1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Microchip KSZ8XXX series switch driver
4 *
5 * It supports the following switches:
6 * - KSZ8863, KSZ8873 aka KSZ88X3
7 * - KSZ8895, KSZ8864 aka KSZ8895 family
8 * - KSZ8794, KSZ8795, KSZ8765 aka KSZ87XX
9 * Note that it does NOT support:
10 * - KSZ8563, KSZ8567 - see KSZ9477 driver
11 *
12 * Copyright (C) 2017 Microchip Technology Inc.
13 * Tristram Ha <Tristram.Ha@microchip.com>
14 */
15
16 #include <linux/bitfield.h>
17 #include <linux/delay.h>
18 #include <linux/export.h>
19 #include <linux/gpio.h>
20 #include <linux/if_vlan.h>
21 #include <linux/kernel.h>
22 #include <linux/module.h>
23 #include <linux/platform_data/microchip-ksz.h>
24 #include <linux/phy.h>
25 #include <linux/etherdevice.h>
26 #include <linux/if_bridge.h>
27 #include <linux/micrel_phy.h>
28 #include <net/dsa.h>
29 #include <net/switchdev.h>
30 #include <linux/phylink.h>
31
32 #include "ksz_common.h"
33 #include "ksz8_reg.h"
34 #include "ksz8.h"
35
ksz_cfg(struct ksz_device * dev,u32 addr,u8 bits,bool set)36 static void ksz_cfg(struct ksz_device *dev, u32 addr, u8 bits, bool set)
37 {
38 regmap_update_bits(ksz_regmap_8(dev), addr, bits, set ? bits : 0);
39 }
40
ksz_port_cfg(struct ksz_device * dev,int port,int offset,u8 bits,bool set)41 static void ksz_port_cfg(struct ksz_device *dev, int port, int offset, u8 bits,
42 bool set)
43 {
44 regmap_update_bits(ksz_regmap_8(dev), PORT_CTRL_ADDR(port, offset),
45 bits, set ? bits : 0);
46 }
47
48 /**
49 * ksz8_ind_write8 - EEE/ACL/PME indirect register write
50 * @dev: The device structure.
51 * @table: Function & table select, register 110.
52 * @addr: Indirect access control, register 111.
53 * @data: The data to be written.
54 *
55 * This function performs an indirect register write for EEE, ACL or
56 * PME switch functionalities. Both 8-bit registers 110 and 111 are
57 * written at once with ksz_write16, using the serial multiple write
58 * functionality.
59 *
60 * Return: 0 on success, or an error code on failure.
61 */
ksz8_ind_write8(struct ksz_device * dev,u8 table,u16 addr,u8 data)62 static int ksz8_ind_write8(struct ksz_device *dev, u8 table, u16 addr, u8 data)
63 {
64 const u16 *regs;
65 u16 ctrl_addr;
66 int ret = 0;
67
68 regs = dev->info->regs;
69
70 mutex_lock(&dev->alu_mutex);
71
72 ctrl_addr = IND_ACC_TABLE(table) | addr;
73 ret = ksz_write16(dev, regs[REG_IND_CTRL_0], ctrl_addr);
74 if (!ret)
75 ret = ksz_write8(dev, regs[REG_IND_BYTE], data);
76
77 mutex_unlock(&dev->alu_mutex);
78
79 return ret;
80 }
81
82 /**
83 * ksz8_ind_read8 - EEE/ACL/PME indirect register read
84 * @dev: The device structure.
85 * @table: Function & table select, register 110.
86 * @addr: Indirect access control, register 111.
87 * @val: The value read.
88 *
89 * This function performs an indirect register read for EEE, ACL or
90 * PME switch functionalities. Both 8-bit registers 110 and 111 are
91 * written at once with ksz_write16, using the serial multiple write
92 * functionality.
93 *
94 * Return: 0 on success, or an error code on failure.
95 */
ksz8_ind_read8(struct ksz_device * dev,u8 table,u16 addr,u8 * val)96 static int ksz8_ind_read8(struct ksz_device *dev, u8 table, u16 addr, u8 *val)
97 {
98 const u16 *regs;
99 u16 ctrl_addr;
100 int ret = 0;
101
102 regs = dev->info->regs;
103
104 mutex_lock(&dev->alu_mutex);
105
106 ctrl_addr = IND_ACC_TABLE(table | TABLE_READ) | addr;
107 ret = ksz_write16(dev, regs[REG_IND_CTRL_0], ctrl_addr);
108 if (!ret)
109 ret = ksz_read8(dev, regs[REG_IND_BYTE], val);
110
111 mutex_unlock(&dev->alu_mutex);
112
113 return ret;
114 }
115
ksz8_pme_write8(struct ksz_device * dev,u32 reg,u8 value)116 int ksz8_pme_write8(struct ksz_device *dev, u32 reg, u8 value)
117 {
118 return ksz8_ind_write8(dev, (u8)(reg >> 8), (u8)(reg), value);
119 }
120
ksz8_pme_pread8(struct ksz_device * dev,int port,int offset,u8 * data)121 int ksz8_pme_pread8(struct ksz_device *dev, int port, int offset, u8 *data)
122 {
123 u8 table = (u8)(offset >> 8 | (port + 1));
124
125 return ksz8_ind_read8(dev, table, (u8)(offset), data);
126 }
127
ksz8_pme_pwrite8(struct ksz_device * dev,int port,int offset,u8 data)128 int ksz8_pme_pwrite8(struct ksz_device *dev, int port, int offset, u8 data)
129 {
130 u8 table = (u8)(offset >> 8 | (port + 1));
131
132 return ksz8_ind_write8(dev, table, (u8)(offset), data);
133 }
134
ksz8_reset_switch(struct ksz_device * dev)135 int ksz8_reset_switch(struct ksz_device *dev)
136 {
137 if (ksz_is_ksz88x3(dev)) {
138 /* reset switch */
139 ksz_cfg(dev, KSZ8863_REG_SW_RESET,
140 KSZ8863_GLOBAL_SOFTWARE_RESET | KSZ8863_PCS_RESET, true);
141 ksz_cfg(dev, KSZ8863_REG_SW_RESET,
142 KSZ8863_GLOBAL_SOFTWARE_RESET | KSZ8863_PCS_RESET, false);
143 } else {
144 /* reset switch */
145 ksz_write8(dev, REG_POWER_MANAGEMENT_1,
146 SW_SOFTWARE_POWER_DOWN << SW_POWER_MANAGEMENT_MODE_S);
147 ksz_write8(dev, REG_POWER_MANAGEMENT_1, 0);
148 }
149
150 return 0;
151 }
152
ksz8863_change_mtu(struct ksz_device * dev,int frame_size)153 static int ksz8863_change_mtu(struct ksz_device *dev, int frame_size)
154 {
155 u8 ctrl2 = 0;
156
157 if (frame_size <= KSZ8_LEGAL_PACKET_SIZE)
158 ctrl2 |= KSZ8863_LEGAL_PACKET_ENABLE;
159 else if (frame_size > KSZ8863_NORMAL_PACKET_SIZE)
160 ctrl2 |= KSZ8863_HUGE_PACKET_ENABLE;
161
162 return ksz_rmw8(dev, REG_SW_CTRL_2, KSZ8863_LEGAL_PACKET_ENABLE |
163 KSZ8863_HUGE_PACKET_ENABLE, ctrl2);
164 }
165
ksz8795_change_mtu(struct ksz_device * dev,int frame_size)166 static int ksz8795_change_mtu(struct ksz_device *dev, int frame_size)
167 {
168 u8 ctrl1 = 0, ctrl2 = 0;
169 int ret;
170
171 if (frame_size > KSZ8_LEGAL_PACKET_SIZE)
172 ctrl2 |= SW_LEGAL_PACKET_DISABLE;
173 if (frame_size > KSZ8863_NORMAL_PACKET_SIZE)
174 ctrl1 |= SW_HUGE_PACKET;
175
176 ret = ksz_rmw8(dev, REG_SW_CTRL_1, SW_HUGE_PACKET, ctrl1);
177 if (ret)
178 return ret;
179
180 return ksz_rmw8(dev, REG_SW_CTRL_2, SW_LEGAL_PACKET_DISABLE, ctrl2);
181 }
182
ksz8_change_mtu(struct ksz_device * dev,int port,int mtu)183 int ksz8_change_mtu(struct ksz_device *dev, int port, int mtu)
184 {
185 u16 frame_size;
186
187 if (!dsa_is_cpu_port(dev->ds, port))
188 return 0;
189
190 frame_size = mtu + VLAN_ETH_HLEN + ETH_FCS_LEN;
191
192 switch (dev->chip_id) {
193 case KSZ8795_CHIP_ID:
194 case KSZ8794_CHIP_ID:
195 case KSZ8765_CHIP_ID:
196 return ksz8795_change_mtu(dev, frame_size);
197 case KSZ88X3_CHIP_ID:
198 case KSZ8864_CHIP_ID:
199 case KSZ8895_CHIP_ID:
200 return ksz8863_change_mtu(dev, frame_size);
201 }
202
203 return -EOPNOTSUPP;
204 }
205
ksz8_port_queue_split(struct ksz_device * dev,int port,int queues)206 static int ksz8_port_queue_split(struct ksz_device *dev, int port, int queues)
207 {
208 u8 mask_4q, mask_2q;
209 u8 reg_4q, reg_2q;
210 u8 data_4q = 0;
211 u8 data_2q = 0;
212 int ret;
213
214 if (ksz_is_ksz88x3(dev)) {
215 mask_4q = KSZ8873_PORT_4QUEUE_SPLIT_EN;
216 mask_2q = KSZ8873_PORT_2QUEUE_SPLIT_EN;
217 reg_4q = REG_PORT_CTRL_0;
218 reg_2q = REG_PORT_CTRL_2;
219
220 /* KSZ8795 family switches have Weighted Fair Queueing (WFQ)
221 * enabled by default. Enable it for KSZ8873 family switches
222 * too. Default value for KSZ8873 family is strict priority,
223 * which should be enabled by using TC_SETUP_QDISC_ETS, not
224 * by default.
225 */
226 ret = ksz_rmw8(dev, REG_SW_CTRL_3, WEIGHTED_FAIR_QUEUE_ENABLE,
227 WEIGHTED_FAIR_QUEUE_ENABLE);
228 if (ret)
229 return ret;
230 } else {
231 mask_4q = KSZ8795_PORT_4QUEUE_SPLIT_EN;
232 mask_2q = KSZ8795_PORT_2QUEUE_SPLIT_EN;
233 reg_4q = REG_PORT_CTRL_13;
234 reg_2q = REG_PORT_CTRL_0;
235
236 /* TODO: this is legacy from initial KSZ8795 driver, should be
237 * moved to appropriate place in the future.
238 */
239 ret = ksz_rmw8(dev, REG_SW_CTRL_19,
240 SW_OUT_RATE_LIMIT_QUEUE_BASED,
241 SW_OUT_RATE_LIMIT_QUEUE_BASED);
242 if (ret)
243 return ret;
244 }
245
246 if (queues == 4)
247 data_4q = mask_4q;
248 else if (queues == 2)
249 data_2q = mask_2q;
250
251 ret = ksz_prmw8(dev, port, reg_4q, mask_4q, data_4q);
252 if (ret)
253 return ret;
254
255 return ksz_prmw8(dev, port, reg_2q, mask_2q, data_2q);
256 }
257
ksz8_all_queues_split(struct ksz_device * dev,int queues)258 int ksz8_all_queues_split(struct ksz_device *dev, int queues)
259 {
260 struct dsa_switch *ds = dev->ds;
261 const struct dsa_port *dp;
262
263 dsa_switch_for_each_port(dp, ds) {
264 int ret = ksz8_port_queue_split(dev, dp->index, queues);
265
266 if (ret)
267 return ret;
268 }
269
270 return 0;
271 }
272
ksz8_r_mib_cnt(struct ksz_device * dev,int port,u16 addr,u64 * cnt)273 void ksz8_r_mib_cnt(struct ksz_device *dev, int port, u16 addr, u64 *cnt)
274 {
275 const u32 *masks;
276 const u16 *regs;
277 u16 ctrl_addr;
278 u32 data;
279 u8 check;
280 int loop;
281
282 masks = dev->info->masks;
283 regs = dev->info->regs;
284
285 ctrl_addr = addr + dev->info->reg_mib_cnt * port;
286 ctrl_addr |= IND_ACC_TABLE(TABLE_MIB | TABLE_READ);
287
288 mutex_lock(&dev->alu_mutex);
289 ksz_write16(dev, regs[REG_IND_CTRL_0], ctrl_addr);
290
291 /* It is almost guaranteed to always read the valid bit because of
292 * slow SPI speed.
293 */
294 for (loop = 2; loop > 0; loop--) {
295 ksz_read8(dev, regs[REG_IND_MIB_CHECK], &check);
296
297 if (check & masks[MIB_COUNTER_VALID]) {
298 ksz_read32(dev, regs[REG_IND_DATA_LO], &data);
299 if (check & masks[MIB_COUNTER_OVERFLOW])
300 *cnt += MIB_COUNTER_VALUE + 1;
301 *cnt += data & MIB_COUNTER_VALUE;
302 break;
303 }
304 }
305 mutex_unlock(&dev->alu_mutex);
306 }
307
ksz8795_r_mib_pkt(struct ksz_device * dev,int port,u16 addr,u64 * dropped,u64 * cnt)308 static void ksz8795_r_mib_pkt(struct ksz_device *dev, int port, u16 addr,
309 u64 *dropped, u64 *cnt)
310 {
311 const u32 *masks;
312 const u16 *regs;
313 u16 ctrl_addr;
314 u32 data;
315 u8 check;
316 int loop;
317
318 masks = dev->info->masks;
319 regs = dev->info->regs;
320
321 addr -= dev->info->reg_mib_cnt;
322 ctrl_addr = (KSZ8795_MIB_TOTAL_RX_1 - KSZ8795_MIB_TOTAL_RX_0) * port;
323 ctrl_addr += addr + KSZ8795_MIB_TOTAL_RX_0;
324 ctrl_addr |= IND_ACC_TABLE(TABLE_MIB | TABLE_READ);
325
326 mutex_lock(&dev->alu_mutex);
327 ksz_write16(dev, regs[REG_IND_CTRL_0], ctrl_addr);
328
329 /* It is almost guaranteed to always read the valid bit because of
330 * slow SPI speed.
331 */
332 for (loop = 2; loop > 0; loop--) {
333 ksz_read8(dev, regs[REG_IND_MIB_CHECK], &check);
334
335 if (check & masks[MIB_COUNTER_VALID]) {
336 ksz_read32(dev, regs[REG_IND_DATA_LO], &data);
337 if (addr < 2) {
338 u64 total;
339
340 total = check & MIB_TOTAL_BYTES_H;
341 total <<= 32;
342 *cnt += total;
343 *cnt += data;
344 if (check & masks[MIB_COUNTER_OVERFLOW]) {
345 total = MIB_TOTAL_BYTES_H + 1;
346 total <<= 32;
347 *cnt += total;
348 }
349 } else {
350 if (check & masks[MIB_COUNTER_OVERFLOW])
351 *cnt += MIB_PACKET_DROPPED + 1;
352 *cnt += data & MIB_PACKET_DROPPED;
353 }
354 break;
355 }
356 }
357 mutex_unlock(&dev->alu_mutex);
358 }
359
ksz8863_r_mib_pkt(struct ksz_device * dev,int port,u16 addr,u64 * dropped,u64 * cnt)360 static void ksz8863_r_mib_pkt(struct ksz_device *dev, int port, u16 addr,
361 u64 *dropped, u64 *cnt)
362 {
363 u32 *last = (u32 *)dropped;
364 const u16 *regs;
365 u16 ctrl_addr;
366 u32 data;
367 u32 cur;
368
369 regs = dev->info->regs;
370
371 addr -= dev->info->reg_mib_cnt;
372 ctrl_addr = addr ? KSZ8863_MIB_PACKET_DROPPED_TX_0 :
373 KSZ8863_MIB_PACKET_DROPPED_RX_0;
374 if (ksz_is_8895_family(dev) &&
375 ctrl_addr == KSZ8863_MIB_PACKET_DROPPED_RX_0)
376 ctrl_addr = KSZ8895_MIB_PACKET_DROPPED_RX_0;
377 ctrl_addr += port;
378 ctrl_addr |= IND_ACC_TABLE(TABLE_MIB | TABLE_READ);
379
380 mutex_lock(&dev->alu_mutex);
381 ksz_write16(dev, regs[REG_IND_CTRL_0], ctrl_addr);
382 ksz_read32(dev, regs[REG_IND_DATA_LO], &data);
383 mutex_unlock(&dev->alu_mutex);
384
385 data &= MIB_PACKET_DROPPED;
386 cur = last[addr];
387 if (data != cur) {
388 last[addr] = data;
389 if (data < cur)
390 data += MIB_PACKET_DROPPED + 1;
391 data -= cur;
392 *cnt += data;
393 }
394 }
395
ksz8_r_mib_pkt(struct ksz_device * dev,int port,u16 addr,u64 * dropped,u64 * cnt)396 void ksz8_r_mib_pkt(struct ksz_device *dev, int port, u16 addr,
397 u64 *dropped, u64 *cnt)
398 {
399 if (is_ksz88xx(dev))
400 ksz8863_r_mib_pkt(dev, port, addr, dropped, cnt);
401 else
402 ksz8795_r_mib_pkt(dev, port, addr, dropped, cnt);
403 }
404
ksz8_freeze_mib(struct ksz_device * dev,int port,bool freeze)405 void ksz8_freeze_mib(struct ksz_device *dev, int port, bool freeze)
406 {
407 if (is_ksz88xx(dev))
408 return;
409
410 /* enable the port for flush/freeze function */
411 if (freeze)
412 ksz_cfg(dev, REG_SW_CTRL_6, BIT(port), true);
413 ksz_cfg(dev, REG_SW_CTRL_6, SW_MIB_COUNTER_FREEZE, freeze);
414
415 /* disable the port after freeze is done */
416 if (!freeze)
417 ksz_cfg(dev, REG_SW_CTRL_6, BIT(port), false);
418 }
419
ksz8_port_init_cnt(struct ksz_device * dev,int port)420 void ksz8_port_init_cnt(struct ksz_device *dev, int port)
421 {
422 struct ksz_port_mib *mib = &dev->ports[port].mib;
423 u64 *dropped;
424
425 /* For KSZ8795 family. */
426 if (ksz_is_ksz87xx(dev)) {
427 /* flush all enabled port MIB counters */
428 ksz_cfg(dev, REG_SW_CTRL_6, BIT(port), true);
429 ksz_cfg(dev, REG_SW_CTRL_6, SW_MIB_COUNTER_FLUSH, true);
430 ksz_cfg(dev, REG_SW_CTRL_6, BIT(port), false);
431 }
432
433 mib->cnt_ptr = 0;
434
435 /* Some ports may not have MIB counters before SWITCH_COUNTER_NUM. */
436 while (mib->cnt_ptr < dev->info->reg_mib_cnt) {
437 dev->dev_ops->r_mib_cnt(dev, port, mib->cnt_ptr,
438 &mib->counters[mib->cnt_ptr]);
439 ++mib->cnt_ptr;
440 }
441
442 /* last one in storage */
443 dropped = &mib->counters[dev->info->mib_cnt];
444
445 /* Some ports may not have MIB counters after SWITCH_COUNTER_NUM. */
446 while (mib->cnt_ptr < dev->info->mib_cnt) {
447 dev->dev_ops->r_mib_pkt(dev, port, mib->cnt_ptr,
448 dropped, &mib->counters[mib->cnt_ptr]);
449 ++mib->cnt_ptr;
450 }
451 }
452
ksz8_r_table(struct ksz_device * dev,int table,u16 addr,u64 * data)453 static int ksz8_r_table(struct ksz_device *dev, int table, u16 addr, u64 *data)
454 {
455 const u16 *regs;
456 u16 ctrl_addr;
457 int ret;
458
459 regs = dev->info->regs;
460
461 ctrl_addr = IND_ACC_TABLE(table | TABLE_READ) | addr;
462
463 mutex_lock(&dev->alu_mutex);
464 ret = ksz_write16(dev, regs[REG_IND_CTRL_0], ctrl_addr);
465 if (ret)
466 goto unlock_alu;
467
468 ret = ksz_read64(dev, regs[REG_IND_DATA_HI], data);
469 unlock_alu:
470 mutex_unlock(&dev->alu_mutex);
471
472 return ret;
473 }
474
ksz8_w_table(struct ksz_device * dev,int table,u16 addr,u64 data)475 static int ksz8_w_table(struct ksz_device *dev, int table, u16 addr, u64 data)
476 {
477 const u16 *regs;
478 u16 ctrl_addr;
479 int ret;
480
481 regs = dev->info->regs;
482
483 ctrl_addr = IND_ACC_TABLE(table) | addr;
484
485 mutex_lock(&dev->alu_mutex);
486 ret = ksz_write64(dev, regs[REG_IND_DATA_HI], data);
487 if (ret)
488 goto unlock_alu;
489
490 ret = ksz_write16(dev, regs[REG_IND_CTRL_0], ctrl_addr);
491 unlock_alu:
492 mutex_unlock(&dev->alu_mutex);
493
494 return ret;
495 }
496
ksz8_valid_dyn_entry(struct ksz_device * dev,u8 * data)497 static int ksz8_valid_dyn_entry(struct ksz_device *dev, u8 *data)
498 {
499 int timeout = 100;
500 const u32 *masks;
501 const u16 *regs;
502 int ret;
503
504 masks = dev->info->masks;
505 regs = dev->info->regs;
506
507 do {
508 ret = ksz_read8(dev, regs[REG_IND_DATA_CHECK], data);
509 if (ret)
510 return ret;
511
512 timeout--;
513 } while ((*data & masks[DYNAMIC_MAC_TABLE_NOT_READY]) && timeout);
514
515 /* Entry is not ready for accessing. */
516 if (*data & masks[DYNAMIC_MAC_TABLE_NOT_READY])
517 return -ETIMEDOUT;
518
519 /* Entry is ready for accessing. */
520 return ksz_read8(dev, regs[REG_IND_DATA_8], data);
521 }
522
ksz8_r_dyn_mac_table(struct ksz_device * dev,u16 addr,u8 * mac_addr,u8 * fid,u8 * src_port,u16 * entries)523 static int ksz8_r_dyn_mac_table(struct ksz_device *dev, u16 addr, u8 *mac_addr,
524 u8 *fid, u8 *src_port, u16 *entries)
525 {
526 u32 data_hi, data_lo;
527 const u8 *shifts;
528 const u32 *masks;
529 const u16 *regs;
530 u16 ctrl_addr;
531 u64 buf = 0;
532 u8 data;
533 int cnt;
534 int ret;
535
536 shifts = dev->info->shifts;
537 masks = dev->info->masks;
538 regs = dev->info->regs;
539
540 ctrl_addr = IND_ACC_TABLE(TABLE_DYNAMIC_MAC | TABLE_READ) | addr;
541
542 mutex_lock(&dev->alu_mutex);
543 ret = ksz_write16(dev, regs[REG_IND_CTRL_0], ctrl_addr);
544 if (ret)
545 goto unlock_alu;
546
547 ret = ksz8_valid_dyn_entry(dev, &data);
548 if (ret)
549 goto unlock_alu;
550
551 if (data & masks[DYNAMIC_MAC_TABLE_MAC_EMPTY]) {
552 *entries = 0;
553 goto unlock_alu;
554 }
555
556 ret = ksz_read64(dev, regs[REG_IND_DATA_HI], &buf);
557 if (ret)
558 goto unlock_alu;
559
560 data_hi = (u32)(buf >> 32);
561 data_lo = (u32)buf;
562
563 /* Check out how many valid entry in the table. */
564 cnt = data & masks[DYNAMIC_MAC_TABLE_ENTRIES_H];
565 cnt <<= shifts[DYNAMIC_MAC_ENTRIES_H];
566 cnt |= (data_hi & masks[DYNAMIC_MAC_TABLE_ENTRIES]) >>
567 shifts[DYNAMIC_MAC_ENTRIES];
568 *entries = cnt + 1;
569
570 *fid = (data_hi & masks[DYNAMIC_MAC_TABLE_FID]) >>
571 shifts[DYNAMIC_MAC_FID];
572 *src_port = (data_hi & masks[DYNAMIC_MAC_TABLE_SRC_PORT]) >>
573 shifts[DYNAMIC_MAC_SRC_PORT];
574
575 mac_addr[5] = (u8)data_lo;
576 mac_addr[4] = (u8)(data_lo >> 8);
577 mac_addr[3] = (u8)(data_lo >> 16);
578 mac_addr[2] = (u8)(data_lo >> 24);
579
580 mac_addr[1] = (u8)data_hi;
581 mac_addr[0] = (u8)(data_hi >> 8);
582
583 unlock_alu:
584 mutex_unlock(&dev->alu_mutex);
585
586 return ret;
587 }
588
ksz8_r_sta_mac_table(struct ksz_device * dev,u16 addr,struct alu_struct * alu,bool * valid)589 static int ksz8_r_sta_mac_table(struct ksz_device *dev, u16 addr,
590 struct alu_struct *alu, bool *valid)
591 {
592 u32 data_hi, data_lo;
593 const u8 *shifts;
594 const u32 *masks;
595 u64 data;
596 int ret;
597
598 shifts = dev->info->shifts;
599 masks = dev->info->masks;
600
601 ret = ksz8_r_table(dev, TABLE_STATIC_MAC, addr, &data);
602 if (ret)
603 return ret;
604
605 data_hi = data >> 32;
606 data_lo = (u32)data;
607
608 if (!(data_hi & (masks[STATIC_MAC_TABLE_VALID] |
609 masks[STATIC_MAC_TABLE_OVERRIDE]))) {
610 *valid = false;
611 return 0;
612 }
613
614 alu->mac[5] = (u8)data_lo;
615 alu->mac[4] = (u8)(data_lo >> 8);
616 alu->mac[3] = (u8)(data_lo >> 16);
617 alu->mac[2] = (u8)(data_lo >> 24);
618 alu->mac[1] = (u8)data_hi;
619 alu->mac[0] = (u8)(data_hi >> 8);
620 alu->port_forward =
621 (data_hi & masks[STATIC_MAC_TABLE_FWD_PORTS]) >>
622 shifts[STATIC_MAC_FWD_PORTS];
623 alu->is_override = (data_hi & masks[STATIC_MAC_TABLE_OVERRIDE]) ? 1 : 0;
624
625 /* KSZ8795/KSZ8895 family switches have STATIC_MAC_TABLE_USE_FID and
626 * STATIC_MAC_TABLE_FID definitions off by 1 when doing read on the
627 * static MAC table compared to doing write.
628 */
629 if (ksz_is_ksz87xx(dev) || ksz_is_8895_family(dev))
630 data_hi >>= 1;
631 alu->is_static = true;
632 alu->is_use_fid = (data_hi & masks[STATIC_MAC_TABLE_USE_FID]) ? 1 : 0;
633 alu->fid = (data_hi & masks[STATIC_MAC_TABLE_FID]) >>
634 shifts[STATIC_MAC_FID];
635
636 *valid = true;
637
638 return 0;
639 }
640
ksz8_w_sta_mac_table(struct ksz_device * dev,u16 addr,struct alu_struct * alu)641 static int ksz8_w_sta_mac_table(struct ksz_device *dev, u16 addr,
642 struct alu_struct *alu)
643 {
644 u32 data_hi, data_lo;
645 const u8 *shifts;
646 const u32 *masks;
647 u64 data;
648
649 shifts = dev->info->shifts;
650 masks = dev->info->masks;
651
652 data_lo = ((u32)alu->mac[2] << 24) |
653 ((u32)alu->mac[3] << 16) |
654 ((u32)alu->mac[4] << 8) | alu->mac[5];
655 data_hi = ((u32)alu->mac[0] << 8) | alu->mac[1];
656 data_hi |= (u32)alu->port_forward << shifts[STATIC_MAC_FWD_PORTS];
657
658 if (alu->is_override)
659 data_hi |= masks[STATIC_MAC_TABLE_OVERRIDE];
660 if (alu->is_use_fid) {
661 data_hi |= masks[STATIC_MAC_TABLE_USE_FID];
662 data_hi |= (u32)alu->fid << shifts[STATIC_MAC_FID];
663 }
664 if (alu->is_static)
665 data_hi |= masks[STATIC_MAC_TABLE_VALID];
666 else
667 data_hi &= ~masks[STATIC_MAC_TABLE_OVERRIDE];
668
669 data = (u64)data_hi << 32 | data_lo;
670
671 return ksz8_w_table(dev, TABLE_STATIC_MAC, addr, data);
672 }
673
ksz8_from_vlan(struct ksz_device * dev,u32 vlan,u8 * fid,u8 * member,u8 * valid)674 static void ksz8_from_vlan(struct ksz_device *dev, u32 vlan, u8 *fid,
675 u8 *member, u8 *valid)
676 {
677 const u8 *shifts;
678 const u32 *masks;
679
680 shifts = dev->info->shifts;
681 masks = dev->info->masks;
682
683 *fid = vlan & masks[VLAN_TABLE_FID];
684 *member = (vlan & masks[VLAN_TABLE_MEMBERSHIP]) >>
685 shifts[VLAN_TABLE_MEMBERSHIP_S];
686 *valid = !!(vlan & masks[VLAN_TABLE_VALID]);
687 }
688
ksz8_to_vlan(struct ksz_device * dev,u8 fid,u8 member,u8 valid,u16 * vlan)689 static void ksz8_to_vlan(struct ksz_device *dev, u8 fid, u8 member, u8 valid,
690 u16 *vlan)
691 {
692 const u8 *shifts;
693 const u32 *masks;
694
695 shifts = dev->info->shifts;
696 masks = dev->info->masks;
697
698 *vlan = fid;
699 *vlan |= (u16)member << shifts[VLAN_TABLE_MEMBERSHIP_S];
700 if (valid)
701 *vlan |= masks[VLAN_TABLE_VALID];
702 }
703
ksz8_r_vlan_entries(struct ksz_device * dev,u16 addr)704 static void ksz8_r_vlan_entries(struct ksz_device *dev, u16 addr)
705 {
706 const u8 *shifts;
707 u64 data;
708 int i;
709
710 shifts = dev->info->shifts;
711
712 ksz8_r_table(dev, TABLE_VLAN, addr, &data);
713 addr *= 4;
714 for (i = 0; i < 4; i++) {
715 dev->vlan_cache[addr + i].table[0] = (u16)data;
716 data >>= shifts[VLAN_TABLE];
717 }
718 }
719
ksz8_r_vlan_table(struct ksz_device * dev,u16 vid,u16 * vlan)720 static void ksz8_r_vlan_table(struct ksz_device *dev, u16 vid, u16 *vlan)
721 {
722 int index;
723 u16 *data;
724 u16 addr;
725 u64 buf;
726
727 data = (u16 *)&buf;
728 addr = vid / 4;
729 index = vid & 3;
730 ksz8_r_table(dev, TABLE_VLAN, addr, &buf);
731 *vlan = data[index];
732 }
733
ksz8_w_vlan_table(struct ksz_device * dev,u16 vid,u16 vlan)734 static void ksz8_w_vlan_table(struct ksz_device *dev, u16 vid, u16 vlan)
735 {
736 int index;
737 u16 *data;
738 u16 addr;
739 u64 buf;
740
741 data = (u16 *)&buf;
742 addr = vid / 4;
743 index = vid & 3;
744 ksz8_r_table(dev, TABLE_VLAN, addr, &buf);
745 data[index] = vlan;
746 dev->vlan_cache[vid].table[0] = vlan;
747 ksz8_w_table(dev, TABLE_VLAN, addr, buf);
748 }
749
750 /**
751 * ksz879x_get_loopback - KSZ879x specific function to get loopback
752 * configuration status for a specific port
753 * @dev: Pointer to the device structure
754 * @port: Port number to query
755 * @val: Pointer to store the result
756 *
757 * This function reads the SMI registers to determine whether loopback mode
758 * is enabled for a specific port.
759 *
760 * Return: 0 on success, error code on failure.
761 */
ksz879x_get_loopback(struct ksz_device * dev,u16 port,u16 * val)762 static int ksz879x_get_loopback(struct ksz_device *dev, u16 port,
763 u16 *val)
764 {
765 u8 stat3;
766 int ret;
767
768 ret = ksz_pread8(dev, port, REG_PORT_STATUS_3, &stat3);
769 if (ret)
770 return ret;
771
772 if (stat3 & PORT_PHY_LOOPBACK)
773 *val |= BMCR_LOOPBACK;
774
775 return 0;
776 }
777
778 /**
779 * ksz879x_set_loopback - KSZ879x specific function to set loopback mode for
780 * a specific port
781 * @dev: Pointer to the device structure.
782 * @port: Port number to modify.
783 * @val: Value indicating whether to enable or disable loopback mode.
784 *
785 * This function translates loopback bit of the BMCR register into the
786 * corresponding hardware register bit value and writes it to the SMI interface.
787 *
788 * Return: 0 on success, error code on failure.
789 */
ksz879x_set_loopback(struct ksz_device * dev,u16 port,u16 val)790 static int ksz879x_set_loopback(struct ksz_device *dev, u16 port, u16 val)
791 {
792 u8 stat3 = 0;
793
794 if (val & BMCR_LOOPBACK)
795 stat3 |= PORT_PHY_LOOPBACK;
796
797 return ksz_prmw8(dev, port, REG_PORT_STATUS_3, PORT_PHY_LOOPBACK,
798 stat3);
799 }
800
801 /**
802 * ksz8_r_phy_ctrl - Translates and reads from the SMI interface to a MIIM PHY
803 * Control register (Reg. 31).
804 * @dev: The KSZ device instance.
805 * @port: The port number to be read.
806 * @val: The value read from the SMI interface.
807 *
808 * This function reads the SMI interface and translates the hardware register
809 * bit values into their corresponding control settings for a MIIM PHY Control
810 * register.
811 *
812 * Return: 0 on success, error code on failure.
813 */
ksz8_r_phy_ctrl(struct ksz_device * dev,int port,u16 * val)814 static int ksz8_r_phy_ctrl(struct ksz_device *dev, int port, u16 *val)
815 {
816 const u16 *regs = dev->info->regs;
817 u8 reg_val;
818 int ret;
819
820 *val = 0;
821
822 ret = ksz_pread8(dev, port, regs[P_LINK_STATUS], ®_val);
823 if (ret < 0)
824 return ret;
825
826 if (reg_val & PORT_MDIX_STATUS)
827 *val |= KSZ886X_CTRL_MDIX_STAT;
828
829 ret = ksz_pread8(dev, port, REG_PORT_LINK_MD_CTRL, ®_val);
830 if (ret < 0)
831 return ret;
832
833 if (reg_val & PORT_FORCE_LINK)
834 *val |= KSZ886X_CTRL_FORCE_LINK;
835
836 if (reg_val & PORT_POWER_SAVING)
837 *val |= KSZ886X_CTRL_PWRSAVE;
838
839 if (reg_val & PORT_PHY_REMOTE_LOOPBACK)
840 *val |= KSZ886X_CTRL_REMOTE_LOOPBACK;
841
842 return 0;
843 }
844
845 /**
846 * ksz8_r_phy_bmcr - Translates and reads from the SMI interface to a MIIM PHY
847 * Basic mode control register (Reg. 0).
848 * @dev: The KSZ device instance.
849 * @port: The port number to be read.
850 * @val: The value read from the SMI interface.
851 *
852 * This function reads the SMI interface and translates the hardware register
853 * bit values into their corresponding control settings for a MIIM PHY Basic
854 * mode control register.
855 *
856 * MIIM Bit Mapping Comparison between KSZ8794 and KSZ8873
857 * -------------------------------------------------------------------
858 * MIIM Bit | KSZ8794 Reg/Bit | KSZ8873 Reg/Bit
859 * ----------------------------+-----------------------------+----------------
860 * Bit 15 - Soft Reset | 0xF/4 | Not supported
861 * Bit 14 - Loopback | 0xD/0 (MAC), 0xF/7 (PHY) ~ 0xD/0 (PHY)
862 * Bit 13 - Force 100 | 0xC/6 = 0xC/6
863 * Bit 12 - AN Enable | 0xC/7 (reverse logic) ~ 0xC/7
864 * Bit 11 - Power Down | 0xD/3 = 0xD/3
865 * Bit 10 - PHY Isolate | 0xF/5 | Not supported
866 * Bit 9 - Restart AN | 0xD/5 = 0xD/5
867 * Bit 8 - Force Full-Duplex | 0xC/5 = 0xC/5
868 * Bit 7 - Collision Test/Res. | Not supported | Not supported
869 * Bit 6 - Reserved | Not supported | Not supported
870 * Bit 5 - Hp_mdix | 0x9/7 ~ 0xF/7
871 * Bit 4 - Force MDI | 0xD/1 = 0xD/1
872 * Bit 3 - Disable MDIX | 0xD/2 = 0xD/2
873 * Bit 2 - Disable Far-End F. | ???? | 0xD/4
874 * Bit 1 - Disable Transmit | 0xD/6 = 0xD/6
875 * Bit 0 - Disable LED | 0xD/7 = 0xD/7
876 * -------------------------------------------------------------------
877 *
878 * Return: 0 on success, error code on failure.
879 */
ksz8_r_phy_bmcr(struct ksz_device * dev,u16 port,u16 * val)880 static int ksz8_r_phy_bmcr(struct ksz_device *dev, u16 port, u16 *val)
881 {
882 const u16 *regs = dev->info->regs;
883 u8 restart, speed, ctrl;
884 int ret;
885
886 *val = 0;
887
888 ret = ksz_pread8(dev, port, regs[P_NEG_RESTART_CTRL], &restart);
889 if (ret)
890 return ret;
891
892 ret = ksz_pread8(dev, port, regs[P_SPEED_STATUS], &speed);
893 if (ret)
894 return ret;
895
896 ret = ksz_pread8(dev, port, regs[P_FORCE_CTRL], &ctrl);
897 if (ret)
898 return ret;
899
900 if (ctrl & PORT_FORCE_100_MBIT)
901 *val |= BMCR_SPEED100;
902
903 if (ksz_is_ksz88x3(dev)) {
904 if (restart & KSZ8873_PORT_PHY_LOOPBACK)
905 *val |= BMCR_LOOPBACK;
906
907 if ((ctrl & PORT_AUTO_NEG_ENABLE))
908 *val |= BMCR_ANENABLE;
909 } else {
910 ret = ksz879x_get_loopback(dev, port, val);
911 if (ret)
912 return ret;
913
914 if (!(ctrl & PORT_AUTO_NEG_DISABLE))
915 *val |= BMCR_ANENABLE;
916 }
917
918 if (restart & PORT_POWER_DOWN)
919 *val |= BMCR_PDOWN;
920
921 if (restart & PORT_AUTO_NEG_RESTART)
922 *val |= BMCR_ANRESTART;
923
924 if (ctrl & PORT_FORCE_FULL_DUPLEX)
925 *val |= BMCR_FULLDPLX;
926
927 if (speed & PORT_HP_MDIX)
928 *val |= KSZ886X_BMCR_HP_MDIX;
929
930 if (restart & PORT_FORCE_MDIX)
931 *val |= KSZ886X_BMCR_FORCE_MDI;
932
933 if (restart & PORT_AUTO_MDIX_DISABLE)
934 *val |= KSZ886X_BMCR_DISABLE_AUTO_MDIX;
935
936 if (restart & PORT_TX_DISABLE)
937 *val |= KSZ886X_BMCR_DISABLE_TRANSMIT;
938
939 if (restart & PORT_LED_OFF)
940 *val |= KSZ886X_BMCR_DISABLE_LED;
941
942 return 0;
943 }
944
ksz8_r_phy(struct ksz_device * dev,u16 phy,u16 reg,u16 * val)945 int ksz8_r_phy(struct ksz_device *dev, u16 phy, u16 reg, u16 *val)
946 {
947 u8 ctrl, link, val1, val2;
948 int processed = true;
949 const u16 *regs;
950 u16 data = 0;
951 u16 p = phy;
952 int ret;
953
954 regs = dev->info->regs;
955
956 switch (reg) {
957 case MII_BMCR:
958 ret = ksz8_r_phy_bmcr(dev, p, &data);
959 if (ret)
960 return ret;
961 break;
962 case MII_BMSR:
963 ret = ksz_pread8(dev, p, regs[P_LINK_STATUS], &link);
964 if (ret)
965 return ret;
966
967 data = BMSR_100FULL |
968 BMSR_100HALF |
969 BMSR_10FULL |
970 BMSR_10HALF |
971 BMSR_ANEGCAPABLE;
972 if (link & PORT_AUTO_NEG_COMPLETE)
973 data |= BMSR_ANEGCOMPLETE;
974 if (link & PORT_STAT_LINK_GOOD)
975 data |= BMSR_LSTATUS;
976 break;
977 case MII_PHYSID1:
978 data = KSZ8795_ID_HI;
979 break;
980 case MII_PHYSID2:
981 if (ksz_is_ksz88x3(dev))
982 data = KSZ8863_ID_LO;
983 else
984 data = KSZ8795_ID_LO;
985 break;
986 case MII_ADVERTISE:
987 ret = ksz_pread8(dev, p, regs[P_LOCAL_CTRL], &ctrl);
988 if (ret)
989 return ret;
990
991 data = ADVERTISE_CSMA;
992 if (ctrl & PORT_AUTO_NEG_SYM_PAUSE)
993 data |= ADVERTISE_PAUSE_CAP;
994 if (ctrl & PORT_AUTO_NEG_100BTX_FD)
995 data |= ADVERTISE_100FULL;
996 if (ctrl & PORT_AUTO_NEG_100BTX)
997 data |= ADVERTISE_100HALF;
998 if (ctrl & PORT_AUTO_NEG_10BT_FD)
999 data |= ADVERTISE_10FULL;
1000 if (ctrl & PORT_AUTO_NEG_10BT)
1001 data |= ADVERTISE_10HALF;
1002 break;
1003 case MII_LPA:
1004 ret = ksz_pread8(dev, p, regs[P_REMOTE_STATUS], &link);
1005 if (ret)
1006 return ret;
1007
1008 data = LPA_SLCT;
1009 if (link & PORT_REMOTE_SYM_PAUSE)
1010 data |= LPA_PAUSE_CAP;
1011 if (link & PORT_REMOTE_100BTX_FD)
1012 data |= LPA_100FULL;
1013 if (link & PORT_REMOTE_100BTX)
1014 data |= LPA_100HALF;
1015 if (link & PORT_REMOTE_10BT_FD)
1016 data |= LPA_10FULL;
1017 if (link & PORT_REMOTE_10BT)
1018 data |= LPA_10HALF;
1019 if (data & ~LPA_SLCT)
1020 data |= LPA_LPACK;
1021 break;
1022 case PHY_REG_LINK_MD:
1023 ret = ksz_pread8(dev, p, REG_PORT_LINK_MD_CTRL, &val1);
1024 if (ret)
1025 return ret;
1026
1027 ret = ksz_pread8(dev, p, REG_PORT_LINK_MD_RESULT, &val2);
1028 if (ret)
1029 return ret;
1030
1031 if (val1 & PORT_START_CABLE_DIAG)
1032 data |= PHY_START_CABLE_DIAG;
1033
1034 if (val1 & PORT_CABLE_10M_SHORT)
1035 data |= PHY_CABLE_10M_SHORT;
1036
1037 data |= FIELD_PREP(PHY_CABLE_DIAG_RESULT_M,
1038 FIELD_GET(PORT_CABLE_DIAG_RESULT_M, val1));
1039
1040 data |= FIELD_PREP(PHY_CABLE_FAULT_COUNTER_M,
1041 (FIELD_GET(PORT_CABLE_FAULT_COUNTER_H, val1) << 8) |
1042 FIELD_GET(PORT_CABLE_FAULT_COUNTER_L, val2));
1043 break;
1044 case PHY_REG_PHY_CTRL:
1045 ret = ksz8_r_phy_ctrl(dev, p, &data);
1046 if (ret)
1047 return ret;
1048
1049 break;
1050 default:
1051 processed = false;
1052 break;
1053 }
1054 if (processed)
1055 *val = data;
1056
1057 return 0;
1058 }
1059
1060 /**
1061 * ksz8_w_phy_ctrl - Translates and writes to the SMI interface from a MIIM PHY
1062 * Control register (Reg. 31).
1063 * @dev: The KSZ device instance.
1064 * @port: The port number to be configured.
1065 * @val: The register value to be written.
1066 *
1067 * This function translates control settings from a MIIM PHY Control register
1068 * into their corresponding hardware register bit values for the SMI
1069 * interface.
1070 *
1071 * Return: 0 on success, error code on failure.
1072 */
ksz8_w_phy_ctrl(struct ksz_device * dev,int port,u16 val)1073 static int ksz8_w_phy_ctrl(struct ksz_device *dev, int port, u16 val)
1074 {
1075 u8 reg_val = 0;
1076 int ret;
1077
1078 if (val & KSZ886X_CTRL_FORCE_LINK)
1079 reg_val |= PORT_FORCE_LINK;
1080
1081 if (val & KSZ886X_CTRL_PWRSAVE)
1082 reg_val |= PORT_POWER_SAVING;
1083
1084 if (val & KSZ886X_CTRL_REMOTE_LOOPBACK)
1085 reg_val |= PORT_PHY_REMOTE_LOOPBACK;
1086
1087 ret = ksz_prmw8(dev, port, REG_PORT_LINK_MD_CTRL, PORT_FORCE_LINK |
1088 PORT_POWER_SAVING | PORT_PHY_REMOTE_LOOPBACK, reg_val);
1089 return ret;
1090 }
1091
1092 /**
1093 * ksz8_w_phy_bmcr - Translates and writes to the SMI interface from a MIIM PHY
1094 * Basic mode control register (Reg. 0).
1095 * @dev: The KSZ device instance.
1096 * @port: The port number to be configured.
1097 * @val: The register value to be written.
1098 *
1099 * This function translates control settings from a MIIM PHY Basic mode control
1100 * register into their corresponding hardware register bit values for the SMI
1101 * interface.
1102 *
1103 * MIIM Bit Mapping Comparison between KSZ8794 and KSZ8873
1104 * -------------------------------------------------------------------
1105 * MIIM Bit | KSZ8794 Reg/Bit | KSZ8873 Reg/Bit
1106 * ----------------------------+-----------------------------+----------------
1107 * Bit 15 - Soft Reset | 0xF/4 | Not supported
1108 * Bit 14 - Loopback | 0xD/0 (MAC), 0xF/7 (PHY) ~ 0xD/0 (PHY)
1109 * Bit 13 - Force 100 | 0xC/6 = 0xC/6
1110 * Bit 12 - AN Enable | 0xC/7 (reverse logic) ~ 0xC/7
1111 * Bit 11 - Power Down | 0xD/3 = 0xD/3
1112 * Bit 10 - PHY Isolate | 0xF/5 | Not supported
1113 * Bit 9 - Restart AN | 0xD/5 = 0xD/5
1114 * Bit 8 - Force Full-Duplex | 0xC/5 = 0xC/5
1115 * Bit 7 - Collision Test/Res. | Not supported | Not supported
1116 * Bit 6 - Reserved | Not supported | Not supported
1117 * Bit 5 - Hp_mdix | 0x9/7 ~ 0xF/7
1118 * Bit 4 - Force MDI | 0xD/1 = 0xD/1
1119 * Bit 3 - Disable MDIX | 0xD/2 = 0xD/2
1120 * Bit 2 - Disable Far-End F. | ???? | 0xD/4
1121 * Bit 1 - Disable Transmit | 0xD/6 = 0xD/6
1122 * Bit 0 - Disable LED | 0xD/7 = 0xD/7
1123 * -------------------------------------------------------------------
1124 *
1125 * Return: 0 on success, error code on failure.
1126 */
ksz8_w_phy_bmcr(struct ksz_device * dev,u16 port,u16 val)1127 static int ksz8_w_phy_bmcr(struct ksz_device *dev, u16 port, u16 val)
1128 {
1129 u8 restart, speed, ctrl, restart_mask;
1130 const u16 *regs = dev->info->regs;
1131 int ret;
1132
1133 /* Do not support PHY reset function. */
1134 if (val & BMCR_RESET)
1135 return 0;
1136
1137 speed = 0;
1138 if (val & KSZ886X_BMCR_HP_MDIX)
1139 speed |= PORT_HP_MDIX;
1140
1141 ret = ksz_prmw8(dev, port, regs[P_SPEED_STATUS], PORT_HP_MDIX, speed);
1142 if (ret)
1143 return ret;
1144
1145 ctrl = 0;
1146 if (ksz_is_ksz88x3(dev)) {
1147 if ((val & BMCR_ANENABLE))
1148 ctrl |= PORT_AUTO_NEG_ENABLE;
1149 } else {
1150 if (!(val & BMCR_ANENABLE))
1151 ctrl |= PORT_AUTO_NEG_DISABLE;
1152
1153 /* Fiber port does not support auto-negotiation. */
1154 if (dev->ports[port].fiber)
1155 ctrl |= PORT_AUTO_NEG_DISABLE;
1156 }
1157
1158 if (val & BMCR_SPEED100)
1159 ctrl |= PORT_FORCE_100_MBIT;
1160
1161 if (val & BMCR_FULLDPLX)
1162 ctrl |= PORT_FORCE_FULL_DUPLEX;
1163
1164 ret = ksz_prmw8(dev, port, regs[P_FORCE_CTRL], PORT_FORCE_100_MBIT |
1165 /* PORT_AUTO_NEG_ENABLE and PORT_AUTO_NEG_DISABLE are the same
1166 * bits
1167 */
1168 PORT_FORCE_FULL_DUPLEX | PORT_AUTO_NEG_ENABLE, ctrl);
1169 if (ret)
1170 return ret;
1171
1172 restart = 0;
1173 restart_mask = PORT_LED_OFF | PORT_TX_DISABLE | PORT_AUTO_NEG_RESTART |
1174 PORT_POWER_DOWN | PORT_AUTO_MDIX_DISABLE | PORT_FORCE_MDIX;
1175
1176 if (val & KSZ886X_BMCR_DISABLE_LED)
1177 restart |= PORT_LED_OFF;
1178
1179 if (val & KSZ886X_BMCR_DISABLE_TRANSMIT)
1180 restart |= PORT_TX_DISABLE;
1181
1182 if (val & BMCR_ANRESTART)
1183 restart |= PORT_AUTO_NEG_RESTART;
1184
1185 if (val & BMCR_PDOWN)
1186 restart |= PORT_POWER_DOWN;
1187
1188 if (val & KSZ886X_BMCR_DISABLE_AUTO_MDIX)
1189 restart |= PORT_AUTO_MDIX_DISABLE;
1190
1191 if (val & KSZ886X_BMCR_FORCE_MDI)
1192 restart |= PORT_FORCE_MDIX;
1193
1194 if (ksz_is_ksz88x3(dev)) {
1195 restart_mask |= KSZ8873_PORT_PHY_LOOPBACK;
1196
1197 if (val & BMCR_LOOPBACK)
1198 restart |= KSZ8873_PORT_PHY_LOOPBACK;
1199 } else {
1200 ret = ksz879x_set_loopback(dev, port, val);
1201 if (ret)
1202 return ret;
1203 }
1204
1205 return ksz_prmw8(dev, port, regs[P_NEG_RESTART_CTRL], restart_mask,
1206 restart);
1207 }
1208
ksz8_w_phy(struct ksz_device * dev,u16 phy,u16 reg,u16 val)1209 int ksz8_w_phy(struct ksz_device *dev, u16 phy, u16 reg, u16 val)
1210 {
1211 const u16 *regs;
1212 u8 ctrl, data;
1213 u16 p = phy;
1214 int ret;
1215
1216 regs = dev->info->regs;
1217
1218 switch (reg) {
1219 case MII_BMCR:
1220 ret = ksz8_w_phy_bmcr(dev, p, val);
1221 if (ret)
1222 return ret;
1223 break;
1224 case MII_ADVERTISE:
1225 ret = ksz_pread8(dev, p, regs[P_LOCAL_CTRL], &ctrl);
1226 if (ret)
1227 return ret;
1228
1229 data = ctrl;
1230 data &= ~(PORT_AUTO_NEG_SYM_PAUSE |
1231 PORT_AUTO_NEG_100BTX_FD |
1232 PORT_AUTO_NEG_100BTX |
1233 PORT_AUTO_NEG_10BT_FD |
1234 PORT_AUTO_NEG_10BT);
1235 if (val & ADVERTISE_PAUSE_CAP)
1236 data |= PORT_AUTO_NEG_SYM_PAUSE;
1237 if (val & ADVERTISE_100FULL)
1238 data |= PORT_AUTO_NEG_100BTX_FD;
1239 if (val & ADVERTISE_100HALF)
1240 data |= PORT_AUTO_NEG_100BTX;
1241 if (val & ADVERTISE_10FULL)
1242 data |= PORT_AUTO_NEG_10BT_FD;
1243 if (val & ADVERTISE_10HALF)
1244 data |= PORT_AUTO_NEG_10BT;
1245
1246 if (data != ctrl) {
1247 ret = ksz_pwrite8(dev, p, regs[P_LOCAL_CTRL], data);
1248 if (ret)
1249 return ret;
1250 }
1251 break;
1252 case PHY_REG_LINK_MD:
1253 if (val & PHY_START_CABLE_DIAG)
1254 ksz_port_cfg(dev, p, REG_PORT_LINK_MD_CTRL, PORT_START_CABLE_DIAG, true);
1255 break;
1256
1257 case PHY_REG_PHY_CTRL:
1258 ret = ksz8_w_phy_ctrl(dev, p, val);
1259 if (ret)
1260 return ret;
1261 break;
1262 default:
1263 break;
1264 }
1265
1266 return 0;
1267 }
1268
ksz8_cfg_port_member(struct ksz_device * dev,int port,u8 member)1269 void ksz8_cfg_port_member(struct ksz_device *dev, int port, u8 member)
1270 {
1271 u8 data;
1272
1273 ksz_pread8(dev, port, P_MIRROR_CTRL, &data);
1274 data &= ~PORT_VLAN_MEMBERSHIP;
1275 data |= (member & dev->port_mask);
1276 ksz_pwrite8(dev, port, P_MIRROR_CTRL, data);
1277 }
1278
ksz8_flush_dyn_mac_table(struct ksz_device * dev,int port)1279 void ksz8_flush_dyn_mac_table(struct ksz_device *dev, int port)
1280 {
1281 u8 learn[DSA_MAX_PORTS];
1282 int first, index, cnt;
1283 const u16 *regs;
1284
1285 regs = dev->info->regs;
1286
1287 if ((uint)port < dev->info->port_cnt) {
1288 first = port;
1289 cnt = port + 1;
1290 } else {
1291 /* Flush all ports. */
1292 first = 0;
1293 cnt = dev->info->port_cnt;
1294 }
1295 for (index = first; index < cnt; index++) {
1296 ksz_pread8(dev, index, regs[P_STP_CTRL], &learn[index]);
1297 if (!(learn[index] & PORT_LEARN_DISABLE))
1298 ksz_pwrite8(dev, index, regs[P_STP_CTRL],
1299 learn[index] | PORT_LEARN_DISABLE);
1300 }
1301 ksz_cfg(dev, S_FLUSH_TABLE_CTRL, SW_FLUSH_DYN_MAC_TABLE, true);
1302 for (index = first; index < cnt; index++) {
1303 if (!(learn[index] & PORT_LEARN_DISABLE))
1304 ksz_pwrite8(dev, index, regs[P_STP_CTRL], learn[index]);
1305 }
1306 }
1307
ksz8_fdb_dump(struct ksz_device * dev,int port,dsa_fdb_dump_cb_t * cb,void * data)1308 int ksz8_fdb_dump(struct ksz_device *dev, int port,
1309 dsa_fdb_dump_cb_t *cb, void *data)
1310 {
1311 u8 mac[ETH_ALEN];
1312 u8 src_port, fid;
1313 u16 entries = 0;
1314 int ret, i;
1315
1316 for (i = 0; i < KSZ8_DYN_MAC_ENTRIES; i++) {
1317 ret = ksz8_r_dyn_mac_table(dev, i, mac, &fid, &src_port,
1318 &entries);
1319 if (ret)
1320 return ret;
1321
1322 if (i >= entries)
1323 return 0;
1324
1325 if (port == src_port) {
1326 ret = cb(mac, fid, false, data);
1327 if (ret)
1328 return ret;
1329 }
1330 }
1331
1332 return 0;
1333 }
1334
ksz8_add_sta_mac(struct ksz_device * dev,int port,const unsigned char * addr,u16 vid)1335 static int ksz8_add_sta_mac(struct ksz_device *dev, int port,
1336 const unsigned char *addr, u16 vid)
1337 {
1338 struct alu_struct alu;
1339 int index, ret;
1340 int empty = 0;
1341
1342 alu.port_forward = 0;
1343 for (index = 0; index < dev->info->num_statics; index++) {
1344 bool valid;
1345
1346 ret = ksz8_r_sta_mac_table(dev, index, &alu, &valid);
1347 if (ret)
1348 return ret;
1349 if (!valid) {
1350 /* Remember the first empty entry. */
1351 if (!empty)
1352 empty = index + 1;
1353 continue;
1354 }
1355
1356 if (!memcmp(alu.mac, addr, ETH_ALEN) && alu.fid == vid)
1357 break;
1358 }
1359
1360 /* no available entry */
1361 if (index == dev->info->num_statics && !empty)
1362 return -ENOSPC;
1363
1364 /* add entry */
1365 if (index == dev->info->num_statics) {
1366 index = empty - 1;
1367 memset(&alu, 0, sizeof(alu));
1368 memcpy(alu.mac, addr, ETH_ALEN);
1369 alu.is_static = true;
1370 }
1371 alu.port_forward |= BIT(port);
1372 if (vid) {
1373 alu.is_use_fid = true;
1374
1375 /* Need a way to map VID to FID. */
1376 alu.fid = vid;
1377 }
1378
1379 return ksz8_w_sta_mac_table(dev, index, &alu);
1380 }
1381
ksz8_del_sta_mac(struct ksz_device * dev,int port,const unsigned char * addr,u16 vid)1382 static int ksz8_del_sta_mac(struct ksz_device *dev, int port,
1383 const unsigned char *addr, u16 vid)
1384 {
1385 struct alu_struct alu;
1386 int index, ret;
1387
1388 for (index = 0; index < dev->info->num_statics; index++) {
1389 bool valid;
1390
1391 ret = ksz8_r_sta_mac_table(dev, index, &alu, &valid);
1392 if (ret)
1393 return ret;
1394 if (!valid)
1395 continue;
1396
1397 if (!memcmp(alu.mac, addr, ETH_ALEN) && alu.fid == vid)
1398 break;
1399 }
1400
1401 /* no available entry */
1402 if (index == dev->info->num_statics)
1403 return 0;
1404
1405 /* clear port */
1406 alu.port_forward &= ~BIT(port);
1407 if (!alu.port_forward)
1408 alu.is_static = false;
1409
1410 return ksz8_w_sta_mac_table(dev, index, &alu);
1411 }
1412
ksz8_mdb_add(struct ksz_device * dev,int port,const struct switchdev_obj_port_mdb * mdb,struct dsa_db db)1413 int ksz8_mdb_add(struct ksz_device *dev, int port,
1414 const struct switchdev_obj_port_mdb *mdb, struct dsa_db db)
1415 {
1416 return ksz8_add_sta_mac(dev, port, mdb->addr, mdb->vid);
1417 }
1418
ksz8_mdb_del(struct ksz_device * dev,int port,const struct switchdev_obj_port_mdb * mdb,struct dsa_db db)1419 int ksz8_mdb_del(struct ksz_device *dev, int port,
1420 const struct switchdev_obj_port_mdb *mdb, struct dsa_db db)
1421 {
1422 return ksz8_del_sta_mac(dev, port, mdb->addr, mdb->vid);
1423 }
1424
ksz8_fdb_add(struct ksz_device * dev,int port,const unsigned char * addr,u16 vid,struct dsa_db db)1425 int ksz8_fdb_add(struct ksz_device *dev, int port, const unsigned char *addr,
1426 u16 vid, struct dsa_db db)
1427 {
1428 return ksz8_add_sta_mac(dev, port, addr, vid);
1429 }
1430
ksz8_fdb_del(struct ksz_device * dev,int port,const unsigned char * addr,u16 vid,struct dsa_db db)1431 int ksz8_fdb_del(struct ksz_device *dev, int port, const unsigned char *addr,
1432 u16 vid, struct dsa_db db)
1433 {
1434 return ksz8_del_sta_mac(dev, port, addr, vid);
1435 }
1436
ksz8_port_vlan_filtering(struct ksz_device * dev,int port,bool flag,struct netlink_ext_ack * extack)1437 int ksz8_port_vlan_filtering(struct ksz_device *dev, int port, bool flag,
1438 struct netlink_ext_ack *extack)
1439 {
1440 if (ksz_is_ksz88x3(dev))
1441 return -ENOTSUPP;
1442
1443 /* Discard packets with VID not enabled on the switch */
1444 ksz_cfg(dev, S_MIRROR_CTRL, SW_VLAN_ENABLE, flag);
1445
1446 /* Discard packets with VID not enabled on the ingress port */
1447 for (port = 0; port < dev->phy_port_cnt; ++port)
1448 ksz_port_cfg(dev, port, REG_PORT_CTRL_2, PORT_INGRESS_FILTER,
1449 flag);
1450
1451 return 0;
1452 }
1453
ksz8_port_enable_pvid(struct ksz_device * dev,int port,bool state)1454 static void ksz8_port_enable_pvid(struct ksz_device *dev, int port, bool state)
1455 {
1456 if (ksz_is_ksz88x3(dev)) {
1457 ksz_cfg(dev, REG_SW_INSERT_SRC_PVID,
1458 0x03 << (4 - 2 * port), state);
1459 } else {
1460 ksz_pwrite8(dev, port, REG_PORT_CTRL_12, state ? 0x0f : 0x00);
1461 }
1462 }
1463
ksz8_port_vlan_add(struct ksz_device * dev,int port,const struct switchdev_obj_port_vlan * vlan,struct netlink_ext_ack * extack)1464 int ksz8_port_vlan_add(struct ksz_device *dev, int port,
1465 const struct switchdev_obj_port_vlan *vlan,
1466 struct netlink_ext_ack *extack)
1467 {
1468 bool untagged = vlan->flags & BRIDGE_VLAN_INFO_UNTAGGED;
1469 struct ksz_port *p = &dev->ports[port];
1470 u16 data, new_pvid = 0;
1471 u8 fid, member, valid;
1472
1473 if (ksz_is_ksz88x3(dev))
1474 return -ENOTSUPP;
1475
1476 /* If a VLAN is added with untagged flag different from the
1477 * port's Remove Tag flag, we need to change the latter.
1478 * Ignore VID 0, which is always untagged.
1479 * Ignore CPU port, which will always be tagged.
1480 */
1481 if (untagged != p->remove_tag && vlan->vid != 0 &&
1482 port != dev->cpu_port) {
1483 unsigned int vid;
1484
1485 /* Reject attempts to add a VLAN that requires the
1486 * Remove Tag flag to be changed, unless there are no
1487 * other VLANs currently configured.
1488 */
1489 for (vid = 1; vid < dev->info->num_vlans; ++vid) {
1490 /* Skip the VID we are going to add or reconfigure */
1491 if (vid == vlan->vid)
1492 continue;
1493
1494 ksz8_from_vlan(dev, dev->vlan_cache[vid].table[0],
1495 &fid, &member, &valid);
1496 if (valid && (member & BIT(port)))
1497 return -EINVAL;
1498 }
1499
1500 ksz_port_cfg(dev, port, P_TAG_CTRL, PORT_REMOVE_TAG, untagged);
1501 p->remove_tag = untagged;
1502 }
1503
1504 ksz8_r_vlan_table(dev, vlan->vid, &data);
1505 ksz8_from_vlan(dev, data, &fid, &member, &valid);
1506
1507 /* First time to setup the VLAN entry. */
1508 if (!valid) {
1509 /* Need to find a way to map VID to FID. */
1510 fid = 1;
1511 valid = 1;
1512 }
1513 member |= BIT(port);
1514
1515 ksz8_to_vlan(dev, fid, member, valid, &data);
1516 ksz8_w_vlan_table(dev, vlan->vid, data);
1517
1518 /* change PVID */
1519 if (vlan->flags & BRIDGE_VLAN_INFO_PVID)
1520 new_pvid = vlan->vid;
1521
1522 if (new_pvid) {
1523 u16 vid;
1524
1525 ksz_pread16(dev, port, REG_PORT_CTRL_VID, &vid);
1526 vid &= ~VLAN_VID_MASK;
1527 vid |= new_pvid;
1528 ksz_pwrite16(dev, port, REG_PORT_CTRL_VID, vid);
1529
1530 ksz8_port_enable_pvid(dev, port, true);
1531 }
1532
1533 return 0;
1534 }
1535
ksz8_port_vlan_del(struct ksz_device * dev,int port,const struct switchdev_obj_port_vlan * vlan)1536 int ksz8_port_vlan_del(struct ksz_device *dev, int port,
1537 const struct switchdev_obj_port_vlan *vlan)
1538 {
1539 u16 data, pvid;
1540 u8 fid, member, valid;
1541
1542 if (ksz_is_ksz88x3(dev))
1543 return -ENOTSUPP;
1544
1545 ksz_pread16(dev, port, REG_PORT_CTRL_VID, &pvid);
1546 pvid = pvid & 0xFFF;
1547
1548 ksz8_r_vlan_table(dev, vlan->vid, &data);
1549 ksz8_from_vlan(dev, data, &fid, &member, &valid);
1550
1551 member &= ~BIT(port);
1552
1553 /* Invalidate the entry if no more member. */
1554 if (!member) {
1555 fid = 0;
1556 valid = 0;
1557 }
1558
1559 ksz8_to_vlan(dev, fid, member, valid, &data);
1560 ksz8_w_vlan_table(dev, vlan->vid, data);
1561
1562 if (pvid == vlan->vid)
1563 ksz8_port_enable_pvid(dev, port, false);
1564
1565 return 0;
1566 }
1567
ksz8_port_mirror_add(struct ksz_device * dev,int port,struct dsa_mall_mirror_tc_entry * mirror,bool ingress,struct netlink_ext_ack * extack)1568 int ksz8_port_mirror_add(struct ksz_device *dev, int port,
1569 struct dsa_mall_mirror_tc_entry *mirror,
1570 bool ingress, struct netlink_ext_ack *extack)
1571 {
1572 if (ingress) {
1573 ksz_port_cfg(dev, port, P_MIRROR_CTRL, PORT_MIRROR_RX, true);
1574 dev->mirror_rx |= BIT(port);
1575 } else {
1576 ksz_port_cfg(dev, port, P_MIRROR_CTRL, PORT_MIRROR_TX, true);
1577 dev->mirror_tx |= BIT(port);
1578 }
1579
1580 ksz_port_cfg(dev, port, P_MIRROR_CTRL, PORT_MIRROR_SNIFFER, false);
1581
1582 /* configure mirror port */
1583 if (dev->mirror_rx || dev->mirror_tx)
1584 ksz_port_cfg(dev, mirror->to_local_port, P_MIRROR_CTRL,
1585 PORT_MIRROR_SNIFFER, true);
1586
1587 return 0;
1588 }
1589
ksz8_port_mirror_del(struct ksz_device * dev,int port,struct dsa_mall_mirror_tc_entry * mirror)1590 void ksz8_port_mirror_del(struct ksz_device *dev, int port,
1591 struct dsa_mall_mirror_tc_entry *mirror)
1592 {
1593 u8 data;
1594
1595 if (mirror->ingress) {
1596 ksz_port_cfg(dev, port, P_MIRROR_CTRL, PORT_MIRROR_RX, false);
1597 dev->mirror_rx &= ~BIT(port);
1598 } else {
1599 ksz_port_cfg(dev, port, P_MIRROR_CTRL, PORT_MIRROR_TX, false);
1600 dev->mirror_tx &= ~BIT(port);
1601 }
1602
1603 ksz_pread8(dev, port, P_MIRROR_CTRL, &data);
1604
1605 if (!dev->mirror_rx && !dev->mirror_tx)
1606 ksz_port_cfg(dev, mirror->to_local_port, P_MIRROR_CTRL,
1607 PORT_MIRROR_SNIFFER, false);
1608 }
1609
ksz8795_cpu_interface_select(struct ksz_device * dev,int port)1610 static void ksz8795_cpu_interface_select(struct ksz_device *dev, int port)
1611 {
1612 struct ksz_port *p = &dev->ports[port];
1613
1614 if (!ksz_is_ksz87xx(dev))
1615 return;
1616
1617 if (!p->interface && dev->compat_interface) {
1618 dev_warn(dev->dev,
1619 "Using legacy switch \"phy-mode\" property, because it is missing on port %d node. "
1620 "Please update your device tree.\n",
1621 port);
1622 p->interface = dev->compat_interface;
1623 }
1624 }
1625
ksz8_port_setup(struct ksz_device * dev,int port,bool cpu_port)1626 void ksz8_port_setup(struct ksz_device *dev, int port, bool cpu_port)
1627 {
1628 const u16 *regs = dev->info->regs;
1629 struct dsa_switch *ds = dev->ds;
1630 const u32 *masks;
1631 int queues;
1632 u8 member;
1633
1634 masks = dev->info->masks;
1635
1636 /* enable broadcast storm limit */
1637 ksz_port_cfg(dev, port, P_BCAST_STORM_CTRL, PORT_BROADCAST_STORM, true);
1638
1639 /* For KSZ88x3 enable only one queue by default, otherwise we won't
1640 * be able to get rid of PCP prios on Port 2.
1641 */
1642 if (ksz_is_ksz88x3(dev))
1643 queues = 1;
1644 else
1645 queues = dev->info->num_tx_queues;
1646
1647 ksz8_port_queue_split(dev, port, queues);
1648
1649 /* replace priority */
1650 ksz_port_cfg(dev, port, P_802_1P_CTRL,
1651 masks[PORT_802_1P_REMAPPING], false);
1652
1653 if (cpu_port)
1654 member = dsa_user_ports(ds);
1655 else
1656 member = BIT(dsa_upstream_port(ds, port));
1657
1658 ksz8_cfg_port_member(dev, port, member);
1659
1660 /* Disable all WoL options by default. Otherwise
1661 * ksz_switch_macaddr_get/put logic will not work properly.
1662 * CPU port 4 has no WoL functionality.
1663 */
1664 if (ksz_is_ksz87xx(dev) && !cpu_port)
1665 ksz8_pme_pwrite8(dev, port, regs[REG_PORT_PME_CTRL], 0);
1666 }
1667
ksz88x3_config_rmii_clk(struct ksz_device * dev)1668 static void ksz88x3_config_rmii_clk(struct ksz_device *dev)
1669 {
1670 struct dsa_port *cpu_dp = dsa_to_port(dev->ds, dev->cpu_port);
1671 bool rmii_clk_internal;
1672
1673 if (!ksz_is_ksz88x3(dev))
1674 return;
1675
1676 rmii_clk_internal = of_property_read_bool(cpu_dp->dn,
1677 "microchip,rmii-clk-internal");
1678
1679 ksz_cfg(dev, KSZ88X3_REG_FVID_AND_HOST_MODE,
1680 KSZ88X3_PORT3_RMII_CLK_INTERNAL, rmii_clk_internal);
1681 }
1682
ksz8_config_cpu_port(struct dsa_switch * ds)1683 void ksz8_config_cpu_port(struct dsa_switch *ds)
1684 {
1685 struct ksz_device *dev = ds->priv;
1686 struct ksz_port *p;
1687 const u32 *masks;
1688 const u16 *regs;
1689 u8 remote;
1690 int i;
1691
1692 masks = dev->info->masks;
1693 regs = dev->info->regs;
1694
1695 ksz_cfg(dev, regs[S_TAIL_TAG_CTRL], masks[SW_TAIL_TAG_ENABLE], true);
1696
1697 ksz8_port_setup(dev, dev->cpu_port, true);
1698
1699 ksz8795_cpu_interface_select(dev, dev->cpu_port);
1700 ksz88x3_config_rmii_clk(dev);
1701
1702 for (i = 0; i < dev->phy_port_cnt; i++) {
1703 ksz_port_stp_state_set(ds, i, BR_STATE_DISABLED);
1704 }
1705 for (i = 0; i < dev->phy_port_cnt; i++) {
1706 p = &dev->ports[i];
1707
1708 /* For KSZ8795 family. */
1709 if (ksz_is_ksz87xx(dev)) {
1710 ksz_pread8(dev, i, regs[P_REMOTE_STATUS], &remote);
1711 if (remote & KSZ8_PORT_FIBER_MODE)
1712 p->fiber = 1;
1713 }
1714 if (p->fiber)
1715 ksz_port_cfg(dev, i, regs[P_STP_CTRL],
1716 PORT_FORCE_FLOW_CTRL, true);
1717 else
1718 ksz_port_cfg(dev, i, regs[P_STP_CTRL],
1719 PORT_FORCE_FLOW_CTRL, false);
1720 }
1721 }
1722
1723 /**
1724 * ksz8_phy_port_link_up - Configures ports with integrated PHYs
1725 * @dev: The KSZ device instance.
1726 * @port: The port number to configure.
1727 * @duplex: The desired duplex mode.
1728 * @tx_pause: If true, enables transmit pause.
1729 * @rx_pause: If true, enables receive pause.
1730 *
1731 * Description:
1732 * The function configures flow control settings for a given port based on the
1733 * desired settings and current duplex mode.
1734 *
1735 * According to the KSZ8873 datasheet, the PORT_FORCE_FLOW_CTRL bit in the
1736 * Port Control 2 register (0x1A for Port 1, 0x22 for Port 2, 0x32 for Port 3)
1737 * determines how flow control is handled on the port:
1738 * "1 = will always enable full-duplex flow control on the port, regardless
1739 * of AN result.
1740 * 0 = full-duplex flow control is enabled based on AN result."
1741 *
1742 * This means that the flow control behavior depends on the state of this bit:
1743 * - If PORT_FORCE_FLOW_CTRL is set to 1, the switch will ignore AN results and
1744 * force flow control on the port.
1745 * - If PORT_FORCE_FLOW_CTRL is set to 0, the switch will enable or disable
1746 * flow control based on the AN results.
1747 *
1748 * However, there is a potential limitation in this configuration. It is
1749 * currently not possible to force disable flow control on a port if we still
1750 * advertise pause support. While such a configuration is not currently
1751 * supported by Linux, and may not make practical sense, it's important to be
1752 * aware of this limitation when working with the KSZ8873 and similar devices.
1753 */
ksz8_phy_port_link_up(struct ksz_device * dev,int port,int duplex,bool tx_pause,bool rx_pause)1754 static void ksz8_phy_port_link_up(struct ksz_device *dev, int port, int duplex,
1755 bool tx_pause, bool rx_pause)
1756 {
1757 const u16 *regs = dev->info->regs;
1758 u8 sctrl = 0;
1759
1760 /* The KSZ8795 switch differs from the KSZ8873 by supporting
1761 * asymmetric pause control. However, since a single bit is used to
1762 * control both RX and TX pause, we can't enforce asymmetric pause
1763 * control - both TX and RX pause will be either enabled or disabled
1764 * together.
1765 *
1766 * If auto-negotiation is enabled, we usually allow the flow control to
1767 * be determined by the auto-negotiation process based on the
1768 * capabilities of both link partners. However, for KSZ8873, the
1769 * PORT_FORCE_FLOW_CTRL bit may be set by the hardware bootstrap,
1770 * ignoring the auto-negotiation result. Thus, even in auto-negotiation
1771 * mode, we need to ensure that the PORT_FORCE_FLOW_CTRL bit is
1772 * properly cleared.
1773 *
1774 * In the absence of pause auto-negotiation, we will enforce symmetric
1775 * pause control for both variants of switches - KSZ8873 and KSZ8795.
1776 *
1777 * Autoneg Pause Autoneg rx,tx PORT_FORCE_FLOW_CTRL
1778 * 1 1 x 0
1779 * 0 1 x 0 (flow control probably disabled)
1780 * x 0 1 1 (flow control force enabled)
1781 * 1 0 0 0 (flow control still depends on
1782 * aneg result due to hardware)
1783 * 0 0 0 0 (flow control probably disabled)
1784 */
1785 if (dev->ports[port].manual_flow && tx_pause)
1786 sctrl |= PORT_FORCE_FLOW_CTRL;
1787
1788 ksz_prmw8(dev, port, regs[P_STP_CTRL], PORT_FORCE_FLOW_CTRL, sctrl);
1789 }
1790
1791 /**
1792 * ksz8_cpu_port_link_up - Configures the CPU port of the switch.
1793 * @dev: The KSZ device instance.
1794 * @speed: The desired link speed.
1795 * @duplex: The desired duplex mode.
1796 * @tx_pause: If true, enables transmit pause.
1797 * @rx_pause: If true, enables receive pause.
1798 *
1799 * Description:
1800 * The function configures flow control and speed settings for the CPU
1801 * port of the switch based on the desired settings, current duplex mode, and
1802 * speed.
1803 */
ksz8_cpu_port_link_up(struct ksz_device * dev,int speed,int duplex,bool tx_pause,bool rx_pause)1804 static void ksz8_cpu_port_link_up(struct ksz_device *dev, int speed, int duplex,
1805 bool tx_pause, bool rx_pause)
1806 {
1807 const u16 *regs = dev->info->regs;
1808 u8 ctrl = 0;
1809
1810 /* SW_FLOW_CTRL, SW_HALF_DUPLEX, and SW_10_MBIT bits are bootstrappable
1811 * at least on KSZ8873. They can have different values depending on your
1812 * board setup.
1813 */
1814 if (tx_pause || rx_pause)
1815 ctrl |= SW_FLOW_CTRL;
1816
1817 if (duplex == DUPLEX_HALF)
1818 ctrl |= SW_HALF_DUPLEX;
1819
1820 /* This hardware only supports SPEED_10 and SPEED_100. For SPEED_10
1821 * we need to set the SW_10_MBIT bit. Otherwise, we can leave it 0.
1822 */
1823 if (speed == SPEED_10)
1824 ctrl |= SW_10_MBIT;
1825
1826 ksz_rmw8(dev, regs[S_BROADCAST_CTRL], SW_HALF_DUPLEX | SW_FLOW_CTRL |
1827 SW_10_MBIT, ctrl);
1828 }
1829
ksz8_phylink_mac_link_up(struct phylink_config * config,struct phy_device * phydev,unsigned int mode,phy_interface_t interface,int speed,int duplex,bool tx_pause,bool rx_pause)1830 void ksz8_phylink_mac_link_up(struct phylink_config *config,
1831 struct phy_device *phydev, unsigned int mode,
1832 phy_interface_t interface, int speed, int duplex,
1833 bool tx_pause, bool rx_pause)
1834 {
1835 struct dsa_port *dp = dsa_phylink_to_port(config);
1836 struct ksz_device *dev = dp->ds->priv;
1837 int port = dp->index;
1838
1839 /* If the port is the CPU port, apply special handling. Only the CPU
1840 * port is configured via global registers.
1841 */
1842 if (dev->cpu_port == port)
1843 ksz8_cpu_port_link_up(dev, speed, duplex, tx_pause, rx_pause);
1844 else if (dev->info->internal_phy[port])
1845 ksz8_phy_port_link_up(dev, port, duplex, tx_pause, rx_pause);
1846 }
1847
ksz8_handle_global_errata(struct dsa_switch * ds)1848 static int ksz8_handle_global_errata(struct dsa_switch *ds)
1849 {
1850 struct ksz_device *dev = ds->priv;
1851 int ret = 0;
1852
1853 /* KSZ87xx Errata DS80000687C.
1854 * Module 2: Link drops with some EEE link partners.
1855 * An issue with the EEE next page exchange between the
1856 * KSZ879x/KSZ877x/KSZ876x and some EEE link partners may result in
1857 * the link dropping.
1858 */
1859 if (dev->info->ksz87xx_eee_link_erratum)
1860 ret = ksz8_ind_write8(dev, TABLE_EEE, REG_IND_EEE_GLOB2_HI, 0);
1861
1862 return ret;
1863 }
1864
ksz8_enable_stp_addr(struct ksz_device * dev)1865 int ksz8_enable_stp_addr(struct ksz_device *dev)
1866 {
1867 struct alu_struct alu;
1868
1869 /* Setup STP address for STP operation. */
1870 memset(&alu, 0, sizeof(alu));
1871 ether_addr_copy(alu.mac, eth_stp_addr);
1872 alu.is_static = true;
1873 alu.is_override = true;
1874 alu.port_forward = dev->info->cpu_ports;
1875
1876 return ksz8_w_sta_mac_table(dev, 0, &alu);
1877 }
1878
ksz8_setup(struct dsa_switch * ds)1879 int ksz8_setup(struct dsa_switch *ds)
1880 {
1881 struct ksz_device *dev = ds->priv;
1882 const u16 *regs = dev->info->regs;
1883 int i, ret = 0;
1884
1885 ds->mtu_enforcement_ingress = true;
1886
1887 /* We rely on software untagging on the CPU port, so that we
1888 * can support both tagged and untagged VLANs
1889 */
1890 ds->untag_bridge_pvid = true;
1891
1892 /* VLAN filtering is partly controlled by the global VLAN
1893 * Enable flag
1894 */
1895 ds->vlan_filtering_is_global = true;
1896
1897 /* Enable automatic fast aging when link changed detected. */
1898 ksz_cfg(dev, S_LINK_AGING_CTRL, SW_LINK_AUTO_AGING, true);
1899
1900 /* Enable aggressive back off algorithm in half duplex mode. */
1901 regmap_update_bits(ksz_regmap_8(dev), REG_SW_CTRL_1,
1902 SW_AGGR_BACKOFF, SW_AGGR_BACKOFF);
1903
1904 /*
1905 * Make sure unicast VLAN boundary is set as default and
1906 * enable no excessive collision drop.
1907 */
1908 regmap_update_bits(ksz_regmap_8(dev), REG_SW_CTRL_2,
1909 UNICAST_VLAN_BOUNDARY | NO_EXC_COLLISION_DROP,
1910 UNICAST_VLAN_BOUNDARY | NO_EXC_COLLISION_DROP);
1911
1912 ksz_cfg(dev, S_REPLACE_VID_CTRL, SW_REPLACE_VID, false);
1913
1914 ksz_cfg(dev, S_MIRROR_CTRL, SW_MIRROR_RX_TX, false);
1915
1916 if (!ksz_is_ksz88x3(dev))
1917 ksz_cfg(dev, REG_SW_CTRL_19, SW_INS_TAG_ENABLE, true);
1918
1919 for (i = 0; i < (dev->info->num_vlans / 4); i++)
1920 ksz8_r_vlan_entries(dev, i);
1921
1922 /* Make sure PME (WoL) is not enabled. If requested, it will
1923 * be enabled by ksz_wol_pre_shutdown(). Otherwise, some PMICs
1924 * do not like PME events changes before shutdown. PME only
1925 * available on KSZ87xx family.
1926 */
1927 if (ksz_is_ksz87xx(dev)) {
1928 ret = ksz8_pme_write8(dev, regs[REG_SW_PME_CTRL], 0);
1929 if (!ret)
1930 ret = ksz_rmw8(dev, REG_INT_ENABLE, INT_PME, 0);
1931 }
1932
1933 if (!ret)
1934 return ksz8_handle_global_errata(ds);
1935 else
1936 return ret;
1937 }
1938
ksz8_get_caps(struct ksz_device * dev,int port,struct phylink_config * config)1939 void ksz8_get_caps(struct ksz_device *dev, int port,
1940 struct phylink_config *config)
1941 {
1942 config->mac_capabilities = MAC_10 | MAC_100;
1943
1944 /* Silicon Errata Sheet (DS80000830A):
1945 * "Port 1 does not respond to received flow control PAUSE frames"
1946 * So, disable Pause support on "Port 1" (port == 0) for all ksz88x3
1947 * switches.
1948 */
1949 if (!ksz_is_ksz88x3(dev) || port)
1950 config->mac_capabilities |= MAC_SYM_PAUSE;
1951
1952 /* Asym pause is not supported on KSZ8863 and KSZ8873 */
1953 if (!ksz_is_ksz88x3(dev))
1954 config->mac_capabilities |= MAC_ASYM_PAUSE;
1955 }
1956
ksz8_get_port_addr(int port,int offset)1957 u32 ksz8_get_port_addr(int port, int offset)
1958 {
1959 return PORT_CTRL_ADDR(port, offset);
1960 }
1961
ksz8_switch_init(struct ksz_device * dev)1962 int ksz8_switch_init(struct ksz_device *dev)
1963 {
1964 dev->cpu_port = fls(dev->info->cpu_ports) - 1;
1965 dev->phy_port_cnt = dev->info->port_cnt - 1;
1966 dev->port_mask = (BIT(dev->phy_port_cnt) - 1) | dev->info->cpu_ports;
1967
1968 return 0;
1969 }
1970
ksz8_switch_exit(struct ksz_device * dev)1971 void ksz8_switch_exit(struct ksz_device *dev)
1972 {
1973 ksz8_reset_switch(dev);
1974 }
1975
1976 MODULE_AUTHOR("Tristram Ha <Tristram.Ha@microchip.com>");
1977 MODULE_DESCRIPTION("Microchip KSZ8795 Series Switch DSA Driver");
1978 MODULE_LICENSE("GPL");
1979