• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0+
2 /* Renesas R-Car CAN FD device driver
3  *
4  * Copyright (C) 2015 Renesas Electronics Corp.
5  */
6 
7 /* The R-Car CAN FD controller can operate in either one of the below two modes
8  *  - CAN FD only mode
9  *  - Classical CAN (CAN 2.0) only mode
10  *
11  * This driver puts the controller in CAN FD only mode by default. In this
12  * mode, the controller acts as a CAN FD node that can also interoperate with
13  * CAN 2.0 nodes.
14  *
15  * To switch the controller to Classical CAN (CAN 2.0) only mode, add
16  * "renesas,no-can-fd" optional property to the device tree node. A h/w reset is
17  * also required to switch modes.
18  *
19  * Note: The h/w manual register naming convention is clumsy and not acceptable
20  * to use as it is in the driver. However, those names are added as comments
21  * wherever it is modified to a readable name.
22  */
23 
24 #include <linux/bitmap.h>
25 #include <linux/bitops.h>
26 #include <linux/can/dev.h>
27 #include <linux/clk.h>
28 #include <linux/errno.h>
29 #include <linux/ethtool.h>
30 #include <linux/interrupt.h>
31 #include <linux/iopoll.h>
32 #include <linux/kernel.h>
33 #include <linux/module.h>
34 #include <linux/moduleparam.h>
35 #include <linux/netdevice.h>
36 #include <linux/of.h>
37 #include <linux/phy/phy.h>
38 #include <linux/platform_device.h>
39 #include <linux/reset.h>
40 #include <linux/types.h>
41 
42 #define RCANFD_DRV_NAME			"rcar_canfd"
43 
44 /* Global register bits */
45 
46 /* RSCFDnCFDGRMCFG */
47 #define RCANFD_GRMCFG_RCMC		BIT(0)
48 
49 /* RSCFDnCFDGCFG / RSCFDnGCFG */
50 #define RCANFD_GCFG_EEFE		BIT(6)
51 #define RCANFD_GCFG_CMPOC		BIT(5)	/* CAN FD only */
52 #define RCANFD_GCFG_DCS			BIT(4)
53 #define RCANFD_GCFG_DCE			BIT(1)
54 #define RCANFD_GCFG_TPRI		BIT(0)
55 
56 /* RSCFDnCFDGCTR / RSCFDnGCTR */
57 #define RCANFD_GCTR_TSRST		BIT(16)
58 #define RCANFD_GCTR_CFMPOFIE		BIT(11)	/* CAN FD only */
59 #define RCANFD_GCTR_THLEIE		BIT(10)
60 #define RCANFD_GCTR_MEIE		BIT(9)
61 #define RCANFD_GCTR_DEIE		BIT(8)
62 #define RCANFD_GCTR_GSLPR		BIT(2)
63 #define RCANFD_GCTR_GMDC_MASK		(0x3)
64 #define RCANFD_GCTR_GMDC_GOPM		(0x0)
65 #define RCANFD_GCTR_GMDC_GRESET		(0x1)
66 #define RCANFD_GCTR_GMDC_GTEST		(0x2)
67 
68 /* RSCFDnCFDGSTS / RSCFDnGSTS */
69 #define RCANFD_GSTS_GRAMINIT		BIT(3)
70 #define RCANFD_GSTS_GSLPSTS		BIT(2)
71 #define RCANFD_GSTS_GHLTSTS		BIT(1)
72 #define RCANFD_GSTS_GRSTSTS		BIT(0)
73 /* Non-operational status */
74 #define RCANFD_GSTS_GNOPM		(BIT(0) | BIT(1) | BIT(2) | BIT(3))
75 
76 /* RSCFDnCFDGERFL / RSCFDnGERFL */
77 #define RCANFD_GERFL_EEF0_7		GENMASK(23, 16)
78 #define RCANFD_GERFL_EEF(ch)		BIT(16 + (ch))
79 #define RCANFD_GERFL_CMPOF		BIT(3)	/* CAN FD only */
80 #define RCANFD_GERFL_THLES		BIT(2)
81 #define RCANFD_GERFL_MES		BIT(1)
82 #define RCANFD_GERFL_DEF		BIT(0)
83 
84 #define RCANFD_GERFL_ERR(gpriv, x) \
85 	((x) & (reg_gen4(gpriv, RCANFD_GERFL_EEF0_7, \
86 			 RCANFD_GERFL_EEF(0) | RCANFD_GERFL_EEF(1)) | \
87 		RCANFD_GERFL_MES | \
88 		((gpriv)->fdmode ? RCANFD_GERFL_CMPOF : 0)))
89 
90 /* AFL Rx rules registers */
91 
92 /* RSCFDnCFDGAFLCFG0 / RSCFDnGAFLCFG0 */
93 #define RCANFD_GAFLCFG_SETRNC(gpriv, n, x) \
94 	(((x) & reg_gen4(gpriv, 0x1ff, 0xff)) << \
95 	 (reg_gen4(gpriv, 16, 24) - ((n) & 1) * reg_gen4(gpriv, 16, 8)))
96 
97 #define RCANFD_GAFLCFG_GETRNC(gpriv, n, x) \
98 	(((x) >> (reg_gen4(gpriv, 16, 24) - ((n) & 1) * reg_gen4(gpriv, 16, 8))) & \
99 	 reg_gen4(gpriv, 0x1ff, 0xff))
100 
101 /* RSCFDnCFDGAFLECTR / RSCFDnGAFLECTR */
102 #define RCANFD_GAFLECTR_AFLDAE		BIT(8)
103 #define RCANFD_GAFLECTR_AFLPN(gpriv, x)	((x) & reg_gen4(gpriv, 0x7f, 0x1f))
104 
105 /* RSCFDnCFDGAFLIDj / RSCFDnGAFLIDj */
106 #define RCANFD_GAFLID_GAFLLB		BIT(29)
107 
108 /* RSCFDnCFDGAFLP1_j / RSCFDnGAFLP1_j */
109 #define RCANFD_GAFLP1_GAFLFDP(x)	(1 << (x))
110 
111 /* Channel register bits */
112 
113 /* RSCFDnCmCFG - Classical CAN only */
114 #define RCANFD_CFG_SJW(x)		(((x) & 0x3) << 24)
115 #define RCANFD_CFG_TSEG2(x)		(((x) & 0x7) << 20)
116 #define RCANFD_CFG_TSEG1(x)		(((x) & 0xf) << 16)
117 #define RCANFD_CFG_BRP(x)		(((x) & 0x3ff) << 0)
118 
119 /* RSCFDnCFDCmNCFG - CAN FD only */
120 #define RCANFD_NCFG_NTSEG2(gpriv, x) \
121 	(((x) & reg_gen4(gpriv, 0x7f, 0x1f)) << reg_gen4(gpriv, 25, 24))
122 
123 #define RCANFD_NCFG_NTSEG1(gpriv, x) \
124 	(((x) & reg_gen4(gpriv, 0xff, 0x7f)) << reg_gen4(gpriv, 17, 16))
125 
126 #define RCANFD_NCFG_NSJW(gpriv, x) \
127 	(((x) & reg_gen4(gpriv, 0x7f, 0x1f)) << reg_gen4(gpriv, 10, 11))
128 
129 #define RCANFD_NCFG_NBRP(x)		(((x) & 0x3ff) << 0)
130 
131 /* RSCFDnCFDCmCTR / RSCFDnCmCTR */
132 #define RCANFD_CCTR_CTME		BIT(24)
133 #define RCANFD_CCTR_ERRD		BIT(23)
134 #define RCANFD_CCTR_BOM_MASK		(0x3 << 21)
135 #define RCANFD_CCTR_BOM_ISO		(0x0 << 21)
136 #define RCANFD_CCTR_BOM_BENTRY		(0x1 << 21)
137 #define RCANFD_CCTR_BOM_BEND		(0x2 << 21)
138 #define RCANFD_CCTR_TDCVFIE		BIT(19)
139 #define RCANFD_CCTR_SOCOIE		BIT(18)
140 #define RCANFD_CCTR_EOCOIE		BIT(17)
141 #define RCANFD_CCTR_TAIE		BIT(16)
142 #define RCANFD_CCTR_ALIE		BIT(15)
143 #define RCANFD_CCTR_BLIE		BIT(14)
144 #define RCANFD_CCTR_OLIE		BIT(13)
145 #define RCANFD_CCTR_BORIE		BIT(12)
146 #define RCANFD_CCTR_BOEIE		BIT(11)
147 #define RCANFD_CCTR_EPIE		BIT(10)
148 #define RCANFD_CCTR_EWIE		BIT(9)
149 #define RCANFD_CCTR_BEIE		BIT(8)
150 #define RCANFD_CCTR_CSLPR		BIT(2)
151 #define RCANFD_CCTR_CHMDC_MASK		(0x3)
152 #define RCANFD_CCTR_CHDMC_COPM		(0x0)
153 #define RCANFD_CCTR_CHDMC_CRESET	(0x1)
154 #define RCANFD_CCTR_CHDMC_CHLT		(0x2)
155 
156 /* RSCFDnCFDCmSTS / RSCFDnCmSTS */
157 #define RCANFD_CSTS_COMSTS		BIT(7)
158 #define RCANFD_CSTS_RECSTS		BIT(6)
159 #define RCANFD_CSTS_TRMSTS		BIT(5)
160 #define RCANFD_CSTS_BOSTS		BIT(4)
161 #define RCANFD_CSTS_EPSTS		BIT(3)
162 #define RCANFD_CSTS_SLPSTS		BIT(2)
163 #define RCANFD_CSTS_HLTSTS		BIT(1)
164 #define RCANFD_CSTS_CRSTSTS		BIT(0)
165 
166 #define RCANFD_CSTS_TECCNT(x)		(((x) >> 24) & 0xff)
167 #define RCANFD_CSTS_RECCNT(x)		(((x) >> 16) & 0xff)
168 
169 /* RSCFDnCFDCmERFL / RSCFDnCmERFL */
170 #define RCANFD_CERFL_ADERR		BIT(14)
171 #define RCANFD_CERFL_B0ERR		BIT(13)
172 #define RCANFD_CERFL_B1ERR		BIT(12)
173 #define RCANFD_CERFL_CERR		BIT(11)
174 #define RCANFD_CERFL_AERR		BIT(10)
175 #define RCANFD_CERFL_FERR		BIT(9)
176 #define RCANFD_CERFL_SERR		BIT(8)
177 #define RCANFD_CERFL_ALF		BIT(7)
178 #define RCANFD_CERFL_BLF		BIT(6)
179 #define RCANFD_CERFL_OVLF		BIT(5)
180 #define RCANFD_CERFL_BORF		BIT(4)
181 #define RCANFD_CERFL_BOEF		BIT(3)
182 #define RCANFD_CERFL_EPF		BIT(2)
183 #define RCANFD_CERFL_EWF		BIT(1)
184 #define RCANFD_CERFL_BEF		BIT(0)
185 
186 #define RCANFD_CERFL_ERR(x)		((x) & (0x7fff)) /* above bits 14:0 */
187 
188 /* RSCFDnCFDCmDCFG */
189 #define RCANFD_DCFG_DSJW(gpriv, x)	(((x) & reg_gen4(gpriv, 0xf, 0x7)) << 24)
190 
191 #define RCANFD_DCFG_DTSEG2(gpriv, x) \
192 	(((x) & reg_gen4(gpriv, 0x0f, 0x7)) << reg_gen4(gpriv, 16, 20))
193 
194 #define RCANFD_DCFG_DTSEG1(gpriv, x) \
195 	(((x) & reg_gen4(gpriv, 0x1f, 0xf)) << reg_gen4(gpriv, 8, 16))
196 
197 #define RCANFD_DCFG_DBRP(x)		(((x) & 0xff) << 0)
198 
199 /* RSCFDnCFDCmFDCFG */
200 #define RCANFD_GEN4_FDCFG_CLOE		BIT(30)
201 #define RCANFD_GEN4_FDCFG_FDOE		BIT(28)
202 #define RCANFD_FDCFG_TDCE		BIT(9)
203 #define RCANFD_FDCFG_TDCOC		BIT(8)
204 #define RCANFD_FDCFG_TDCO(x)		(((x) & 0x7f) >> 16)
205 
206 /* RSCFDnCFDRFCCx */
207 #define RCANFD_RFCC_RFIM		BIT(12)
208 #define RCANFD_RFCC_RFDC(x)		(((x) & 0x7) << 8)
209 #define RCANFD_RFCC_RFPLS(x)		(((x) & 0x7) << 4)
210 #define RCANFD_RFCC_RFIE		BIT(1)
211 #define RCANFD_RFCC_RFE			BIT(0)
212 
213 /* RSCFDnCFDRFSTSx */
214 #define RCANFD_RFSTS_RFIF		BIT(3)
215 #define RCANFD_RFSTS_RFMLT		BIT(2)
216 #define RCANFD_RFSTS_RFFLL		BIT(1)
217 #define RCANFD_RFSTS_RFEMP		BIT(0)
218 
219 /* RSCFDnCFDRFIDx */
220 #define RCANFD_RFID_RFIDE		BIT(31)
221 #define RCANFD_RFID_RFRTR		BIT(30)
222 
223 /* RSCFDnCFDRFPTRx */
224 #define RCANFD_RFPTR_RFDLC(x)		(((x) >> 28) & 0xf)
225 #define RCANFD_RFPTR_RFPTR(x)		(((x) >> 16) & 0xfff)
226 #define RCANFD_RFPTR_RFTS(x)		(((x) >> 0) & 0xffff)
227 
228 /* RSCFDnCFDRFFDSTSx */
229 #define RCANFD_RFFDSTS_RFFDF		BIT(2)
230 #define RCANFD_RFFDSTS_RFBRS		BIT(1)
231 #define RCANFD_RFFDSTS_RFESI		BIT(0)
232 
233 /* Common FIFO bits */
234 
235 /* RSCFDnCFDCFCCk */
236 #define RCANFD_CFCC_CFTML(gpriv, x)	\
237 	(((x) & reg_gen4(gpriv, 0x1f, 0xf)) << reg_gen4(gpriv, 16, 20))
238 #define RCANFD_CFCC_CFM(gpriv, x)	(((x) & 0x3) << reg_gen4(gpriv,  8, 16))
239 #define RCANFD_CFCC_CFIM		BIT(12)
240 #define RCANFD_CFCC_CFDC(gpriv, x)	(((x) & 0x7) << reg_gen4(gpriv, 21,  8))
241 #define RCANFD_CFCC_CFPLS(x)		(((x) & 0x7) << 4)
242 #define RCANFD_CFCC_CFTXIE		BIT(2)
243 #define RCANFD_CFCC_CFE			BIT(0)
244 
245 /* RSCFDnCFDCFSTSk */
246 #define RCANFD_CFSTS_CFMC(x)		(((x) >> 8) & 0xff)
247 #define RCANFD_CFSTS_CFTXIF		BIT(4)
248 #define RCANFD_CFSTS_CFMLT		BIT(2)
249 #define RCANFD_CFSTS_CFFLL		BIT(1)
250 #define RCANFD_CFSTS_CFEMP		BIT(0)
251 
252 /* RSCFDnCFDCFIDk */
253 #define RCANFD_CFID_CFIDE		BIT(31)
254 #define RCANFD_CFID_CFRTR		BIT(30)
255 #define RCANFD_CFID_CFID_MASK(x)	((x) & 0x1fffffff)
256 
257 /* RSCFDnCFDCFPTRk */
258 #define RCANFD_CFPTR_CFDLC(x)		(((x) & 0xf) << 28)
259 #define RCANFD_CFPTR_CFPTR(x)		(((x) & 0xfff) << 16)
260 #define RCANFD_CFPTR_CFTS(x)		(((x) & 0xff) << 0)
261 
262 /* RSCFDnCFDCFFDCSTSk */
263 #define RCANFD_CFFDCSTS_CFFDF		BIT(2)
264 #define RCANFD_CFFDCSTS_CFBRS		BIT(1)
265 #define RCANFD_CFFDCSTS_CFESI		BIT(0)
266 
267 /* This controller supports either Classical CAN only mode or CAN FD only mode.
268  * These modes are supported in two separate set of register maps & names.
269  * However, some of the register offsets are common for both modes. Those
270  * offsets are listed below as Common registers.
271  *
272  * The CAN FD only mode specific registers & Classical CAN only mode specific
273  * registers are listed separately. Their register names starts with
274  * RCANFD_F_xxx & RCANFD_C_xxx respectively.
275  */
276 
277 /* Common registers */
278 
279 /* RSCFDnCFDCmNCFG / RSCFDnCmCFG */
280 #define RCANFD_CCFG(m)			(0x0000 + (0x10 * (m)))
281 /* RSCFDnCFDCmCTR / RSCFDnCmCTR */
282 #define RCANFD_CCTR(m)			(0x0004 + (0x10 * (m)))
283 /* RSCFDnCFDCmSTS / RSCFDnCmSTS */
284 #define RCANFD_CSTS(m)			(0x0008 + (0x10 * (m)))
285 /* RSCFDnCFDCmERFL / RSCFDnCmERFL */
286 #define RCANFD_CERFL(m)			(0x000C + (0x10 * (m)))
287 
288 /* RSCFDnCFDGCFG / RSCFDnGCFG */
289 #define RCANFD_GCFG			(0x0084)
290 /* RSCFDnCFDGCTR / RSCFDnGCTR */
291 #define RCANFD_GCTR			(0x0088)
292 /* RSCFDnCFDGCTS / RSCFDnGCTS */
293 #define RCANFD_GSTS			(0x008c)
294 /* RSCFDnCFDGERFL / RSCFDnGERFL */
295 #define RCANFD_GERFL			(0x0090)
296 /* RSCFDnCFDGTSC / RSCFDnGTSC */
297 #define RCANFD_GTSC			(0x0094)
298 /* RSCFDnCFDGAFLECTR / RSCFDnGAFLECTR */
299 #define RCANFD_GAFLECTR			(0x0098)
300 /* RSCFDnCFDGAFLCFG / RSCFDnGAFLCFG */
301 #define RCANFD_GAFLCFG(ch)		(0x009c + (0x04 * ((ch) / 2)))
302 /* RSCFDnCFDRMNB / RSCFDnRMNB */
303 #define RCANFD_RMNB			(0x00a4)
304 /* RSCFDnCFDRMND / RSCFDnRMND */
305 #define RCANFD_RMND(y)			(0x00a8 + (0x04 * (y)))
306 
307 /* RSCFDnCFDRFCCx / RSCFDnRFCCx */
308 #define RCANFD_RFCC(gpriv, x)		(reg_gen4(gpriv, 0x00c0, 0x00b8) + (0x04 * (x)))
309 /* RSCFDnCFDRFSTSx / RSCFDnRFSTSx */
310 #define RCANFD_RFSTS(gpriv, x)		(RCANFD_RFCC(gpriv, x) + 0x20)
311 /* RSCFDnCFDRFPCTRx / RSCFDnRFPCTRx */
312 #define RCANFD_RFPCTR(gpriv, x)		(RCANFD_RFCC(gpriv, x) + 0x40)
313 
314 /* Common FIFO Control registers */
315 
316 /* RSCFDnCFDCFCCx / RSCFDnCFCCx */
317 #define RCANFD_CFCC(gpriv, ch, idx) \
318 	(reg_gen4(gpriv, 0x0120, 0x0118) + (0x0c * (ch)) + (0x04 * (idx)))
319 /* RSCFDnCFDCFSTSx / RSCFDnCFSTSx */
320 #define RCANFD_CFSTS(gpriv, ch, idx) \
321 	(reg_gen4(gpriv, 0x01e0, 0x0178) + (0x0c * (ch)) + (0x04 * (idx)))
322 /* RSCFDnCFDCFPCTRx / RSCFDnCFPCTRx */
323 #define RCANFD_CFPCTR(gpriv, ch, idx) \
324 	(reg_gen4(gpriv, 0x0240, 0x01d8) + (0x0c * (ch)) + (0x04 * (idx)))
325 
326 /* RSCFDnCFDFESTS / RSCFDnFESTS */
327 #define RCANFD_FESTS			(0x0238)
328 /* RSCFDnCFDFFSTS / RSCFDnFFSTS */
329 #define RCANFD_FFSTS			(0x023c)
330 /* RSCFDnCFDFMSTS / RSCFDnFMSTS */
331 #define RCANFD_FMSTS			(0x0240)
332 /* RSCFDnCFDRFISTS / RSCFDnRFISTS */
333 #define RCANFD_RFISTS			(0x0244)
334 /* RSCFDnCFDCFRISTS / RSCFDnCFRISTS */
335 #define RCANFD_CFRISTS			(0x0248)
336 /* RSCFDnCFDCFTISTS / RSCFDnCFTISTS */
337 #define RCANFD_CFTISTS			(0x024c)
338 
339 /* RSCFDnCFDTMCp / RSCFDnTMCp */
340 #define RCANFD_TMC(p)			(0x0250 + (0x01 * (p)))
341 /* RSCFDnCFDTMSTSp / RSCFDnTMSTSp */
342 #define RCANFD_TMSTS(p)			(0x02d0 + (0x01 * (p)))
343 
344 /* RSCFDnCFDTMTRSTSp / RSCFDnTMTRSTSp */
345 #define RCANFD_TMTRSTS(y)		(0x0350 + (0x04 * (y)))
346 /* RSCFDnCFDTMTARSTSp / RSCFDnTMTARSTSp */
347 #define RCANFD_TMTARSTS(y)		(0x0360 + (0x04 * (y)))
348 /* RSCFDnCFDTMTCSTSp / RSCFDnTMTCSTSp */
349 #define RCANFD_TMTCSTS(y)		(0x0370 + (0x04 * (y)))
350 /* RSCFDnCFDTMTASTSp / RSCFDnTMTASTSp */
351 #define RCANFD_TMTASTS(y)		(0x0380 + (0x04 * (y)))
352 /* RSCFDnCFDTMIECy / RSCFDnTMIECy */
353 #define RCANFD_TMIEC(y)			(0x0390 + (0x04 * (y)))
354 
355 /* RSCFDnCFDTXQCCm / RSCFDnTXQCCm */
356 #define RCANFD_TXQCC(m)			(0x03a0 + (0x04 * (m)))
357 /* RSCFDnCFDTXQSTSm / RSCFDnTXQSTSm */
358 #define RCANFD_TXQSTS(m)		(0x03c0 + (0x04 * (m)))
359 /* RSCFDnCFDTXQPCTRm / RSCFDnTXQPCTRm */
360 #define RCANFD_TXQPCTR(m)		(0x03e0 + (0x04 * (m)))
361 
362 /* RSCFDnCFDTHLCCm / RSCFDnTHLCCm */
363 #define RCANFD_THLCC(m)			(0x0400 + (0x04 * (m)))
364 /* RSCFDnCFDTHLSTSm / RSCFDnTHLSTSm */
365 #define RCANFD_THLSTS(m)		(0x0420 + (0x04 * (m)))
366 /* RSCFDnCFDTHLPCTRm / RSCFDnTHLPCTRm */
367 #define RCANFD_THLPCTR(m)		(0x0440 + (0x04 * (m)))
368 
369 /* RSCFDnCFDGTINTSTS0 / RSCFDnGTINTSTS0 */
370 #define RCANFD_GTINTSTS0		(0x0460)
371 /* RSCFDnCFDGTINTSTS1 / RSCFDnGTINTSTS1 */
372 #define RCANFD_GTINTSTS1		(0x0464)
373 /* RSCFDnCFDGTSTCFG / RSCFDnGTSTCFG */
374 #define RCANFD_GTSTCFG			(0x0468)
375 /* RSCFDnCFDGTSTCTR / RSCFDnGTSTCTR */
376 #define RCANFD_GTSTCTR			(0x046c)
377 /* RSCFDnCFDGLOCKK / RSCFDnGLOCKK */
378 #define RCANFD_GLOCKK			(0x047c)
379 /* RSCFDnCFDGRMCFG */
380 #define RCANFD_GRMCFG			(0x04fc)
381 
382 /* RSCFDnCFDGAFLIDj / RSCFDnGAFLIDj */
383 #define RCANFD_GAFLID(offset, j)	((offset) + (0x10 * (j)))
384 /* RSCFDnCFDGAFLMj / RSCFDnGAFLMj */
385 #define RCANFD_GAFLM(offset, j)		((offset) + 0x04 + (0x10 * (j)))
386 /* RSCFDnCFDGAFLP0j / RSCFDnGAFLP0j */
387 #define RCANFD_GAFLP0(offset, j)	((offset) + 0x08 + (0x10 * (j)))
388 /* RSCFDnCFDGAFLP1j / RSCFDnGAFLP1j */
389 #define RCANFD_GAFLP1(offset, j)	((offset) + 0x0c + (0x10 * (j)))
390 
391 /* Classical CAN only mode register map */
392 
393 /* RSCFDnGAFLXXXj offset */
394 #define RCANFD_C_GAFL_OFFSET		(0x0500)
395 
396 /* RSCFDnRMXXXq -> RCANFD_C_RMXXX(q) */
397 #define RCANFD_C_RMID(q)		(0x0600 + (0x10 * (q)))
398 #define RCANFD_C_RMPTR(q)		(0x0604 + (0x10 * (q)))
399 #define RCANFD_C_RMDF0(q)		(0x0608 + (0x10 * (q)))
400 #define RCANFD_C_RMDF1(q)		(0x060c + (0x10 * (q)))
401 
402 /* RSCFDnRFXXx -> RCANFD_C_RFXX(x) */
403 #define RCANFD_C_RFOFFSET	(0x0e00)
404 #define RCANFD_C_RFID(x)	(RCANFD_C_RFOFFSET + (0x10 * (x)))
405 #define RCANFD_C_RFPTR(x)	(RCANFD_C_RFOFFSET + 0x04 + (0x10 * (x)))
406 #define RCANFD_C_RFDF(x, df) \
407 		(RCANFD_C_RFOFFSET + 0x08 + (0x10 * (x)) + (0x04 * (df)))
408 
409 /* RSCFDnCFXXk -> RCANFD_C_CFXX(ch, k) */
410 #define RCANFD_C_CFOFFSET		(0x0e80)
411 
412 #define RCANFD_C_CFID(ch, idx) \
413 	(RCANFD_C_CFOFFSET + (0x30 * (ch)) + (0x10 * (idx)))
414 
415 #define RCANFD_C_CFPTR(ch, idx)	\
416 	(RCANFD_C_CFOFFSET + 0x04 + (0x30 * (ch)) + (0x10 * (idx)))
417 
418 #define RCANFD_C_CFDF(ch, idx, df) \
419 	(RCANFD_C_CFOFFSET + 0x08 + (0x30 * (ch)) + (0x10 * (idx)) + (0x04 * (df)))
420 
421 /* RSCFDnTMXXp -> RCANFD_C_TMXX(p) */
422 #define RCANFD_C_TMID(p)		(0x1000 + (0x10 * (p)))
423 #define RCANFD_C_TMPTR(p)		(0x1004 + (0x10 * (p)))
424 #define RCANFD_C_TMDF0(p)		(0x1008 + (0x10 * (p)))
425 #define RCANFD_C_TMDF1(p)		(0x100c + (0x10 * (p)))
426 
427 /* RSCFDnTHLACCm */
428 #define RCANFD_C_THLACC(m)		(0x1800 + (0x04 * (m)))
429 /* RSCFDnRPGACCr */
430 #define RCANFD_C_RPGACC(r)		(0x1900 + (0x04 * (r)))
431 
432 /* R-Car Gen4 Classical and CAN FD mode specific register map */
433 #define RCANFD_GEN4_FDCFG(m)		(0x1404 + (0x20 * (m)))
434 
435 #define RCANFD_GEN4_GAFL_OFFSET		(0x1800)
436 
437 /* CAN FD mode specific register map */
438 
439 /* RSCFDnCFDCmXXX -> RCANFD_F_XXX(m) */
440 #define RCANFD_F_DCFG(gpriv, m)		(reg_gen4(gpriv, 0x1400, 0x0500) + (0x20 * (m)))
441 #define RCANFD_F_CFDCFG(m)		(0x0504 + (0x20 * (m)))
442 #define RCANFD_F_CFDCTR(m)		(0x0508 + (0x20 * (m)))
443 #define RCANFD_F_CFDSTS(m)		(0x050c + (0x20 * (m)))
444 #define RCANFD_F_CFDCRC(m)		(0x0510 + (0x20 * (m)))
445 
446 /* RSCFDnCFDGAFLXXXj offset */
447 #define RCANFD_F_GAFL_OFFSET		(0x1000)
448 
449 /* RSCFDnCFDRMXXXq -> RCANFD_F_RMXXX(q) */
450 #define RCANFD_F_RMID(q)		(0x2000 + (0x20 * (q)))
451 #define RCANFD_F_RMPTR(q)		(0x2004 + (0x20 * (q)))
452 #define RCANFD_F_RMFDSTS(q)		(0x2008 + (0x20 * (q)))
453 #define RCANFD_F_RMDF(q, b)		(0x200c + (0x04 * (b)) + (0x20 * (q)))
454 
455 /* RSCFDnCFDRFXXx -> RCANFD_F_RFXX(x) */
456 #define RCANFD_F_RFOFFSET(gpriv)	reg_gen4(gpriv, 0x6000, 0x3000)
457 #define RCANFD_F_RFID(gpriv, x)		(RCANFD_F_RFOFFSET(gpriv) + (0x80 * (x)))
458 #define RCANFD_F_RFPTR(gpriv, x)	(RCANFD_F_RFOFFSET(gpriv) + 0x04 + (0x80 * (x)))
459 #define RCANFD_F_RFFDSTS(gpriv, x)	(RCANFD_F_RFOFFSET(gpriv) + 0x08 + (0x80 * (x)))
460 #define RCANFD_F_RFDF(gpriv, x, df) \
461 	(RCANFD_F_RFOFFSET(gpriv) + 0x0c + (0x80 * (x)) + (0x04 * (df)))
462 
463 /* RSCFDnCFDCFXXk -> RCANFD_F_CFXX(ch, k) */
464 #define RCANFD_F_CFOFFSET(gpriv)	reg_gen4(gpriv, 0x6400, 0x3400)
465 
466 #define RCANFD_F_CFID(gpriv, ch, idx) \
467 	(RCANFD_F_CFOFFSET(gpriv) + (0x180 * (ch)) + (0x80 * (idx)))
468 
469 #define RCANFD_F_CFPTR(gpriv, ch, idx) \
470 	(RCANFD_F_CFOFFSET(gpriv) + 0x04 + (0x180 * (ch)) + (0x80 * (idx)))
471 
472 #define RCANFD_F_CFFDCSTS(gpriv, ch, idx) \
473 	(RCANFD_F_CFOFFSET(gpriv) + 0x08 + (0x180 * (ch)) + (0x80 * (idx)))
474 
475 #define RCANFD_F_CFDF(gpriv, ch, idx, df) \
476 	(RCANFD_F_CFOFFSET(gpriv) + 0x0c + (0x180 * (ch)) + (0x80 * (idx)) + \
477 	 (0x04 * (df)))
478 
479 /* RSCFDnCFDTMXXp -> RCANFD_F_TMXX(p) */
480 #define RCANFD_F_TMID(p)		(0x4000 + (0x20 * (p)))
481 #define RCANFD_F_TMPTR(p)		(0x4004 + (0x20 * (p)))
482 #define RCANFD_F_TMFDCTR(p)		(0x4008 + (0x20 * (p)))
483 #define RCANFD_F_TMDF(p, b)		(0x400c + (0x20 * (p)) + (0x04 * (b)))
484 
485 /* RSCFDnCFDTHLACCm */
486 #define RCANFD_F_THLACC(m)		(0x6000 + (0x04 * (m)))
487 /* RSCFDnCFDRPGACCr */
488 #define RCANFD_F_RPGACC(r)		(0x6400 + (0x04 * (r)))
489 
490 /* Constants */
491 #define RCANFD_FIFO_DEPTH		8	/* Tx FIFO depth */
492 #define RCANFD_NAPI_WEIGHT		8	/* Rx poll quota */
493 
494 #define RCANFD_NUM_CHANNELS		8	/* Eight channels max */
495 #define RCANFD_CHANNELS_MASK		BIT((RCANFD_NUM_CHANNELS) - 1)
496 
497 #define RCANFD_GAFL_PAGENUM(entry)	((entry) / 16)
498 #define RCANFD_CHANNEL_NUMRULES		1	/* only one rule per channel */
499 
500 /* Rx FIFO is a global resource of the controller. There are 8 such FIFOs
501  * available. Each channel gets a dedicated Rx FIFO (i.e.) the channel
502  * number is added to RFFIFO index.
503  */
504 #define RCANFD_RFFIFO_IDX		0
505 
506 /* Tx/Rx or Common FIFO is a per channel resource. Each channel has 3 Common
507  * FIFOs dedicated to them. Use the first (index 0) FIFO out of the 3 for Tx.
508  */
509 #define RCANFD_CFFIFO_IDX		0
510 
511 struct rcar_canfd_global;
512 
513 struct rcar_canfd_hw_info {
514 	u8 max_channels;
515 	u8 postdiv;
516 	/* hardware features */
517 	unsigned shared_global_irqs:1;	/* Has shared global irqs */
518 	unsigned multi_channel_irqs:1;	/* Has multiple channel irqs */
519 };
520 
521 /* Channel priv data */
522 struct rcar_canfd_channel {
523 	struct can_priv can;			/* Must be the first member */
524 	struct net_device *ndev;
525 	struct rcar_canfd_global *gpriv;	/* Controller reference */
526 	void __iomem *base;			/* Register base address */
527 	struct phy *transceiver;		/* Optional transceiver */
528 	struct napi_struct napi;
529 	u32 tx_head;				/* Incremented on xmit */
530 	u32 tx_tail;				/* Incremented on xmit done */
531 	u32 channel;				/* Channel number */
532 	spinlock_t tx_lock;			/* To protect tx path */
533 };
534 
535 /* Global priv data */
536 struct rcar_canfd_global {
537 	struct rcar_canfd_channel *ch[RCANFD_NUM_CHANNELS];
538 	void __iomem *base;		/* Register base address */
539 	struct platform_device *pdev;	/* Respective platform device */
540 	struct clk *clkp;		/* Peripheral clock */
541 	struct clk *can_clk;		/* fCAN clock */
542 	unsigned long channels_mask;	/* Enabled channels mask */
543 	bool extclk;			/* CANFD or Ext clock */
544 	bool fdmode;			/* CAN FD or Classical CAN only mode */
545 	struct reset_control *rstc1;
546 	struct reset_control *rstc2;
547 	const struct rcar_canfd_hw_info *info;
548 };
549 
550 /* CAN FD mode nominal rate constants */
551 static const struct can_bittiming_const rcar_canfd_nom_bittiming_const = {
552 	.name = RCANFD_DRV_NAME,
553 	.tseg1_min = 2,
554 	.tseg1_max = 128,
555 	.tseg2_min = 2,
556 	.tseg2_max = 32,
557 	.sjw_max = 32,
558 	.brp_min = 1,
559 	.brp_max = 1024,
560 	.brp_inc = 1,
561 };
562 
563 /* CAN FD mode data rate constants */
564 static const struct can_bittiming_const rcar_canfd_data_bittiming_const = {
565 	.name = RCANFD_DRV_NAME,
566 	.tseg1_min = 2,
567 	.tseg1_max = 16,
568 	.tseg2_min = 2,
569 	.tseg2_max = 8,
570 	.sjw_max = 8,
571 	.brp_min = 1,
572 	.brp_max = 256,
573 	.brp_inc = 1,
574 };
575 
576 /* Classical CAN mode bitrate constants */
577 static const struct can_bittiming_const rcar_canfd_bittiming_const = {
578 	.name = RCANFD_DRV_NAME,
579 	.tseg1_min = 4,
580 	.tseg1_max = 16,
581 	.tseg2_min = 2,
582 	.tseg2_max = 8,
583 	.sjw_max = 4,
584 	.brp_min = 1,
585 	.brp_max = 1024,
586 	.brp_inc = 1,
587 };
588 
589 static const struct rcar_canfd_hw_info rcar_gen3_hw_info = {
590 	.max_channels = 2,
591 	.postdiv = 2,
592 	.shared_global_irqs = 1,
593 };
594 
595 static const struct rcar_canfd_hw_info rcar_gen4_hw_info = {
596 	.max_channels = 8,
597 	.postdiv = 2,
598 	.shared_global_irqs = 1,
599 };
600 
601 static const struct rcar_canfd_hw_info rzg2l_hw_info = {
602 	.max_channels = 2,
603 	.postdiv = 1,
604 	.multi_channel_irqs = 1,
605 };
606 
607 /* Helper functions */
is_gen4(struct rcar_canfd_global * gpriv)608 static inline bool is_gen4(struct rcar_canfd_global *gpriv)
609 {
610 	return gpriv->info == &rcar_gen4_hw_info;
611 }
612 
reg_gen4(struct rcar_canfd_global * gpriv,u32 gen4,u32 not_gen4)613 static inline u32 reg_gen4(struct rcar_canfd_global *gpriv,
614 			   u32 gen4, u32 not_gen4)
615 {
616 	return is_gen4(gpriv) ? gen4 : not_gen4;
617 }
618 
rcar_canfd_update(u32 mask,u32 val,u32 __iomem * reg)619 static inline void rcar_canfd_update(u32 mask, u32 val, u32 __iomem *reg)
620 {
621 	u32 data = readl(reg);
622 
623 	data &= ~mask;
624 	data |= (val & mask);
625 	writel(data, reg);
626 }
627 
rcar_canfd_read(void __iomem * base,u32 offset)628 static inline u32 rcar_canfd_read(void __iomem *base, u32 offset)
629 {
630 	return readl(base + offset);
631 }
632 
rcar_canfd_write(void __iomem * base,u32 offset,u32 val)633 static inline void rcar_canfd_write(void __iomem *base, u32 offset, u32 val)
634 {
635 	writel(val, base + offset);
636 }
637 
rcar_canfd_set_bit(void __iomem * base,u32 reg,u32 val)638 static void rcar_canfd_set_bit(void __iomem *base, u32 reg, u32 val)
639 {
640 	rcar_canfd_update(val, val, base + reg);
641 }
642 
rcar_canfd_clear_bit(void __iomem * base,u32 reg,u32 val)643 static void rcar_canfd_clear_bit(void __iomem *base, u32 reg, u32 val)
644 {
645 	rcar_canfd_update(val, 0, base + reg);
646 }
647 
rcar_canfd_update_bit(void __iomem * base,u32 reg,u32 mask,u32 val)648 static void rcar_canfd_update_bit(void __iomem *base, u32 reg,
649 				  u32 mask, u32 val)
650 {
651 	rcar_canfd_update(mask, val, base + reg);
652 }
653 
rcar_canfd_get_data(struct rcar_canfd_channel * priv,struct canfd_frame * cf,u32 off)654 static void rcar_canfd_get_data(struct rcar_canfd_channel *priv,
655 				struct canfd_frame *cf, u32 off)
656 {
657 	u32 i, lwords;
658 
659 	lwords = DIV_ROUND_UP(cf->len, sizeof(u32));
660 	for (i = 0; i < lwords; i++)
661 		*((u32 *)cf->data + i) =
662 			rcar_canfd_read(priv->base, off + i * sizeof(u32));
663 }
664 
rcar_canfd_put_data(struct rcar_canfd_channel * priv,struct canfd_frame * cf,u32 off)665 static void rcar_canfd_put_data(struct rcar_canfd_channel *priv,
666 				struct canfd_frame *cf, u32 off)
667 {
668 	u32 i, lwords;
669 
670 	lwords = DIV_ROUND_UP(cf->len, sizeof(u32));
671 	for (i = 0; i < lwords; i++)
672 		rcar_canfd_write(priv->base, off + i * sizeof(u32),
673 				 *((u32 *)cf->data + i));
674 }
675 
rcar_canfd_tx_failure_cleanup(struct net_device * ndev)676 static void rcar_canfd_tx_failure_cleanup(struct net_device *ndev)
677 {
678 	u32 i;
679 
680 	for (i = 0; i < RCANFD_FIFO_DEPTH; i++)
681 		can_free_echo_skb(ndev, i, NULL);
682 }
683 
rcar_canfd_set_mode(struct rcar_canfd_global * gpriv)684 static void rcar_canfd_set_mode(struct rcar_canfd_global *gpriv)
685 {
686 	if (is_gen4(gpriv)) {
687 		u32 ch, val = gpriv->fdmode ? RCANFD_GEN4_FDCFG_FDOE
688 					    : RCANFD_GEN4_FDCFG_CLOE;
689 
690 		for_each_set_bit(ch, &gpriv->channels_mask,
691 				 gpriv->info->max_channels)
692 			rcar_canfd_set_bit(gpriv->base, RCANFD_GEN4_FDCFG(ch),
693 					   val);
694 	} else {
695 		if (gpriv->fdmode)
696 			rcar_canfd_set_bit(gpriv->base, RCANFD_GRMCFG,
697 					   RCANFD_GRMCFG_RCMC);
698 		else
699 			rcar_canfd_clear_bit(gpriv->base, RCANFD_GRMCFG,
700 					     RCANFD_GRMCFG_RCMC);
701 	}
702 }
703 
rcar_canfd_reset_controller(struct rcar_canfd_global * gpriv)704 static int rcar_canfd_reset_controller(struct rcar_canfd_global *gpriv)
705 {
706 	u32 sts, ch;
707 	int err;
708 
709 	/* Check RAMINIT flag as CAN RAM initialization takes place
710 	 * after the MCU reset
711 	 */
712 	err = readl_poll_timeout((gpriv->base + RCANFD_GSTS), sts,
713 				 !(sts & RCANFD_GSTS_GRAMINIT), 2, 500000);
714 	if (err) {
715 		dev_dbg(&gpriv->pdev->dev, "global raminit failed\n");
716 		return err;
717 	}
718 
719 	/* Transition to Global Reset mode */
720 	rcar_canfd_clear_bit(gpriv->base, RCANFD_GCTR, RCANFD_GCTR_GSLPR);
721 	rcar_canfd_update_bit(gpriv->base, RCANFD_GCTR,
722 			      RCANFD_GCTR_GMDC_MASK, RCANFD_GCTR_GMDC_GRESET);
723 
724 	/* Ensure Global reset mode */
725 	err = readl_poll_timeout((gpriv->base + RCANFD_GSTS), sts,
726 				 (sts & RCANFD_GSTS_GRSTSTS), 2, 500000);
727 	if (err) {
728 		dev_dbg(&gpriv->pdev->dev, "global reset failed\n");
729 		return err;
730 	}
731 
732 	/* Reset Global error flags */
733 	rcar_canfd_write(gpriv->base, RCANFD_GERFL, 0x0);
734 
735 	/* Transition all Channels to reset mode */
736 	for_each_set_bit(ch, &gpriv->channels_mask, gpriv->info->max_channels) {
737 		rcar_canfd_clear_bit(gpriv->base,
738 				     RCANFD_CCTR(ch), RCANFD_CCTR_CSLPR);
739 
740 		rcar_canfd_update_bit(gpriv->base, RCANFD_CCTR(ch),
741 				      RCANFD_CCTR_CHMDC_MASK,
742 				      RCANFD_CCTR_CHDMC_CRESET);
743 
744 		/* Ensure Channel reset mode */
745 		err = readl_poll_timeout((gpriv->base + RCANFD_CSTS(ch)), sts,
746 					 (sts & RCANFD_CSTS_CRSTSTS),
747 					 2, 500000);
748 		if (err) {
749 			dev_dbg(&gpriv->pdev->dev,
750 				"channel %u reset failed\n", ch);
751 			return err;
752 		}
753 	}
754 
755 	/* Set the controller into appropriate mode */
756 	rcar_canfd_set_mode(gpriv);
757 
758 	return 0;
759 }
760 
rcar_canfd_configure_controller(struct rcar_canfd_global * gpriv)761 static void rcar_canfd_configure_controller(struct rcar_canfd_global *gpriv)
762 {
763 	u32 cfg, ch;
764 
765 	/* Global configuration settings */
766 
767 	/* ECC Error flag Enable */
768 	cfg = RCANFD_GCFG_EEFE;
769 
770 	if (gpriv->fdmode)
771 		/* Truncate payload to configured message size RFPLS */
772 		cfg |= RCANFD_GCFG_CMPOC;
773 
774 	/* Set External Clock if selected */
775 	if (gpriv->extclk)
776 		cfg |= RCANFD_GCFG_DCS;
777 
778 	rcar_canfd_set_bit(gpriv->base, RCANFD_GCFG, cfg);
779 
780 	/* Channel configuration settings */
781 	for_each_set_bit(ch, &gpriv->channels_mask, gpriv->info->max_channels) {
782 		rcar_canfd_set_bit(gpriv->base, RCANFD_CCTR(ch),
783 				   RCANFD_CCTR_ERRD);
784 		rcar_canfd_update_bit(gpriv->base, RCANFD_CCTR(ch),
785 				      RCANFD_CCTR_BOM_MASK,
786 				      RCANFD_CCTR_BOM_BENTRY);
787 	}
788 }
789 
rcar_canfd_configure_afl_rules(struct rcar_canfd_global * gpriv,u32 ch,u32 rule_entry)790 static void rcar_canfd_configure_afl_rules(struct rcar_canfd_global *gpriv,
791 					   u32 ch, u32 rule_entry)
792 {
793 	int offset, page, num_rules = RCANFD_CHANNEL_NUMRULES;
794 	u32 rule_entry_index = rule_entry % 16;
795 	u32 ridx = ch + RCANFD_RFFIFO_IDX;
796 
797 	/* Enable write access to entry */
798 	page = RCANFD_GAFL_PAGENUM(rule_entry);
799 	rcar_canfd_set_bit(gpriv->base, RCANFD_GAFLECTR,
800 			   (RCANFD_GAFLECTR_AFLPN(gpriv, page) |
801 			    RCANFD_GAFLECTR_AFLDAE));
802 
803 	/* Write number of rules for channel */
804 	rcar_canfd_set_bit(gpriv->base, RCANFD_GAFLCFG(ch),
805 			   RCANFD_GAFLCFG_SETRNC(gpriv, ch, num_rules));
806 	if (is_gen4(gpriv))
807 		offset = RCANFD_GEN4_GAFL_OFFSET;
808 	else if (gpriv->fdmode)
809 		offset = RCANFD_F_GAFL_OFFSET;
810 	else
811 		offset = RCANFD_C_GAFL_OFFSET;
812 
813 	/* Accept all IDs */
814 	rcar_canfd_write(gpriv->base, RCANFD_GAFLID(offset, rule_entry_index), 0);
815 	/* IDE or RTR is not considered for matching */
816 	rcar_canfd_write(gpriv->base, RCANFD_GAFLM(offset, rule_entry_index), 0);
817 	/* Any data length accepted */
818 	rcar_canfd_write(gpriv->base, RCANFD_GAFLP0(offset, rule_entry_index), 0);
819 	/* Place the msg in corresponding Rx FIFO entry */
820 	rcar_canfd_set_bit(gpriv->base, RCANFD_GAFLP1(offset, rule_entry_index),
821 			   RCANFD_GAFLP1_GAFLFDP(ridx));
822 
823 	/* Disable write access to page */
824 	rcar_canfd_clear_bit(gpriv->base,
825 			     RCANFD_GAFLECTR, RCANFD_GAFLECTR_AFLDAE);
826 }
827 
rcar_canfd_configure_rx(struct rcar_canfd_global * gpriv,u32 ch)828 static void rcar_canfd_configure_rx(struct rcar_canfd_global *gpriv, u32 ch)
829 {
830 	/* Rx FIFO is used for reception */
831 	u32 cfg;
832 	u16 rfdc, rfpls;
833 
834 	/* Select Rx FIFO based on channel */
835 	u32 ridx = ch + RCANFD_RFFIFO_IDX;
836 
837 	rfdc = 2;		/* b010 - 8 messages Rx FIFO depth */
838 	if (gpriv->fdmode)
839 		rfpls = 7;	/* b111 - Max 64 bytes payload */
840 	else
841 		rfpls = 0;	/* b000 - Max 8 bytes payload */
842 
843 	cfg = (RCANFD_RFCC_RFIM | RCANFD_RFCC_RFDC(rfdc) |
844 		RCANFD_RFCC_RFPLS(rfpls) | RCANFD_RFCC_RFIE);
845 	rcar_canfd_write(gpriv->base, RCANFD_RFCC(gpriv, ridx), cfg);
846 }
847 
rcar_canfd_configure_tx(struct rcar_canfd_global * gpriv,u32 ch)848 static void rcar_canfd_configure_tx(struct rcar_canfd_global *gpriv, u32 ch)
849 {
850 	/* Tx/Rx(Common) FIFO configured in Tx mode is
851 	 * used for transmission
852 	 *
853 	 * Each channel has 3 Common FIFO dedicated to them.
854 	 * Use the 1st (index 0) out of 3
855 	 */
856 	u32 cfg;
857 	u16 cftml, cfm, cfdc, cfpls;
858 
859 	cftml = 0;		/* 0th buffer */
860 	cfm = 1;		/* b01 - Transmit mode */
861 	cfdc = 2;		/* b010 - 8 messages Tx FIFO depth */
862 	if (gpriv->fdmode)
863 		cfpls = 7;	/* b111 - Max 64 bytes payload */
864 	else
865 		cfpls = 0;	/* b000 - Max 8 bytes payload */
866 
867 	cfg = (RCANFD_CFCC_CFTML(gpriv, cftml) | RCANFD_CFCC_CFM(gpriv, cfm) |
868 		RCANFD_CFCC_CFIM | RCANFD_CFCC_CFDC(gpriv, cfdc) |
869 		RCANFD_CFCC_CFPLS(cfpls) | RCANFD_CFCC_CFTXIE);
870 	rcar_canfd_write(gpriv->base, RCANFD_CFCC(gpriv, ch, RCANFD_CFFIFO_IDX), cfg);
871 
872 	if (gpriv->fdmode)
873 		/* Clear FD mode specific control/status register */
874 		rcar_canfd_write(gpriv->base,
875 				 RCANFD_F_CFFDCSTS(gpriv, ch, RCANFD_CFFIFO_IDX), 0);
876 }
877 
rcar_canfd_enable_global_interrupts(struct rcar_canfd_global * gpriv)878 static void rcar_canfd_enable_global_interrupts(struct rcar_canfd_global *gpriv)
879 {
880 	u32 ctr;
881 
882 	/* Clear any stray error interrupt flags */
883 	rcar_canfd_write(gpriv->base, RCANFD_GERFL, 0);
884 
885 	/* Global interrupts setup */
886 	ctr = RCANFD_GCTR_MEIE;
887 	if (gpriv->fdmode)
888 		ctr |= RCANFD_GCTR_CFMPOFIE;
889 
890 	rcar_canfd_set_bit(gpriv->base, RCANFD_GCTR, ctr);
891 }
892 
rcar_canfd_disable_global_interrupts(struct rcar_canfd_global * gpriv)893 static void rcar_canfd_disable_global_interrupts(struct rcar_canfd_global
894 						 *gpriv)
895 {
896 	/* Disable all interrupts */
897 	rcar_canfd_write(gpriv->base, RCANFD_GCTR, 0);
898 
899 	/* Clear any stray error interrupt flags */
900 	rcar_canfd_write(gpriv->base, RCANFD_GERFL, 0);
901 }
902 
rcar_canfd_enable_channel_interrupts(struct rcar_canfd_channel * priv)903 static void rcar_canfd_enable_channel_interrupts(struct rcar_canfd_channel
904 						 *priv)
905 {
906 	u32 ctr, ch = priv->channel;
907 
908 	/* Clear any stray error flags */
909 	rcar_canfd_write(priv->base, RCANFD_CERFL(ch), 0);
910 
911 	/* Channel interrupts setup */
912 	ctr = (RCANFD_CCTR_TAIE |
913 	       RCANFD_CCTR_ALIE | RCANFD_CCTR_BLIE |
914 	       RCANFD_CCTR_OLIE | RCANFD_CCTR_BORIE |
915 	       RCANFD_CCTR_BOEIE | RCANFD_CCTR_EPIE |
916 	       RCANFD_CCTR_EWIE | RCANFD_CCTR_BEIE);
917 	rcar_canfd_set_bit(priv->base, RCANFD_CCTR(ch), ctr);
918 }
919 
rcar_canfd_disable_channel_interrupts(struct rcar_canfd_channel * priv)920 static void rcar_canfd_disable_channel_interrupts(struct rcar_canfd_channel
921 						  *priv)
922 {
923 	u32 ctr, ch = priv->channel;
924 
925 	ctr = (RCANFD_CCTR_TAIE |
926 	       RCANFD_CCTR_ALIE | RCANFD_CCTR_BLIE |
927 	       RCANFD_CCTR_OLIE | RCANFD_CCTR_BORIE |
928 	       RCANFD_CCTR_BOEIE | RCANFD_CCTR_EPIE |
929 	       RCANFD_CCTR_EWIE | RCANFD_CCTR_BEIE);
930 	rcar_canfd_clear_bit(priv->base, RCANFD_CCTR(ch), ctr);
931 
932 	/* Clear any stray error flags */
933 	rcar_canfd_write(priv->base, RCANFD_CERFL(ch), 0);
934 }
935 
rcar_canfd_global_error(struct net_device * ndev)936 static void rcar_canfd_global_error(struct net_device *ndev)
937 {
938 	struct rcar_canfd_channel *priv = netdev_priv(ndev);
939 	struct rcar_canfd_global *gpriv = priv->gpriv;
940 	struct net_device_stats *stats = &ndev->stats;
941 	u32 ch = priv->channel;
942 	u32 gerfl, sts;
943 	u32 ridx = ch + RCANFD_RFFIFO_IDX;
944 
945 	gerfl = rcar_canfd_read(priv->base, RCANFD_GERFL);
946 	if (gerfl & RCANFD_GERFL_EEF(ch)) {
947 		netdev_dbg(ndev, "Ch%u: ECC Error flag\n", ch);
948 		stats->tx_dropped++;
949 	}
950 	if (gerfl & RCANFD_GERFL_MES) {
951 		sts = rcar_canfd_read(priv->base,
952 				      RCANFD_CFSTS(gpriv, ch, RCANFD_CFFIFO_IDX));
953 		if (sts & RCANFD_CFSTS_CFMLT) {
954 			netdev_dbg(ndev, "Tx Message Lost flag\n");
955 			stats->tx_dropped++;
956 			rcar_canfd_write(priv->base,
957 					 RCANFD_CFSTS(gpriv, ch, RCANFD_CFFIFO_IDX),
958 					 sts & ~RCANFD_CFSTS_CFMLT);
959 		}
960 
961 		sts = rcar_canfd_read(priv->base, RCANFD_RFSTS(gpriv, ridx));
962 		if (sts & RCANFD_RFSTS_RFMLT) {
963 			netdev_dbg(ndev, "Rx Message Lost flag\n");
964 			stats->rx_dropped++;
965 			rcar_canfd_write(priv->base, RCANFD_RFSTS(gpriv, ridx),
966 					 sts & ~RCANFD_RFSTS_RFMLT);
967 		}
968 	}
969 	if (gpriv->fdmode && gerfl & RCANFD_GERFL_CMPOF) {
970 		/* Message Lost flag will be set for respective channel
971 		 * when this condition happens with counters and flags
972 		 * already updated.
973 		 */
974 		netdev_dbg(ndev, "global payload overflow interrupt\n");
975 	}
976 
977 	/* Clear all global error interrupts. Only affected channels bits
978 	 * get cleared
979 	 */
980 	rcar_canfd_write(priv->base, RCANFD_GERFL, 0);
981 }
982 
rcar_canfd_error(struct net_device * ndev,u32 cerfl,u16 txerr,u16 rxerr)983 static void rcar_canfd_error(struct net_device *ndev, u32 cerfl,
984 			     u16 txerr, u16 rxerr)
985 {
986 	struct rcar_canfd_channel *priv = netdev_priv(ndev);
987 	struct net_device_stats *stats = &ndev->stats;
988 	struct can_frame *cf;
989 	struct sk_buff *skb;
990 	u32 ch = priv->channel;
991 
992 	netdev_dbg(ndev, "ch erfl %x txerr %u rxerr %u\n", cerfl, txerr, rxerr);
993 
994 	/* Propagate the error condition to the CAN stack */
995 	skb = alloc_can_err_skb(ndev, &cf);
996 	if (!skb) {
997 		stats->rx_dropped++;
998 		return;
999 	}
1000 
1001 	/* Channel error interrupts */
1002 	if (cerfl & RCANFD_CERFL_BEF) {
1003 		netdev_dbg(ndev, "Bus error\n");
1004 		cf->can_id |= CAN_ERR_BUSERROR | CAN_ERR_PROT;
1005 		cf->data[2] = CAN_ERR_PROT_UNSPEC;
1006 		priv->can.can_stats.bus_error++;
1007 	}
1008 	if (cerfl & RCANFD_CERFL_ADERR) {
1009 		netdev_dbg(ndev, "ACK Delimiter Error\n");
1010 		stats->tx_errors++;
1011 		cf->data[3] |= CAN_ERR_PROT_LOC_ACK_DEL;
1012 	}
1013 	if (cerfl & RCANFD_CERFL_B0ERR) {
1014 		netdev_dbg(ndev, "Bit Error (dominant)\n");
1015 		stats->tx_errors++;
1016 		cf->data[2] |= CAN_ERR_PROT_BIT0;
1017 	}
1018 	if (cerfl & RCANFD_CERFL_B1ERR) {
1019 		netdev_dbg(ndev, "Bit Error (recessive)\n");
1020 		stats->tx_errors++;
1021 		cf->data[2] |= CAN_ERR_PROT_BIT1;
1022 	}
1023 	if (cerfl & RCANFD_CERFL_CERR) {
1024 		netdev_dbg(ndev, "CRC Error\n");
1025 		stats->rx_errors++;
1026 		cf->data[3] |= CAN_ERR_PROT_LOC_CRC_SEQ;
1027 	}
1028 	if (cerfl & RCANFD_CERFL_AERR) {
1029 		netdev_dbg(ndev, "ACK Error\n");
1030 		stats->tx_errors++;
1031 		cf->can_id |= CAN_ERR_ACK;
1032 		cf->data[3] |= CAN_ERR_PROT_LOC_ACK;
1033 	}
1034 	if (cerfl & RCANFD_CERFL_FERR) {
1035 		netdev_dbg(ndev, "Form Error\n");
1036 		stats->rx_errors++;
1037 		cf->data[2] |= CAN_ERR_PROT_FORM;
1038 	}
1039 	if (cerfl & RCANFD_CERFL_SERR) {
1040 		netdev_dbg(ndev, "Stuff Error\n");
1041 		stats->rx_errors++;
1042 		cf->data[2] |= CAN_ERR_PROT_STUFF;
1043 	}
1044 	if (cerfl & RCANFD_CERFL_ALF) {
1045 		netdev_dbg(ndev, "Arbitration lost Error\n");
1046 		priv->can.can_stats.arbitration_lost++;
1047 		cf->can_id |= CAN_ERR_LOSTARB;
1048 		cf->data[0] |= CAN_ERR_LOSTARB_UNSPEC;
1049 	}
1050 	if (cerfl & RCANFD_CERFL_BLF) {
1051 		netdev_dbg(ndev, "Bus Lock Error\n");
1052 		stats->rx_errors++;
1053 		cf->can_id |= CAN_ERR_BUSERROR;
1054 	}
1055 	if (cerfl & RCANFD_CERFL_EWF) {
1056 		netdev_dbg(ndev, "Error warning interrupt\n");
1057 		priv->can.state = CAN_STATE_ERROR_WARNING;
1058 		priv->can.can_stats.error_warning++;
1059 		cf->can_id |= CAN_ERR_CRTL | CAN_ERR_CNT;
1060 		cf->data[1] = txerr > rxerr ? CAN_ERR_CRTL_TX_WARNING :
1061 			CAN_ERR_CRTL_RX_WARNING;
1062 		cf->data[6] = txerr;
1063 		cf->data[7] = rxerr;
1064 	}
1065 	if (cerfl & RCANFD_CERFL_EPF) {
1066 		netdev_dbg(ndev, "Error passive interrupt\n");
1067 		priv->can.state = CAN_STATE_ERROR_PASSIVE;
1068 		priv->can.can_stats.error_passive++;
1069 		cf->can_id |= CAN_ERR_CRTL | CAN_ERR_CNT;
1070 		cf->data[1] = txerr > rxerr ? CAN_ERR_CRTL_TX_PASSIVE :
1071 			CAN_ERR_CRTL_RX_PASSIVE;
1072 		cf->data[6] = txerr;
1073 		cf->data[7] = rxerr;
1074 	}
1075 	if (cerfl & RCANFD_CERFL_BOEF) {
1076 		netdev_dbg(ndev, "Bus-off entry interrupt\n");
1077 		rcar_canfd_tx_failure_cleanup(ndev);
1078 		priv->can.state = CAN_STATE_BUS_OFF;
1079 		priv->can.can_stats.bus_off++;
1080 		can_bus_off(ndev);
1081 		cf->can_id |= CAN_ERR_BUSOFF;
1082 	}
1083 	if (cerfl & RCANFD_CERFL_OVLF) {
1084 		netdev_dbg(ndev,
1085 			   "Overload Frame Transmission error interrupt\n");
1086 		stats->tx_errors++;
1087 		cf->can_id |= CAN_ERR_PROT;
1088 		cf->data[2] |= CAN_ERR_PROT_OVERLOAD;
1089 	}
1090 
1091 	/* Clear channel error interrupts that are handled */
1092 	rcar_canfd_write(priv->base, RCANFD_CERFL(ch),
1093 			 RCANFD_CERFL_ERR(~cerfl));
1094 	netif_rx(skb);
1095 }
1096 
rcar_canfd_tx_done(struct net_device * ndev)1097 static void rcar_canfd_tx_done(struct net_device *ndev)
1098 {
1099 	struct rcar_canfd_channel *priv = netdev_priv(ndev);
1100 	struct rcar_canfd_global *gpriv = priv->gpriv;
1101 	struct net_device_stats *stats = &ndev->stats;
1102 	u32 sts;
1103 	unsigned long flags;
1104 	u32 ch = priv->channel;
1105 
1106 	do {
1107 		u8 unsent, sent;
1108 
1109 		sent = priv->tx_tail % RCANFD_FIFO_DEPTH;
1110 		stats->tx_packets++;
1111 		stats->tx_bytes += can_get_echo_skb(ndev, sent, NULL);
1112 
1113 		spin_lock_irqsave(&priv->tx_lock, flags);
1114 		priv->tx_tail++;
1115 		sts = rcar_canfd_read(priv->base,
1116 				      RCANFD_CFSTS(gpriv, ch, RCANFD_CFFIFO_IDX));
1117 		unsent = RCANFD_CFSTS_CFMC(sts);
1118 
1119 		/* Wake producer only when there is room */
1120 		if (unsent != RCANFD_FIFO_DEPTH)
1121 			netif_wake_queue(ndev);
1122 
1123 		if (priv->tx_head - priv->tx_tail <= unsent) {
1124 			spin_unlock_irqrestore(&priv->tx_lock, flags);
1125 			break;
1126 		}
1127 		spin_unlock_irqrestore(&priv->tx_lock, flags);
1128 
1129 	} while (1);
1130 
1131 	/* Clear interrupt */
1132 	rcar_canfd_write(priv->base, RCANFD_CFSTS(gpriv, ch, RCANFD_CFFIFO_IDX),
1133 			 sts & ~RCANFD_CFSTS_CFTXIF);
1134 }
1135 
rcar_canfd_handle_global_err(struct rcar_canfd_global * gpriv,u32 ch)1136 static void rcar_canfd_handle_global_err(struct rcar_canfd_global *gpriv, u32 ch)
1137 {
1138 	struct rcar_canfd_channel *priv = gpriv->ch[ch];
1139 	struct net_device *ndev = priv->ndev;
1140 	u32 gerfl;
1141 
1142 	/* Handle global error interrupts */
1143 	gerfl = rcar_canfd_read(priv->base, RCANFD_GERFL);
1144 	if (unlikely(RCANFD_GERFL_ERR(gpriv, gerfl)))
1145 		rcar_canfd_global_error(ndev);
1146 }
1147 
rcar_canfd_global_err_interrupt(int irq,void * dev_id)1148 static irqreturn_t rcar_canfd_global_err_interrupt(int irq, void *dev_id)
1149 {
1150 	struct rcar_canfd_global *gpriv = dev_id;
1151 	u32 ch;
1152 
1153 	for_each_set_bit(ch, &gpriv->channels_mask, gpriv->info->max_channels)
1154 		rcar_canfd_handle_global_err(gpriv, ch);
1155 
1156 	return IRQ_HANDLED;
1157 }
1158 
rcar_canfd_handle_global_receive(struct rcar_canfd_global * gpriv,u32 ch)1159 static void rcar_canfd_handle_global_receive(struct rcar_canfd_global *gpriv, u32 ch)
1160 {
1161 	struct rcar_canfd_channel *priv = gpriv->ch[ch];
1162 	u32 ridx = ch + RCANFD_RFFIFO_IDX;
1163 	u32 sts, cc;
1164 
1165 	/* Handle Rx interrupts */
1166 	sts = rcar_canfd_read(priv->base, RCANFD_RFSTS(gpriv, ridx));
1167 	cc = rcar_canfd_read(priv->base, RCANFD_RFCC(gpriv, ridx));
1168 	if (likely(sts & RCANFD_RFSTS_RFIF &&
1169 		   cc & RCANFD_RFCC_RFIE)) {
1170 		if (napi_schedule_prep(&priv->napi)) {
1171 			/* Disable Rx FIFO interrupts */
1172 			rcar_canfd_clear_bit(priv->base,
1173 					     RCANFD_RFCC(gpriv, ridx),
1174 					     RCANFD_RFCC_RFIE);
1175 			__napi_schedule(&priv->napi);
1176 		}
1177 	}
1178 }
1179 
rcar_canfd_global_receive_fifo_interrupt(int irq,void * dev_id)1180 static irqreturn_t rcar_canfd_global_receive_fifo_interrupt(int irq, void *dev_id)
1181 {
1182 	struct rcar_canfd_global *gpriv = dev_id;
1183 	u32 ch;
1184 
1185 	for_each_set_bit(ch, &gpriv->channels_mask, gpriv->info->max_channels)
1186 		rcar_canfd_handle_global_receive(gpriv, ch);
1187 
1188 	return IRQ_HANDLED;
1189 }
1190 
rcar_canfd_global_interrupt(int irq,void * dev_id)1191 static irqreturn_t rcar_canfd_global_interrupt(int irq, void *dev_id)
1192 {
1193 	struct rcar_canfd_global *gpriv = dev_id;
1194 	u32 ch;
1195 
1196 	/* Global error interrupts still indicate a condition specific
1197 	 * to a channel. RxFIFO interrupt is a global interrupt.
1198 	 */
1199 	for_each_set_bit(ch, &gpriv->channels_mask, gpriv->info->max_channels) {
1200 		rcar_canfd_handle_global_err(gpriv, ch);
1201 		rcar_canfd_handle_global_receive(gpriv, ch);
1202 	}
1203 	return IRQ_HANDLED;
1204 }
1205 
rcar_canfd_state_change(struct net_device * ndev,u16 txerr,u16 rxerr)1206 static void rcar_canfd_state_change(struct net_device *ndev,
1207 				    u16 txerr, u16 rxerr)
1208 {
1209 	struct rcar_canfd_channel *priv = netdev_priv(ndev);
1210 	struct net_device_stats *stats = &ndev->stats;
1211 	enum can_state rx_state, tx_state, state = priv->can.state;
1212 	struct can_frame *cf;
1213 	struct sk_buff *skb;
1214 
1215 	/* Handle transition from error to normal states */
1216 	if (txerr < 96 && rxerr < 96)
1217 		state = CAN_STATE_ERROR_ACTIVE;
1218 	else if (txerr < 128 && rxerr < 128)
1219 		state = CAN_STATE_ERROR_WARNING;
1220 
1221 	if (state != priv->can.state) {
1222 		netdev_dbg(ndev, "state: new %d, old %d: txerr %u, rxerr %u\n",
1223 			   state, priv->can.state, txerr, rxerr);
1224 		skb = alloc_can_err_skb(ndev, &cf);
1225 		if (!skb) {
1226 			stats->rx_dropped++;
1227 			return;
1228 		}
1229 		tx_state = txerr >= rxerr ? state : 0;
1230 		rx_state = txerr <= rxerr ? state : 0;
1231 
1232 		can_change_state(ndev, cf, tx_state, rx_state);
1233 		netif_rx(skb);
1234 	}
1235 }
1236 
rcar_canfd_handle_channel_tx(struct rcar_canfd_global * gpriv,u32 ch)1237 static void rcar_canfd_handle_channel_tx(struct rcar_canfd_global *gpriv, u32 ch)
1238 {
1239 	struct rcar_canfd_channel *priv = gpriv->ch[ch];
1240 	struct net_device *ndev = priv->ndev;
1241 	u32 sts;
1242 
1243 	/* Handle Tx interrupts */
1244 	sts = rcar_canfd_read(priv->base,
1245 			      RCANFD_CFSTS(gpriv, ch, RCANFD_CFFIFO_IDX));
1246 	if (likely(sts & RCANFD_CFSTS_CFTXIF))
1247 		rcar_canfd_tx_done(ndev);
1248 }
1249 
rcar_canfd_channel_tx_interrupt(int irq,void * dev_id)1250 static irqreturn_t rcar_canfd_channel_tx_interrupt(int irq, void *dev_id)
1251 {
1252 	struct rcar_canfd_channel *priv = dev_id;
1253 
1254 	rcar_canfd_handle_channel_tx(priv->gpriv, priv->channel);
1255 
1256 	return IRQ_HANDLED;
1257 }
1258 
rcar_canfd_handle_channel_err(struct rcar_canfd_global * gpriv,u32 ch)1259 static void rcar_canfd_handle_channel_err(struct rcar_canfd_global *gpriv, u32 ch)
1260 {
1261 	struct rcar_canfd_channel *priv = gpriv->ch[ch];
1262 	struct net_device *ndev = priv->ndev;
1263 	u16 txerr, rxerr;
1264 	u32 sts, cerfl;
1265 
1266 	/* Handle channel error interrupts */
1267 	cerfl = rcar_canfd_read(priv->base, RCANFD_CERFL(ch));
1268 	sts = rcar_canfd_read(priv->base, RCANFD_CSTS(ch));
1269 	txerr = RCANFD_CSTS_TECCNT(sts);
1270 	rxerr = RCANFD_CSTS_RECCNT(sts);
1271 	if (unlikely(RCANFD_CERFL_ERR(cerfl)))
1272 		rcar_canfd_error(ndev, cerfl, txerr, rxerr);
1273 
1274 	/* Handle state change to lower states */
1275 	if (unlikely(priv->can.state != CAN_STATE_ERROR_ACTIVE &&
1276 		     priv->can.state != CAN_STATE_BUS_OFF))
1277 		rcar_canfd_state_change(ndev, txerr, rxerr);
1278 }
1279 
rcar_canfd_channel_err_interrupt(int irq,void * dev_id)1280 static irqreturn_t rcar_canfd_channel_err_interrupt(int irq, void *dev_id)
1281 {
1282 	struct rcar_canfd_channel *priv = dev_id;
1283 
1284 	rcar_canfd_handle_channel_err(priv->gpriv, priv->channel);
1285 
1286 	return IRQ_HANDLED;
1287 }
1288 
rcar_canfd_channel_interrupt(int irq,void * dev_id)1289 static irqreturn_t rcar_canfd_channel_interrupt(int irq, void *dev_id)
1290 {
1291 	struct rcar_canfd_global *gpriv = dev_id;
1292 	u32 ch;
1293 
1294 	/* Common FIFO is a per channel resource */
1295 	for_each_set_bit(ch, &gpriv->channels_mask, gpriv->info->max_channels) {
1296 		rcar_canfd_handle_channel_err(gpriv, ch);
1297 		rcar_canfd_handle_channel_tx(gpriv, ch);
1298 	}
1299 
1300 	return IRQ_HANDLED;
1301 }
1302 
rcar_canfd_set_bittiming(struct net_device * dev)1303 static void rcar_canfd_set_bittiming(struct net_device *dev)
1304 {
1305 	struct rcar_canfd_channel *priv = netdev_priv(dev);
1306 	struct rcar_canfd_global *gpriv = priv->gpriv;
1307 	const struct can_bittiming *bt = &priv->can.bittiming;
1308 	const struct can_bittiming *dbt = &priv->can.data_bittiming;
1309 	u16 brp, sjw, tseg1, tseg2;
1310 	u32 cfg;
1311 	u32 ch = priv->channel;
1312 
1313 	/* Nominal bit timing settings */
1314 	brp = bt->brp - 1;
1315 	sjw = bt->sjw - 1;
1316 	tseg1 = bt->prop_seg + bt->phase_seg1 - 1;
1317 	tseg2 = bt->phase_seg2 - 1;
1318 
1319 	if (priv->can.ctrlmode & CAN_CTRLMODE_FD) {
1320 		/* CAN FD only mode */
1321 		cfg = (RCANFD_NCFG_NTSEG1(gpriv, tseg1) | RCANFD_NCFG_NBRP(brp) |
1322 		       RCANFD_NCFG_NSJW(gpriv, sjw) | RCANFD_NCFG_NTSEG2(gpriv, tseg2));
1323 
1324 		rcar_canfd_write(priv->base, RCANFD_CCFG(ch), cfg);
1325 		netdev_dbg(priv->ndev, "nrate: brp %u, sjw %u, tseg1 %u, tseg2 %u\n",
1326 			   brp, sjw, tseg1, tseg2);
1327 
1328 		/* Data bit timing settings */
1329 		brp = dbt->brp - 1;
1330 		sjw = dbt->sjw - 1;
1331 		tseg1 = dbt->prop_seg + dbt->phase_seg1 - 1;
1332 		tseg2 = dbt->phase_seg2 - 1;
1333 
1334 		cfg = (RCANFD_DCFG_DTSEG1(gpriv, tseg1) | RCANFD_DCFG_DBRP(brp) |
1335 		       RCANFD_DCFG_DSJW(gpriv, sjw) | RCANFD_DCFG_DTSEG2(gpriv, tseg2));
1336 
1337 		rcar_canfd_write(priv->base, RCANFD_F_DCFG(gpriv, ch), cfg);
1338 		netdev_dbg(priv->ndev, "drate: brp %u, sjw %u, tseg1 %u, tseg2 %u\n",
1339 			   brp, sjw, tseg1, tseg2);
1340 	} else {
1341 		/* Classical CAN only mode */
1342 		if (is_gen4(gpriv)) {
1343 			cfg = (RCANFD_NCFG_NTSEG1(gpriv, tseg1) |
1344 			       RCANFD_NCFG_NBRP(brp) |
1345 			       RCANFD_NCFG_NSJW(gpriv, sjw) |
1346 			       RCANFD_NCFG_NTSEG2(gpriv, tseg2));
1347 		} else {
1348 			cfg = (RCANFD_CFG_TSEG1(tseg1) |
1349 			       RCANFD_CFG_BRP(brp) |
1350 			       RCANFD_CFG_SJW(sjw) |
1351 			       RCANFD_CFG_TSEG2(tseg2));
1352 		}
1353 
1354 		rcar_canfd_write(priv->base, RCANFD_CCFG(ch), cfg);
1355 		netdev_dbg(priv->ndev,
1356 			   "rate: brp %u, sjw %u, tseg1 %u, tseg2 %u\n",
1357 			   brp, sjw, tseg1, tseg2);
1358 	}
1359 }
1360 
rcar_canfd_start(struct net_device * ndev)1361 static int rcar_canfd_start(struct net_device *ndev)
1362 {
1363 	struct rcar_canfd_channel *priv = netdev_priv(ndev);
1364 	struct rcar_canfd_global *gpriv = priv->gpriv;
1365 	int err = -EOPNOTSUPP;
1366 	u32 sts, ch = priv->channel;
1367 	u32 ridx = ch + RCANFD_RFFIFO_IDX;
1368 
1369 	rcar_canfd_set_bittiming(ndev);
1370 
1371 	rcar_canfd_enable_channel_interrupts(priv);
1372 
1373 	/* Set channel to Operational mode */
1374 	rcar_canfd_update_bit(priv->base, RCANFD_CCTR(ch),
1375 			      RCANFD_CCTR_CHMDC_MASK, RCANFD_CCTR_CHDMC_COPM);
1376 
1377 	/* Verify channel mode change */
1378 	err = readl_poll_timeout((priv->base + RCANFD_CSTS(ch)), sts,
1379 				 (sts & RCANFD_CSTS_COMSTS), 2, 500000);
1380 	if (err) {
1381 		netdev_err(ndev, "channel %u communication state failed\n", ch);
1382 		goto fail_mode_change;
1383 	}
1384 
1385 	/* Enable Common & Rx FIFO */
1386 	rcar_canfd_set_bit(priv->base, RCANFD_CFCC(gpriv, ch, RCANFD_CFFIFO_IDX),
1387 			   RCANFD_CFCC_CFE);
1388 	rcar_canfd_set_bit(priv->base, RCANFD_RFCC(gpriv, ridx), RCANFD_RFCC_RFE);
1389 
1390 	priv->can.state = CAN_STATE_ERROR_ACTIVE;
1391 	return 0;
1392 
1393 fail_mode_change:
1394 	rcar_canfd_disable_channel_interrupts(priv);
1395 	return err;
1396 }
1397 
rcar_canfd_open(struct net_device * ndev)1398 static int rcar_canfd_open(struct net_device *ndev)
1399 {
1400 	struct rcar_canfd_channel *priv = netdev_priv(ndev);
1401 	struct rcar_canfd_global *gpriv = priv->gpriv;
1402 	int err;
1403 
1404 	err = phy_power_on(priv->transceiver);
1405 	if (err) {
1406 		netdev_err(ndev, "failed to power on PHY: %pe\n", ERR_PTR(err));
1407 		return err;
1408 	}
1409 
1410 	/* Peripheral clock is already enabled in probe */
1411 	err = clk_prepare_enable(gpriv->can_clk);
1412 	if (err) {
1413 		netdev_err(ndev, "failed to enable CAN clock: %pe\n", ERR_PTR(err));
1414 		goto out_phy;
1415 	}
1416 
1417 	err = open_candev(ndev);
1418 	if (err) {
1419 		netdev_err(ndev, "open_candev() failed: %pe\n", ERR_PTR(err));
1420 		goto out_can_clock;
1421 	}
1422 
1423 	napi_enable(&priv->napi);
1424 	err = rcar_canfd_start(ndev);
1425 	if (err)
1426 		goto out_close;
1427 	netif_start_queue(ndev);
1428 	return 0;
1429 out_close:
1430 	napi_disable(&priv->napi);
1431 	close_candev(ndev);
1432 out_can_clock:
1433 	clk_disable_unprepare(gpriv->can_clk);
1434 out_phy:
1435 	phy_power_off(priv->transceiver);
1436 	return err;
1437 }
1438 
rcar_canfd_stop(struct net_device * ndev)1439 static void rcar_canfd_stop(struct net_device *ndev)
1440 {
1441 	struct rcar_canfd_channel *priv = netdev_priv(ndev);
1442 	struct rcar_canfd_global *gpriv = priv->gpriv;
1443 	int err;
1444 	u32 sts, ch = priv->channel;
1445 	u32 ridx = ch + RCANFD_RFFIFO_IDX;
1446 
1447 	/* Transition to channel reset mode  */
1448 	rcar_canfd_update_bit(priv->base, RCANFD_CCTR(ch),
1449 			      RCANFD_CCTR_CHMDC_MASK, RCANFD_CCTR_CHDMC_CRESET);
1450 
1451 	/* Check Channel reset mode */
1452 	err = readl_poll_timeout((priv->base + RCANFD_CSTS(ch)), sts,
1453 				 (sts & RCANFD_CSTS_CRSTSTS), 2, 500000);
1454 	if (err)
1455 		netdev_err(ndev, "channel %u reset failed\n", ch);
1456 
1457 	rcar_canfd_disable_channel_interrupts(priv);
1458 
1459 	/* Disable Common & Rx FIFO */
1460 	rcar_canfd_clear_bit(priv->base, RCANFD_CFCC(gpriv, ch, RCANFD_CFFIFO_IDX),
1461 			     RCANFD_CFCC_CFE);
1462 	rcar_canfd_clear_bit(priv->base, RCANFD_RFCC(gpriv, ridx), RCANFD_RFCC_RFE);
1463 
1464 	/* Set the state as STOPPED */
1465 	priv->can.state = CAN_STATE_STOPPED;
1466 }
1467 
rcar_canfd_close(struct net_device * ndev)1468 static int rcar_canfd_close(struct net_device *ndev)
1469 {
1470 	struct rcar_canfd_channel *priv = netdev_priv(ndev);
1471 	struct rcar_canfd_global *gpriv = priv->gpriv;
1472 
1473 	netif_stop_queue(ndev);
1474 	rcar_canfd_stop(ndev);
1475 	napi_disable(&priv->napi);
1476 	clk_disable_unprepare(gpriv->can_clk);
1477 	close_candev(ndev);
1478 	phy_power_off(priv->transceiver);
1479 	return 0;
1480 }
1481 
rcar_canfd_start_xmit(struct sk_buff * skb,struct net_device * ndev)1482 static netdev_tx_t rcar_canfd_start_xmit(struct sk_buff *skb,
1483 					 struct net_device *ndev)
1484 {
1485 	struct rcar_canfd_channel *priv = netdev_priv(ndev);
1486 	struct rcar_canfd_global *gpriv = priv->gpriv;
1487 	struct canfd_frame *cf = (struct canfd_frame *)skb->data;
1488 	u32 sts = 0, id, dlc;
1489 	unsigned long flags;
1490 	u32 ch = priv->channel;
1491 
1492 	if (can_dev_dropped_skb(ndev, skb))
1493 		return NETDEV_TX_OK;
1494 
1495 	if (cf->can_id & CAN_EFF_FLAG) {
1496 		id = cf->can_id & CAN_EFF_MASK;
1497 		id |= RCANFD_CFID_CFIDE;
1498 	} else {
1499 		id = cf->can_id & CAN_SFF_MASK;
1500 	}
1501 
1502 	if (cf->can_id & CAN_RTR_FLAG)
1503 		id |= RCANFD_CFID_CFRTR;
1504 
1505 	dlc = RCANFD_CFPTR_CFDLC(can_fd_len2dlc(cf->len));
1506 
1507 	if ((priv->can.ctrlmode & CAN_CTRLMODE_FD) || is_gen4(gpriv)) {
1508 		rcar_canfd_write(priv->base,
1509 				 RCANFD_F_CFID(gpriv, ch, RCANFD_CFFIFO_IDX), id);
1510 		rcar_canfd_write(priv->base,
1511 				 RCANFD_F_CFPTR(gpriv, ch, RCANFD_CFFIFO_IDX), dlc);
1512 
1513 		if (can_is_canfd_skb(skb)) {
1514 			/* CAN FD frame format */
1515 			sts |= RCANFD_CFFDCSTS_CFFDF;
1516 			if (cf->flags & CANFD_BRS)
1517 				sts |= RCANFD_CFFDCSTS_CFBRS;
1518 
1519 			if (priv->can.state == CAN_STATE_ERROR_PASSIVE)
1520 				sts |= RCANFD_CFFDCSTS_CFESI;
1521 		}
1522 
1523 		rcar_canfd_write(priv->base,
1524 				 RCANFD_F_CFFDCSTS(gpriv, ch, RCANFD_CFFIFO_IDX), sts);
1525 
1526 		rcar_canfd_put_data(priv, cf,
1527 				    RCANFD_F_CFDF(gpriv, ch, RCANFD_CFFIFO_IDX, 0));
1528 	} else {
1529 		rcar_canfd_write(priv->base,
1530 				 RCANFD_C_CFID(ch, RCANFD_CFFIFO_IDX), id);
1531 		rcar_canfd_write(priv->base,
1532 				 RCANFD_C_CFPTR(ch, RCANFD_CFFIFO_IDX), dlc);
1533 		rcar_canfd_put_data(priv, cf,
1534 				    RCANFD_C_CFDF(ch, RCANFD_CFFIFO_IDX, 0));
1535 	}
1536 
1537 	can_put_echo_skb(skb, ndev, priv->tx_head % RCANFD_FIFO_DEPTH, 0);
1538 
1539 	spin_lock_irqsave(&priv->tx_lock, flags);
1540 	priv->tx_head++;
1541 
1542 	/* Stop the queue if we've filled all FIFO entries */
1543 	if (priv->tx_head - priv->tx_tail >= RCANFD_FIFO_DEPTH)
1544 		netif_stop_queue(ndev);
1545 
1546 	/* Start Tx: Write 0xff to CFPC to increment the CPU-side
1547 	 * pointer for the Common FIFO
1548 	 */
1549 	rcar_canfd_write(priv->base,
1550 			 RCANFD_CFPCTR(gpriv, ch, RCANFD_CFFIFO_IDX), 0xff);
1551 
1552 	spin_unlock_irqrestore(&priv->tx_lock, flags);
1553 	return NETDEV_TX_OK;
1554 }
1555 
rcar_canfd_rx_pkt(struct rcar_canfd_channel * priv)1556 static void rcar_canfd_rx_pkt(struct rcar_canfd_channel *priv)
1557 {
1558 	struct net_device_stats *stats = &priv->ndev->stats;
1559 	struct rcar_canfd_global *gpriv = priv->gpriv;
1560 	struct canfd_frame *cf;
1561 	struct sk_buff *skb;
1562 	u32 sts = 0, id, dlc;
1563 	u32 ch = priv->channel;
1564 	u32 ridx = ch + RCANFD_RFFIFO_IDX;
1565 
1566 	if ((priv->can.ctrlmode & CAN_CTRLMODE_FD) || is_gen4(gpriv)) {
1567 		id = rcar_canfd_read(priv->base, RCANFD_F_RFID(gpriv, ridx));
1568 		dlc = rcar_canfd_read(priv->base, RCANFD_F_RFPTR(gpriv, ridx));
1569 
1570 		sts = rcar_canfd_read(priv->base, RCANFD_F_RFFDSTS(gpriv, ridx));
1571 
1572 		if ((priv->can.ctrlmode & CAN_CTRLMODE_FD) &&
1573 		    sts & RCANFD_RFFDSTS_RFFDF)
1574 			skb = alloc_canfd_skb(priv->ndev, &cf);
1575 		else
1576 			skb = alloc_can_skb(priv->ndev,
1577 					    (struct can_frame **)&cf);
1578 	} else {
1579 		id = rcar_canfd_read(priv->base, RCANFD_C_RFID(ridx));
1580 		dlc = rcar_canfd_read(priv->base, RCANFD_C_RFPTR(ridx));
1581 		skb = alloc_can_skb(priv->ndev, (struct can_frame **)&cf);
1582 	}
1583 
1584 	if (!skb) {
1585 		stats->rx_dropped++;
1586 		return;
1587 	}
1588 
1589 	if (id & RCANFD_RFID_RFIDE)
1590 		cf->can_id = (id & CAN_EFF_MASK) | CAN_EFF_FLAG;
1591 	else
1592 		cf->can_id = id & CAN_SFF_MASK;
1593 
1594 	if (priv->can.ctrlmode & CAN_CTRLMODE_FD) {
1595 		if (sts & RCANFD_RFFDSTS_RFFDF)
1596 			cf->len = can_fd_dlc2len(RCANFD_RFPTR_RFDLC(dlc));
1597 		else
1598 			cf->len = can_cc_dlc2len(RCANFD_RFPTR_RFDLC(dlc));
1599 
1600 		if (sts & RCANFD_RFFDSTS_RFESI) {
1601 			cf->flags |= CANFD_ESI;
1602 			netdev_dbg(priv->ndev, "ESI Error\n");
1603 		}
1604 
1605 		if (!(sts & RCANFD_RFFDSTS_RFFDF) && (id & RCANFD_RFID_RFRTR)) {
1606 			cf->can_id |= CAN_RTR_FLAG;
1607 		} else {
1608 			if (sts & RCANFD_RFFDSTS_RFBRS)
1609 				cf->flags |= CANFD_BRS;
1610 
1611 			rcar_canfd_get_data(priv, cf, RCANFD_F_RFDF(gpriv, ridx, 0));
1612 		}
1613 	} else {
1614 		cf->len = can_cc_dlc2len(RCANFD_RFPTR_RFDLC(dlc));
1615 		if (id & RCANFD_RFID_RFRTR)
1616 			cf->can_id |= CAN_RTR_FLAG;
1617 		else if (is_gen4(gpriv))
1618 			rcar_canfd_get_data(priv, cf, RCANFD_F_RFDF(gpriv, ridx, 0));
1619 		else
1620 			rcar_canfd_get_data(priv, cf, RCANFD_C_RFDF(ridx, 0));
1621 	}
1622 
1623 	/* Write 0xff to RFPC to increment the CPU-side
1624 	 * pointer of the Rx FIFO
1625 	 */
1626 	rcar_canfd_write(priv->base, RCANFD_RFPCTR(gpriv, ridx), 0xff);
1627 
1628 	if (!(cf->can_id & CAN_RTR_FLAG))
1629 		stats->rx_bytes += cf->len;
1630 	stats->rx_packets++;
1631 	netif_receive_skb(skb);
1632 }
1633 
rcar_canfd_rx_poll(struct napi_struct * napi,int quota)1634 static int rcar_canfd_rx_poll(struct napi_struct *napi, int quota)
1635 {
1636 	struct rcar_canfd_channel *priv =
1637 		container_of(napi, struct rcar_canfd_channel, napi);
1638 	struct rcar_canfd_global *gpriv = priv->gpriv;
1639 	int num_pkts;
1640 	u32 sts;
1641 	u32 ch = priv->channel;
1642 	u32 ridx = ch + RCANFD_RFFIFO_IDX;
1643 
1644 	for (num_pkts = 0; num_pkts < quota; num_pkts++) {
1645 		sts = rcar_canfd_read(priv->base, RCANFD_RFSTS(gpriv, ridx));
1646 		/* Check FIFO empty condition */
1647 		if (sts & RCANFD_RFSTS_RFEMP)
1648 			break;
1649 
1650 		rcar_canfd_rx_pkt(priv);
1651 
1652 		/* Clear interrupt bit */
1653 		if (sts & RCANFD_RFSTS_RFIF)
1654 			rcar_canfd_write(priv->base, RCANFD_RFSTS(gpriv, ridx),
1655 					 sts & ~RCANFD_RFSTS_RFIF);
1656 	}
1657 
1658 	/* All packets processed */
1659 	if (num_pkts < quota) {
1660 		if (napi_complete_done(napi, num_pkts)) {
1661 			/* Enable Rx FIFO interrupts */
1662 			rcar_canfd_set_bit(priv->base, RCANFD_RFCC(gpriv, ridx),
1663 					   RCANFD_RFCC_RFIE);
1664 		}
1665 	}
1666 	return num_pkts;
1667 }
1668 
rcar_canfd_do_set_mode(struct net_device * ndev,enum can_mode mode)1669 static int rcar_canfd_do_set_mode(struct net_device *ndev, enum can_mode mode)
1670 {
1671 	int err;
1672 
1673 	switch (mode) {
1674 	case CAN_MODE_START:
1675 		err = rcar_canfd_start(ndev);
1676 		if (err)
1677 			return err;
1678 		netif_wake_queue(ndev);
1679 		return 0;
1680 	default:
1681 		return -EOPNOTSUPP;
1682 	}
1683 }
1684 
rcar_canfd_get_berr_counter(const struct net_device * dev,struct can_berr_counter * bec)1685 static int rcar_canfd_get_berr_counter(const struct net_device *dev,
1686 				       struct can_berr_counter *bec)
1687 {
1688 	struct rcar_canfd_channel *priv = netdev_priv(dev);
1689 	u32 val, ch = priv->channel;
1690 
1691 	/* Peripheral clock is already enabled in probe */
1692 	val = rcar_canfd_read(priv->base, RCANFD_CSTS(ch));
1693 	bec->txerr = RCANFD_CSTS_TECCNT(val);
1694 	bec->rxerr = RCANFD_CSTS_RECCNT(val);
1695 	return 0;
1696 }
1697 
1698 static const struct net_device_ops rcar_canfd_netdev_ops = {
1699 	.ndo_open = rcar_canfd_open,
1700 	.ndo_stop = rcar_canfd_close,
1701 	.ndo_start_xmit = rcar_canfd_start_xmit,
1702 	.ndo_change_mtu = can_change_mtu,
1703 };
1704 
1705 static const struct ethtool_ops rcar_canfd_ethtool_ops = {
1706 	.get_ts_info = ethtool_op_get_ts_info,
1707 };
1708 
rcar_canfd_channel_probe(struct rcar_canfd_global * gpriv,u32 ch,u32 fcan_freq,struct phy * transceiver)1709 static int rcar_canfd_channel_probe(struct rcar_canfd_global *gpriv, u32 ch,
1710 				    u32 fcan_freq, struct phy *transceiver)
1711 {
1712 	const struct rcar_canfd_hw_info *info = gpriv->info;
1713 	struct platform_device *pdev = gpriv->pdev;
1714 	struct device *dev = &pdev->dev;
1715 	struct rcar_canfd_channel *priv;
1716 	struct net_device *ndev;
1717 	int err = -ENODEV;
1718 
1719 	ndev = alloc_candev(sizeof(*priv), RCANFD_FIFO_DEPTH);
1720 	if (!ndev)
1721 		return -ENOMEM;
1722 
1723 	priv = netdev_priv(ndev);
1724 
1725 	ndev->netdev_ops = &rcar_canfd_netdev_ops;
1726 	ndev->ethtool_ops = &rcar_canfd_ethtool_ops;
1727 	ndev->flags |= IFF_ECHO;
1728 	priv->ndev = ndev;
1729 	priv->base = gpriv->base;
1730 	priv->transceiver = transceiver;
1731 	priv->channel = ch;
1732 	priv->gpriv = gpriv;
1733 	if (transceiver)
1734 		priv->can.bitrate_max = transceiver->attrs.max_link_rate;
1735 	priv->can.clock.freq = fcan_freq;
1736 	dev_info(dev, "can_clk rate is %u\n", priv->can.clock.freq);
1737 
1738 	if (info->multi_channel_irqs) {
1739 		char *irq_name;
1740 		int err_irq;
1741 		int tx_irq;
1742 
1743 		err_irq = platform_get_irq_byname(pdev, ch == 0 ? "ch0_err" : "ch1_err");
1744 		if (err_irq < 0) {
1745 			err = err_irq;
1746 			goto fail;
1747 		}
1748 
1749 		tx_irq = platform_get_irq_byname(pdev, ch == 0 ? "ch0_trx" : "ch1_trx");
1750 		if (tx_irq < 0) {
1751 			err = tx_irq;
1752 			goto fail;
1753 		}
1754 
1755 		irq_name = devm_kasprintf(dev, GFP_KERNEL, "canfd.ch%d_err",
1756 					  ch);
1757 		if (!irq_name) {
1758 			err = -ENOMEM;
1759 			goto fail;
1760 		}
1761 		err = devm_request_irq(dev, err_irq,
1762 				       rcar_canfd_channel_err_interrupt, 0,
1763 				       irq_name, priv);
1764 		if (err) {
1765 			dev_err(dev, "devm_request_irq CH Err %d failed: %pe\n",
1766 				err_irq, ERR_PTR(err));
1767 			goto fail;
1768 		}
1769 		irq_name = devm_kasprintf(dev, GFP_KERNEL, "canfd.ch%d_trx",
1770 					  ch);
1771 		if (!irq_name) {
1772 			err = -ENOMEM;
1773 			goto fail;
1774 		}
1775 		err = devm_request_irq(dev, tx_irq,
1776 				       rcar_canfd_channel_tx_interrupt, 0,
1777 				       irq_name, priv);
1778 		if (err) {
1779 			dev_err(dev, "devm_request_irq Tx %d failed: %pe\n",
1780 				tx_irq, ERR_PTR(err));
1781 			goto fail;
1782 		}
1783 	}
1784 
1785 	if (gpriv->fdmode) {
1786 		priv->can.bittiming_const = &rcar_canfd_nom_bittiming_const;
1787 		priv->can.data_bittiming_const =
1788 			&rcar_canfd_data_bittiming_const;
1789 
1790 		/* Controller starts in CAN FD only mode */
1791 		err = can_set_static_ctrlmode(ndev, CAN_CTRLMODE_FD);
1792 		if (err)
1793 			goto fail;
1794 		priv->can.ctrlmode_supported = CAN_CTRLMODE_BERR_REPORTING;
1795 	} else {
1796 		/* Controller starts in Classical CAN only mode */
1797 		priv->can.bittiming_const = &rcar_canfd_bittiming_const;
1798 		priv->can.ctrlmode_supported = CAN_CTRLMODE_BERR_REPORTING;
1799 	}
1800 
1801 	priv->can.do_set_mode = rcar_canfd_do_set_mode;
1802 	priv->can.do_get_berr_counter = rcar_canfd_get_berr_counter;
1803 	SET_NETDEV_DEV(ndev, dev);
1804 
1805 	netif_napi_add_weight(ndev, &priv->napi, rcar_canfd_rx_poll,
1806 			      RCANFD_NAPI_WEIGHT);
1807 	spin_lock_init(&priv->tx_lock);
1808 	gpriv->ch[priv->channel] = priv;
1809 	err = register_candev(ndev);
1810 	if (err) {
1811 		dev_err(dev, "register_candev() failed: %pe\n", ERR_PTR(err));
1812 		goto fail_candev;
1813 	}
1814 	dev_info(dev, "device registered (channel %u)\n", priv->channel);
1815 	return 0;
1816 
1817 fail_candev:
1818 	netif_napi_del(&priv->napi);
1819 fail:
1820 	free_candev(ndev);
1821 	return err;
1822 }
1823 
rcar_canfd_channel_remove(struct rcar_canfd_global * gpriv,u32 ch)1824 static void rcar_canfd_channel_remove(struct rcar_canfd_global *gpriv, u32 ch)
1825 {
1826 	struct rcar_canfd_channel *priv = gpriv->ch[ch];
1827 
1828 	if (priv) {
1829 		unregister_candev(priv->ndev);
1830 		netif_napi_del(&priv->napi);
1831 		free_candev(priv->ndev);
1832 	}
1833 }
1834 
rcar_canfd_probe(struct platform_device * pdev)1835 static int rcar_canfd_probe(struct platform_device *pdev)
1836 {
1837 	struct phy *transceivers[RCANFD_NUM_CHANNELS] = { NULL, };
1838 	const struct rcar_canfd_hw_info *info;
1839 	struct device *dev = &pdev->dev;
1840 	void __iomem *addr;
1841 	u32 sts, ch, fcan_freq;
1842 	struct rcar_canfd_global *gpriv;
1843 	struct device_node *of_child;
1844 	unsigned long channels_mask = 0;
1845 	int err, ch_irq, g_irq;
1846 	int g_err_irq, g_recc_irq;
1847 	u32 rule_entry = 0;
1848 	bool fdmode = true;			/* CAN FD only mode - default */
1849 	char name[9] = "channelX";
1850 	int i;
1851 
1852 	info = of_device_get_match_data(dev);
1853 
1854 	if (of_property_read_bool(dev->of_node, "renesas,no-can-fd"))
1855 		fdmode = false;			/* Classical CAN only mode */
1856 
1857 	for (i = 0; i < info->max_channels; ++i) {
1858 		name[7] = '0' + i;
1859 		of_child = of_get_child_by_name(dev->of_node, name);
1860 		if (of_child && of_device_is_available(of_child)) {
1861 			channels_mask |= BIT(i);
1862 			transceivers[i] = devm_of_phy_optional_get(dev,
1863 							of_child, NULL);
1864 		}
1865 		of_node_put(of_child);
1866 		if (IS_ERR(transceivers[i]))
1867 			return PTR_ERR(transceivers[i]);
1868 	}
1869 
1870 	if (info->shared_global_irqs) {
1871 		ch_irq = platform_get_irq_byname_optional(pdev, "ch_int");
1872 		if (ch_irq < 0) {
1873 			/* For backward compatibility get irq by index */
1874 			ch_irq = platform_get_irq(pdev, 0);
1875 			if (ch_irq < 0)
1876 				return ch_irq;
1877 		}
1878 
1879 		g_irq = platform_get_irq_byname_optional(pdev, "g_int");
1880 		if (g_irq < 0) {
1881 			/* For backward compatibility get irq by index */
1882 			g_irq = platform_get_irq(pdev, 1);
1883 			if (g_irq < 0)
1884 				return g_irq;
1885 		}
1886 	} else {
1887 		g_err_irq = platform_get_irq_byname(pdev, "g_err");
1888 		if (g_err_irq < 0)
1889 			return g_err_irq;
1890 
1891 		g_recc_irq = platform_get_irq_byname(pdev, "g_recc");
1892 		if (g_recc_irq < 0)
1893 			return g_recc_irq;
1894 	}
1895 
1896 	/* Global controller context */
1897 	gpriv = devm_kzalloc(dev, sizeof(*gpriv), GFP_KERNEL);
1898 	if (!gpriv)
1899 		return -ENOMEM;
1900 
1901 	gpriv->pdev = pdev;
1902 	gpriv->channels_mask = channels_mask;
1903 	gpriv->fdmode = fdmode;
1904 	gpriv->info = info;
1905 
1906 	gpriv->rstc1 = devm_reset_control_get_optional_exclusive(dev, "rstp_n");
1907 	if (IS_ERR(gpriv->rstc1))
1908 		return dev_err_probe(dev, PTR_ERR(gpriv->rstc1),
1909 				     "failed to get rstp_n\n");
1910 
1911 	gpriv->rstc2 = devm_reset_control_get_optional_exclusive(dev, "rstc_n");
1912 	if (IS_ERR(gpriv->rstc2))
1913 		return dev_err_probe(dev, PTR_ERR(gpriv->rstc2),
1914 				     "failed to get rstc_n\n");
1915 
1916 	/* Peripheral clock */
1917 	gpriv->clkp = devm_clk_get(dev, "fck");
1918 	if (IS_ERR(gpriv->clkp))
1919 		return dev_err_probe(dev, PTR_ERR(gpriv->clkp),
1920 				     "cannot get peripheral clock\n");
1921 
1922 	/* fCAN clock: Pick External clock. If not available fallback to
1923 	 * CANFD clock
1924 	 */
1925 	gpriv->can_clk = devm_clk_get(dev, "can_clk");
1926 	if (IS_ERR(gpriv->can_clk) || (clk_get_rate(gpriv->can_clk) == 0)) {
1927 		gpriv->can_clk = devm_clk_get(dev, "canfd");
1928 		if (IS_ERR(gpriv->can_clk))
1929 			return dev_err_probe(dev, PTR_ERR(gpriv->can_clk),
1930 					     "cannot get canfd clock\n");
1931 
1932 		/* CANFD clock may be further divided within the IP */
1933 		fcan_freq = clk_get_rate(gpriv->can_clk) / info->postdiv;
1934 	} else {
1935 		fcan_freq = clk_get_rate(gpriv->can_clk);
1936 		gpriv->extclk = true;
1937 	}
1938 
1939 	addr = devm_platform_ioremap_resource(pdev, 0);
1940 	if (IS_ERR(addr)) {
1941 		err = PTR_ERR(addr);
1942 		goto fail_dev;
1943 	}
1944 	gpriv->base = addr;
1945 
1946 	/* Request IRQ that's common for both channels */
1947 	if (info->shared_global_irqs) {
1948 		err = devm_request_irq(dev, ch_irq,
1949 				       rcar_canfd_channel_interrupt, 0,
1950 				       "canfd.ch_int", gpriv);
1951 		if (err) {
1952 			dev_err(dev, "devm_request_irq %d failed: %pe\n",
1953 				ch_irq, ERR_PTR(err));
1954 			goto fail_dev;
1955 		}
1956 
1957 		err = devm_request_irq(dev, g_irq, rcar_canfd_global_interrupt,
1958 				       0, "canfd.g_int", gpriv);
1959 		if (err) {
1960 			dev_err(dev, "devm_request_irq %d failed: %pe\n",
1961 				g_irq, ERR_PTR(err));
1962 			goto fail_dev;
1963 		}
1964 	} else {
1965 		err = devm_request_irq(dev, g_recc_irq,
1966 				       rcar_canfd_global_receive_fifo_interrupt, 0,
1967 				       "canfd.g_recc", gpriv);
1968 
1969 		if (err) {
1970 			dev_err(dev, "devm_request_irq %d failed: %pe\n",
1971 				g_recc_irq, ERR_PTR(err));
1972 			goto fail_dev;
1973 		}
1974 
1975 		err = devm_request_irq(dev, g_err_irq,
1976 				       rcar_canfd_global_err_interrupt, 0,
1977 				       "canfd.g_err", gpriv);
1978 		if (err) {
1979 			dev_err(dev, "devm_request_irq %d failed: %pe\n",
1980 				g_err_irq, ERR_PTR(err));
1981 			goto fail_dev;
1982 		}
1983 	}
1984 
1985 	err = reset_control_reset(gpriv->rstc1);
1986 	if (err)
1987 		goto fail_dev;
1988 	err = reset_control_reset(gpriv->rstc2);
1989 	if (err) {
1990 		reset_control_assert(gpriv->rstc1);
1991 		goto fail_dev;
1992 	}
1993 
1994 	/* Enable peripheral clock for register access */
1995 	err = clk_prepare_enable(gpriv->clkp);
1996 	if (err) {
1997 		dev_err(dev, "failed to enable peripheral clock: %pe\n",
1998 			ERR_PTR(err));
1999 		goto fail_reset;
2000 	}
2001 
2002 	err = rcar_canfd_reset_controller(gpriv);
2003 	if (err) {
2004 		dev_err(dev, "reset controller failed: %pe\n", ERR_PTR(err));
2005 		goto fail_clk;
2006 	}
2007 
2008 	/* Controller in Global reset & Channel reset mode */
2009 	rcar_canfd_configure_controller(gpriv);
2010 
2011 	/* Configure per channel attributes */
2012 	for_each_set_bit(ch, &gpriv->channels_mask, info->max_channels) {
2013 		/* Configure Channel's Rx fifo */
2014 		rcar_canfd_configure_rx(gpriv, ch);
2015 
2016 		/* Configure Channel's Tx (Common) fifo */
2017 		rcar_canfd_configure_tx(gpriv, ch);
2018 
2019 		/* Configure receive rules */
2020 		rcar_canfd_configure_afl_rules(gpriv, ch, rule_entry);
2021 		rule_entry += RCANFD_CHANNEL_NUMRULES;
2022 	}
2023 
2024 	/* Configure common interrupts */
2025 	rcar_canfd_enable_global_interrupts(gpriv);
2026 
2027 	/* Start Global operation mode */
2028 	rcar_canfd_update_bit(gpriv->base, RCANFD_GCTR, RCANFD_GCTR_GMDC_MASK,
2029 			      RCANFD_GCTR_GMDC_GOPM);
2030 
2031 	/* Verify mode change */
2032 	err = readl_poll_timeout((gpriv->base + RCANFD_GSTS), sts,
2033 				 !(sts & RCANFD_GSTS_GNOPM), 2, 500000);
2034 	if (err) {
2035 		dev_err(dev, "global operational mode failed\n");
2036 		goto fail_mode;
2037 	}
2038 
2039 	for_each_set_bit(ch, &gpriv->channels_mask, info->max_channels) {
2040 		err = rcar_canfd_channel_probe(gpriv, ch, fcan_freq,
2041 					       transceivers[ch]);
2042 		if (err)
2043 			goto fail_channel;
2044 	}
2045 
2046 	platform_set_drvdata(pdev, gpriv);
2047 	dev_info(dev, "global operational state (%s clk, %s mode)\n",
2048 		 gpriv->extclk ? "ext" : "canfd",
2049 		 gpriv->fdmode ? "fd" : "classical");
2050 	return 0;
2051 
2052 fail_channel:
2053 	for_each_set_bit(ch, &gpriv->channels_mask, info->max_channels)
2054 		rcar_canfd_channel_remove(gpriv, ch);
2055 fail_mode:
2056 	rcar_canfd_disable_global_interrupts(gpriv);
2057 fail_clk:
2058 	clk_disable_unprepare(gpriv->clkp);
2059 fail_reset:
2060 	reset_control_assert(gpriv->rstc1);
2061 	reset_control_assert(gpriv->rstc2);
2062 fail_dev:
2063 	return err;
2064 }
2065 
rcar_canfd_remove(struct platform_device * pdev)2066 static void rcar_canfd_remove(struct platform_device *pdev)
2067 {
2068 	struct rcar_canfd_global *gpriv = platform_get_drvdata(pdev);
2069 	u32 ch;
2070 
2071 	rcar_canfd_reset_controller(gpriv);
2072 	rcar_canfd_disable_global_interrupts(gpriv);
2073 
2074 	for_each_set_bit(ch, &gpriv->channels_mask, gpriv->info->max_channels) {
2075 		rcar_canfd_disable_channel_interrupts(gpriv->ch[ch]);
2076 		rcar_canfd_channel_remove(gpriv, ch);
2077 	}
2078 
2079 	/* Enter global sleep mode */
2080 	rcar_canfd_set_bit(gpriv->base, RCANFD_GCTR, RCANFD_GCTR_GSLPR);
2081 	clk_disable_unprepare(gpriv->clkp);
2082 	reset_control_assert(gpriv->rstc1);
2083 	reset_control_assert(gpriv->rstc2);
2084 }
2085 
rcar_canfd_suspend(struct device * dev)2086 static int __maybe_unused rcar_canfd_suspend(struct device *dev)
2087 {
2088 	return 0;
2089 }
2090 
rcar_canfd_resume(struct device * dev)2091 static int __maybe_unused rcar_canfd_resume(struct device *dev)
2092 {
2093 	return 0;
2094 }
2095 
2096 static SIMPLE_DEV_PM_OPS(rcar_canfd_pm_ops, rcar_canfd_suspend,
2097 			 rcar_canfd_resume);
2098 
2099 static const __maybe_unused struct of_device_id rcar_canfd_of_table[] = {
2100 	{ .compatible = "renesas,r8a779a0-canfd", .data = &rcar_gen4_hw_info },
2101 	{ .compatible = "renesas,rcar-gen3-canfd", .data = &rcar_gen3_hw_info },
2102 	{ .compatible = "renesas,rcar-gen4-canfd", .data = &rcar_gen4_hw_info },
2103 	{ .compatible = "renesas,rzg2l-canfd", .data = &rzg2l_hw_info },
2104 	{ }
2105 };
2106 
2107 MODULE_DEVICE_TABLE(of, rcar_canfd_of_table);
2108 
2109 static struct platform_driver rcar_canfd_driver = {
2110 	.driver = {
2111 		.name = RCANFD_DRV_NAME,
2112 		.of_match_table = of_match_ptr(rcar_canfd_of_table),
2113 		.pm = &rcar_canfd_pm_ops,
2114 	},
2115 	.probe = rcar_canfd_probe,
2116 	.remove = rcar_canfd_remove,
2117 };
2118 
2119 module_platform_driver(rcar_canfd_driver);
2120 
2121 MODULE_AUTHOR("Ramesh Shanmugasundaram <ramesh.shanmugasundaram@bp.renesas.com>");
2122 MODULE_LICENSE("GPL");
2123 MODULE_DESCRIPTION("CAN FD driver for Renesas R-Car SoC");
2124 MODULE_ALIAS("platform:" RCANFD_DRV_NAME);
2125