1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Block driver for media (i.e., flash cards)
4 *
5 * Copyright 2002 Hewlett-Packard Company
6 * Copyright 2005-2008 Pierre Ossman
7 *
8 * Use consistent with the GNU GPL is permitted,
9 * provided that this copyright notice is
10 * preserved in its entirety in all copies and derived works.
11 *
12 * HEWLETT-PACKARD COMPANY MAKES NO WARRANTIES, EXPRESSED OR IMPLIED,
13 * AS TO THE USEFULNESS OR CORRECTNESS OF THIS CODE OR ITS
14 * FITNESS FOR ANY PARTICULAR PURPOSE.
15 *
16 * Many thanks to Alessandro Rubini and Jonathan Corbet!
17 *
18 * Author: Andrew Christian
19 * 28 May 2002
20 */
21 #include <linux/moduleparam.h>
22 #include <linux/module.h>
23 #include <linux/init.h>
24
25 #include <linux/kernel.h>
26 #include <linux/fs.h>
27 #include <linux/slab.h>
28 #include <linux/errno.h>
29 #include <linux/hdreg.h>
30 #include <linux/kdev_t.h>
31 #include <linux/kref.h>
32 #include <linux/blkdev.h>
33 #include <linux/cdev.h>
34 #include <linux/mutex.h>
35 #include <linux/scatterlist.h>
36 #include <linux/string.h>
37 #include <linux/string_helpers.h>
38 #include <linux/delay.h>
39 #include <linux/capability.h>
40 #include <linux/compat.h>
41 #include <linux/pm_runtime.h>
42 #include <linux/idr.h>
43 #include <linux/debugfs.h>
44 #include <linux/rpmb.h>
45
46 #include <linux/mmc/ioctl.h>
47 #include <linux/mmc/card.h>
48 #include <linux/mmc/host.h>
49 #include <linux/mmc/mmc.h>
50 #include <linux/mmc/sd.h>
51
52 #include <linux/uaccess.h>
53 #include <linux/unaligned.h>
54
55 #include "queue.h"
56 #include "block.h"
57 #include "core.h"
58 #include "card.h"
59 #include "crypto.h"
60 #include "host.h"
61 #include "bus.h"
62 #include "mmc_ops.h"
63 #include "quirks.h"
64 #include "sd_ops.h"
65
66 MODULE_ALIAS("mmc:block");
67 #ifdef MODULE_PARAM_PREFIX
68 #undef MODULE_PARAM_PREFIX
69 #endif
70 #define MODULE_PARAM_PREFIX "mmcblk."
71
72 /*
73 * Set a 10 second timeout for polling write request busy state. Note, mmc core
74 * is setting a 3 second timeout for SD cards, and SDHCI has long had a 10
75 * second software timer to timeout the whole request, so 10 seconds should be
76 * ample.
77 */
78 #define MMC_BLK_TIMEOUT_MS (10 * 1000)
79 #define MMC_EXTRACT_INDEX_FROM_ARG(x) ((x & 0x00FF0000) >> 16)
80 #define MMC_EXTRACT_VALUE_FROM_ARG(x) ((x & 0x0000FF00) >> 8)
81
82 /**
83 * struct rpmb_frame - rpmb frame as defined by eMMC 5.1 (JESD84-B51)
84 *
85 * @stuff : stuff bytes
86 * @key_mac : The authentication key or the message authentication
87 * code (MAC) depending on the request/response type.
88 * The MAC will be delivered in the last (or the only)
89 * block of data.
90 * @data : Data to be written or read by signed access.
91 * @nonce : Random number generated by the host for the requests
92 * and copied to the response by the RPMB engine.
93 * @write_counter: Counter value for the total amount of the successful
94 * authenticated data write requests made by the host.
95 * @addr : Address of the data to be programmed to or read
96 * from the RPMB. Address is the serial number of
97 * the accessed block (half sector 256B).
98 * @block_count : Number of blocks (half sectors, 256B) requested to be
99 * read/programmed.
100 * @result : Includes information about the status of the write counter
101 * (valid, expired) and result of the access made to the RPMB.
102 * @req_resp : Defines the type of request and response to/from the memory.
103 *
104 * The stuff bytes and big-endian properties are modeled to fit to the spec.
105 */
106 struct rpmb_frame {
107 u8 stuff[196];
108 u8 key_mac[32];
109 u8 data[256];
110 u8 nonce[16];
111 __be32 write_counter;
112 __be16 addr;
113 __be16 block_count;
114 __be16 result;
115 __be16 req_resp;
116 } __packed;
117
118 #define RPMB_PROGRAM_KEY 0x1 /* Program RPMB Authentication Key */
119 #define RPMB_GET_WRITE_COUNTER 0x2 /* Read RPMB write counter */
120 #define RPMB_WRITE_DATA 0x3 /* Write data to RPMB partition */
121 #define RPMB_READ_DATA 0x4 /* Read data from RPMB partition */
122 #define RPMB_RESULT_READ 0x5 /* Read result request (Internal) */
123
124 static DEFINE_MUTEX(block_mutex);
125
126 /*
127 * The defaults come from config options but can be overriden by module
128 * or bootarg options.
129 */
130 static int perdev_minors = CONFIG_MMC_BLOCK_MINORS;
131
132 /*
133 * We've only got one major, so number of mmcblk devices is
134 * limited to (1 << 20) / number of minors per device. It is also
135 * limited by the MAX_DEVICES below.
136 */
137 static int max_devices;
138
139 #define MAX_DEVICES 256
140
141 static DEFINE_IDA(mmc_blk_ida);
142 static DEFINE_IDA(mmc_rpmb_ida);
143
144 struct mmc_blk_busy_data {
145 struct mmc_card *card;
146 u32 status;
147 };
148
149 /*
150 * There is one mmc_blk_data per slot.
151 */
152 struct mmc_blk_data {
153 struct device *parent;
154 struct gendisk *disk;
155 struct mmc_queue queue;
156 struct list_head part;
157 struct list_head rpmbs;
158
159 unsigned int flags;
160 #define MMC_BLK_CMD23 (1 << 0) /* Can do SET_BLOCK_COUNT for multiblock */
161 #define MMC_BLK_REL_WR (1 << 1) /* MMC Reliable write support */
162
163 struct kref kref;
164 unsigned int read_only;
165 unsigned int part_type;
166 unsigned int reset_done;
167 #define MMC_BLK_READ BIT(0)
168 #define MMC_BLK_WRITE BIT(1)
169 #define MMC_BLK_DISCARD BIT(2)
170 #define MMC_BLK_SECDISCARD BIT(3)
171 #define MMC_BLK_CQE_RECOVERY BIT(4)
172 #define MMC_BLK_TRIM BIT(5)
173
174 /*
175 * Only set in main mmc_blk_data associated
176 * with mmc_card with dev_set_drvdata, and keeps
177 * track of the current selected device partition.
178 */
179 unsigned int part_curr;
180 #define MMC_BLK_PART_INVALID UINT_MAX /* Unknown partition active */
181 int area_type;
182
183 /* debugfs files (only in main mmc_blk_data) */
184 struct dentry *status_dentry;
185 struct dentry *ext_csd_dentry;
186 };
187
188 /* Device type for RPMB character devices */
189 static dev_t mmc_rpmb_devt;
190
191 /* Bus type for RPMB character devices */
192 static const struct bus_type mmc_rpmb_bus_type = {
193 .name = "mmc_rpmb",
194 };
195
196 /**
197 * struct mmc_rpmb_data - special RPMB device type for these areas
198 * @dev: the device for the RPMB area
199 * @chrdev: character device for the RPMB area
200 * @id: unique device ID number
201 * @part_index: partition index (0 on first)
202 * @md: parent MMC block device
203 * @rdev: registered RPMB device
204 * @node: list item, so we can put this device on a list
205 */
206 struct mmc_rpmb_data {
207 struct device dev;
208 struct cdev chrdev;
209 int id;
210 unsigned int part_index;
211 struct mmc_blk_data *md;
212 struct rpmb_dev *rdev;
213 struct list_head node;
214 };
215
216 static DEFINE_MUTEX(open_lock);
217
218 module_param(perdev_minors, int, 0444);
219 MODULE_PARM_DESC(perdev_minors, "Minors numbers to allocate per device");
220
221 static inline int mmc_blk_part_switch(struct mmc_card *card,
222 unsigned int part_type);
223 static void mmc_blk_rw_rq_prep(struct mmc_queue_req *mqrq,
224 struct mmc_card *card,
225 int recovery_mode,
226 struct mmc_queue *mq);
227 static void mmc_blk_hsq_req_done(struct mmc_request *mrq);
228 static int mmc_spi_err_check(struct mmc_card *card);
229 static int mmc_blk_busy_cb(void *cb_data, bool *busy);
230
mmc_blk_get(struct gendisk * disk)231 static struct mmc_blk_data *mmc_blk_get(struct gendisk *disk)
232 {
233 struct mmc_blk_data *md;
234
235 mutex_lock(&open_lock);
236 md = disk->private_data;
237 if (md && !kref_get_unless_zero(&md->kref))
238 md = NULL;
239 mutex_unlock(&open_lock);
240
241 return md;
242 }
243
mmc_get_devidx(struct gendisk * disk)244 static inline int mmc_get_devidx(struct gendisk *disk)
245 {
246 int devidx = disk->first_minor / perdev_minors;
247 return devidx;
248 }
249
mmc_blk_kref_release(struct kref * ref)250 static void mmc_blk_kref_release(struct kref *ref)
251 {
252 struct mmc_blk_data *md = container_of(ref, struct mmc_blk_data, kref);
253 int devidx;
254
255 devidx = mmc_get_devidx(md->disk);
256 ida_free(&mmc_blk_ida, devidx);
257
258 mutex_lock(&open_lock);
259 md->disk->private_data = NULL;
260 mutex_unlock(&open_lock);
261
262 put_disk(md->disk);
263 kfree(md);
264 }
265
mmc_blk_put(struct mmc_blk_data * md)266 static void mmc_blk_put(struct mmc_blk_data *md)
267 {
268 kref_put(&md->kref, mmc_blk_kref_release);
269 }
270
power_ro_lock_show(struct device * dev,struct device_attribute * attr,char * buf)271 static ssize_t power_ro_lock_show(struct device *dev,
272 struct device_attribute *attr, char *buf)
273 {
274 int ret;
275 struct mmc_blk_data *md = mmc_blk_get(dev_to_disk(dev));
276 struct mmc_card *card = md->queue.card;
277 int locked = 0;
278
279 if (card->ext_csd.boot_ro_lock & EXT_CSD_BOOT_WP_B_PERM_WP_EN)
280 locked = 2;
281 else if (card->ext_csd.boot_ro_lock & EXT_CSD_BOOT_WP_B_PWR_WP_EN)
282 locked = 1;
283
284 ret = sysfs_emit(buf, "%d\n", locked);
285
286 mmc_blk_put(md);
287
288 return ret;
289 }
290
power_ro_lock_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)291 static ssize_t power_ro_lock_store(struct device *dev,
292 struct device_attribute *attr, const char *buf, size_t count)
293 {
294 int ret;
295 struct mmc_blk_data *md, *part_md;
296 struct mmc_queue *mq;
297 struct request *req;
298 unsigned long set;
299
300 if (kstrtoul(buf, 0, &set))
301 return -EINVAL;
302
303 if (set != 1)
304 return count;
305
306 md = mmc_blk_get(dev_to_disk(dev));
307 mq = &md->queue;
308
309 /* Dispatch locking to the block layer */
310 req = blk_mq_alloc_request(mq->queue, REQ_OP_DRV_OUT, 0);
311 if (IS_ERR(req)) {
312 count = PTR_ERR(req);
313 goto out_put;
314 }
315 req_to_mmc_queue_req(req)->drv_op = MMC_DRV_OP_BOOT_WP;
316 req_to_mmc_queue_req(req)->drv_op_result = -EIO;
317 blk_execute_rq(req, false);
318 ret = req_to_mmc_queue_req(req)->drv_op_result;
319 blk_mq_free_request(req);
320
321 if (!ret) {
322 pr_info("%s: Locking boot partition ro until next power on\n",
323 md->disk->disk_name);
324 set_disk_ro(md->disk, 1);
325
326 list_for_each_entry(part_md, &md->part, part)
327 if (part_md->area_type == MMC_BLK_DATA_AREA_BOOT) {
328 pr_info("%s: Locking boot partition ro until next power on\n", part_md->disk->disk_name);
329 set_disk_ro(part_md->disk, 1);
330 }
331 }
332 out_put:
333 mmc_blk_put(md);
334 return count;
335 }
336
337 static DEVICE_ATTR(ro_lock_until_next_power_on, 0,
338 power_ro_lock_show, power_ro_lock_store);
339
force_ro_show(struct device * dev,struct device_attribute * attr,char * buf)340 static ssize_t force_ro_show(struct device *dev, struct device_attribute *attr,
341 char *buf)
342 {
343 int ret;
344 struct mmc_blk_data *md = mmc_blk_get(dev_to_disk(dev));
345
346 ret = sysfs_emit(buf, "%d\n",
347 get_disk_ro(dev_to_disk(dev)) ^
348 md->read_only);
349 mmc_blk_put(md);
350 return ret;
351 }
352
force_ro_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)353 static ssize_t force_ro_store(struct device *dev, struct device_attribute *attr,
354 const char *buf, size_t count)
355 {
356 int ret;
357 struct mmc_blk_data *md = mmc_blk_get(dev_to_disk(dev));
358 unsigned long set;
359
360 if (kstrtoul(buf, 0, &set)) {
361 ret = -EINVAL;
362 goto out;
363 }
364
365 set_disk_ro(dev_to_disk(dev), set || md->read_only);
366 ret = count;
367 out:
368 mmc_blk_put(md);
369 return ret;
370 }
371
372 static DEVICE_ATTR(force_ro, 0644, force_ro_show, force_ro_store);
373
374 static struct attribute *mmc_disk_attrs[] = {
375 &dev_attr_force_ro.attr,
376 &dev_attr_ro_lock_until_next_power_on.attr,
377 NULL,
378 };
379
mmc_disk_attrs_is_visible(struct kobject * kobj,struct attribute * a,int n)380 static umode_t mmc_disk_attrs_is_visible(struct kobject *kobj,
381 struct attribute *a, int n)
382 {
383 struct device *dev = kobj_to_dev(kobj);
384 struct mmc_blk_data *md = mmc_blk_get(dev_to_disk(dev));
385 umode_t mode = a->mode;
386
387 if (a == &dev_attr_ro_lock_until_next_power_on.attr &&
388 (md->area_type & MMC_BLK_DATA_AREA_BOOT) &&
389 md->queue.card->ext_csd.boot_ro_lockable) {
390 mode = S_IRUGO;
391 if (!(md->queue.card->ext_csd.boot_ro_lock &
392 EXT_CSD_BOOT_WP_B_PWR_WP_DIS))
393 mode |= S_IWUSR;
394 }
395
396 mmc_blk_put(md);
397 return mode;
398 }
399
400 static const struct attribute_group mmc_disk_attr_group = {
401 .is_visible = mmc_disk_attrs_is_visible,
402 .attrs = mmc_disk_attrs,
403 };
404
405 static const struct attribute_group *mmc_disk_attr_groups[] = {
406 &mmc_disk_attr_group,
407 NULL,
408 };
409
mmc_blk_open(struct gendisk * disk,blk_mode_t mode)410 static int mmc_blk_open(struct gendisk *disk, blk_mode_t mode)
411 {
412 struct mmc_blk_data *md = mmc_blk_get(disk);
413 int ret = -ENXIO;
414
415 mutex_lock(&block_mutex);
416 if (md) {
417 ret = 0;
418 if ((mode & BLK_OPEN_WRITE) && md->read_only) {
419 mmc_blk_put(md);
420 ret = -EROFS;
421 }
422 }
423 mutex_unlock(&block_mutex);
424
425 return ret;
426 }
427
mmc_blk_release(struct gendisk * disk)428 static void mmc_blk_release(struct gendisk *disk)
429 {
430 struct mmc_blk_data *md = disk->private_data;
431
432 mutex_lock(&block_mutex);
433 mmc_blk_put(md);
434 mutex_unlock(&block_mutex);
435 }
436
437 static int
mmc_blk_getgeo(struct block_device * bdev,struct hd_geometry * geo)438 mmc_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo)
439 {
440 geo->cylinders = get_capacity(bdev->bd_disk) / (4 * 16);
441 geo->heads = 4;
442 geo->sectors = 16;
443 return 0;
444 }
445
446 struct mmc_blk_ioc_data {
447 struct mmc_ioc_cmd ic;
448 unsigned char *buf;
449 u64 buf_bytes;
450 unsigned int flags;
451 #define MMC_BLK_IOC_DROP BIT(0) /* drop this mrq */
452 #define MMC_BLK_IOC_SBC BIT(1) /* use mrq.sbc */
453
454 struct mmc_rpmb_data *rpmb;
455 };
456
mmc_blk_ioctl_copy_from_user(struct mmc_ioc_cmd __user * user)457 static struct mmc_blk_ioc_data *mmc_blk_ioctl_copy_from_user(
458 struct mmc_ioc_cmd __user *user)
459 {
460 struct mmc_blk_ioc_data *idata;
461 int err;
462
463 idata = kzalloc(sizeof(*idata), GFP_KERNEL);
464 if (!idata) {
465 err = -ENOMEM;
466 goto out;
467 }
468
469 if (copy_from_user(&idata->ic, user, sizeof(idata->ic))) {
470 err = -EFAULT;
471 goto idata_err;
472 }
473
474 idata->buf_bytes = (u64) idata->ic.blksz * idata->ic.blocks;
475 if (idata->buf_bytes > MMC_IOC_MAX_BYTES) {
476 err = -EOVERFLOW;
477 goto idata_err;
478 }
479
480 if (!idata->buf_bytes) {
481 idata->buf = NULL;
482 return idata;
483 }
484
485 idata->buf = memdup_user((void __user *)(unsigned long)
486 idata->ic.data_ptr, idata->buf_bytes);
487 if (IS_ERR(idata->buf)) {
488 err = PTR_ERR(idata->buf);
489 goto idata_err;
490 }
491
492 return idata;
493
494 idata_err:
495 kfree(idata);
496 out:
497 return ERR_PTR(err);
498 }
499
mmc_blk_ioctl_copy_to_user(struct mmc_ioc_cmd __user * ic_ptr,struct mmc_blk_ioc_data * idata)500 static int mmc_blk_ioctl_copy_to_user(struct mmc_ioc_cmd __user *ic_ptr,
501 struct mmc_blk_ioc_data *idata)
502 {
503 struct mmc_ioc_cmd *ic = &idata->ic;
504
505 if (copy_to_user(&(ic_ptr->response), ic->response,
506 sizeof(ic->response)))
507 return -EFAULT;
508
509 if (!idata->ic.write_flag) {
510 if (copy_to_user((void __user *)(unsigned long)ic->data_ptr,
511 idata->buf, idata->buf_bytes))
512 return -EFAULT;
513 }
514
515 return 0;
516 }
517
__mmc_blk_ioctl_cmd(struct mmc_card * card,struct mmc_blk_data * md,struct mmc_blk_ioc_data ** idatas,int i)518 static int __mmc_blk_ioctl_cmd(struct mmc_card *card, struct mmc_blk_data *md,
519 struct mmc_blk_ioc_data **idatas, int i)
520 {
521 struct mmc_command cmd = {}, sbc = {};
522 struct mmc_data data = {};
523 struct mmc_request mrq = {};
524 struct scatterlist sg;
525 bool r1b_resp;
526 unsigned int busy_timeout_ms;
527 int err;
528 unsigned int target_part;
529 struct mmc_blk_ioc_data *idata = idatas[i];
530 struct mmc_blk_ioc_data *prev_idata = NULL;
531
532 if (!card || !md || !idata)
533 return -EINVAL;
534
535 if (idata->flags & MMC_BLK_IOC_DROP)
536 return 0;
537
538 if (idata->flags & MMC_BLK_IOC_SBC && i > 0)
539 prev_idata = idatas[i - 1];
540
541 /*
542 * The RPMB accesses comes in from the character device, so we
543 * need to target these explicitly. Else we just target the
544 * partition type for the block device the ioctl() was issued
545 * on.
546 */
547 if (idata->rpmb) {
548 /* Support multiple RPMB partitions */
549 target_part = idata->rpmb->part_index;
550 target_part |= EXT_CSD_PART_CONFIG_ACC_RPMB;
551 } else {
552 target_part = md->part_type;
553 }
554
555 cmd.opcode = idata->ic.opcode;
556 cmd.arg = idata->ic.arg;
557 cmd.flags = idata->ic.flags;
558
559 if (idata->buf_bytes) {
560 data.sg = &sg;
561 data.sg_len = 1;
562 data.blksz = idata->ic.blksz;
563 data.blocks = idata->ic.blocks;
564
565 sg_init_one(data.sg, idata->buf, idata->buf_bytes);
566
567 if (idata->ic.write_flag)
568 data.flags = MMC_DATA_WRITE;
569 else
570 data.flags = MMC_DATA_READ;
571
572 /* data.flags must already be set before doing this. */
573 mmc_set_data_timeout(&data, card);
574
575 /* Allow overriding the timeout_ns for empirical tuning. */
576 if (idata->ic.data_timeout_ns)
577 data.timeout_ns = idata->ic.data_timeout_ns;
578
579 mrq.data = &data;
580 }
581
582 mrq.cmd = &cmd;
583
584 err = mmc_blk_part_switch(card, target_part);
585 if (err)
586 return err;
587
588 if (idata->ic.is_acmd) {
589 err = mmc_app_cmd(card->host, card);
590 if (err)
591 return err;
592 }
593
594 if (idata->rpmb || prev_idata) {
595 sbc.opcode = MMC_SET_BLOCK_COUNT;
596 /*
597 * We don't do any blockcount validation because the max size
598 * may be increased by a future standard. We just copy the
599 * 'Reliable Write' bit here.
600 */
601 sbc.arg = data.blocks | (idata->ic.write_flag & BIT(31));
602 if (prev_idata)
603 sbc.arg = prev_idata->ic.arg;
604 sbc.flags = MMC_RSP_R1 | MMC_CMD_AC;
605 mrq.sbc = &sbc;
606 }
607
608 if ((MMC_EXTRACT_INDEX_FROM_ARG(cmd.arg) == EXT_CSD_SANITIZE_START) &&
609 (cmd.opcode == MMC_SWITCH))
610 return mmc_sanitize(card, idata->ic.cmd_timeout_ms);
611
612 /* If it's an R1B response we need some more preparations. */
613 busy_timeout_ms = idata->ic.cmd_timeout_ms ? : MMC_BLK_TIMEOUT_MS;
614 r1b_resp = (cmd.flags & MMC_RSP_R1B) == MMC_RSP_R1B;
615 if (r1b_resp)
616 mmc_prepare_busy_cmd(card->host, &cmd, busy_timeout_ms);
617
618 mmc_wait_for_req(card->host, &mrq);
619 memcpy(&idata->ic.response, cmd.resp, sizeof(cmd.resp));
620
621 if (prev_idata) {
622 memcpy(&prev_idata->ic.response, sbc.resp, sizeof(sbc.resp));
623 if (sbc.error) {
624 dev_err(mmc_dev(card->host), "%s: sbc error %d\n",
625 __func__, sbc.error);
626 return sbc.error;
627 }
628 }
629
630 if (cmd.error) {
631 dev_err(mmc_dev(card->host), "%s: cmd error %d\n",
632 __func__, cmd.error);
633 return cmd.error;
634 }
635 if (data.error) {
636 dev_err(mmc_dev(card->host), "%s: data error %d\n",
637 __func__, data.error);
638 return data.error;
639 }
640
641 /*
642 * Make sure the cache of the PARTITION_CONFIG register and
643 * PARTITION_ACCESS bits is updated in case the ioctl ext_csd write
644 * changed it successfully.
645 */
646 if ((MMC_EXTRACT_INDEX_FROM_ARG(cmd.arg) == EXT_CSD_PART_CONFIG) &&
647 (cmd.opcode == MMC_SWITCH)) {
648 struct mmc_blk_data *main_md = dev_get_drvdata(&card->dev);
649 u8 value = MMC_EXTRACT_VALUE_FROM_ARG(cmd.arg);
650
651 /*
652 * Update cache so the next mmc_blk_part_switch call operates
653 * on up-to-date data.
654 */
655 card->ext_csd.part_config = value;
656 main_md->part_curr = value & EXT_CSD_PART_CONFIG_ACC_MASK;
657 }
658
659 /*
660 * Make sure to update CACHE_CTRL in case it was changed. The cache
661 * will get turned back on if the card is re-initialized, e.g.
662 * suspend/resume or hw reset in recovery.
663 */
664 if ((MMC_EXTRACT_INDEX_FROM_ARG(cmd.arg) == EXT_CSD_CACHE_CTRL) &&
665 (cmd.opcode == MMC_SWITCH)) {
666 u8 value = MMC_EXTRACT_VALUE_FROM_ARG(cmd.arg) & 1;
667
668 card->ext_csd.cache_ctrl = value;
669 }
670
671 /*
672 * According to the SD specs, some commands require a delay after
673 * issuing the command.
674 */
675 if (idata->ic.postsleep_min_us)
676 usleep_range(idata->ic.postsleep_min_us, idata->ic.postsleep_max_us);
677
678 if (mmc_host_is_spi(card->host)) {
679 if (idata->ic.write_flag || r1b_resp || cmd.flags & MMC_RSP_SPI_BUSY)
680 return mmc_spi_err_check(card);
681 return err;
682 }
683
684 /*
685 * Ensure RPMB, writes and R1B responses are completed by polling with
686 * CMD13. Note that, usually we don't need to poll when using HW busy
687 * detection, but here it's needed since some commands may indicate the
688 * error through the R1 status bits.
689 */
690 if (idata->rpmb || idata->ic.write_flag || r1b_resp) {
691 struct mmc_blk_busy_data cb_data = {
692 .card = card,
693 };
694
695 err = __mmc_poll_for_busy(card->host, 0, busy_timeout_ms,
696 &mmc_blk_busy_cb, &cb_data);
697
698 idata->ic.response[0] = cb_data.status;
699 }
700
701 return err;
702 }
703
mmc_blk_ioctl_cmd(struct mmc_blk_data * md,struct mmc_ioc_cmd __user * ic_ptr,struct mmc_rpmb_data * rpmb)704 static int mmc_blk_ioctl_cmd(struct mmc_blk_data *md,
705 struct mmc_ioc_cmd __user *ic_ptr,
706 struct mmc_rpmb_data *rpmb)
707 {
708 struct mmc_blk_ioc_data *idata;
709 struct mmc_blk_ioc_data *idatas[1];
710 struct mmc_queue *mq;
711 struct mmc_card *card;
712 int err = 0, ioc_err = 0;
713 struct request *req;
714
715 idata = mmc_blk_ioctl_copy_from_user(ic_ptr);
716 if (IS_ERR(idata))
717 return PTR_ERR(idata);
718 /* This will be NULL on non-RPMB ioctl():s */
719 idata->rpmb = rpmb;
720
721 card = md->queue.card;
722 if (IS_ERR(card)) {
723 err = PTR_ERR(card);
724 goto cmd_done;
725 }
726
727 /*
728 * Dispatch the ioctl() into the block request queue.
729 */
730 mq = &md->queue;
731 req = blk_mq_alloc_request(mq->queue,
732 idata->ic.write_flag ? REQ_OP_DRV_OUT : REQ_OP_DRV_IN, 0);
733 if (IS_ERR(req)) {
734 err = PTR_ERR(req);
735 goto cmd_done;
736 }
737 idatas[0] = idata;
738 req_to_mmc_queue_req(req)->drv_op =
739 rpmb ? MMC_DRV_OP_IOCTL_RPMB : MMC_DRV_OP_IOCTL;
740 req_to_mmc_queue_req(req)->drv_op_result = -EIO;
741 req_to_mmc_queue_req(req)->drv_op_data = idatas;
742 req_to_mmc_queue_req(req)->ioc_count = 1;
743 blk_execute_rq(req, false);
744 ioc_err = req_to_mmc_queue_req(req)->drv_op_result;
745 err = mmc_blk_ioctl_copy_to_user(ic_ptr, idata);
746 blk_mq_free_request(req);
747
748 cmd_done:
749 kfree(idata->buf);
750 kfree(idata);
751 return ioc_err ? ioc_err : err;
752 }
753
mmc_blk_ioctl_multi_cmd(struct mmc_blk_data * md,struct mmc_ioc_multi_cmd __user * user,struct mmc_rpmb_data * rpmb)754 static int mmc_blk_ioctl_multi_cmd(struct mmc_blk_data *md,
755 struct mmc_ioc_multi_cmd __user *user,
756 struct mmc_rpmb_data *rpmb)
757 {
758 struct mmc_blk_ioc_data **idata = NULL;
759 struct mmc_ioc_cmd __user *cmds = user->cmds;
760 struct mmc_card *card;
761 struct mmc_queue *mq;
762 int err = 0, ioc_err = 0;
763 __u64 num_of_cmds;
764 unsigned int i, n;
765 struct request *req;
766
767 if (copy_from_user(&num_of_cmds, &user->num_of_cmds,
768 sizeof(num_of_cmds)))
769 return -EFAULT;
770
771 if (!num_of_cmds)
772 return 0;
773
774 if (num_of_cmds > MMC_IOC_MAX_CMDS)
775 return -EINVAL;
776
777 n = num_of_cmds;
778 idata = kcalloc(n, sizeof(*idata), GFP_KERNEL);
779 if (!idata)
780 return -ENOMEM;
781
782 for (i = 0; i < n; i++) {
783 idata[i] = mmc_blk_ioctl_copy_from_user(&cmds[i]);
784 if (IS_ERR(idata[i])) {
785 err = PTR_ERR(idata[i]);
786 n = i;
787 goto cmd_err;
788 }
789 /* This will be NULL on non-RPMB ioctl():s */
790 idata[i]->rpmb = rpmb;
791 }
792
793 card = md->queue.card;
794 if (IS_ERR(card)) {
795 err = PTR_ERR(card);
796 goto cmd_err;
797 }
798
799
800 /*
801 * Dispatch the ioctl()s into the block request queue.
802 */
803 mq = &md->queue;
804 req = blk_mq_alloc_request(mq->queue,
805 idata[0]->ic.write_flag ? REQ_OP_DRV_OUT : REQ_OP_DRV_IN, 0);
806 if (IS_ERR(req)) {
807 err = PTR_ERR(req);
808 goto cmd_err;
809 }
810 req_to_mmc_queue_req(req)->drv_op =
811 rpmb ? MMC_DRV_OP_IOCTL_RPMB : MMC_DRV_OP_IOCTL;
812 req_to_mmc_queue_req(req)->drv_op_result = -EIO;
813 req_to_mmc_queue_req(req)->drv_op_data = idata;
814 req_to_mmc_queue_req(req)->ioc_count = n;
815 blk_execute_rq(req, false);
816 ioc_err = req_to_mmc_queue_req(req)->drv_op_result;
817
818 /* copy to user if data and response */
819 for (i = 0; i < n && !err; i++)
820 err = mmc_blk_ioctl_copy_to_user(&cmds[i], idata[i]);
821
822 blk_mq_free_request(req);
823
824 cmd_err:
825 for (i = 0; i < n; i++) {
826 kfree(idata[i]->buf);
827 kfree(idata[i]);
828 }
829 kfree(idata);
830 return ioc_err ? ioc_err : err;
831 }
832
mmc_blk_check_blkdev(struct block_device * bdev)833 static int mmc_blk_check_blkdev(struct block_device *bdev)
834 {
835 /*
836 * The caller must have CAP_SYS_RAWIO, and must be calling this on the
837 * whole block device, not on a partition. This prevents overspray
838 * between sibling partitions.
839 */
840 if (!capable(CAP_SYS_RAWIO) || bdev_is_partition(bdev))
841 return -EPERM;
842 return 0;
843 }
844
mmc_blk_ioctl(struct block_device * bdev,blk_mode_t mode,unsigned int cmd,unsigned long arg)845 static int mmc_blk_ioctl(struct block_device *bdev, blk_mode_t mode,
846 unsigned int cmd, unsigned long arg)
847 {
848 struct mmc_blk_data *md;
849 int ret;
850
851 switch (cmd) {
852 case MMC_IOC_CMD:
853 ret = mmc_blk_check_blkdev(bdev);
854 if (ret)
855 return ret;
856 md = mmc_blk_get(bdev->bd_disk);
857 if (!md)
858 return -EINVAL;
859 ret = mmc_blk_ioctl_cmd(md,
860 (struct mmc_ioc_cmd __user *)arg,
861 NULL);
862 mmc_blk_put(md);
863 return ret;
864 case MMC_IOC_MULTI_CMD:
865 ret = mmc_blk_check_blkdev(bdev);
866 if (ret)
867 return ret;
868 md = mmc_blk_get(bdev->bd_disk);
869 if (!md)
870 return -EINVAL;
871 ret = mmc_blk_ioctl_multi_cmd(md,
872 (struct mmc_ioc_multi_cmd __user *)arg,
873 NULL);
874 mmc_blk_put(md);
875 return ret;
876 default:
877 return -EINVAL;
878 }
879 }
880
881 #ifdef CONFIG_COMPAT
mmc_blk_compat_ioctl(struct block_device * bdev,blk_mode_t mode,unsigned int cmd,unsigned long arg)882 static int mmc_blk_compat_ioctl(struct block_device *bdev, blk_mode_t mode,
883 unsigned int cmd, unsigned long arg)
884 {
885 return mmc_blk_ioctl(bdev, mode, cmd, (unsigned long) compat_ptr(arg));
886 }
887 #endif
888
mmc_blk_alternative_gpt_sector(struct gendisk * disk,sector_t * sector)889 static int mmc_blk_alternative_gpt_sector(struct gendisk *disk,
890 sector_t *sector)
891 {
892 struct mmc_blk_data *md;
893 int ret;
894
895 md = mmc_blk_get(disk);
896 if (!md)
897 return -EINVAL;
898
899 if (md->queue.card)
900 ret = mmc_card_alternative_gpt_sector(md->queue.card, sector);
901 else
902 ret = -ENODEV;
903
904 mmc_blk_put(md);
905
906 return ret;
907 }
908
909 static const struct block_device_operations mmc_bdops = {
910 .open = mmc_blk_open,
911 .release = mmc_blk_release,
912 .getgeo = mmc_blk_getgeo,
913 .owner = THIS_MODULE,
914 .ioctl = mmc_blk_ioctl,
915 #ifdef CONFIG_COMPAT
916 .compat_ioctl = mmc_blk_compat_ioctl,
917 #endif
918 .alternative_gpt_sector = mmc_blk_alternative_gpt_sector,
919 };
920
mmc_blk_part_switch_pre(struct mmc_card * card,unsigned int part_type)921 static int mmc_blk_part_switch_pre(struct mmc_card *card,
922 unsigned int part_type)
923 {
924 const unsigned int mask = EXT_CSD_PART_CONFIG_ACC_MASK;
925 const unsigned int rpmb = EXT_CSD_PART_CONFIG_ACC_RPMB;
926 int ret = 0;
927
928 if ((part_type & mask) == rpmb) {
929 if (card->ext_csd.cmdq_en) {
930 ret = mmc_cmdq_disable(card);
931 if (ret)
932 return ret;
933 }
934 mmc_retune_pause(card->host);
935 }
936
937 return ret;
938 }
939
mmc_blk_part_switch_post(struct mmc_card * card,unsigned int part_type)940 static int mmc_blk_part_switch_post(struct mmc_card *card,
941 unsigned int part_type)
942 {
943 const unsigned int mask = EXT_CSD_PART_CONFIG_ACC_MASK;
944 const unsigned int rpmb = EXT_CSD_PART_CONFIG_ACC_RPMB;
945 int ret = 0;
946
947 if ((part_type & mask) == rpmb) {
948 mmc_retune_unpause(card->host);
949 if (card->reenable_cmdq && !card->ext_csd.cmdq_en)
950 ret = mmc_cmdq_enable(card);
951 }
952
953 return ret;
954 }
955
mmc_blk_part_switch(struct mmc_card * card,unsigned int part_type)956 static inline int mmc_blk_part_switch(struct mmc_card *card,
957 unsigned int part_type)
958 {
959 int ret = 0;
960 struct mmc_blk_data *main_md = dev_get_drvdata(&card->dev);
961
962 if (main_md->part_curr == part_type)
963 return 0;
964
965 if (mmc_card_mmc(card)) {
966 u8 part_config = card->ext_csd.part_config;
967
968 ret = mmc_blk_part_switch_pre(card, part_type);
969 if (ret)
970 return ret;
971
972 part_config &= ~EXT_CSD_PART_CONFIG_ACC_MASK;
973 part_config |= part_type;
974
975 ret = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
976 EXT_CSD_PART_CONFIG, part_config,
977 card->ext_csd.part_time);
978 if (ret) {
979 mmc_blk_part_switch_post(card, part_type);
980 return ret;
981 }
982
983 card->ext_csd.part_config = part_config;
984
985 ret = mmc_blk_part_switch_post(card, main_md->part_curr);
986 }
987
988 main_md->part_curr = part_type;
989 return ret;
990 }
991
mmc_sd_num_wr_blocks(struct mmc_card * card,u32 * written_blocks)992 static int mmc_sd_num_wr_blocks(struct mmc_card *card, u32 *written_blocks)
993 {
994 int err;
995 u32 result;
996 __be32 *blocks;
997 u8 resp_sz = mmc_card_ult_capacity(card) ? 8 : 4;
998 unsigned int noio_flag;
999
1000 struct mmc_request mrq = {};
1001 struct mmc_command cmd = {};
1002 struct mmc_data data = {};
1003 struct scatterlist sg;
1004
1005 err = mmc_app_cmd(card->host, card);
1006 if (err)
1007 return err;
1008
1009 cmd.opcode = SD_APP_SEND_NUM_WR_BLKS;
1010 cmd.arg = 0;
1011 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_ADTC;
1012
1013 data.blksz = resp_sz;
1014 data.blocks = 1;
1015 data.flags = MMC_DATA_READ;
1016 data.sg = &sg;
1017 data.sg_len = 1;
1018 mmc_set_data_timeout(&data, card);
1019
1020 mrq.cmd = &cmd;
1021 mrq.data = &data;
1022
1023 noio_flag = memalloc_noio_save();
1024 blocks = kmalloc(resp_sz, GFP_KERNEL);
1025 memalloc_noio_restore(noio_flag);
1026 if (!blocks)
1027 return -ENOMEM;
1028
1029 sg_init_one(&sg, blocks, resp_sz);
1030
1031 mmc_wait_for_req(card->host, &mrq);
1032
1033 if (mmc_card_ult_capacity(card)) {
1034 /*
1035 * Normally, ACMD22 returns the number of written sectors as
1036 * u32. SDUC, however, returns it as u64. This is not a
1037 * superfluous requirement, because SDUC writes may exceed 2TB.
1038 * For Linux mmc however, the previously write operation could
1039 * not be more than the block layer limits, thus just make room
1040 * for a u64 and cast the response back to u32.
1041 */
1042 result = clamp_val(get_unaligned_be64(blocks), 0, UINT_MAX);
1043 } else {
1044 result = ntohl(*blocks);
1045 }
1046 kfree(blocks);
1047
1048 if (cmd.error || data.error)
1049 return -EIO;
1050
1051 *written_blocks = result;
1052
1053 return 0;
1054 }
1055
mmc_blk_clock_khz(struct mmc_host * host)1056 static unsigned int mmc_blk_clock_khz(struct mmc_host *host)
1057 {
1058 if (host->actual_clock)
1059 return host->actual_clock / 1000;
1060
1061 /* Clock may be subject to a divisor, fudge it by a factor of 2. */
1062 if (host->ios.clock)
1063 return host->ios.clock / 2000;
1064
1065 /* How can there be no clock */
1066 WARN_ON_ONCE(1);
1067 return 100; /* 100 kHz is minimum possible value */
1068 }
1069
mmc_blk_data_timeout_ms(struct mmc_host * host,struct mmc_data * data)1070 static unsigned int mmc_blk_data_timeout_ms(struct mmc_host *host,
1071 struct mmc_data *data)
1072 {
1073 unsigned int ms = DIV_ROUND_UP(data->timeout_ns, 1000000);
1074 unsigned int khz;
1075
1076 if (data->timeout_clks) {
1077 khz = mmc_blk_clock_khz(host);
1078 ms += DIV_ROUND_UP(data->timeout_clks, khz);
1079 }
1080
1081 return ms;
1082 }
1083
1084 /*
1085 * Attempts to reset the card and get back to the requested partition.
1086 * Therefore any error here must result in cancelling the block layer
1087 * request, it must not be reattempted without going through the mmc_blk
1088 * partition sanity checks.
1089 */
mmc_blk_reset(struct mmc_blk_data * md,struct mmc_host * host,int type)1090 static int mmc_blk_reset(struct mmc_blk_data *md, struct mmc_host *host,
1091 int type)
1092 {
1093 int err;
1094 struct mmc_blk_data *main_md = dev_get_drvdata(&host->card->dev);
1095
1096 if (md->reset_done & type)
1097 return -EEXIST;
1098
1099 md->reset_done |= type;
1100 err = mmc_hw_reset(host->card);
1101 /*
1102 * A successful reset will leave the card in the main partition, but
1103 * upon failure it might not be, so set it to MMC_BLK_PART_INVALID
1104 * in that case.
1105 */
1106 main_md->part_curr = err ? MMC_BLK_PART_INVALID : main_md->part_type;
1107 if (err)
1108 return err;
1109 /* Ensure we switch back to the correct partition */
1110 if (mmc_blk_part_switch(host->card, md->part_type))
1111 /*
1112 * We have failed to get back into the correct
1113 * partition, so we need to abort the whole request.
1114 */
1115 return -ENODEV;
1116 return 0;
1117 }
1118
mmc_blk_reset_success(struct mmc_blk_data * md,int type)1119 static inline void mmc_blk_reset_success(struct mmc_blk_data *md, int type)
1120 {
1121 md->reset_done &= ~type;
1122 }
1123
mmc_blk_check_sbc(struct mmc_queue_req * mq_rq)1124 static void mmc_blk_check_sbc(struct mmc_queue_req *mq_rq)
1125 {
1126 struct mmc_blk_ioc_data **idata = mq_rq->drv_op_data;
1127 int i;
1128
1129 for (i = 1; i < mq_rq->ioc_count; i++) {
1130 if (idata[i - 1]->ic.opcode == MMC_SET_BLOCK_COUNT &&
1131 mmc_op_multi(idata[i]->ic.opcode)) {
1132 idata[i - 1]->flags |= MMC_BLK_IOC_DROP;
1133 idata[i]->flags |= MMC_BLK_IOC_SBC;
1134 }
1135 }
1136 }
1137
1138 /*
1139 * The non-block commands come back from the block layer after it queued it and
1140 * processed it with all other requests and then they get issued in this
1141 * function.
1142 */
mmc_blk_issue_drv_op(struct mmc_queue * mq,struct request * req)1143 static void mmc_blk_issue_drv_op(struct mmc_queue *mq, struct request *req)
1144 {
1145 struct mmc_queue_req *mq_rq;
1146 struct mmc_card *card = mq->card;
1147 struct mmc_blk_data *md = mq->blkdata;
1148 struct mmc_blk_ioc_data **idata;
1149 bool rpmb_ioctl;
1150 u8 **ext_csd;
1151 u32 status;
1152 int ret;
1153 int i;
1154
1155 mq_rq = req_to_mmc_queue_req(req);
1156 rpmb_ioctl = (mq_rq->drv_op == MMC_DRV_OP_IOCTL_RPMB);
1157
1158 switch (mq_rq->drv_op) {
1159 case MMC_DRV_OP_IOCTL:
1160 if (card->ext_csd.cmdq_en) {
1161 ret = mmc_cmdq_disable(card);
1162 if (ret)
1163 break;
1164 }
1165
1166 mmc_blk_check_sbc(mq_rq);
1167
1168 fallthrough;
1169 case MMC_DRV_OP_IOCTL_RPMB:
1170 idata = mq_rq->drv_op_data;
1171 for (i = 0, ret = 0; i < mq_rq->ioc_count; i++) {
1172 ret = __mmc_blk_ioctl_cmd(card, md, idata, i);
1173 if (ret)
1174 break;
1175 }
1176 /* Always switch back to main area after RPMB access */
1177 if (rpmb_ioctl)
1178 mmc_blk_part_switch(card, 0);
1179 else if (card->reenable_cmdq && !card->ext_csd.cmdq_en)
1180 mmc_cmdq_enable(card);
1181 break;
1182 case MMC_DRV_OP_BOOT_WP:
1183 ret = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_BOOT_WP,
1184 card->ext_csd.boot_ro_lock |
1185 EXT_CSD_BOOT_WP_B_PWR_WP_EN,
1186 card->ext_csd.part_time);
1187 if (ret)
1188 pr_err("%s: Locking boot partition ro until next power on failed: %d\n",
1189 md->disk->disk_name, ret);
1190 else
1191 card->ext_csd.boot_ro_lock |=
1192 EXT_CSD_BOOT_WP_B_PWR_WP_EN;
1193 break;
1194 case MMC_DRV_OP_GET_CARD_STATUS:
1195 ret = mmc_send_status(card, &status);
1196 if (!ret)
1197 ret = status;
1198 break;
1199 case MMC_DRV_OP_GET_EXT_CSD:
1200 ext_csd = mq_rq->drv_op_data;
1201 ret = mmc_get_ext_csd(card, ext_csd);
1202 break;
1203 default:
1204 pr_err("%s: unknown driver specific operation\n",
1205 md->disk->disk_name);
1206 ret = -EINVAL;
1207 break;
1208 }
1209 mq_rq->drv_op_result = ret;
1210 blk_mq_end_request(req, ret ? BLK_STS_IOERR : BLK_STS_OK);
1211 }
1212
mmc_blk_issue_erase_rq(struct mmc_queue * mq,struct request * req,int type,unsigned int erase_arg)1213 static void mmc_blk_issue_erase_rq(struct mmc_queue *mq, struct request *req,
1214 int type, unsigned int erase_arg)
1215 {
1216 struct mmc_blk_data *md = mq->blkdata;
1217 struct mmc_card *card = md->queue.card;
1218 unsigned int from, nr;
1219 int err = 0;
1220 blk_status_t status = BLK_STS_OK;
1221
1222 if (!mmc_can_erase(card)) {
1223 status = BLK_STS_NOTSUPP;
1224 goto fail;
1225 }
1226
1227 from = blk_rq_pos(req);
1228 nr = blk_rq_sectors(req);
1229
1230 do {
1231 err = 0;
1232 if (card->quirks & MMC_QUIRK_INAND_CMD38) {
1233 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1234 INAND_CMD38_ARG_EXT_CSD,
1235 erase_arg == MMC_TRIM_ARG ?
1236 INAND_CMD38_ARG_TRIM :
1237 INAND_CMD38_ARG_ERASE,
1238 card->ext_csd.generic_cmd6_time);
1239 }
1240 if (!err)
1241 err = mmc_erase(card, from, nr, erase_arg);
1242 } while (err == -EIO && !mmc_blk_reset(md, card->host, type));
1243 if (err)
1244 status = BLK_STS_IOERR;
1245 else
1246 mmc_blk_reset_success(md, type);
1247 fail:
1248 blk_mq_end_request(req, status);
1249 }
1250
mmc_blk_issue_trim_rq(struct mmc_queue * mq,struct request * req)1251 static void mmc_blk_issue_trim_rq(struct mmc_queue *mq, struct request *req)
1252 {
1253 mmc_blk_issue_erase_rq(mq, req, MMC_BLK_TRIM, MMC_TRIM_ARG);
1254 }
1255
mmc_blk_issue_discard_rq(struct mmc_queue * mq,struct request * req)1256 static void mmc_blk_issue_discard_rq(struct mmc_queue *mq, struct request *req)
1257 {
1258 struct mmc_blk_data *md = mq->blkdata;
1259 struct mmc_card *card = md->queue.card;
1260 unsigned int arg = card->erase_arg;
1261
1262 if (mmc_card_broken_sd_discard(card))
1263 arg = SD_ERASE_ARG;
1264
1265 mmc_blk_issue_erase_rq(mq, req, MMC_BLK_DISCARD, arg);
1266 }
1267
mmc_blk_issue_secdiscard_rq(struct mmc_queue * mq,struct request * req)1268 static void mmc_blk_issue_secdiscard_rq(struct mmc_queue *mq,
1269 struct request *req)
1270 {
1271 struct mmc_blk_data *md = mq->blkdata;
1272 struct mmc_card *card = md->queue.card;
1273 unsigned int from, nr, arg;
1274 int err = 0, type = MMC_BLK_SECDISCARD;
1275 blk_status_t status = BLK_STS_OK;
1276
1277 if (!(mmc_can_secure_erase_trim(card))) {
1278 status = BLK_STS_NOTSUPP;
1279 goto out;
1280 }
1281
1282 from = blk_rq_pos(req);
1283 nr = blk_rq_sectors(req);
1284
1285 if (mmc_can_trim(card) && !mmc_erase_group_aligned(card, from, nr))
1286 arg = MMC_SECURE_TRIM1_ARG;
1287 else
1288 arg = MMC_SECURE_ERASE_ARG;
1289
1290 retry:
1291 if (card->quirks & MMC_QUIRK_INAND_CMD38) {
1292 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1293 INAND_CMD38_ARG_EXT_CSD,
1294 arg == MMC_SECURE_TRIM1_ARG ?
1295 INAND_CMD38_ARG_SECTRIM1 :
1296 INAND_CMD38_ARG_SECERASE,
1297 card->ext_csd.generic_cmd6_time);
1298 if (err)
1299 goto out_retry;
1300 }
1301
1302 err = mmc_erase(card, from, nr, arg);
1303 if (err == -EIO)
1304 goto out_retry;
1305 if (err) {
1306 status = BLK_STS_IOERR;
1307 goto out;
1308 }
1309
1310 if (arg == MMC_SECURE_TRIM1_ARG) {
1311 if (card->quirks & MMC_QUIRK_INAND_CMD38) {
1312 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1313 INAND_CMD38_ARG_EXT_CSD,
1314 INAND_CMD38_ARG_SECTRIM2,
1315 card->ext_csd.generic_cmd6_time);
1316 if (err)
1317 goto out_retry;
1318 }
1319
1320 err = mmc_erase(card, from, nr, MMC_SECURE_TRIM2_ARG);
1321 if (err == -EIO)
1322 goto out_retry;
1323 if (err) {
1324 status = BLK_STS_IOERR;
1325 goto out;
1326 }
1327 }
1328
1329 out_retry:
1330 if (err && !mmc_blk_reset(md, card->host, type))
1331 goto retry;
1332 if (!err)
1333 mmc_blk_reset_success(md, type);
1334 out:
1335 blk_mq_end_request(req, status);
1336 }
1337
mmc_blk_issue_flush(struct mmc_queue * mq,struct request * req)1338 static void mmc_blk_issue_flush(struct mmc_queue *mq, struct request *req)
1339 {
1340 struct mmc_blk_data *md = mq->blkdata;
1341 struct mmc_card *card = md->queue.card;
1342 int ret = 0;
1343
1344 ret = mmc_flush_cache(card->host);
1345 blk_mq_end_request(req, ret ? BLK_STS_IOERR : BLK_STS_OK);
1346 }
1347
1348 /*
1349 * Reformat current write as a reliable write, supporting
1350 * both legacy and the enhanced reliable write MMC cards.
1351 * In each transfer we'll handle only as much as a single
1352 * reliable write can handle, thus finish the request in
1353 * partial completions.
1354 */
mmc_apply_rel_rw(struct mmc_blk_request * brq,struct mmc_card * card,struct request * req)1355 static inline void mmc_apply_rel_rw(struct mmc_blk_request *brq,
1356 struct mmc_card *card,
1357 struct request *req)
1358 {
1359 if (!(card->ext_csd.rel_param & EXT_CSD_WR_REL_PARAM_EN)) {
1360 /* Legacy mode imposes restrictions on transfers. */
1361 if (!IS_ALIGNED(blk_rq_pos(req), card->ext_csd.rel_sectors))
1362 brq->data.blocks = 1;
1363
1364 if (brq->data.blocks > card->ext_csd.rel_sectors)
1365 brq->data.blocks = card->ext_csd.rel_sectors;
1366 else if (brq->data.blocks < card->ext_csd.rel_sectors)
1367 brq->data.blocks = 1;
1368 }
1369 }
1370
1371 #define CMD_ERRORS_EXCL_OOR \
1372 (R1_ADDRESS_ERROR | /* Misaligned address */ \
1373 R1_BLOCK_LEN_ERROR | /* Transferred block length incorrect */\
1374 R1_WP_VIOLATION | /* Tried to write to protected block */ \
1375 R1_CARD_ECC_FAILED | /* Card ECC failed */ \
1376 R1_CC_ERROR | /* Card controller error */ \
1377 R1_ERROR) /* General/unknown error */
1378
1379 #define CMD_ERRORS \
1380 (CMD_ERRORS_EXCL_OOR | \
1381 R1_OUT_OF_RANGE) /* Command argument out of range */ \
1382
mmc_blk_eval_resp_error(struct mmc_blk_request * brq)1383 static void mmc_blk_eval_resp_error(struct mmc_blk_request *brq)
1384 {
1385 u32 val;
1386
1387 /*
1388 * Per the SD specification(physical layer version 4.10)[1],
1389 * section 4.3.3, it explicitly states that "When the last
1390 * block of user area is read using CMD18, the host should
1391 * ignore OUT_OF_RANGE error that may occur even the sequence
1392 * is correct". And JESD84-B51 for eMMC also has a similar
1393 * statement on section 6.8.3.
1394 *
1395 * Multiple block read/write could be done by either predefined
1396 * method, namely CMD23, or open-ending mode. For open-ending mode,
1397 * we should ignore the OUT_OF_RANGE error as it's normal behaviour.
1398 *
1399 * However the spec[1] doesn't tell us whether we should also
1400 * ignore that for predefined method. But per the spec[1], section
1401 * 4.15 Set Block Count Command, it says"If illegal block count
1402 * is set, out of range error will be indicated during read/write
1403 * operation (For example, data transfer is stopped at user area
1404 * boundary)." In another word, we could expect a out of range error
1405 * in the response for the following CMD18/25. And if argument of
1406 * CMD23 + the argument of CMD18/25 exceed the max number of blocks,
1407 * we could also expect to get a -ETIMEDOUT or any error number from
1408 * the host drivers due to missing data response(for write)/data(for
1409 * read), as the cards will stop the data transfer by itself per the
1410 * spec. So we only need to check R1_OUT_OF_RANGE for open-ending mode.
1411 */
1412
1413 if (!brq->stop.error) {
1414 bool oor_with_open_end;
1415 /* If there is no error yet, check R1 response */
1416
1417 val = brq->stop.resp[0] & CMD_ERRORS;
1418 oor_with_open_end = val & R1_OUT_OF_RANGE && !brq->mrq.sbc;
1419
1420 if (val && !oor_with_open_end)
1421 brq->stop.error = -EIO;
1422 }
1423 }
1424
mmc_blk_data_prep(struct mmc_queue * mq,struct mmc_queue_req * mqrq,int recovery_mode,bool * do_rel_wr_p,bool * do_data_tag_p)1425 static void mmc_blk_data_prep(struct mmc_queue *mq, struct mmc_queue_req *mqrq,
1426 int recovery_mode, bool *do_rel_wr_p,
1427 bool *do_data_tag_p)
1428 {
1429 struct mmc_blk_data *md = mq->blkdata;
1430 struct mmc_card *card = md->queue.card;
1431 struct mmc_blk_request *brq = &mqrq->brq;
1432 struct request *req = mmc_queue_req_to_req(mqrq);
1433 bool do_rel_wr, do_data_tag;
1434
1435 /*
1436 * Reliable writes are used to implement Forced Unit Access and
1437 * are supported only on MMCs.
1438 */
1439 do_rel_wr = (req->cmd_flags & REQ_FUA) &&
1440 rq_data_dir(req) == WRITE &&
1441 (md->flags & MMC_BLK_REL_WR);
1442
1443 memset(brq, 0, sizeof(struct mmc_blk_request));
1444
1445 mmc_crypto_prepare_req(mqrq);
1446
1447 brq->mrq.data = &brq->data;
1448 brq->mrq.tag = req->tag;
1449
1450 brq->stop.opcode = MMC_STOP_TRANSMISSION;
1451 brq->stop.arg = 0;
1452
1453 if (rq_data_dir(req) == READ) {
1454 brq->data.flags = MMC_DATA_READ;
1455 brq->stop.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
1456 } else {
1457 brq->data.flags = MMC_DATA_WRITE;
1458 brq->stop.flags = MMC_RSP_SPI_R1B | MMC_RSP_R1B | MMC_CMD_AC;
1459 }
1460
1461 brq->data.blksz = 512;
1462 brq->data.blocks = blk_rq_sectors(req);
1463 brq->data.blk_addr = blk_rq_pos(req);
1464
1465 /*
1466 * The command queue supports 2 priorities: "high" (1) and "simple" (0).
1467 * The eMMC will give "high" priority tasks priority over "simple"
1468 * priority tasks. Here we always set "simple" priority by not setting
1469 * MMC_DATA_PRIO.
1470 */
1471
1472 /*
1473 * The block layer doesn't support all sector count
1474 * restrictions, so we need to be prepared for too big
1475 * requests.
1476 */
1477 if (brq->data.blocks > card->host->max_blk_count)
1478 brq->data.blocks = card->host->max_blk_count;
1479
1480 if (brq->data.blocks > 1) {
1481 /*
1482 * Some SD cards in SPI mode return a CRC error or even lock up
1483 * completely when trying to read the last block using a
1484 * multiblock read command.
1485 */
1486 if (mmc_host_is_spi(card->host) && (rq_data_dir(req) == READ) &&
1487 (blk_rq_pos(req) + blk_rq_sectors(req) ==
1488 get_capacity(md->disk)))
1489 brq->data.blocks--;
1490
1491 /*
1492 * After a read error, we redo the request one (native) sector
1493 * at a time in order to accurately determine which
1494 * sectors can be read successfully.
1495 */
1496 if (recovery_mode)
1497 brq->data.blocks = queue_physical_block_size(mq->queue) >> 9;
1498
1499 /*
1500 * Some controllers have HW issues while operating
1501 * in multiple I/O mode
1502 */
1503 if (card->host->ops->multi_io_quirk)
1504 brq->data.blocks = card->host->ops->multi_io_quirk(card,
1505 (rq_data_dir(req) == READ) ?
1506 MMC_DATA_READ : MMC_DATA_WRITE,
1507 brq->data.blocks);
1508 }
1509
1510 if (do_rel_wr) {
1511 mmc_apply_rel_rw(brq, card, req);
1512 brq->data.flags |= MMC_DATA_REL_WR;
1513 }
1514
1515 /*
1516 * Data tag is used only during writing meta data to speed
1517 * up write and any subsequent read of this meta data
1518 */
1519 do_data_tag = card->ext_csd.data_tag_unit_size &&
1520 (req->cmd_flags & REQ_META) &&
1521 (rq_data_dir(req) == WRITE) &&
1522 ((brq->data.blocks * brq->data.blksz) >=
1523 card->ext_csd.data_tag_unit_size);
1524
1525 if (do_data_tag)
1526 brq->data.flags |= MMC_DATA_DAT_TAG;
1527
1528 mmc_set_data_timeout(&brq->data, card);
1529
1530 brq->data.sg = mqrq->sg;
1531 brq->data.sg_len = mmc_queue_map_sg(mq, mqrq);
1532
1533 /*
1534 * Adjust the sg list so it is the same size as the
1535 * request.
1536 */
1537 if (brq->data.blocks != blk_rq_sectors(req)) {
1538 int i, data_size = brq->data.blocks << 9;
1539 struct scatterlist *sg;
1540
1541 for_each_sg(brq->data.sg, sg, brq->data.sg_len, i) {
1542 data_size -= sg->length;
1543 if (data_size <= 0) {
1544 sg->length += data_size;
1545 i++;
1546 break;
1547 }
1548 }
1549 brq->data.sg_len = i;
1550 }
1551
1552 if (do_rel_wr_p)
1553 *do_rel_wr_p = do_rel_wr;
1554
1555 if (do_data_tag_p)
1556 *do_data_tag_p = do_data_tag;
1557 }
1558
1559 #define MMC_CQE_RETRIES 2
1560
mmc_blk_cqe_complete_rq(struct mmc_queue * mq,struct request * req)1561 static void mmc_blk_cqe_complete_rq(struct mmc_queue *mq, struct request *req)
1562 {
1563 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1564 struct mmc_request *mrq = &mqrq->brq.mrq;
1565 struct request_queue *q = req->q;
1566 struct mmc_host *host = mq->card->host;
1567 enum mmc_issue_type issue_type = mmc_issue_type(mq, req);
1568 unsigned long flags;
1569 bool put_card;
1570 int err;
1571
1572 mmc_cqe_post_req(host, mrq);
1573
1574 if (mrq->cmd && mrq->cmd->error)
1575 err = mrq->cmd->error;
1576 else if (mrq->data && mrq->data->error)
1577 err = mrq->data->error;
1578 else
1579 err = 0;
1580
1581 if (err) {
1582 if (mqrq->retries++ < MMC_CQE_RETRIES)
1583 blk_mq_requeue_request(req, true);
1584 else
1585 blk_mq_end_request(req, BLK_STS_IOERR);
1586 } else if (mrq->data) {
1587 if (blk_update_request(req, BLK_STS_OK, mrq->data->bytes_xfered))
1588 blk_mq_requeue_request(req, true);
1589 else
1590 __blk_mq_end_request(req, BLK_STS_OK);
1591 } else if (mq->in_recovery) {
1592 blk_mq_requeue_request(req, true);
1593 } else {
1594 blk_mq_end_request(req, BLK_STS_OK);
1595 }
1596
1597 spin_lock_irqsave(&mq->lock, flags);
1598
1599 mq->in_flight[issue_type] -= 1;
1600
1601 put_card = (mmc_tot_in_flight(mq) == 0);
1602
1603 mmc_cqe_check_busy(mq);
1604
1605 spin_unlock_irqrestore(&mq->lock, flags);
1606
1607 if (!mq->cqe_busy)
1608 blk_mq_run_hw_queues(q, true);
1609
1610 if (put_card)
1611 mmc_put_card(mq->card, &mq->ctx);
1612 }
1613
mmc_blk_cqe_recovery(struct mmc_queue * mq)1614 void mmc_blk_cqe_recovery(struct mmc_queue *mq)
1615 {
1616 struct mmc_card *card = mq->card;
1617 struct mmc_host *host = card->host;
1618 int err;
1619
1620 pr_debug("%s: CQE recovery start\n", mmc_hostname(host));
1621
1622 err = mmc_cqe_recovery(host);
1623 if (err || host->cqe_recovery_reset_always)
1624 mmc_blk_reset(mq->blkdata, host, MMC_BLK_CQE_RECOVERY);
1625 mmc_blk_reset_success(mq->blkdata, MMC_BLK_CQE_RECOVERY);
1626
1627 pr_debug("%s: CQE recovery done\n", mmc_hostname(host));
1628 }
1629
mmc_blk_cqe_req_done(struct mmc_request * mrq)1630 static void mmc_blk_cqe_req_done(struct mmc_request *mrq)
1631 {
1632 struct mmc_queue_req *mqrq = container_of(mrq, struct mmc_queue_req,
1633 brq.mrq);
1634 struct request *req = mmc_queue_req_to_req(mqrq);
1635 struct request_queue *q = req->q;
1636 struct mmc_queue *mq = q->queuedata;
1637
1638 /*
1639 * Block layer timeouts race with completions which means the normal
1640 * completion path cannot be used during recovery.
1641 */
1642 if (mq->in_recovery)
1643 mmc_blk_cqe_complete_rq(mq, req);
1644 else if (likely(!blk_should_fake_timeout(req->q)))
1645 blk_mq_complete_request(req);
1646 }
1647
mmc_blk_cqe_start_req(struct mmc_host * host,struct mmc_request * mrq)1648 static int mmc_blk_cqe_start_req(struct mmc_host *host, struct mmc_request *mrq)
1649 {
1650 mrq->done = mmc_blk_cqe_req_done;
1651 mrq->recovery_notifier = mmc_cqe_recovery_notifier;
1652
1653 return mmc_cqe_start_req(host, mrq);
1654 }
1655
mmc_blk_cqe_prep_dcmd(struct mmc_queue_req * mqrq,struct request * req)1656 static struct mmc_request *mmc_blk_cqe_prep_dcmd(struct mmc_queue_req *mqrq,
1657 struct request *req)
1658 {
1659 struct mmc_blk_request *brq = &mqrq->brq;
1660
1661 memset(brq, 0, sizeof(*brq));
1662
1663 brq->mrq.cmd = &brq->cmd;
1664 brq->mrq.tag = req->tag;
1665
1666 return &brq->mrq;
1667 }
1668
mmc_blk_cqe_issue_flush(struct mmc_queue * mq,struct request * req)1669 static int mmc_blk_cqe_issue_flush(struct mmc_queue *mq, struct request *req)
1670 {
1671 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1672 struct mmc_request *mrq = mmc_blk_cqe_prep_dcmd(mqrq, req);
1673
1674 mrq->cmd->opcode = MMC_SWITCH;
1675 mrq->cmd->arg = (MMC_SWITCH_MODE_WRITE_BYTE << 24) |
1676 (EXT_CSD_FLUSH_CACHE << 16) |
1677 (1 << 8) |
1678 EXT_CSD_CMD_SET_NORMAL;
1679 mrq->cmd->flags = MMC_CMD_AC | MMC_RSP_R1B;
1680
1681 return mmc_blk_cqe_start_req(mq->card->host, mrq);
1682 }
1683
mmc_blk_hsq_issue_rw_rq(struct mmc_queue * mq,struct request * req)1684 static int mmc_blk_hsq_issue_rw_rq(struct mmc_queue *mq, struct request *req)
1685 {
1686 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1687 struct mmc_host *host = mq->card->host;
1688 int err;
1689
1690 mmc_blk_rw_rq_prep(mqrq, mq->card, 0, mq);
1691 mqrq->brq.mrq.done = mmc_blk_hsq_req_done;
1692 mmc_pre_req(host, &mqrq->brq.mrq);
1693
1694 err = mmc_cqe_start_req(host, &mqrq->brq.mrq);
1695 if (err)
1696 mmc_post_req(host, &mqrq->brq.mrq, err);
1697
1698 return err;
1699 }
1700
mmc_blk_cqe_issue_rw_rq(struct mmc_queue * mq,struct request * req)1701 static int mmc_blk_cqe_issue_rw_rq(struct mmc_queue *mq, struct request *req)
1702 {
1703 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1704 struct mmc_host *host = mq->card->host;
1705
1706 if (host->hsq_enabled)
1707 return mmc_blk_hsq_issue_rw_rq(mq, req);
1708
1709 mmc_blk_data_prep(mq, mqrq, 0, NULL, NULL);
1710
1711 return mmc_blk_cqe_start_req(mq->card->host, &mqrq->brq.mrq);
1712 }
1713
mmc_blk_rw_rq_prep(struct mmc_queue_req * mqrq,struct mmc_card * card,int recovery_mode,struct mmc_queue * mq)1714 static void mmc_blk_rw_rq_prep(struct mmc_queue_req *mqrq,
1715 struct mmc_card *card,
1716 int recovery_mode,
1717 struct mmc_queue *mq)
1718 {
1719 u32 readcmd, writecmd;
1720 struct mmc_blk_request *brq = &mqrq->brq;
1721 struct request *req = mmc_queue_req_to_req(mqrq);
1722 struct mmc_blk_data *md = mq->blkdata;
1723 bool do_rel_wr, do_data_tag;
1724
1725 mmc_blk_data_prep(mq, mqrq, recovery_mode, &do_rel_wr, &do_data_tag);
1726
1727 brq->mrq.cmd = &brq->cmd;
1728
1729 brq->cmd.arg = blk_rq_pos(req);
1730 if (!mmc_card_blockaddr(card))
1731 brq->cmd.arg <<= 9;
1732 brq->cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_ADTC;
1733
1734 if (brq->data.blocks > 1 || do_rel_wr) {
1735 /* SPI multiblock writes terminate using a special
1736 * token, not a STOP_TRANSMISSION request.
1737 */
1738 if (!mmc_host_is_spi(card->host) ||
1739 rq_data_dir(req) == READ)
1740 brq->mrq.stop = &brq->stop;
1741 readcmd = MMC_READ_MULTIPLE_BLOCK;
1742 writecmd = MMC_WRITE_MULTIPLE_BLOCK;
1743 } else {
1744 brq->mrq.stop = NULL;
1745 readcmd = MMC_READ_SINGLE_BLOCK;
1746 writecmd = MMC_WRITE_BLOCK;
1747 }
1748 brq->cmd.opcode = rq_data_dir(req) == READ ? readcmd : writecmd;
1749
1750 /*
1751 * Pre-defined multi-block transfers are preferable to
1752 * open ended-ones (and necessary for reliable writes).
1753 * However, it is not sufficient to just send CMD23,
1754 * and avoid the final CMD12, as on an error condition
1755 * CMD12 (stop) needs to be sent anyway. This, coupled
1756 * with Auto-CMD23 enhancements provided by some
1757 * hosts, means that the complexity of dealing
1758 * with this is best left to the host. If CMD23 is
1759 * supported by card and host, we'll fill sbc in and let
1760 * the host deal with handling it correctly. This means
1761 * that for hosts that don't expose MMC_CAP_CMD23, no
1762 * change of behavior will be observed.
1763 *
1764 * N.B: Some MMC cards experience perf degradation.
1765 * We'll avoid using CMD23-bounded multiblock writes for
1766 * these, while retaining features like reliable writes.
1767 */
1768 if ((md->flags & MMC_BLK_CMD23) && mmc_op_multi(brq->cmd.opcode) &&
1769 (do_rel_wr || !(card->quirks & MMC_QUIRK_BLK_NO_CMD23) ||
1770 do_data_tag)) {
1771 brq->sbc.opcode = MMC_SET_BLOCK_COUNT;
1772 brq->sbc.arg = brq->data.blocks |
1773 (do_rel_wr ? (1 << 31) : 0) |
1774 (do_data_tag ? (1 << 29) : 0);
1775 brq->sbc.flags = MMC_RSP_R1 | MMC_CMD_AC;
1776 brq->mrq.sbc = &brq->sbc;
1777 }
1778 }
1779
1780 #define MMC_MAX_RETRIES 5
1781 #define MMC_DATA_RETRIES 2
1782 #define MMC_NO_RETRIES (MMC_MAX_RETRIES + 1)
1783
mmc_blk_send_stop(struct mmc_card * card,unsigned int timeout)1784 static int mmc_blk_send_stop(struct mmc_card *card, unsigned int timeout)
1785 {
1786 struct mmc_command cmd = {
1787 .opcode = MMC_STOP_TRANSMISSION,
1788 .flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC,
1789 /* Some hosts wait for busy anyway, so provide a busy timeout */
1790 .busy_timeout = timeout,
1791 };
1792
1793 return mmc_wait_for_cmd(card->host, &cmd, 5);
1794 }
1795
mmc_blk_fix_state(struct mmc_card * card,struct request * req)1796 static int mmc_blk_fix_state(struct mmc_card *card, struct request *req)
1797 {
1798 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1799 struct mmc_blk_request *brq = &mqrq->brq;
1800 unsigned int timeout = mmc_blk_data_timeout_ms(card->host, &brq->data);
1801 int err;
1802
1803 mmc_retune_hold_now(card->host);
1804
1805 mmc_blk_send_stop(card, timeout);
1806
1807 err = mmc_poll_for_busy(card, timeout, false, MMC_BUSY_IO);
1808
1809 mmc_retune_release(card->host);
1810
1811 return err;
1812 }
1813
1814 #define MMC_READ_SINGLE_RETRIES 2
1815
1816 /* Single (native) sector read during recovery */
mmc_blk_read_single(struct mmc_queue * mq,struct request * req)1817 static void mmc_blk_read_single(struct mmc_queue *mq, struct request *req)
1818 {
1819 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1820 struct mmc_request *mrq = &mqrq->brq.mrq;
1821 struct mmc_card *card = mq->card;
1822 struct mmc_host *host = card->host;
1823 blk_status_t error = BLK_STS_OK;
1824 size_t bytes_per_read = queue_physical_block_size(mq->queue);
1825
1826 do {
1827 u32 status;
1828 int err;
1829 int retries = 0;
1830
1831 while (retries++ <= MMC_READ_SINGLE_RETRIES) {
1832 mmc_blk_rw_rq_prep(mqrq, card, 1, mq);
1833
1834 mmc_wait_for_req(host, mrq);
1835
1836 err = mmc_send_status(card, &status);
1837 if (err)
1838 goto error_exit;
1839
1840 if (!mmc_host_is_spi(host) &&
1841 !mmc_ready_for_data(status)) {
1842 err = mmc_blk_fix_state(card, req);
1843 if (err)
1844 goto error_exit;
1845 }
1846
1847 if (!mrq->cmd->error)
1848 break;
1849 }
1850
1851 if (mrq->cmd->error ||
1852 mrq->data->error ||
1853 (!mmc_host_is_spi(host) &&
1854 (mrq->cmd->resp[0] & CMD_ERRORS || status & CMD_ERRORS)))
1855 error = BLK_STS_IOERR;
1856 else
1857 error = BLK_STS_OK;
1858
1859 } while (blk_update_request(req, error, bytes_per_read));
1860
1861 return;
1862
1863 error_exit:
1864 mrq->data->bytes_xfered = 0;
1865 blk_update_request(req, BLK_STS_IOERR, bytes_per_read);
1866 /* Let it try the remaining request again */
1867 if (mqrq->retries > MMC_MAX_RETRIES - 1)
1868 mqrq->retries = MMC_MAX_RETRIES - 1;
1869 }
1870
mmc_blk_oor_valid(struct mmc_blk_request * brq)1871 static inline bool mmc_blk_oor_valid(struct mmc_blk_request *brq)
1872 {
1873 return !!brq->mrq.sbc;
1874 }
1875
mmc_blk_stop_err_bits(struct mmc_blk_request * brq)1876 static inline u32 mmc_blk_stop_err_bits(struct mmc_blk_request *brq)
1877 {
1878 return mmc_blk_oor_valid(brq) ? CMD_ERRORS : CMD_ERRORS_EXCL_OOR;
1879 }
1880
1881 /*
1882 * Check for errors the host controller driver might not have seen such as
1883 * response mode errors or invalid card state.
1884 */
mmc_blk_status_error(struct request * req,u32 status)1885 static bool mmc_blk_status_error(struct request *req, u32 status)
1886 {
1887 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1888 struct mmc_blk_request *brq = &mqrq->brq;
1889 struct mmc_queue *mq = req->q->queuedata;
1890 u32 stop_err_bits;
1891
1892 if (mmc_host_is_spi(mq->card->host))
1893 return false;
1894
1895 stop_err_bits = mmc_blk_stop_err_bits(brq);
1896
1897 return brq->cmd.resp[0] & CMD_ERRORS ||
1898 brq->stop.resp[0] & stop_err_bits ||
1899 status & stop_err_bits ||
1900 (rq_data_dir(req) == WRITE && !mmc_ready_for_data(status));
1901 }
1902
mmc_blk_cmd_started(struct mmc_blk_request * brq)1903 static inline bool mmc_blk_cmd_started(struct mmc_blk_request *brq)
1904 {
1905 return !brq->sbc.error && !brq->cmd.error &&
1906 !(brq->cmd.resp[0] & CMD_ERRORS);
1907 }
1908
1909 /*
1910 * Requests are completed by mmc_blk_mq_complete_rq() which sets simple
1911 * policy:
1912 * 1. A request that has transferred at least some data is considered
1913 * successful and will be requeued if there is remaining data to
1914 * transfer.
1915 * 2. Otherwise the number of retries is incremented and the request
1916 * will be requeued if there are remaining retries.
1917 * 3. Otherwise the request will be errored out.
1918 * That means mmc_blk_mq_complete_rq() is controlled by bytes_xfered and
1919 * mqrq->retries. So there are only 4 possible actions here:
1920 * 1. do not accept the bytes_xfered value i.e. set it to zero
1921 * 2. change mqrq->retries to determine the number of retries
1922 * 3. try to reset the card
1923 * 4. read one sector at a time
1924 */
mmc_blk_mq_rw_recovery(struct mmc_queue * mq,struct request * req)1925 static void mmc_blk_mq_rw_recovery(struct mmc_queue *mq, struct request *req)
1926 {
1927 int type = rq_data_dir(req) == READ ? MMC_BLK_READ : MMC_BLK_WRITE;
1928 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1929 struct mmc_blk_request *brq = &mqrq->brq;
1930 struct mmc_blk_data *md = mq->blkdata;
1931 struct mmc_card *card = mq->card;
1932 u32 status;
1933 u32 blocks;
1934 int err;
1935
1936 /*
1937 * Some errors the host driver might not have seen. Set the number of
1938 * bytes transferred to zero in that case.
1939 */
1940 err = __mmc_send_status(card, &status, 0);
1941 if (err || mmc_blk_status_error(req, status))
1942 brq->data.bytes_xfered = 0;
1943
1944 mmc_retune_release(card->host);
1945
1946 /*
1947 * Try again to get the status. This also provides an opportunity for
1948 * re-tuning.
1949 */
1950 if (err)
1951 err = __mmc_send_status(card, &status, 0);
1952
1953 /*
1954 * Nothing more to do after the number of bytes transferred has been
1955 * updated and there is no card.
1956 */
1957 if (err && mmc_detect_card_removed(card->host))
1958 return;
1959
1960 /* Try to get back to "tran" state */
1961 if (!mmc_host_is_spi(mq->card->host) &&
1962 (err || !mmc_ready_for_data(status)))
1963 err = mmc_blk_fix_state(mq->card, req);
1964
1965 /*
1966 * Special case for SD cards where the card might record the number of
1967 * blocks written.
1968 */
1969 if (!err && mmc_blk_cmd_started(brq) && mmc_card_sd(card) &&
1970 rq_data_dir(req) == WRITE) {
1971 if (mmc_sd_num_wr_blocks(card, &blocks))
1972 brq->data.bytes_xfered = 0;
1973 else
1974 brq->data.bytes_xfered = blocks << 9;
1975 }
1976
1977 /* Reset if the card is in a bad state */
1978 if (!mmc_host_is_spi(mq->card->host) &&
1979 err && mmc_blk_reset(md, card->host, type)) {
1980 pr_err("%s: recovery failed!\n", req->q->disk->disk_name);
1981 mqrq->retries = MMC_NO_RETRIES;
1982 return;
1983 }
1984
1985 /*
1986 * If anything was done, just return and if there is anything remaining
1987 * on the request it will get requeued.
1988 */
1989 if (brq->data.bytes_xfered)
1990 return;
1991
1992 /* Reset before last retry */
1993 if (mqrq->retries + 1 == MMC_MAX_RETRIES &&
1994 mmc_blk_reset(md, card->host, type))
1995 return;
1996
1997 /* Command errors fail fast, so use all MMC_MAX_RETRIES */
1998 if (brq->sbc.error || brq->cmd.error)
1999 return;
2000
2001 /* Reduce the remaining retries for data errors */
2002 if (mqrq->retries < MMC_MAX_RETRIES - MMC_DATA_RETRIES) {
2003 mqrq->retries = MMC_MAX_RETRIES - MMC_DATA_RETRIES;
2004 return;
2005 }
2006
2007 if (rq_data_dir(req) == READ && brq->data.blocks >
2008 queue_physical_block_size(mq->queue) >> 9) {
2009 /* Read one (native) sector at a time */
2010 mmc_blk_read_single(mq, req);
2011 return;
2012 }
2013 }
2014
mmc_blk_rq_error(struct mmc_blk_request * brq)2015 static inline bool mmc_blk_rq_error(struct mmc_blk_request *brq)
2016 {
2017 mmc_blk_eval_resp_error(brq);
2018
2019 return brq->sbc.error || brq->cmd.error || brq->stop.error ||
2020 brq->data.error || brq->cmd.resp[0] & CMD_ERRORS;
2021 }
2022
mmc_spi_err_check(struct mmc_card * card)2023 static int mmc_spi_err_check(struct mmc_card *card)
2024 {
2025 u32 status = 0;
2026 int err;
2027
2028 /*
2029 * SPI does not have a TRAN state we have to wait on, instead the
2030 * card is ready again when it no longer holds the line LOW.
2031 * We still have to ensure two things here before we know the write
2032 * was successful:
2033 * 1. The card has not disconnected during busy and we actually read our
2034 * own pull-up, thinking it was still connected, so ensure it
2035 * still responds.
2036 * 2. Check for any error bits, in particular R1_SPI_IDLE to catch a
2037 * just reconnected card after being disconnected during busy.
2038 */
2039 err = __mmc_send_status(card, &status, 0);
2040 if (err)
2041 return err;
2042 /* All R1 and R2 bits of SPI are errors in our case */
2043 if (status)
2044 return -EIO;
2045 return 0;
2046 }
2047
mmc_blk_busy_cb(void * cb_data,bool * busy)2048 static int mmc_blk_busy_cb(void *cb_data, bool *busy)
2049 {
2050 struct mmc_blk_busy_data *data = cb_data;
2051 u32 status = 0;
2052 int err;
2053
2054 err = mmc_send_status(data->card, &status);
2055 if (err)
2056 return err;
2057
2058 /* Accumulate response error bits. */
2059 data->status |= status;
2060
2061 *busy = !mmc_ready_for_data(status);
2062 return 0;
2063 }
2064
mmc_blk_card_busy(struct mmc_card * card,struct request * req)2065 static int mmc_blk_card_busy(struct mmc_card *card, struct request *req)
2066 {
2067 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
2068 struct mmc_blk_busy_data cb_data;
2069 int err;
2070
2071 if (rq_data_dir(req) == READ)
2072 return 0;
2073
2074 if (mmc_host_is_spi(card->host)) {
2075 err = mmc_spi_err_check(card);
2076 if (err)
2077 mqrq->brq.data.bytes_xfered = 0;
2078 return err;
2079 }
2080
2081 cb_data.card = card;
2082 cb_data.status = 0;
2083 err = __mmc_poll_for_busy(card->host, 0, MMC_BLK_TIMEOUT_MS,
2084 &mmc_blk_busy_cb, &cb_data);
2085
2086 /*
2087 * Do not assume data transferred correctly if there are any error bits
2088 * set.
2089 */
2090 if (cb_data.status & mmc_blk_stop_err_bits(&mqrq->brq)) {
2091 mqrq->brq.data.bytes_xfered = 0;
2092 err = err ? err : -EIO;
2093 }
2094
2095 /* Copy the exception bit so it will be seen later on */
2096 if (mmc_card_mmc(card) && cb_data.status & R1_EXCEPTION_EVENT)
2097 mqrq->brq.cmd.resp[0] |= R1_EXCEPTION_EVENT;
2098
2099 return err;
2100 }
2101
mmc_blk_rw_reset_success(struct mmc_queue * mq,struct request * req)2102 static inline void mmc_blk_rw_reset_success(struct mmc_queue *mq,
2103 struct request *req)
2104 {
2105 int type = rq_data_dir(req) == READ ? MMC_BLK_READ : MMC_BLK_WRITE;
2106
2107 mmc_blk_reset_success(mq->blkdata, type);
2108 }
2109
mmc_blk_mq_complete_rq(struct mmc_queue * mq,struct request * req)2110 static void mmc_blk_mq_complete_rq(struct mmc_queue *mq, struct request *req)
2111 {
2112 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
2113 unsigned int nr_bytes = mqrq->brq.data.bytes_xfered;
2114
2115 if (nr_bytes) {
2116 if (blk_update_request(req, BLK_STS_OK, nr_bytes))
2117 blk_mq_requeue_request(req, true);
2118 else
2119 __blk_mq_end_request(req, BLK_STS_OK);
2120 } else if (!blk_rq_bytes(req)) {
2121 __blk_mq_end_request(req, BLK_STS_IOERR);
2122 } else if (mqrq->retries++ < MMC_MAX_RETRIES) {
2123 blk_mq_requeue_request(req, true);
2124 } else {
2125 if (mmc_card_removed(mq->card))
2126 req->rq_flags |= RQF_QUIET;
2127 blk_mq_end_request(req, BLK_STS_IOERR);
2128 }
2129 }
2130
mmc_blk_urgent_bkops_needed(struct mmc_queue * mq,struct mmc_queue_req * mqrq)2131 static bool mmc_blk_urgent_bkops_needed(struct mmc_queue *mq,
2132 struct mmc_queue_req *mqrq)
2133 {
2134 return mmc_card_mmc(mq->card) && !mmc_host_is_spi(mq->card->host) &&
2135 (mqrq->brq.cmd.resp[0] & R1_EXCEPTION_EVENT ||
2136 mqrq->brq.stop.resp[0] & R1_EXCEPTION_EVENT);
2137 }
2138
mmc_blk_urgent_bkops(struct mmc_queue * mq,struct mmc_queue_req * mqrq)2139 static void mmc_blk_urgent_bkops(struct mmc_queue *mq,
2140 struct mmc_queue_req *mqrq)
2141 {
2142 if (mmc_blk_urgent_bkops_needed(mq, mqrq))
2143 mmc_run_bkops(mq->card);
2144 }
2145
mmc_blk_hsq_req_done(struct mmc_request * mrq)2146 static void mmc_blk_hsq_req_done(struct mmc_request *mrq)
2147 {
2148 struct mmc_queue_req *mqrq =
2149 container_of(mrq, struct mmc_queue_req, brq.mrq);
2150 struct request *req = mmc_queue_req_to_req(mqrq);
2151 struct request_queue *q = req->q;
2152 struct mmc_queue *mq = q->queuedata;
2153 struct mmc_host *host = mq->card->host;
2154 unsigned long flags;
2155
2156 if (mmc_blk_rq_error(&mqrq->brq) ||
2157 mmc_blk_urgent_bkops_needed(mq, mqrq)) {
2158 spin_lock_irqsave(&mq->lock, flags);
2159 mq->recovery_needed = true;
2160 mq->recovery_req = req;
2161 spin_unlock_irqrestore(&mq->lock, flags);
2162
2163 host->cqe_ops->cqe_recovery_start(host);
2164
2165 schedule_work(&mq->recovery_work);
2166 return;
2167 }
2168
2169 mmc_blk_rw_reset_success(mq, req);
2170
2171 /*
2172 * Block layer timeouts race with completions which means the normal
2173 * completion path cannot be used during recovery.
2174 */
2175 if (mq->in_recovery)
2176 mmc_blk_cqe_complete_rq(mq, req);
2177 else if (likely(!blk_should_fake_timeout(req->q)))
2178 blk_mq_complete_request(req);
2179 }
2180
mmc_blk_mq_complete(struct request * req)2181 void mmc_blk_mq_complete(struct request *req)
2182 {
2183 struct mmc_queue *mq = req->q->queuedata;
2184 struct mmc_host *host = mq->card->host;
2185
2186 if (host->cqe_enabled)
2187 mmc_blk_cqe_complete_rq(mq, req);
2188 else if (likely(!blk_should_fake_timeout(req->q)))
2189 mmc_blk_mq_complete_rq(mq, req);
2190 }
2191
mmc_blk_mq_poll_completion(struct mmc_queue * mq,struct request * req)2192 static void mmc_blk_mq_poll_completion(struct mmc_queue *mq,
2193 struct request *req)
2194 {
2195 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
2196 struct mmc_host *host = mq->card->host;
2197
2198 if (mmc_blk_rq_error(&mqrq->brq) ||
2199 mmc_blk_card_busy(mq->card, req)) {
2200 mmc_blk_mq_rw_recovery(mq, req);
2201 } else {
2202 mmc_blk_rw_reset_success(mq, req);
2203 mmc_retune_release(host);
2204 }
2205
2206 mmc_blk_urgent_bkops(mq, mqrq);
2207 }
2208
mmc_blk_mq_dec_in_flight(struct mmc_queue * mq,enum mmc_issue_type issue_type)2209 static void mmc_blk_mq_dec_in_flight(struct mmc_queue *mq, enum mmc_issue_type issue_type)
2210 {
2211 unsigned long flags;
2212 bool put_card;
2213
2214 spin_lock_irqsave(&mq->lock, flags);
2215
2216 mq->in_flight[issue_type] -= 1;
2217
2218 put_card = (mmc_tot_in_flight(mq) == 0);
2219
2220 spin_unlock_irqrestore(&mq->lock, flags);
2221
2222 if (put_card)
2223 mmc_put_card(mq->card, &mq->ctx);
2224 }
2225
mmc_blk_mq_post_req(struct mmc_queue * mq,struct request * req,bool can_sleep)2226 static void mmc_blk_mq_post_req(struct mmc_queue *mq, struct request *req,
2227 bool can_sleep)
2228 {
2229 enum mmc_issue_type issue_type = mmc_issue_type(mq, req);
2230 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
2231 struct mmc_request *mrq = &mqrq->brq.mrq;
2232 struct mmc_host *host = mq->card->host;
2233
2234 mmc_post_req(host, mrq, 0);
2235
2236 /*
2237 * Block layer timeouts race with completions which means the normal
2238 * completion path cannot be used during recovery.
2239 */
2240 if (mq->in_recovery) {
2241 mmc_blk_mq_complete_rq(mq, req);
2242 } else if (likely(!blk_should_fake_timeout(req->q))) {
2243 if (can_sleep)
2244 blk_mq_complete_request_direct(req, mmc_blk_mq_complete);
2245 else
2246 blk_mq_complete_request(req);
2247 }
2248
2249 mmc_blk_mq_dec_in_flight(mq, issue_type);
2250 }
2251
mmc_blk_mq_recovery(struct mmc_queue * mq)2252 void mmc_blk_mq_recovery(struct mmc_queue *mq)
2253 {
2254 struct request *req = mq->recovery_req;
2255 struct mmc_host *host = mq->card->host;
2256 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
2257
2258 mq->recovery_req = NULL;
2259 mq->rw_wait = false;
2260
2261 if (mmc_blk_rq_error(&mqrq->brq)) {
2262 mmc_retune_hold_now(host);
2263 mmc_blk_mq_rw_recovery(mq, req);
2264 }
2265
2266 mmc_blk_urgent_bkops(mq, mqrq);
2267
2268 mmc_blk_mq_post_req(mq, req, true);
2269 }
2270
mmc_blk_mq_complete_prev_req(struct mmc_queue * mq,struct request ** prev_req)2271 static void mmc_blk_mq_complete_prev_req(struct mmc_queue *mq,
2272 struct request **prev_req)
2273 {
2274 if (mmc_host_done_complete(mq->card->host))
2275 return;
2276
2277 mutex_lock(&mq->complete_lock);
2278
2279 if (!mq->complete_req)
2280 goto out_unlock;
2281
2282 mmc_blk_mq_poll_completion(mq, mq->complete_req);
2283
2284 if (prev_req)
2285 *prev_req = mq->complete_req;
2286 else
2287 mmc_blk_mq_post_req(mq, mq->complete_req, true);
2288
2289 mq->complete_req = NULL;
2290
2291 out_unlock:
2292 mutex_unlock(&mq->complete_lock);
2293 }
2294
mmc_blk_mq_complete_work(struct work_struct * work)2295 void mmc_blk_mq_complete_work(struct work_struct *work)
2296 {
2297 struct mmc_queue *mq = container_of(work, struct mmc_queue,
2298 complete_work);
2299
2300 mmc_blk_mq_complete_prev_req(mq, NULL);
2301 }
2302
mmc_blk_mq_req_done(struct mmc_request * mrq)2303 static void mmc_blk_mq_req_done(struct mmc_request *mrq)
2304 {
2305 struct mmc_queue_req *mqrq = container_of(mrq, struct mmc_queue_req,
2306 brq.mrq);
2307 struct request *req = mmc_queue_req_to_req(mqrq);
2308 struct request_queue *q = req->q;
2309 struct mmc_queue *mq = q->queuedata;
2310 struct mmc_host *host = mq->card->host;
2311 unsigned long flags;
2312
2313 if (!mmc_host_done_complete(host)) {
2314 bool waiting;
2315
2316 /*
2317 * We cannot complete the request in this context, so record
2318 * that there is a request to complete, and that a following
2319 * request does not need to wait (although it does need to
2320 * complete complete_req first).
2321 */
2322 spin_lock_irqsave(&mq->lock, flags);
2323 mq->complete_req = req;
2324 mq->rw_wait = false;
2325 waiting = mq->waiting;
2326 spin_unlock_irqrestore(&mq->lock, flags);
2327
2328 /*
2329 * If 'waiting' then the waiting task will complete this
2330 * request, otherwise queue a work to do it. Note that
2331 * complete_work may still race with the dispatch of a following
2332 * request.
2333 */
2334 if (waiting)
2335 wake_up(&mq->wait);
2336 else
2337 queue_work(mq->card->complete_wq, &mq->complete_work);
2338
2339 return;
2340 }
2341
2342 /* Take the recovery path for errors or urgent background operations */
2343 if (mmc_blk_rq_error(&mqrq->brq) ||
2344 mmc_blk_urgent_bkops_needed(mq, mqrq)) {
2345 spin_lock_irqsave(&mq->lock, flags);
2346 mq->recovery_needed = true;
2347 mq->recovery_req = req;
2348 spin_unlock_irqrestore(&mq->lock, flags);
2349 wake_up(&mq->wait);
2350 schedule_work(&mq->recovery_work);
2351 return;
2352 }
2353
2354 mmc_blk_rw_reset_success(mq, req);
2355
2356 mq->rw_wait = false;
2357 wake_up(&mq->wait);
2358
2359 /* context unknown */
2360 mmc_blk_mq_post_req(mq, req, false);
2361 }
2362
mmc_blk_rw_wait_cond(struct mmc_queue * mq,int * err)2363 static bool mmc_blk_rw_wait_cond(struct mmc_queue *mq, int *err)
2364 {
2365 unsigned long flags;
2366 bool done;
2367
2368 /*
2369 * Wait while there is another request in progress, but not if recovery
2370 * is needed. Also indicate whether there is a request waiting to start.
2371 */
2372 spin_lock_irqsave(&mq->lock, flags);
2373 if (mq->recovery_needed) {
2374 *err = -EBUSY;
2375 done = true;
2376 } else {
2377 done = !mq->rw_wait;
2378 }
2379 mq->waiting = !done;
2380 spin_unlock_irqrestore(&mq->lock, flags);
2381
2382 return done;
2383 }
2384
mmc_blk_rw_wait(struct mmc_queue * mq,struct request ** prev_req)2385 static int mmc_blk_rw_wait(struct mmc_queue *mq, struct request **prev_req)
2386 {
2387 int err = 0;
2388
2389 wait_event(mq->wait, mmc_blk_rw_wait_cond(mq, &err));
2390
2391 /* Always complete the previous request if there is one */
2392 mmc_blk_mq_complete_prev_req(mq, prev_req);
2393
2394 return err;
2395 }
2396
mmc_blk_mq_issue_rw_rq(struct mmc_queue * mq,struct request * req)2397 static int mmc_blk_mq_issue_rw_rq(struct mmc_queue *mq,
2398 struct request *req)
2399 {
2400 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
2401 struct mmc_host *host = mq->card->host;
2402 struct request *prev_req = NULL;
2403 int err = 0;
2404
2405 mmc_blk_rw_rq_prep(mqrq, mq->card, 0, mq);
2406
2407 mqrq->brq.mrq.done = mmc_blk_mq_req_done;
2408
2409 mmc_pre_req(host, &mqrq->brq.mrq);
2410
2411 err = mmc_blk_rw_wait(mq, &prev_req);
2412 if (err)
2413 goto out_post_req;
2414
2415 mq->rw_wait = true;
2416
2417 err = mmc_start_request(host, &mqrq->brq.mrq);
2418
2419 if (prev_req)
2420 mmc_blk_mq_post_req(mq, prev_req, true);
2421
2422 if (err)
2423 mq->rw_wait = false;
2424
2425 /* Release re-tuning here where there is no synchronization required */
2426 if (err || mmc_host_done_complete(host))
2427 mmc_retune_release(host);
2428
2429 out_post_req:
2430 if (err)
2431 mmc_post_req(host, &mqrq->brq.mrq, err);
2432
2433 return err;
2434 }
2435
mmc_blk_wait_for_idle(struct mmc_queue * mq,struct mmc_host * host)2436 static int mmc_blk_wait_for_idle(struct mmc_queue *mq, struct mmc_host *host)
2437 {
2438 if (host->cqe_enabled)
2439 return host->cqe_ops->cqe_wait_for_idle(host);
2440
2441 return mmc_blk_rw_wait(mq, NULL);
2442 }
2443
mmc_blk_mq_issue_rq(struct mmc_queue * mq,struct request * req)2444 enum mmc_issued mmc_blk_mq_issue_rq(struct mmc_queue *mq, struct request *req)
2445 {
2446 struct mmc_blk_data *md = mq->blkdata;
2447 struct mmc_card *card = md->queue.card;
2448 struct mmc_host *host = card->host;
2449 int ret;
2450
2451 ret = mmc_blk_part_switch(card, md->part_type);
2452 if (ret)
2453 return MMC_REQ_FAILED_TO_START;
2454
2455 switch (mmc_issue_type(mq, req)) {
2456 case MMC_ISSUE_SYNC:
2457 ret = mmc_blk_wait_for_idle(mq, host);
2458 if (ret)
2459 return MMC_REQ_BUSY;
2460 switch (req_op(req)) {
2461 case REQ_OP_DRV_IN:
2462 case REQ_OP_DRV_OUT:
2463 mmc_blk_issue_drv_op(mq, req);
2464 break;
2465 case REQ_OP_DISCARD:
2466 mmc_blk_issue_discard_rq(mq, req);
2467 break;
2468 case REQ_OP_SECURE_ERASE:
2469 mmc_blk_issue_secdiscard_rq(mq, req);
2470 break;
2471 case REQ_OP_WRITE_ZEROES:
2472 mmc_blk_issue_trim_rq(mq, req);
2473 break;
2474 case REQ_OP_FLUSH:
2475 mmc_blk_issue_flush(mq, req);
2476 break;
2477 default:
2478 WARN_ON_ONCE(1);
2479 return MMC_REQ_FAILED_TO_START;
2480 }
2481 return MMC_REQ_FINISHED;
2482 case MMC_ISSUE_DCMD:
2483 case MMC_ISSUE_ASYNC:
2484 switch (req_op(req)) {
2485 case REQ_OP_FLUSH:
2486 if (!mmc_cache_enabled(host)) {
2487 blk_mq_end_request(req, BLK_STS_OK);
2488 return MMC_REQ_FINISHED;
2489 }
2490 ret = mmc_blk_cqe_issue_flush(mq, req);
2491 break;
2492 case REQ_OP_WRITE:
2493 card->written_flag = true;
2494 fallthrough;
2495 case REQ_OP_READ:
2496 if (host->cqe_enabled)
2497 ret = mmc_blk_cqe_issue_rw_rq(mq, req);
2498 else
2499 ret = mmc_blk_mq_issue_rw_rq(mq, req);
2500 break;
2501 default:
2502 WARN_ON_ONCE(1);
2503 ret = -EINVAL;
2504 }
2505 if (!ret)
2506 return MMC_REQ_STARTED;
2507 return ret == -EBUSY ? MMC_REQ_BUSY : MMC_REQ_FAILED_TO_START;
2508 default:
2509 WARN_ON_ONCE(1);
2510 return MMC_REQ_FAILED_TO_START;
2511 }
2512 }
2513
mmc_blk_readonly(struct mmc_card * card)2514 static inline int mmc_blk_readonly(struct mmc_card *card)
2515 {
2516 return mmc_card_readonly(card) ||
2517 !(card->csd.cmdclass & CCC_BLOCK_WRITE);
2518 }
2519
mmc_blk_alloc_req(struct mmc_card * card,struct device * parent,sector_t size,bool default_ro,const char * subname,int area_type,unsigned int part_type)2520 static struct mmc_blk_data *mmc_blk_alloc_req(struct mmc_card *card,
2521 struct device *parent,
2522 sector_t size,
2523 bool default_ro,
2524 const char *subname,
2525 int area_type,
2526 unsigned int part_type)
2527 {
2528 struct mmc_blk_data *md;
2529 int devidx, ret;
2530 char cap_str[10];
2531 unsigned int features = 0;
2532
2533 devidx = ida_alloc_max(&mmc_blk_ida, max_devices - 1, GFP_KERNEL);
2534 if (devidx < 0) {
2535 /*
2536 * We get -ENOSPC because there are no more any available
2537 * devidx. The reason may be that, either userspace haven't yet
2538 * unmounted the partitions, which postpones mmc_blk_release()
2539 * from being called, or the device has more partitions than
2540 * what we support.
2541 */
2542 if (devidx == -ENOSPC)
2543 dev_err(mmc_dev(card->host),
2544 "no more device IDs available\n");
2545
2546 return ERR_PTR(devidx);
2547 }
2548
2549 md = kzalloc(sizeof(*md), GFP_KERNEL);
2550 if (!md) {
2551 ret = -ENOMEM;
2552 goto out;
2553 }
2554
2555 md->area_type = area_type;
2556
2557 /*
2558 * Set the read-only status based on the supported commands
2559 * and the write protect switch.
2560 */
2561 md->read_only = mmc_blk_readonly(card);
2562
2563 if (mmc_host_cmd23(card->host)) {
2564 if ((mmc_card_mmc(card) &&
2565 card->csd.mmca_vsn >= CSD_SPEC_VER_3) ||
2566 (mmc_card_sd(card) &&
2567 card->scr.cmds & SD_SCR_CMD23_SUPPORT))
2568 md->flags |= MMC_BLK_CMD23;
2569 }
2570
2571 if (md->flags & MMC_BLK_CMD23 &&
2572 ((card->ext_csd.rel_param & EXT_CSD_WR_REL_PARAM_EN) ||
2573 card->ext_csd.rel_sectors)) {
2574 md->flags |= MMC_BLK_REL_WR;
2575 features |= (BLK_FEAT_WRITE_CACHE | BLK_FEAT_FUA);
2576 } else if (mmc_cache_enabled(card->host)) {
2577 features |= BLK_FEAT_WRITE_CACHE;
2578 }
2579
2580 md->disk = mmc_init_queue(&md->queue, card, features);
2581 if (IS_ERR(md->disk)) {
2582 ret = PTR_ERR(md->disk);
2583 goto err_kfree;
2584 }
2585
2586 INIT_LIST_HEAD(&md->part);
2587 INIT_LIST_HEAD(&md->rpmbs);
2588 kref_init(&md->kref);
2589
2590 md->queue.blkdata = md;
2591 md->part_type = part_type;
2592
2593 md->disk->major = MMC_BLOCK_MAJOR;
2594 md->disk->minors = perdev_minors;
2595 md->disk->first_minor = devidx * perdev_minors;
2596 md->disk->fops = &mmc_bdops;
2597 md->disk->private_data = md;
2598 md->parent = parent;
2599 set_disk_ro(md->disk, md->read_only || default_ro);
2600 if (area_type & (MMC_BLK_DATA_AREA_RPMB | MMC_BLK_DATA_AREA_BOOT))
2601 md->disk->flags |= GENHD_FL_NO_PART;
2602
2603 /*
2604 * As discussed on lkml, GENHD_FL_REMOVABLE should:
2605 *
2606 * - be set for removable media with permanent block devices
2607 * - be unset for removable block devices with permanent media
2608 *
2609 * Since MMC block devices clearly fall under the second
2610 * case, we do not set GENHD_FL_REMOVABLE. Userspace
2611 * should use the block device creation/destruction hotplug
2612 * messages to tell when the card is present.
2613 */
2614
2615 snprintf(md->disk->disk_name, sizeof(md->disk->disk_name),
2616 "mmcblk%u%s", card->host->index, subname ? subname : "");
2617
2618 set_capacity(md->disk, size);
2619
2620 string_get_size((u64)size, 512, STRING_UNITS_2,
2621 cap_str, sizeof(cap_str));
2622 pr_info("%s: %s %s %s%s\n",
2623 md->disk->disk_name, mmc_card_id(card), mmc_card_name(card),
2624 cap_str, md->read_only ? " (ro)" : "");
2625
2626 /* used in ->open, must be set before add_disk: */
2627 if (area_type == MMC_BLK_DATA_AREA_MAIN)
2628 dev_set_drvdata(&card->dev, md);
2629 ret = device_add_disk(md->parent, md->disk, mmc_disk_attr_groups);
2630 if (ret)
2631 goto err_put_disk;
2632 return md;
2633
2634 err_put_disk:
2635 put_disk(md->disk);
2636 blk_mq_free_tag_set(&md->queue.tag_set);
2637 err_kfree:
2638 kfree(md);
2639 out:
2640 ida_free(&mmc_blk_ida, devidx);
2641 return ERR_PTR(ret);
2642 }
2643
mmc_blk_alloc(struct mmc_card * card)2644 static struct mmc_blk_data *mmc_blk_alloc(struct mmc_card *card)
2645 {
2646 sector_t size;
2647
2648 if (!mmc_card_sd(card) && mmc_card_blockaddr(card)) {
2649 /*
2650 * The EXT_CSD sector count is in number or 512 byte
2651 * sectors.
2652 */
2653 size = card->ext_csd.sectors;
2654 } else {
2655 /*
2656 * The CSD capacity field is in units of read_blkbits.
2657 * set_capacity takes units of 512 bytes.
2658 */
2659 size = (typeof(sector_t))card->csd.capacity
2660 << (card->csd.read_blkbits - 9);
2661 }
2662
2663 return mmc_blk_alloc_req(card, &card->dev, size, false, NULL,
2664 MMC_BLK_DATA_AREA_MAIN, 0);
2665 }
2666
mmc_blk_alloc_part(struct mmc_card * card,struct mmc_blk_data * md,unsigned int part_type,sector_t size,bool default_ro,const char * subname,int area_type)2667 static int mmc_blk_alloc_part(struct mmc_card *card,
2668 struct mmc_blk_data *md,
2669 unsigned int part_type,
2670 sector_t size,
2671 bool default_ro,
2672 const char *subname,
2673 int area_type)
2674 {
2675 struct mmc_blk_data *part_md;
2676
2677 part_md = mmc_blk_alloc_req(card, disk_to_dev(md->disk), size, default_ro,
2678 subname, area_type, part_type);
2679 if (IS_ERR(part_md))
2680 return PTR_ERR(part_md);
2681 list_add(&part_md->part, &md->part);
2682
2683 return 0;
2684 }
2685
2686 /**
2687 * mmc_rpmb_ioctl() - ioctl handler for the RPMB chardev
2688 * @filp: the character device file
2689 * @cmd: the ioctl() command
2690 * @arg: the argument from userspace
2691 *
2692 * This will essentially just redirect the ioctl()s coming in over to
2693 * the main block device spawning the RPMB character device.
2694 */
mmc_rpmb_ioctl(struct file * filp,unsigned int cmd,unsigned long arg)2695 static long mmc_rpmb_ioctl(struct file *filp, unsigned int cmd,
2696 unsigned long arg)
2697 {
2698 struct mmc_rpmb_data *rpmb = filp->private_data;
2699 int ret;
2700
2701 switch (cmd) {
2702 case MMC_IOC_CMD:
2703 ret = mmc_blk_ioctl_cmd(rpmb->md,
2704 (struct mmc_ioc_cmd __user *)arg,
2705 rpmb);
2706 break;
2707 case MMC_IOC_MULTI_CMD:
2708 ret = mmc_blk_ioctl_multi_cmd(rpmb->md,
2709 (struct mmc_ioc_multi_cmd __user *)arg,
2710 rpmb);
2711 break;
2712 default:
2713 ret = -EINVAL;
2714 break;
2715 }
2716
2717 return ret;
2718 }
2719
2720 #ifdef CONFIG_COMPAT
mmc_rpmb_ioctl_compat(struct file * filp,unsigned int cmd,unsigned long arg)2721 static long mmc_rpmb_ioctl_compat(struct file *filp, unsigned int cmd,
2722 unsigned long arg)
2723 {
2724 return mmc_rpmb_ioctl(filp, cmd, (unsigned long)compat_ptr(arg));
2725 }
2726 #endif
2727
mmc_rpmb_chrdev_open(struct inode * inode,struct file * filp)2728 static int mmc_rpmb_chrdev_open(struct inode *inode, struct file *filp)
2729 {
2730 struct mmc_rpmb_data *rpmb = container_of(inode->i_cdev,
2731 struct mmc_rpmb_data, chrdev);
2732
2733 get_device(&rpmb->dev);
2734 filp->private_data = rpmb;
2735
2736 return nonseekable_open(inode, filp);
2737 }
2738
mmc_rpmb_chrdev_release(struct inode * inode,struct file * filp)2739 static int mmc_rpmb_chrdev_release(struct inode *inode, struct file *filp)
2740 {
2741 struct mmc_rpmb_data *rpmb = container_of(inode->i_cdev,
2742 struct mmc_rpmb_data, chrdev);
2743
2744 put_device(&rpmb->dev);
2745
2746 return 0;
2747 }
2748
2749 static const struct file_operations mmc_rpmb_fileops = {
2750 .release = mmc_rpmb_chrdev_release,
2751 .open = mmc_rpmb_chrdev_open,
2752 .owner = THIS_MODULE,
2753 .unlocked_ioctl = mmc_rpmb_ioctl,
2754 #ifdef CONFIG_COMPAT
2755 .compat_ioctl = mmc_rpmb_ioctl_compat,
2756 #endif
2757 };
2758
mmc_blk_rpmb_device_release(struct device * dev)2759 static void mmc_blk_rpmb_device_release(struct device *dev)
2760 {
2761 struct mmc_rpmb_data *rpmb = dev_get_drvdata(dev);
2762
2763 rpmb_dev_unregister(rpmb->rdev);
2764 mmc_blk_put(rpmb->md);
2765 ida_free(&mmc_rpmb_ida, rpmb->id);
2766 kfree(rpmb);
2767 }
2768
free_idata(struct mmc_blk_ioc_data ** idata,unsigned int cmd_count)2769 static void free_idata(struct mmc_blk_ioc_data **idata, unsigned int cmd_count)
2770 {
2771 unsigned int n;
2772
2773 for (n = 0; n < cmd_count; n++)
2774 kfree(idata[n]);
2775 kfree(idata);
2776 }
2777
alloc_idata(struct mmc_rpmb_data * rpmb,unsigned int cmd_count)2778 static struct mmc_blk_ioc_data **alloc_idata(struct mmc_rpmb_data *rpmb,
2779 unsigned int cmd_count)
2780 {
2781 struct mmc_blk_ioc_data **idata;
2782 unsigned int n;
2783
2784 idata = kcalloc(cmd_count, sizeof(*idata), GFP_KERNEL);
2785 if (!idata)
2786 return NULL;
2787
2788 for (n = 0; n < cmd_count; n++) {
2789 idata[n] = kcalloc(1, sizeof(**idata), GFP_KERNEL);
2790 if (!idata[n]) {
2791 free_idata(idata, n);
2792 return NULL;
2793 }
2794 idata[n]->rpmb = rpmb;
2795 }
2796
2797 return idata;
2798 }
2799
set_idata(struct mmc_blk_ioc_data * idata,u32 opcode,int write_flag,u8 * buf,unsigned int buf_bytes)2800 static void set_idata(struct mmc_blk_ioc_data *idata, u32 opcode,
2801 int write_flag, u8 *buf, unsigned int buf_bytes)
2802 {
2803 /*
2804 * The size of an RPMB frame must match what's expected by the
2805 * hardware.
2806 */
2807 BUILD_BUG_ON(sizeof(struct rpmb_frame) != 512);
2808
2809 idata->ic.opcode = opcode;
2810 idata->ic.flags = MMC_RSP_R1 | MMC_CMD_ADTC;
2811 idata->ic.write_flag = write_flag;
2812 idata->ic.blksz = sizeof(struct rpmb_frame);
2813 idata->ic.blocks = buf_bytes / idata->ic.blksz;
2814 idata->buf = buf;
2815 idata->buf_bytes = buf_bytes;
2816 }
2817
mmc_route_rpmb_frames(struct device * dev,u8 * req,unsigned int req_len,u8 * resp,unsigned int resp_len)2818 static int mmc_route_rpmb_frames(struct device *dev, u8 *req,
2819 unsigned int req_len, u8 *resp,
2820 unsigned int resp_len)
2821 {
2822 struct rpmb_frame *frm = (struct rpmb_frame *)req;
2823 struct mmc_rpmb_data *rpmb = dev_get_drvdata(dev);
2824 struct mmc_blk_data *md = rpmb->md;
2825 struct mmc_blk_ioc_data **idata;
2826 struct mmc_queue_req *mq_rq;
2827 unsigned int cmd_count;
2828 struct request *rq;
2829 u16 req_type;
2830 bool write;
2831 int ret;
2832
2833 if (IS_ERR(md->queue.card))
2834 return PTR_ERR(md->queue.card);
2835
2836 if (req_len < sizeof(*frm))
2837 return -EINVAL;
2838
2839 req_type = be16_to_cpu(frm->req_resp);
2840 switch (req_type) {
2841 case RPMB_PROGRAM_KEY:
2842 if (req_len != sizeof(struct rpmb_frame) ||
2843 resp_len != sizeof(struct rpmb_frame))
2844 return -EINVAL;
2845 write = true;
2846 break;
2847 case RPMB_GET_WRITE_COUNTER:
2848 if (req_len != sizeof(struct rpmb_frame) ||
2849 resp_len != sizeof(struct rpmb_frame))
2850 return -EINVAL;
2851 write = false;
2852 break;
2853 case RPMB_WRITE_DATA:
2854 if (req_len % sizeof(struct rpmb_frame) ||
2855 resp_len != sizeof(struct rpmb_frame))
2856 return -EINVAL;
2857 write = true;
2858 break;
2859 case RPMB_READ_DATA:
2860 if (req_len != sizeof(struct rpmb_frame) ||
2861 resp_len % sizeof(struct rpmb_frame))
2862 return -EINVAL;
2863 write = false;
2864 break;
2865 default:
2866 return -EINVAL;
2867 }
2868
2869 if (write)
2870 cmd_count = 3;
2871 else
2872 cmd_count = 2;
2873
2874 idata = alloc_idata(rpmb, cmd_count);
2875 if (!idata)
2876 return -ENOMEM;
2877
2878 if (write) {
2879 struct rpmb_frame *frm = (struct rpmb_frame *)resp;
2880
2881 /* Send write request frame(s) */
2882 set_idata(idata[0], MMC_WRITE_MULTIPLE_BLOCK,
2883 1 | MMC_CMD23_ARG_REL_WR, req, req_len);
2884
2885 /* Send result request frame */
2886 memset(frm, 0, sizeof(*frm));
2887 frm->req_resp = cpu_to_be16(RPMB_RESULT_READ);
2888 set_idata(idata[1], MMC_WRITE_MULTIPLE_BLOCK, 1, resp,
2889 resp_len);
2890
2891 /* Read response frame */
2892 set_idata(idata[2], MMC_READ_MULTIPLE_BLOCK, 0, resp, resp_len);
2893 } else {
2894 /* Send write request frame(s) */
2895 set_idata(idata[0], MMC_WRITE_MULTIPLE_BLOCK, 1, req, req_len);
2896
2897 /* Read response frame */
2898 set_idata(idata[1], MMC_READ_MULTIPLE_BLOCK, 0, resp, resp_len);
2899 }
2900
2901 rq = blk_mq_alloc_request(md->queue.queue, REQ_OP_DRV_OUT, 0);
2902 if (IS_ERR(rq)) {
2903 ret = PTR_ERR(rq);
2904 goto out;
2905 }
2906
2907 mq_rq = req_to_mmc_queue_req(rq);
2908 mq_rq->drv_op = MMC_DRV_OP_IOCTL_RPMB;
2909 mq_rq->drv_op_result = -EIO;
2910 mq_rq->drv_op_data = idata;
2911 mq_rq->ioc_count = cmd_count;
2912 blk_execute_rq(rq, false);
2913 ret = req_to_mmc_queue_req(rq)->drv_op_result;
2914
2915 blk_mq_free_request(rq);
2916
2917 out:
2918 free_idata(idata, cmd_count);
2919 return ret;
2920 }
2921
mmc_blk_alloc_rpmb_part(struct mmc_card * card,struct mmc_blk_data * md,unsigned int part_index,sector_t size,const char * subname)2922 static int mmc_blk_alloc_rpmb_part(struct mmc_card *card,
2923 struct mmc_blk_data *md,
2924 unsigned int part_index,
2925 sector_t size,
2926 const char *subname)
2927 {
2928 int devidx, ret;
2929 char rpmb_name[DISK_NAME_LEN];
2930 char cap_str[10];
2931 struct mmc_rpmb_data *rpmb;
2932
2933 /* This creates the minor number for the RPMB char device */
2934 devidx = ida_alloc_max(&mmc_rpmb_ida, max_devices - 1, GFP_KERNEL);
2935 if (devidx < 0)
2936 return devidx;
2937
2938 rpmb = kzalloc(sizeof(*rpmb), GFP_KERNEL);
2939 if (!rpmb) {
2940 ida_free(&mmc_rpmb_ida, devidx);
2941 return -ENOMEM;
2942 }
2943
2944 snprintf(rpmb_name, sizeof(rpmb_name),
2945 "mmcblk%u%s", card->host->index, subname ? subname : "");
2946
2947 rpmb->id = devidx;
2948 rpmb->part_index = part_index;
2949 rpmb->dev.init_name = rpmb_name;
2950 rpmb->dev.bus = &mmc_rpmb_bus_type;
2951 rpmb->dev.devt = MKDEV(MAJOR(mmc_rpmb_devt), rpmb->id);
2952 rpmb->dev.parent = &card->dev;
2953 rpmb->dev.release = mmc_blk_rpmb_device_release;
2954 device_initialize(&rpmb->dev);
2955 dev_set_drvdata(&rpmb->dev, rpmb);
2956 mmc_blk_get(md->disk);
2957 rpmb->md = md;
2958
2959 cdev_init(&rpmb->chrdev, &mmc_rpmb_fileops);
2960 rpmb->chrdev.owner = THIS_MODULE;
2961 ret = cdev_device_add(&rpmb->chrdev, &rpmb->dev);
2962 if (ret) {
2963 pr_err("%s: could not add character device\n", rpmb_name);
2964 goto out_put_device;
2965 }
2966
2967 list_add(&rpmb->node, &md->rpmbs);
2968
2969 string_get_size((u64)size, 512, STRING_UNITS_2,
2970 cap_str, sizeof(cap_str));
2971
2972 pr_info("%s: %s %s %s, chardev (%d:%d)\n",
2973 rpmb_name, mmc_card_id(card), mmc_card_name(card), cap_str,
2974 MAJOR(mmc_rpmb_devt), rpmb->id);
2975
2976 return 0;
2977
2978 out_put_device:
2979 put_device(&rpmb->dev);
2980 return ret;
2981 }
2982
mmc_blk_remove_rpmb_part(struct mmc_rpmb_data * rpmb)2983 static void mmc_blk_remove_rpmb_part(struct mmc_rpmb_data *rpmb)
2984
2985 {
2986 cdev_device_del(&rpmb->chrdev, &rpmb->dev);
2987 put_device(&rpmb->dev);
2988 }
2989
2990 /* MMC Physical partitions consist of two boot partitions and
2991 * up to four general purpose partitions.
2992 * For each partition enabled in EXT_CSD a block device will be allocatedi
2993 * to provide access to the partition.
2994 */
2995
mmc_blk_alloc_parts(struct mmc_card * card,struct mmc_blk_data * md)2996 static int mmc_blk_alloc_parts(struct mmc_card *card, struct mmc_blk_data *md)
2997 {
2998 int idx, ret;
2999
3000 if (!mmc_card_mmc(card))
3001 return 0;
3002
3003 for (idx = 0; idx < card->nr_parts; idx++) {
3004 if (card->part[idx].area_type & MMC_BLK_DATA_AREA_RPMB) {
3005 /*
3006 * RPMB partitions does not provide block access, they
3007 * are only accessed using ioctl():s. Thus create
3008 * special RPMB block devices that do not have a
3009 * backing block queue for these.
3010 */
3011 ret = mmc_blk_alloc_rpmb_part(card, md,
3012 card->part[idx].part_cfg,
3013 card->part[idx].size >> 9,
3014 card->part[idx].name);
3015 if (ret)
3016 return ret;
3017 } else if (card->part[idx].size) {
3018 ret = mmc_blk_alloc_part(card, md,
3019 card->part[idx].part_cfg,
3020 card->part[idx].size >> 9,
3021 card->part[idx].force_ro,
3022 card->part[idx].name,
3023 card->part[idx].area_type);
3024 if (ret)
3025 return ret;
3026 }
3027 }
3028
3029 return 0;
3030 }
3031
mmc_blk_remove_req(struct mmc_blk_data * md)3032 static void mmc_blk_remove_req(struct mmc_blk_data *md)
3033 {
3034 /*
3035 * Flush remaining requests and free queues. It is freeing the queue
3036 * that stops new requests from being accepted.
3037 */
3038 del_gendisk(md->disk);
3039 mmc_cleanup_queue(&md->queue);
3040 mmc_blk_put(md);
3041 }
3042
mmc_blk_remove_parts(struct mmc_card * card,struct mmc_blk_data * md)3043 static void mmc_blk_remove_parts(struct mmc_card *card,
3044 struct mmc_blk_data *md)
3045 {
3046 struct list_head *pos, *q;
3047 struct mmc_blk_data *part_md;
3048 struct mmc_rpmb_data *rpmb;
3049
3050 /* Remove RPMB partitions */
3051 list_for_each_safe(pos, q, &md->rpmbs) {
3052 rpmb = list_entry(pos, struct mmc_rpmb_data, node);
3053 list_del(pos);
3054 mmc_blk_remove_rpmb_part(rpmb);
3055 }
3056 /* Remove block partitions */
3057 list_for_each_safe(pos, q, &md->part) {
3058 part_md = list_entry(pos, struct mmc_blk_data, part);
3059 list_del(pos);
3060 mmc_blk_remove_req(part_md);
3061 }
3062 }
3063
3064 #ifdef CONFIG_DEBUG_FS
3065
mmc_dbg_card_status_get(void * data,u64 * val)3066 static int mmc_dbg_card_status_get(void *data, u64 *val)
3067 {
3068 struct mmc_card *card = data;
3069 struct mmc_blk_data *md = dev_get_drvdata(&card->dev);
3070 struct mmc_queue *mq = &md->queue;
3071 struct request *req;
3072 int ret;
3073
3074 /* Ask the block layer about the card status */
3075 req = blk_mq_alloc_request(mq->queue, REQ_OP_DRV_IN, 0);
3076 if (IS_ERR(req))
3077 return PTR_ERR(req);
3078 req_to_mmc_queue_req(req)->drv_op = MMC_DRV_OP_GET_CARD_STATUS;
3079 req_to_mmc_queue_req(req)->drv_op_result = -EIO;
3080 blk_execute_rq(req, false);
3081 ret = req_to_mmc_queue_req(req)->drv_op_result;
3082 if (ret >= 0) {
3083 *val = ret;
3084 ret = 0;
3085 }
3086 blk_mq_free_request(req);
3087
3088 return ret;
3089 }
3090 DEFINE_DEBUGFS_ATTRIBUTE(mmc_dbg_card_status_fops, mmc_dbg_card_status_get,
3091 NULL, "%08llx\n");
3092
3093 /* That is two digits * 512 + 1 for newline */
3094 #define EXT_CSD_STR_LEN 1025
3095
mmc_ext_csd_open(struct inode * inode,struct file * filp)3096 static int mmc_ext_csd_open(struct inode *inode, struct file *filp)
3097 {
3098 struct mmc_card *card = inode->i_private;
3099 struct mmc_blk_data *md = dev_get_drvdata(&card->dev);
3100 struct mmc_queue *mq = &md->queue;
3101 struct request *req;
3102 char *buf;
3103 ssize_t n = 0;
3104 u8 *ext_csd;
3105 int err, i;
3106
3107 buf = kmalloc(EXT_CSD_STR_LEN + 1, GFP_KERNEL);
3108 if (!buf)
3109 return -ENOMEM;
3110
3111 /* Ask the block layer for the EXT CSD */
3112 req = blk_mq_alloc_request(mq->queue, REQ_OP_DRV_IN, 0);
3113 if (IS_ERR(req)) {
3114 err = PTR_ERR(req);
3115 goto out_free;
3116 }
3117 req_to_mmc_queue_req(req)->drv_op = MMC_DRV_OP_GET_EXT_CSD;
3118 req_to_mmc_queue_req(req)->drv_op_result = -EIO;
3119 req_to_mmc_queue_req(req)->drv_op_data = &ext_csd;
3120 blk_execute_rq(req, false);
3121 err = req_to_mmc_queue_req(req)->drv_op_result;
3122 blk_mq_free_request(req);
3123 if (err) {
3124 pr_err("FAILED %d\n", err);
3125 goto out_free;
3126 }
3127
3128 for (i = 0; i < 512; i++)
3129 n += sprintf(buf + n, "%02x", ext_csd[i]);
3130 n += sprintf(buf + n, "\n");
3131
3132 if (n != EXT_CSD_STR_LEN) {
3133 err = -EINVAL;
3134 kfree(ext_csd);
3135 goto out_free;
3136 }
3137
3138 filp->private_data = buf;
3139 kfree(ext_csd);
3140 return 0;
3141
3142 out_free:
3143 kfree(buf);
3144 return err;
3145 }
3146
mmc_ext_csd_read(struct file * filp,char __user * ubuf,size_t cnt,loff_t * ppos)3147 static ssize_t mmc_ext_csd_read(struct file *filp, char __user *ubuf,
3148 size_t cnt, loff_t *ppos)
3149 {
3150 char *buf = filp->private_data;
3151
3152 return simple_read_from_buffer(ubuf, cnt, ppos,
3153 buf, EXT_CSD_STR_LEN);
3154 }
3155
mmc_ext_csd_release(struct inode * inode,struct file * file)3156 static int mmc_ext_csd_release(struct inode *inode, struct file *file)
3157 {
3158 kfree(file->private_data);
3159 return 0;
3160 }
3161
3162 static const struct file_operations mmc_dbg_ext_csd_fops = {
3163 .open = mmc_ext_csd_open,
3164 .read = mmc_ext_csd_read,
3165 .release = mmc_ext_csd_release,
3166 .llseek = default_llseek,
3167 };
3168
mmc_blk_add_debugfs(struct mmc_card * card,struct mmc_blk_data * md)3169 static void mmc_blk_add_debugfs(struct mmc_card *card, struct mmc_blk_data *md)
3170 {
3171 struct dentry *root;
3172
3173 if (!card->debugfs_root)
3174 return;
3175
3176 root = card->debugfs_root;
3177
3178 if (mmc_card_mmc(card) || mmc_card_sd(card)) {
3179 md->status_dentry =
3180 debugfs_create_file_unsafe("status", 0400, root,
3181 card,
3182 &mmc_dbg_card_status_fops);
3183 }
3184
3185 if (mmc_card_mmc(card)) {
3186 md->ext_csd_dentry =
3187 debugfs_create_file("ext_csd", S_IRUSR, root, card,
3188 &mmc_dbg_ext_csd_fops);
3189 }
3190 }
3191
mmc_blk_remove_debugfs(struct mmc_card * card,struct mmc_blk_data * md)3192 static void mmc_blk_remove_debugfs(struct mmc_card *card,
3193 struct mmc_blk_data *md)
3194 {
3195 if (!card->debugfs_root)
3196 return;
3197
3198 debugfs_remove(md->status_dentry);
3199 md->status_dentry = NULL;
3200
3201 debugfs_remove(md->ext_csd_dentry);
3202 md->ext_csd_dentry = NULL;
3203 }
3204
3205 #else
3206
mmc_blk_add_debugfs(struct mmc_card * card,struct mmc_blk_data * md)3207 static void mmc_blk_add_debugfs(struct mmc_card *card, struct mmc_blk_data *md)
3208 {
3209 }
3210
mmc_blk_remove_debugfs(struct mmc_card * card,struct mmc_blk_data * md)3211 static void mmc_blk_remove_debugfs(struct mmc_card *card,
3212 struct mmc_blk_data *md)
3213 {
3214 }
3215
3216 #endif /* CONFIG_DEBUG_FS */
3217
mmc_blk_rpmb_add(struct mmc_card * card)3218 static void mmc_blk_rpmb_add(struct mmc_card *card)
3219 {
3220 struct mmc_blk_data *md = dev_get_drvdata(&card->dev);
3221 struct mmc_rpmb_data *rpmb;
3222 struct rpmb_dev *rdev;
3223 unsigned int n;
3224 u32 cid[4];
3225 struct rpmb_descr descr = {
3226 .type = RPMB_TYPE_EMMC,
3227 .route_frames = mmc_route_rpmb_frames,
3228 .reliable_wr_count = card->ext_csd.enhanced_rpmb_supported ?
3229 2 : 32,
3230 .capacity = card->ext_csd.raw_rpmb_size_mult,
3231 .dev_id = (void *)cid,
3232 .dev_id_len = sizeof(cid),
3233 };
3234
3235 /*
3236 * Provice CID as an octet array. The CID needs to be interpreted
3237 * when used as input to derive the RPMB key since some fields
3238 * will change due to firmware updates.
3239 */
3240 for (n = 0; n < 4; n++)
3241 cid[n] = be32_to_cpu((__force __be32)card->raw_cid[n]);
3242
3243 list_for_each_entry(rpmb, &md->rpmbs, node) {
3244 rdev = rpmb_dev_register(&rpmb->dev, &descr);
3245 if (IS_ERR(rdev)) {
3246 pr_warn("%s: could not register RPMB device\n",
3247 dev_name(&rpmb->dev));
3248 continue;
3249 }
3250 rpmb->rdev = rdev;
3251 }
3252 }
3253
mmc_blk_probe(struct mmc_card * card)3254 static int mmc_blk_probe(struct mmc_card *card)
3255 {
3256 struct mmc_blk_data *md;
3257 int ret = 0;
3258
3259 /*
3260 * Check that the card supports the command class(es) we need.
3261 */
3262 if (!(card->csd.cmdclass & CCC_BLOCK_READ))
3263 return -ENODEV;
3264
3265 mmc_fixup_device(card, mmc_blk_fixups);
3266
3267 card->complete_wq = alloc_workqueue("mmc_complete",
3268 WQ_MEM_RECLAIM | WQ_HIGHPRI, 0);
3269 if (!card->complete_wq) {
3270 pr_err("Failed to create mmc completion workqueue");
3271 return -ENOMEM;
3272 }
3273
3274 md = mmc_blk_alloc(card);
3275 if (IS_ERR(md)) {
3276 ret = PTR_ERR(md);
3277 goto out_free;
3278 }
3279
3280 ret = mmc_blk_alloc_parts(card, md);
3281 if (ret)
3282 goto out;
3283
3284 /* Add two debugfs entries */
3285 mmc_blk_add_debugfs(card, md);
3286
3287 pm_runtime_set_autosuspend_delay(&card->dev, 3000);
3288 pm_runtime_use_autosuspend(&card->dev);
3289
3290 /*
3291 * Don't enable runtime PM for SD-combo cards here. Leave that
3292 * decision to be taken during the SDIO init sequence instead.
3293 */
3294 if (!mmc_card_sd_combo(card)) {
3295 pm_runtime_set_active(&card->dev);
3296 pm_runtime_enable(&card->dev);
3297 }
3298
3299 mmc_blk_rpmb_add(card);
3300
3301 return 0;
3302
3303 out:
3304 mmc_blk_remove_parts(card, md);
3305 mmc_blk_remove_req(md);
3306 out_free:
3307 destroy_workqueue(card->complete_wq);
3308 return ret;
3309 }
3310
mmc_blk_remove(struct mmc_card * card)3311 static void mmc_blk_remove(struct mmc_card *card)
3312 {
3313 struct mmc_blk_data *md = dev_get_drvdata(&card->dev);
3314
3315 mmc_blk_remove_debugfs(card, md);
3316 mmc_blk_remove_parts(card, md);
3317 pm_runtime_get_sync(&card->dev);
3318 if (md->part_curr != md->part_type) {
3319 mmc_claim_host(card->host);
3320 mmc_blk_part_switch(card, md->part_type);
3321 mmc_release_host(card->host);
3322 }
3323 if (!mmc_card_sd_combo(card))
3324 pm_runtime_disable(&card->dev);
3325 pm_runtime_put_noidle(&card->dev);
3326 mmc_blk_remove_req(md);
3327 destroy_workqueue(card->complete_wq);
3328 }
3329
_mmc_blk_suspend(struct mmc_card * card)3330 static int _mmc_blk_suspend(struct mmc_card *card)
3331 {
3332 struct mmc_blk_data *part_md;
3333 struct mmc_blk_data *md = dev_get_drvdata(&card->dev);
3334
3335 if (md) {
3336 mmc_queue_suspend(&md->queue);
3337 list_for_each_entry(part_md, &md->part, part) {
3338 mmc_queue_suspend(&part_md->queue);
3339 }
3340 }
3341 return 0;
3342 }
3343
mmc_blk_shutdown(struct mmc_card * card)3344 static void mmc_blk_shutdown(struct mmc_card *card)
3345 {
3346 _mmc_blk_suspend(card);
3347 }
3348
3349 #ifdef CONFIG_PM_SLEEP
mmc_blk_suspend(struct device * dev)3350 static int mmc_blk_suspend(struct device *dev)
3351 {
3352 struct mmc_card *card = mmc_dev_to_card(dev);
3353
3354 return _mmc_blk_suspend(card);
3355 }
3356
mmc_blk_resume(struct device * dev)3357 static int mmc_blk_resume(struct device *dev)
3358 {
3359 struct mmc_blk_data *part_md;
3360 struct mmc_blk_data *md = dev_get_drvdata(dev);
3361
3362 if (md) {
3363 /*
3364 * Resume involves the card going into idle state,
3365 * so current partition is always the main one.
3366 */
3367 md->part_curr = md->part_type;
3368 mmc_queue_resume(&md->queue);
3369 list_for_each_entry(part_md, &md->part, part) {
3370 mmc_queue_resume(&part_md->queue);
3371 }
3372 }
3373 return 0;
3374 }
3375 #endif
3376
3377 static SIMPLE_DEV_PM_OPS(mmc_blk_pm_ops, mmc_blk_suspend, mmc_blk_resume);
3378
3379 static struct mmc_driver mmc_driver = {
3380 .drv = {
3381 .name = "mmcblk",
3382 .pm = &mmc_blk_pm_ops,
3383 },
3384 .probe = mmc_blk_probe,
3385 .remove = mmc_blk_remove,
3386 .shutdown = mmc_blk_shutdown,
3387 };
3388
mmc_blk_init(void)3389 static int __init mmc_blk_init(void)
3390 {
3391 int res;
3392
3393 res = bus_register(&mmc_rpmb_bus_type);
3394 if (res < 0) {
3395 pr_err("mmcblk: could not register RPMB bus type\n");
3396 return res;
3397 }
3398 res = alloc_chrdev_region(&mmc_rpmb_devt, 0, MAX_DEVICES, "rpmb");
3399 if (res < 0) {
3400 pr_err("mmcblk: failed to allocate rpmb chrdev region\n");
3401 goto out_bus_unreg;
3402 }
3403
3404 if (perdev_minors != CONFIG_MMC_BLOCK_MINORS)
3405 pr_info("mmcblk: using %d minors per device\n", perdev_minors);
3406
3407 max_devices = min(MAX_DEVICES, (1 << MINORBITS) / perdev_minors);
3408
3409 res = register_blkdev(MMC_BLOCK_MAJOR, "mmc");
3410 if (res)
3411 goto out_chrdev_unreg;
3412
3413 res = mmc_register_driver(&mmc_driver);
3414 if (res)
3415 goto out_blkdev_unreg;
3416
3417 return 0;
3418
3419 out_blkdev_unreg:
3420 unregister_blkdev(MMC_BLOCK_MAJOR, "mmc");
3421 out_chrdev_unreg:
3422 unregister_chrdev_region(mmc_rpmb_devt, MAX_DEVICES);
3423 out_bus_unreg:
3424 bus_unregister(&mmc_rpmb_bus_type);
3425 return res;
3426 }
3427
mmc_blk_exit(void)3428 static void __exit mmc_blk_exit(void)
3429 {
3430 mmc_unregister_driver(&mmc_driver);
3431 unregister_blkdev(MMC_BLOCK_MAJOR, "mmc");
3432 unregister_chrdev_region(mmc_rpmb_devt, MAX_DEVICES);
3433 bus_unregister(&mmc_rpmb_bus_type);
3434 }
3435
3436 module_init(mmc_blk_init);
3437 module_exit(mmc_blk_exit);
3438
3439 MODULE_LICENSE("GPL");
3440 MODULE_DESCRIPTION("Multimedia Card (MMC) block device driver");
3441