• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Lantiq / Intel GSWIP switch driver for VRX200, xRX300 and xRX330 SoCs
4  *
5  * Copyright (C) 2010 Lantiq Deutschland
6  * Copyright (C) 2012 John Crispin <john@phrozen.org>
7  * Copyright (C) 2017 - 2019 Hauke Mehrtens <hauke@hauke-m.de>
8  *
9  * The VLAN and bridge model the GSWIP hardware uses does not directly
10  * matches the model DSA uses.
11  *
12  * The hardware has 64 possible table entries for bridges with one VLAN
13  * ID, one flow id and a list of ports for each bridge. All entries which
14  * match the same flow ID are combined in the mac learning table, they
15  * act as one global bridge.
16  * The hardware does not support VLAN filter on the port, but on the
17  * bridge, this driver converts the DSA model to the hardware.
18  *
19  * The CPU gets all the exception frames which do not match any forwarding
20  * rule and the CPU port is also added to all bridges. This makes it possible
21  * to handle all the special cases easily in software.
22  * At the initialization the driver allocates one bridge table entry for
23  * each switch port which is used when the port is used without an
24  * explicit bridge. This prevents the frames from being forwarded
25  * between all LAN ports by default.
26  */
27 
28 #include <linux/clk.h>
29 #include <linux/delay.h>
30 #include <linux/etherdevice.h>
31 #include <linux/firmware.h>
32 #include <linux/if_bridge.h>
33 #include <linux/if_vlan.h>
34 #include <linux/iopoll.h>
35 #include <linux/mfd/syscon.h>
36 #include <linux/module.h>
37 #include <linux/of_mdio.h>
38 #include <linux/of_net.h>
39 #include <linux/of_platform.h>
40 #include <linux/phy.h>
41 #include <linux/phylink.h>
42 #include <linux/platform_device.h>
43 #include <linux/regmap.h>
44 #include <linux/reset.h>
45 #include <net/dsa.h>
46 #include <dt-bindings/mips/lantiq_rcu_gphy.h>
47 
48 #include "lantiq_pce.h"
49 
50 /* GSWIP MDIO Registers */
51 #define GSWIP_MDIO_GLOB			0x00
52 #define  GSWIP_MDIO_GLOB_ENABLE		BIT(15)
53 #define GSWIP_MDIO_CTRL			0x08
54 #define  GSWIP_MDIO_CTRL_BUSY		BIT(12)
55 #define  GSWIP_MDIO_CTRL_RD		BIT(11)
56 #define  GSWIP_MDIO_CTRL_WR		BIT(10)
57 #define  GSWIP_MDIO_CTRL_PHYAD_MASK	0x1f
58 #define  GSWIP_MDIO_CTRL_PHYAD_SHIFT	5
59 #define  GSWIP_MDIO_CTRL_REGAD_MASK	0x1f
60 #define GSWIP_MDIO_READ			0x09
61 #define GSWIP_MDIO_WRITE		0x0A
62 #define GSWIP_MDIO_MDC_CFG0		0x0B
63 #define GSWIP_MDIO_MDC_CFG1		0x0C
64 #define GSWIP_MDIO_PHYp(p)		(0x15 - (p))
65 #define  GSWIP_MDIO_PHY_LINK_MASK	0x6000
66 #define  GSWIP_MDIO_PHY_LINK_AUTO	0x0000
67 #define  GSWIP_MDIO_PHY_LINK_DOWN	0x4000
68 #define  GSWIP_MDIO_PHY_LINK_UP		0x2000
69 #define  GSWIP_MDIO_PHY_SPEED_MASK	0x1800
70 #define  GSWIP_MDIO_PHY_SPEED_AUTO	0x1800
71 #define  GSWIP_MDIO_PHY_SPEED_M10	0x0000
72 #define  GSWIP_MDIO_PHY_SPEED_M100	0x0800
73 #define  GSWIP_MDIO_PHY_SPEED_G1	0x1000
74 #define  GSWIP_MDIO_PHY_FDUP_MASK	0x0600
75 #define  GSWIP_MDIO_PHY_FDUP_AUTO	0x0000
76 #define  GSWIP_MDIO_PHY_FDUP_EN		0x0200
77 #define  GSWIP_MDIO_PHY_FDUP_DIS	0x0600
78 #define  GSWIP_MDIO_PHY_FCONTX_MASK	0x0180
79 #define  GSWIP_MDIO_PHY_FCONTX_AUTO	0x0000
80 #define  GSWIP_MDIO_PHY_FCONTX_EN	0x0100
81 #define  GSWIP_MDIO_PHY_FCONTX_DIS	0x0180
82 #define  GSWIP_MDIO_PHY_FCONRX_MASK	0x0060
83 #define  GSWIP_MDIO_PHY_FCONRX_AUTO	0x0000
84 #define  GSWIP_MDIO_PHY_FCONRX_EN	0x0020
85 #define  GSWIP_MDIO_PHY_FCONRX_DIS	0x0060
86 #define  GSWIP_MDIO_PHY_ADDR_MASK	0x001f
87 #define  GSWIP_MDIO_PHY_MASK		(GSWIP_MDIO_PHY_ADDR_MASK | \
88 					 GSWIP_MDIO_PHY_FCONRX_MASK | \
89 					 GSWIP_MDIO_PHY_FCONTX_MASK | \
90 					 GSWIP_MDIO_PHY_LINK_MASK | \
91 					 GSWIP_MDIO_PHY_SPEED_MASK | \
92 					 GSWIP_MDIO_PHY_FDUP_MASK)
93 
94 /* GSWIP MII Registers */
95 #define GSWIP_MII_CFGp(p)		(0x2 * (p))
96 #define  GSWIP_MII_CFG_RESET		BIT(15)
97 #define  GSWIP_MII_CFG_EN		BIT(14)
98 #define  GSWIP_MII_CFG_ISOLATE		BIT(13)
99 #define  GSWIP_MII_CFG_LDCLKDIS		BIT(12)
100 #define  GSWIP_MII_CFG_RGMII_IBS	BIT(8)
101 #define  GSWIP_MII_CFG_RMII_CLK		BIT(7)
102 #define  GSWIP_MII_CFG_MODE_MIIP	0x0
103 #define  GSWIP_MII_CFG_MODE_MIIM	0x1
104 #define  GSWIP_MII_CFG_MODE_RMIIP	0x2
105 #define  GSWIP_MII_CFG_MODE_RMIIM	0x3
106 #define  GSWIP_MII_CFG_MODE_RGMII	0x4
107 #define  GSWIP_MII_CFG_MODE_GMII	0x9
108 #define  GSWIP_MII_CFG_MODE_MASK	0xf
109 #define  GSWIP_MII_CFG_RATE_M2P5	0x00
110 #define  GSWIP_MII_CFG_RATE_M25	0x10
111 #define  GSWIP_MII_CFG_RATE_M125	0x20
112 #define  GSWIP_MII_CFG_RATE_M50	0x30
113 #define  GSWIP_MII_CFG_RATE_AUTO	0x40
114 #define  GSWIP_MII_CFG_RATE_MASK	0x70
115 #define GSWIP_MII_PCDU0			0x01
116 #define GSWIP_MII_PCDU1			0x03
117 #define GSWIP_MII_PCDU5			0x05
118 #define  GSWIP_MII_PCDU_TXDLY_MASK	GENMASK(2, 0)
119 #define  GSWIP_MII_PCDU_RXDLY_MASK	GENMASK(9, 7)
120 
121 /* GSWIP Core Registers */
122 #define GSWIP_SWRES			0x000
123 #define  GSWIP_SWRES_R1			BIT(1)	/* GSWIP Software reset */
124 #define  GSWIP_SWRES_R0			BIT(0)	/* GSWIP Hardware reset */
125 #define GSWIP_VERSION			0x013
126 #define  GSWIP_VERSION_REV_SHIFT	0
127 #define  GSWIP_VERSION_REV_MASK		GENMASK(7, 0)
128 #define  GSWIP_VERSION_MOD_SHIFT	8
129 #define  GSWIP_VERSION_MOD_MASK		GENMASK(15, 8)
130 #define   GSWIP_VERSION_2_0		0x100
131 #define   GSWIP_VERSION_2_1		0x021
132 #define   GSWIP_VERSION_2_2		0x122
133 #define   GSWIP_VERSION_2_2_ETC		0x022
134 
135 #define GSWIP_BM_RAM_VAL(x)		(0x043 - (x))
136 #define GSWIP_BM_RAM_ADDR		0x044
137 #define GSWIP_BM_RAM_CTRL		0x045
138 #define  GSWIP_BM_RAM_CTRL_BAS		BIT(15)
139 #define  GSWIP_BM_RAM_CTRL_OPMOD	BIT(5)
140 #define  GSWIP_BM_RAM_CTRL_ADDR_MASK	GENMASK(4, 0)
141 #define GSWIP_BM_QUEUE_GCTRL		0x04A
142 #define  GSWIP_BM_QUEUE_GCTRL_GL_MOD	BIT(10)
143 /* buffer management Port Configuration Register */
144 #define GSWIP_BM_PCFGp(p)		(0x080 + ((p) * 2))
145 #define  GSWIP_BM_PCFG_CNTEN		BIT(0)	/* RMON Counter Enable */
146 #define  GSWIP_BM_PCFG_IGCNT		BIT(1)	/* Ingres Special Tag RMON count */
147 /* buffer management Port Control Register */
148 #define GSWIP_BM_RMON_CTRLp(p)		(0x81 + ((p) * 2))
149 #define  GSWIP_BM_CTRL_RMON_RAM1_RES	BIT(0)	/* Software Reset for RMON RAM 1 */
150 #define  GSWIP_BM_CTRL_RMON_RAM2_RES	BIT(1)	/* Software Reset for RMON RAM 2 */
151 
152 /* PCE */
153 #define GSWIP_PCE_TBL_KEY(x)		(0x447 - (x))
154 #define GSWIP_PCE_TBL_MASK		0x448
155 #define GSWIP_PCE_TBL_VAL(x)		(0x44D - (x))
156 #define GSWIP_PCE_TBL_ADDR		0x44E
157 #define GSWIP_PCE_TBL_CTRL		0x44F
158 #define  GSWIP_PCE_TBL_CTRL_BAS		BIT(15)
159 #define  GSWIP_PCE_TBL_CTRL_TYPE	BIT(13)
160 #define  GSWIP_PCE_TBL_CTRL_VLD		BIT(12)
161 #define  GSWIP_PCE_TBL_CTRL_KEYFORM	BIT(11)
162 #define  GSWIP_PCE_TBL_CTRL_GMAP_MASK	GENMASK(10, 7)
163 #define  GSWIP_PCE_TBL_CTRL_OPMOD_MASK	GENMASK(6, 5)
164 #define  GSWIP_PCE_TBL_CTRL_OPMOD_ADRD	0x00
165 #define  GSWIP_PCE_TBL_CTRL_OPMOD_ADWR	0x20
166 #define  GSWIP_PCE_TBL_CTRL_OPMOD_KSRD	0x40
167 #define  GSWIP_PCE_TBL_CTRL_OPMOD_KSWR	0x60
168 #define  GSWIP_PCE_TBL_CTRL_ADDR_MASK	GENMASK(4, 0)
169 #define GSWIP_PCE_PMAP1			0x453	/* Monitoring port map */
170 #define GSWIP_PCE_PMAP2			0x454	/* Default Multicast port map */
171 #define GSWIP_PCE_PMAP3			0x455	/* Default Unknown Unicast port map */
172 #define GSWIP_PCE_GCTRL_0		0x456
173 #define  GSWIP_PCE_GCTRL_0_MTFL		BIT(0)  /* MAC Table Flushing */
174 #define  GSWIP_PCE_GCTRL_0_MC_VALID	BIT(3)
175 #define  GSWIP_PCE_GCTRL_0_VLAN		BIT(14) /* VLAN aware Switching */
176 #define GSWIP_PCE_GCTRL_1		0x457
177 #define  GSWIP_PCE_GCTRL_1_MAC_GLOCK	BIT(2)	/* MAC Address table lock */
178 #define  GSWIP_PCE_GCTRL_1_MAC_GLOCK_MOD	BIT(3) /* Mac address table lock forwarding mode */
179 #define GSWIP_PCE_PCTRL_0p(p)		(0x480 + ((p) * 0xA))
180 #define  GSWIP_PCE_PCTRL_0_TVM		BIT(5)	/* Transparent VLAN mode */
181 #define  GSWIP_PCE_PCTRL_0_VREP		BIT(6)	/* VLAN Replace Mode */
182 #define  GSWIP_PCE_PCTRL_0_INGRESS	BIT(11)	/* Accept special tag in ingress */
183 #define  GSWIP_PCE_PCTRL_0_PSTATE_LISTEN	0x0
184 #define  GSWIP_PCE_PCTRL_0_PSTATE_RX		0x1
185 #define  GSWIP_PCE_PCTRL_0_PSTATE_TX		0x2
186 #define  GSWIP_PCE_PCTRL_0_PSTATE_LEARNING	0x3
187 #define  GSWIP_PCE_PCTRL_0_PSTATE_FORWARDING	0x7
188 #define  GSWIP_PCE_PCTRL_0_PSTATE_MASK	GENMASK(2, 0)
189 #define GSWIP_PCE_VCTRL(p)		(0x485 + ((p) * 0xA))
190 #define  GSWIP_PCE_VCTRL_UVR		BIT(0)	/* Unknown VLAN Rule */
191 #define  GSWIP_PCE_VCTRL_VIMR		BIT(3)	/* VLAN Ingress Member violation rule */
192 #define  GSWIP_PCE_VCTRL_VEMR		BIT(4)	/* VLAN Egress Member violation rule */
193 #define  GSWIP_PCE_VCTRL_VSR		BIT(5)	/* VLAN Security */
194 #define  GSWIP_PCE_VCTRL_VID0		BIT(6)	/* Priority Tagged Rule */
195 #define GSWIP_PCE_DEFPVID(p)		(0x486 + ((p) * 0xA))
196 
197 #define GSWIP_MAC_FLEN			0x8C5
198 #define GSWIP_MAC_CTRL_0p(p)		(0x903 + ((p) * 0xC))
199 #define  GSWIP_MAC_CTRL_0_PADEN		BIT(8)
200 #define  GSWIP_MAC_CTRL_0_FCS_EN	BIT(7)
201 #define  GSWIP_MAC_CTRL_0_FCON_MASK	0x0070
202 #define  GSWIP_MAC_CTRL_0_FCON_AUTO	0x0000
203 #define  GSWIP_MAC_CTRL_0_FCON_RX	0x0010
204 #define  GSWIP_MAC_CTRL_0_FCON_TX	0x0020
205 #define  GSWIP_MAC_CTRL_0_FCON_RXTX	0x0030
206 #define  GSWIP_MAC_CTRL_0_FCON_NONE	0x0040
207 #define  GSWIP_MAC_CTRL_0_FDUP_MASK	0x000C
208 #define  GSWIP_MAC_CTRL_0_FDUP_AUTO	0x0000
209 #define  GSWIP_MAC_CTRL_0_FDUP_EN	0x0004
210 #define  GSWIP_MAC_CTRL_0_FDUP_DIS	0x000C
211 #define  GSWIP_MAC_CTRL_0_GMII_MASK	0x0003
212 #define  GSWIP_MAC_CTRL_0_GMII_AUTO	0x0000
213 #define  GSWIP_MAC_CTRL_0_GMII_MII	0x0001
214 #define  GSWIP_MAC_CTRL_0_GMII_RGMII	0x0002
215 #define GSWIP_MAC_CTRL_2p(p)		(0x905 + ((p) * 0xC))
216 #define GSWIP_MAC_CTRL_2_LCHKL		BIT(2) /* Frame Length Check Long Enable */
217 #define GSWIP_MAC_CTRL_2_MLEN		BIT(3) /* Maximum Untagged Frame Lnegth */
218 
219 /* Ethernet Switch Fetch DMA Port Control Register */
220 #define GSWIP_FDMA_PCTRLp(p)		(0xA80 + ((p) * 0x6))
221 #define  GSWIP_FDMA_PCTRL_EN		BIT(0)	/* FDMA Port Enable */
222 #define  GSWIP_FDMA_PCTRL_STEN		BIT(1)	/* Special Tag Insertion Enable */
223 #define  GSWIP_FDMA_PCTRL_VLANMOD_MASK	GENMASK(4, 3)	/* VLAN Modification Control */
224 #define  GSWIP_FDMA_PCTRL_VLANMOD_SHIFT	3	/* VLAN Modification Control */
225 #define  GSWIP_FDMA_PCTRL_VLANMOD_DIS	(0x0 << GSWIP_FDMA_PCTRL_VLANMOD_SHIFT)
226 #define  GSWIP_FDMA_PCTRL_VLANMOD_PRIO	(0x1 << GSWIP_FDMA_PCTRL_VLANMOD_SHIFT)
227 #define  GSWIP_FDMA_PCTRL_VLANMOD_ID	(0x2 << GSWIP_FDMA_PCTRL_VLANMOD_SHIFT)
228 #define  GSWIP_FDMA_PCTRL_VLANMOD_BOTH	(0x3 << GSWIP_FDMA_PCTRL_VLANMOD_SHIFT)
229 
230 /* Ethernet Switch Store DMA Port Control Register */
231 #define GSWIP_SDMA_PCTRLp(p)		(0xBC0 + ((p) * 0x6))
232 #define  GSWIP_SDMA_PCTRL_EN		BIT(0)	/* SDMA Port Enable */
233 #define  GSWIP_SDMA_PCTRL_FCEN		BIT(1)	/* Flow Control Enable */
234 #define  GSWIP_SDMA_PCTRL_PAUFWD	BIT(3)	/* Pause Frame Forwarding */
235 
236 #define GSWIP_TABLE_ACTIVE_VLAN		0x01
237 #define GSWIP_TABLE_VLAN_MAPPING	0x02
238 #define GSWIP_TABLE_MAC_BRIDGE		0x0b
239 #define  GSWIP_TABLE_MAC_BRIDGE_KEY3_FID	GENMASK(5, 0)	/* Filtering identifier */
240 #define  GSWIP_TABLE_MAC_BRIDGE_VAL0_PORT	GENMASK(7, 4)	/* Port on learned entries */
241 #define  GSWIP_TABLE_MAC_BRIDGE_VAL1_STATIC	BIT(0)		/* Static, non-aging entry */
242 
243 #define XRX200_GPHY_FW_ALIGN	(16 * 1024)
244 
245 /* Maximum packet size supported by the switch. In theory this should be 10240,
246  * but long packets currently cause lock-ups with an MTU of over 2526. Medium
247  * packets are sometimes dropped (e.g. TCP over 2477, UDP over 2516-2519, ICMP
248  * over 2526), hence an MTU value of 2400 seems safe. This issue only affects
249  * packet reception. This is probably caused by the PPA engine, which is on the
250  * RX part of the device. Packet transmission works properly up to 10240.
251  */
252 #define GSWIP_MAX_PACKET_LENGTH	2400
253 
254 struct gswip_hw_info {
255 	int max_ports;
256 	int cpu_port;
257 	const struct dsa_switch_ops *ops;
258 };
259 
260 struct xway_gphy_match_data {
261 	char *fe_firmware_name;
262 	char *ge_firmware_name;
263 };
264 
265 struct gswip_gphy_fw {
266 	struct clk *clk_gate;
267 	struct reset_control *reset;
268 	u32 fw_addr_offset;
269 	char *fw_name;
270 };
271 
272 struct gswip_vlan {
273 	struct net_device *bridge;
274 	u16 vid;
275 	u8 fid;
276 };
277 
278 struct gswip_priv {
279 	__iomem void *gswip;
280 	__iomem void *mdio;
281 	__iomem void *mii;
282 	const struct gswip_hw_info *hw_info;
283 	const struct xway_gphy_match_data *gphy_fw_name_cfg;
284 	struct dsa_switch *ds;
285 	struct device *dev;
286 	struct regmap *rcu_regmap;
287 	struct gswip_vlan vlans[64];
288 	int num_gphy_fw;
289 	struct gswip_gphy_fw *gphy_fw;
290 	u32 port_vlan_filter;
291 	struct mutex pce_table_lock;
292 };
293 
294 struct gswip_pce_table_entry {
295 	u16 index;      // PCE_TBL_ADDR.ADDR = pData->table_index
296 	u16 table;      // PCE_TBL_CTRL.ADDR = pData->table
297 	u16 key[8];
298 	u16 val[5];
299 	u16 mask;
300 	u8 gmap;
301 	bool type;
302 	bool valid;
303 	bool key_mode;
304 };
305 
306 struct gswip_rmon_cnt_desc {
307 	unsigned int size;
308 	unsigned int offset;
309 	const char *name;
310 };
311 
312 #define MIB_DESC(_size, _offset, _name) {.size = _size, .offset = _offset, .name = _name}
313 
314 static const struct gswip_rmon_cnt_desc gswip_rmon_cnt[] = {
315 	/** Receive Packet Count (only packets that are accepted and not discarded). */
316 	MIB_DESC(1, 0x1F, "RxGoodPkts"),
317 	MIB_DESC(1, 0x23, "RxUnicastPkts"),
318 	MIB_DESC(1, 0x22, "RxMulticastPkts"),
319 	MIB_DESC(1, 0x21, "RxFCSErrorPkts"),
320 	MIB_DESC(1, 0x1D, "RxUnderSizeGoodPkts"),
321 	MIB_DESC(1, 0x1E, "RxUnderSizeErrorPkts"),
322 	MIB_DESC(1, 0x1B, "RxOversizeGoodPkts"),
323 	MIB_DESC(1, 0x1C, "RxOversizeErrorPkts"),
324 	MIB_DESC(1, 0x20, "RxGoodPausePkts"),
325 	MIB_DESC(1, 0x1A, "RxAlignErrorPkts"),
326 	MIB_DESC(1, 0x12, "Rx64BytePkts"),
327 	MIB_DESC(1, 0x13, "Rx127BytePkts"),
328 	MIB_DESC(1, 0x14, "Rx255BytePkts"),
329 	MIB_DESC(1, 0x15, "Rx511BytePkts"),
330 	MIB_DESC(1, 0x16, "Rx1023BytePkts"),
331 	/** Receive Size 1024-1522 (or more, if configured) Packet Count. */
332 	MIB_DESC(1, 0x17, "RxMaxBytePkts"),
333 	MIB_DESC(1, 0x18, "RxDroppedPkts"),
334 	MIB_DESC(1, 0x19, "RxFilteredPkts"),
335 	MIB_DESC(2, 0x24, "RxGoodBytes"),
336 	MIB_DESC(2, 0x26, "RxBadBytes"),
337 	MIB_DESC(1, 0x11, "TxAcmDroppedPkts"),
338 	MIB_DESC(1, 0x0C, "TxGoodPkts"),
339 	MIB_DESC(1, 0x06, "TxUnicastPkts"),
340 	MIB_DESC(1, 0x07, "TxMulticastPkts"),
341 	MIB_DESC(1, 0x00, "Tx64BytePkts"),
342 	MIB_DESC(1, 0x01, "Tx127BytePkts"),
343 	MIB_DESC(1, 0x02, "Tx255BytePkts"),
344 	MIB_DESC(1, 0x03, "Tx511BytePkts"),
345 	MIB_DESC(1, 0x04, "Tx1023BytePkts"),
346 	/** Transmit Size 1024-1522 (or more, if configured) Packet Count. */
347 	MIB_DESC(1, 0x05, "TxMaxBytePkts"),
348 	MIB_DESC(1, 0x08, "TxSingleCollCount"),
349 	MIB_DESC(1, 0x09, "TxMultCollCount"),
350 	MIB_DESC(1, 0x0A, "TxLateCollCount"),
351 	MIB_DESC(1, 0x0B, "TxExcessCollCount"),
352 	MIB_DESC(1, 0x0D, "TxPauseCount"),
353 	MIB_DESC(1, 0x10, "TxDroppedPkts"),
354 	MIB_DESC(2, 0x0E, "TxGoodBytes"),
355 };
356 
gswip_switch_r(struct gswip_priv * priv,u32 offset)357 static u32 gswip_switch_r(struct gswip_priv *priv, u32 offset)
358 {
359 	return __raw_readl(priv->gswip + (offset * 4));
360 }
361 
gswip_switch_w(struct gswip_priv * priv,u32 val,u32 offset)362 static void gswip_switch_w(struct gswip_priv *priv, u32 val, u32 offset)
363 {
364 	__raw_writel(val, priv->gswip + (offset * 4));
365 }
366 
gswip_switch_mask(struct gswip_priv * priv,u32 clear,u32 set,u32 offset)367 static void gswip_switch_mask(struct gswip_priv *priv, u32 clear, u32 set,
368 			      u32 offset)
369 {
370 	u32 val = gswip_switch_r(priv, offset);
371 
372 	val &= ~(clear);
373 	val |= set;
374 	gswip_switch_w(priv, val, offset);
375 }
376 
gswip_switch_r_timeout(struct gswip_priv * priv,u32 offset,u32 cleared)377 static u32 gswip_switch_r_timeout(struct gswip_priv *priv, u32 offset,
378 				  u32 cleared)
379 {
380 	u32 val;
381 
382 	return readx_poll_timeout(__raw_readl, priv->gswip + (offset * 4), val,
383 				  (val & cleared) == 0, 20, 50000);
384 }
385 
gswip_mdio_r(struct gswip_priv * priv,u32 offset)386 static u32 gswip_mdio_r(struct gswip_priv *priv, u32 offset)
387 {
388 	return __raw_readl(priv->mdio + (offset * 4));
389 }
390 
gswip_mdio_w(struct gswip_priv * priv,u32 val,u32 offset)391 static void gswip_mdio_w(struct gswip_priv *priv, u32 val, u32 offset)
392 {
393 	__raw_writel(val, priv->mdio + (offset * 4));
394 }
395 
gswip_mdio_mask(struct gswip_priv * priv,u32 clear,u32 set,u32 offset)396 static void gswip_mdio_mask(struct gswip_priv *priv, u32 clear, u32 set,
397 			    u32 offset)
398 {
399 	u32 val = gswip_mdio_r(priv, offset);
400 
401 	val &= ~(clear);
402 	val |= set;
403 	gswip_mdio_w(priv, val, offset);
404 }
405 
gswip_mii_r(struct gswip_priv * priv,u32 offset)406 static u32 gswip_mii_r(struct gswip_priv *priv, u32 offset)
407 {
408 	return __raw_readl(priv->mii + (offset * 4));
409 }
410 
gswip_mii_w(struct gswip_priv * priv,u32 val,u32 offset)411 static void gswip_mii_w(struct gswip_priv *priv, u32 val, u32 offset)
412 {
413 	__raw_writel(val, priv->mii + (offset * 4));
414 }
415 
gswip_mii_mask(struct gswip_priv * priv,u32 clear,u32 set,u32 offset)416 static void gswip_mii_mask(struct gswip_priv *priv, u32 clear, u32 set,
417 			   u32 offset)
418 {
419 	u32 val = gswip_mii_r(priv, offset);
420 
421 	val &= ~(clear);
422 	val |= set;
423 	gswip_mii_w(priv, val, offset);
424 }
425 
gswip_mii_mask_cfg(struct gswip_priv * priv,u32 clear,u32 set,int port)426 static void gswip_mii_mask_cfg(struct gswip_priv *priv, u32 clear, u32 set,
427 			       int port)
428 {
429 	/* There's no MII_CFG register for the CPU port */
430 	if (!dsa_is_cpu_port(priv->ds, port))
431 		gswip_mii_mask(priv, clear, set, GSWIP_MII_CFGp(port));
432 }
433 
gswip_mii_mask_pcdu(struct gswip_priv * priv,u32 clear,u32 set,int port)434 static void gswip_mii_mask_pcdu(struct gswip_priv *priv, u32 clear, u32 set,
435 				int port)
436 {
437 	switch (port) {
438 	case 0:
439 		gswip_mii_mask(priv, clear, set, GSWIP_MII_PCDU0);
440 		break;
441 	case 1:
442 		gswip_mii_mask(priv, clear, set, GSWIP_MII_PCDU1);
443 		break;
444 	case 5:
445 		gswip_mii_mask(priv, clear, set, GSWIP_MII_PCDU5);
446 		break;
447 	}
448 }
449 
gswip_mdio_poll(struct gswip_priv * priv)450 static int gswip_mdio_poll(struct gswip_priv *priv)
451 {
452 	int cnt = 100;
453 
454 	while (likely(cnt--)) {
455 		u32 ctrl = gswip_mdio_r(priv, GSWIP_MDIO_CTRL);
456 
457 		if ((ctrl & GSWIP_MDIO_CTRL_BUSY) == 0)
458 			return 0;
459 		usleep_range(20, 40);
460 	}
461 
462 	return -ETIMEDOUT;
463 }
464 
gswip_mdio_wr(struct mii_bus * bus,int addr,int reg,u16 val)465 static int gswip_mdio_wr(struct mii_bus *bus, int addr, int reg, u16 val)
466 {
467 	struct gswip_priv *priv = bus->priv;
468 	int err;
469 
470 	err = gswip_mdio_poll(priv);
471 	if (err) {
472 		dev_err(&bus->dev, "waiting for MDIO bus busy timed out\n");
473 		return err;
474 	}
475 
476 	gswip_mdio_w(priv, val, GSWIP_MDIO_WRITE);
477 	gswip_mdio_w(priv, GSWIP_MDIO_CTRL_BUSY | GSWIP_MDIO_CTRL_WR |
478 		((addr & GSWIP_MDIO_CTRL_PHYAD_MASK) << GSWIP_MDIO_CTRL_PHYAD_SHIFT) |
479 		(reg & GSWIP_MDIO_CTRL_REGAD_MASK),
480 		GSWIP_MDIO_CTRL);
481 
482 	return 0;
483 }
484 
gswip_mdio_rd(struct mii_bus * bus,int addr,int reg)485 static int gswip_mdio_rd(struct mii_bus *bus, int addr, int reg)
486 {
487 	struct gswip_priv *priv = bus->priv;
488 	int err;
489 
490 	err = gswip_mdio_poll(priv);
491 	if (err) {
492 		dev_err(&bus->dev, "waiting for MDIO bus busy timed out\n");
493 		return err;
494 	}
495 
496 	gswip_mdio_w(priv, GSWIP_MDIO_CTRL_BUSY | GSWIP_MDIO_CTRL_RD |
497 		((addr & GSWIP_MDIO_CTRL_PHYAD_MASK) << GSWIP_MDIO_CTRL_PHYAD_SHIFT) |
498 		(reg & GSWIP_MDIO_CTRL_REGAD_MASK),
499 		GSWIP_MDIO_CTRL);
500 
501 	err = gswip_mdio_poll(priv);
502 	if (err) {
503 		dev_err(&bus->dev, "waiting for MDIO bus busy timed out\n");
504 		return err;
505 	}
506 
507 	return gswip_mdio_r(priv, GSWIP_MDIO_READ);
508 }
509 
gswip_mdio(struct gswip_priv * priv)510 static int gswip_mdio(struct gswip_priv *priv)
511 {
512 	struct device_node *mdio_np, *switch_np = priv->dev->of_node;
513 	struct device *dev = priv->dev;
514 	struct mii_bus *bus;
515 	int err = 0;
516 
517 	mdio_np = of_get_compatible_child(switch_np, "lantiq,xrx200-mdio");
518 	if (!of_device_is_available(mdio_np))
519 		goto out_put_node;
520 
521 	bus = devm_mdiobus_alloc(dev);
522 	if (!bus) {
523 		err = -ENOMEM;
524 		goto out_put_node;
525 	}
526 
527 	bus->priv = priv;
528 	bus->read = gswip_mdio_rd;
529 	bus->write = gswip_mdio_wr;
530 	bus->name = "lantiq,xrx200-mdio";
531 	snprintf(bus->id, MII_BUS_ID_SIZE, "%s-mii", dev_name(priv->dev));
532 	bus->parent = priv->dev;
533 
534 	err = devm_of_mdiobus_register(dev, bus, mdio_np);
535 
536 out_put_node:
537 	of_node_put(mdio_np);
538 
539 	return err;
540 }
541 
gswip_pce_table_entry_read(struct gswip_priv * priv,struct gswip_pce_table_entry * tbl)542 static int gswip_pce_table_entry_read(struct gswip_priv *priv,
543 				      struct gswip_pce_table_entry *tbl)
544 {
545 	int i;
546 	int err;
547 	u16 crtl;
548 	u16 addr_mode = tbl->key_mode ? GSWIP_PCE_TBL_CTRL_OPMOD_KSRD :
549 					GSWIP_PCE_TBL_CTRL_OPMOD_ADRD;
550 
551 	mutex_lock(&priv->pce_table_lock);
552 
553 	err = gswip_switch_r_timeout(priv, GSWIP_PCE_TBL_CTRL,
554 				     GSWIP_PCE_TBL_CTRL_BAS);
555 	if (err) {
556 		mutex_unlock(&priv->pce_table_lock);
557 		return err;
558 	}
559 
560 	gswip_switch_w(priv, tbl->index, GSWIP_PCE_TBL_ADDR);
561 	gswip_switch_mask(priv, GSWIP_PCE_TBL_CTRL_ADDR_MASK |
562 				GSWIP_PCE_TBL_CTRL_OPMOD_MASK,
563 			  tbl->table | addr_mode | GSWIP_PCE_TBL_CTRL_BAS,
564 			  GSWIP_PCE_TBL_CTRL);
565 
566 	err = gswip_switch_r_timeout(priv, GSWIP_PCE_TBL_CTRL,
567 				     GSWIP_PCE_TBL_CTRL_BAS);
568 	if (err) {
569 		mutex_unlock(&priv->pce_table_lock);
570 		return err;
571 	}
572 
573 	for (i = 0; i < ARRAY_SIZE(tbl->key); i++)
574 		tbl->key[i] = gswip_switch_r(priv, GSWIP_PCE_TBL_KEY(i));
575 
576 	for (i = 0; i < ARRAY_SIZE(tbl->val); i++)
577 		tbl->val[i] = gswip_switch_r(priv, GSWIP_PCE_TBL_VAL(i));
578 
579 	tbl->mask = gswip_switch_r(priv, GSWIP_PCE_TBL_MASK);
580 
581 	crtl = gswip_switch_r(priv, GSWIP_PCE_TBL_CTRL);
582 
583 	tbl->type = !!(crtl & GSWIP_PCE_TBL_CTRL_TYPE);
584 	tbl->valid = !!(crtl & GSWIP_PCE_TBL_CTRL_VLD);
585 	tbl->gmap = (crtl & GSWIP_PCE_TBL_CTRL_GMAP_MASK) >> 7;
586 
587 	mutex_unlock(&priv->pce_table_lock);
588 
589 	return 0;
590 }
591 
gswip_pce_table_entry_write(struct gswip_priv * priv,struct gswip_pce_table_entry * tbl)592 static int gswip_pce_table_entry_write(struct gswip_priv *priv,
593 				       struct gswip_pce_table_entry *tbl)
594 {
595 	int i;
596 	int err;
597 	u16 crtl;
598 	u16 addr_mode = tbl->key_mode ? GSWIP_PCE_TBL_CTRL_OPMOD_KSWR :
599 					GSWIP_PCE_TBL_CTRL_OPMOD_ADWR;
600 
601 	mutex_lock(&priv->pce_table_lock);
602 
603 	err = gswip_switch_r_timeout(priv, GSWIP_PCE_TBL_CTRL,
604 				     GSWIP_PCE_TBL_CTRL_BAS);
605 	if (err) {
606 		mutex_unlock(&priv->pce_table_lock);
607 		return err;
608 	}
609 
610 	gswip_switch_w(priv, tbl->index, GSWIP_PCE_TBL_ADDR);
611 	gswip_switch_mask(priv, GSWIP_PCE_TBL_CTRL_ADDR_MASK |
612 				GSWIP_PCE_TBL_CTRL_OPMOD_MASK,
613 			  tbl->table | addr_mode,
614 			  GSWIP_PCE_TBL_CTRL);
615 
616 	for (i = 0; i < ARRAY_SIZE(tbl->key); i++)
617 		gswip_switch_w(priv, tbl->key[i], GSWIP_PCE_TBL_KEY(i));
618 
619 	for (i = 0; i < ARRAY_SIZE(tbl->val); i++)
620 		gswip_switch_w(priv, tbl->val[i], GSWIP_PCE_TBL_VAL(i));
621 
622 	gswip_switch_mask(priv, GSWIP_PCE_TBL_CTRL_ADDR_MASK |
623 				GSWIP_PCE_TBL_CTRL_OPMOD_MASK,
624 			  tbl->table | addr_mode,
625 			  GSWIP_PCE_TBL_CTRL);
626 
627 	gswip_switch_w(priv, tbl->mask, GSWIP_PCE_TBL_MASK);
628 
629 	crtl = gswip_switch_r(priv, GSWIP_PCE_TBL_CTRL);
630 	crtl &= ~(GSWIP_PCE_TBL_CTRL_TYPE | GSWIP_PCE_TBL_CTRL_VLD |
631 		  GSWIP_PCE_TBL_CTRL_GMAP_MASK);
632 	if (tbl->type)
633 		crtl |= GSWIP_PCE_TBL_CTRL_TYPE;
634 	if (tbl->valid)
635 		crtl |= GSWIP_PCE_TBL_CTRL_VLD;
636 	crtl |= (tbl->gmap << 7) & GSWIP_PCE_TBL_CTRL_GMAP_MASK;
637 	crtl |= GSWIP_PCE_TBL_CTRL_BAS;
638 	gswip_switch_w(priv, crtl, GSWIP_PCE_TBL_CTRL);
639 
640 	err = gswip_switch_r_timeout(priv, GSWIP_PCE_TBL_CTRL,
641 				     GSWIP_PCE_TBL_CTRL_BAS);
642 
643 	mutex_unlock(&priv->pce_table_lock);
644 
645 	return err;
646 }
647 
648 /* Add the LAN port into a bridge with the CPU port by
649  * default. This prevents automatic forwarding of
650  * packages between the LAN ports when no explicit
651  * bridge is configured.
652  */
gswip_add_single_port_br(struct gswip_priv * priv,int port,bool add)653 static int gswip_add_single_port_br(struct gswip_priv *priv, int port, bool add)
654 {
655 	struct gswip_pce_table_entry vlan_active = {0,};
656 	struct gswip_pce_table_entry vlan_mapping = {0,};
657 	unsigned int cpu_port = priv->hw_info->cpu_port;
658 	int err;
659 
660 	vlan_active.index = port + 1;
661 	vlan_active.table = GSWIP_TABLE_ACTIVE_VLAN;
662 	vlan_active.key[0] = 0; /* vid */
663 	vlan_active.val[0] = port + 1 /* fid */;
664 	vlan_active.valid = add;
665 	err = gswip_pce_table_entry_write(priv, &vlan_active);
666 	if (err) {
667 		dev_err(priv->dev, "failed to write active VLAN: %d\n", err);
668 		return err;
669 	}
670 
671 	if (!add)
672 		return 0;
673 
674 	vlan_mapping.index = port + 1;
675 	vlan_mapping.table = GSWIP_TABLE_VLAN_MAPPING;
676 	vlan_mapping.val[0] = 0 /* vid */;
677 	vlan_mapping.val[1] = BIT(port) | BIT(cpu_port);
678 	vlan_mapping.val[2] = 0;
679 	err = gswip_pce_table_entry_write(priv, &vlan_mapping);
680 	if (err) {
681 		dev_err(priv->dev, "failed to write VLAN mapping: %d\n", err);
682 		return err;
683 	}
684 
685 	return 0;
686 }
687 
gswip_port_setup(struct dsa_switch * ds,int port)688 static int gswip_port_setup(struct dsa_switch *ds, int port)
689 {
690 	struct gswip_priv *priv = ds->priv;
691 	int err;
692 
693 	if (!dsa_is_cpu_port(ds, port)) {
694 		err = gswip_add_single_port_br(priv, port, true);
695 		if (err)
696 			return err;
697 	}
698 
699 	return 0;
700 }
701 
gswip_port_enable(struct dsa_switch * ds,int port,struct phy_device * phydev)702 static int gswip_port_enable(struct dsa_switch *ds, int port,
703 			     struct phy_device *phydev)
704 {
705 	struct gswip_priv *priv = ds->priv;
706 
707 	if (!dsa_is_cpu_port(ds, port)) {
708 		u32 mdio_phy = 0;
709 
710 		if (phydev)
711 			mdio_phy = phydev->mdio.addr & GSWIP_MDIO_PHY_ADDR_MASK;
712 
713 		gswip_mdio_mask(priv, GSWIP_MDIO_PHY_ADDR_MASK, mdio_phy,
714 				GSWIP_MDIO_PHYp(port));
715 	}
716 
717 	/* RMON Counter Enable for port */
718 	gswip_switch_w(priv, GSWIP_BM_PCFG_CNTEN, GSWIP_BM_PCFGp(port));
719 
720 	/* enable port fetch/store dma & VLAN Modification */
721 	gswip_switch_mask(priv, 0, GSWIP_FDMA_PCTRL_EN |
722 				   GSWIP_FDMA_PCTRL_VLANMOD_BOTH,
723 			 GSWIP_FDMA_PCTRLp(port));
724 	gswip_switch_mask(priv, 0, GSWIP_SDMA_PCTRL_EN,
725 			  GSWIP_SDMA_PCTRLp(port));
726 
727 	return 0;
728 }
729 
gswip_port_disable(struct dsa_switch * ds,int port)730 static void gswip_port_disable(struct dsa_switch *ds, int port)
731 {
732 	struct gswip_priv *priv = ds->priv;
733 
734 	gswip_switch_mask(priv, GSWIP_FDMA_PCTRL_EN, 0,
735 			  GSWIP_FDMA_PCTRLp(port));
736 	gswip_switch_mask(priv, GSWIP_SDMA_PCTRL_EN, 0,
737 			  GSWIP_SDMA_PCTRLp(port));
738 }
739 
gswip_pce_load_microcode(struct gswip_priv * priv)740 static int gswip_pce_load_microcode(struct gswip_priv *priv)
741 {
742 	int i;
743 	int err;
744 
745 	gswip_switch_mask(priv, GSWIP_PCE_TBL_CTRL_ADDR_MASK |
746 				GSWIP_PCE_TBL_CTRL_OPMOD_MASK,
747 			  GSWIP_PCE_TBL_CTRL_OPMOD_ADWR, GSWIP_PCE_TBL_CTRL);
748 	gswip_switch_w(priv, 0, GSWIP_PCE_TBL_MASK);
749 
750 	for (i = 0; i < ARRAY_SIZE(gswip_pce_microcode); i++) {
751 		gswip_switch_w(priv, i, GSWIP_PCE_TBL_ADDR);
752 		gswip_switch_w(priv, gswip_pce_microcode[i].val_0,
753 			       GSWIP_PCE_TBL_VAL(0));
754 		gswip_switch_w(priv, gswip_pce_microcode[i].val_1,
755 			       GSWIP_PCE_TBL_VAL(1));
756 		gswip_switch_w(priv, gswip_pce_microcode[i].val_2,
757 			       GSWIP_PCE_TBL_VAL(2));
758 		gswip_switch_w(priv, gswip_pce_microcode[i].val_3,
759 			       GSWIP_PCE_TBL_VAL(3));
760 
761 		/* start the table access: */
762 		gswip_switch_mask(priv, 0, GSWIP_PCE_TBL_CTRL_BAS,
763 				  GSWIP_PCE_TBL_CTRL);
764 		err = gswip_switch_r_timeout(priv, GSWIP_PCE_TBL_CTRL,
765 					     GSWIP_PCE_TBL_CTRL_BAS);
766 		if (err)
767 			return err;
768 	}
769 
770 	/* tell the switch that the microcode is loaded */
771 	gswip_switch_mask(priv, 0, GSWIP_PCE_GCTRL_0_MC_VALID,
772 			  GSWIP_PCE_GCTRL_0);
773 
774 	return 0;
775 }
776 
gswip_port_vlan_filtering(struct dsa_switch * ds,int port,bool vlan_filtering,struct netlink_ext_ack * extack)777 static int gswip_port_vlan_filtering(struct dsa_switch *ds, int port,
778 				     bool vlan_filtering,
779 				     struct netlink_ext_ack *extack)
780 {
781 	struct net_device *bridge = dsa_port_bridge_dev_get(dsa_to_port(ds, port));
782 	struct gswip_priv *priv = ds->priv;
783 
784 	/* Do not allow changing the VLAN filtering options while in bridge */
785 	if (bridge && !!(priv->port_vlan_filter & BIT(port)) != vlan_filtering) {
786 		NL_SET_ERR_MSG_MOD(extack,
787 				   "Dynamic toggling of vlan_filtering not supported");
788 		return -EIO;
789 	}
790 
791 	if (vlan_filtering) {
792 		/* Use tag based VLAN */
793 		gswip_switch_mask(priv,
794 				  GSWIP_PCE_VCTRL_VSR,
795 				  GSWIP_PCE_VCTRL_UVR | GSWIP_PCE_VCTRL_VIMR |
796 				  GSWIP_PCE_VCTRL_VEMR,
797 				  GSWIP_PCE_VCTRL(port));
798 		gswip_switch_mask(priv, GSWIP_PCE_PCTRL_0_TVM, 0,
799 				  GSWIP_PCE_PCTRL_0p(port));
800 	} else {
801 		/* Use port based VLAN */
802 		gswip_switch_mask(priv,
803 				  GSWIP_PCE_VCTRL_UVR | GSWIP_PCE_VCTRL_VIMR |
804 				  GSWIP_PCE_VCTRL_VEMR,
805 				  GSWIP_PCE_VCTRL_VSR,
806 				  GSWIP_PCE_VCTRL(port));
807 		gswip_switch_mask(priv, 0, GSWIP_PCE_PCTRL_0_TVM,
808 				  GSWIP_PCE_PCTRL_0p(port));
809 	}
810 
811 	return 0;
812 }
813 
gswip_setup(struct dsa_switch * ds)814 static int gswip_setup(struct dsa_switch *ds)
815 {
816 	struct gswip_priv *priv = ds->priv;
817 	unsigned int cpu_port = priv->hw_info->cpu_port;
818 	int i;
819 	int err;
820 
821 	gswip_switch_w(priv, GSWIP_SWRES_R0, GSWIP_SWRES);
822 	usleep_range(5000, 10000);
823 	gswip_switch_w(priv, 0, GSWIP_SWRES);
824 
825 	/* disable port fetch/store dma on all ports */
826 	for (i = 0; i < priv->hw_info->max_ports; i++) {
827 		gswip_port_disable(ds, i);
828 		gswip_port_vlan_filtering(ds, i, false, NULL);
829 	}
830 
831 	/* enable Switch */
832 	gswip_mdio_mask(priv, 0, GSWIP_MDIO_GLOB_ENABLE, GSWIP_MDIO_GLOB);
833 
834 	err = gswip_pce_load_microcode(priv);
835 	if (err) {
836 		dev_err(priv->dev, "writing PCE microcode failed, %i\n", err);
837 		return err;
838 	}
839 
840 	/* Default unknown Broadcast/Multicast/Unicast port maps */
841 	gswip_switch_w(priv, BIT(cpu_port), GSWIP_PCE_PMAP1);
842 	gswip_switch_w(priv, BIT(cpu_port), GSWIP_PCE_PMAP2);
843 	gswip_switch_w(priv, BIT(cpu_port), GSWIP_PCE_PMAP3);
844 
845 	/* Deactivate MDIO PHY auto polling. Some PHYs as the AR8030 have an
846 	 * interoperability problem with this auto polling mechanism because
847 	 * their status registers think that the link is in a different state
848 	 * than it actually is. For the AR8030 it has the BMSR_ESTATEN bit set
849 	 * as well as ESTATUS_1000_TFULL and ESTATUS_1000_XFULL. This makes the
850 	 * auto polling state machine consider the link being negotiated with
851 	 * 1Gbit/s. Since the PHY itself is a Fast Ethernet RMII PHY this leads
852 	 * to the switch port being completely dead (RX and TX are both not
853 	 * working).
854 	 * Also with various other PHY / port combinations (PHY11G GPHY, PHY22F
855 	 * GPHY, external RGMII PEF7071/7072) any traffic would stop. Sometimes
856 	 * it would work fine for a few minutes to hours and then stop, on
857 	 * other device it would no traffic could be sent or received at all.
858 	 * Testing shows that when PHY auto polling is disabled these problems
859 	 * go away.
860 	 */
861 	gswip_mdio_w(priv, 0x0, GSWIP_MDIO_MDC_CFG0);
862 
863 	/* Configure the MDIO Clock 2.5 MHz */
864 	gswip_mdio_mask(priv, 0xff, 0x09, GSWIP_MDIO_MDC_CFG1);
865 
866 	/* Disable the xMII interface and clear it's isolation bit */
867 	for (i = 0; i < priv->hw_info->max_ports; i++)
868 		gswip_mii_mask_cfg(priv,
869 				   GSWIP_MII_CFG_EN | GSWIP_MII_CFG_ISOLATE,
870 				   0, i);
871 
872 	/* enable special tag insertion on cpu port */
873 	gswip_switch_mask(priv, 0, GSWIP_FDMA_PCTRL_STEN,
874 			  GSWIP_FDMA_PCTRLp(cpu_port));
875 
876 	/* accept special tag in ingress direction */
877 	gswip_switch_mask(priv, 0, GSWIP_PCE_PCTRL_0_INGRESS,
878 			  GSWIP_PCE_PCTRL_0p(cpu_port));
879 
880 	gswip_switch_mask(priv, 0, GSWIP_BM_QUEUE_GCTRL_GL_MOD,
881 			  GSWIP_BM_QUEUE_GCTRL);
882 
883 	/* VLAN aware Switching */
884 	gswip_switch_mask(priv, 0, GSWIP_PCE_GCTRL_0_VLAN, GSWIP_PCE_GCTRL_0);
885 
886 	/* Flush MAC Table */
887 	gswip_switch_mask(priv, 0, GSWIP_PCE_GCTRL_0_MTFL, GSWIP_PCE_GCTRL_0);
888 
889 	err = gswip_switch_r_timeout(priv, GSWIP_PCE_GCTRL_0,
890 				     GSWIP_PCE_GCTRL_0_MTFL);
891 	if (err) {
892 		dev_err(priv->dev, "MAC flushing didn't finish\n");
893 		return err;
894 	}
895 
896 	ds->mtu_enforcement_ingress = true;
897 
898 	ds->configure_vlan_while_not_filtering = false;
899 
900 	return 0;
901 }
902 
gswip_get_tag_protocol(struct dsa_switch * ds,int port,enum dsa_tag_protocol mp)903 static enum dsa_tag_protocol gswip_get_tag_protocol(struct dsa_switch *ds,
904 						    int port,
905 						    enum dsa_tag_protocol mp)
906 {
907 	return DSA_TAG_PROTO_GSWIP;
908 }
909 
gswip_vlan_active_create(struct gswip_priv * priv,struct net_device * bridge,int fid,u16 vid)910 static int gswip_vlan_active_create(struct gswip_priv *priv,
911 				    struct net_device *bridge,
912 				    int fid, u16 vid)
913 {
914 	struct gswip_pce_table_entry vlan_active = {0,};
915 	unsigned int max_ports = priv->hw_info->max_ports;
916 	int idx = -1;
917 	int err;
918 	int i;
919 
920 	/* Look for a free slot */
921 	for (i = max_ports; i < ARRAY_SIZE(priv->vlans); i++) {
922 		if (!priv->vlans[i].bridge) {
923 			idx = i;
924 			break;
925 		}
926 	}
927 
928 	if (idx == -1)
929 		return -ENOSPC;
930 
931 	if (fid == -1)
932 		fid = idx;
933 
934 	vlan_active.index = idx;
935 	vlan_active.table = GSWIP_TABLE_ACTIVE_VLAN;
936 	vlan_active.key[0] = vid;
937 	vlan_active.val[0] = fid;
938 	vlan_active.valid = true;
939 
940 	err = gswip_pce_table_entry_write(priv, &vlan_active);
941 	if (err) {
942 		dev_err(priv->dev, "failed to write active VLAN: %d\n",	err);
943 		return err;
944 	}
945 
946 	priv->vlans[idx].bridge = bridge;
947 	priv->vlans[idx].vid = vid;
948 	priv->vlans[idx].fid = fid;
949 
950 	return idx;
951 }
952 
gswip_vlan_active_remove(struct gswip_priv * priv,int idx)953 static int gswip_vlan_active_remove(struct gswip_priv *priv, int idx)
954 {
955 	struct gswip_pce_table_entry vlan_active = {0,};
956 	int err;
957 
958 	vlan_active.index = idx;
959 	vlan_active.table = GSWIP_TABLE_ACTIVE_VLAN;
960 	vlan_active.valid = false;
961 	err = gswip_pce_table_entry_write(priv, &vlan_active);
962 	if (err)
963 		dev_err(priv->dev, "failed to delete active VLAN: %d\n", err);
964 	priv->vlans[idx].bridge = NULL;
965 
966 	return err;
967 }
968 
gswip_vlan_add_unaware(struct gswip_priv * priv,struct net_device * bridge,int port)969 static int gswip_vlan_add_unaware(struct gswip_priv *priv,
970 				  struct net_device *bridge, int port)
971 {
972 	struct gswip_pce_table_entry vlan_mapping = {0,};
973 	unsigned int max_ports = priv->hw_info->max_ports;
974 	unsigned int cpu_port = priv->hw_info->cpu_port;
975 	bool active_vlan_created = false;
976 	int idx = -1;
977 	int i;
978 	int err;
979 
980 	/* Check if there is already a page for this bridge */
981 	for (i = max_ports; i < ARRAY_SIZE(priv->vlans); i++) {
982 		if (priv->vlans[i].bridge == bridge) {
983 			idx = i;
984 			break;
985 		}
986 	}
987 
988 	/* If this bridge is not programmed yet, add a Active VLAN table
989 	 * entry in a free slot and prepare the VLAN mapping table entry.
990 	 */
991 	if (idx == -1) {
992 		idx = gswip_vlan_active_create(priv, bridge, -1, 0);
993 		if (idx < 0)
994 			return idx;
995 		active_vlan_created = true;
996 
997 		vlan_mapping.index = idx;
998 		vlan_mapping.table = GSWIP_TABLE_VLAN_MAPPING;
999 		/* VLAN ID byte, maps to the VLAN ID of vlan active table */
1000 		vlan_mapping.val[0] = 0;
1001 	} else {
1002 		/* Read the existing VLAN mapping entry from the switch */
1003 		vlan_mapping.index = idx;
1004 		vlan_mapping.table = GSWIP_TABLE_VLAN_MAPPING;
1005 		err = gswip_pce_table_entry_read(priv, &vlan_mapping);
1006 		if (err) {
1007 			dev_err(priv->dev, "failed to read VLAN mapping: %d\n",
1008 				err);
1009 			return err;
1010 		}
1011 	}
1012 
1013 	/* Update the VLAN mapping entry and write it to the switch */
1014 	vlan_mapping.val[1] |= BIT(cpu_port);
1015 	vlan_mapping.val[1] |= BIT(port);
1016 	err = gswip_pce_table_entry_write(priv, &vlan_mapping);
1017 	if (err) {
1018 		dev_err(priv->dev, "failed to write VLAN mapping: %d\n", err);
1019 		/* In case an Active VLAN was creaetd delete it again */
1020 		if (active_vlan_created)
1021 			gswip_vlan_active_remove(priv, idx);
1022 		return err;
1023 	}
1024 
1025 	gswip_switch_w(priv, 0, GSWIP_PCE_DEFPVID(port));
1026 	return 0;
1027 }
1028 
gswip_vlan_add_aware(struct gswip_priv * priv,struct net_device * bridge,int port,u16 vid,bool untagged,bool pvid)1029 static int gswip_vlan_add_aware(struct gswip_priv *priv,
1030 				struct net_device *bridge, int port,
1031 				u16 vid, bool untagged,
1032 				bool pvid)
1033 {
1034 	struct gswip_pce_table_entry vlan_mapping = {0,};
1035 	unsigned int max_ports = priv->hw_info->max_ports;
1036 	unsigned int cpu_port = priv->hw_info->cpu_port;
1037 	bool active_vlan_created = false;
1038 	int idx = -1;
1039 	int fid = -1;
1040 	int i;
1041 	int err;
1042 
1043 	/* Check if there is already a page for this bridge */
1044 	for (i = max_ports; i < ARRAY_SIZE(priv->vlans); i++) {
1045 		if (priv->vlans[i].bridge == bridge) {
1046 			if (fid != -1 && fid != priv->vlans[i].fid)
1047 				dev_err(priv->dev, "one bridge with multiple flow ids\n");
1048 			fid = priv->vlans[i].fid;
1049 			if (priv->vlans[i].vid == vid) {
1050 				idx = i;
1051 				break;
1052 			}
1053 		}
1054 	}
1055 
1056 	/* If this bridge is not programmed yet, add a Active VLAN table
1057 	 * entry in a free slot and prepare the VLAN mapping table entry.
1058 	 */
1059 	if (idx == -1) {
1060 		idx = gswip_vlan_active_create(priv, bridge, fid, vid);
1061 		if (idx < 0)
1062 			return idx;
1063 		active_vlan_created = true;
1064 
1065 		vlan_mapping.index = idx;
1066 		vlan_mapping.table = GSWIP_TABLE_VLAN_MAPPING;
1067 		/* VLAN ID byte, maps to the VLAN ID of vlan active table */
1068 		vlan_mapping.val[0] = vid;
1069 	} else {
1070 		/* Read the existing VLAN mapping entry from the switch */
1071 		vlan_mapping.index = idx;
1072 		vlan_mapping.table = GSWIP_TABLE_VLAN_MAPPING;
1073 		err = gswip_pce_table_entry_read(priv, &vlan_mapping);
1074 		if (err) {
1075 			dev_err(priv->dev, "failed to read VLAN mapping: %d\n",
1076 				err);
1077 			return err;
1078 		}
1079 	}
1080 
1081 	vlan_mapping.val[0] = vid;
1082 	/* Update the VLAN mapping entry and write it to the switch */
1083 	vlan_mapping.val[1] |= BIT(cpu_port);
1084 	vlan_mapping.val[2] |= BIT(cpu_port);
1085 	vlan_mapping.val[1] |= BIT(port);
1086 	if (untagged)
1087 		vlan_mapping.val[2] &= ~BIT(port);
1088 	else
1089 		vlan_mapping.val[2] |= BIT(port);
1090 	err = gswip_pce_table_entry_write(priv, &vlan_mapping);
1091 	if (err) {
1092 		dev_err(priv->dev, "failed to write VLAN mapping: %d\n", err);
1093 		/* In case an Active VLAN was creaetd delete it again */
1094 		if (active_vlan_created)
1095 			gswip_vlan_active_remove(priv, idx);
1096 		return err;
1097 	}
1098 
1099 	if (pvid)
1100 		gswip_switch_w(priv, idx, GSWIP_PCE_DEFPVID(port));
1101 
1102 	return 0;
1103 }
1104 
gswip_vlan_remove(struct gswip_priv * priv,struct net_device * bridge,int port,u16 vid,bool pvid,bool vlan_aware)1105 static int gswip_vlan_remove(struct gswip_priv *priv,
1106 			     struct net_device *bridge, int port,
1107 			     u16 vid, bool pvid, bool vlan_aware)
1108 {
1109 	struct gswip_pce_table_entry vlan_mapping = {0,};
1110 	unsigned int max_ports = priv->hw_info->max_ports;
1111 	unsigned int cpu_port = priv->hw_info->cpu_port;
1112 	int idx = -1;
1113 	int i;
1114 	int err;
1115 
1116 	/* Check if there is already a page for this bridge */
1117 	for (i = max_ports; i < ARRAY_SIZE(priv->vlans); i++) {
1118 		if (priv->vlans[i].bridge == bridge &&
1119 		    (!vlan_aware || priv->vlans[i].vid == vid)) {
1120 			idx = i;
1121 			break;
1122 		}
1123 	}
1124 
1125 	if (idx == -1) {
1126 		dev_err(priv->dev, "bridge to leave does not exists\n");
1127 		return -ENOENT;
1128 	}
1129 
1130 	vlan_mapping.index = idx;
1131 	vlan_mapping.table = GSWIP_TABLE_VLAN_MAPPING;
1132 	err = gswip_pce_table_entry_read(priv, &vlan_mapping);
1133 	if (err) {
1134 		dev_err(priv->dev, "failed to read VLAN mapping: %d\n",	err);
1135 		return err;
1136 	}
1137 
1138 	vlan_mapping.val[1] &= ~BIT(port);
1139 	vlan_mapping.val[2] &= ~BIT(port);
1140 	err = gswip_pce_table_entry_write(priv, &vlan_mapping);
1141 	if (err) {
1142 		dev_err(priv->dev, "failed to write VLAN mapping: %d\n", err);
1143 		return err;
1144 	}
1145 
1146 	/* In case all ports are removed from the bridge, remove the VLAN */
1147 	if ((vlan_mapping.val[1] & ~BIT(cpu_port)) == 0) {
1148 		err = gswip_vlan_active_remove(priv, idx);
1149 		if (err) {
1150 			dev_err(priv->dev, "failed to write active VLAN: %d\n",
1151 				err);
1152 			return err;
1153 		}
1154 	}
1155 
1156 	/* GSWIP 2.2 (GRX300) and later program here the VID directly. */
1157 	if (pvid)
1158 		gswip_switch_w(priv, 0, GSWIP_PCE_DEFPVID(port));
1159 
1160 	return 0;
1161 }
1162 
gswip_port_bridge_join(struct dsa_switch * ds,int port,struct dsa_bridge bridge,bool * tx_fwd_offload,struct netlink_ext_ack * extack)1163 static int gswip_port_bridge_join(struct dsa_switch *ds, int port,
1164 				  struct dsa_bridge bridge,
1165 				  bool *tx_fwd_offload,
1166 				  struct netlink_ext_ack *extack)
1167 {
1168 	struct net_device *br = bridge.dev;
1169 	struct gswip_priv *priv = ds->priv;
1170 	int err;
1171 
1172 	/* When the bridge uses VLAN filtering we have to configure VLAN
1173 	 * specific bridges. No bridge is configured here.
1174 	 */
1175 	if (!br_vlan_enabled(br)) {
1176 		err = gswip_vlan_add_unaware(priv, br, port);
1177 		if (err)
1178 			return err;
1179 		priv->port_vlan_filter &= ~BIT(port);
1180 	} else {
1181 		priv->port_vlan_filter |= BIT(port);
1182 	}
1183 	return gswip_add_single_port_br(priv, port, false);
1184 }
1185 
gswip_port_bridge_leave(struct dsa_switch * ds,int port,struct dsa_bridge bridge)1186 static void gswip_port_bridge_leave(struct dsa_switch *ds, int port,
1187 				    struct dsa_bridge bridge)
1188 {
1189 	struct net_device *br = bridge.dev;
1190 	struct gswip_priv *priv = ds->priv;
1191 
1192 	gswip_add_single_port_br(priv, port, true);
1193 
1194 	/* When the bridge uses VLAN filtering we have to configure VLAN
1195 	 * specific bridges. No bridge is configured here.
1196 	 */
1197 	if (!br_vlan_enabled(br))
1198 		gswip_vlan_remove(priv, br, port, 0, true, false);
1199 }
1200 
gswip_port_vlan_prepare(struct dsa_switch * ds,int port,const struct switchdev_obj_port_vlan * vlan,struct netlink_ext_ack * extack)1201 static int gswip_port_vlan_prepare(struct dsa_switch *ds, int port,
1202 				   const struct switchdev_obj_port_vlan *vlan,
1203 				   struct netlink_ext_ack *extack)
1204 {
1205 	struct net_device *bridge = dsa_port_bridge_dev_get(dsa_to_port(ds, port));
1206 	struct gswip_priv *priv = ds->priv;
1207 	unsigned int max_ports = priv->hw_info->max_ports;
1208 	int pos = max_ports;
1209 	int i, idx = -1;
1210 
1211 	/* We only support VLAN filtering on bridges */
1212 	if (!dsa_is_cpu_port(ds, port) && !bridge)
1213 		return -EOPNOTSUPP;
1214 
1215 	/* Check if there is already a page for this VLAN */
1216 	for (i = max_ports; i < ARRAY_SIZE(priv->vlans); i++) {
1217 		if (priv->vlans[i].bridge == bridge &&
1218 		    priv->vlans[i].vid == vlan->vid) {
1219 			idx = i;
1220 			break;
1221 		}
1222 	}
1223 
1224 	/* If this VLAN is not programmed yet, we have to reserve
1225 	 * one entry in the VLAN table. Make sure we start at the
1226 	 * next position round.
1227 	 */
1228 	if (idx == -1) {
1229 		/* Look for a free slot */
1230 		for (; pos < ARRAY_SIZE(priv->vlans); pos++) {
1231 			if (!priv->vlans[pos].bridge) {
1232 				idx = pos;
1233 				pos++;
1234 				break;
1235 			}
1236 		}
1237 
1238 		if (idx == -1) {
1239 			NL_SET_ERR_MSG_MOD(extack, "No slot in VLAN table");
1240 			return -ENOSPC;
1241 		}
1242 	}
1243 
1244 	return 0;
1245 }
1246 
gswip_port_vlan_add(struct dsa_switch * ds,int port,const struct switchdev_obj_port_vlan * vlan,struct netlink_ext_ack * extack)1247 static int gswip_port_vlan_add(struct dsa_switch *ds, int port,
1248 			       const struct switchdev_obj_port_vlan *vlan,
1249 			       struct netlink_ext_ack *extack)
1250 {
1251 	struct net_device *bridge = dsa_port_bridge_dev_get(dsa_to_port(ds, port));
1252 	struct gswip_priv *priv = ds->priv;
1253 	bool untagged = vlan->flags & BRIDGE_VLAN_INFO_UNTAGGED;
1254 	bool pvid = vlan->flags & BRIDGE_VLAN_INFO_PVID;
1255 	int err;
1256 
1257 	err = gswip_port_vlan_prepare(ds, port, vlan, extack);
1258 	if (err)
1259 		return err;
1260 
1261 	/* We have to receive all packets on the CPU port and should not
1262 	 * do any VLAN filtering here. This is also called with bridge
1263 	 * NULL and then we do not know for which bridge to configure
1264 	 * this.
1265 	 */
1266 	if (dsa_is_cpu_port(ds, port))
1267 		return 0;
1268 
1269 	return gswip_vlan_add_aware(priv, bridge, port, vlan->vid,
1270 				    untagged, pvid);
1271 }
1272 
gswip_port_vlan_del(struct dsa_switch * ds,int port,const struct switchdev_obj_port_vlan * vlan)1273 static int gswip_port_vlan_del(struct dsa_switch *ds, int port,
1274 			       const struct switchdev_obj_port_vlan *vlan)
1275 {
1276 	struct net_device *bridge = dsa_port_bridge_dev_get(dsa_to_port(ds, port));
1277 	struct gswip_priv *priv = ds->priv;
1278 	bool pvid = vlan->flags & BRIDGE_VLAN_INFO_PVID;
1279 
1280 	/* We have to receive all packets on the CPU port and should not
1281 	 * do any VLAN filtering here. This is also called with bridge
1282 	 * NULL and then we do not know for which bridge to configure
1283 	 * this.
1284 	 */
1285 	if (dsa_is_cpu_port(ds, port))
1286 		return 0;
1287 
1288 	return gswip_vlan_remove(priv, bridge, port, vlan->vid, pvid, true);
1289 }
1290 
gswip_port_fast_age(struct dsa_switch * ds,int port)1291 static void gswip_port_fast_age(struct dsa_switch *ds, int port)
1292 {
1293 	struct gswip_priv *priv = ds->priv;
1294 	struct gswip_pce_table_entry mac_bridge = {0,};
1295 	int i;
1296 	int err;
1297 
1298 	for (i = 0; i < 2048; i++) {
1299 		mac_bridge.table = GSWIP_TABLE_MAC_BRIDGE;
1300 		mac_bridge.index = i;
1301 
1302 		err = gswip_pce_table_entry_read(priv, &mac_bridge);
1303 		if (err) {
1304 			dev_err(priv->dev, "failed to read mac bridge: %d\n",
1305 				err);
1306 			return;
1307 		}
1308 
1309 		if (!mac_bridge.valid)
1310 			continue;
1311 
1312 		if (mac_bridge.val[1] & GSWIP_TABLE_MAC_BRIDGE_VAL1_STATIC)
1313 			continue;
1314 
1315 		if (port != FIELD_GET(GSWIP_TABLE_MAC_BRIDGE_VAL0_PORT,
1316 				      mac_bridge.val[0]))
1317 			continue;
1318 
1319 		mac_bridge.valid = false;
1320 		err = gswip_pce_table_entry_write(priv, &mac_bridge);
1321 		if (err) {
1322 			dev_err(priv->dev, "failed to write mac bridge: %d\n",
1323 				err);
1324 			return;
1325 		}
1326 	}
1327 }
1328 
gswip_port_stp_state_set(struct dsa_switch * ds,int port,u8 state)1329 static void gswip_port_stp_state_set(struct dsa_switch *ds, int port, u8 state)
1330 {
1331 	struct gswip_priv *priv = ds->priv;
1332 	u32 stp_state;
1333 
1334 	switch (state) {
1335 	case BR_STATE_DISABLED:
1336 		gswip_switch_mask(priv, GSWIP_SDMA_PCTRL_EN, 0,
1337 				  GSWIP_SDMA_PCTRLp(port));
1338 		return;
1339 	case BR_STATE_BLOCKING:
1340 	case BR_STATE_LISTENING:
1341 		stp_state = GSWIP_PCE_PCTRL_0_PSTATE_LISTEN;
1342 		break;
1343 	case BR_STATE_LEARNING:
1344 		stp_state = GSWIP_PCE_PCTRL_0_PSTATE_LEARNING;
1345 		break;
1346 	case BR_STATE_FORWARDING:
1347 		stp_state = GSWIP_PCE_PCTRL_0_PSTATE_FORWARDING;
1348 		break;
1349 	default:
1350 		dev_err(priv->dev, "invalid STP state: %d\n", state);
1351 		return;
1352 	}
1353 
1354 	gswip_switch_mask(priv, 0, GSWIP_SDMA_PCTRL_EN,
1355 			  GSWIP_SDMA_PCTRLp(port));
1356 	gswip_switch_mask(priv, GSWIP_PCE_PCTRL_0_PSTATE_MASK, stp_state,
1357 			  GSWIP_PCE_PCTRL_0p(port));
1358 }
1359 
gswip_port_fdb(struct dsa_switch * ds,int port,const unsigned char * addr,u16 vid,bool add)1360 static int gswip_port_fdb(struct dsa_switch *ds, int port,
1361 			  const unsigned char *addr, u16 vid, bool add)
1362 {
1363 	struct net_device *bridge = dsa_port_bridge_dev_get(dsa_to_port(ds, port));
1364 	struct gswip_priv *priv = ds->priv;
1365 	struct gswip_pce_table_entry mac_bridge = {0,};
1366 	unsigned int max_ports = priv->hw_info->max_ports;
1367 	int fid = -1;
1368 	int i;
1369 	int err;
1370 
1371 	/* Operation not supported on the CPU port, don't throw errors */
1372 	if (!bridge)
1373 		return 0;
1374 
1375 	for (i = max_ports; i < ARRAY_SIZE(priv->vlans); i++) {
1376 		if (priv->vlans[i].bridge == bridge) {
1377 			fid = priv->vlans[i].fid;
1378 			break;
1379 		}
1380 	}
1381 
1382 	if (fid == -1) {
1383 		dev_err(priv->dev, "no FID found for bridge %s\n",
1384 			bridge->name);
1385 		return -EINVAL;
1386 	}
1387 
1388 	mac_bridge.table = GSWIP_TABLE_MAC_BRIDGE;
1389 	mac_bridge.key_mode = true;
1390 	mac_bridge.key[0] = addr[5] | (addr[4] << 8);
1391 	mac_bridge.key[1] = addr[3] | (addr[2] << 8);
1392 	mac_bridge.key[2] = addr[1] | (addr[0] << 8);
1393 	mac_bridge.key[3] = FIELD_PREP(GSWIP_TABLE_MAC_BRIDGE_KEY3_FID, fid);
1394 	mac_bridge.val[0] = add ? BIT(port) : 0; /* port map */
1395 	mac_bridge.val[1] = GSWIP_TABLE_MAC_BRIDGE_VAL1_STATIC;
1396 	mac_bridge.valid = add;
1397 
1398 	err = gswip_pce_table_entry_write(priv, &mac_bridge);
1399 	if (err)
1400 		dev_err(priv->dev, "failed to write mac bridge: %d\n", err);
1401 
1402 	return err;
1403 }
1404 
gswip_port_fdb_add(struct dsa_switch * ds,int port,const unsigned char * addr,u16 vid,struct dsa_db db)1405 static int gswip_port_fdb_add(struct dsa_switch *ds, int port,
1406 			      const unsigned char *addr, u16 vid,
1407 			      struct dsa_db db)
1408 {
1409 	return gswip_port_fdb(ds, port, addr, vid, true);
1410 }
1411 
gswip_port_fdb_del(struct dsa_switch * ds,int port,const unsigned char * addr,u16 vid,struct dsa_db db)1412 static int gswip_port_fdb_del(struct dsa_switch *ds, int port,
1413 			      const unsigned char *addr, u16 vid,
1414 			      struct dsa_db db)
1415 {
1416 	return gswip_port_fdb(ds, port, addr, vid, false);
1417 }
1418 
gswip_port_fdb_dump(struct dsa_switch * ds,int port,dsa_fdb_dump_cb_t * cb,void * data)1419 static int gswip_port_fdb_dump(struct dsa_switch *ds, int port,
1420 			       dsa_fdb_dump_cb_t *cb, void *data)
1421 {
1422 	struct gswip_priv *priv = ds->priv;
1423 	struct gswip_pce_table_entry mac_bridge = {0,};
1424 	unsigned char addr[ETH_ALEN];
1425 	int i;
1426 	int err;
1427 
1428 	for (i = 0; i < 2048; i++) {
1429 		mac_bridge.table = GSWIP_TABLE_MAC_BRIDGE;
1430 		mac_bridge.index = i;
1431 
1432 		err = gswip_pce_table_entry_read(priv, &mac_bridge);
1433 		if (err) {
1434 			dev_err(priv->dev,
1435 				"failed to read mac bridge entry %d: %d\n",
1436 				i, err);
1437 			return err;
1438 		}
1439 
1440 		if (!mac_bridge.valid)
1441 			continue;
1442 
1443 		addr[5] = mac_bridge.key[0] & 0xff;
1444 		addr[4] = (mac_bridge.key[0] >> 8) & 0xff;
1445 		addr[3] = mac_bridge.key[1] & 0xff;
1446 		addr[2] = (mac_bridge.key[1] >> 8) & 0xff;
1447 		addr[1] = mac_bridge.key[2] & 0xff;
1448 		addr[0] = (mac_bridge.key[2] >> 8) & 0xff;
1449 		if (mac_bridge.val[1] & GSWIP_TABLE_MAC_BRIDGE_VAL1_STATIC) {
1450 			if (mac_bridge.val[0] & BIT(port)) {
1451 				err = cb(addr, 0, true, data);
1452 				if (err)
1453 					return err;
1454 			}
1455 		} else {
1456 			if (port == FIELD_GET(GSWIP_TABLE_MAC_BRIDGE_VAL0_PORT,
1457 					      mac_bridge.val[0])) {
1458 				err = cb(addr, 0, false, data);
1459 				if (err)
1460 					return err;
1461 			}
1462 		}
1463 	}
1464 	return 0;
1465 }
1466 
gswip_port_max_mtu(struct dsa_switch * ds,int port)1467 static int gswip_port_max_mtu(struct dsa_switch *ds, int port)
1468 {
1469 	/* Includes 8 bytes for special header. */
1470 	return GSWIP_MAX_PACKET_LENGTH - VLAN_ETH_HLEN - ETH_FCS_LEN;
1471 }
1472 
gswip_port_change_mtu(struct dsa_switch * ds,int port,int new_mtu)1473 static int gswip_port_change_mtu(struct dsa_switch *ds, int port, int new_mtu)
1474 {
1475 	struct gswip_priv *priv = ds->priv;
1476 
1477 	/* CPU port always has maximum mtu of user ports, so use it to set
1478 	 * switch frame size, including 8 byte special header.
1479 	 */
1480 	if (dsa_is_cpu_port(ds, port)) {
1481 		new_mtu += 8;
1482 		gswip_switch_w(priv, VLAN_ETH_HLEN + new_mtu + ETH_FCS_LEN,
1483 			       GSWIP_MAC_FLEN);
1484 	}
1485 
1486 	/* Enable MLEN for ports with non-standard MTUs, including the special
1487 	 * header on the CPU port added above.
1488 	 */
1489 	if (new_mtu != ETH_DATA_LEN)
1490 		gswip_switch_mask(priv, 0, GSWIP_MAC_CTRL_2_MLEN,
1491 				  GSWIP_MAC_CTRL_2p(port));
1492 	else
1493 		gswip_switch_mask(priv, GSWIP_MAC_CTRL_2_MLEN, 0,
1494 				  GSWIP_MAC_CTRL_2p(port));
1495 
1496 	return 0;
1497 }
1498 
gswip_xrx200_phylink_get_caps(struct dsa_switch * ds,int port,struct phylink_config * config)1499 static void gswip_xrx200_phylink_get_caps(struct dsa_switch *ds, int port,
1500 					  struct phylink_config *config)
1501 {
1502 	switch (port) {
1503 	case 0:
1504 	case 1:
1505 		phy_interface_set_rgmii(config->supported_interfaces);
1506 		__set_bit(PHY_INTERFACE_MODE_MII,
1507 			  config->supported_interfaces);
1508 		__set_bit(PHY_INTERFACE_MODE_REVMII,
1509 			  config->supported_interfaces);
1510 		__set_bit(PHY_INTERFACE_MODE_RMII,
1511 			  config->supported_interfaces);
1512 		break;
1513 
1514 	case 2:
1515 	case 3:
1516 	case 4:
1517 	case 6:
1518 		__set_bit(PHY_INTERFACE_MODE_INTERNAL,
1519 			  config->supported_interfaces);
1520 		break;
1521 
1522 	case 5:
1523 		phy_interface_set_rgmii(config->supported_interfaces);
1524 		__set_bit(PHY_INTERFACE_MODE_INTERNAL,
1525 			  config->supported_interfaces);
1526 		break;
1527 	}
1528 
1529 	config->mac_capabilities = MAC_ASYM_PAUSE | MAC_SYM_PAUSE |
1530 		MAC_10 | MAC_100 | MAC_1000;
1531 }
1532 
gswip_xrx300_phylink_get_caps(struct dsa_switch * ds,int port,struct phylink_config * config)1533 static void gswip_xrx300_phylink_get_caps(struct dsa_switch *ds, int port,
1534 					  struct phylink_config *config)
1535 {
1536 	switch (port) {
1537 	case 0:
1538 		phy_interface_set_rgmii(config->supported_interfaces);
1539 		__set_bit(PHY_INTERFACE_MODE_GMII,
1540 			  config->supported_interfaces);
1541 		__set_bit(PHY_INTERFACE_MODE_RMII,
1542 			  config->supported_interfaces);
1543 		break;
1544 
1545 	case 1:
1546 	case 2:
1547 	case 3:
1548 	case 4:
1549 	case 6:
1550 		__set_bit(PHY_INTERFACE_MODE_INTERNAL,
1551 			  config->supported_interfaces);
1552 		break;
1553 
1554 	case 5:
1555 		phy_interface_set_rgmii(config->supported_interfaces);
1556 		__set_bit(PHY_INTERFACE_MODE_INTERNAL,
1557 			  config->supported_interfaces);
1558 		__set_bit(PHY_INTERFACE_MODE_RMII,
1559 			  config->supported_interfaces);
1560 		break;
1561 	}
1562 
1563 	config->mac_capabilities = MAC_ASYM_PAUSE | MAC_SYM_PAUSE |
1564 		MAC_10 | MAC_100 | MAC_1000;
1565 }
1566 
gswip_port_set_link(struct gswip_priv * priv,int port,bool link)1567 static void gswip_port_set_link(struct gswip_priv *priv, int port, bool link)
1568 {
1569 	u32 mdio_phy;
1570 
1571 	if (link)
1572 		mdio_phy = GSWIP_MDIO_PHY_LINK_UP;
1573 	else
1574 		mdio_phy = GSWIP_MDIO_PHY_LINK_DOWN;
1575 
1576 	gswip_mdio_mask(priv, GSWIP_MDIO_PHY_LINK_MASK, mdio_phy,
1577 			GSWIP_MDIO_PHYp(port));
1578 }
1579 
gswip_port_set_speed(struct gswip_priv * priv,int port,int speed,phy_interface_t interface)1580 static void gswip_port_set_speed(struct gswip_priv *priv, int port, int speed,
1581 				 phy_interface_t interface)
1582 {
1583 	u32 mdio_phy = 0, mii_cfg = 0, mac_ctrl_0 = 0;
1584 
1585 	switch (speed) {
1586 	case SPEED_10:
1587 		mdio_phy = GSWIP_MDIO_PHY_SPEED_M10;
1588 
1589 		if (interface == PHY_INTERFACE_MODE_RMII)
1590 			mii_cfg = GSWIP_MII_CFG_RATE_M50;
1591 		else
1592 			mii_cfg = GSWIP_MII_CFG_RATE_M2P5;
1593 
1594 		mac_ctrl_0 = GSWIP_MAC_CTRL_0_GMII_MII;
1595 		break;
1596 
1597 	case SPEED_100:
1598 		mdio_phy = GSWIP_MDIO_PHY_SPEED_M100;
1599 
1600 		if (interface == PHY_INTERFACE_MODE_RMII)
1601 			mii_cfg = GSWIP_MII_CFG_RATE_M50;
1602 		else
1603 			mii_cfg = GSWIP_MII_CFG_RATE_M25;
1604 
1605 		mac_ctrl_0 = GSWIP_MAC_CTRL_0_GMII_MII;
1606 		break;
1607 
1608 	case SPEED_1000:
1609 		mdio_phy = GSWIP_MDIO_PHY_SPEED_G1;
1610 
1611 		mii_cfg = GSWIP_MII_CFG_RATE_M125;
1612 
1613 		mac_ctrl_0 = GSWIP_MAC_CTRL_0_GMII_RGMII;
1614 		break;
1615 	}
1616 
1617 	gswip_mdio_mask(priv, GSWIP_MDIO_PHY_SPEED_MASK, mdio_phy,
1618 			GSWIP_MDIO_PHYp(port));
1619 	gswip_mii_mask_cfg(priv, GSWIP_MII_CFG_RATE_MASK, mii_cfg, port);
1620 	gswip_switch_mask(priv, GSWIP_MAC_CTRL_0_GMII_MASK, mac_ctrl_0,
1621 			  GSWIP_MAC_CTRL_0p(port));
1622 }
1623 
gswip_port_set_duplex(struct gswip_priv * priv,int port,int duplex)1624 static void gswip_port_set_duplex(struct gswip_priv *priv, int port, int duplex)
1625 {
1626 	u32 mac_ctrl_0, mdio_phy;
1627 
1628 	if (duplex == DUPLEX_FULL) {
1629 		mac_ctrl_0 = GSWIP_MAC_CTRL_0_FDUP_EN;
1630 		mdio_phy = GSWIP_MDIO_PHY_FDUP_EN;
1631 	} else {
1632 		mac_ctrl_0 = GSWIP_MAC_CTRL_0_FDUP_DIS;
1633 		mdio_phy = GSWIP_MDIO_PHY_FDUP_DIS;
1634 	}
1635 
1636 	gswip_switch_mask(priv, GSWIP_MAC_CTRL_0_FDUP_MASK, mac_ctrl_0,
1637 			  GSWIP_MAC_CTRL_0p(port));
1638 	gswip_mdio_mask(priv, GSWIP_MDIO_PHY_FDUP_MASK, mdio_phy,
1639 			GSWIP_MDIO_PHYp(port));
1640 }
1641 
gswip_port_set_pause(struct gswip_priv * priv,int port,bool tx_pause,bool rx_pause)1642 static void gswip_port_set_pause(struct gswip_priv *priv, int port,
1643 				 bool tx_pause, bool rx_pause)
1644 {
1645 	u32 mac_ctrl_0, mdio_phy;
1646 
1647 	if (tx_pause && rx_pause) {
1648 		mac_ctrl_0 = GSWIP_MAC_CTRL_0_FCON_RXTX;
1649 		mdio_phy = GSWIP_MDIO_PHY_FCONTX_EN |
1650 			   GSWIP_MDIO_PHY_FCONRX_EN;
1651 	} else if (tx_pause) {
1652 		mac_ctrl_0 = GSWIP_MAC_CTRL_0_FCON_TX;
1653 		mdio_phy = GSWIP_MDIO_PHY_FCONTX_EN |
1654 			   GSWIP_MDIO_PHY_FCONRX_DIS;
1655 	} else if (rx_pause) {
1656 		mac_ctrl_0 = GSWIP_MAC_CTRL_0_FCON_RX;
1657 		mdio_phy = GSWIP_MDIO_PHY_FCONTX_DIS |
1658 			   GSWIP_MDIO_PHY_FCONRX_EN;
1659 	} else {
1660 		mac_ctrl_0 = GSWIP_MAC_CTRL_0_FCON_NONE;
1661 		mdio_phy = GSWIP_MDIO_PHY_FCONTX_DIS |
1662 			   GSWIP_MDIO_PHY_FCONRX_DIS;
1663 	}
1664 
1665 	gswip_switch_mask(priv, GSWIP_MAC_CTRL_0_FCON_MASK,
1666 			  mac_ctrl_0, GSWIP_MAC_CTRL_0p(port));
1667 	gswip_mdio_mask(priv,
1668 			GSWIP_MDIO_PHY_FCONTX_MASK |
1669 			GSWIP_MDIO_PHY_FCONRX_MASK,
1670 			mdio_phy, GSWIP_MDIO_PHYp(port));
1671 }
1672 
gswip_phylink_mac_config(struct phylink_config * config,unsigned int mode,const struct phylink_link_state * state)1673 static void gswip_phylink_mac_config(struct phylink_config *config,
1674 				     unsigned int mode,
1675 				     const struct phylink_link_state *state)
1676 {
1677 	struct dsa_port *dp = dsa_phylink_to_port(config);
1678 	struct gswip_priv *priv = dp->ds->priv;
1679 	int port = dp->index;
1680 	u32 miicfg = 0;
1681 
1682 	miicfg |= GSWIP_MII_CFG_LDCLKDIS;
1683 
1684 	switch (state->interface) {
1685 	case PHY_INTERFACE_MODE_MII:
1686 	case PHY_INTERFACE_MODE_INTERNAL:
1687 		miicfg |= GSWIP_MII_CFG_MODE_MIIM;
1688 		break;
1689 	case PHY_INTERFACE_MODE_REVMII:
1690 		miicfg |= GSWIP_MII_CFG_MODE_MIIP;
1691 		break;
1692 	case PHY_INTERFACE_MODE_RMII:
1693 		miicfg |= GSWIP_MII_CFG_MODE_RMIIM;
1694 		break;
1695 	case PHY_INTERFACE_MODE_RGMII:
1696 	case PHY_INTERFACE_MODE_RGMII_ID:
1697 	case PHY_INTERFACE_MODE_RGMII_RXID:
1698 	case PHY_INTERFACE_MODE_RGMII_TXID:
1699 		miicfg |= GSWIP_MII_CFG_MODE_RGMII;
1700 		break;
1701 	case PHY_INTERFACE_MODE_GMII:
1702 		miicfg |= GSWIP_MII_CFG_MODE_GMII;
1703 		break;
1704 	default:
1705 		dev_err(dp->ds->dev,
1706 			"Unsupported interface: %d\n", state->interface);
1707 		return;
1708 	}
1709 
1710 	gswip_mii_mask_cfg(priv,
1711 			   GSWIP_MII_CFG_MODE_MASK | GSWIP_MII_CFG_RMII_CLK |
1712 			   GSWIP_MII_CFG_RGMII_IBS | GSWIP_MII_CFG_LDCLKDIS,
1713 			   miicfg, port);
1714 
1715 	switch (state->interface) {
1716 	case PHY_INTERFACE_MODE_RGMII_ID:
1717 		gswip_mii_mask_pcdu(priv, GSWIP_MII_PCDU_TXDLY_MASK |
1718 					  GSWIP_MII_PCDU_RXDLY_MASK, 0, port);
1719 		break;
1720 	case PHY_INTERFACE_MODE_RGMII_RXID:
1721 		gswip_mii_mask_pcdu(priv, GSWIP_MII_PCDU_RXDLY_MASK, 0, port);
1722 		break;
1723 	case PHY_INTERFACE_MODE_RGMII_TXID:
1724 		gswip_mii_mask_pcdu(priv, GSWIP_MII_PCDU_TXDLY_MASK, 0, port);
1725 		break;
1726 	default:
1727 		break;
1728 	}
1729 }
1730 
gswip_phylink_mac_link_down(struct phylink_config * config,unsigned int mode,phy_interface_t interface)1731 static void gswip_phylink_mac_link_down(struct phylink_config *config,
1732 					unsigned int mode,
1733 					phy_interface_t interface)
1734 {
1735 	struct dsa_port *dp = dsa_phylink_to_port(config);
1736 	struct gswip_priv *priv = dp->ds->priv;
1737 	int port = dp->index;
1738 
1739 	gswip_mii_mask_cfg(priv, GSWIP_MII_CFG_EN, 0, port);
1740 
1741 	if (!dsa_port_is_cpu(dp))
1742 		gswip_port_set_link(priv, port, false);
1743 }
1744 
gswip_phylink_mac_link_up(struct phylink_config * config,struct phy_device * phydev,unsigned int mode,phy_interface_t interface,int speed,int duplex,bool tx_pause,bool rx_pause)1745 static void gswip_phylink_mac_link_up(struct phylink_config *config,
1746 				      struct phy_device *phydev,
1747 				      unsigned int mode,
1748 				      phy_interface_t interface,
1749 				      int speed, int duplex,
1750 				      bool tx_pause, bool rx_pause)
1751 {
1752 	struct dsa_port *dp = dsa_phylink_to_port(config);
1753 	struct gswip_priv *priv = dp->ds->priv;
1754 	int port = dp->index;
1755 
1756 	if (!dsa_port_is_cpu(dp)) {
1757 		gswip_port_set_link(priv, port, true);
1758 		gswip_port_set_speed(priv, port, speed, interface);
1759 		gswip_port_set_duplex(priv, port, duplex);
1760 		gswip_port_set_pause(priv, port, tx_pause, rx_pause);
1761 	}
1762 
1763 	gswip_mii_mask_cfg(priv, 0, GSWIP_MII_CFG_EN, port);
1764 }
1765 
gswip_get_strings(struct dsa_switch * ds,int port,u32 stringset,uint8_t * data)1766 static void gswip_get_strings(struct dsa_switch *ds, int port, u32 stringset,
1767 			      uint8_t *data)
1768 {
1769 	int i;
1770 
1771 	if (stringset != ETH_SS_STATS)
1772 		return;
1773 
1774 	for (i = 0; i < ARRAY_SIZE(gswip_rmon_cnt); i++)
1775 		ethtool_puts(&data, gswip_rmon_cnt[i].name);
1776 }
1777 
gswip_bcm_ram_entry_read(struct gswip_priv * priv,u32 table,u32 index)1778 static u32 gswip_bcm_ram_entry_read(struct gswip_priv *priv, u32 table,
1779 				    u32 index)
1780 {
1781 	u32 result;
1782 	int err;
1783 
1784 	gswip_switch_w(priv, index, GSWIP_BM_RAM_ADDR);
1785 	gswip_switch_mask(priv, GSWIP_BM_RAM_CTRL_ADDR_MASK |
1786 				GSWIP_BM_RAM_CTRL_OPMOD,
1787 			      table | GSWIP_BM_RAM_CTRL_BAS,
1788 			      GSWIP_BM_RAM_CTRL);
1789 
1790 	err = gswip_switch_r_timeout(priv, GSWIP_BM_RAM_CTRL,
1791 				     GSWIP_BM_RAM_CTRL_BAS);
1792 	if (err) {
1793 		dev_err(priv->dev, "timeout while reading table: %u, index: %u\n",
1794 			table, index);
1795 		return 0;
1796 	}
1797 
1798 	result = gswip_switch_r(priv, GSWIP_BM_RAM_VAL(0));
1799 	result |= gswip_switch_r(priv, GSWIP_BM_RAM_VAL(1)) << 16;
1800 
1801 	return result;
1802 }
1803 
gswip_get_ethtool_stats(struct dsa_switch * ds,int port,uint64_t * data)1804 static void gswip_get_ethtool_stats(struct dsa_switch *ds, int port,
1805 				    uint64_t *data)
1806 {
1807 	struct gswip_priv *priv = ds->priv;
1808 	const struct gswip_rmon_cnt_desc *rmon_cnt;
1809 	int i;
1810 	u64 high;
1811 
1812 	for (i = 0; i < ARRAY_SIZE(gswip_rmon_cnt); i++) {
1813 		rmon_cnt = &gswip_rmon_cnt[i];
1814 
1815 		data[i] = gswip_bcm_ram_entry_read(priv, port,
1816 						   rmon_cnt->offset);
1817 		if (rmon_cnt->size == 2) {
1818 			high = gswip_bcm_ram_entry_read(priv, port,
1819 							rmon_cnt->offset + 1);
1820 			data[i] |= high << 32;
1821 		}
1822 	}
1823 }
1824 
gswip_get_sset_count(struct dsa_switch * ds,int port,int sset)1825 static int gswip_get_sset_count(struct dsa_switch *ds, int port, int sset)
1826 {
1827 	if (sset != ETH_SS_STATS)
1828 		return 0;
1829 
1830 	return ARRAY_SIZE(gswip_rmon_cnt);
1831 }
1832 
1833 static const struct phylink_mac_ops gswip_phylink_mac_ops = {
1834 	.mac_config	= gswip_phylink_mac_config,
1835 	.mac_link_down	= gswip_phylink_mac_link_down,
1836 	.mac_link_up	= gswip_phylink_mac_link_up,
1837 };
1838 
1839 static const struct dsa_switch_ops gswip_xrx200_switch_ops = {
1840 	.get_tag_protocol	= gswip_get_tag_protocol,
1841 	.setup			= gswip_setup,
1842 	.port_setup		= gswip_port_setup,
1843 	.port_enable		= gswip_port_enable,
1844 	.port_disable		= gswip_port_disable,
1845 	.port_bridge_join	= gswip_port_bridge_join,
1846 	.port_bridge_leave	= gswip_port_bridge_leave,
1847 	.port_fast_age		= gswip_port_fast_age,
1848 	.port_vlan_filtering	= gswip_port_vlan_filtering,
1849 	.port_vlan_add		= gswip_port_vlan_add,
1850 	.port_vlan_del		= gswip_port_vlan_del,
1851 	.port_stp_state_set	= gswip_port_stp_state_set,
1852 	.port_fdb_add		= gswip_port_fdb_add,
1853 	.port_fdb_del		= gswip_port_fdb_del,
1854 	.port_fdb_dump		= gswip_port_fdb_dump,
1855 	.port_change_mtu	= gswip_port_change_mtu,
1856 	.port_max_mtu		= gswip_port_max_mtu,
1857 	.phylink_get_caps	= gswip_xrx200_phylink_get_caps,
1858 	.get_strings		= gswip_get_strings,
1859 	.get_ethtool_stats	= gswip_get_ethtool_stats,
1860 	.get_sset_count		= gswip_get_sset_count,
1861 };
1862 
1863 static const struct dsa_switch_ops gswip_xrx300_switch_ops = {
1864 	.get_tag_protocol	= gswip_get_tag_protocol,
1865 	.setup			= gswip_setup,
1866 	.port_enable		= gswip_port_enable,
1867 	.port_disable		= gswip_port_disable,
1868 	.port_bridge_join	= gswip_port_bridge_join,
1869 	.port_bridge_leave	= gswip_port_bridge_leave,
1870 	.port_fast_age		= gswip_port_fast_age,
1871 	.port_vlan_filtering	= gswip_port_vlan_filtering,
1872 	.port_vlan_add		= gswip_port_vlan_add,
1873 	.port_vlan_del		= gswip_port_vlan_del,
1874 	.port_stp_state_set	= gswip_port_stp_state_set,
1875 	.port_fdb_add		= gswip_port_fdb_add,
1876 	.port_fdb_del		= gswip_port_fdb_del,
1877 	.port_fdb_dump		= gswip_port_fdb_dump,
1878 	.port_change_mtu	= gswip_port_change_mtu,
1879 	.port_max_mtu		= gswip_port_max_mtu,
1880 	.phylink_get_caps	= gswip_xrx300_phylink_get_caps,
1881 	.get_strings		= gswip_get_strings,
1882 	.get_ethtool_stats	= gswip_get_ethtool_stats,
1883 	.get_sset_count		= gswip_get_sset_count,
1884 };
1885 
1886 static const struct xway_gphy_match_data xrx200a1x_gphy_data = {
1887 	.fe_firmware_name = "lantiq/xrx200_phy22f_a14.bin",
1888 	.ge_firmware_name = "lantiq/xrx200_phy11g_a14.bin",
1889 };
1890 
1891 static const struct xway_gphy_match_data xrx200a2x_gphy_data = {
1892 	.fe_firmware_name = "lantiq/xrx200_phy22f_a22.bin",
1893 	.ge_firmware_name = "lantiq/xrx200_phy11g_a22.bin",
1894 };
1895 
1896 static const struct xway_gphy_match_data xrx300_gphy_data = {
1897 	.fe_firmware_name = "lantiq/xrx300_phy22f_a21.bin",
1898 	.ge_firmware_name = "lantiq/xrx300_phy11g_a21.bin",
1899 };
1900 
1901 static const struct of_device_id xway_gphy_match[] __maybe_unused = {
1902 	{ .compatible = "lantiq,xrx200-gphy-fw", .data = NULL },
1903 	{ .compatible = "lantiq,xrx200a1x-gphy-fw", .data = &xrx200a1x_gphy_data },
1904 	{ .compatible = "lantiq,xrx200a2x-gphy-fw", .data = &xrx200a2x_gphy_data },
1905 	{ .compatible = "lantiq,xrx300-gphy-fw", .data = &xrx300_gphy_data },
1906 	{ .compatible = "lantiq,xrx330-gphy-fw", .data = &xrx300_gphy_data },
1907 	{},
1908 };
1909 
gswip_gphy_fw_load(struct gswip_priv * priv,struct gswip_gphy_fw * gphy_fw)1910 static int gswip_gphy_fw_load(struct gswip_priv *priv, struct gswip_gphy_fw *gphy_fw)
1911 {
1912 	struct device *dev = priv->dev;
1913 	const struct firmware *fw;
1914 	void *fw_addr;
1915 	dma_addr_t dma_addr;
1916 	dma_addr_t dev_addr;
1917 	size_t size;
1918 	int ret;
1919 
1920 	ret = clk_prepare_enable(gphy_fw->clk_gate);
1921 	if (ret)
1922 		return ret;
1923 
1924 	reset_control_assert(gphy_fw->reset);
1925 
1926 	/* The vendor BSP uses a 200ms delay after asserting the reset line.
1927 	 * Without this some users are observing that the PHY is not coming up
1928 	 * on the MDIO bus.
1929 	 */
1930 	msleep(200);
1931 
1932 	ret = request_firmware(&fw, gphy_fw->fw_name, dev);
1933 	if (ret)
1934 		return dev_err_probe(dev, ret, "failed to load firmware: %s\n",
1935 				     gphy_fw->fw_name);
1936 
1937 	/* GPHY cores need the firmware code in a persistent and contiguous
1938 	 * memory area with a 16 kB boundary aligned start address.
1939 	 */
1940 	size = fw->size + XRX200_GPHY_FW_ALIGN;
1941 
1942 	fw_addr = dmam_alloc_coherent(dev, size, &dma_addr, GFP_KERNEL);
1943 	if (fw_addr) {
1944 		fw_addr = PTR_ALIGN(fw_addr, XRX200_GPHY_FW_ALIGN);
1945 		dev_addr = ALIGN(dma_addr, XRX200_GPHY_FW_ALIGN);
1946 		memcpy(fw_addr, fw->data, fw->size);
1947 	} else {
1948 		release_firmware(fw);
1949 		return dev_err_probe(dev, -ENOMEM,
1950 				     "failed to alloc firmware memory\n");
1951 	}
1952 
1953 	release_firmware(fw);
1954 
1955 	ret = regmap_write(priv->rcu_regmap, gphy_fw->fw_addr_offset, dev_addr);
1956 	if (ret)
1957 		return ret;
1958 
1959 	reset_control_deassert(gphy_fw->reset);
1960 
1961 	return ret;
1962 }
1963 
gswip_gphy_fw_probe(struct gswip_priv * priv,struct gswip_gphy_fw * gphy_fw,struct device_node * gphy_fw_np,int i)1964 static int gswip_gphy_fw_probe(struct gswip_priv *priv,
1965 			       struct gswip_gphy_fw *gphy_fw,
1966 			       struct device_node *gphy_fw_np, int i)
1967 {
1968 	struct device *dev = priv->dev;
1969 	u32 gphy_mode;
1970 	int ret;
1971 	char gphyname[10];
1972 
1973 	snprintf(gphyname, sizeof(gphyname), "gphy%d", i);
1974 
1975 	gphy_fw->clk_gate = devm_clk_get(dev, gphyname);
1976 	if (IS_ERR(gphy_fw->clk_gate)) {
1977 		return dev_err_probe(dev, PTR_ERR(gphy_fw->clk_gate),
1978 				     "Failed to lookup gate clock\n");
1979 	}
1980 
1981 	ret = of_property_read_u32(gphy_fw_np, "reg", &gphy_fw->fw_addr_offset);
1982 	if (ret)
1983 		return ret;
1984 
1985 	ret = of_property_read_u32(gphy_fw_np, "lantiq,gphy-mode", &gphy_mode);
1986 	/* Default to GE mode */
1987 	if (ret)
1988 		gphy_mode = GPHY_MODE_GE;
1989 
1990 	switch (gphy_mode) {
1991 	case GPHY_MODE_FE:
1992 		gphy_fw->fw_name = priv->gphy_fw_name_cfg->fe_firmware_name;
1993 		break;
1994 	case GPHY_MODE_GE:
1995 		gphy_fw->fw_name = priv->gphy_fw_name_cfg->ge_firmware_name;
1996 		break;
1997 	default:
1998 		return dev_err_probe(dev, -EINVAL, "Unknown GPHY mode %d\n",
1999 				     gphy_mode);
2000 	}
2001 
2002 	gphy_fw->reset = of_reset_control_array_get_exclusive(gphy_fw_np);
2003 	if (IS_ERR(gphy_fw->reset))
2004 		return dev_err_probe(dev, PTR_ERR(gphy_fw->reset),
2005 				     "Failed to lookup gphy reset\n");
2006 
2007 	return gswip_gphy_fw_load(priv, gphy_fw);
2008 }
2009 
gswip_gphy_fw_remove(struct gswip_priv * priv,struct gswip_gphy_fw * gphy_fw)2010 static void gswip_gphy_fw_remove(struct gswip_priv *priv,
2011 				 struct gswip_gphy_fw *gphy_fw)
2012 {
2013 	int ret;
2014 
2015 	/* check if the device was fully probed */
2016 	if (!gphy_fw->fw_name)
2017 		return;
2018 
2019 	ret = regmap_write(priv->rcu_regmap, gphy_fw->fw_addr_offset, 0);
2020 	if (ret)
2021 		dev_err(priv->dev, "can not reset GPHY FW pointer\n");
2022 
2023 	clk_disable_unprepare(gphy_fw->clk_gate);
2024 
2025 	reset_control_put(gphy_fw->reset);
2026 }
2027 
gswip_gphy_fw_list(struct gswip_priv * priv,struct device_node * gphy_fw_list_np,u32 version)2028 static int gswip_gphy_fw_list(struct gswip_priv *priv,
2029 			      struct device_node *gphy_fw_list_np, u32 version)
2030 {
2031 	struct device *dev = priv->dev;
2032 	struct device_node *gphy_fw_np;
2033 	const struct of_device_id *match;
2034 	int err;
2035 	int i = 0;
2036 
2037 	/* The VRX200 rev 1.1 uses the GSWIP 2.0 and needs the older
2038 	 * GPHY firmware. The VRX200 rev 1.2 uses the GSWIP 2.1 and also
2039 	 * needs a different GPHY firmware.
2040 	 */
2041 	if (of_device_is_compatible(gphy_fw_list_np, "lantiq,xrx200-gphy-fw")) {
2042 		switch (version) {
2043 		case GSWIP_VERSION_2_0:
2044 			priv->gphy_fw_name_cfg = &xrx200a1x_gphy_data;
2045 			break;
2046 		case GSWIP_VERSION_2_1:
2047 			priv->gphy_fw_name_cfg = &xrx200a2x_gphy_data;
2048 			break;
2049 		default:
2050 			return dev_err_probe(dev, -ENOENT,
2051 					     "unknown GSWIP version: 0x%x\n",
2052 					     version);
2053 		}
2054 	}
2055 
2056 	match = of_match_node(xway_gphy_match, gphy_fw_list_np);
2057 	if (match && match->data)
2058 		priv->gphy_fw_name_cfg = match->data;
2059 
2060 	if (!priv->gphy_fw_name_cfg)
2061 		return dev_err_probe(dev, -ENOENT,
2062 				     "GPHY compatible type not supported\n");
2063 
2064 	priv->num_gphy_fw = of_get_available_child_count(gphy_fw_list_np);
2065 	if (!priv->num_gphy_fw)
2066 		return -ENOENT;
2067 
2068 	priv->rcu_regmap = syscon_regmap_lookup_by_phandle(gphy_fw_list_np,
2069 							   "lantiq,rcu");
2070 	if (IS_ERR(priv->rcu_regmap))
2071 		return PTR_ERR(priv->rcu_regmap);
2072 
2073 	priv->gphy_fw = devm_kmalloc_array(dev, priv->num_gphy_fw,
2074 					   sizeof(*priv->gphy_fw),
2075 					   GFP_KERNEL | __GFP_ZERO);
2076 	if (!priv->gphy_fw)
2077 		return -ENOMEM;
2078 
2079 	for_each_available_child_of_node(gphy_fw_list_np, gphy_fw_np) {
2080 		err = gswip_gphy_fw_probe(priv, &priv->gphy_fw[i],
2081 					  gphy_fw_np, i);
2082 		if (err) {
2083 			of_node_put(gphy_fw_np);
2084 			goto remove_gphy;
2085 		}
2086 		i++;
2087 	}
2088 
2089 	/* The standalone PHY11G requires 300ms to be fully
2090 	 * initialized and ready for any MDIO communication after being
2091 	 * taken out of reset. For the SoC-internal GPHY variant there
2092 	 * is no (known) documentation for the minimum time after a
2093 	 * reset. Use the same value as for the standalone variant as
2094 	 * some users have reported internal PHYs not being detected
2095 	 * without any delay.
2096 	 */
2097 	msleep(300);
2098 
2099 	return 0;
2100 
2101 remove_gphy:
2102 	for (i = 0; i < priv->num_gphy_fw; i++)
2103 		gswip_gphy_fw_remove(priv, &priv->gphy_fw[i]);
2104 	return err;
2105 }
2106 
gswip_probe(struct platform_device * pdev)2107 static int gswip_probe(struct platform_device *pdev)
2108 {
2109 	struct device_node *np, *gphy_fw_np;
2110 	struct device *dev = &pdev->dev;
2111 	struct gswip_priv *priv;
2112 	int err;
2113 	int i;
2114 	u32 version;
2115 
2116 	priv = devm_kzalloc(dev, sizeof(*priv), GFP_KERNEL);
2117 	if (!priv)
2118 		return -ENOMEM;
2119 
2120 	priv->gswip = devm_platform_ioremap_resource(pdev, 0);
2121 	if (IS_ERR(priv->gswip))
2122 		return PTR_ERR(priv->gswip);
2123 
2124 	priv->mdio = devm_platform_ioremap_resource(pdev, 1);
2125 	if (IS_ERR(priv->mdio))
2126 		return PTR_ERR(priv->mdio);
2127 
2128 	priv->mii = devm_platform_ioremap_resource(pdev, 2);
2129 	if (IS_ERR(priv->mii))
2130 		return PTR_ERR(priv->mii);
2131 
2132 	priv->hw_info = of_device_get_match_data(dev);
2133 	if (!priv->hw_info)
2134 		return -EINVAL;
2135 
2136 	priv->ds = devm_kzalloc(dev, sizeof(*priv->ds), GFP_KERNEL);
2137 	if (!priv->ds)
2138 		return -ENOMEM;
2139 
2140 	priv->ds->dev = dev;
2141 	priv->ds->num_ports = priv->hw_info->max_ports;
2142 	priv->ds->priv = priv;
2143 	priv->ds->ops = priv->hw_info->ops;
2144 	priv->ds->phylink_mac_ops = &gswip_phylink_mac_ops;
2145 	priv->dev = dev;
2146 	mutex_init(&priv->pce_table_lock);
2147 	version = gswip_switch_r(priv, GSWIP_VERSION);
2148 
2149 	np = dev->of_node;
2150 	switch (version) {
2151 	case GSWIP_VERSION_2_0:
2152 	case GSWIP_VERSION_2_1:
2153 		if (!of_device_is_compatible(np, "lantiq,xrx200-gswip"))
2154 			return -EINVAL;
2155 		break;
2156 	case GSWIP_VERSION_2_2:
2157 	case GSWIP_VERSION_2_2_ETC:
2158 		if (!of_device_is_compatible(np, "lantiq,xrx300-gswip") &&
2159 		    !of_device_is_compatible(np, "lantiq,xrx330-gswip"))
2160 			return -EINVAL;
2161 		break;
2162 	default:
2163 		return dev_err_probe(dev, -ENOENT,
2164 				     "unknown GSWIP version: 0x%x\n", version);
2165 	}
2166 
2167 	/* bring up the mdio bus */
2168 	gphy_fw_np = of_get_compatible_child(dev->of_node, "lantiq,gphy-fw");
2169 	if (gphy_fw_np) {
2170 		err = gswip_gphy_fw_list(priv, gphy_fw_np, version);
2171 		of_node_put(gphy_fw_np);
2172 		if (err)
2173 			return dev_err_probe(dev, err,
2174 					     "gphy fw probe failed\n");
2175 	}
2176 
2177 	/* bring up the mdio bus */
2178 	err = gswip_mdio(priv);
2179 	if (err) {
2180 		dev_err_probe(dev, err, "mdio probe failed\n");
2181 		goto gphy_fw_remove;
2182 	}
2183 
2184 	err = dsa_register_switch(priv->ds);
2185 	if (err) {
2186 		dev_err_probe(dev, err, "dsa switch registration failed\n");
2187 		goto gphy_fw_remove;
2188 	}
2189 	if (!dsa_is_cpu_port(priv->ds, priv->hw_info->cpu_port)) {
2190 		err = dev_err_probe(dev, -EINVAL,
2191 				    "wrong CPU port defined, HW only supports port: %i\n",
2192 				    priv->hw_info->cpu_port);
2193 		goto disable_switch;
2194 	}
2195 
2196 	platform_set_drvdata(pdev, priv);
2197 
2198 	dev_info(dev, "probed GSWIP version %lx mod %lx\n",
2199 		 (version & GSWIP_VERSION_REV_MASK) >> GSWIP_VERSION_REV_SHIFT,
2200 		 (version & GSWIP_VERSION_MOD_MASK) >> GSWIP_VERSION_MOD_SHIFT);
2201 	return 0;
2202 
2203 disable_switch:
2204 	gswip_mdio_mask(priv, GSWIP_MDIO_GLOB_ENABLE, 0, GSWIP_MDIO_GLOB);
2205 	dsa_unregister_switch(priv->ds);
2206 gphy_fw_remove:
2207 	for (i = 0; i < priv->num_gphy_fw; i++)
2208 		gswip_gphy_fw_remove(priv, &priv->gphy_fw[i]);
2209 	return err;
2210 }
2211 
gswip_remove(struct platform_device * pdev)2212 static void gswip_remove(struct platform_device *pdev)
2213 {
2214 	struct gswip_priv *priv = platform_get_drvdata(pdev);
2215 	int i;
2216 
2217 	if (!priv)
2218 		return;
2219 
2220 	/* disable the switch */
2221 	gswip_mdio_mask(priv, GSWIP_MDIO_GLOB_ENABLE, 0, GSWIP_MDIO_GLOB);
2222 
2223 	dsa_unregister_switch(priv->ds);
2224 
2225 	for (i = 0; i < priv->num_gphy_fw; i++)
2226 		gswip_gphy_fw_remove(priv, &priv->gphy_fw[i]);
2227 }
2228 
gswip_shutdown(struct platform_device * pdev)2229 static void gswip_shutdown(struct platform_device *pdev)
2230 {
2231 	struct gswip_priv *priv = platform_get_drvdata(pdev);
2232 
2233 	if (!priv)
2234 		return;
2235 
2236 	dsa_switch_shutdown(priv->ds);
2237 
2238 	platform_set_drvdata(pdev, NULL);
2239 }
2240 
2241 static const struct gswip_hw_info gswip_xrx200 = {
2242 	.max_ports = 7,
2243 	.cpu_port = 6,
2244 	.ops = &gswip_xrx200_switch_ops,
2245 };
2246 
2247 static const struct gswip_hw_info gswip_xrx300 = {
2248 	.max_ports = 7,
2249 	.cpu_port = 6,
2250 	.ops = &gswip_xrx300_switch_ops,
2251 };
2252 
2253 static const struct of_device_id gswip_of_match[] = {
2254 	{ .compatible = "lantiq,xrx200-gswip", .data = &gswip_xrx200 },
2255 	{ .compatible = "lantiq,xrx300-gswip", .data = &gswip_xrx300 },
2256 	{ .compatible = "lantiq,xrx330-gswip", .data = &gswip_xrx300 },
2257 	{},
2258 };
2259 MODULE_DEVICE_TABLE(of, gswip_of_match);
2260 
2261 static struct platform_driver gswip_driver = {
2262 	.probe = gswip_probe,
2263 	.remove_new = gswip_remove,
2264 	.shutdown = gswip_shutdown,
2265 	.driver = {
2266 		.name = "gswip",
2267 		.of_match_table = gswip_of_match,
2268 	},
2269 };
2270 
2271 module_platform_driver(gswip_driver);
2272 
2273 MODULE_FIRMWARE("lantiq/xrx300_phy11g_a21.bin");
2274 MODULE_FIRMWARE("lantiq/xrx300_phy22f_a21.bin");
2275 MODULE_FIRMWARE("lantiq/xrx200_phy11g_a14.bin");
2276 MODULE_FIRMWARE("lantiq/xrx200_phy11g_a22.bin");
2277 MODULE_FIRMWARE("lantiq/xrx200_phy22f_a14.bin");
2278 MODULE_FIRMWARE("lantiq/xrx200_phy22f_a22.bin");
2279 MODULE_AUTHOR("Hauke Mehrtens <hauke@hauke-m.de>");
2280 MODULE_DESCRIPTION("Lantiq / Intel GSWIP driver");
2281 MODULE_LICENSE("GPL v2");
2282