• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright (C) 2021 Gerhard Engleder <gerhard@engleder-embedded.com> */
3 
4 /* TSN endpoint Ethernet MAC driver
5  *
6  * The TSN endpoint Ethernet MAC is a FPGA based network device for real-time
7  * communication. It is designed for endpoints within TSN (Time Sensitive
8  * Networking) networks; e.g., for PLCs in the industrial automation case.
9  *
10  * It supports multiple TX/RX queue pairs. The first TX/RX queue pair is used
11  * by the driver.
12  *
13  * More information can be found here:
14  * - www.embedded-experts.at/tsn
15  * - www.engleder-embedded.com
16  */
17 
18 #include "tsnep.h"
19 #include "tsnep_hw.h"
20 
21 #include <linux/module.h>
22 #include <linux/of.h>
23 #include <linux/of_net.h>
24 #include <linux/of_mdio.h>
25 #include <linux/interrupt.h>
26 #include <linux/etherdevice.h>
27 #include <linux/phy.h>
28 #include <linux/iopoll.h>
29 #include <linux/bpf.h>
30 #include <linux/bpf_trace.h>
31 #include <net/page_pool/helpers.h>
32 #include <net/xdp_sock_drv.h>
33 
34 #define TSNEP_RX_OFFSET (max(NET_SKB_PAD, XDP_PACKET_HEADROOM) + NET_IP_ALIGN)
35 #define TSNEP_HEADROOM ALIGN(TSNEP_RX_OFFSET, 4)
36 #define TSNEP_MAX_RX_BUF_SIZE (PAGE_SIZE - TSNEP_HEADROOM - \
37 			       SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
38 /* XSK buffer shall store at least Q-in-Q frame */
39 #define TSNEP_XSK_RX_BUF_SIZE (ALIGN(TSNEP_RX_INLINE_METADATA_SIZE + \
40 				     ETH_FRAME_LEN + ETH_FCS_LEN + \
41 				     VLAN_HLEN * 2, 4))
42 
43 #ifdef CONFIG_ARCH_DMA_ADDR_T_64BIT
44 #define DMA_ADDR_HIGH(dma_addr) ((u32)(((dma_addr) >> 32) & 0xFFFFFFFF))
45 #else
46 #define DMA_ADDR_HIGH(dma_addr) ((u32)(0))
47 #endif
48 #define DMA_ADDR_LOW(dma_addr) ((u32)((dma_addr) & 0xFFFFFFFF))
49 
50 #define TSNEP_COALESCE_USECS_DEFAULT 64
51 #define TSNEP_COALESCE_USECS_MAX     ((ECM_INT_DELAY_MASK >> ECM_INT_DELAY_SHIFT) * \
52 				      ECM_INT_DELAY_BASE_US + ECM_INT_DELAY_BASE_US - 1)
53 
54 /* mapping type */
55 #define TSNEP_TX_TYPE_MAP		BIT(0)
56 #define TSNEP_TX_TYPE_MAP_PAGE		BIT(1)
57 #define TSNEP_TX_TYPE_INLINE		BIT(2)
58 /* buffer type */
59 #define TSNEP_TX_TYPE_SKB		BIT(8)
60 #define TSNEP_TX_TYPE_SKB_MAP		(TSNEP_TX_TYPE_SKB | TSNEP_TX_TYPE_MAP)
61 #define TSNEP_TX_TYPE_SKB_INLINE	(TSNEP_TX_TYPE_SKB | TSNEP_TX_TYPE_INLINE)
62 #define TSNEP_TX_TYPE_SKB_FRAG		BIT(9)
63 #define TSNEP_TX_TYPE_SKB_FRAG_MAP_PAGE	(TSNEP_TX_TYPE_SKB_FRAG | TSNEP_TX_TYPE_MAP_PAGE)
64 #define TSNEP_TX_TYPE_SKB_FRAG_INLINE	(TSNEP_TX_TYPE_SKB_FRAG | TSNEP_TX_TYPE_INLINE)
65 #define TSNEP_TX_TYPE_XDP_TX		BIT(10)
66 #define TSNEP_TX_TYPE_XDP_NDO		BIT(11)
67 #define TSNEP_TX_TYPE_XDP_NDO_MAP_PAGE	(TSNEP_TX_TYPE_XDP_NDO | TSNEP_TX_TYPE_MAP_PAGE)
68 #define TSNEP_TX_TYPE_XDP		(TSNEP_TX_TYPE_XDP_TX | TSNEP_TX_TYPE_XDP_NDO)
69 #define TSNEP_TX_TYPE_XSK		BIT(12)
70 #define TSNEP_TX_TYPE_TSTAMP		BIT(13)
71 #define TSNEP_TX_TYPE_SKB_TSTAMP	(TSNEP_TX_TYPE_SKB | TSNEP_TX_TYPE_TSTAMP)
72 
73 #define TSNEP_XDP_TX		BIT(0)
74 #define TSNEP_XDP_REDIRECT	BIT(1)
75 
tsnep_enable_irq(struct tsnep_adapter * adapter,u32 mask)76 static void tsnep_enable_irq(struct tsnep_adapter *adapter, u32 mask)
77 {
78 	iowrite32(mask, adapter->addr + ECM_INT_ENABLE);
79 }
80 
tsnep_disable_irq(struct tsnep_adapter * adapter,u32 mask)81 static void tsnep_disable_irq(struct tsnep_adapter *adapter, u32 mask)
82 {
83 	mask |= ECM_INT_DISABLE;
84 	iowrite32(mask, adapter->addr + ECM_INT_ENABLE);
85 }
86 
tsnep_irq(int irq,void * arg)87 static irqreturn_t tsnep_irq(int irq, void *arg)
88 {
89 	struct tsnep_adapter *adapter = arg;
90 	u32 active = ioread32(adapter->addr + ECM_INT_ACTIVE);
91 
92 	/* acknowledge interrupt */
93 	if (active != 0)
94 		iowrite32(active, adapter->addr + ECM_INT_ACKNOWLEDGE);
95 
96 	/* handle link interrupt */
97 	if ((active & ECM_INT_LINK) != 0)
98 		phy_mac_interrupt(adapter->netdev->phydev);
99 
100 	/* handle TX/RX queue 0 interrupt */
101 	if ((active & adapter->queue[0].irq_mask) != 0) {
102 		if (napi_schedule_prep(&adapter->queue[0].napi)) {
103 			tsnep_disable_irq(adapter, adapter->queue[0].irq_mask);
104 			/* schedule after masking to avoid races */
105 			__napi_schedule(&adapter->queue[0].napi);
106 		}
107 	}
108 
109 	return IRQ_HANDLED;
110 }
111 
tsnep_irq_txrx(int irq,void * arg)112 static irqreturn_t tsnep_irq_txrx(int irq, void *arg)
113 {
114 	struct tsnep_queue *queue = arg;
115 
116 	/* handle TX/RX queue interrupt */
117 	if (napi_schedule_prep(&queue->napi)) {
118 		tsnep_disable_irq(queue->adapter, queue->irq_mask);
119 		/* schedule after masking to avoid races */
120 		__napi_schedule(&queue->napi);
121 	}
122 
123 	return IRQ_HANDLED;
124 }
125 
tsnep_set_irq_coalesce(struct tsnep_queue * queue,u32 usecs)126 int tsnep_set_irq_coalesce(struct tsnep_queue *queue, u32 usecs)
127 {
128 	if (usecs > TSNEP_COALESCE_USECS_MAX)
129 		return -ERANGE;
130 
131 	usecs /= ECM_INT_DELAY_BASE_US;
132 	usecs <<= ECM_INT_DELAY_SHIFT;
133 	usecs &= ECM_INT_DELAY_MASK;
134 
135 	queue->irq_delay &= ~ECM_INT_DELAY_MASK;
136 	queue->irq_delay |= usecs;
137 	iowrite8(queue->irq_delay, queue->irq_delay_addr);
138 
139 	return 0;
140 }
141 
tsnep_get_irq_coalesce(struct tsnep_queue * queue)142 u32 tsnep_get_irq_coalesce(struct tsnep_queue *queue)
143 {
144 	u32 usecs;
145 
146 	usecs = (queue->irq_delay & ECM_INT_DELAY_MASK);
147 	usecs >>= ECM_INT_DELAY_SHIFT;
148 	usecs *= ECM_INT_DELAY_BASE_US;
149 
150 	return usecs;
151 }
152 
tsnep_mdiobus_read(struct mii_bus * bus,int addr,int regnum)153 static int tsnep_mdiobus_read(struct mii_bus *bus, int addr, int regnum)
154 {
155 	struct tsnep_adapter *adapter = bus->priv;
156 	u32 md;
157 	int retval;
158 
159 	md = ECM_MD_READ;
160 	if (!adapter->suppress_preamble)
161 		md |= ECM_MD_PREAMBLE;
162 	md |= (regnum << ECM_MD_ADDR_SHIFT) & ECM_MD_ADDR_MASK;
163 	md |= (addr << ECM_MD_PHY_ADDR_SHIFT) & ECM_MD_PHY_ADDR_MASK;
164 	iowrite32(md, adapter->addr + ECM_MD_CONTROL);
165 	retval = readl_poll_timeout_atomic(adapter->addr + ECM_MD_STATUS, md,
166 					   !(md & ECM_MD_BUSY), 16, 1000);
167 	if (retval != 0)
168 		return retval;
169 
170 	return (md & ECM_MD_DATA_MASK) >> ECM_MD_DATA_SHIFT;
171 }
172 
tsnep_mdiobus_write(struct mii_bus * bus,int addr,int regnum,u16 val)173 static int tsnep_mdiobus_write(struct mii_bus *bus, int addr, int regnum,
174 			       u16 val)
175 {
176 	struct tsnep_adapter *adapter = bus->priv;
177 	u32 md;
178 	int retval;
179 
180 	md = ECM_MD_WRITE;
181 	if (!adapter->suppress_preamble)
182 		md |= ECM_MD_PREAMBLE;
183 	md |= (regnum << ECM_MD_ADDR_SHIFT) & ECM_MD_ADDR_MASK;
184 	md |= (addr << ECM_MD_PHY_ADDR_SHIFT) & ECM_MD_PHY_ADDR_MASK;
185 	md |= ((u32)val << ECM_MD_DATA_SHIFT) & ECM_MD_DATA_MASK;
186 	iowrite32(md, adapter->addr + ECM_MD_CONTROL);
187 	retval = readl_poll_timeout_atomic(adapter->addr + ECM_MD_STATUS, md,
188 					   !(md & ECM_MD_BUSY), 16, 1000);
189 	if (retval != 0)
190 		return retval;
191 
192 	return 0;
193 }
194 
tsnep_set_link_mode(struct tsnep_adapter * adapter)195 static void tsnep_set_link_mode(struct tsnep_adapter *adapter)
196 {
197 	u32 mode;
198 
199 	switch (adapter->phydev->speed) {
200 	case SPEED_100:
201 		mode = ECM_LINK_MODE_100;
202 		break;
203 	case SPEED_1000:
204 		mode = ECM_LINK_MODE_1000;
205 		break;
206 	default:
207 		mode = ECM_LINK_MODE_OFF;
208 		break;
209 	}
210 	iowrite32(mode, adapter->addr + ECM_STATUS);
211 }
212 
tsnep_phy_link_status_change(struct net_device * netdev)213 static void tsnep_phy_link_status_change(struct net_device *netdev)
214 {
215 	struct tsnep_adapter *adapter = netdev_priv(netdev);
216 	struct phy_device *phydev = netdev->phydev;
217 
218 	if (phydev->link)
219 		tsnep_set_link_mode(adapter);
220 
221 	phy_print_status(netdev->phydev);
222 }
223 
tsnep_phy_loopback(struct tsnep_adapter * adapter,bool enable)224 static int tsnep_phy_loopback(struct tsnep_adapter *adapter, bool enable)
225 {
226 	int retval;
227 
228 	retval = phy_loopback(adapter->phydev, enable);
229 
230 	/* PHY link state change is not signaled if loopback is enabled, it
231 	 * would delay a working loopback anyway, let's ensure that loopback
232 	 * is working immediately by setting link mode directly
233 	 */
234 	if (!retval && enable) {
235 		netif_carrier_on(adapter->netdev);
236 		tsnep_set_link_mode(adapter);
237 	}
238 
239 	return retval;
240 }
241 
tsnep_phy_open(struct tsnep_adapter * adapter)242 static int tsnep_phy_open(struct tsnep_adapter *adapter)
243 {
244 	struct phy_device *phydev;
245 	struct ethtool_keee ethtool_keee;
246 	int retval;
247 
248 	retval = phy_connect_direct(adapter->netdev, adapter->phydev,
249 				    tsnep_phy_link_status_change,
250 				    adapter->phy_mode);
251 	if (retval)
252 		return retval;
253 	phydev = adapter->netdev->phydev;
254 
255 	/* MAC supports only 100Mbps|1000Mbps full duplex
256 	 * SPE (Single Pair Ethernet) is also an option but not implemented yet
257 	 */
258 	phy_remove_link_mode(phydev, ETHTOOL_LINK_MODE_10baseT_Half_BIT);
259 	phy_remove_link_mode(phydev, ETHTOOL_LINK_MODE_10baseT_Full_BIT);
260 	phy_remove_link_mode(phydev, ETHTOOL_LINK_MODE_100baseT_Half_BIT);
261 	phy_remove_link_mode(phydev, ETHTOOL_LINK_MODE_1000baseT_Half_BIT);
262 
263 	/* disable EEE autoneg, EEE not supported by TSNEP */
264 	memset(&ethtool_keee, 0, sizeof(ethtool_keee));
265 	phy_ethtool_set_eee(adapter->phydev, &ethtool_keee);
266 
267 	adapter->phydev->irq = PHY_MAC_INTERRUPT;
268 	phy_start(adapter->phydev);
269 
270 	return 0;
271 }
272 
tsnep_phy_close(struct tsnep_adapter * adapter)273 static void tsnep_phy_close(struct tsnep_adapter *adapter)
274 {
275 	phy_stop(adapter->netdev->phydev);
276 	phy_disconnect(adapter->netdev->phydev);
277 }
278 
tsnep_tx_ring_cleanup(struct tsnep_tx * tx)279 static void tsnep_tx_ring_cleanup(struct tsnep_tx *tx)
280 {
281 	struct device *dmadev = tx->adapter->dmadev;
282 	int i;
283 
284 	memset(tx->entry, 0, sizeof(tx->entry));
285 
286 	for (i = 0; i < TSNEP_RING_PAGE_COUNT; i++) {
287 		if (tx->page[i]) {
288 			dma_free_coherent(dmadev, PAGE_SIZE, tx->page[i],
289 					  tx->page_dma[i]);
290 			tx->page[i] = NULL;
291 			tx->page_dma[i] = 0;
292 		}
293 	}
294 }
295 
tsnep_tx_ring_create(struct tsnep_tx * tx)296 static int tsnep_tx_ring_create(struct tsnep_tx *tx)
297 {
298 	struct device *dmadev = tx->adapter->dmadev;
299 	struct tsnep_tx_entry *entry;
300 	struct tsnep_tx_entry *next_entry;
301 	int i, j;
302 	int retval;
303 
304 	for (i = 0; i < TSNEP_RING_PAGE_COUNT; i++) {
305 		tx->page[i] =
306 			dma_alloc_coherent(dmadev, PAGE_SIZE, &tx->page_dma[i],
307 					   GFP_KERNEL);
308 		if (!tx->page[i]) {
309 			retval = -ENOMEM;
310 			goto alloc_failed;
311 		}
312 		for (j = 0; j < TSNEP_RING_ENTRIES_PER_PAGE; j++) {
313 			entry = &tx->entry[TSNEP_RING_ENTRIES_PER_PAGE * i + j];
314 			entry->desc_wb = (struct tsnep_tx_desc_wb *)
315 				(((u8 *)tx->page[i]) + TSNEP_DESC_SIZE * j);
316 			entry->desc = (struct tsnep_tx_desc *)
317 				(((u8 *)entry->desc_wb) + TSNEP_DESC_OFFSET);
318 			entry->desc_dma = tx->page_dma[i] + TSNEP_DESC_SIZE * j;
319 			entry->owner_user_flag = false;
320 		}
321 	}
322 	for (i = 0; i < TSNEP_RING_SIZE; i++) {
323 		entry = &tx->entry[i];
324 		next_entry = &tx->entry[(i + 1) & TSNEP_RING_MASK];
325 		entry->desc->next = __cpu_to_le64(next_entry->desc_dma);
326 	}
327 
328 	return 0;
329 
330 alloc_failed:
331 	tsnep_tx_ring_cleanup(tx);
332 	return retval;
333 }
334 
tsnep_tx_init(struct tsnep_tx * tx)335 static void tsnep_tx_init(struct tsnep_tx *tx)
336 {
337 	dma_addr_t dma;
338 
339 	dma = tx->entry[0].desc_dma | TSNEP_RESET_OWNER_COUNTER;
340 	iowrite32(DMA_ADDR_LOW(dma), tx->addr + TSNEP_TX_DESC_ADDR_LOW);
341 	iowrite32(DMA_ADDR_HIGH(dma), tx->addr + TSNEP_TX_DESC_ADDR_HIGH);
342 	tx->write = 0;
343 	tx->read = 0;
344 	tx->owner_counter = 1;
345 	tx->increment_owner_counter = TSNEP_RING_SIZE - 1;
346 }
347 
tsnep_tx_enable(struct tsnep_tx * tx)348 static void tsnep_tx_enable(struct tsnep_tx *tx)
349 {
350 	struct netdev_queue *nq;
351 
352 	nq = netdev_get_tx_queue(tx->adapter->netdev, tx->queue_index);
353 
354 	__netif_tx_lock_bh(nq);
355 	netif_tx_wake_queue(nq);
356 	__netif_tx_unlock_bh(nq);
357 }
358 
tsnep_tx_disable(struct tsnep_tx * tx,struct napi_struct * napi)359 static void tsnep_tx_disable(struct tsnep_tx *tx, struct napi_struct *napi)
360 {
361 	struct netdev_queue *nq;
362 	u32 val;
363 
364 	nq = netdev_get_tx_queue(tx->adapter->netdev, tx->queue_index);
365 
366 	__netif_tx_lock_bh(nq);
367 	netif_tx_stop_queue(nq);
368 	__netif_tx_unlock_bh(nq);
369 
370 	/* wait until TX is done in hardware */
371 	readx_poll_timeout(ioread32, tx->addr + TSNEP_CONTROL, val,
372 			   ((val & TSNEP_CONTROL_TX_ENABLE) == 0), 10000,
373 			   1000000);
374 
375 	/* wait until TX is also done in software */
376 	while (READ_ONCE(tx->read) != tx->write) {
377 		napi_schedule(napi);
378 		napi_synchronize(napi);
379 	}
380 }
381 
tsnep_tx_activate(struct tsnep_tx * tx,int index,int length,bool last)382 static void tsnep_tx_activate(struct tsnep_tx *tx, int index, int length,
383 			      bool last)
384 {
385 	struct tsnep_tx_entry *entry = &tx->entry[index];
386 
387 	entry->properties = 0;
388 	/* xdpf and zc are union with skb */
389 	if (entry->skb) {
390 		entry->properties = length & TSNEP_DESC_LENGTH_MASK;
391 		entry->properties |= TSNEP_DESC_INTERRUPT_FLAG;
392 		if ((entry->type & TSNEP_TX_TYPE_SKB_TSTAMP) == TSNEP_TX_TYPE_SKB_TSTAMP)
393 			entry->properties |= TSNEP_DESC_EXTENDED_WRITEBACK_FLAG;
394 
395 		/* toggle user flag to prevent false acknowledge
396 		 *
397 		 * Only the first fragment is acknowledged. For all other
398 		 * fragments no acknowledge is done and the last written owner
399 		 * counter stays in the writeback descriptor. Therefore, it is
400 		 * possible that the last written owner counter is identical to
401 		 * the new incremented owner counter and a false acknowledge is
402 		 * detected before the real acknowledge has been done by
403 		 * hardware.
404 		 *
405 		 * The user flag is used to prevent this situation. The user
406 		 * flag is copied to the writeback descriptor by the hardware
407 		 * and is used as additional acknowledge data. By toggeling the
408 		 * user flag only for the first fragment (which is
409 		 * acknowledged), it is guaranteed that the last acknowledge
410 		 * done for this descriptor has used a different user flag and
411 		 * cannot be detected as false acknowledge.
412 		 */
413 		entry->owner_user_flag = !entry->owner_user_flag;
414 	}
415 	if (last)
416 		entry->properties |= TSNEP_TX_DESC_LAST_FRAGMENT_FLAG;
417 	if (index == tx->increment_owner_counter) {
418 		tx->owner_counter++;
419 		if (tx->owner_counter == 4)
420 			tx->owner_counter = 1;
421 		tx->increment_owner_counter--;
422 		if (tx->increment_owner_counter < 0)
423 			tx->increment_owner_counter = TSNEP_RING_SIZE - 1;
424 	}
425 	entry->properties |=
426 		(tx->owner_counter << TSNEP_DESC_OWNER_COUNTER_SHIFT) &
427 		TSNEP_DESC_OWNER_COUNTER_MASK;
428 	if (entry->owner_user_flag)
429 		entry->properties |= TSNEP_TX_DESC_OWNER_USER_FLAG;
430 	entry->desc->more_properties =
431 		__cpu_to_le32(entry->len & TSNEP_DESC_LENGTH_MASK);
432 	if (entry->type & TSNEP_TX_TYPE_INLINE)
433 		entry->properties |= TSNEP_TX_DESC_DATA_AFTER_DESC_FLAG;
434 
435 	/* descriptor properties shall be written last, because valid data is
436 	 * signaled there
437 	 */
438 	dma_wmb();
439 
440 	entry->desc->properties = __cpu_to_le32(entry->properties);
441 }
442 
tsnep_tx_desc_available(struct tsnep_tx * tx)443 static int tsnep_tx_desc_available(struct tsnep_tx *tx)
444 {
445 	if (tx->read <= tx->write)
446 		return TSNEP_RING_SIZE - tx->write + tx->read - 1;
447 	else
448 		return tx->read - tx->write - 1;
449 }
450 
tsnep_tx_map_frag(skb_frag_t * frag,struct tsnep_tx_entry * entry,struct device * dmadev,dma_addr_t * dma)451 static int tsnep_tx_map_frag(skb_frag_t *frag, struct tsnep_tx_entry *entry,
452 			     struct device *dmadev, dma_addr_t *dma)
453 {
454 	unsigned int len;
455 	int mapped;
456 
457 	len = skb_frag_size(frag);
458 	if (likely(len > TSNEP_DESC_SIZE_DATA_AFTER_INLINE)) {
459 		*dma = skb_frag_dma_map(dmadev, frag, 0, len, DMA_TO_DEVICE);
460 		if (dma_mapping_error(dmadev, *dma))
461 			return -ENOMEM;
462 		entry->type = TSNEP_TX_TYPE_SKB_FRAG_MAP_PAGE;
463 		mapped = 1;
464 	} else {
465 		void *fragdata = skb_frag_address_safe(frag);
466 
467 		if (likely(fragdata)) {
468 			memcpy(&entry->desc->tx, fragdata, len);
469 		} else {
470 			struct page *page = skb_frag_page(frag);
471 
472 			fragdata = kmap_local_page(page);
473 			memcpy(&entry->desc->tx, fragdata + skb_frag_off(frag),
474 			       len);
475 			kunmap_local(fragdata);
476 		}
477 		entry->type = TSNEP_TX_TYPE_SKB_FRAG_INLINE;
478 		mapped = 0;
479 	}
480 
481 	return mapped;
482 }
483 
tsnep_tx_map(struct sk_buff * skb,struct tsnep_tx * tx,int count,bool do_tstamp)484 static int tsnep_tx_map(struct sk_buff *skb, struct tsnep_tx *tx, int count,
485 			bool do_tstamp)
486 {
487 	struct device *dmadev = tx->adapter->dmadev;
488 	struct tsnep_tx_entry *entry;
489 	unsigned int len;
490 	int map_len = 0;
491 	dma_addr_t dma;
492 	int i, mapped;
493 
494 	for (i = 0; i < count; i++) {
495 		entry = &tx->entry[(tx->write + i) & TSNEP_RING_MASK];
496 
497 		if (!i) {
498 			len = skb_headlen(skb);
499 			if (likely(len > TSNEP_DESC_SIZE_DATA_AFTER_INLINE)) {
500 				dma = dma_map_single(dmadev, skb->data, len,
501 						     DMA_TO_DEVICE);
502 				if (dma_mapping_error(dmadev, dma))
503 					return -ENOMEM;
504 				entry->type = TSNEP_TX_TYPE_SKB_MAP;
505 				mapped = 1;
506 			} else {
507 				memcpy(&entry->desc->tx, skb->data, len);
508 				entry->type = TSNEP_TX_TYPE_SKB_INLINE;
509 				mapped = 0;
510 			}
511 
512 			if (do_tstamp)
513 				entry->type |= TSNEP_TX_TYPE_TSTAMP;
514 		} else {
515 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i - 1];
516 
517 			len = skb_frag_size(frag);
518 			mapped = tsnep_tx_map_frag(frag, entry, dmadev, &dma);
519 			if (mapped < 0)
520 				return mapped;
521 		}
522 
523 		entry->len = len;
524 		if (likely(mapped)) {
525 			dma_unmap_addr_set(entry, dma, dma);
526 			entry->desc->tx = __cpu_to_le64(dma);
527 		}
528 
529 		map_len += len;
530 	}
531 
532 	return map_len;
533 }
534 
tsnep_tx_unmap(struct tsnep_tx * tx,int index,int count)535 static int tsnep_tx_unmap(struct tsnep_tx *tx, int index, int count)
536 {
537 	struct device *dmadev = tx->adapter->dmadev;
538 	struct tsnep_tx_entry *entry;
539 	int map_len = 0;
540 	int i;
541 
542 	for (i = 0; i < count; i++) {
543 		entry = &tx->entry[(index + i) & TSNEP_RING_MASK];
544 
545 		if (entry->len) {
546 			if (entry->type & TSNEP_TX_TYPE_MAP)
547 				dma_unmap_single(dmadev,
548 						 dma_unmap_addr(entry, dma),
549 						 dma_unmap_len(entry, len),
550 						 DMA_TO_DEVICE);
551 			else if (entry->type & TSNEP_TX_TYPE_MAP_PAGE)
552 				dma_unmap_page(dmadev,
553 					       dma_unmap_addr(entry, dma),
554 					       dma_unmap_len(entry, len),
555 					       DMA_TO_DEVICE);
556 			map_len += entry->len;
557 			entry->len = 0;
558 		}
559 	}
560 
561 	return map_len;
562 }
563 
tsnep_xmit_frame_ring(struct sk_buff * skb,struct tsnep_tx * tx)564 static netdev_tx_t tsnep_xmit_frame_ring(struct sk_buff *skb,
565 					 struct tsnep_tx *tx)
566 {
567 	struct tsnep_tx_entry *entry;
568 	bool do_tstamp = false;
569 	int count = 1;
570 	int length;
571 	int retval;
572 	int i;
573 
574 	if (skb_shinfo(skb)->nr_frags > 0)
575 		count += skb_shinfo(skb)->nr_frags;
576 
577 	if (tsnep_tx_desc_available(tx) < count) {
578 		/* ring full, shall not happen because queue is stopped if full
579 		 * below
580 		 */
581 		netif_stop_subqueue(tx->adapter->netdev, tx->queue_index);
582 
583 		return NETDEV_TX_BUSY;
584 	}
585 
586 	entry = &tx->entry[tx->write];
587 	entry->skb = skb;
588 
589 	if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) &&
590 	    tx->adapter->hwtstamp_config.tx_type == HWTSTAMP_TX_ON) {
591 		skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
592 		do_tstamp = true;
593 	}
594 
595 	retval = tsnep_tx_map(skb, tx, count, do_tstamp);
596 	if (retval < 0) {
597 		tsnep_tx_unmap(tx, tx->write, count);
598 		dev_kfree_skb_any(entry->skb);
599 		entry->skb = NULL;
600 
601 		tx->dropped++;
602 
603 		return NETDEV_TX_OK;
604 	}
605 	length = retval;
606 
607 	for (i = 0; i < count; i++)
608 		tsnep_tx_activate(tx, (tx->write + i) & TSNEP_RING_MASK, length,
609 				  i == count - 1);
610 	tx->write = (tx->write + count) & TSNEP_RING_MASK;
611 
612 	skb_tx_timestamp(skb);
613 
614 	/* descriptor properties shall be valid before hardware is notified */
615 	dma_wmb();
616 
617 	iowrite32(TSNEP_CONTROL_TX_ENABLE, tx->addr + TSNEP_CONTROL);
618 
619 	if (tsnep_tx_desc_available(tx) < (MAX_SKB_FRAGS + 1)) {
620 		/* ring can get full with next frame */
621 		netif_stop_subqueue(tx->adapter->netdev, tx->queue_index);
622 	}
623 
624 	return NETDEV_TX_OK;
625 }
626 
tsnep_xdp_tx_map(struct xdp_frame * xdpf,struct tsnep_tx * tx,struct skb_shared_info * shinfo,int count,u32 type)627 static int tsnep_xdp_tx_map(struct xdp_frame *xdpf, struct tsnep_tx *tx,
628 			    struct skb_shared_info *shinfo, int count, u32 type)
629 {
630 	struct device *dmadev = tx->adapter->dmadev;
631 	struct tsnep_tx_entry *entry;
632 	struct page *page;
633 	skb_frag_t *frag;
634 	unsigned int len;
635 	int map_len = 0;
636 	dma_addr_t dma;
637 	void *data;
638 	int i;
639 
640 	frag = NULL;
641 	len = xdpf->len;
642 	for (i = 0; i < count; i++) {
643 		entry = &tx->entry[(tx->write + i) & TSNEP_RING_MASK];
644 		if (type & TSNEP_TX_TYPE_XDP_NDO) {
645 			data = unlikely(frag) ? skb_frag_address(frag) :
646 						xdpf->data;
647 			dma = dma_map_single(dmadev, data, len, DMA_TO_DEVICE);
648 			if (dma_mapping_error(dmadev, dma))
649 				return -ENOMEM;
650 
651 			entry->type = TSNEP_TX_TYPE_XDP_NDO_MAP_PAGE;
652 		} else {
653 			page = unlikely(frag) ? skb_frag_page(frag) :
654 						virt_to_page(xdpf->data);
655 			dma = page_pool_get_dma_addr(page);
656 			if (unlikely(frag))
657 				dma += skb_frag_off(frag);
658 			else
659 				dma += sizeof(*xdpf) + xdpf->headroom;
660 			dma_sync_single_for_device(dmadev, dma, len,
661 						   DMA_BIDIRECTIONAL);
662 
663 			entry->type = TSNEP_TX_TYPE_XDP_TX;
664 		}
665 
666 		entry->len = len;
667 		dma_unmap_addr_set(entry, dma, dma);
668 
669 		entry->desc->tx = __cpu_to_le64(dma);
670 
671 		map_len += len;
672 
673 		if (i + 1 < count) {
674 			frag = &shinfo->frags[i];
675 			len = skb_frag_size(frag);
676 		}
677 	}
678 
679 	return map_len;
680 }
681 
682 /* This function requires __netif_tx_lock is held by the caller. */
tsnep_xdp_xmit_frame_ring(struct xdp_frame * xdpf,struct tsnep_tx * tx,u32 type)683 static bool tsnep_xdp_xmit_frame_ring(struct xdp_frame *xdpf,
684 				      struct tsnep_tx *tx, u32 type)
685 {
686 	struct skb_shared_info *shinfo = xdp_get_shared_info_from_frame(xdpf);
687 	struct tsnep_tx_entry *entry;
688 	int count, length, retval, i;
689 
690 	count = 1;
691 	if (unlikely(xdp_frame_has_frags(xdpf)))
692 		count += shinfo->nr_frags;
693 
694 	/* ensure that TX ring is not filled up by XDP, always MAX_SKB_FRAGS
695 	 * will be available for normal TX path and queue is stopped there if
696 	 * necessary
697 	 */
698 	if (tsnep_tx_desc_available(tx) < (MAX_SKB_FRAGS + 1 + count))
699 		return false;
700 
701 	entry = &tx->entry[tx->write];
702 	entry->xdpf = xdpf;
703 
704 	retval = tsnep_xdp_tx_map(xdpf, tx, shinfo, count, type);
705 	if (retval < 0) {
706 		tsnep_tx_unmap(tx, tx->write, count);
707 		entry->xdpf = NULL;
708 
709 		tx->dropped++;
710 
711 		return false;
712 	}
713 	length = retval;
714 
715 	for (i = 0; i < count; i++)
716 		tsnep_tx_activate(tx, (tx->write + i) & TSNEP_RING_MASK, length,
717 				  i == count - 1);
718 	tx->write = (tx->write + count) & TSNEP_RING_MASK;
719 
720 	/* descriptor properties shall be valid before hardware is notified */
721 	dma_wmb();
722 
723 	return true;
724 }
725 
tsnep_xdp_xmit_flush(struct tsnep_tx * tx)726 static void tsnep_xdp_xmit_flush(struct tsnep_tx *tx)
727 {
728 	iowrite32(TSNEP_CONTROL_TX_ENABLE, tx->addr + TSNEP_CONTROL);
729 }
730 
tsnep_xdp_xmit_back(struct tsnep_adapter * adapter,struct xdp_buff * xdp,struct netdev_queue * tx_nq,struct tsnep_tx * tx,bool zc)731 static bool tsnep_xdp_xmit_back(struct tsnep_adapter *adapter,
732 				struct xdp_buff *xdp,
733 				struct netdev_queue *tx_nq, struct tsnep_tx *tx,
734 				bool zc)
735 {
736 	struct xdp_frame *xdpf = xdp_convert_buff_to_frame(xdp);
737 	bool xmit;
738 	u32 type;
739 
740 	if (unlikely(!xdpf))
741 		return false;
742 
743 	/* no page pool for zero copy */
744 	if (zc)
745 		type = TSNEP_TX_TYPE_XDP_NDO;
746 	else
747 		type = TSNEP_TX_TYPE_XDP_TX;
748 
749 	__netif_tx_lock(tx_nq, smp_processor_id());
750 
751 	xmit = tsnep_xdp_xmit_frame_ring(xdpf, tx, type);
752 
753 	/* Avoid transmit queue timeout since we share it with the slow path */
754 	if (xmit)
755 		txq_trans_cond_update(tx_nq);
756 
757 	__netif_tx_unlock(tx_nq);
758 
759 	return xmit;
760 }
761 
tsnep_xdp_tx_map_zc(struct xdp_desc * xdpd,struct tsnep_tx * tx)762 static int tsnep_xdp_tx_map_zc(struct xdp_desc *xdpd, struct tsnep_tx *tx)
763 {
764 	struct tsnep_tx_entry *entry;
765 	dma_addr_t dma;
766 
767 	entry = &tx->entry[tx->write];
768 	entry->zc = true;
769 
770 	dma = xsk_buff_raw_get_dma(tx->xsk_pool, xdpd->addr);
771 	xsk_buff_raw_dma_sync_for_device(tx->xsk_pool, dma, xdpd->len);
772 
773 	entry->type = TSNEP_TX_TYPE_XSK;
774 	entry->len = xdpd->len;
775 
776 	entry->desc->tx = __cpu_to_le64(dma);
777 
778 	return xdpd->len;
779 }
780 
tsnep_xdp_xmit_frame_ring_zc(struct xdp_desc * xdpd,struct tsnep_tx * tx)781 static void tsnep_xdp_xmit_frame_ring_zc(struct xdp_desc *xdpd,
782 					 struct tsnep_tx *tx)
783 {
784 	int length;
785 
786 	length = tsnep_xdp_tx_map_zc(xdpd, tx);
787 
788 	tsnep_tx_activate(tx, tx->write, length, true);
789 	tx->write = (tx->write + 1) & TSNEP_RING_MASK;
790 }
791 
tsnep_xdp_xmit_zc(struct tsnep_tx * tx)792 static void tsnep_xdp_xmit_zc(struct tsnep_tx *tx)
793 {
794 	int desc_available = tsnep_tx_desc_available(tx);
795 	struct xdp_desc *descs = tx->xsk_pool->tx_descs;
796 	int batch, i;
797 
798 	/* ensure that TX ring is not filled up by XDP, always MAX_SKB_FRAGS
799 	 * will be available for normal TX path and queue is stopped there if
800 	 * necessary
801 	 */
802 	if (desc_available <= (MAX_SKB_FRAGS + 1))
803 		return;
804 	desc_available -= MAX_SKB_FRAGS + 1;
805 
806 	batch = xsk_tx_peek_release_desc_batch(tx->xsk_pool, desc_available);
807 	for (i = 0; i < batch; i++)
808 		tsnep_xdp_xmit_frame_ring_zc(&descs[i], tx);
809 
810 	if (batch) {
811 		/* descriptor properties shall be valid before hardware is
812 		 * notified
813 		 */
814 		dma_wmb();
815 
816 		tsnep_xdp_xmit_flush(tx);
817 	}
818 }
819 
tsnep_tx_poll(struct tsnep_tx * tx,int napi_budget)820 static bool tsnep_tx_poll(struct tsnep_tx *tx, int napi_budget)
821 {
822 	struct tsnep_tx_entry *entry;
823 	struct netdev_queue *nq;
824 	int xsk_frames = 0;
825 	int budget = 128;
826 	int length;
827 	int count;
828 
829 	nq = netdev_get_tx_queue(tx->adapter->netdev, tx->queue_index);
830 	__netif_tx_lock(nq, smp_processor_id());
831 
832 	do {
833 		if (tx->read == tx->write)
834 			break;
835 
836 		entry = &tx->entry[tx->read];
837 		if ((__le32_to_cpu(entry->desc_wb->properties) &
838 		     TSNEP_TX_DESC_OWNER_MASK) !=
839 		    (entry->properties & TSNEP_TX_DESC_OWNER_MASK))
840 			break;
841 
842 		/* descriptor properties shall be read first, because valid data
843 		 * is signaled there
844 		 */
845 		dma_rmb();
846 
847 		count = 1;
848 		if ((entry->type & TSNEP_TX_TYPE_SKB) &&
849 		    skb_shinfo(entry->skb)->nr_frags > 0)
850 			count += skb_shinfo(entry->skb)->nr_frags;
851 		else if ((entry->type & TSNEP_TX_TYPE_XDP) &&
852 			 xdp_frame_has_frags(entry->xdpf))
853 			count += xdp_get_shared_info_from_frame(entry->xdpf)->nr_frags;
854 
855 		length = tsnep_tx_unmap(tx, tx->read, count);
856 
857 		if (((entry->type & TSNEP_TX_TYPE_SKB_TSTAMP) == TSNEP_TX_TYPE_SKB_TSTAMP) &&
858 		    (__le32_to_cpu(entry->desc_wb->properties) &
859 		     TSNEP_DESC_EXTENDED_WRITEBACK_FLAG)) {
860 			struct skb_shared_hwtstamps hwtstamps;
861 			u64 timestamp;
862 
863 			if (skb_shinfo(entry->skb)->tx_flags &
864 			    SKBTX_HW_TSTAMP_USE_CYCLES)
865 				timestamp =
866 					__le64_to_cpu(entry->desc_wb->counter);
867 			else
868 				timestamp =
869 					__le64_to_cpu(entry->desc_wb->timestamp);
870 
871 			memset(&hwtstamps, 0, sizeof(hwtstamps));
872 			hwtstamps.hwtstamp = ns_to_ktime(timestamp);
873 
874 			skb_tstamp_tx(entry->skb, &hwtstamps);
875 		}
876 
877 		if (entry->type & TSNEP_TX_TYPE_SKB)
878 			napi_consume_skb(entry->skb, napi_budget);
879 		else if (entry->type & TSNEP_TX_TYPE_XDP)
880 			xdp_return_frame_rx_napi(entry->xdpf);
881 		else
882 			xsk_frames++;
883 		/* xdpf and zc are union with skb */
884 		entry->skb = NULL;
885 
886 		tx->read = (tx->read + count) & TSNEP_RING_MASK;
887 
888 		tx->packets++;
889 		tx->bytes += length + ETH_FCS_LEN;
890 
891 		budget--;
892 	} while (likely(budget));
893 
894 	if (tx->xsk_pool) {
895 		if (xsk_frames)
896 			xsk_tx_completed(tx->xsk_pool, xsk_frames);
897 		if (xsk_uses_need_wakeup(tx->xsk_pool))
898 			xsk_set_tx_need_wakeup(tx->xsk_pool);
899 		tsnep_xdp_xmit_zc(tx);
900 	}
901 
902 	if ((tsnep_tx_desc_available(tx) >= ((MAX_SKB_FRAGS + 1) * 2)) &&
903 	    netif_tx_queue_stopped(nq)) {
904 		netif_tx_wake_queue(nq);
905 	}
906 
907 	__netif_tx_unlock(nq);
908 
909 	return budget != 0;
910 }
911 
tsnep_tx_pending(struct tsnep_tx * tx)912 static bool tsnep_tx_pending(struct tsnep_tx *tx)
913 {
914 	struct tsnep_tx_entry *entry;
915 	struct netdev_queue *nq;
916 	bool pending = false;
917 
918 	nq = netdev_get_tx_queue(tx->adapter->netdev, tx->queue_index);
919 	__netif_tx_lock(nq, smp_processor_id());
920 
921 	if (tx->read != tx->write) {
922 		entry = &tx->entry[tx->read];
923 		if ((__le32_to_cpu(entry->desc_wb->properties) &
924 		     TSNEP_TX_DESC_OWNER_MASK) ==
925 		    (entry->properties & TSNEP_TX_DESC_OWNER_MASK))
926 			pending = true;
927 	}
928 
929 	__netif_tx_unlock(nq);
930 
931 	return pending;
932 }
933 
tsnep_tx_open(struct tsnep_tx * tx)934 static int tsnep_tx_open(struct tsnep_tx *tx)
935 {
936 	int retval;
937 
938 	retval = tsnep_tx_ring_create(tx);
939 	if (retval)
940 		return retval;
941 
942 	tsnep_tx_init(tx);
943 
944 	return 0;
945 }
946 
tsnep_tx_close(struct tsnep_tx * tx)947 static void tsnep_tx_close(struct tsnep_tx *tx)
948 {
949 	tsnep_tx_ring_cleanup(tx);
950 }
951 
tsnep_rx_ring_cleanup(struct tsnep_rx * rx)952 static void tsnep_rx_ring_cleanup(struct tsnep_rx *rx)
953 {
954 	struct device *dmadev = rx->adapter->dmadev;
955 	struct tsnep_rx_entry *entry;
956 	int i;
957 
958 	for (i = 0; i < TSNEP_RING_SIZE; i++) {
959 		entry = &rx->entry[i];
960 		if (!rx->xsk_pool && entry->page)
961 			page_pool_put_full_page(rx->page_pool, entry->page,
962 						false);
963 		if (rx->xsk_pool && entry->xdp)
964 			xsk_buff_free(entry->xdp);
965 		/* xdp is union with page */
966 		entry->page = NULL;
967 	}
968 
969 	if (rx->page_pool)
970 		page_pool_destroy(rx->page_pool);
971 
972 	memset(rx->entry, 0, sizeof(rx->entry));
973 
974 	for (i = 0; i < TSNEP_RING_PAGE_COUNT; i++) {
975 		if (rx->page[i]) {
976 			dma_free_coherent(dmadev, PAGE_SIZE, rx->page[i],
977 					  rx->page_dma[i]);
978 			rx->page[i] = NULL;
979 			rx->page_dma[i] = 0;
980 		}
981 	}
982 }
983 
tsnep_rx_ring_create(struct tsnep_rx * rx)984 static int tsnep_rx_ring_create(struct tsnep_rx *rx)
985 {
986 	struct device *dmadev = rx->adapter->dmadev;
987 	struct tsnep_rx_entry *entry;
988 	struct page_pool_params pp_params = { 0 };
989 	struct tsnep_rx_entry *next_entry;
990 	int i, j;
991 	int retval;
992 
993 	for (i = 0; i < TSNEP_RING_PAGE_COUNT; i++) {
994 		rx->page[i] =
995 			dma_alloc_coherent(dmadev, PAGE_SIZE, &rx->page_dma[i],
996 					   GFP_KERNEL);
997 		if (!rx->page[i]) {
998 			retval = -ENOMEM;
999 			goto failed;
1000 		}
1001 		for (j = 0; j < TSNEP_RING_ENTRIES_PER_PAGE; j++) {
1002 			entry = &rx->entry[TSNEP_RING_ENTRIES_PER_PAGE * i + j];
1003 			entry->desc_wb = (struct tsnep_rx_desc_wb *)
1004 				(((u8 *)rx->page[i]) + TSNEP_DESC_SIZE * j);
1005 			entry->desc = (struct tsnep_rx_desc *)
1006 				(((u8 *)entry->desc_wb) + TSNEP_DESC_OFFSET);
1007 			entry->desc_dma = rx->page_dma[i] + TSNEP_DESC_SIZE * j;
1008 		}
1009 	}
1010 
1011 	pp_params.flags = PP_FLAG_DMA_MAP | PP_FLAG_DMA_SYNC_DEV;
1012 	pp_params.order = 0;
1013 	pp_params.pool_size = TSNEP_RING_SIZE;
1014 	pp_params.nid = dev_to_node(dmadev);
1015 	pp_params.dev = dmadev;
1016 	pp_params.dma_dir = DMA_BIDIRECTIONAL;
1017 	pp_params.max_len = TSNEP_MAX_RX_BUF_SIZE;
1018 	pp_params.offset = TSNEP_RX_OFFSET;
1019 	rx->page_pool = page_pool_create(&pp_params);
1020 	if (IS_ERR(rx->page_pool)) {
1021 		retval = PTR_ERR(rx->page_pool);
1022 		rx->page_pool = NULL;
1023 		goto failed;
1024 	}
1025 
1026 	for (i = 0; i < TSNEP_RING_SIZE; i++) {
1027 		entry = &rx->entry[i];
1028 		next_entry = &rx->entry[(i + 1) & TSNEP_RING_MASK];
1029 		entry->desc->next = __cpu_to_le64(next_entry->desc_dma);
1030 	}
1031 
1032 	return 0;
1033 
1034 failed:
1035 	tsnep_rx_ring_cleanup(rx);
1036 	return retval;
1037 }
1038 
tsnep_rx_init(struct tsnep_rx * rx)1039 static void tsnep_rx_init(struct tsnep_rx *rx)
1040 {
1041 	dma_addr_t dma;
1042 
1043 	dma = rx->entry[0].desc_dma | TSNEP_RESET_OWNER_COUNTER;
1044 	iowrite32(DMA_ADDR_LOW(dma), rx->addr + TSNEP_RX_DESC_ADDR_LOW);
1045 	iowrite32(DMA_ADDR_HIGH(dma), rx->addr + TSNEP_RX_DESC_ADDR_HIGH);
1046 	rx->write = 0;
1047 	rx->read = 0;
1048 	rx->owner_counter = 1;
1049 	rx->increment_owner_counter = TSNEP_RING_SIZE - 1;
1050 }
1051 
tsnep_rx_enable(struct tsnep_rx * rx)1052 static void tsnep_rx_enable(struct tsnep_rx *rx)
1053 {
1054 	/* descriptor properties shall be valid before hardware is notified */
1055 	dma_wmb();
1056 
1057 	iowrite32(TSNEP_CONTROL_RX_ENABLE, rx->addr + TSNEP_CONTROL);
1058 }
1059 
tsnep_rx_disable(struct tsnep_rx * rx)1060 static void tsnep_rx_disable(struct tsnep_rx *rx)
1061 {
1062 	u32 val;
1063 
1064 	iowrite32(TSNEP_CONTROL_RX_DISABLE, rx->addr + TSNEP_CONTROL);
1065 	readx_poll_timeout(ioread32, rx->addr + TSNEP_CONTROL, val,
1066 			   ((val & TSNEP_CONTROL_RX_ENABLE) == 0), 10000,
1067 			   1000000);
1068 }
1069 
tsnep_rx_desc_available(struct tsnep_rx * rx)1070 static int tsnep_rx_desc_available(struct tsnep_rx *rx)
1071 {
1072 	if (rx->read <= rx->write)
1073 		return TSNEP_RING_SIZE - rx->write + rx->read - 1;
1074 	else
1075 		return rx->read - rx->write - 1;
1076 }
1077 
tsnep_rx_free_page_buffer(struct tsnep_rx * rx)1078 static void tsnep_rx_free_page_buffer(struct tsnep_rx *rx)
1079 {
1080 	struct page **page;
1081 
1082 	/* last entry of page_buffer is always zero, because ring cannot be
1083 	 * filled completely
1084 	 */
1085 	page = rx->page_buffer;
1086 	while (*page) {
1087 		page_pool_put_full_page(rx->page_pool, *page, false);
1088 		*page = NULL;
1089 		page++;
1090 	}
1091 }
1092 
tsnep_rx_alloc_page_buffer(struct tsnep_rx * rx)1093 static int tsnep_rx_alloc_page_buffer(struct tsnep_rx *rx)
1094 {
1095 	int i;
1096 
1097 	/* alloc for all ring entries except the last one, because ring cannot
1098 	 * be filled completely
1099 	 */
1100 	for (i = 0; i < TSNEP_RING_SIZE - 1; i++) {
1101 		rx->page_buffer[i] = page_pool_dev_alloc_pages(rx->page_pool);
1102 		if (!rx->page_buffer[i]) {
1103 			tsnep_rx_free_page_buffer(rx);
1104 
1105 			return -ENOMEM;
1106 		}
1107 	}
1108 
1109 	return 0;
1110 }
1111 
tsnep_rx_set_page(struct tsnep_rx * rx,struct tsnep_rx_entry * entry,struct page * page)1112 static void tsnep_rx_set_page(struct tsnep_rx *rx, struct tsnep_rx_entry *entry,
1113 			      struct page *page)
1114 {
1115 	entry->page = page;
1116 	entry->len = TSNEP_MAX_RX_BUF_SIZE;
1117 	entry->dma = page_pool_get_dma_addr(entry->page);
1118 	entry->desc->rx = __cpu_to_le64(entry->dma + TSNEP_RX_OFFSET);
1119 }
1120 
tsnep_rx_alloc_buffer(struct tsnep_rx * rx,int index)1121 static int tsnep_rx_alloc_buffer(struct tsnep_rx *rx, int index)
1122 {
1123 	struct tsnep_rx_entry *entry = &rx->entry[index];
1124 	struct page *page;
1125 
1126 	page = page_pool_dev_alloc_pages(rx->page_pool);
1127 	if (unlikely(!page))
1128 		return -ENOMEM;
1129 	tsnep_rx_set_page(rx, entry, page);
1130 
1131 	return 0;
1132 }
1133 
tsnep_rx_reuse_buffer(struct tsnep_rx * rx,int index)1134 static void tsnep_rx_reuse_buffer(struct tsnep_rx *rx, int index)
1135 {
1136 	struct tsnep_rx_entry *entry = &rx->entry[index];
1137 	struct tsnep_rx_entry *read = &rx->entry[rx->read];
1138 
1139 	tsnep_rx_set_page(rx, entry, read->page);
1140 	read->page = NULL;
1141 }
1142 
tsnep_rx_activate(struct tsnep_rx * rx,int index)1143 static void tsnep_rx_activate(struct tsnep_rx *rx, int index)
1144 {
1145 	struct tsnep_rx_entry *entry = &rx->entry[index];
1146 
1147 	/* TSNEP_MAX_RX_BUF_SIZE and TSNEP_XSK_RX_BUF_SIZE are multiple of 4 */
1148 	entry->properties = entry->len & TSNEP_DESC_LENGTH_MASK;
1149 	entry->properties |= TSNEP_DESC_INTERRUPT_FLAG;
1150 	if (index == rx->increment_owner_counter) {
1151 		rx->owner_counter++;
1152 		if (rx->owner_counter == 4)
1153 			rx->owner_counter = 1;
1154 		rx->increment_owner_counter--;
1155 		if (rx->increment_owner_counter < 0)
1156 			rx->increment_owner_counter = TSNEP_RING_SIZE - 1;
1157 	}
1158 	entry->properties |=
1159 		(rx->owner_counter << TSNEP_DESC_OWNER_COUNTER_SHIFT) &
1160 		TSNEP_DESC_OWNER_COUNTER_MASK;
1161 
1162 	/* descriptor properties shall be written last, because valid data is
1163 	 * signaled there
1164 	 */
1165 	dma_wmb();
1166 
1167 	entry->desc->properties = __cpu_to_le32(entry->properties);
1168 }
1169 
tsnep_rx_alloc(struct tsnep_rx * rx,int count,bool reuse)1170 static int tsnep_rx_alloc(struct tsnep_rx *rx, int count, bool reuse)
1171 {
1172 	bool alloc_failed = false;
1173 	int i, index;
1174 
1175 	for (i = 0; i < count && !alloc_failed; i++) {
1176 		index = (rx->write + i) & TSNEP_RING_MASK;
1177 
1178 		if (unlikely(tsnep_rx_alloc_buffer(rx, index))) {
1179 			rx->alloc_failed++;
1180 			alloc_failed = true;
1181 
1182 			/* reuse only if no other allocation was successful */
1183 			if (i == 0 && reuse)
1184 				tsnep_rx_reuse_buffer(rx, index);
1185 			else
1186 				break;
1187 		}
1188 
1189 		tsnep_rx_activate(rx, index);
1190 	}
1191 
1192 	if (i)
1193 		rx->write = (rx->write + i) & TSNEP_RING_MASK;
1194 
1195 	return i;
1196 }
1197 
tsnep_rx_refill(struct tsnep_rx * rx,int count,bool reuse)1198 static int tsnep_rx_refill(struct tsnep_rx *rx, int count, bool reuse)
1199 {
1200 	int desc_refilled;
1201 
1202 	desc_refilled = tsnep_rx_alloc(rx, count, reuse);
1203 	if (desc_refilled)
1204 		tsnep_rx_enable(rx);
1205 
1206 	return desc_refilled;
1207 }
1208 
tsnep_rx_set_xdp(struct tsnep_rx * rx,struct tsnep_rx_entry * entry,struct xdp_buff * xdp)1209 static void tsnep_rx_set_xdp(struct tsnep_rx *rx, struct tsnep_rx_entry *entry,
1210 			     struct xdp_buff *xdp)
1211 {
1212 	entry->xdp = xdp;
1213 	entry->len = TSNEP_XSK_RX_BUF_SIZE;
1214 	entry->dma = xsk_buff_xdp_get_dma(entry->xdp);
1215 	entry->desc->rx = __cpu_to_le64(entry->dma);
1216 }
1217 
tsnep_rx_reuse_buffer_zc(struct tsnep_rx * rx,int index)1218 static void tsnep_rx_reuse_buffer_zc(struct tsnep_rx *rx, int index)
1219 {
1220 	struct tsnep_rx_entry *entry = &rx->entry[index];
1221 	struct tsnep_rx_entry *read = &rx->entry[rx->read];
1222 
1223 	tsnep_rx_set_xdp(rx, entry, read->xdp);
1224 	read->xdp = NULL;
1225 }
1226 
tsnep_rx_alloc_zc(struct tsnep_rx * rx,int count,bool reuse)1227 static int tsnep_rx_alloc_zc(struct tsnep_rx *rx, int count, bool reuse)
1228 {
1229 	u32 allocated;
1230 	int i;
1231 
1232 	allocated = xsk_buff_alloc_batch(rx->xsk_pool, rx->xdp_batch, count);
1233 	for (i = 0; i < allocated; i++) {
1234 		int index = (rx->write + i) & TSNEP_RING_MASK;
1235 		struct tsnep_rx_entry *entry = &rx->entry[index];
1236 
1237 		tsnep_rx_set_xdp(rx, entry, rx->xdp_batch[i]);
1238 		tsnep_rx_activate(rx, index);
1239 	}
1240 	if (i == 0) {
1241 		rx->alloc_failed++;
1242 
1243 		if (reuse) {
1244 			tsnep_rx_reuse_buffer_zc(rx, rx->write);
1245 			tsnep_rx_activate(rx, rx->write);
1246 		}
1247 	}
1248 
1249 	if (i)
1250 		rx->write = (rx->write + i) & TSNEP_RING_MASK;
1251 
1252 	return i;
1253 }
1254 
tsnep_rx_free_zc(struct tsnep_rx * rx)1255 static void tsnep_rx_free_zc(struct tsnep_rx *rx)
1256 {
1257 	int i;
1258 
1259 	for (i = 0; i < TSNEP_RING_SIZE; i++) {
1260 		struct tsnep_rx_entry *entry = &rx->entry[i];
1261 
1262 		if (entry->xdp)
1263 			xsk_buff_free(entry->xdp);
1264 		entry->xdp = NULL;
1265 	}
1266 }
1267 
tsnep_rx_refill_zc(struct tsnep_rx * rx,int count,bool reuse)1268 static int tsnep_rx_refill_zc(struct tsnep_rx *rx, int count, bool reuse)
1269 {
1270 	int desc_refilled;
1271 
1272 	desc_refilled = tsnep_rx_alloc_zc(rx, count, reuse);
1273 	if (desc_refilled)
1274 		tsnep_rx_enable(rx);
1275 
1276 	return desc_refilled;
1277 }
1278 
tsnep_xsk_rx_need_wakeup(struct tsnep_rx * rx,int desc_available)1279 static void tsnep_xsk_rx_need_wakeup(struct tsnep_rx *rx, int desc_available)
1280 {
1281 	if (desc_available)
1282 		xsk_set_rx_need_wakeup(rx->xsk_pool);
1283 	else
1284 		xsk_clear_rx_need_wakeup(rx->xsk_pool);
1285 }
1286 
tsnep_xdp_run_prog(struct tsnep_rx * rx,struct bpf_prog * prog,struct xdp_buff * xdp,int * status,struct netdev_queue * tx_nq,struct tsnep_tx * tx)1287 static bool tsnep_xdp_run_prog(struct tsnep_rx *rx, struct bpf_prog *prog,
1288 			       struct xdp_buff *xdp, int *status,
1289 			       struct netdev_queue *tx_nq, struct tsnep_tx *tx)
1290 {
1291 	unsigned int length;
1292 	unsigned int sync;
1293 	u32 act;
1294 
1295 	length = xdp->data_end - xdp->data_hard_start - XDP_PACKET_HEADROOM;
1296 
1297 	act = bpf_prog_run_xdp(prog, xdp);
1298 	switch (act) {
1299 	case XDP_PASS:
1300 		return false;
1301 	case XDP_TX:
1302 		if (!tsnep_xdp_xmit_back(rx->adapter, xdp, tx_nq, tx, false))
1303 			goto out_failure;
1304 		*status |= TSNEP_XDP_TX;
1305 		return true;
1306 	case XDP_REDIRECT:
1307 		if (xdp_do_redirect(rx->adapter->netdev, xdp, prog) < 0)
1308 			goto out_failure;
1309 		*status |= TSNEP_XDP_REDIRECT;
1310 		return true;
1311 	default:
1312 		bpf_warn_invalid_xdp_action(rx->adapter->netdev, prog, act);
1313 		fallthrough;
1314 	case XDP_ABORTED:
1315 out_failure:
1316 		trace_xdp_exception(rx->adapter->netdev, prog, act);
1317 		fallthrough;
1318 	case XDP_DROP:
1319 		/* Due xdp_adjust_tail: DMA sync for_device cover max len CPU
1320 		 * touch
1321 		 */
1322 		sync = xdp->data_end - xdp->data_hard_start -
1323 		       XDP_PACKET_HEADROOM;
1324 		sync = max(sync, length);
1325 		page_pool_put_page(rx->page_pool, virt_to_head_page(xdp->data),
1326 				   sync, true);
1327 		return true;
1328 	}
1329 }
1330 
tsnep_xdp_run_prog_zc(struct tsnep_rx * rx,struct bpf_prog * prog,struct xdp_buff * xdp,int * status,struct netdev_queue * tx_nq,struct tsnep_tx * tx)1331 static bool tsnep_xdp_run_prog_zc(struct tsnep_rx *rx, struct bpf_prog *prog,
1332 				  struct xdp_buff *xdp, int *status,
1333 				  struct netdev_queue *tx_nq,
1334 				  struct tsnep_tx *tx)
1335 {
1336 	u32 act;
1337 
1338 	act = bpf_prog_run_xdp(prog, xdp);
1339 
1340 	/* XDP_REDIRECT is the main action for zero-copy */
1341 	if (likely(act == XDP_REDIRECT)) {
1342 		if (xdp_do_redirect(rx->adapter->netdev, xdp, prog) < 0)
1343 			goto out_failure;
1344 		*status |= TSNEP_XDP_REDIRECT;
1345 		return true;
1346 	}
1347 
1348 	switch (act) {
1349 	case XDP_PASS:
1350 		return false;
1351 	case XDP_TX:
1352 		if (!tsnep_xdp_xmit_back(rx->adapter, xdp, tx_nq, tx, true))
1353 			goto out_failure;
1354 		*status |= TSNEP_XDP_TX;
1355 		return true;
1356 	default:
1357 		bpf_warn_invalid_xdp_action(rx->adapter->netdev, prog, act);
1358 		fallthrough;
1359 	case XDP_ABORTED:
1360 out_failure:
1361 		trace_xdp_exception(rx->adapter->netdev, prog, act);
1362 		fallthrough;
1363 	case XDP_DROP:
1364 		xsk_buff_free(xdp);
1365 		return true;
1366 	}
1367 }
1368 
tsnep_finalize_xdp(struct tsnep_adapter * adapter,int status,struct netdev_queue * tx_nq,struct tsnep_tx * tx)1369 static void tsnep_finalize_xdp(struct tsnep_adapter *adapter, int status,
1370 			       struct netdev_queue *tx_nq, struct tsnep_tx *tx)
1371 {
1372 	if (status & TSNEP_XDP_TX) {
1373 		__netif_tx_lock(tx_nq, smp_processor_id());
1374 		tsnep_xdp_xmit_flush(tx);
1375 		__netif_tx_unlock(tx_nq);
1376 	}
1377 
1378 	if (status & TSNEP_XDP_REDIRECT)
1379 		xdp_do_flush();
1380 }
1381 
tsnep_build_skb(struct tsnep_rx * rx,struct page * page,int length)1382 static struct sk_buff *tsnep_build_skb(struct tsnep_rx *rx, struct page *page,
1383 				       int length)
1384 {
1385 	struct sk_buff *skb;
1386 
1387 	skb = napi_build_skb(page_address(page), PAGE_SIZE);
1388 	if (unlikely(!skb))
1389 		return NULL;
1390 
1391 	/* update pointers within the skb to store the data */
1392 	skb_reserve(skb, TSNEP_RX_OFFSET + TSNEP_RX_INLINE_METADATA_SIZE);
1393 	__skb_put(skb, length - ETH_FCS_LEN);
1394 
1395 	if (rx->adapter->hwtstamp_config.rx_filter == HWTSTAMP_FILTER_ALL) {
1396 		struct skb_shared_hwtstamps *hwtstamps = skb_hwtstamps(skb);
1397 		struct tsnep_rx_inline *rx_inline =
1398 			(struct tsnep_rx_inline *)(page_address(page) +
1399 						   TSNEP_RX_OFFSET);
1400 
1401 		skb_shinfo(skb)->tx_flags |=
1402 			SKBTX_HW_TSTAMP_NETDEV;
1403 		memset(hwtstamps, 0, sizeof(*hwtstamps));
1404 		hwtstamps->netdev_data = rx_inline;
1405 	}
1406 
1407 	skb_record_rx_queue(skb, rx->queue_index);
1408 	skb->protocol = eth_type_trans(skb, rx->adapter->netdev);
1409 
1410 	return skb;
1411 }
1412 
tsnep_rx_page(struct tsnep_rx * rx,struct napi_struct * napi,struct page * page,int length)1413 static void tsnep_rx_page(struct tsnep_rx *rx, struct napi_struct *napi,
1414 			  struct page *page, int length)
1415 {
1416 	struct sk_buff *skb;
1417 
1418 	skb = tsnep_build_skb(rx, page, length);
1419 	if (skb) {
1420 		skb_mark_for_recycle(skb);
1421 
1422 		rx->packets++;
1423 		rx->bytes += length;
1424 		if (skb->pkt_type == PACKET_MULTICAST)
1425 			rx->multicast++;
1426 
1427 		napi_gro_receive(napi, skb);
1428 	} else {
1429 		page_pool_recycle_direct(rx->page_pool, page);
1430 
1431 		rx->dropped++;
1432 	}
1433 }
1434 
tsnep_rx_poll(struct tsnep_rx * rx,struct napi_struct * napi,int budget)1435 static int tsnep_rx_poll(struct tsnep_rx *rx, struct napi_struct *napi,
1436 			 int budget)
1437 {
1438 	struct device *dmadev = rx->adapter->dmadev;
1439 	enum dma_data_direction dma_dir;
1440 	struct tsnep_rx_entry *entry;
1441 	struct netdev_queue *tx_nq;
1442 	struct bpf_prog *prog;
1443 	struct xdp_buff xdp;
1444 	struct tsnep_tx *tx;
1445 	int desc_available;
1446 	int xdp_status = 0;
1447 	int done = 0;
1448 	int length;
1449 
1450 	desc_available = tsnep_rx_desc_available(rx);
1451 	dma_dir = page_pool_get_dma_dir(rx->page_pool);
1452 	prog = READ_ONCE(rx->adapter->xdp_prog);
1453 	if (prog) {
1454 		tx_nq = netdev_get_tx_queue(rx->adapter->netdev,
1455 					    rx->tx_queue_index);
1456 		tx = &rx->adapter->tx[rx->tx_queue_index];
1457 
1458 		xdp_init_buff(&xdp, PAGE_SIZE, &rx->xdp_rxq);
1459 	}
1460 
1461 	while (likely(done < budget) && (rx->read != rx->write)) {
1462 		entry = &rx->entry[rx->read];
1463 		if ((__le32_to_cpu(entry->desc_wb->properties) &
1464 		     TSNEP_DESC_OWNER_COUNTER_MASK) !=
1465 		    (entry->properties & TSNEP_DESC_OWNER_COUNTER_MASK))
1466 			break;
1467 		done++;
1468 
1469 		if (desc_available >= TSNEP_RING_RX_REFILL) {
1470 			bool reuse = desc_available >= TSNEP_RING_RX_REUSE;
1471 
1472 			desc_available -= tsnep_rx_refill(rx, desc_available,
1473 							  reuse);
1474 			if (!entry->page) {
1475 				/* buffer has been reused for refill to prevent
1476 				 * empty RX ring, thus buffer cannot be used for
1477 				 * RX processing
1478 				 */
1479 				rx->read = (rx->read + 1) & TSNEP_RING_MASK;
1480 				desc_available++;
1481 
1482 				rx->dropped++;
1483 
1484 				continue;
1485 			}
1486 		}
1487 
1488 		/* descriptor properties shall be read first, because valid data
1489 		 * is signaled there
1490 		 */
1491 		dma_rmb();
1492 
1493 		prefetch(page_address(entry->page) + TSNEP_RX_OFFSET);
1494 		length = __le32_to_cpu(entry->desc_wb->properties) &
1495 			 TSNEP_DESC_LENGTH_MASK;
1496 		dma_sync_single_range_for_cpu(dmadev, entry->dma,
1497 					      TSNEP_RX_OFFSET, length, dma_dir);
1498 
1499 		/* RX metadata with timestamps is in front of actual data,
1500 		 * subtract metadata size to get length of actual data and
1501 		 * consider metadata size as offset of actual data during RX
1502 		 * processing
1503 		 */
1504 		length -= TSNEP_RX_INLINE_METADATA_SIZE;
1505 
1506 		rx->read = (rx->read + 1) & TSNEP_RING_MASK;
1507 		desc_available++;
1508 
1509 		if (prog) {
1510 			bool consume;
1511 
1512 			xdp_prepare_buff(&xdp, page_address(entry->page),
1513 					 XDP_PACKET_HEADROOM + TSNEP_RX_INLINE_METADATA_SIZE,
1514 					 length - ETH_FCS_LEN, false);
1515 
1516 			consume = tsnep_xdp_run_prog(rx, prog, &xdp,
1517 						     &xdp_status, tx_nq, tx);
1518 			if (consume) {
1519 				rx->packets++;
1520 				rx->bytes += length;
1521 
1522 				entry->page = NULL;
1523 
1524 				continue;
1525 			}
1526 		}
1527 
1528 		tsnep_rx_page(rx, napi, entry->page, length);
1529 		entry->page = NULL;
1530 	}
1531 
1532 	if (xdp_status)
1533 		tsnep_finalize_xdp(rx->adapter, xdp_status, tx_nq, tx);
1534 
1535 	if (desc_available)
1536 		tsnep_rx_refill(rx, desc_available, false);
1537 
1538 	return done;
1539 }
1540 
tsnep_rx_poll_zc(struct tsnep_rx * rx,struct napi_struct * napi,int budget)1541 static int tsnep_rx_poll_zc(struct tsnep_rx *rx, struct napi_struct *napi,
1542 			    int budget)
1543 {
1544 	struct tsnep_rx_entry *entry;
1545 	struct netdev_queue *tx_nq;
1546 	struct bpf_prog *prog;
1547 	struct tsnep_tx *tx;
1548 	int desc_available;
1549 	int xdp_status = 0;
1550 	struct page *page;
1551 	int done = 0;
1552 	int length;
1553 
1554 	desc_available = tsnep_rx_desc_available(rx);
1555 	prog = READ_ONCE(rx->adapter->xdp_prog);
1556 	if (prog) {
1557 		tx_nq = netdev_get_tx_queue(rx->adapter->netdev,
1558 					    rx->tx_queue_index);
1559 		tx = &rx->adapter->tx[rx->tx_queue_index];
1560 	}
1561 
1562 	while (likely(done < budget) && (rx->read != rx->write)) {
1563 		entry = &rx->entry[rx->read];
1564 		if ((__le32_to_cpu(entry->desc_wb->properties) &
1565 		     TSNEP_DESC_OWNER_COUNTER_MASK) !=
1566 		    (entry->properties & TSNEP_DESC_OWNER_COUNTER_MASK))
1567 			break;
1568 		done++;
1569 
1570 		if (desc_available >= TSNEP_RING_RX_REFILL) {
1571 			bool reuse = desc_available >= TSNEP_RING_RX_REUSE;
1572 
1573 			desc_available -= tsnep_rx_refill_zc(rx, desc_available,
1574 							     reuse);
1575 			if (!entry->xdp) {
1576 				/* buffer has been reused for refill to prevent
1577 				 * empty RX ring, thus buffer cannot be used for
1578 				 * RX processing
1579 				 */
1580 				rx->read = (rx->read + 1) & TSNEP_RING_MASK;
1581 				desc_available++;
1582 
1583 				rx->dropped++;
1584 
1585 				continue;
1586 			}
1587 		}
1588 
1589 		/* descriptor properties shall be read first, because valid data
1590 		 * is signaled there
1591 		 */
1592 		dma_rmb();
1593 
1594 		prefetch(entry->xdp->data);
1595 		length = __le32_to_cpu(entry->desc_wb->properties) &
1596 			 TSNEP_DESC_LENGTH_MASK;
1597 		xsk_buff_set_size(entry->xdp, length - ETH_FCS_LEN);
1598 		xsk_buff_dma_sync_for_cpu(entry->xdp);
1599 
1600 		/* RX metadata with timestamps is in front of actual data,
1601 		 * subtract metadata size to get length of actual data and
1602 		 * consider metadata size as offset of actual data during RX
1603 		 * processing
1604 		 */
1605 		length -= TSNEP_RX_INLINE_METADATA_SIZE;
1606 
1607 		rx->read = (rx->read + 1) & TSNEP_RING_MASK;
1608 		desc_available++;
1609 
1610 		if (prog) {
1611 			bool consume;
1612 
1613 			entry->xdp->data += TSNEP_RX_INLINE_METADATA_SIZE;
1614 			entry->xdp->data_meta += TSNEP_RX_INLINE_METADATA_SIZE;
1615 
1616 			consume = tsnep_xdp_run_prog_zc(rx, prog, entry->xdp,
1617 							&xdp_status, tx_nq, tx);
1618 			if (consume) {
1619 				rx->packets++;
1620 				rx->bytes += length;
1621 
1622 				entry->xdp = NULL;
1623 
1624 				continue;
1625 			}
1626 		}
1627 
1628 		page = page_pool_dev_alloc_pages(rx->page_pool);
1629 		if (page) {
1630 			memcpy(page_address(page) + TSNEP_RX_OFFSET,
1631 			       entry->xdp->data - TSNEP_RX_INLINE_METADATA_SIZE,
1632 			       length + TSNEP_RX_INLINE_METADATA_SIZE);
1633 			tsnep_rx_page(rx, napi, page, length);
1634 		} else {
1635 			rx->dropped++;
1636 		}
1637 		xsk_buff_free(entry->xdp);
1638 		entry->xdp = NULL;
1639 	}
1640 
1641 	if (xdp_status)
1642 		tsnep_finalize_xdp(rx->adapter, xdp_status, tx_nq, tx);
1643 
1644 	if (desc_available)
1645 		desc_available -= tsnep_rx_refill_zc(rx, desc_available, false);
1646 
1647 	if (xsk_uses_need_wakeup(rx->xsk_pool)) {
1648 		tsnep_xsk_rx_need_wakeup(rx, desc_available);
1649 
1650 		return done;
1651 	}
1652 
1653 	return desc_available ? budget : done;
1654 }
1655 
tsnep_rx_pending(struct tsnep_rx * rx)1656 static bool tsnep_rx_pending(struct tsnep_rx *rx)
1657 {
1658 	struct tsnep_rx_entry *entry;
1659 
1660 	if (rx->read != rx->write) {
1661 		entry = &rx->entry[rx->read];
1662 		if ((__le32_to_cpu(entry->desc_wb->properties) &
1663 		     TSNEP_DESC_OWNER_COUNTER_MASK) ==
1664 		    (entry->properties & TSNEP_DESC_OWNER_COUNTER_MASK))
1665 			return true;
1666 	}
1667 
1668 	return false;
1669 }
1670 
tsnep_rx_open(struct tsnep_rx * rx)1671 static int tsnep_rx_open(struct tsnep_rx *rx)
1672 {
1673 	int desc_available;
1674 	int retval;
1675 
1676 	retval = tsnep_rx_ring_create(rx);
1677 	if (retval)
1678 		return retval;
1679 
1680 	tsnep_rx_init(rx);
1681 
1682 	desc_available = tsnep_rx_desc_available(rx);
1683 	if (rx->xsk_pool)
1684 		retval = tsnep_rx_alloc_zc(rx, desc_available, false);
1685 	else
1686 		retval = tsnep_rx_alloc(rx, desc_available, false);
1687 	if (retval != desc_available) {
1688 		retval = -ENOMEM;
1689 
1690 		goto alloc_failed;
1691 	}
1692 
1693 	/* prealloc pages to prevent allocation failures when XSK pool is
1694 	 * disabled at runtime
1695 	 */
1696 	if (rx->xsk_pool) {
1697 		retval = tsnep_rx_alloc_page_buffer(rx);
1698 		if (retval)
1699 			goto alloc_failed;
1700 	}
1701 
1702 	return 0;
1703 
1704 alloc_failed:
1705 	tsnep_rx_ring_cleanup(rx);
1706 	return retval;
1707 }
1708 
tsnep_rx_close(struct tsnep_rx * rx)1709 static void tsnep_rx_close(struct tsnep_rx *rx)
1710 {
1711 	if (rx->xsk_pool)
1712 		tsnep_rx_free_page_buffer(rx);
1713 
1714 	tsnep_rx_ring_cleanup(rx);
1715 }
1716 
tsnep_rx_reopen(struct tsnep_rx * rx)1717 static void tsnep_rx_reopen(struct tsnep_rx *rx)
1718 {
1719 	struct page **page = rx->page_buffer;
1720 	int i;
1721 
1722 	tsnep_rx_init(rx);
1723 
1724 	for (i = 0; i < TSNEP_RING_SIZE; i++) {
1725 		struct tsnep_rx_entry *entry = &rx->entry[i];
1726 
1727 		/* defined initial values for properties are required for
1728 		 * correct owner counter checking
1729 		 */
1730 		entry->desc->properties = 0;
1731 		entry->desc_wb->properties = 0;
1732 
1733 		/* prevent allocation failures by reusing kept pages */
1734 		if (*page) {
1735 			tsnep_rx_set_page(rx, entry, *page);
1736 			tsnep_rx_activate(rx, rx->write);
1737 			rx->write++;
1738 
1739 			*page = NULL;
1740 			page++;
1741 		}
1742 	}
1743 }
1744 
tsnep_rx_reopen_xsk(struct tsnep_rx * rx)1745 static void tsnep_rx_reopen_xsk(struct tsnep_rx *rx)
1746 {
1747 	struct page **page = rx->page_buffer;
1748 	u32 allocated;
1749 	int i;
1750 
1751 	tsnep_rx_init(rx);
1752 
1753 	/* alloc all ring entries except the last one, because ring cannot be
1754 	 * filled completely, as many buffers as possible is enough as wakeup is
1755 	 * done if new buffers are available
1756 	 */
1757 	allocated = xsk_buff_alloc_batch(rx->xsk_pool, rx->xdp_batch,
1758 					 TSNEP_RING_SIZE - 1);
1759 
1760 	for (i = 0; i < TSNEP_RING_SIZE; i++) {
1761 		struct tsnep_rx_entry *entry = &rx->entry[i];
1762 
1763 		/* keep pages to prevent allocation failures when xsk is
1764 		 * disabled
1765 		 */
1766 		if (entry->page) {
1767 			*page = entry->page;
1768 			entry->page = NULL;
1769 
1770 			page++;
1771 		}
1772 
1773 		/* defined initial values for properties are required for
1774 		 * correct owner counter checking
1775 		 */
1776 		entry->desc->properties = 0;
1777 		entry->desc_wb->properties = 0;
1778 
1779 		if (allocated) {
1780 			tsnep_rx_set_xdp(rx, entry,
1781 					 rx->xdp_batch[allocated - 1]);
1782 			tsnep_rx_activate(rx, rx->write);
1783 			rx->write++;
1784 
1785 			allocated--;
1786 		}
1787 	}
1788 
1789 	/* set need wakeup flag immediately if ring is not filled completely,
1790 	 * first polling would be too late as need wakeup signalisation would
1791 	 * be delayed for an indefinite time
1792 	 */
1793 	if (xsk_uses_need_wakeup(rx->xsk_pool))
1794 		tsnep_xsk_rx_need_wakeup(rx, tsnep_rx_desc_available(rx));
1795 }
1796 
tsnep_pending(struct tsnep_queue * queue)1797 static bool tsnep_pending(struct tsnep_queue *queue)
1798 {
1799 	if (queue->tx && tsnep_tx_pending(queue->tx))
1800 		return true;
1801 
1802 	if (queue->rx && tsnep_rx_pending(queue->rx))
1803 		return true;
1804 
1805 	return false;
1806 }
1807 
tsnep_poll(struct napi_struct * napi,int budget)1808 static int tsnep_poll(struct napi_struct *napi, int budget)
1809 {
1810 	struct tsnep_queue *queue = container_of(napi, struct tsnep_queue,
1811 						 napi);
1812 	bool complete = true;
1813 	int done = 0;
1814 
1815 	if (queue->tx)
1816 		complete = tsnep_tx_poll(queue->tx, budget);
1817 
1818 	/* handle case where we are called by netpoll with a budget of 0 */
1819 	if (unlikely(budget <= 0))
1820 		return budget;
1821 
1822 	if (queue->rx) {
1823 		done = queue->rx->xsk_pool ?
1824 		       tsnep_rx_poll_zc(queue->rx, napi, budget) :
1825 		       tsnep_rx_poll(queue->rx, napi, budget);
1826 		if (done >= budget)
1827 			complete = false;
1828 	}
1829 
1830 	/* if all work not completed, return budget and keep polling */
1831 	if (!complete)
1832 		return budget;
1833 
1834 	if (likely(napi_complete_done(napi, done))) {
1835 		tsnep_enable_irq(queue->adapter, queue->irq_mask);
1836 
1837 		/* reschedule if work is already pending, prevent rotten packets
1838 		 * which are transmitted or received after polling but before
1839 		 * interrupt enable
1840 		 */
1841 		if (tsnep_pending(queue)) {
1842 			tsnep_disable_irq(queue->adapter, queue->irq_mask);
1843 			napi_schedule(napi);
1844 		}
1845 	}
1846 
1847 	return min(done, budget - 1);
1848 }
1849 
tsnep_request_irq(struct tsnep_queue * queue,bool first)1850 static int tsnep_request_irq(struct tsnep_queue *queue, bool first)
1851 {
1852 	const char *name = netdev_name(queue->adapter->netdev);
1853 	irq_handler_t handler;
1854 	void *dev;
1855 	int retval;
1856 
1857 	if (first) {
1858 		sprintf(queue->name, "%s-mac", name);
1859 		handler = tsnep_irq;
1860 		dev = queue->adapter;
1861 	} else {
1862 		if (queue->tx && queue->rx)
1863 			snprintf(queue->name, sizeof(queue->name), "%s-txrx-%d",
1864 				 name, queue->rx->queue_index);
1865 		else if (queue->tx)
1866 			snprintf(queue->name, sizeof(queue->name), "%s-tx-%d",
1867 				 name, queue->tx->queue_index);
1868 		else
1869 			snprintf(queue->name, sizeof(queue->name), "%s-rx-%d",
1870 				 name, queue->rx->queue_index);
1871 		handler = tsnep_irq_txrx;
1872 		dev = queue;
1873 	}
1874 
1875 	retval = request_irq(queue->irq, handler, 0, queue->name, dev);
1876 	if (retval) {
1877 		/* if name is empty, then interrupt won't be freed */
1878 		memset(queue->name, 0, sizeof(queue->name));
1879 	}
1880 
1881 	return retval;
1882 }
1883 
tsnep_free_irq(struct tsnep_queue * queue,bool first)1884 static void tsnep_free_irq(struct tsnep_queue *queue, bool first)
1885 {
1886 	void *dev;
1887 
1888 	if (!strlen(queue->name))
1889 		return;
1890 
1891 	if (first)
1892 		dev = queue->adapter;
1893 	else
1894 		dev = queue;
1895 
1896 	free_irq(queue->irq, dev);
1897 	memset(queue->name, 0, sizeof(queue->name));
1898 }
1899 
tsnep_queue_close(struct tsnep_queue * queue,bool first)1900 static void tsnep_queue_close(struct tsnep_queue *queue, bool first)
1901 {
1902 	struct tsnep_rx *rx = queue->rx;
1903 
1904 	tsnep_free_irq(queue, first);
1905 
1906 	if (rx) {
1907 		if (xdp_rxq_info_is_reg(&rx->xdp_rxq))
1908 			xdp_rxq_info_unreg(&rx->xdp_rxq);
1909 		if (xdp_rxq_info_is_reg(&rx->xdp_rxq_zc))
1910 			xdp_rxq_info_unreg(&rx->xdp_rxq_zc);
1911 	}
1912 
1913 	netif_napi_del(&queue->napi);
1914 }
1915 
tsnep_queue_open(struct tsnep_adapter * adapter,struct tsnep_queue * queue,bool first)1916 static int tsnep_queue_open(struct tsnep_adapter *adapter,
1917 			    struct tsnep_queue *queue, bool first)
1918 {
1919 	struct tsnep_rx *rx = queue->rx;
1920 	struct tsnep_tx *tx = queue->tx;
1921 	int retval;
1922 
1923 	netif_napi_add(adapter->netdev, &queue->napi, tsnep_poll);
1924 
1925 	if (rx) {
1926 		/* choose TX queue for XDP_TX */
1927 		if (tx)
1928 			rx->tx_queue_index = tx->queue_index;
1929 		else if (rx->queue_index < adapter->num_tx_queues)
1930 			rx->tx_queue_index = rx->queue_index;
1931 		else
1932 			rx->tx_queue_index = 0;
1933 
1934 		/* prepare both memory models to eliminate possible registration
1935 		 * errors when memory model is switched between page pool and
1936 		 * XSK pool during runtime
1937 		 */
1938 		retval = xdp_rxq_info_reg(&rx->xdp_rxq, adapter->netdev,
1939 					  rx->queue_index, queue->napi.napi_id);
1940 		if (retval)
1941 			goto failed;
1942 		retval = xdp_rxq_info_reg_mem_model(&rx->xdp_rxq,
1943 						    MEM_TYPE_PAGE_POOL,
1944 						    rx->page_pool);
1945 		if (retval)
1946 			goto failed;
1947 		retval = xdp_rxq_info_reg(&rx->xdp_rxq_zc, adapter->netdev,
1948 					  rx->queue_index, queue->napi.napi_id);
1949 		if (retval)
1950 			goto failed;
1951 		retval = xdp_rxq_info_reg_mem_model(&rx->xdp_rxq_zc,
1952 						    MEM_TYPE_XSK_BUFF_POOL,
1953 						    NULL);
1954 		if (retval)
1955 			goto failed;
1956 		if (rx->xsk_pool)
1957 			xsk_pool_set_rxq_info(rx->xsk_pool, &rx->xdp_rxq_zc);
1958 	}
1959 
1960 	retval = tsnep_request_irq(queue, first);
1961 	if (retval) {
1962 		netif_err(adapter, drv, adapter->netdev,
1963 			  "can't get assigned irq %d.\n", queue->irq);
1964 		goto failed;
1965 	}
1966 
1967 	return 0;
1968 
1969 failed:
1970 	tsnep_queue_close(queue, first);
1971 
1972 	return retval;
1973 }
1974 
tsnep_queue_enable(struct tsnep_queue * queue)1975 static void tsnep_queue_enable(struct tsnep_queue *queue)
1976 {
1977 	napi_enable(&queue->napi);
1978 	tsnep_enable_irq(queue->adapter, queue->irq_mask);
1979 
1980 	if (queue->tx)
1981 		tsnep_tx_enable(queue->tx);
1982 
1983 	if (queue->rx)
1984 		tsnep_rx_enable(queue->rx);
1985 }
1986 
tsnep_queue_disable(struct tsnep_queue * queue)1987 static void tsnep_queue_disable(struct tsnep_queue *queue)
1988 {
1989 	if (queue->tx)
1990 		tsnep_tx_disable(queue->tx, &queue->napi);
1991 
1992 	napi_disable(&queue->napi);
1993 	tsnep_disable_irq(queue->adapter, queue->irq_mask);
1994 
1995 	/* disable RX after NAPI polling has been disabled, because RX can be
1996 	 * enabled during NAPI polling
1997 	 */
1998 	if (queue->rx)
1999 		tsnep_rx_disable(queue->rx);
2000 }
2001 
tsnep_netdev_open(struct net_device * netdev)2002 static int tsnep_netdev_open(struct net_device *netdev)
2003 {
2004 	struct tsnep_adapter *adapter = netdev_priv(netdev);
2005 	int i, retval;
2006 
2007 	for (i = 0; i < adapter->num_queues; i++) {
2008 		if (adapter->queue[i].tx) {
2009 			retval = tsnep_tx_open(adapter->queue[i].tx);
2010 			if (retval)
2011 				goto failed;
2012 		}
2013 		if (adapter->queue[i].rx) {
2014 			retval = tsnep_rx_open(adapter->queue[i].rx);
2015 			if (retval)
2016 				goto failed;
2017 		}
2018 
2019 		retval = tsnep_queue_open(adapter, &adapter->queue[i], i == 0);
2020 		if (retval)
2021 			goto failed;
2022 	}
2023 
2024 	retval = netif_set_real_num_tx_queues(adapter->netdev,
2025 					      adapter->num_tx_queues);
2026 	if (retval)
2027 		goto failed;
2028 	retval = netif_set_real_num_rx_queues(adapter->netdev,
2029 					      adapter->num_rx_queues);
2030 	if (retval)
2031 		goto failed;
2032 
2033 	tsnep_enable_irq(adapter, ECM_INT_LINK);
2034 	retval = tsnep_phy_open(adapter);
2035 	if (retval)
2036 		goto phy_failed;
2037 
2038 	for (i = 0; i < adapter->num_queues; i++)
2039 		tsnep_queue_enable(&adapter->queue[i]);
2040 
2041 	return 0;
2042 
2043 phy_failed:
2044 	tsnep_disable_irq(adapter, ECM_INT_LINK);
2045 failed:
2046 	for (i = 0; i < adapter->num_queues; i++) {
2047 		tsnep_queue_close(&adapter->queue[i], i == 0);
2048 
2049 		if (adapter->queue[i].rx)
2050 			tsnep_rx_close(adapter->queue[i].rx);
2051 		if (adapter->queue[i].tx)
2052 			tsnep_tx_close(adapter->queue[i].tx);
2053 	}
2054 	return retval;
2055 }
2056 
tsnep_netdev_close(struct net_device * netdev)2057 static int tsnep_netdev_close(struct net_device *netdev)
2058 {
2059 	struct tsnep_adapter *adapter = netdev_priv(netdev);
2060 	int i;
2061 
2062 	tsnep_disable_irq(adapter, ECM_INT_LINK);
2063 	tsnep_phy_close(adapter);
2064 
2065 	for (i = 0; i < adapter->num_queues; i++) {
2066 		tsnep_queue_disable(&adapter->queue[i]);
2067 
2068 		tsnep_queue_close(&adapter->queue[i], i == 0);
2069 
2070 		if (adapter->queue[i].rx)
2071 			tsnep_rx_close(adapter->queue[i].rx);
2072 		if (adapter->queue[i].tx)
2073 			tsnep_tx_close(adapter->queue[i].tx);
2074 	}
2075 
2076 	return 0;
2077 }
2078 
tsnep_enable_xsk(struct tsnep_queue * queue,struct xsk_buff_pool * pool)2079 int tsnep_enable_xsk(struct tsnep_queue *queue, struct xsk_buff_pool *pool)
2080 {
2081 	bool running = netif_running(queue->adapter->netdev);
2082 	u32 frame_size;
2083 
2084 	frame_size = xsk_pool_get_rx_frame_size(pool);
2085 	if (frame_size < TSNEP_XSK_RX_BUF_SIZE)
2086 		return -EOPNOTSUPP;
2087 
2088 	queue->rx->page_buffer = kcalloc(TSNEP_RING_SIZE,
2089 					 sizeof(*queue->rx->page_buffer),
2090 					 GFP_KERNEL);
2091 	if (!queue->rx->page_buffer)
2092 		return -ENOMEM;
2093 	queue->rx->xdp_batch = kcalloc(TSNEP_RING_SIZE,
2094 				       sizeof(*queue->rx->xdp_batch),
2095 				       GFP_KERNEL);
2096 	if (!queue->rx->xdp_batch) {
2097 		kfree(queue->rx->page_buffer);
2098 		queue->rx->page_buffer = NULL;
2099 
2100 		return -ENOMEM;
2101 	}
2102 
2103 	xsk_pool_set_rxq_info(pool, &queue->rx->xdp_rxq_zc);
2104 
2105 	if (running)
2106 		tsnep_queue_disable(queue);
2107 
2108 	queue->tx->xsk_pool = pool;
2109 	queue->rx->xsk_pool = pool;
2110 
2111 	if (running) {
2112 		tsnep_rx_reopen_xsk(queue->rx);
2113 		tsnep_queue_enable(queue);
2114 	}
2115 
2116 	return 0;
2117 }
2118 
tsnep_disable_xsk(struct tsnep_queue * queue)2119 void tsnep_disable_xsk(struct tsnep_queue *queue)
2120 {
2121 	bool running = netif_running(queue->adapter->netdev);
2122 
2123 	if (running)
2124 		tsnep_queue_disable(queue);
2125 
2126 	tsnep_rx_free_zc(queue->rx);
2127 
2128 	queue->rx->xsk_pool = NULL;
2129 	queue->tx->xsk_pool = NULL;
2130 
2131 	if (running) {
2132 		tsnep_rx_reopen(queue->rx);
2133 		tsnep_queue_enable(queue);
2134 	}
2135 
2136 	kfree(queue->rx->xdp_batch);
2137 	queue->rx->xdp_batch = NULL;
2138 	kfree(queue->rx->page_buffer);
2139 	queue->rx->page_buffer = NULL;
2140 }
2141 
tsnep_netdev_xmit_frame(struct sk_buff * skb,struct net_device * netdev)2142 static netdev_tx_t tsnep_netdev_xmit_frame(struct sk_buff *skb,
2143 					   struct net_device *netdev)
2144 {
2145 	struct tsnep_adapter *adapter = netdev_priv(netdev);
2146 	u16 queue_mapping = skb_get_queue_mapping(skb);
2147 
2148 	if (queue_mapping >= adapter->num_tx_queues)
2149 		queue_mapping = 0;
2150 
2151 	return tsnep_xmit_frame_ring(skb, &adapter->tx[queue_mapping]);
2152 }
2153 
tsnep_netdev_ioctl(struct net_device * netdev,struct ifreq * ifr,int cmd)2154 static int tsnep_netdev_ioctl(struct net_device *netdev, struct ifreq *ifr,
2155 			      int cmd)
2156 {
2157 	if (!netif_running(netdev))
2158 		return -EINVAL;
2159 	if (cmd == SIOCSHWTSTAMP || cmd == SIOCGHWTSTAMP)
2160 		return tsnep_ptp_ioctl(netdev, ifr, cmd);
2161 	return phy_mii_ioctl(netdev->phydev, ifr, cmd);
2162 }
2163 
tsnep_netdev_set_multicast(struct net_device * netdev)2164 static void tsnep_netdev_set_multicast(struct net_device *netdev)
2165 {
2166 	struct tsnep_adapter *adapter = netdev_priv(netdev);
2167 
2168 	u16 rx_filter = 0;
2169 
2170 	/* configured MAC address and broadcasts are never filtered */
2171 	if (netdev->flags & IFF_PROMISC) {
2172 		rx_filter |= TSNEP_RX_FILTER_ACCEPT_ALL_MULTICASTS;
2173 		rx_filter |= TSNEP_RX_FILTER_ACCEPT_ALL_UNICASTS;
2174 	} else if (!netdev_mc_empty(netdev) || (netdev->flags & IFF_ALLMULTI)) {
2175 		rx_filter |= TSNEP_RX_FILTER_ACCEPT_ALL_MULTICASTS;
2176 	}
2177 	iowrite16(rx_filter, adapter->addr + TSNEP_RX_FILTER);
2178 }
2179 
tsnep_netdev_get_stats64(struct net_device * netdev,struct rtnl_link_stats64 * stats)2180 static void tsnep_netdev_get_stats64(struct net_device *netdev,
2181 				     struct rtnl_link_stats64 *stats)
2182 {
2183 	struct tsnep_adapter *adapter = netdev_priv(netdev);
2184 	u32 reg;
2185 	u32 val;
2186 	int i;
2187 
2188 	for (i = 0; i < adapter->num_tx_queues; i++) {
2189 		stats->tx_packets += adapter->tx[i].packets;
2190 		stats->tx_bytes += adapter->tx[i].bytes;
2191 		stats->tx_dropped += adapter->tx[i].dropped;
2192 	}
2193 	for (i = 0; i < adapter->num_rx_queues; i++) {
2194 		stats->rx_packets += adapter->rx[i].packets;
2195 		stats->rx_bytes += adapter->rx[i].bytes;
2196 		stats->rx_dropped += adapter->rx[i].dropped;
2197 		stats->multicast += adapter->rx[i].multicast;
2198 
2199 		reg = ioread32(adapter->addr + TSNEP_QUEUE(i) +
2200 			       TSNEP_RX_STATISTIC);
2201 		val = (reg & TSNEP_RX_STATISTIC_NO_DESC_MASK) >>
2202 		      TSNEP_RX_STATISTIC_NO_DESC_SHIFT;
2203 		stats->rx_dropped += val;
2204 		val = (reg & TSNEP_RX_STATISTIC_BUFFER_TOO_SMALL_MASK) >>
2205 		      TSNEP_RX_STATISTIC_BUFFER_TOO_SMALL_SHIFT;
2206 		stats->rx_dropped += val;
2207 		val = (reg & TSNEP_RX_STATISTIC_FIFO_OVERFLOW_MASK) >>
2208 		      TSNEP_RX_STATISTIC_FIFO_OVERFLOW_SHIFT;
2209 		stats->rx_errors += val;
2210 		stats->rx_fifo_errors += val;
2211 		val = (reg & TSNEP_RX_STATISTIC_INVALID_FRAME_MASK) >>
2212 		      TSNEP_RX_STATISTIC_INVALID_FRAME_SHIFT;
2213 		stats->rx_errors += val;
2214 		stats->rx_frame_errors += val;
2215 	}
2216 
2217 	reg = ioread32(adapter->addr + ECM_STAT);
2218 	val = (reg & ECM_STAT_RX_ERR_MASK) >> ECM_STAT_RX_ERR_SHIFT;
2219 	stats->rx_errors += val;
2220 	val = (reg & ECM_STAT_INV_FRM_MASK) >> ECM_STAT_INV_FRM_SHIFT;
2221 	stats->rx_errors += val;
2222 	stats->rx_crc_errors += val;
2223 	val = (reg & ECM_STAT_FWD_RX_ERR_MASK) >> ECM_STAT_FWD_RX_ERR_SHIFT;
2224 	stats->rx_errors += val;
2225 }
2226 
tsnep_mac_set_address(struct tsnep_adapter * adapter,u8 * addr)2227 static void tsnep_mac_set_address(struct tsnep_adapter *adapter, u8 *addr)
2228 {
2229 	iowrite32(*(u32 *)addr, adapter->addr + TSNEP_MAC_ADDRESS_LOW);
2230 	iowrite16(*(u16 *)(addr + sizeof(u32)),
2231 		  adapter->addr + TSNEP_MAC_ADDRESS_HIGH);
2232 
2233 	ether_addr_copy(adapter->mac_address, addr);
2234 	netif_info(adapter, drv, adapter->netdev, "MAC address set to %pM\n",
2235 		   addr);
2236 }
2237 
tsnep_netdev_set_mac_address(struct net_device * netdev,void * addr)2238 static int tsnep_netdev_set_mac_address(struct net_device *netdev, void *addr)
2239 {
2240 	struct tsnep_adapter *adapter = netdev_priv(netdev);
2241 	struct sockaddr *sock_addr = addr;
2242 	int retval;
2243 
2244 	retval = eth_prepare_mac_addr_change(netdev, sock_addr);
2245 	if (retval)
2246 		return retval;
2247 	eth_hw_addr_set(netdev, sock_addr->sa_data);
2248 	tsnep_mac_set_address(adapter, sock_addr->sa_data);
2249 
2250 	return 0;
2251 }
2252 
tsnep_netdev_set_features(struct net_device * netdev,netdev_features_t features)2253 static int tsnep_netdev_set_features(struct net_device *netdev,
2254 				     netdev_features_t features)
2255 {
2256 	struct tsnep_adapter *adapter = netdev_priv(netdev);
2257 	netdev_features_t changed = netdev->features ^ features;
2258 	bool enable;
2259 	int retval = 0;
2260 
2261 	if (changed & NETIF_F_LOOPBACK) {
2262 		enable = !!(features & NETIF_F_LOOPBACK);
2263 		retval = tsnep_phy_loopback(adapter, enable);
2264 	}
2265 
2266 	return retval;
2267 }
2268 
tsnep_netdev_get_tstamp(struct net_device * netdev,const struct skb_shared_hwtstamps * hwtstamps,bool cycles)2269 static ktime_t tsnep_netdev_get_tstamp(struct net_device *netdev,
2270 				       const struct skb_shared_hwtstamps *hwtstamps,
2271 				       bool cycles)
2272 {
2273 	struct tsnep_rx_inline *rx_inline = hwtstamps->netdev_data;
2274 	u64 timestamp;
2275 
2276 	if (cycles)
2277 		timestamp = __le64_to_cpu(rx_inline->counter);
2278 	else
2279 		timestamp = __le64_to_cpu(rx_inline->timestamp);
2280 
2281 	return ns_to_ktime(timestamp);
2282 }
2283 
tsnep_netdev_bpf(struct net_device * dev,struct netdev_bpf * bpf)2284 static int tsnep_netdev_bpf(struct net_device *dev, struct netdev_bpf *bpf)
2285 {
2286 	struct tsnep_adapter *adapter = netdev_priv(dev);
2287 
2288 	switch (bpf->command) {
2289 	case XDP_SETUP_PROG:
2290 		return tsnep_xdp_setup_prog(adapter, bpf->prog, bpf->extack);
2291 	case XDP_SETUP_XSK_POOL:
2292 		return tsnep_xdp_setup_pool(adapter, bpf->xsk.pool,
2293 					    bpf->xsk.queue_id);
2294 	default:
2295 		return -EOPNOTSUPP;
2296 	}
2297 }
2298 
tsnep_xdp_get_tx(struct tsnep_adapter * adapter,u32 cpu)2299 static struct tsnep_tx *tsnep_xdp_get_tx(struct tsnep_adapter *adapter, u32 cpu)
2300 {
2301 	if (cpu >= TSNEP_MAX_QUEUES)
2302 		cpu &= TSNEP_MAX_QUEUES - 1;
2303 
2304 	while (cpu >= adapter->num_tx_queues)
2305 		cpu -= adapter->num_tx_queues;
2306 
2307 	return &adapter->tx[cpu];
2308 }
2309 
tsnep_netdev_xdp_xmit(struct net_device * dev,int n,struct xdp_frame ** xdp,u32 flags)2310 static int tsnep_netdev_xdp_xmit(struct net_device *dev, int n,
2311 				 struct xdp_frame **xdp, u32 flags)
2312 {
2313 	struct tsnep_adapter *adapter = netdev_priv(dev);
2314 	u32 cpu = smp_processor_id();
2315 	struct netdev_queue *nq;
2316 	struct tsnep_tx *tx;
2317 	int nxmit;
2318 	bool xmit;
2319 
2320 	if (unlikely(flags & ~XDP_XMIT_FLAGS_MASK))
2321 		return -EINVAL;
2322 
2323 	tx = tsnep_xdp_get_tx(adapter, cpu);
2324 	nq = netdev_get_tx_queue(adapter->netdev, tx->queue_index);
2325 
2326 	__netif_tx_lock(nq, cpu);
2327 
2328 	for (nxmit = 0; nxmit < n; nxmit++) {
2329 		xmit = tsnep_xdp_xmit_frame_ring(xdp[nxmit], tx,
2330 						 TSNEP_TX_TYPE_XDP_NDO);
2331 		if (!xmit)
2332 			break;
2333 
2334 		/* avoid transmit queue timeout since we share it with the slow
2335 		 * path
2336 		 */
2337 		txq_trans_cond_update(nq);
2338 	}
2339 
2340 	if (flags & XDP_XMIT_FLUSH)
2341 		tsnep_xdp_xmit_flush(tx);
2342 
2343 	__netif_tx_unlock(nq);
2344 
2345 	return nxmit;
2346 }
2347 
tsnep_netdev_xsk_wakeup(struct net_device * dev,u32 queue_id,u32 flags)2348 static int tsnep_netdev_xsk_wakeup(struct net_device *dev, u32 queue_id,
2349 				   u32 flags)
2350 {
2351 	struct tsnep_adapter *adapter = netdev_priv(dev);
2352 	struct tsnep_queue *queue;
2353 
2354 	if (queue_id >= adapter->num_rx_queues ||
2355 	    queue_id >= adapter->num_tx_queues)
2356 		return -EINVAL;
2357 
2358 	queue = &adapter->queue[queue_id];
2359 
2360 	if (!napi_if_scheduled_mark_missed(&queue->napi))
2361 		napi_schedule(&queue->napi);
2362 
2363 	return 0;
2364 }
2365 
2366 static const struct net_device_ops tsnep_netdev_ops = {
2367 	.ndo_open = tsnep_netdev_open,
2368 	.ndo_stop = tsnep_netdev_close,
2369 	.ndo_start_xmit = tsnep_netdev_xmit_frame,
2370 	.ndo_eth_ioctl = tsnep_netdev_ioctl,
2371 	.ndo_set_rx_mode = tsnep_netdev_set_multicast,
2372 	.ndo_get_stats64 = tsnep_netdev_get_stats64,
2373 	.ndo_set_mac_address = tsnep_netdev_set_mac_address,
2374 	.ndo_set_features = tsnep_netdev_set_features,
2375 	.ndo_get_tstamp = tsnep_netdev_get_tstamp,
2376 	.ndo_setup_tc = tsnep_tc_setup,
2377 	.ndo_bpf = tsnep_netdev_bpf,
2378 	.ndo_xdp_xmit = tsnep_netdev_xdp_xmit,
2379 	.ndo_xsk_wakeup = tsnep_netdev_xsk_wakeup,
2380 };
2381 
tsnep_mac_init(struct tsnep_adapter * adapter)2382 static int tsnep_mac_init(struct tsnep_adapter *adapter)
2383 {
2384 	int retval;
2385 
2386 	/* initialize RX filtering, at least configured MAC address and
2387 	 * broadcast are not filtered
2388 	 */
2389 	iowrite16(0, adapter->addr + TSNEP_RX_FILTER);
2390 
2391 	/* try to get MAC address in the following order:
2392 	 * - device tree
2393 	 * - valid MAC address already set
2394 	 * - MAC address register if valid
2395 	 * - random MAC address
2396 	 */
2397 	retval = of_get_mac_address(adapter->pdev->dev.of_node,
2398 				    adapter->mac_address);
2399 	if (retval == -EPROBE_DEFER)
2400 		return retval;
2401 	if (retval && !is_valid_ether_addr(adapter->mac_address)) {
2402 		*(u32 *)adapter->mac_address =
2403 			ioread32(adapter->addr + TSNEP_MAC_ADDRESS_LOW);
2404 		*(u16 *)(adapter->mac_address + sizeof(u32)) =
2405 			ioread16(adapter->addr + TSNEP_MAC_ADDRESS_HIGH);
2406 		if (!is_valid_ether_addr(adapter->mac_address))
2407 			eth_random_addr(adapter->mac_address);
2408 	}
2409 
2410 	tsnep_mac_set_address(adapter, adapter->mac_address);
2411 	eth_hw_addr_set(adapter->netdev, adapter->mac_address);
2412 
2413 	return 0;
2414 }
2415 
tsnep_mdio_init(struct tsnep_adapter * adapter)2416 static int tsnep_mdio_init(struct tsnep_adapter *adapter)
2417 {
2418 	struct device_node *np = adapter->pdev->dev.of_node;
2419 	int retval;
2420 
2421 	if (np) {
2422 		np = of_get_child_by_name(np, "mdio");
2423 		if (!np)
2424 			return 0;
2425 
2426 		adapter->suppress_preamble =
2427 			of_property_read_bool(np, "suppress-preamble");
2428 	}
2429 
2430 	adapter->mdiobus = devm_mdiobus_alloc(&adapter->pdev->dev);
2431 	if (!adapter->mdiobus) {
2432 		retval = -ENOMEM;
2433 
2434 		goto out;
2435 	}
2436 
2437 	adapter->mdiobus->priv = (void *)adapter;
2438 	adapter->mdiobus->parent = &adapter->pdev->dev;
2439 	adapter->mdiobus->read = tsnep_mdiobus_read;
2440 	adapter->mdiobus->write = tsnep_mdiobus_write;
2441 	adapter->mdiobus->name = TSNEP "-mdiobus";
2442 	snprintf(adapter->mdiobus->id, MII_BUS_ID_SIZE, "%s",
2443 		 adapter->pdev->name);
2444 
2445 	/* do not scan broadcast address */
2446 	adapter->mdiobus->phy_mask = 0x0000001;
2447 
2448 	retval = of_mdiobus_register(adapter->mdiobus, np);
2449 
2450 out:
2451 	of_node_put(np);
2452 
2453 	return retval;
2454 }
2455 
tsnep_phy_init(struct tsnep_adapter * adapter)2456 static int tsnep_phy_init(struct tsnep_adapter *adapter)
2457 {
2458 	struct device_node *phy_node;
2459 	int retval;
2460 
2461 	retval = of_get_phy_mode(adapter->pdev->dev.of_node,
2462 				 &adapter->phy_mode);
2463 	if (retval)
2464 		adapter->phy_mode = PHY_INTERFACE_MODE_GMII;
2465 
2466 	phy_node = of_parse_phandle(adapter->pdev->dev.of_node, "phy-handle",
2467 				    0);
2468 	adapter->phydev = of_phy_find_device(phy_node);
2469 	of_node_put(phy_node);
2470 	if (!adapter->phydev && adapter->mdiobus)
2471 		adapter->phydev = phy_find_first(adapter->mdiobus);
2472 	if (!adapter->phydev)
2473 		return -EIO;
2474 
2475 	return 0;
2476 }
2477 
tsnep_queue_init(struct tsnep_adapter * adapter,int queue_count)2478 static int tsnep_queue_init(struct tsnep_adapter *adapter, int queue_count)
2479 {
2480 	u32 irq_mask = ECM_INT_TX_0 | ECM_INT_RX_0;
2481 	char name[8];
2482 	int i;
2483 	int retval;
2484 
2485 	/* one TX/RX queue pair for netdev is mandatory */
2486 	if (platform_irq_count(adapter->pdev) == 1)
2487 		retval = platform_get_irq(adapter->pdev, 0);
2488 	else
2489 		retval = platform_get_irq_byname(adapter->pdev, "mac");
2490 	if (retval < 0)
2491 		return retval;
2492 	adapter->num_tx_queues = 1;
2493 	adapter->num_rx_queues = 1;
2494 	adapter->num_queues = 1;
2495 	adapter->queue[0].adapter = adapter;
2496 	adapter->queue[0].irq = retval;
2497 	adapter->queue[0].tx = &adapter->tx[0];
2498 	adapter->queue[0].tx->adapter = adapter;
2499 	adapter->queue[0].tx->addr = adapter->addr + TSNEP_QUEUE(0);
2500 	adapter->queue[0].tx->queue_index = 0;
2501 	adapter->queue[0].rx = &adapter->rx[0];
2502 	adapter->queue[0].rx->adapter = adapter;
2503 	adapter->queue[0].rx->addr = adapter->addr + TSNEP_QUEUE(0);
2504 	adapter->queue[0].rx->queue_index = 0;
2505 	adapter->queue[0].irq_mask = irq_mask;
2506 	adapter->queue[0].irq_delay_addr = adapter->addr + ECM_INT_DELAY;
2507 	retval = tsnep_set_irq_coalesce(&adapter->queue[0],
2508 					TSNEP_COALESCE_USECS_DEFAULT);
2509 	if (retval < 0)
2510 		return retval;
2511 
2512 	adapter->netdev->irq = adapter->queue[0].irq;
2513 
2514 	/* add additional TX/RX queue pairs only if dedicated interrupt is
2515 	 * available
2516 	 */
2517 	for (i = 1; i < queue_count; i++) {
2518 		sprintf(name, "txrx-%d", i);
2519 		retval = platform_get_irq_byname_optional(adapter->pdev, name);
2520 		if (retval < 0)
2521 			break;
2522 
2523 		adapter->num_tx_queues++;
2524 		adapter->num_rx_queues++;
2525 		adapter->num_queues++;
2526 		adapter->queue[i].adapter = adapter;
2527 		adapter->queue[i].irq = retval;
2528 		adapter->queue[i].tx = &adapter->tx[i];
2529 		adapter->queue[i].tx->adapter = adapter;
2530 		adapter->queue[i].tx->addr = adapter->addr + TSNEP_QUEUE(i);
2531 		adapter->queue[i].tx->queue_index = i;
2532 		adapter->queue[i].rx = &adapter->rx[i];
2533 		adapter->queue[i].rx->adapter = adapter;
2534 		adapter->queue[i].rx->addr = adapter->addr + TSNEP_QUEUE(i);
2535 		adapter->queue[i].rx->queue_index = i;
2536 		adapter->queue[i].irq_mask =
2537 			irq_mask << (ECM_INT_TXRX_SHIFT * i);
2538 		adapter->queue[i].irq_delay_addr =
2539 			adapter->addr + ECM_INT_DELAY + ECM_INT_DELAY_OFFSET * i;
2540 		retval = tsnep_set_irq_coalesce(&adapter->queue[i],
2541 						TSNEP_COALESCE_USECS_DEFAULT);
2542 		if (retval < 0)
2543 			return retval;
2544 	}
2545 
2546 	return 0;
2547 }
2548 
tsnep_probe(struct platform_device * pdev)2549 static int tsnep_probe(struct platform_device *pdev)
2550 {
2551 	struct tsnep_adapter *adapter;
2552 	struct net_device *netdev;
2553 	struct resource *io;
2554 	u32 type;
2555 	int revision;
2556 	int version;
2557 	int queue_count;
2558 	int retval;
2559 
2560 	netdev = devm_alloc_etherdev_mqs(&pdev->dev,
2561 					 sizeof(struct tsnep_adapter),
2562 					 TSNEP_MAX_QUEUES, TSNEP_MAX_QUEUES);
2563 	if (!netdev)
2564 		return -ENODEV;
2565 	SET_NETDEV_DEV(netdev, &pdev->dev);
2566 	adapter = netdev_priv(netdev);
2567 	platform_set_drvdata(pdev, adapter);
2568 	adapter->pdev = pdev;
2569 	adapter->dmadev = &pdev->dev;
2570 	adapter->netdev = netdev;
2571 	adapter->msg_enable = NETIF_MSG_DRV | NETIF_MSG_PROBE |
2572 			      NETIF_MSG_LINK | NETIF_MSG_IFUP |
2573 			      NETIF_MSG_IFDOWN | NETIF_MSG_TX_QUEUED;
2574 
2575 	netdev->min_mtu = ETH_MIN_MTU;
2576 	netdev->max_mtu = TSNEP_MAX_FRAME_SIZE;
2577 
2578 	mutex_init(&adapter->gate_control_lock);
2579 	mutex_init(&adapter->rxnfc_lock);
2580 	INIT_LIST_HEAD(&adapter->rxnfc_rules);
2581 
2582 	adapter->addr = devm_platform_get_and_ioremap_resource(pdev, 0, &io);
2583 	if (IS_ERR(adapter->addr))
2584 		return PTR_ERR(adapter->addr);
2585 	netdev->mem_start = io->start;
2586 	netdev->mem_end = io->end;
2587 
2588 	type = ioread32(adapter->addr + ECM_TYPE);
2589 	revision = (type & ECM_REVISION_MASK) >> ECM_REVISION_SHIFT;
2590 	version = (type & ECM_VERSION_MASK) >> ECM_VERSION_SHIFT;
2591 	queue_count = (type & ECM_QUEUE_COUNT_MASK) >> ECM_QUEUE_COUNT_SHIFT;
2592 	adapter->gate_control = type & ECM_GATE_CONTROL;
2593 	adapter->rxnfc_max = TSNEP_RX_ASSIGN_ETHER_TYPE_COUNT;
2594 
2595 	tsnep_disable_irq(adapter, ECM_INT_ALL);
2596 
2597 	retval = tsnep_queue_init(adapter, queue_count);
2598 	if (retval)
2599 		return retval;
2600 
2601 	retval = dma_set_mask_and_coherent(&adapter->pdev->dev,
2602 					   DMA_BIT_MASK(64));
2603 	if (retval) {
2604 		dev_err(&adapter->pdev->dev, "no usable DMA configuration.\n");
2605 		return retval;
2606 	}
2607 
2608 	retval = tsnep_mac_init(adapter);
2609 	if (retval)
2610 		return retval;
2611 
2612 	retval = tsnep_mdio_init(adapter);
2613 	if (retval)
2614 		goto mdio_init_failed;
2615 
2616 	retval = tsnep_phy_init(adapter);
2617 	if (retval)
2618 		goto phy_init_failed;
2619 
2620 	retval = tsnep_ptp_init(adapter);
2621 	if (retval)
2622 		goto ptp_init_failed;
2623 
2624 	retval = tsnep_tc_init(adapter);
2625 	if (retval)
2626 		goto tc_init_failed;
2627 
2628 	retval = tsnep_rxnfc_init(adapter);
2629 	if (retval)
2630 		goto rxnfc_init_failed;
2631 
2632 	netdev->netdev_ops = &tsnep_netdev_ops;
2633 	netdev->ethtool_ops = &tsnep_ethtool_ops;
2634 	netdev->features = NETIF_F_SG;
2635 	netdev->hw_features = netdev->features | NETIF_F_LOOPBACK;
2636 
2637 	netdev->xdp_features = NETDEV_XDP_ACT_BASIC | NETDEV_XDP_ACT_REDIRECT |
2638 			       NETDEV_XDP_ACT_NDO_XMIT |
2639 			       NETDEV_XDP_ACT_NDO_XMIT_SG |
2640 			       NETDEV_XDP_ACT_XSK_ZEROCOPY;
2641 
2642 	/* carrier off reporting is important to ethtool even BEFORE open */
2643 	netif_carrier_off(netdev);
2644 
2645 	retval = register_netdev(netdev);
2646 	if (retval)
2647 		goto register_failed;
2648 
2649 	dev_info(&adapter->pdev->dev, "device version %d.%02d\n", version,
2650 		 revision);
2651 	if (adapter->gate_control)
2652 		dev_info(&adapter->pdev->dev, "gate control detected\n");
2653 
2654 	return 0;
2655 
2656 register_failed:
2657 	tsnep_rxnfc_cleanup(adapter);
2658 rxnfc_init_failed:
2659 	tsnep_tc_cleanup(adapter);
2660 tc_init_failed:
2661 	tsnep_ptp_cleanup(adapter);
2662 ptp_init_failed:
2663 phy_init_failed:
2664 	if (adapter->mdiobus)
2665 		mdiobus_unregister(adapter->mdiobus);
2666 mdio_init_failed:
2667 	return retval;
2668 }
2669 
tsnep_remove(struct platform_device * pdev)2670 static void tsnep_remove(struct platform_device *pdev)
2671 {
2672 	struct tsnep_adapter *adapter = platform_get_drvdata(pdev);
2673 
2674 	unregister_netdev(adapter->netdev);
2675 
2676 	tsnep_rxnfc_cleanup(adapter);
2677 
2678 	tsnep_tc_cleanup(adapter);
2679 
2680 	tsnep_ptp_cleanup(adapter);
2681 
2682 	if (adapter->mdiobus)
2683 		mdiobus_unregister(adapter->mdiobus);
2684 
2685 	tsnep_disable_irq(adapter, ECM_INT_ALL);
2686 }
2687 
2688 static const struct of_device_id tsnep_of_match[] = {
2689 	{ .compatible = "engleder,tsnep", },
2690 { },
2691 };
2692 MODULE_DEVICE_TABLE(of, tsnep_of_match);
2693 
2694 static struct platform_driver tsnep_driver = {
2695 	.driver = {
2696 		.name = TSNEP,
2697 		.of_match_table = tsnep_of_match,
2698 	},
2699 	.probe = tsnep_probe,
2700 	.remove_new = tsnep_remove,
2701 };
2702 module_platform_driver(tsnep_driver);
2703 
2704 MODULE_AUTHOR("Gerhard Engleder <gerhard@engleder-embedded.com>");
2705 MODULE_DESCRIPTION("TSN endpoint Ethernet MAC driver");
2706 MODULE_LICENSE("GPL");
2707