615 			uvc_video_decode_meta(stream, meta_buf, mem, ret);
1616 
1617 			mem += ret;
1618 			len -= ret;
1619 		}
1620 	}
1621 
1622 	/*
1623 	 * The buffer queue might have been cancelled while a bulk transfer
1624 	 * was in progress, so we can reach here with buf equal to NULL. Make
1625 	 * sure buf is never dereferenced if NULL.
1626 	 */
1627 
1628 	/* Prepare video data for processing. */
1629 	if (!stream->bulk.skip_payload && buf != NULL)
1630 		uvc_video_decode_data(uvc_urb, buf, mem, len);
1631 
1632 	/*
1633 	 * Detect the payload end by a URB smaller than the maximum size (or
1634 	 * a payload size equal to the maximum) and process the header again.
1635 	 */
1636 	if (urb->actual_length < urb->transfer_buffer_length ||
1637 	    stream->bulk.payload_size >= stream->bulk.max_payload_size) {
1638 		if (!stream->bulk.skip_payload && buf != NULL) {
1639 			uvc_video_decode_end(stream, buf, stream->bulk.header,
1640 				stream->bulk.payload_size);
1641 			if (buf->state == UVC_BUF_STATE_READY)
1642 				uvc_video_next_buffers(stream, &buf, &meta_buf);
1643 		}
1644 
1645 		stream->bulk.header_size = 0;
1646 		stream->bulk.skip_payload = 0;
1647 		stream->bulk.payload_size = 0;
1648 	}
1649 }
1650 
uvc_video_encode_bulk(struct uvc_urb * uvc_urb,struct uvc_buffer * buf,struct uvc_buffer * meta_buf)1651 static void uvc_video_encode_bulk(struct uvc_urb *uvc_urb,
1652 	struct uvc_buffer *buf, struct uvc_buffer *meta_buf)
1653 {
1654 	struct urb *urb = uvc_urb->urb;
1655 	struct uvc_streaming *stream = uvc_urb->stream;
1656 
1657 	u8 *mem = urb->transfer_buffer;
1658 	int len = stream->urb_size, ret;
1659 
1660 	if (buf == NULL) {
1661 		urb->transfer_buffer_length = 0;
1662 		return;
1663 	}
1664 
1665 	/* If the URB is the first of its payload, add the header. */
1666 	if (stream->bulk.header_size == 0) {
1667 		ret = uvc_video_encode_header(stream, buf, mem, len);
1668 		stream->bulk.header_size = ret;
1669 		stream->bulk.payload_size += ret;
1670 		mem += ret;
1671 		len -= ret;
1672 	}
1673 
1674 	/* Process video data. */
1675 	ret = uvc_video_encode_data(stream, buf, mem, len);
1676 
1677 	stream->bulk.payload_size += ret;
1678 	len -= ret;
1679 
1680 	if (buf->bytesused == stream->queue.buf_used ||
1681 	    stream->bulk.payload_size == stream->bulk.max_payload_size) {
1682 		if (buf->bytesused == stream->queue.buf_used) {
1683 			stream->queue.buf_used = 0;
1684 			buf->state = UVC_BUF_STATE_READY;
1685 			buf->buf.sequence = ++stream->sequence;
1686 			uvc_queue_next_buffer(&stream->queue, buf);
1687 			stream->last_fid ^= UVC_STREAM_FID;
1688 		}
1689 
1690 		stream->bulk.header_size = 0;
1691 		stream->bulk.payload_size = 0;
1692 	}
1693 
1694 	urb->transfer_buffer_length = stream->urb_size - len;
1695 }
1696 
uvc_video_complete(struct urb * urb)1697 static void uvc_video_complete(struct urb *urb)
1698 {
1699 	struct uvc_urb *uvc_urb = urb->context;
1700 	struct uvc_streaming *stream = uvc_urb->stream;
1701 	struct uvc_video_queue *queue = &stream->queue;
1702 	struct uvc_video_queue *qmeta = &stream->meta.queue;
1703 	struct vb2_queue *vb2_qmeta = stream->meta.vdev.queue;
1704 	struct uvc_buffer *buf = NULL;
1705 	struct uvc_buffer *buf_meta = NULL;
1706 	unsigned long flags;
1707 	int ret;
1708 
1709 	switch (urb->status) {
1710 	case 0:
1711 		break;
1712 
1713 	default:
1714 		dev_warn(&stream->intf->dev,
1715 			 "Non-zero status (%d) in video completion handler.\n",
1716 			 urb->status);
1717 		fallthrough;
1718 	case -ENOENT:		/* usb_poison_urb() called. */
1719 		if (stream->frozen)
1720 			return;
1721 		fallthrough;
1722 	case -ECONNRESET:	/* usb_unlink_urb() called. */
1723 	case -ESHUTDOWN:	/* The endpoint is being disabled. */
1724 		uvc_queue_cancel(queue, urb->status == -ESHUTDOWN);
1725 		if (vb2_qmeta)
1726 			uvc_queue_cancel(qmeta, urb->status == -ESHUTDOWN);
1727 		return;
1728 	}
1729 
1730 	buf = uvc_queue_get_current_buffer(queue);
1731 
1732 	if (vb2_qmeta) {
1733 		spin_lock_irqsave(&qmeta->irqlock, flags);
1734 		if (!list_empty(&qmeta->irqqueue))
1735 			buf_meta = list_first_entry(&qmeta->irqqueue,
1736 						    struct uvc_buffer, queue);
1737 		spin_unlock_irqrestore(&qmeta->irqlock, flags);
1738 	}
1739 
1740 	/* Re-initialise the URB async work. */
1741 	uvc_urb->async_operations = 0;
1742 
1743 	/* Sync DMA and invalidate vmap range. */
1744 	dma_sync_sgtable_for_cpu(uvc_stream_to_dmadev(uvc_urb->stream),
1745 				 uvc_urb->sgt, uvc_stream_dir(stream));
1746 	invalidate_kernel_vmap_range(uvc_urb->buffer,
1747 				     uvc_urb->stream->urb_size);
1748 
1749 	/*
1750 	 * Process the URB headers, and optionally queue expensive memcpy tasks
1751 	 * to be deferred to a work queue.
1752 	 */
1753 	stream->decode(uvc_urb, buf, buf_meta);
1754 
1755 	/* If no async work is needed, resubmit the URB immediately. */
1756 	if (!uvc_urb->async_operations) {
1757 		ret = uvc_submit_urb(uvc_urb, GFP_ATOMIC);
1758 		if (ret < 0)
1759 			dev_err(&stream->intf->dev,
1760 				"Failed to resubmit video URB (%d).\n", ret);
1761 		return;
1762 	}
1763 
1764 	queue_work(stream->async_wq, &uvc_urb->work);
1765 }
1766 
1767 /*
1768  * Free transfer buffers.
1769  */
uvc_free_urb_buffers(struct uvc_streaming * stream)1770 static void uvc_free_urb_buffers(struct uvc_streaming *stream)
1771 {
1772 	struct device *dma_dev = uvc_stream_to_dmadev(stream);
1773 	struct uvc_urb *uvc_urb;
1774 
1775 	for_each_uvc_urb(uvc_urb, stream) {
1776 		if (!uvc_urb->buffer)
1777 			continue;
1778 
1779 		dma_vunmap_noncontiguous(dma_dev, uvc_urb->buffer);
1780 		dma_free_noncontiguous(dma_dev, stream->urb_size, uvc_urb->sgt,
1781 				       uvc_stream_dir(stream));
1782 
1783 		uvc_urb->buffer = NULL;
1784 		uvc_urb->sgt = NULL;
1785 	}
1786 
1787 	stream->urb_size = 0;
1788 }
1789 
uvc_alloc_urb_buffer(struct uvc_streaming * stream,struct uvc_urb * uvc_urb,gfp_t gfp_flags)1790 static bool uvc_alloc_urb_buffer(struct uvc_streaming *stream,
1791 				 struct uvc_urb *uvc_urb, gfp_t gfp_flags)
1792 {
1793 	struct device *dma_dev = uvc_stream_to_dmadev(stream);
1794 
1795 	uvc_urb->sgt = dma_alloc_noncontiguous(dma_dev, stream->urb_size,
1796 					       uvc_stream_dir(stream),
1797 					       gfp_flags, 0);
1798 	if (!uvc_urb->sgt)
1799 		return false;
1800 	uvc_urb->dma = uvc_urb->sgt->sgl->dma_address;
1801 
1802 	uvc_urb->buffer = dma_vmap_noncontiguous(dma_dev, stream->urb_size,
1803 						 uvc_urb->sgt);
1804 	if (!uvc_urb->buffer) {
1805 		dma_free_noncontiguous(dma_dev, stream->urb_size,
1806 				       uvc_urb->sgt,
1807 				       uvc_stream_dir(stream));
1808 		uvc_urb->sgt = NULL;
1809 		return false;
1810 	}
1811 
1812 	return true;
1813 }
1814 
1815 /*
1816  * Allocate transfer buffers. This function can be called with buffers
1817  * already allocated when resuming from suspend, in which case it will
1818  * return without touching the buffers.
1819  *
1820  * Limit the buffer size to UVC_MAX_PACKETS bulk/isochronous packets. If the
1821  * system is too low on memory try successively smaller numbers of packets
1822  * until allocation succeeds.
1823  *
1824  * Return the number of allocated packets on success or 0 when out of memory.
1825  */
uvc_alloc_urb_buffers(struct uvc_streaming * stream,unsigned int size,unsigned int psize,gfp_t gfp_flags)1826 static int uvc_alloc_urb_buffers(struct uvc_streaming *stream,
1827 	unsigned int size, unsigned int psize, gfp_t gfp_flags)
1828 {
1829 	unsigned int npackets;
1830 	unsigned int i;
1831 
1832 	/* Buffers are already allocated, bail out. */
1833 	if (stream->urb_size)
1834 		return stream->urb_size / psize;
1835 
1836 	/*
1837 	 * Compute the number of packets. Bulk endpoints might transfer UVC
1838 	 * payloads across multiple URBs.
1839 	 */
1840 	npackets = DIV_ROUND_UP(size, psize);
1841 	if (npackets > UVC_MAX_PACKETS)
1842 		npackets = UVC_MAX_PACKETS;
1843 
1844 	/* Retry allocations until one succeed. */
1845 	for (; npackets > 1; npackets /= 2) {
1846 		stream->urb_size = psize * npackets;
1847 
1848 		for (i = 0; i < UVC_URBS; ++i) {
1849 			struct uvc_urb *uvc_urb = &stream->uvc_urb[i];
1850 
1851 			if (!uvc_alloc_urb_buffer(stream, uvc_urb, gfp_flags)) {
1852 				uvc_free_urb_buffers(stream);
1853 				break;
1854 			}
1855 
1856 			uvc_urb->stream = stream;
1857 		}
1858 
1859 		if (i == UVC_URBS) {
1860 			uvc_dbg(stream->dev, VIDEO,
1861 				"Allocated %u URB buffers of %ux%u bytes each\n",
1862 				UVC_URBS, npackets, psize);
1863 			return npackets;
1864 		}
1865 	}
1866 
1867 	uvc_dbg(stream->dev, VIDEO,
1868 		"Failed to allocate URB buffers (%u bytes per packet)\n",
1869 		psize);
1870 	return 0;
1871 }
1872 
1873 /*
1874  * Uninitialize isochronous/bulk URBs and free transfer buffers.
1875  */
uvc_video_stop_transfer(struct uvc_streaming * stream,int free_buffers)1876 static void uvc_video_stop_transfer(struct uvc_streaming *stream,
1877 				    int free_buffers)
1878 {
1879 	struct uvc_urb *uvc_urb;
1880 
1881 	uvc_video_stats_stop(stream);
1882 
1883 	/*
1884 	 * We must poison the URBs rather than kill them to ensure that even
1885 	 * after the completion handler returns, any asynchronous workqueues
1886 	 * will be prevented from resubmitting the URBs.
1887 	 */
1888 	for_each_uvc_urb(uvc_urb, stream)
1889 		usb_poison_urb(uvc_urb->urb);
1890 
1891 	flush_workqueue(stream->async_wq);
1892 
1893 	for_each_uvc_urb(uvc_urb, stream) {
1894 		usb_free_urb(uvc_urb->urb);
1895 		uvc_urb->urb = NULL;
1896 	}
1897 
1898 	if (free_buffers)
1899 		uvc_free_urb_buffers(stream);
1900 }
1901 
1902 /*
1903  * Compute the maximum number of bytes per interval for an endpoint.
1904  */
uvc_endpoint_max_bpi(struct usb_device * dev,struct usb_host_endpoint * ep)1905 u16 uvc_endpoint_max_bpi(struct usb_device *dev, struct usb_host_endpoint *ep)
1906 {
1907 	u16 psize;
1908 
1909 	switch (dev->speed) {
1910 	case USB_SPEED_SUPER:
1911 	case USB_SPEED_SUPER_PLUS:
1912 		return le16_to_cpu(ep->ss_ep_comp.wBytesPerInterval);
1913 	default:
1914 		psize = usb_endpoint_maxp(&ep->desc);
1915 		psize *= usb_endpoint_maxp_mult(&ep->desc);
1916 		return psize;
1917 	}
1918 }
1919 
1920 /*
1921  * Initialize isochronous URBs and allocate transfer buffers. The packet size
1922  * is given by the endpoint.
1923  */
uvc_init_video_isoc(struct uvc_streaming * stream,struct usb_host_endpoint * ep,gfp_t gfp_flags)1924 static int uvc_init_video_isoc(struct uvc_streaming *stream,
1925 	struct usb_host_endpoint *ep, gfp_t gfp_flags)
1926 {
1927 	struct urb *urb;
1928 	struct uvc_urb *uvc_urb;
1929 	unsigned int npackets, i;
1930 	u16 psize;
1931 	u32 size;
1932 
1933 	psize = uvc_endpoint_max_bpi(stream->dev->udev, ep);
1934 	size = stream->ctrl.dwMaxVideoFrameSize;
1935 
1936 	npackets = uvc_alloc_urb_buffers(stream, size, psize, gfp_flags);
1937 	if (npackets == 0)
1938 		return -ENOMEM;
1939 
1940 	size = npackets * psize;
1941 
1942 	for_each_uvc_urb(uvc_urb, stream) {
1943 		urb = usb_alloc_urb(npackets, gfp_flags);
1944 		if (urb == NULL) {
1945 			uvc_video_stop_transfer(stream, 1);
1946 			return -ENOMEM;
1947 		}
1948 
1949 		urb->dev = stream->dev->udev;
1950 		urb->context = uvc_urb;
1951 		urb->pipe = usb_rcvisocpipe(stream->dev->udev,
1952 				ep->desc.bEndpointAddress);
1953 		urb->transfer_flags = URB_ISO_ASAP | URB_NO_TRANSFER_DMA_MAP;
1954 		urb->transfer_dma = uvc_urb->dma;
1955 		urb->interval = ep->desc.bInterval;
1956 		urb->transfer_buffer = uvc_urb->buffer;
1957 		urb->complete = uvc_video_complete;
1958 		urb->number_of_packets = npackets;
1959 		urb->transfer_buffer_length = size;
1960 
1961 		for (i = 0; i < npackets; ++i) {
1962 			urb->iso_frame_desc[i].offset = i * psize;
1963 			urb->iso_frame_desc[i].length = psize;
1964 		}
1965 
1966 		uvc_urb->urb = urb;
1967 	}
1968 
1969 	return 0;
1970 }
1971 
1972 /*
1973  * Initialize bulk URBs and allocate transfer buffers. The packet size is
1974  * given by the endpoint.
1975  */
uvc_init_video_bulk(struct uvc_streaming * stream,struct usb_host_endpoint * ep,gfp_t gfp_flags)1976 static int uvc_init_video_bulk(struct uvc_streaming *stream,
1977 	struct usb_host_endpoint *ep, gfp_t gfp_flags)
1978 {
1979 	struct urb *urb;
1980 	struct uvc_urb *uvc_urb;
1981 	unsigned int npackets, pipe;
1982 	u16 psize;
1983 	u32 size;
1984 
1985 	psize = usb_endpoint_maxp(&ep->desc);
1986 	size = stream->ctrl.dwMaxPayloadTransferSize;
1987 	stream->bulk.max_payload_size = size;
1988 
1989 	npackets = uvc_alloc_urb_buffers(stream, size, psize, gfp_flags);
1990 	if (npackets == 0)
1991 		return -ENOMEM;
1992 
1993 	size = npackets * psize;
1994 
1995 	if (usb_endpoint_dir_in(&ep->desc))
1996 		pipe = usb_rcvbulkpipe(stream->dev->udev,
1997 				       ep->desc.bEndpointAddress);
1998 	else
1999 		pipe = usb_sndbulkpipe(stream->dev->udev,
2000 				       ep->desc.bEndpointAddress);
2001 
2002 	if (stream->type == V4L2_BUF_TYPE_VIDEO_OUTPUT)
2003 		size = 0;
2004 
2005 	for_each_uvc_urb(uvc_urb, stream) {
2006 		urb = usb_alloc_urb(0, gfp_flags);
2007 		if (urb == NULL) {
2008 			uvc_video_stop_transfer(stream, 1);
2009 			return -ENOMEM;
2010 		}
2011 
2012 		usb_fill_bulk_urb(urb, stream->dev->udev, pipe,	uvc_urb->buffer,
2013 				  size, uvc_video_complete, uvc_urb);
2014 		urb->transfer_flags = URB_NO_TRANSFER_DMA_MAP;
2015 		urb->transfer_dma = uvc_urb->dma;
2016 
2017 		uvc_urb->urb = urb;
2018 	}
2019 
2020 	return 0;
2021 }
2022 
2023 /*
2024  * Initialize isochronous/bulk URBs and allocate transfer buffers.
2025  */
uvc_video_start_transfer(struct uvc_streaming * stream,gfp_t gfp_flags)2026 static int uvc_video_start_transfer(struct uvc_streaming *stream,
2027 				    gfp_t gfp_flags)
2028 {
2029 	struct usb_interface *intf = stream->intf;
2030 	struct usb_host_endpoint *ep;
2031 	struct uvc_urb *uvc_urb;
2032 	unsigned int i;
2033 	int ret;
2034 
2035 	stream->sequence = -1;
2036 	stream->last_fid = -1;
2037 	stream->bulk.header_size = 0;
2038 	stream->bulk.skip_payload = 0;
2039 	stream->bulk.payload_size = 0;
2040 
2041 	uvc_video_stats_start(stream);
2042 
2043 	if (intf->num_altsetting > 1) {
2044 		struct usb_host_endpoint *best_ep = NULL;
2045 		unsigned int best_psize = UINT_MAX;
2046 		unsigned int bandwidth;
2047 		unsigned int altsetting;
2048 		int intfnum = stream->intfnum;
2049 
2050 		/* Isochronous endpoint, select the alternate setting. */
2051 		bandwidth = stream->ctrl.dwMaxPayloadTransferSize;
2052 
2053 		if (bandwidth == 0) {
2054 			uvc_dbg(stream->dev, VIDEO,
2055 				"Device requested null bandwidth, defaulting to lowest\n");
2056 			bandwidth = 1;
2057 		} else {
2058 			uvc_dbg(stream->dev, VIDEO,
2059 				"Device requested %u B/frame bandwidth\n",
2060 				bandwidth);
2061 		}
2062 
2063 		for (i = 0; i < intf->num_altsetting; ++i) {
2064 			struct usb_host_interface *alts;
2065 			unsigned int psize;
2066 
2067 			alts = &intf->altsetting[i];
2068 			ep = uvc_find_endpoint(alts,
2069 				stream->header.bEndpointAddress);
2070 			if (ep == NULL)
2071 				continue;
2072 
2073 			/* Check if the bandwidth is high enough. */
2074 			psize = uvc_endpoint_max_bpi(stream->dev->udev, ep);
2075 			if (psize >= bandwidth && psize < best_psize) {
2076 				altsetting = alts->desc.bAlternateSetting;
2077 				best_psize = psize;
2078 				best_ep = ep;
2079 			}
2080 		}
2081 
2082 		if (best_ep == NULL) {
2083 			uvc_dbg(stream->dev, VIDEO,
2084 				"No fast enough alt setting for requested bandwidth\n");
2085 			return -EIO;
2086 		}
2087 
2088 		uvc_dbg(stream->dev, VIDEO,
2089 			"Selecting alternate setting %u (%u B/frame bandwidth)\n",
2090 			altsetting, best_psize);
2091 
2092 		/*
2093 		 * Some devices, namely the Logitech C910 and B910, are unable
2094 		 * to recover from a USB autosuspend, unless the alternate
2095 		 * setting of the streaming interface is toggled.
2096 		 */
2097 		if (stream->dev->quirks & UVC_QUIRK_WAKE_AUTOSUSPEND) {
2098 			usb_set_interface(stream->dev->udev, intfnum,
2099 					  altsetting);
2100 			usb_set_interface(stream->dev->udev, intfnum, 0);
2101 		}
2102 
2103 		ret = usb_set_interface(stream->dev->udev, intfnum, altsetting);
2104 		if (ret < 0)
2105 			return ret;
2106 
2107 		ret = uvc_init_video_isoc(stream, best_ep, gfp_flags);
2108 	} else {
2109 		/* Bulk endpoint, proceed to URB initialization. */
2110 		ep = uvc_find_endpoint(&intf->altsetting[0],
2111 				stream->header.bEndpointAddress);
2112 		if (ep == NULL)
2113 			return -EIO;
2114 
2115 		/* Reject broken descriptors. */
2116 		if (usb_endpoint_maxp(&ep->desc) == 0)
2117 			return -EIO;
2118 
2119 		ret = uvc_init_video_bulk(stream, ep, gfp_flags);
2120 	}
2121 
2122 	if (ret < 0)
2123 		return ret;
2124 
2125 	/* Submit the URBs. */
2126 	for_each_uvc_urb(uvc_urb, stream) {
2127 		ret = uvc_submit_urb(uvc_urb, gfp_flags);
2128 		if (ret < 0) {
2129 			dev_err(&stream->intf->dev,
2130 				"Failed to submit URB %u (%d).\n",
2131 				uvc_urb_index(uvc_urb), ret);
2132 			uvc_video_stop_transfer(stream, 1);
2133 			return ret;
2134 		}
2135 	}
2136 
2137 	/*
2138 	 * The Logitech C920 temporarily forgets that it should not be adjusting
2139 	 * Exposure Absolute during init so restore controls to stored values.
2140 	 */
2141 	if (stream->dev->quirks & UVC_QUIRK_RESTORE_CTRLS_ON_INIT)
2142 		uvc_ctrl_restore_values(stream->dev);
2143 
2144 	return 0;
2145 }
2146 
2147 /* --------------------------------------------------------------------------
2148  * Suspend/resume
2149  */
2150 
2151 /*
2152  * Stop streaming without disabling the video queue.
2153  *
2154  * To let userspace applications resume without trouble, we must not touch the
2155  * video buffers in any way. We mark the device as frozen to make sure the URB
2156  * completion handler won't try to cancel the queue when we kill the URBs.
2157  */
uvc_video_suspend(struct uvc_streaming * stream)2158 int uvc_video_suspend(struct uvc_streaming *stream)
2159 {
2160 	if (!uvc_queue_streaming(&stream->queue))
2161 		return 0;
2162 
2163 	stream->frozen = 1;
2164 	uvc_video_stop_transfer(stream, 0);
2165 	usb_set_interface(stream->dev->udev, stream->intfnum, 0);
2166 	return 0;
2167 }
2168 
2169 /*
2170  * Reconfigure the video interface and restart streaming if it was enabled
2171  * before suspend.
2172  *
2173  * If an error occurs, disable the video queue. This will wake all pending
2174  * buffers, making sure userspace applications are notified of the problem
2175  * instead of waiting forever.
2176  */
uvc_video_resume(struct uvc_streaming * stream,int reset)2177 int uvc_video_resume(struct uvc_streaming *stream, int reset)
2178 {
2179 	int ret;
2180 
2181 	/*
2182 	 * If the bus has been reset on resume, set the alternate setting to 0.
2183 	 * This should be the default value, but some devices crash or otherwise
2184 	 * misbehave if they don't receive a SET_INTERFACE request before any
2185 	 * other video control request.
2186 	 */
2187 	if (reset)
2188 		usb_set_interface(stream->dev->udev, stream->intfnum, 0);
2189 
2190 	stream->frozen = 0;
2191 
2192 	uvc_video_clock_reset(&stream->clock);
2193 
2194 	if (!uvc_queue_streaming(&stream->queue))
2195 		return 0;
2196 
2197 	ret = uvc_commit_video(stream, &stream->ctrl);
2198 	if (ret < 0)
2199 		return ret;
2200 
2201 	return uvc_video_start_transfer(stream, GFP_NOIO);
2202 }
2203 
2204 /* ------------------------------------------------------------------------
2205  * Video device
2206  */
2207 
2208 /*
2209  * Initialize the UVC video device by switching to alternate setting 0 and
2210  * retrieve the default format.
2211  *
2212  * Some cameras (namely the Fuji Finepix) set the format and frame
2213  * indexes to zero. The UVC standard doesn't clearly make this a spec
2214  * violation, so try to silently fix the values if possible.
2215  *
2216  * This function is called before registering the device with V4L.
2217  */
uvc_video_init(struct uvc_streaming * stream)2218 int uvc_video_init(struct uvc_streaming *stream)
2219 {
2220 	struct uvc_streaming_control *probe = &stream->ctrl;
2221 	const struct uvc_format *format = NULL;
2222 	const struct uvc_frame *frame = NULL;
2223 	struct uvc_urb *uvc_urb;
2224 	unsigned int i;
2225 	int ret;
2226 
2227 	if (stream->nformats == 0) {
2228 		dev_info(&stream->intf->dev,
2229 			 "No supported video formats found.\n");
2230 		return -EINVAL;
2231 	}
2232 
2233 	atomic_set(&stream->active, 0);
2234 
2235 	/*
2236 	 * Alternate setting 0 should be the default, yet the XBox Live Vision
2237 	 * Cam (and possibly other devices) crash or otherwise misbehave if
2238 	 * they don't receive a SET_INTERFACE request before any other video
2239 	 * control request.
2240 	 */
2241 	usb_set_interface(stream->dev->udev, stream->intfnum, 0);
2242 
2243 	/*
2244 	 * Set the streaming probe control with default streaming parameters
2245 	 * retrieved from the device. Webcams that don't support GET_DEF
2246 	 * requests on the probe control will just keep their current streaming
2247 	 * parameters.
2248 	 */
2249 	if (uvc_get_video_ctrl(stream, probe, 1, UVC_GET_DEF) == 0)
2250 		uvc_set_video_ctrl(stream, probe, 1);
2251 
2252 	/*
2253 	 * Initialize the streaming parameters with the probe control current
2254 	 * value. This makes sure SET_CUR requests on the streaming commit
2255 	 * control will always use values retrieved from a successful GET_CUR
2256 	 * request on the probe control, as required by the UVC specification.
2257 	 */
2258 	ret = uvc_get_video_ctrl(stream, probe, 1, UVC_GET_CUR);
2259 
2260 	/*
2261 	 * Elgato Cam Link 4k can be in a stalled state if the resolution of
2262 	 * the external source has changed while the firmware initializes.
2263 	 * Once in this state, the device is useless until it receives a
2264 	 * USB reset. It has even been observed that the stalled state will
2265 	 * continue even after unplugging the device.
2266 	 */
2267 	if (ret == -EPROTO &&
2268 	    usb_match_one_id(stream->dev->intf, &elgato_cam_link_4k)) {
2269 		dev_err(&stream->intf->dev, "Elgato Cam Link 4K firmware crash detected\n");
2270 		dev_err(&stream->intf->dev, "Resetting the device, unplug and replug to recover\n");
2271 		usb_reset_device(stream->dev->udev);
2272 	}
2273 
2274 	if (ret < 0)
2275 		return ret;
2276 
2277 	/*
2278 	 * Check if the default format descriptor exists. Use the first
2279 	 * available format otherwise.
2280 	 */
2281 	for (i = stream->nformats; i > 0; --i) {
2282 		format = &stream->formats[i-1];
2283 		if (format->index == probe->bFormatIndex)
2284 			break;
2285 	}
2286 
2287 	if (format->nframes == 0) {
2288 		dev_info(&stream->intf->dev,
2289 			 "No frame descriptor found for the default format.\n");
2290 		return -EINVAL;
2291 	}
2292 
2293 	/*
2294 	 * Zero bFrameIndex might be correct. Stream-based formats (including
2295 	 * MPEG-2 TS and DV) do not support frames but have a dummy frame
2296 	 * descriptor with bFrameIndex set to zero. If the default frame
2297 	 * descriptor is not found, use the first available frame.
2298 	 */
2299 	for (i = format->nframes; i > 0; --i) {
2300 		frame = &format->frames[i-1];
2301 		if (frame->bFrameIndex == probe->bFrameIndex)
2302 			break;
2303 	}
2304 
2305 	probe->bFormatIndex = format->index;
2306 	probe->bFrameIndex = frame->bFrameIndex;
2307 
2308 	stream->def_format = format;
2309 	stream->cur_format = format;
2310 	stream->cur_frame = frame;
2311 
2312 	/* Select the video decoding function */
2313 	if (stream->type == V4L2_BUF_TYPE_VIDEO_CAPTURE) {
2314 		if (stream->dev->quirks & UVC_QUIRK_BUILTIN_ISIGHT)
2315 			stream->decode = uvc_video_decode_isight;
2316 		else if (stream->intf->num_altsetting > 1)
2317 			stream->decode = uvc_video_decode_isoc;
2318 		else
2319 			stream->decode = uvc_video_decode_bulk;
2320 	} else {
2321 		if (stream->intf->num_altsetting == 1)
2322 			stream->decode = uvc_video_encode_bulk;
2323 		else {
2324 			dev_info(&stream->intf->dev,
2325 				 "Isochronous endpoints are not supported for video output devices.\n");
2326 			return -EINVAL;
2327 		}
2328 	}
2329 
2330 	/* Prepare asynchronous work items. */
2331 	for_each_uvc_urb(uvc_urb, stream)
2332 		INIT_WORK(&uvc_urb->work, uvc_video_copy_data_work);
2333 
2334 	return 0;
2335 }
2336 
uvc_video_start_streaming(struct uvc_streaming * stream)2337 int uvc_video_start_streaming(struct uvc_streaming *stream)
2338 {
2339 	int ret;
2340 
2341 	ret = uvc_video_clock_init(&stream->clock);
2342 	if (ret < 0)
2343 		return ret;
2344 
2345 	/* Commit the streaming parameters. */
2346 	ret = uvc_commit_video(stream, &stream->ctrl);
2347 	if (ret < 0)
2348 		goto error_commit;
2349 
2350 	ret = uvc_video_start_transfer(stream, GFP_KERNEL);
2351 	if (ret < 0)
2352 		goto error_video;
2353 
2354 	return 0;
2355 
2356 error_video:
2357 	usb_set_interface(stream->dev->udev, stream->intfnum, 0);
2358 error_commit:
2359 	uvc_video_clock_cleanup(&stream->clock);
2360 
2361 	return ret;
2362 }
2363 
uvc_video_stop_streaming(struct uvc_streaming * stream)2364 void uvc_video_stop_streaming(struct uvc_streaming *stream)
2365 {
2366 	uvc_video_stop_transfer(stream, 1);
2367 
2368 	if (stream->intf->num_altsetting > 1) {
2369 		usb_set_interface(stream->dev->udev, stream->intfnum, 0);
2370 	} else {
2371 		/*
2372 		 * UVC doesn't specify how to inform a bulk-based device
2373 		 * when the video stream is stopped. Windows sends a
2374 		 * CLEAR_FEATURE(HALT) request to the video streaming
2375 		 * bulk endpoint, mimic the same behaviour.
2376 		 */
2377 		unsigned int epnum = stream->header.bEndpointAddress
2378 				   & USB_ENDPOINT_NUMBER_MASK;
2379 		unsigned int dir = stream->header.bEndpointAddress
2380 				 & USB_ENDPOINT_DIR_MASK;
2381 		unsigned int pipe;
2382 
2383 		pipe = usb_sndbulkpipe(stream->dev->udev, epnum) | dir;
2384 		usb_clear_halt(stream->dev->udev, pipe);
2385 	}
2386 
2387 	uvc_video_clock_cleanup(&stream->clock);
2388 }
2389