1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (C) 2016-2017 Micron Technology, Inc.
4 *
5 * Authors:
6 * Peter Pan <peterpandong@micron.com>
7 * Boris Brezillon <boris.brezillon@bootlin.com>
8 */
9
10 #define pr_fmt(fmt) "spi-nand: " fmt
11
12 #include <linux/device.h>
13 #include <linux/jiffies.h>
14 #include <linux/kernel.h>
15 #include <linux/module.h>
16 #include <linux/mtd/spinand.h>
17 #include <linux/of.h>
18 #include <linux/slab.h>
19 #include <linux/string.h>
20 #include <linux/spi/spi.h>
21 #include <linux/spi/spi-mem.h>
22
spinand_read_reg_op(struct spinand_device * spinand,u8 reg,u8 * val)23 static int spinand_read_reg_op(struct spinand_device *spinand, u8 reg, u8 *val)
24 {
25 struct spi_mem_op op = SPINAND_GET_FEATURE_OP(reg,
26 spinand->scratchbuf);
27 int ret;
28
29 ret = spi_mem_exec_op(spinand->spimem, &op);
30 if (ret)
31 return ret;
32
33 *val = *spinand->scratchbuf;
34 return 0;
35 }
36
spinand_write_reg_op(struct spinand_device * spinand,u8 reg,u8 val)37 int spinand_write_reg_op(struct spinand_device *spinand, u8 reg, u8 val)
38 {
39 struct spi_mem_op op = SPINAND_SET_FEATURE_OP(reg,
40 spinand->scratchbuf);
41
42 *spinand->scratchbuf = val;
43 return spi_mem_exec_op(spinand->spimem, &op);
44 }
45
spinand_read_status(struct spinand_device * spinand,u8 * status)46 static int spinand_read_status(struct spinand_device *spinand, u8 *status)
47 {
48 return spinand_read_reg_op(spinand, REG_STATUS, status);
49 }
50
spinand_get_cfg(struct spinand_device * spinand,u8 * cfg)51 static int spinand_get_cfg(struct spinand_device *spinand, u8 *cfg)
52 {
53 struct nand_device *nand = spinand_to_nand(spinand);
54
55 if (WARN_ON(spinand->cur_target < 0 ||
56 spinand->cur_target >= nand->memorg.ntargets))
57 return -EINVAL;
58
59 *cfg = spinand->cfg_cache[spinand->cur_target];
60 return 0;
61 }
62
spinand_set_cfg(struct spinand_device * spinand,u8 cfg)63 static int spinand_set_cfg(struct spinand_device *spinand, u8 cfg)
64 {
65 struct nand_device *nand = spinand_to_nand(spinand);
66 int ret;
67
68 if (WARN_ON(spinand->cur_target < 0 ||
69 spinand->cur_target >= nand->memorg.ntargets))
70 return -EINVAL;
71
72 if (spinand->cfg_cache[spinand->cur_target] == cfg)
73 return 0;
74
75 ret = spinand_write_reg_op(spinand, REG_CFG, cfg);
76 if (ret)
77 return ret;
78
79 spinand->cfg_cache[spinand->cur_target] = cfg;
80 return 0;
81 }
82
83 /**
84 * spinand_upd_cfg() - Update the configuration register
85 * @spinand: the spinand device
86 * @mask: the mask encoding the bits to update in the config reg
87 * @val: the new value to apply
88 *
89 * Update the configuration register.
90 *
91 * Return: 0 on success, a negative error code otherwise.
92 */
spinand_upd_cfg(struct spinand_device * spinand,u8 mask,u8 val)93 int spinand_upd_cfg(struct spinand_device *spinand, u8 mask, u8 val)
94 {
95 int ret;
96 u8 cfg;
97
98 ret = spinand_get_cfg(spinand, &cfg);
99 if (ret)
100 return ret;
101
102 cfg &= ~mask;
103 cfg |= val;
104
105 return spinand_set_cfg(spinand, cfg);
106 }
107
108 /**
109 * spinand_select_target() - Select a specific NAND target/die
110 * @spinand: the spinand device
111 * @target: the target/die to select
112 *
113 * Select a new target/die. If chip only has one die, this function is a NOOP.
114 *
115 * Return: 0 on success, a negative error code otherwise.
116 */
spinand_select_target(struct spinand_device * spinand,unsigned int target)117 int spinand_select_target(struct spinand_device *spinand, unsigned int target)
118 {
119 struct nand_device *nand = spinand_to_nand(spinand);
120 int ret;
121
122 if (WARN_ON(target >= nand->memorg.ntargets))
123 return -EINVAL;
124
125 if (spinand->cur_target == target)
126 return 0;
127
128 if (nand->memorg.ntargets == 1) {
129 spinand->cur_target = target;
130 return 0;
131 }
132
133 ret = spinand->select_target(spinand, target);
134 if (ret)
135 return ret;
136
137 spinand->cur_target = target;
138 return 0;
139 }
140
spinand_read_cfg(struct spinand_device * spinand)141 static int spinand_read_cfg(struct spinand_device *spinand)
142 {
143 struct nand_device *nand = spinand_to_nand(spinand);
144 unsigned int target;
145 int ret;
146
147 for (target = 0; target < nand->memorg.ntargets; target++) {
148 ret = spinand_select_target(spinand, target);
149 if (ret)
150 return ret;
151
152 /*
153 * We use spinand_read_reg_op() instead of spinand_get_cfg()
154 * here to bypass the config cache.
155 */
156 ret = spinand_read_reg_op(spinand, REG_CFG,
157 &spinand->cfg_cache[target]);
158 if (ret)
159 return ret;
160 }
161
162 return 0;
163 }
164
spinand_init_cfg_cache(struct spinand_device * spinand)165 static int spinand_init_cfg_cache(struct spinand_device *spinand)
166 {
167 struct nand_device *nand = spinand_to_nand(spinand);
168 struct device *dev = &spinand->spimem->spi->dev;
169
170 spinand->cfg_cache = devm_kcalloc(dev,
171 nand->memorg.ntargets,
172 sizeof(*spinand->cfg_cache),
173 GFP_KERNEL);
174 if (!spinand->cfg_cache)
175 return -ENOMEM;
176
177 return 0;
178 }
179
spinand_init_quad_enable(struct spinand_device * spinand)180 static int spinand_init_quad_enable(struct spinand_device *spinand)
181 {
182 bool enable = false;
183
184 if (!(spinand->flags & SPINAND_HAS_QE_BIT))
185 return 0;
186
187 if (spinand->op_templates.read_cache->data.buswidth == 4 ||
188 spinand->op_templates.write_cache->data.buswidth == 4 ||
189 spinand->op_templates.update_cache->data.buswidth == 4)
190 enable = true;
191
192 return spinand_upd_cfg(spinand, CFG_QUAD_ENABLE,
193 enable ? CFG_QUAD_ENABLE : 0);
194 }
195
spinand_ecc_enable(struct spinand_device * spinand,bool enable)196 static int spinand_ecc_enable(struct spinand_device *spinand,
197 bool enable)
198 {
199 return spinand_upd_cfg(spinand, CFG_ECC_ENABLE,
200 enable ? CFG_ECC_ENABLE : 0);
201 }
202
spinand_cont_read_enable(struct spinand_device * spinand,bool enable)203 static int spinand_cont_read_enable(struct spinand_device *spinand,
204 bool enable)
205 {
206 return spinand->set_cont_read(spinand, enable);
207 }
208
spinand_check_ecc_status(struct spinand_device * spinand,u8 status)209 static int spinand_check_ecc_status(struct spinand_device *spinand, u8 status)
210 {
211 struct nand_device *nand = spinand_to_nand(spinand);
212
213 if (spinand->eccinfo.get_status)
214 return spinand->eccinfo.get_status(spinand, status);
215
216 switch (status & STATUS_ECC_MASK) {
217 case STATUS_ECC_NO_BITFLIPS:
218 return 0;
219
220 case STATUS_ECC_HAS_BITFLIPS:
221 /*
222 * We have no way to know exactly how many bitflips have been
223 * fixed, so let's return the maximum possible value so that
224 * wear-leveling layers move the data immediately.
225 */
226 return nanddev_get_ecc_conf(nand)->strength;
227
228 case STATUS_ECC_UNCOR_ERROR:
229 return -EBADMSG;
230
231 default:
232 break;
233 }
234
235 return -EINVAL;
236 }
237
spinand_noecc_ooblayout_ecc(struct mtd_info * mtd,int section,struct mtd_oob_region * region)238 static int spinand_noecc_ooblayout_ecc(struct mtd_info *mtd, int section,
239 struct mtd_oob_region *region)
240 {
241 return -ERANGE;
242 }
243
spinand_noecc_ooblayout_free(struct mtd_info * mtd,int section,struct mtd_oob_region * region)244 static int spinand_noecc_ooblayout_free(struct mtd_info *mtd, int section,
245 struct mtd_oob_region *region)
246 {
247 if (section)
248 return -ERANGE;
249
250 /* Reserve 2 bytes for the BBM. */
251 region->offset = 2;
252 region->length = 62;
253
254 return 0;
255 }
256
257 static const struct mtd_ooblayout_ops spinand_noecc_ooblayout = {
258 .ecc = spinand_noecc_ooblayout_ecc,
259 .free = spinand_noecc_ooblayout_free,
260 };
261
spinand_ondie_ecc_init_ctx(struct nand_device * nand)262 static int spinand_ondie_ecc_init_ctx(struct nand_device *nand)
263 {
264 struct spinand_device *spinand = nand_to_spinand(nand);
265 struct mtd_info *mtd = nanddev_to_mtd(nand);
266 struct spinand_ondie_ecc_conf *engine_conf;
267
268 nand->ecc.ctx.conf.engine_type = NAND_ECC_ENGINE_TYPE_ON_DIE;
269 nand->ecc.ctx.conf.step_size = nand->ecc.requirements.step_size;
270 nand->ecc.ctx.conf.strength = nand->ecc.requirements.strength;
271
272 engine_conf = kzalloc(sizeof(*engine_conf), GFP_KERNEL);
273 if (!engine_conf)
274 return -ENOMEM;
275
276 nand->ecc.ctx.priv = engine_conf;
277
278 if (spinand->eccinfo.ooblayout)
279 mtd_set_ooblayout(mtd, spinand->eccinfo.ooblayout);
280 else
281 mtd_set_ooblayout(mtd, &spinand_noecc_ooblayout);
282
283 return 0;
284 }
285
spinand_ondie_ecc_cleanup_ctx(struct nand_device * nand)286 static void spinand_ondie_ecc_cleanup_ctx(struct nand_device *nand)
287 {
288 kfree(nand->ecc.ctx.priv);
289 }
290
spinand_ondie_ecc_prepare_io_req(struct nand_device * nand,struct nand_page_io_req * req)291 static int spinand_ondie_ecc_prepare_io_req(struct nand_device *nand,
292 struct nand_page_io_req *req)
293 {
294 struct spinand_device *spinand = nand_to_spinand(nand);
295 bool enable = (req->mode != MTD_OPS_RAW);
296
297 memset(spinand->oobbuf, 0xff, nanddev_per_page_oobsize(nand));
298
299 /* Only enable or disable the engine */
300 return spinand_ecc_enable(spinand, enable);
301 }
302
spinand_ondie_ecc_finish_io_req(struct nand_device * nand,struct nand_page_io_req * req)303 static int spinand_ondie_ecc_finish_io_req(struct nand_device *nand,
304 struct nand_page_io_req *req)
305 {
306 struct spinand_ondie_ecc_conf *engine_conf = nand->ecc.ctx.priv;
307 struct spinand_device *spinand = nand_to_spinand(nand);
308 struct mtd_info *mtd = spinand_to_mtd(spinand);
309 int ret;
310
311 if (req->mode == MTD_OPS_RAW)
312 return 0;
313
314 /* Nothing to do when finishing a page write */
315 if (req->type == NAND_PAGE_WRITE)
316 return 0;
317
318 /* Finish a page read: check the status, report errors/bitflips */
319 ret = spinand_check_ecc_status(spinand, engine_conf->status);
320 if (ret == -EBADMSG) {
321 mtd->ecc_stats.failed++;
322 } else if (ret > 0) {
323 unsigned int pages;
324
325 /*
326 * Continuous reads don't allow us to get the detail,
327 * so we may exagerate the actual number of corrected bitflips.
328 */
329 if (!req->continuous)
330 pages = 1;
331 else
332 pages = req->datalen / nanddev_page_size(nand);
333
334 mtd->ecc_stats.corrected += ret * pages;
335 }
336
337 return ret;
338 }
339
340 static struct nand_ecc_engine_ops spinand_ondie_ecc_engine_ops = {
341 .init_ctx = spinand_ondie_ecc_init_ctx,
342 .cleanup_ctx = spinand_ondie_ecc_cleanup_ctx,
343 .prepare_io_req = spinand_ondie_ecc_prepare_io_req,
344 .finish_io_req = spinand_ondie_ecc_finish_io_req,
345 };
346
347 static struct nand_ecc_engine spinand_ondie_ecc_engine = {
348 .ops = &spinand_ondie_ecc_engine_ops,
349 };
350
spinand_ondie_ecc_save_status(struct nand_device * nand,u8 status)351 static void spinand_ondie_ecc_save_status(struct nand_device *nand, u8 status)
352 {
353 struct spinand_ondie_ecc_conf *engine_conf = nand->ecc.ctx.priv;
354
355 if (nand->ecc.ctx.conf.engine_type == NAND_ECC_ENGINE_TYPE_ON_DIE &&
356 engine_conf)
357 engine_conf->status = status;
358 }
359
spinand_write_enable_op(struct spinand_device * spinand)360 static int spinand_write_enable_op(struct spinand_device *spinand)
361 {
362 struct spi_mem_op op = SPINAND_WR_EN_DIS_OP(true);
363
364 return spi_mem_exec_op(spinand->spimem, &op);
365 }
366
spinand_load_page_op(struct spinand_device * spinand,const struct nand_page_io_req * req)367 static int spinand_load_page_op(struct spinand_device *spinand,
368 const struct nand_page_io_req *req)
369 {
370 struct nand_device *nand = spinand_to_nand(spinand);
371 unsigned int row = nanddev_pos_to_row(nand, &req->pos);
372 struct spi_mem_op op = SPINAND_PAGE_READ_OP(row);
373
374 return spi_mem_exec_op(spinand->spimem, &op);
375 }
376
spinand_read_from_cache_op(struct spinand_device * spinand,const struct nand_page_io_req * req)377 static int spinand_read_from_cache_op(struct spinand_device *spinand,
378 const struct nand_page_io_req *req)
379 {
380 struct nand_device *nand = spinand_to_nand(spinand);
381 struct mtd_info *mtd = spinand_to_mtd(spinand);
382 struct spi_mem_dirmap_desc *rdesc;
383 unsigned int nbytes = 0;
384 void *buf = NULL;
385 u16 column = 0;
386 ssize_t ret;
387
388 if (req->datalen) {
389 buf = spinand->databuf;
390 if (!req->continuous)
391 nbytes = nanddev_page_size(nand);
392 else
393 nbytes = round_up(req->dataoffs + req->datalen,
394 nanddev_page_size(nand));
395 column = 0;
396 }
397
398 if (req->ooblen) {
399 nbytes += nanddev_per_page_oobsize(nand);
400 if (!buf) {
401 buf = spinand->oobbuf;
402 column = nanddev_page_size(nand);
403 }
404 }
405
406 if (req->mode == MTD_OPS_RAW)
407 rdesc = spinand->dirmaps[req->pos.plane].rdesc;
408 else
409 rdesc = spinand->dirmaps[req->pos.plane].rdesc_ecc;
410
411 if (spinand->flags & SPINAND_HAS_READ_PLANE_SELECT_BIT)
412 column |= req->pos.plane << fls(nanddev_page_size(nand));
413
414 while (nbytes) {
415 ret = spi_mem_dirmap_read(rdesc, column, nbytes, buf);
416 if (ret < 0)
417 return ret;
418
419 if (!ret || ret > nbytes)
420 return -EIO;
421
422 nbytes -= ret;
423 column += ret;
424 buf += ret;
425
426 /*
427 * Dirmap accesses are allowed to toggle the CS.
428 * Toggling the CS during a continuous read is forbidden.
429 */
430 if (nbytes && req->continuous)
431 return -EIO;
432 }
433
434 if (req->datalen)
435 memcpy(req->databuf.in, spinand->databuf + req->dataoffs,
436 req->datalen);
437
438 if (req->ooblen) {
439 if (req->mode == MTD_OPS_AUTO_OOB)
440 mtd_ooblayout_get_databytes(mtd, req->oobbuf.in,
441 spinand->oobbuf,
442 req->ooboffs,
443 req->ooblen);
444 else
445 memcpy(req->oobbuf.in, spinand->oobbuf + req->ooboffs,
446 req->ooblen);
447 }
448
449 return 0;
450 }
451
spinand_write_to_cache_op(struct spinand_device * spinand,const struct nand_page_io_req * req)452 static int spinand_write_to_cache_op(struct spinand_device *spinand,
453 const struct nand_page_io_req *req)
454 {
455 struct nand_device *nand = spinand_to_nand(spinand);
456 struct mtd_info *mtd = spinand_to_mtd(spinand);
457 struct spi_mem_dirmap_desc *wdesc;
458 unsigned int nbytes, column = 0;
459 void *buf = spinand->databuf;
460 ssize_t ret;
461
462 /*
463 * Looks like PROGRAM LOAD (AKA write cache) does not necessarily reset
464 * the cache content to 0xFF (depends on vendor implementation), so we
465 * must fill the page cache entirely even if we only want to program
466 * the data portion of the page, otherwise we might corrupt the BBM or
467 * user data previously programmed in OOB area.
468 *
469 * Only reset the data buffer manually, the OOB buffer is prepared by
470 * ECC engines ->prepare_io_req() callback.
471 */
472 nbytes = nanddev_page_size(nand) + nanddev_per_page_oobsize(nand);
473 memset(spinand->databuf, 0xff, nanddev_page_size(nand));
474
475 if (req->datalen)
476 memcpy(spinand->databuf + req->dataoffs, req->databuf.out,
477 req->datalen);
478
479 if (req->ooblen) {
480 if (req->mode == MTD_OPS_AUTO_OOB)
481 mtd_ooblayout_set_databytes(mtd, req->oobbuf.out,
482 spinand->oobbuf,
483 req->ooboffs,
484 req->ooblen);
485 else
486 memcpy(spinand->oobbuf + req->ooboffs, req->oobbuf.out,
487 req->ooblen);
488 }
489
490 if (req->mode == MTD_OPS_RAW)
491 wdesc = spinand->dirmaps[req->pos.plane].wdesc;
492 else
493 wdesc = spinand->dirmaps[req->pos.plane].wdesc_ecc;
494
495 if (spinand->flags & SPINAND_HAS_PROG_PLANE_SELECT_BIT)
496 column |= req->pos.plane << fls(nanddev_page_size(nand));
497
498 while (nbytes) {
499 ret = spi_mem_dirmap_write(wdesc, column, nbytes, buf);
500 if (ret < 0)
501 return ret;
502
503 if (!ret || ret > nbytes)
504 return -EIO;
505
506 nbytes -= ret;
507 column += ret;
508 buf += ret;
509 }
510
511 return 0;
512 }
513
spinand_program_op(struct spinand_device * spinand,const struct nand_page_io_req * req)514 static int spinand_program_op(struct spinand_device *spinand,
515 const struct nand_page_io_req *req)
516 {
517 struct nand_device *nand = spinand_to_nand(spinand);
518 unsigned int row = nanddev_pos_to_row(nand, &req->pos);
519 struct spi_mem_op op = SPINAND_PROG_EXEC_OP(row);
520
521 return spi_mem_exec_op(spinand->spimem, &op);
522 }
523
spinand_erase_op(struct spinand_device * spinand,const struct nand_pos * pos)524 static int spinand_erase_op(struct spinand_device *spinand,
525 const struct nand_pos *pos)
526 {
527 struct nand_device *nand = spinand_to_nand(spinand);
528 unsigned int row = nanddev_pos_to_row(nand, pos);
529 struct spi_mem_op op = SPINAND_BLK_ERASE_OP(row);
530
531 return spi_mem_exec_op(spinand->spimem, &op);
532 }
533
spinand_wait(struct spinand_device * spinand,unsigned long initial_delay_us,unsigned long poll_delay_us,u8 * s)534 static int spinand_wait(struct spinand_device *spinand,
535 unsigned long initial_delay_us,
536 unsigned long poll_delay_us,
537 u8 *s)
538 {
539 struct spi_mem_op op = SPINAND_GET_FEATURE_OP(REG_STATUS,
540 spinand->scratchbuf);
541 u8 status;
542 int ret;
543
544 ret = spi_mem_poll_status(spinand->spimem, &op, STATUS_BUSY, 0,
545 initial_delay_us,
546 poll_delay_us,
547 SPINAND_WAITRDY_TIMEOUT_MS);
548 if (ret)
549 return ret;
550
551 status = *spinand->scratchbuf;
552 if (!(status & STATUS_BUSY))
553 goto out;
554
555 /*
556 * Extra read, just in case the STATUS_READY bit has changed
557 * since our last check
558 */
559 ret = spinand_read_status(spinand, &status);
560 if (ret)
561 return ret;
562
563 out:
564 if (s)
565 *s = status;
566
567 return status & STATUS_BUSY ? -ETIMEDOUT : 0;
568 }
569
spinand_read_id_op(struct spinand_device * spinand,u8 naddr,u8 ndummy,u8 * buf)570 static int spinand_read_id_op(struct spinand_device *spinand, u8 naddr,
571 u8 ndummy, u8 *buf)
572 {
573 struct spi_mem_op op = SPINAND_READID_OP(
574 naddr, ndummy, spinand->scratchbuf, SPINAND_MAX_ID_LEN);
575 int ret;
576
577 ret = spi_mem_exec_op(spinand->spimem, &op);
578 if (!ret)
579 memcpy(buf, spinand->scratchbuf, SPINAND_MAX_ID_LEN);
580
581 return ret;
582 }
583
spinand_reset_op(struct spinand_device * spinand)584 static int spinand_reset_op(struct spinand_device *spinand)
585 {
586 struct spi_mem_op op = SPINAND_RESET_OP;
587 int ret;
588
589 ret = spi_mem_exec_op(spinand->spimem, &op);
590 if (ret)
591 return ret;
592
593 return spinand_wait(spinand,
594 SPINAND_RESET_INITIAL_DELAY_US,
595 SPINAND_RESET_POLL_DELAY_US,
596 NULL);
597 }
598
spinand_lock_block(struct spinand_device * spinand,u8 lock)599 static int spinand_lock_block(struct spinand_device *spinand, u8 lock)
600 {
601 return spinand_write_reg_op(spinand, REG_BLOCK_LOCK, lock);
602 }
603
spinand_read_page(struct spinand_device * spinand,const struct nand_page_io_req * req)604 static int spinand_read_page(struct spinand_device *spinand,
605 const struct nand_page_io_req *req)
606 {
607 struct nand_device *nand = spinand_to_nand(spinand);
608 u8 status;
609 int ret;
610
611 ret = nand_ecc_prepare_io_req(nand, (struct nand_page_io_req *)req);
612 if (ret)
613 return ret;
614
615 ret = spinand_load_page_op(spinand, req);
616 if (ret)
617 return ret;
618
619 ret = spinand_wait(spinand,
620 SPINAND_READ_INITIAL_DELAY_US,
621 SPINAND_READ_POLL_DELAY_US,
622 &status);
623 if (ret < 0)
624 return ret;
625
626 spinand_ondie_ecc_save_status(nand, status);
627
628 ret = spinand_read_from_cache_op(spinand, req);
629 if (ret)
630 return ret;
631
632 return nand_ecc_finish_io_req(nand, (struct nand_page_io_req *)req);
633 }
634
spinand_write_page(struct spinand_device * spinand,const struct nand_page_io_req * req)635 static int spinand_write_page(struct spinand_device *spinand,
636 const struct nand_page_io_req *req)
637 {
638 struct nand_device *nand = spinand_to_nand(spinand);
639 u8 status;
640 int ret;
641
642 ret = nand_ecc_prepare_io_req(nand, (struct nand_page_io_req *)req);
643 if (ret)
644 return ret;
645
646 ret = spinand_write_enable_op(spinand);
647 if (ret)
648 return ret;
649
650 ret = spinand_write_to_cache_op(spinand, req);
651 if (ret)
652 return ret;
653
654 ret = spinand_program_op(spinand, req);
655 if (ret)
656 return ret;
657
658 ret = spinand_wait(spinand,
659 SPINAND_WRITE_INITIAL_DELAY_US,
660 SPINAND_WRITE_POLL_DELAY_US,
661 &status);
662 if (ret)
663 return ret;
664
665 if (status & STATUS_PROG_FAILED)
666 return -EIO;
667
668 return nand_ecc_finish_io_req(nand, (struct nand_page_io_req *)req);
669 }
670
spinand_mtd_regular_page_read(struct mtd_info * mtd,loff_t from,struct mtd_oob_ops * ops,unsigned int * max_bitflips)671 static int spinand_mtd_regular_page_read(struct mtd_info *mtd, loff_t from,
672 struct mtd_oob_ops *ops,
673 unsigned int *max_bitflips)
674 {
675 struct spinand_device *spinand = mtd_to_spinand(mtd);
676 struct nand_device *nand = mtd_to_nanddev(mtd);
677 struct nand_io_iter iter;
678 bool disable_ecc = false;
679 bool ecc_failed = false;
680 int ret;
681
682 if (ops->mode == MTD_OPS_RAW || !mtd->ooblayout)
683 disable_ecc = true;
684
685 nanddev_io_for_each_page(nand, NAND_PAGE_READ, from, ops, &iter) {
686 if (disable_ecc)
687 iter.req.mode = MTD_OPS_RAW;
688
689 ret = spinand_select_target(spinand, iter.req.pos.target);
690 if (ret)
691 break;
692
693 ret = spinand_read_page(spinand, &iter.req);
694 if (ret < 0 && ret != -EBADMSG)
695 break;
696
697 if (ret == -EBADMSG)
698 ecc_failed = true;
699 else
700 *max_bitflips = max_t(unsigned int, *max_bitflips, ret);
701
702 ret = 0;
703 ops->retlen += iter.req.datalen;
704 ops->oobretlen += iter.req.ooblen;
705 }
706
707 if (ecc_failed && !ret)
708 ret = -EBADMSG;
709
710 return ret;
711 }
712
spinand_mtd_continuous_page_read(struct mtd_info * mtd,loff_t from,struct mtd_oob_ops * ops,unsigned int * max_bitflips)713 static int spinand_mtd_continuous_page_read(struct mtd_info *mtd, loff_t from,
714 struct mtd_oob_ops *ops,
715 unsigned int *max_bitflips)
716 {
717 struct spinand_device *spinand = mtd_to_spinand(mtd);
718 struct nand_device *nand = mtd_to_nanddev(mtd);
719 struct nand_io_iter iter;
720 u8 status;
721 int ret;
722
723 ret = spinand_cont_read_enable(spinand, true);
724 if (ret)
725 return ret;
726
727 /*
728 * The cache is divided into two halves. While one half of the cache has
729 * the requested data, the other half is loaded with the next chunk of data.
730 * Therefore, the host can read out the data continuously from page to page.
731 * Each data read must be a multiple of 4-bytes and full pages should be read;
732 * otherwise, the data output might get out of sequence from one read command
733 * to another.
734 */
735 nanddev_io_for_each_block(nand, NAND_PAGE_READ, from, ops, &iter) {
736 ret = spinand_select_target(spinand, iter.req.pos.target);
737 if (ret)
738 goto end_cont_read;
739
740 ret = nand_ecc_prepare_io_req(nand, &iter.req);
741 if (ret)
742 goto end_cont_read;
743
744 ret = spinand_load_page_op(spinand, &iter.req);
745 if (ret)
746 goto end_cont_read;
747
748 ret = spinand_wait(spinand, SPINAND_READ_INITIAL_DELAY_US,
749 SPINAND_READ_POLL_DELAY_US, NULL);
750 if (ret < 0)
751 goto end_cont_read;
752
753 ret = spinand_read_from_cache_op(spinand, &iter.req);
754 if (ret)
755 goto end_cont_read;
756
757 ops->retlen += iter.req.datalen;
758
759 ret = spinand_read_status(spinand, &status);
760 if (ret)
761 goto end_cont_read;
762
763 spinand_ondie_ecc_save_status(nand, status);
764
765 ret = nand_ecc_finish_io_req(nand, &iter.req);
766 if (ret < 0)
767 goto end_cont_read;
768
769 *max_bitflips = max_t(unsigned int, *max_bitflips, ret);
770 ret = 0;
771 }
772
773 end_cont_read:
774 /*
775 * Once all the data has been read out, the host can either pull CS#
776 * high and wait for tRST or manually clear the bit in the configuration
777 * register to terminate the continuous read operation. We have no
778 * guarantee the SPI controller drivers will effectively deassert the CS
779 * when we expect them to, so take the register based approach.
780 */
781 spinand_cont_read_enable(spinand, false);
782
783 return ret;
784 }
785
spinand_cont_read_init(struct spinand_device * spinand)786 static void spinand_cont_read_init(struct spinand_device *spinand)
787 {
788 struct nand_device *nand = spinand_to_nand(spinand);
789 enum nand_ecc_engine_type engine_type = nand->ecc.ctx.conf.engine_type;
790
791 /* OOBs cannot be retrieved so external/on-host ECC engine won't work */
792 if (spinand->set_cont_read &&
793 (engine_type == NAND_ECC_ENGINE_TYPE_ON_DIE ||
794 engine_type == NAND_ECC_ENGINE_TYPE_NONE)) {
795 spinand->cont_read_possible = true;
796 }
797 }
798
spinand_use_cont_read(struct mtd_info * mtd,loff_t from,struct mtd_oob_ops * ops)799 static bool spinand_use_cont_read(struct mtd_info *mtd, loff_t from,
800 struct mtd_oob_ops *ops)
801 {
802 struct nand_device *nand = mtd_to_nanddev(mtd);
803 struct spinand_device *spinand = nand_to_spinand(nand);
804 struct nand_pos start_pos, end_pos;
805
806 if (!spinand->cont_read_possible)
807 return false;
808
809 /* OOBs won't be retrieved */
810 if (ops->ooblen || ops->oobbuf)
811 return false;
812
813 nanddev_offs_to_pos(nand, from, &start_pos);
814 nanddev_offs_to_pos(nand, from + ops->len - 1, &end_pos);
815
816 /*
817 * Continuous reads never cross LUN boundaries. Some devices don't
818 * support crossing planes boundaries. Some devices don't even support
819 * crossing blocks boundaries. The common case being to read through UBI,
820 * we will very rarely read two consequent blocks or more, so it is safer
821 * and easier (can be improved) to only enable continuous reads when
822 * reading within the same erase block.
823 */
824 if (start_pos.target != end_pos.target ||
825 start_pos.plane != end_pos.plane ||
826 start_pos.eraseblock != end_pos.eraseblock)
827 return false;
828
829 return start_pos.page < end_pos.page;
830 }
831
spinand_mtd_read(struct mtd_info * mtd,loff_t from,struct mtd_oob_ops * ops)832 static int spinand_mtd_read(struct mtd_info *mtd, loff_t from,
833 struct mtd_oob_ops *ops)
834 {
835 struct spinand_device *spinand = mtd_to_spinand(mtd);
836 struct mtd_ecc_stats old_stats;
837 unsigned int max_bitflips = 0;
838 int ret;
839
840 mutex_lock(&spinand->lock);
841
842 old_stats = mtd->ecc_stats;
843
844 if (spinand_use_cont_read(mtd, from, ops))
845 ret = spinand_mtd_continuous_page_read(mtd, from, ops, &max_bitflips);
846 else
847 ret = spinand_mtd_regular_page_read(mtd, from, ops, &max_bitflips);
848
849 if (ops->stats) {
850 ops->stats->uncorrectable_errors +=
851 mtd->ecc_stats.failed - old_stats.failed;
852 ops->stats->corrected_bitflips +=
853 mtd->ecc_stats.corrected - old_stats.corrected;
854 }
855
856 mutex_unlock(&spinand->lock);
857
858 return ret ? ret : max_bitflips;
859 }
860
spinand_mtd_write(struct mtd_info * mtd,loff_t to,struct mtd_oob_ops * ops)861 static int spinand_mtd_write(struct mtd_info *mtd, loff_t to,
862 struct mtd_oob_ops *ops)
863 {
864 struct spinand_device *spinand = mtd_to_spinand(mtd);
865 struct nand_device *nand = mtd_to_nanddev(mtd);
866 struct nand_io_iter iter;
867 bool disable_ecc = false;
868 int ret = 0;
869
870 if (ops->mode == MTD_OPS_RAW || !mtd->ooblayout)
871 disable_ecc = true;
872
873 mutex_lock(&spinand->lock);
874
875 nanddev_io_for_each_page(nand, NAND_PAGE_WRITE, to, ops, &iter) {
876 if (disable_ecc)
877 iter.req.mode = MTD_OPS_RAW;
878
879 ret = spinand_select_target(spinand, iter.req.pos.target);
880 if (ret)
881 break;
882
883 ret = spinand_write_page(spinand, &iter.req);
884 if (ret)
885 break;
886
887 ops->retlen += iter.req.datalen;
888 ops->oobretlen += iter.req.ooblen;
889 }
890
891 mutex_unlock(&spinand->lock);
892
893 return ret;
894 }
895
spinand_isbad(struct nand_device * nand,const struct nand_pos * pos)896 static bool spinand_isbad(struct nand_device *nand, const struct nand_pos *pos)
897 {
898 struct spinand_device *spinand = nand_to_spinand(nand);
899 u8 marker[2] = { };
900 struct nand_page_io_req req = {
901 .pos = *pos,
902 .ooblen = sizeof(marker),
903 .ooboffs = 0,
904 .oobbuf.in = marker,
905 .mode = MTD_OPS_RAW,
906 };
907
908 spinand_select_target(spinand, pos->target);
909 spinand_read_page(spinand, &req);
910 if (marker[0] != 0xff || marker[1] != 0xff)
911 return true;
912
913 return false;
914 }
915
spinand_mtd_block_isbad(struct mtd_info * mtd,loff_t offs)916 static int spinand_mtd_block_isbad(struct mtd_info *mtd, loff_t offs)
917 {
918 struct nand_device *nand = mtd_to_nanddev(mtd);
919 struct spinand_device *spinand = nand_to_spinand(nand);
920 struct nand_pos pos;
921 int ret;
922
923 nanddev_offs_to_pos(nand, offs, &pos);
924 mutex_lock(&spinand->lock);
925 ret = nanddev_isbad(nand, &pos);
926 mutex_unlock(&spinand->lock);
927
928 return ret;
929 }
930
spinand_markbad(struct nand_device * nand,const struct nand_pos * pos)931 static int spinand_markbad(struct nand_device *nand, const struct nand_pos *pos)
932 {
933 struct spinand_device *spinand = nand_to_spinand(nand);
934 u8 marker[2] = { };
935 struct nand_page_io_req req = {
936 .pos = *pos,
937 .ooboffs = 0,
938 .ooblen = sizeof(marker),
939 .oobbuf.out = marker,
940 .mode = MTD_OPS_RAW,
941 };
942 int ret;
943
944 ret = spinand_select_target(spinand, pos->target);
945 if (ret)
946 return ret;
947
948 ret = spinand_write_enable_op(spinand);
949 if (ret)
950 return ret;
951
952 return spinand_write_page(spinand, &req);
953 }
954
spinand_mtd_block_markbad(struct mtd_info * mtd,loff_t offs)955 static int spinand_mtd_block_markbad(struct mtd_info *mtd, loff_t offs)
956 {
957 struct nand_device *nand = mtd_to_nanddev(mtd);
958 struct spinand_device *spinand = nand_to_spinand(nand);
959 struct nand_pos pos;
960 int ret;
961
962 nanddev_offs_to_pos(nand, offs, &pos);
963 mutex_lock(&spinand->lock);
964 ret = nanddev_markbad(nand, &pos);
965 mutex_unlock(&spinand->lock);
966
967 return ret;
968 }
969
spinand_erase(struct nand_device * nand,const struct nand_pos * pos)970 static int spinand_erase(struct nand_device *nand, const struct nand_pos *pos)
971 {
972 struct spinand_device *spinand = nand_to_spinand(nand);
973 u8 status;
974 int ret;
975
976 ret = spinand_select_target(spinand, pos->target);
977 if (ret)
978 return ret;
979
980 ret = spinand_write_enable_op(spinand);
981 if (ret)
982 return ret;
983
984 ret = spinand_erase_op(spinand, pos);
985 if (ret)
986 return ret;
987
988 ret = spinand_wait(spinand,
989 SPINAND_ERASE_INITIAL_DELAY_US,
990 SPINAND_ERASE_POLL_DELAY_US,
991 &status);
992
993 if (!ret && (status & STATUS_ERASE_FAILED))
994 ret = -EIO;
995
996 return ret;
997 }
998
spinand_mtd_erase(struct mtd_info * mtd,struct erase_info * einfo)999 static int spinand_mtd_erase(struct mtd_info *mtd,
1000 struct erase_info *einfo)
1001 {
1002 struct spinand_device *spinand = mtd_to_spinand(mtd);
1003 int ret;
1004
1005 mutex_lock(&spinand->lock);
1006 ret = nanddev_mtd_erase(mtd, einfo);
1007 mutex_unlock(&spinand->lock);
1008
1009 return ret;
1010 }
1011
spinand_mtd_block_isreserved(struct mtd_info * mtd,loff_t offs)1012 static int spinand_mtd_block_isreserved(struct mtd_info *mtd, loff_t offs)
1013 {
1014 struct spinand_device *spinand = mtd_to_spinand(mtd);
1015 struct nand_device *nand = mtd_to_nanddev(mtd);
1016 struct nand_pos pos;
1017 int ret;
1018
1019 nanddev_offs_to_pos(nand, offs, &pos);
1020 mutex_lock(&spinand->lock);
1021 ret = nanddev_isreserved(nand, &pos);
1022 mutex_unlock(&spinand->lock);
1023
1024 return ret;
1025 }
1026
spinand_create_dirmap(struct spinand_device * spinand,unsigned int plane)1027 static int spinand_create_dirmap(struct spinand_device *spinand,
1028 unsigned int plane)
1029 {
1030 struct nand_device *nand = spinand_to_nand(spinand);
1031 struct spi_mem_dirmap_info info = {
1032 .length = nanddev_page_size(nand) +
1033 nanddev_per_page_oobsize(nand),
1034 };
1035 struct spi_mem_dirmap_desc *desc;
1036
1037 if (spinand->cont_read_possible)
1038 info.length = nanddev_eraseblock_size(nand);
1039
1040 /* The plane number is passed in MSB just above the column address */
1041 info.offset = plane << fls(nand->memorg.pagesize);
1042
1043 info.op_tmpl = *spinand->op_templates.update_cache;
1044 desc = devm_spi_mem_dirmap_create(&spinand->spimem->spi->dev,
1045 spinand->spimem, &info);
1046 if (IS_ERR(desc))
1047 return PTR_ERR(desc);
1048
1049 spinand->dirmaps[plane].wdesc = desc;
1050
1051 info.op_tmpl = *spinand->op_templates.read_cache;
1052 desc = devm_spi_mem_dirmap_create(&spinand->spimem->spi->dev,
1053 spinand->spimem, &info);
1054 if (IS_ERR(desc))
1055 return PTR_ERR(desc);
1056
1057 spinand->dirmaps[plane].rdesc = desc;
1058
1059 if (nand->ecc.engine->integration != NAND_ECC_ENGINE_INTEGRATION_PIPELINED) {
1060 spinand->dirmaps[plane].wdesc_ecc = spinand->dirmaps[plane].wdesc;
1061 spinand->dirmaps[plane].rdesc_ecc = spinand->dirmaps[plane].rdesc;
1062
1063 return 0;
1064 }
1065
1066 info.op_tmpl = *spinand->op_templates.update_cache;
1067 info.op_tmpl.data.ecc = true;
1068 desc = devm_spi_mem_dirmap_create(&spinand->spimem->spi->dev,
1069 spinand->spimem, &info);
1070 if (IS_ERR(desc))
1071 return PTR_ERR(desc);
1072
1073 spinand->dirmaps[plane].wdesc_ecc = desc;
1074
1075 info.op_tmpl = *spinand->op_templates.read_cache;
1076 info.op_tmpl.data.ecc = true;
1077 desc = devm_spi_mem_dirmap_create(&spinand->spimem->spi->dev,
1078 spinand->spimem, &info);
1079 if (IS_ERR(desc))
1080 return PTR_ERR(desc);
1081
1082 spinand->dirmaps[plane].rdesc_ecc = desc;
1083
1084 return 0;
1085 }
1086
spinand_create_dirmaps(struct spinand_device * spinand)1087 static int spinand_create_dirmaps(struct spinand_device *spinand)
1088 {
1089 struct nand_device *nand = spinand_to_nand(spinand);
1090 int i, ret;
1091
1092 spinand->dirmaps = devm_kzalloc(&spinand->spimem->spi->dev,
1093 sizeof(*spinand->dirmaps) *
1094 nand->memorg.planes_per_lun,
1095 GFP_KERNEL);
1096 if (!spinand->dirmaps)
1097 return -ENOMEM;
1098
1099 for (i = 0; i < nand->memorg.planes_per_lun; i++) {
1100 ret = spinand_create_dirmap(spinand, i);
1101 if (ret)
1102 return ret;
1103 }
1104
1105 return 0;
1106 }
1107
1108 static const struct nand_ops spinand_ops = {
1109 .erase = spinand_erase,
1110 .markbad = spinand_markbad,
1111 .isbad = spinand_isbad,
1112 };
1113
1114 static const struct spinand_manufacturer *spinand_manufacturers[] = {
1115 &alliancememory_spinand_manufacturer,
1116 &ato_spinand_manufacturer,
1117 &esmt_c8_spinand_manufacturer,
1118 &foresee_spinand_manufacturer,
1119 &gigadevice_spinand_manufacturer,
1120 ¯onix_spinand_manufacturer,
1121 µn_spinand_manufacturer,
1122 ¶gon_spinand_manufacturer,
1123 &toshiba_spinand_manufacturer,
1124 &winbond_spinand_manufacturer,
1125 &xtx_spinand_manufacturer,
1126 };
1127
spinand_manufacturer_match(struct spinand_device * spinand,enum spinand_readid_method rdid_method)1128 static int spinand_manufacturer_match(struct spinand_device *spinand,
1129 enum spinand_readid_method rdid_method)
1130 {
1131 u8 *id = spinand->id.data;
1132 unsigned int i;
1133 int ret;
1134
1135 for (i = 0; i < ARRAY_SIZE(spinand_manufacturers); i++) {
1136 const struct spinand_manufacturer *manufacturer =
1137 spinand_manufacturers[i];
1138
1139 if (id[0] != manufacturer->id)
1140 continue;
1141
1142 ret = spinand_match_and_init(spinand,
1143 manufacturer->chips,
1144 manufacturer->nchips,
1145 rdid_method);
1146 if (ret < 0)
1147 continue;
1148
1149 spinand->manufacturer = manufacturer;
1150 return 0;
1151 }
1152 return -EOPNOTSUPP;
1153 }
1154
spinand_id_detect(struct spinand_device * spinand)1155 static int spinand_id_detect(struct spinand_device *spinand)
1156 {
1157 u8 *id = spinand->id.data;
1158 int ret;
1159
1160 ret = spinand_read_id_op(spinand, 0, 0, id);
1161 if (ret)
1162 return ret;
1163 ret = spinand_manufacturer_match(spinand, SPINAND_READID_METHOD_OPCODE);
1164 if (!ret)
1165 return 0;
1166
1167 ret = spinand_read_id_op(spinand, 1, 0, id);
1168 if (ret)
1169 return ret;
1170 ret = spinand_manufacturer_match(spinand,
1171 SPINAND_READID_METHOD_OPCODE_ADDR);
1172 if (!ret)
1173 return 0;
1174
1175 ret = spinand_read_id_op(spinand, 0, 1, id);
1176 if (ret)
1177 return ret;
1178 ret = spinand_manufacturer_match(spinand,
1179 SPINAND_READID_METHOD_OPCODE_DUMMY);
1180
1181 return ret;
1182 }
1183
spinand_manufacturer_init(struct spinand_device * spinand)1184 static int spinand_manufacturer_init(struct spinand_device *spinand)
1185 {
1186 if (spinand->manufacturer->ops->init)
1187 return spinand->manufacturer->ops->init(spinand);
1188
1189 return 0;
1190 }
1191
spinand_manufacturer_cleanup(struct spinand_device * spinand)1192 static void spinand_manufacturer_cleanup(struct spinand_device *spinand)
1193 {
1194 /* Release manufacturer private data */
1195 if (spinand->manufacturer->ops->cleanup)
1196 return spinand->manufacturer->ops->cleanup(spinand);
1197 }
1198
1199 static const struct spi_mem_op *
spinand_select_op_variant(struct spinand_device * spinand,const struct spinand_op_variants * variants)1200 spinand_select_op_variant(struct spinand_device *spinand,
1201 const struct spinand_op_variants *variants)
1202 {
1203 struct nand_device *nand = spinand_to_nand(spinand);
1204 unsigned int i;
1205
1206 for (i = 0; i < variants->nops; i++) {
1207 struct spi_mem_op op = variants->ops[i];
1208 unsigned int nbytes;
1209 int ret;
1210
1211 nbytes = nanddev_per_page_oobsize(nand) +
1212 nanddev_page_size(nand);
1213
1214 while (nbytes) {
1215 op.data.nbytes = nbytes;
1216 ret = spi_mem_adjust_op_size(spinand->spimem, &op);
1217 if (ret)
1218 break;
1219
1220 if (!spi_mem_supports_op(spinand->spimem, &op))
1221 break;
1222
1223 nbytes -= op.data.nbytes;
1224 }
1225
1226 if (!nbytes)
1227 return &variants->ops[i];
1228 }
1229
1230 return NULL;
1231 }
1232
1233 /**
1234 * spinand_match_and_init() - Try to find a match between a device ID and an
1235 * entry in a spinand_info table
1236 * @spinand: SPI NAND object
1237 * @table: SPI NAND device description table
1238 * @table_size: size of the device description table
1239 * @rdid_method: read id method to match
1240 *
1241 * Match between a device ID retrieved through the READ_ID command and an
1242 * entry in the SPI NAND description table. If a match is found, the spinand
1243 * object will be initialized with information provided by the matching
1244 * spinand_info entry.
1245 *
1246 * Return: 0 on success, a negative error code otherwise.
1247 */
spinand_match_and_init(struct spinand_device * spinand,const struct spinand_info * table,unsigned int table_size,enum spinand_readid_method rdid_method)1248 int spinand_match_and_init(struct spinand_device *spinand,
1249 const struct spinand_info *table,
1250 unsigned int table_size,
1251 enum spinand_readid_method rdid_method)
1252 {
1253 u8 *id = spinand->id.data;
1254 struct nand_device *nand = spinand_to_nand(spinand);
1255 unsigned int i;
1256
1257 for (i = 0; i < table_size; i++) {
1258 const struct spinand_info *info = &table[i];
1259 const struct spi_mem_op *op;
1260
1261 if (rdid_method != info->devid.method)
1262 continue;
1263
1264 if (memcmp(id + 1, info->devid.id, info->devid.len))
1265 continue;
1266
1267 nand->memorg = table[i].memorg;
1268 nanddev_set_ecc_requirements(nand, &table[i].eccreq);
1269 spinand->eccinfo = table[i].eccinfo;
1270 spinand->flags = table[i].flags;
1271 spinand->id.len = 1 + table[i].devid.len;
1272 spinand->select_target = table[i].select_target;
1273 spinand->set_cont_read = table[i].set_cont_read;
1274
1275 op = spinand_select_op_variant(spinand,
1276 info->op_variants.read_cache);
1277 if (!op)
1278 return -ENOTSUPP;
1279
1280 spinand->op_templates.read_cache = op;
1281
1282 op = spinand_select_op_variant(spinand,
1283 info->op_variants.write_cache);
1284 if (!op)
1285 return -ENOTSUPP;
1286
1287 spinand->op_templates.write_cache = op;
1288
1289 op = spinand_select_op_variant(spinand,
1290 info->op_variants.update_cache);
1291 spinand->op_templates.update_cache = op;
1292
1293 return 0;
1294 }
1295
1296 return -ENOTSUPP;
1297 }
1298
spinand_detect(struct spinand_device * spinand)1299 static int spinand_detect(struct spinand_device *spinand)
1300 {
1301 struct device *dev = &spinand->spimem->spi->dev;
1302 struct nand_device *nand = spinand_to_nand(spinand);
1303 int ret;
1304
1305 ret = spinand_reset_op(spinand);
1306 if (ret)
1307 return ret;
1308
1309 ret = spinand_id_detect(spinand);
1310 if (ret) {
1311 dev_err(dev, "unknown raw ID %*phN\n", SPINAND_MAX_ID_LEN,
1312 spinand->id.data);
1313 return ret;
1314 }
1315
1316 if (nand->memorg.ntargets > 1 && !spinand->select_target) {
1317 dev_err(dev,
1318 "SPI NANDs with more than one die must implement ->select_target()\n");
1319 return -EINVAL;
1320 }
1321
1322 dev_info(&spinand->spimem->spi->dev,
1323 "%s SPI NAND was found.\n", spinand->manufacturer->name);
1324 dev_info(&spinand->spimem->spi->dev,
1325 "%llu MiB, block size: %zu KiB, page size: %zu, OOB size: %u\n",
1326 nanddev_size(nand) >> 20, nanddev_eraseblock_size(nand) >> 10,
1327 nanddev_page_size(nand), nanddev_per_page_oobsize(nand));
1328
1329 return 0;
1330 }
1331
spinand_init_flash(struct spinand_device * spinand)1332 static int spinand_init_flash(struct spinand_device *spinand)
1333 {
1334 struct device *dev = &spinand->spimem->spi->dev;
1335 struct nand_device *nand = spinand_to_nand(spinand);
1336 int ret, i;
1337
1338 ret = spinand_read_cfg(spinand);
1339 if (ret)
1340 return ret;
1341
1342 ret = spinand_init_quad_enable(spinand);
1343 if (ret)
1344 return ret;
1345
1346 ret = spinand_upd_cfg(spinand, CFG_OTP_ENABLE, 0);
1347 if (ret)
1348 return ret;
1349
1350 ret = spinand_manufacturer_init(spinand);
1351 if (ret) {
1352 dev_err(dev,
1353 "Failed to initialize the SPI NAND chip (err = %d)\n",
1354 ret);
1355 return ret;
1356 }
1357
1358 /* After power up, all blocks are locked, so unlock them here. */
1359 for (i = 0; i < nand->memorg.ntargets; i++) {
1360 ret = spinand_select_target(spinand, i);
1361 if (ret)
1362 break;
1363
1364 ret = spinand_lock_block(spinand, BL_ALL_UNLOCKED);
1365 if (ret)
1366 break;
1367 }
1368
1369 if (ret)
1370 spinand_manufacturer_cleanup(spinand);
1371
1372 return ret;
1373 }
1374
spinand_mtd_resume(struct mtd_info * mtd)1375 static void spinand_mtd_resume(struct mtd_info *mtd)
1376 {
1377 struct spinand_device *spinand = mtd_to_spinand(mtd);
1378 int ret;
1379
1380 ret = spinand_reset_op(spinand);
1381 if (ret)
1382 return;
1383
1384 ret = spinand_init_flash(spinand);
1385 if (ret)
1386 return;
1387
1388 spinand_ecc_enable(spinand, false);
1389 }
1390
spinand_init(struct spinand_device * spinand)1391 static int spinand_init(struct spinand_device *spinand)
1392 {
1393 struct device *dev = &spinand->spimem->spi->dev;
1394 struct mtd_info *mtd = spinand_to_mtd(spinand);
1395 struct nand_device *nand = mtd_to_nanddev(mtd);
1396 int ret;
1397
1398 /*
1399 * We need a scratch buffer because the spi_mem interface requires that
1400 * buf passed in spi_mem_op->data.buf be DMA-able.
1401 */
1402 spinand->scratchbuf = kzalloc(SPINAND_MAX_ID_LEN, GFP_KERNEL);
1403 if (!spinand->scratchbuf)
1404 return -ENOMEM;
1405
1406 ret = spinand_detect(spinand);
1407 if (ret)
1408 goto err_free_bufs;
1409
1410 /*
1411 * Use kzalloc() instead of devm_kzalloc() here, because some drivers
1412 * may use this buffer for DMA access.
1413 * Memory allocated by devm_ does not guarantee DMA-safe alignment.
1414 */
1415 spinand->databuf = kzalloc(nanddev_eraseblock_size(nand),
1416 GFP_KERNEL);
1417 if (!spinand->databuf) {
1418 ret = -ENOMEM;
1419 goto err_free_bufs;
1420 }
1421
1422 spinand->oobbuf = spinand->databuf + nanddev_page_size(nand);
1423
1424 ret = spinand_init_cfg_cache(spinand);
1425 if (ret)
1426 goto err_free_bufs;
1427
1428 ret = spinand_init_flash(spinand);
1429 if (ret)
1430 goto err_free_bufs;
1431
1432 ret = nanddev_init(nand, &spinand_ops, THIS_MODULE);
1433 if (ret)
1434 goto err_manuf_cleanup;
1435
1436 /* SPI-NAND default ECC engine is on-die */
1437 nand->ecc.defaults.engine_type = NAND_ECC_ENGINE_TYPE_ON_DIE;
1438 nand->ecc.ondie_engine = &spinand_ondie_ecc_engine;
1439
1440 spinand_ecc_enable(spinand, false);
1441 ret = nanddev_ecc_engine_init(nand);
1442 if (ret)
1443 goto err_cleanup_nanddev;
1444
1445 /*
1446 * Continuous read can only be enabled with an on-die ECC engine, so the
1447 * ECC initialization must have happened previously.
1448 */
1449 spinand_cont_read_init(spinand);
1450
1451 mtd->_read_oob = spinand_mtd_read;
1452 mtd->_write_oob = spinand_mtd_write;
1453 mtd->_block_isbad = spinand_mtd_block_isbad;
1454 mtd->_block_markbad = spinand_mtd_block_markbad;
1455 mtd->_block_isreserved = spinand_mtd_block_isreserved;
1456 mtd->_erase = spinand_mtd_erase;
1457 mtd->_max_bad_blocks = nanddev_mtd_max_bad_blocks;
1458 mtd->_resume = spinand_mtd_resume;
1459
1460 if (nand->ecc.engine) {
1461 ret = mtd_ooblayout_count_freebytes(mtd);
1462 if (ret < 0)
1463 goto err_cleanup_ecc_engine;
1464 }
1465
1466 mtd->oobavail = ret;
1467
1468 /* Propagate ECC information to mtd_info */
1469 mtd->ecc_strength = nanddev_get_ecc_conf(nand)->strength;
1470 mtd->ecc_step_size = nanddev_get_ecc_conf(nand)->step_size;
1471 mtd->bitflip_threshold = DIV_ROUND_UP(mtd->ecc_strength * 3, 4);
1472
1473 ret = spinand_create_dirmaps(spinand);
1474 if (ret) {
1475 dev_err(dev,
1476 "Failed to create direct mappings for read/write operations (err = %d)\n",
1477 ret);
1478 goto err_cleanup_ecc_engine;
1479 }
1480
1481 return 0;
1482
1483 err_cleanup_ecc_engine:
1484 nanddev_ecc_engine_cleanup(nand);
1485
1486 err_cleanup_nanddev:
1487 nanddev_cleanup(nand);
1488
1489 err_manuf_cleanup:
1490 spinand_manufacturer_cleanup(spinand);
1491
1492 err_free_bufs:
1493 kfree(spinand->databuf);
1494 kfree(spinand->scratchbuf);
1495 return ret;
1496 }
1497
spinand_cleanup(struct spinand_device * spinand)1498 static void spinand_cleanup(struct spinand_device *spinand)
1499 {
1500 struct nand_device *nand = spinand_to_nand(spinand);
1501
1502 nanddev_ecc_engine_cleanup(nand);
1503 nanddev_cleanup(nand);
1504 spinand_manufacturer_cleanup(spinand);
1505 kfree(spinand->databuf);
1506 kfree(spinand->scratchbuf);
1507 }
1508
spinand_probe(struct spi_mem * mem)1509 static int spinand_probe(struct spi_mem *mem)
1510 {
1511 struct spinand_device *spinand;
1512 struct mtd_info *mtd;
1513 int ret;
1514
1515 spinand = devm_kzalloc(&mem->spi->dev, sizeof(*spinand),
1516 GFP_KERNEL);
1517 if (!spinand)
1518 return -ENOMEM;
1519
1520 spinand->spimem = mem;
1521 spi_mem_set_drvdata(mem, spinand);
1522 spinand_set_of_node(spinand, mem->spi->dev.of_node);
1523 mutex_init(&spinand->lock);
1524 mtd = spinand_to_mtd(spinand);
1525 mtd->dev.parent = &mem->spi->dev;
1526
1527 ret = spinand_init(spinand);
1528 if (ret)
1529 return ret;
1530
1531 ret = mtd_device_register(mtd, NULL, 0);
1532 if (ret)
1533 goto err_spinand_cleanup;
1534
1535 return 0;
1536
1537 err_spinand_cleanup:
1538 spinand_cleanup(spinand);
1539
1540 return ret;
1541 }
1542
spinand_remove(struct spi_mem * mem)1543 static int spinand_remove(struct spi_mem *mem)
1544 {
1545 struct spinand_device *spinand;
1546 struct mtd_info *mtd;
1547 int ret;
1548
1549 spinand = spi_mem_get_drvdata(mem);
1550 mtd = spinand_to_mtd(spinand);
1551
1552 ret = mtd_device_unregister(mtd);
1553 if (ret)
1554 return ret;
1555
1556 spinand_cleanup(spinand);
1557
1558 return 0;
1559 }
1560
1561 static const struct spi_device_id spinand_ids[] = {
1562 { .name = "spi-nand" },
1563 { /* sentinel */ },
1564 };
1565 MODULE_DEVICE_TABLE(spi, spinand_ids);
1566
1567 #ifdef CONFIG_OF
1568 static const struct of_device_id spinand_of_ids[] = {
1569 { .compatible = "spi-nand" },
1570 { /* sentinel */ },
1571 };
1572 MODULE_DEVICE_TABLE(of, spinand_of_ids);
1573 #endif
1574
1575 static struct spi_mem_driver spinand_drv = {
1576 .spidrv = {
1577 .id_table = spinand_ids,
1578 .driver = {
1579 .name = "spi-nand",
1580 .of_match_table = of_match_ptr(spinand_of_ids),
1581 },
1582 },
1583 .probe = spinand_probe,
1584 .remove = spinand_remove,
1585 };
1586 module_spi_mem_driver(spinand_drv);
1587
1588 MODULE_DESCRIPTION("SPI NAND framework");
1589 MODULE_AUTHOR("Peter Pan<peterpandong@micron.com>");
1590 MODULE_LICENSE("GPL v2");
1591