1 // SPDX-License-Identifier: BSD-3-Clause OR GPL-2.0-or-later
2 /*
3 * Copyright 2008 - 2016 Freescale Semiconductor Inc.
4 * Copyright 2020 NXP
5 */
6
7 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
8
9 #include <linux/init.h>
10 #include <linux/mod_devicetable.h>
11 #include <linux/module.h>
12 #include <linux/of_mdio.h>
13 #include <linux/of_net.h>
14 #include <linux/io.h>
15 #include <linux/if_arp.h>
16 #include <linux/if_vlan.h>
17 #include <linux/icmp.h>
18 #include <linux/ip.h>
19 #include <linux/ipv6.h>
20 #include <linux/platform_device.h>
21 #include <linux/udp.h>
22 #include <linux/tcp.h>
23 #include <linux/net.h>
24 #include <linux/skbuff.h>
25 #include <linux/etherdevice.h>
26 #include <linux/if_ether.h>
27 #include <linux/highmem.h>
28 #include <linux/percpu.h>
29 #include <linux/dma-mapping.h>
30 #include <linux/sort.h>
31 #include <linux/bpf.h>
32 #include <linux/bpf_trace.h>
33 #include <soc/fsl/bman.h>
34 #include <soc/fsl/qman.h>
35 #include "fman.h"
36 #include "fman_port.h"
37 #include "mac.h"
38 #include "dpaa_eth.h"
39
40 /* CREATE_TRACE_POINTS only needs to be defined once. Other dpaa files
41 * using trace events only need to #include <trace/events/sched.h>
42 */
43 #define CREATE_TRACE_POINTS
44 #include "dpaa_eth_trace.h"
45
46 static int debug = -1;
47 module_param(debug, int, 0444);
48 MODULE_PARM_DESC(debug, "Module/Driver verbosity level (0=none,...,16=all)");
49
50 static u16 tx_timeout = 1000;
51 module_param(tx_timeout, ushort, 0444);
52 MODULE_PARM_DESC(tx_timeout, "The Tx timeout in ms");
53
54 #define FM_FD_STAT_RX_ERRORS \
55 (FM_FD_ERR_DMA | FM_FD_ERR_PHYSICAL | \
56 FM_FD_ERR_SIZE | FM_FD_ERR_CLS_DISCARD | \
57 FM_FD_ERR_EXTRACTION | FM_FD_ERR_NO_SCHEME | \
58 FM_FD_ERR_PRS_TIMEOUT | FM_FD_ERR_PRS_ILL_INSTRUCT | \
59 FM_FD_ERR_PRS_HDR_ERR)
60
61 #define FM_FD_STAT_TX_ERRORS \
62 (FM_FD_ERR_UNSUPPORTED_FORMAT | \
63 FM_FD_ERR_LENGTH | FM_FD_ERR_DMA)
64
65 #define DPAA_MSG_DEFAULT (NETIF_MSG_DRV | NETIF_MSG_PROBE | \
66 NETIF_MSG_LINK | NETIF_MSG_IFUP | \
67 NETIF_MSG_IFDOWN | NETIF_MSG_HW)
68
69 #define DPAA_INGRESS_CS_THRESHOLD 0x10000000
70 /* Ingress congestion threshold on FMan ports
71 * The size in bytes of the ingress tail-drop threshold on FMan ports.
72 * Traffic piling up above this value will be rejected by QMan and discarded
73 * by FMan.
74 */
75
76 /* Size in bytes of the FQ taildrop threshold */
77 #define DPAA_FQ_TD 0x200000
78
79 #define DPAA_CS_THRESHOLD_1G 0x06000000
80 /* Egress congestion threshold on 1G ports, range 0x1000 .. 0x10000000
81 * The size in bytes of the egress Congestion State notification threshold on
82 * 1G ports. The 1G dTSECs can quite easily be flooded by cores doing Tx in a
83 * tight loop (e.g. by sending UDP datagrams at "while(1) speed"),
84 * and the larger the frame size, the more acute the problem.
85 * So we have to find a balance between these factors:
86 * - avoiding the device staying congested for a prolonged time (risking
87 * the netdev watchdog to fire - see also the tx_timeout module param);
88 * - affecting performance of protocols such as TCP, which otherwise
89 * behave well under the congestion notification mechanism;
90 * - preventing the Tx cores from tightly-looping (as if the congestion
91 * threshold was too low to be effective);
92 * - running out of memory if the CS threshold is set too high.
93 */
94
95 #define DPAA_CS_THRESHOLD_10G 0x10000000
96 /* The size in bytes of the egress Congestion State notification threshold on
97 * 10G ports, range 0x1000 .. 0x10000000
98 */
99
100 /* Largest value that the FQD's OAL field can hold */
101 #define FSL_QMAN_MAX_OAL 127
102
103 /* Default alignment for start of data in an Rx FD */
104 #ifdef CONFIG_DPAA_ERRATUM_A050385
105 /* aligning data start to 64 avoids DMA transaction splits, unless the buffer
106 * is crossing a 4k page boundary
107 */
108 #define DPAA_FD_DATA_ALIGNMENT (fman_has_errata_a050385() ? 64 : 16)
109 /* aligning to 256 avoids DMA transaction splits caused by 4k page boundary
110 * crossings; also, all SG fragments except the last must have a size multiple
111 * of 256 to avoid DMA transaction splits
112 */
113 #define DPAA_A050385_ALIGN 256
114 #define DPAA_FD_RX_DATA_ALIGNMENT (fman_has_errata_a050385() ? \
115 DPAA_A050385_ALIGN : 16)
116 #else
117 #define DPAA_FD_DATA_ALIGNMENT 16
118 #define DPAA_FD_RX_DATA_ALIGNMENT DPAA_FD_DATA_ALIGNMENT
119 #endif
120
121 /* The DPAA requires 256 bytes reserved and mapped for the SGT */
122 #define DPAA_SGT_SIZE 256
123
124 /* Values for the L3R field of the FM Parse Results
125 */
126 /* L3 Type field: First IP Present IPv4 */
127 #define FM_L3_PARSE_RESULT_IPV4 0x8000
128 /* L3 Type field: First IP Present IPv6 */
129 #define FM_L3_PARSE_RESULT_IPV6 0x4000
130 /* Values for the L4R field of the FM Parse Results */
131 /* L4 Type field: UDP */
132 #define FM_L4_PARSE_RESULT_UDP 0x40
133 /* L4 Type field: TCP */
134 #define FM_L4_PARSE_RESULT_TCP 0x20
135
136 /* FD status field indicating whether the FM Parser has attempted to validate
137 * the L4 csum of the frame.
138 * Note that having this bit set doesn't necessarily imply that the checksum
139 * is valid. One would have to check the parse results to find that out.
140 */
141 #define FM_FD_STAT_L4CV 0x00000004
142
143 #define DPAA_SGT_MAX_ENTRIES 16 /* maximum number of entries in SG Table */
144 #define DPAA_BUFF_RELEASE_MAX 8 /* maximum number of buffers released at once */
145
146 #define FSL_DPAA_BPID_INV 0xff
147 #define FSL_DPAA_ETH_MAX_BUF_COUNT 128
148 #define FSL_DPAA_ETH_REFILL_THRESHOLD 80
149
150 #define DPAA_TX_PRIV_DATA_SIZE 16
151 #define DPAA_PARSE_RESULTS_SIZE sizeof(struct fman_prs_result)
152 #define DPAA_TIME_STAMP_SIZE 8
153 #define DPAA_HASH_RESULTS_SIZE 8
154 #define DPAA_HWA_SIZE (DPAA_PARSE_RESULTS_SIZE + DPAA_TIME_STAMP_SIZE \
155 + DPAA_HASH_RESULTS_SIZE)
156 #define DPAA_RX_PRIV_DATA_DEFAULT_SIZE (DPAA_TX_PRIV_DATA_SIZE + \
157 XDP_PACKET_HEADROOM - DPAA_HWA_SIZE)
158 #ifdef CONFIG_DPAA_ERRATUM_A050385
159 #define DPAA_RX_PRIV_DATA_A050385_SIZE (DPAA_A050385_ALIGN - DPAA_HWA_SIZE)
160 #define DPAA_RX_PRIV_DATA_SIZE (fman_has_errata_a050385() ? \
161 DPAA_RX_PRIV_DATA_A050385_SIZE : \
162 DPAA_RX_PRIV_DATA_DEFAULT_SIZE)
163 #else
164 #define DPAA_RX_PRIV_DATA_SIZE DPAA_RX_PRIV_DATA_DEFAULT_SIZE
165 #endif
166
167 #define DPAA_ETH_PCD_RXQ_NUM 128
168
169 #define DPAA_ENQUEUE_RETRIES 100000
170
171 enum port_type {RX, TX};
172
173 struct fm_port_fqs {
174 struct dpaa_fq *tx_defq;
175 struct dpaa_fq *tx_errq;
176 struct dpaa_fq *rx_defq;
177 struct dpaa_fq *rx_errq;
178 struct dpaa_fq *rx_pcdq;
179 };
180
181 /* All the dpa bps in use at any moment */
182 static struct dpaa_bp *dpaa_bp_array[BM_MAX_NUM_OF_POOLS];
183
184 #define DPAA_BP_RAW_SIZE 4096
185
186 #ifdef CONFIG_DPAA_ERRATUM_A050385
187 #define dpaa_bp_size(raw_size) (SKB_WITH_OVERHEAD(raw_size) & \
188 ~(DPAA_A050385_ALIGN - 1))
189 #else
190 #define dpaa_bp_size(raw_size) SKB_WITH_OVERHEAD(raw_size)
191 #endif
192
193 static int dpaa_max_frm;
194
195 static int dpaa_rx_extra_headroom;
196
197 #define dpaa_get_max_mtu() \
198 (dpaa_max_frm - (VLAN_ETH_HLEN + ETH_FCS_LEN))
199
200 static void dpaa_eth_cgr_set_speed(struct mac_device *mac_dev, int speed);
201
dpaa_netdev_init(struct net_device * net_dev,const struct net_device_ops * dpaa_ops,u16 tx_timeout)202 static int dpaa_netdev_init(struct net_device *net_dev,
203 const struct net_device_ops *dpaa_ops,
204 u16 tx_timeout)
205 {
206 struct dpaa_priv *priv = netdev_priv(net_dev);
207 struct device *dev = net_dev->dev.parent;
208 struct mac_device *mac_dev = priv->mac_dev;
209 struct dpaa_percpu_priv *percpu_priv;
210 const u8 *mac_addr;
211 int i, err;
212
213 /* Although we access another CPU's private data here
214 * we do it at initialization so it is safe
215 */
216 for_each_possible_cpu(i) {
217 percpu_priv = per_cpu_ptr(priv->percpu_priv, i);
218 percpu_priv->net_dev = net_dev;
219 }
220
221 net_dev->netdev_ops = dpaa_ops;
222 mac_addr = mac_dev->addr;
223
224 net_dev->mem_start = (unsigned long)priv->mac_dev->res->start;
225 net_dev->mem_end = (unsigned long)priv->mac_dev->res->end;
226
227 net_dev->min_mtu = ETH_MIN_MTU;
228 net_dev->max_mtu = dpaa_get_max_mtu();
229
230 net_dev->hw_features |= (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
231 NETIF_F_RXHASH);
232
233 net_dev->hw_features |= NETIF_F_SG | NETIF_F_HIGHDMA;
234 /* The kernels enables GSO automatically, if we declare NETIF_F_SG.
235 * For conformity, we'll still declare GSO explicitly.
236 */
237 net_dev->features |= NETIF_F_GSO;
238 net_dev->features |= NETIF_F_RXCSUM;
239
240 net_dev->priv_flags |= IFF_LIVE_ADDR_CHANGE;
241 net_dev->lltx = true;
242 /* we do not want shared skbs on TX */
243 net_dev->priv_flags &= ~IFF_TX_SKB_SHARING;
244
245 net_dev->features |= net_dev->hw_features;
246 net_dev->vlan_features = net_dev->features;
247
248 net_dev->xdp_features = NETDEV_XDP_ACT_BASIC |
249 NETDEV_XDP_ACT_REDIRECT |
250 NETDEV_XDP_ACT_NDO_XMIT;
251
252 if (is_valid_ether_addr(mac_addr)) {
253 memcpy(net_dev->perm_addr, mac_addr, net_dev->addr_len);
254 eth_hw_addr_set(net_dev, mac_addr);
255 } else {
256 eth_hw_addr_random(net_dev);
257 err = mac_dev->change_addr(mac_dev->fman_mac,
258 (const enet_addr_t *)net_dev->dev_addr);
259 if (err) {
260 dev_err(dev, "Failed to set random MAC address\n");
261 return -EINVAL;
262 }
263 dev_info(dev, "Using random MAC address: %pM\n",
264 net_dev->dev_addr);
265 }
266
267 net_dev->ethtool_ops = &dpaa_ethtool_ops;
268
269 net_dev->needed_headroom = priv->tx_headroom;
270 net_dev->watchdog_timeo = msecs_to_jiffies(tx_timeout);
271
272 /* The rest of the config is filled in by the mac device already */
273 mac_dev->phylink_config.dev = &net_dev->dev;
274 mac_dev->phylink_config.type = PHYLINK_NETDEV;
275 mac_dev->update_speed = dpaa_eth_cgr_set_speed;
276 mac_dev->phylink = phylink_create(&mac_dev->phylink_config,
277 dev_fwnode(mac_dev->dev),
278 mac_dev->phy_if,
279 mac_dev->phylink_ops);
280 if (IS_ERR(mac_dev->phylink)) {
281 err = PTR_ERR(mac_dev->phylink);
282 dev_err_probe(dev, err, "Could not create phylink\n");
283 return err;
284 }
285
286 /* start without the RUNNING flag, phylib controls it later */
287 netif_carrier_off(net_dev);
288
289 err = register_netdev(net_dev);
290 if (err < 0) {
291 dev_err(dev, "register_netdev() = %d\n", err);
292 phylink_destroy(mac_dev->phylink);
293 return err;
294 }
295
296 return 0;
297 }
298
dpaa_stop(struct net_device * net_dev)299 static int dpaa_stop(struct net_device *net_dev)
300 {
301 struct mac_device *mac_dev;
302 struct dpaa_priv *priv;
303 int i, error;
304 int err = 0;
305
306 priv = netdev_priv(net_dev);
307 mac_dev = priv->mac_dev;
308
309 netif_tx_stop_all_queues(net_dev);
310 /* Allow the Fman (Tx) port to process in-flight frames before we
311 * try switching it off.
312 */
313 msleep(200);
314
315 phylink_stop(mac_dev->phylink);
316 mac_dev->disable(mac_dev->fman_mac);
317
318 for (i = 0; i < ARRAY_SIZE(mac_dev->port); i++) {
319 error = fman_port_disable(mac_dev->port[i]);
320 if (error)
321 err = error;
322 }
323
324 phylink_disconnect_phy(mac_dev->phylink);
325 net_dev->phydev = NULL;
326
327 msleep(200);
328
329 return err;
330 }
331
dpaa_tx_timeout(struct net_device * net_dev,unsigned int txqueue)332 static void dpaa_tx_timeout(struct net_device *net_dev, unsigned int txqueue)
333 {
334 struct dpaa_percpu_priv *percpu_priv;
335 const struct dpaa_priv *priv;
336
337 priv = netdev_priv(net_dev);
338 percpu_priv = this_cpu_ptr(priv->percpu_priv);
339
340 netif_crit(priv, timer, net_dev, "Transmit timeout latency: %u ms\n",
341 jiffies_to_msecs(jiffies - dev_trans_start(net_dev)));
342
343 percpu_priv->stats.tx_errors++;
344 }
345
346 /* Calculates the statistics for the given device by adding the statistics
347 * collected by each CPU.
348 */
dpaa_get_stats64(struct net_device * net_dev,struct rtnl_link_stats64 * s)349 static void dpaa_get_stats64(struct net_device *net_dev,
350 struct rtnl_link_stats64 *s)
351 {
352 int numstats = sizeof(struct rtnl_link_stats64) / sizeof(u64);
353 struct dpaa_priv *priv = netdev_priv(net_dev);
354 struct dpaa_percpu_priv *percpu_priv;
355 u64 *netstats = (u64 *)s;
356 u64 *cpustats;
357 int i, j;
358
359 for_each_possible_cpu(i) {
360 percpu_priv = per_cpu_ptr(priv->percpu_priv, i);
361
362 cpustats = (u64 *)&percpu_priv->stats;
363
364 /* add stats from all CPUs */
365 for (j = 0; j < numstats; j++)
366 netstats[j] += cpustats[j];
367 }
368 }
369
dpaa_setup_tc(struct net_device * net_dev,enum tc_setup_type type,void * type_data)370 static int dpaa_setup_tc(struct net_device *net_dev, enum tc_setup_type type,
371 void *type_data)
372 {
373 struct dpaa_priv *priv = netdev_priv(net_dev);
374 int num_txqs_per_tc = dpaa_num_txqs_per_tc();
375 struct tc_mqprio_qopt *mqprio = type_data;
376 u8 num_tc;
377 int i;
378
379 if (type != TC_SETUP_QDISC_MQPRIO)
380 return -EOPNOTSUPP;
381
382 mqprio->hw = TC_MQPRIO_HW_OFFLOAD_TCS;
383 num_tc = mqprio->num_tc;
384
385 if (num_tc == priv->num_tc)
386 return 0;
387
388 if (!num_tc) {
389 netdev_reset_tc(net_dev);
390 goto out;
391 }
392
393 if (num_tc > DPAA_TC_NUM) {
394 netdev_err(net_dev, "Too many traffic classes: max %d supported.\n",
395 DPAA_TC_NUM);
396 return -EINVAL;
397 }
398
399 netdev_set_num_tc(net_dev, num_tc);
400
401 for (i = 0; i < num_tc; i++)
402 netdev_set_tc_queue(net_dev, i, num_txqs_per_tc,
403 i * num_txqs_per_tc);
404
405 out:
406 priv->num_tc = num_tc ? : 1;
407 netif_set_real_num_tx_queues(net_dev, priv->num_tc * num_txqs_per_tc);
408 return 0;
409 }
410
dpaa_mac_dev_get(struct platform_device * pdev)411 static struct mac_device *dpaa_mac_dev_get(struct platform_device *pdev)
412 {
413 struct dpaa_eth_data *eth_data;
414 struct device *dpaa_dev;
415 struct mac_device *mac_dev;
416
417 dpaa_dev = &pdev->dev;
418 eth_data = dpaa_dev->platform_data;
419 if (!eth_data) {
420 dev_err(dpaa_dev, "eth_data missing\n");
421 return ERR_PTR(-ENODEV);
422 }
423 mac_dev = eth_data->mac_dev;
424 if (!mac_dev) {
425 dev_err(dpaa_dev, "mac_dev missing\n");
426 return ERR_PTR(-EINVAL);
427 }
428
429 return mac_dev;
430 }
431
dpaa_set_mac_address(struct net_device * net_dev,void * addr)432 static int dpaa_set_mac_address(struct net_device *net_dev, void *addr)
433 {
434 const struct dpaa_priv *priv;
435 struct mac_device *mac_dev;
436 struct sockaddr old_addr;
437 int err;
438
439 priv = netdev_priv(net_dev);
440
441 memcpy(old_addr.sa_data, net_dev->dev_addr, ETH_ALEN);
442
443 err = eth_mac_addr(net_dev, addr);
444 if (err < 0) {
445 netif_err(priv, drv, net_dev, "eth_mac_addr() = %d\n", err);
446 return err;
447 }
448
449 mac_dev = priv->mac_dev;
450
451 err = mac_dev->change_addr(mac_dev->fman_mac,
452 (const enet_addr_t *)net_dev->dev_addr);
453 if (err < 0) {
454 netif_err(priv, drv, net_dev, "mac_dev->change_addr() = %d\n",
455 err);
456 /* reverting to previous address */
457 eth_mac_addr(net_dev, &old_addr);
458
459 return err;
460 }
461
462 return 0;
463 }
464
dpaa_set_rx_mode(struct net_device * net_dev)465 static void dpaa_set_rx_mode(struct net_device *net_dev)
466 {
467 const struct dpaa_priv *priv;
468 int err;
469
470 priv = netdev_priv(net_dev);
471
472 if (!!(net_dev->flags & IFF_PROMISC) != priv->mac_dev->promisc) {
473 priv->mac_dev->promisc = !priv->mac_dev->promisc;
474 err = priv->mac_dev->set_promisc(priv->mac_dev->fman_mac,
475 priv->mac_dev->promisc);
476 if (err < 0)
477 netif_err(priv, drv, net_dev,
478 "mac_dev->set_promisc() = %d\n",
479 err);
480 }
481
482 if (!!(net_dev->flags & IFF_ALLMULTI) != priv->mac_dev->allmulti) {
483 priv->mac_dev->allmulti = !priv->mac_dev->allmulti;
484 err = priv->mac_dev->set_allmulti(priv->mac_dev->fman_mac,
485 priv->mac_dev->allmulti);
486 if (err < 0)
487 netif_err(priv, drv, net_dev,
488 "mac_dev->set_allmulti() = %d\n",
489 err);
490 }
491
492 err = priv->mac_dev->set_multi(net_dev, priv->mac_dev);
493 if (err < 0)
494 netif_err(priv, drv, net_dev, "mac_dev->set_multi() = %d\n",
495 err);
496 }
497
dpaa_bpid2pool(int bpid)498 static struct dpaa_bp *dpaa_bpid2pool(int bpid)
499 {
500 if (WARN_ON(bpid < 0 || bpid >= BM_MAX_NUM_OF_POOLS))
501 return NULL;
502
503 return dpaa_bp_array[bpid];
504 }
505
506 /* checks if this bpool is already allocated */
dpaa_bpid2pool_use(int bpid)507 static bool dpaa_bpid2pool_use(int bpid)
508 {
509 if (dpaa_bpid2pool(bpid)) {
510 refcount_inc(&dpaa_bp_array[bpid]->refs);
511 return true;
512 }
513
514 return false;
515 }
516
517 /* called only once per bpid by dpaa_bp_alloc_pool() */
dpaa_bpid2pool_map(int bpid,struct dpaa_bp * dpaa_bp)518 static void dpaa_bpid2pool_map(int bpid, struct dpaa_bp *dpaa_bp)
519 {
520 dpaa_bp_array[bpid] = dpaa_bp;
521 refcount_set(&dpaa_bp->refs, 1);
522 }
523
dpaa_bp_alloc_pool(struct dpaa_bp * dpaa_bp)524 static int dpaa_bp_alloc_pool(struct dpaa_bp *dpaa_bp)
525 {
526 int err;
527
528 if (dpaa_bp->size == 0 || dpaa_bp->config_count == 0) {
529 pr_err("%s: Buffer pool is not properly initialized! Missing size or initial number of buffers\n",
530 __func__);
531 return -EINVAL;
532 }
533
534 /* If the pool is already specified, we only create one per bpid */
535 if (dpaa_bp->bpid != FSL_DPAA_BPID_INV &&
536 dpaa_bpid2pool_use(dpaa_bp->bpid))
537 return 0;
538
539 if (dpaa_bp->bpid == FSL_DPAA_BPID_INV) {
540 dpaa_bp->pool = bman_new_pool();
541 if (!dpaa_bp->pool) {
542 pr_err("%s: bman_new_pool() failed\n",
543 __func__);
544 return -ENODEV;
545 }
546
547 dpaa_bp->bpid = (u8)bman_get_bpid(dpaa_bp->pool);
548 }
549
550 if (dpaa_bp->seed_cb) {
551 err = dpaa_bp->seed_cb(dpaa_bp);
552 if (err)
553 goto pool_seed_failed;
554 }
555
556 dpaa_bpid2pool_map(dpaa_bp->bpid, dpaa_bp);
557
558 return 0;
559
560 pool_seed_failed:
561 pr_err("%s: pool seeding failed\n", __func__);
562 bman_free_pool(dpaa_bp->pool);
563
564 return err;
565 }
566
567 /* remove and free all the buffers from the given buffer pool */
dpaa_bp_drain(struct dpaa_bp * bp)568 static void dpaa_bp_drain(struct dpaa_bp *bp)
569 {
570 u8 num = 8;
571 int ret;
572
573 do {
574 struct bm_buffer bmb[8];
575 int i;
576
577 ret = bman_acquire(bp->pool, bmb, num);
578 if (ret < 0) {
579 if (num == 8) {
580 /* we have less than 8 buffers left;
581 * drain them one by one
582 */
583 num = 1;
584 ret = 1;
585 continue;
586 } else {
587 /* Pool is fully drained */
588 break;
589 }
590 }
591
592 if (bp->free_buf_cb)
593 for (i = 0; i < num; i++)
594 bp->free_buf_cb(bp, &bmb[i]);
595 } while (ret > 0);
596 }
597
dpaa_bp_free(struct dpaa_bp * dpaa_bp)598 static void dpaa_bp_free(struct dpaa_bp *dpaa_bp)
599 {
600 struct dpaa_bp *bp = dpaa_bpid2pool(dpaa_bp->bpid);
601
602 /* the mapping between bpid and dpaa_bp is done very late in the
603 * allocation procedure; if something failed before the mapping, the bp
604 * was not configured, therefore we don't need the below instructions
605 */
606 if (!bp)
607 return;
608
609 if (!refcount_dec_and_test(&bp->refs))
610 return;
611
612 if (bp->free_buf_cb)
613 dpaa_bp_drain(bp);
614
615 dpaa_bp_array[bp->bpid] = NULL;
616 bman_free_pool(bp->pool);
617 }
618
dpaa_bps_free(struct dpaa_priv * priv)619 static void dpaa_bps_free(struct dpaa_priv *priv)
620 {
621 dpaa_bp_free(priv->dpaa_bp);
622 }
623
624 /* Use multiple WQs for FQ assignment:
625 * - Tx Confirmation queues go to WQ1.
626 * - Rx Error and Tx Error queues go to WQ5 (giving them a better chance
627 * to be scheduled, in case there are many more FQs in WQ6).
628 * - Rx Default goes to WQ6.
629 * - Tx queues go to different WQs depending on their priority. Equal
630 * chunks of NR_CPUS queues go to WQ6 (lowest priority), WQ2, WQ1 and
631 * WQ0 (highest priority).
632 * This ensures that Tx-confirmed buffers are timely released. In particular,
633 * it avoids congestion on the Tx Confirm FQs, which can pile up PFDRs if they
634 * are greatly outnumbered by other FQs in the system, while
635 * dequeue scheduling is round-robin.
636 */
dpaa_assign_wq(struct dpaa_fq * fq,int idx)637 static inline void dpaa_assign_wq(struct dpaa_fq *fq, int idx)
638 {
639 switch (fq->fq_type) {
640 case FQ_TYPE_TX_CONFIRM:
641 case FQ_TYPE_TX_CONF_MQ:
642 fq->wq = 1;
643 break;
644 case FQ_TYPE_RX_ERROR:
645 case FQ_TYPE_TX_ERROR:
646 fq->wq = 5;
647 break;
648 case FQ_TYPE_RX_DEFAULT:
649 case FQ_TYPE_RX_PCD:
650 fq->wq = 6;
651 break;
652 case FQ_TYPE_TX:
653 switch (idx / dpaa_num_txqs_per_tc()) {
654 case 0:
655 /* Low priority (best effort) */
656 fq->wq = 6;
657 break;
658 case 1:
659 /* Medium priority */
660 fq->wq = 2;
661 break;
662 case 2:
663 /* High priority */
664 fq->wq = 1;
665 break;
666 case 3:
667 /* Very high priority */
668 fq->wq = 0;
669 break;
670 default:
671 WARN(1, "Too many TX FQs: more than %zu!\n",
672 dpaa_max_num_txqs());
673 }
674 break;
675 default:
676 WARN(1, "Invalid FQ type %d for FQID %d!\n",
677 fq->fq_type, fq->fqid);
678 }
679 }
680
dpaa_fq_alloc(struct device * dev,u32 start,u32 count,struct list_head * list,enum dpaa_fq_type fq_type)681 static struct dpaa_fq *dpaa_fq_alloc(struct device *dev,
682 u32 start, u32 count,
683 struct list_head *list,
684 enum dpaa_fq_type fq_type)
685 {
686 struct dpaa_fq *dpaa_fq;
687 int i;
688
689 dpaa_fq = devm_kcalloc(dev, count, sizeof(*dpaa_fq),
690 GFP_KERNEL);
691 if (!dpaa_fq)
692 return NULL;
693
694 for (i = 0; i < count; i++) {
695 dpaa_fq[i].fq_type = fq_type;
696 dpaa_fq[i].fqid = start ? start + i : 0;
697 list_add_tail(&dpaa_fq[i].list, list);
698 }
699
700 for (i = 0; i < count; i++)
701 dpaa_assign_wq(dpaa_fq + i, i);
702
703 return dpaa_fq;
704 }
705
dpaa_alloc_all_fqs(struct device * dev,struct list_head * list,struct fm_port_fqs * port_fqs)706 static int dpaa_alloc_all_fqs(struct device *dev, struct list_head *list,
707 struct fm_port_fqs *port_fqs)
708 {
709 struct dpaa_fq *dpaa_fq;
710 u32 fq_base, fq_base_aligned, i;
711
712 dpaa_fq = dpaa_fq_alloc(dev, 0, 1, list, FQ_TYPE_RX_ERROR);
713 if (!dpaa_fq)
714 goto fq_alloc_failed;
715
716 port_fqs->rx_errq = &dpaa_fq[0];
717
718 dpaa_fq = dpaa_fq_alloc(dev, 0, 1, list, FQ_TYPE_RX_DEFAULT);
719 if (!dpaa_fq)
720 goto fq_alloc_failed;
721
722 port_fqs->rx_defq = &dpaa_fq[0];
723
724 /* the PCD FQIDs range needs to be aligned for correct operation */
725 if (qman_alloc_fqid_range(&fq_base, 2 * DPAA_ETH_PCD_RXQ_NUM))
726 goto fq_alloc_failed;
727
728 fq_base_aligned = ALIGN(fq_base, DPAA_ETH_PCD_RXQ_NUM);
729
730 for (i = fq_base; i < fq_base_aligned; i++)
731 qman_release_fqid(i);
732
733 for (i = fq_base_aligned + DPAA_ETH_PCD_RXQ_NUM;
734 i < (fq_base + 2 * DPAA_ETH_PCD_RXQ_NUM); i++)
735 qman_release_fqid(i);
736
737 dpaa_fq = dpaa_fq_alloc(dev, fq_base_aligned, DPAA_ETH_PCD_RXQ_NUM,
738 list, FQ_TYPE_RX_PCD);
739 if (!dpaa_fq)
740 goto fq_alloc_failed;
741
742 port_fqs->rx_pcdq = &dpaa_fq[0];
743
744 if (!dpaa_fq_alloc(dev, 0, dpaa_max_num_txqs(), list,
745 FQ_TYPE_TX_CONF_MQ))
746 goto fq_alloc_failed;
747
748 dpaa_fq = dpaa_fq_alloc(dev, 0, 1, list, FQ_TYPE_TX_ERROR);
749 if (!dpaa_fq)
750 goto fq_alloc_failed;
751
752 port_fqs->tx_errq = &dpaa_fq[0];
753
754 dpaa_fq = dpaa_fq_alloc(dev, 0, 1, list, FQ_TYPE_TX_CONFIRM);
755 if (!dpaa_fq)
756 goto fq_alloc_failed;
757
758 port_fqs->tx_defq = &dpaa_fq[0];
759
760 if (!dpaa_fq_alloc(dev, 0, dpaa_max_num_txqs(), list, FQ_TYPE_TX))
761 goto fq_alloc_failed;
762
763 return 0;
764
765 fq_alloc_failed:
766 dev_err(dev, "dpaa_fq_alloc() failed\n");
767 return -ENOMEM;
768 }
769
770 static u32 rx_pool_channel;
771 static DEFINE_SPINLOCK(rx_pool_channel_init);
772
dpaa_get_channel(void)773 static int dpaa_get_channel(void)
774 {
775 spin_lock(&rx_pool_channel_init);
776 if (!rx_pool_channel) {
777 u32 pool;
778 int ret;
779
780 ret = qman_alloc_pool(&pool);
781
782 if (!ret)
783 rx_pool_channel = pool;
784 }
785 spin_unlock(&rx_pool_channel_init);
786 if (!rx_pool_channel)
787 return -ENOMEM;
788 return rx_pool_channel;
789 }
790
dpaa_release_channel(void)791 static void dpaa_release_channel(void)
792 {
793 qman_release_pool(rx_pool_channel);
794 }
795
dpaa_eth_add_channel(u16 channel,struct device * dev)796 static void dpaa_eth_add_channel(u16 channel, struct device *dev)
797 {
798 u32 pool = QM_SDQCR_CHANNELS_POOL_CONV(channel);
799 const cpumask_t *cpus = qman_affine_cpus();
800 struct qman_portal *portal;
801 int cpu;
802
803 for_each_cpu_and(cpu, cpus, cpu_online_mask) {
804 portal = qman_get_affine_portal(cpu);
805 qman_p_static_dequeue_add(portal, pool);
806 qman_start_using_portal(portal, dev);
807 }
808 }
809
810 /* Congestion group state change notification callback.
811 * Stops the device's egress queues while they are congested and
812 * wakes them upon exiting congested state.
813 * Also updates some CGR-related stats.
814 */
dpaa_eth_cgscn(struct qman_portal * qm,struct qman_cgr * cgr,int congested)815 static void dpaa_eth_cgscn(struct qman_portal *qm, struct qman_cgr *cgr,
816 int congested)
817 {
818 struct dpaa_priv *priv = (struct dpaa_priv *)container_of(cgr,
819 struct dpaa_priv, cgr_data.cgr);
820
821 if (congested) {
822 priv->cgr_data.congestion_start_jiffies = jiffies;
823 netif_tx_stop_all_queues(priv->net_dev);
824 priv->cgr_data.cgr_congested_count++;
825 } else {
826 priv->cgr_data.congested_jiffies +=
827 (jiffies - priv->cgr_data.congestion_start_jiffies);
828 netif_tx_wake_all_queues(priv->net_dev);
829 }
830 }
831
dpaa_eth_cgr_init(struct dpaa_priv * priv)832 static int dpaa_eth_cgr_init(struct dpaa_priv *priv)
833 {
834 struct qm_mcc_initcgr initcgr;
835 u32 cs_th;
836 int err;
837
838 err = qman_alloc_cgrid(&priv->cgr_data.cgr.cgrid);
839 if (err < 0) {
840 if (netif_msg_drv(priv))
841 pr_err("%s: Error %d allocating CGR ID\n",
842 __func__, err);
843 goto out_error;
844 }
845 priv->cgr_data.cgr.cb = dpaa_eth_cgscn;
846
847 /* Enable Congestion State Change Notifications and CS taildrop */
848 memset(&initcgr, 0, sizeof(initcgr));
849 initcgr.we_mask = cpu_to_be16(QM_CGR_WE_CSCN_EN | QM_CGR_WE_CS_THRES);
850 initcgr.cgr.cscn_en = QM_CGR_EN;
851
852 /* Set different thresholds based on the configured MAC speed.
853 * This may turn suboptimal if the MAC is reconfigured at another
854 * speed, so MACs must call dpaa_eth_cgr_set_speed in their link_up
855 * callback.
856 */
857 if (priv->mac_dev->phylink_config.mac_capabilities & MAC_10000FD)
858 cs_th = DPAA_CS_THRESHOLD_10G;
859 else
860 cs_th = DPAA_CS_THRESHOLD_1G;
861 qm_cgr_cs_thres_set64(&initcgr.cgr.cs_thres, cs_th, 1);
862
863 initcgr.we_mask |= cpu_to_be16(QM_CGR_WE_CSTD_EN);
864 initcgr.cgr.cstd_en = QM_CGR_EN;
865
866 err = qman_create_cgr(&priv->cgr_data.cgr, QMAN_CGR_FLAG_USE_INIT,
867 &initcgr);
868 if (err < 0) {
869 if (netif_msg_drv(priv))
870 pr_err("%s: Error %d creating CGR with ID %d\n",
871 __func__, err, priv->cgr_data.cgr.cgrid);
872 qman_release_cgrid(priv->cgr_data.cgr.cgrid);
873 goto out_error;
874 }
875 if (netif_msg_drv(priv))
876 pr_debug("Created CGR %d for netdev with hwaddr %pM on QMan channel %d\n",
877 priv->cgr_data.cgr.cgrid, priv->mac_dev->addr,
878 priv->cgr_data.cgr.chan);
879
880 out_error:
881 return err;
882 }
883
dpaa_eth_cgr_set_speed(struct mac_device * mac_dev,int speed)884 static void dpaa_eth_cgr_set_speed(struct mac_device *mac_dev, int speed)
885 {
886 struct net_device *net_dev = to_net_dev(mac_dev->phylink_config.dev);
887 struct dpaa_priv *priv = netdev_priv(net_dev);
888 struct qm_mcc_initcgr opts = { };
889 u32 cs_th;
890 int err;
891
892 opts.we_mask = cpu_to_be16(QM_CGR_WE_CS_THRES);
893 switch (speed) {
894 case SPEED_10000:
895 cs_th = DPAA_CS_THRESHOLD_10G;
896 break;
897 case SPEED_1000:
898 default:
899 cs_th = DPAA_CS_THRESHOLD_1G;
900 break;
901 }
902 qm_cgr_cs_thres_set64(&opts.cgr.cs_thres, cs_th, 1);
903
904 err = qman_update_cgr_safe(&priv->cgr_data.cgr, &opts);
905 if (err)
906 netdev_err(net_dev, "could not update speed: %d\n", err);
907 }
908
dpaa_setup_ingress(const struct dpaa_priv * priv,struct dpaa_fq * fq,const struct qman_fq * template)909 static inline void dpaa_setup_ingress(const struct dpaa_priv *priv,
910 struct dpaa_fq *fq,
911 const struct qman_fq *template)
912 {
913 fq->fq_base = *template;
914 fq->net_dev = priv->net_dev;
915
916 fq->flags = QMAN_FQ_FLAG_NO_ENQUEUE;
917 fq->channel = priv->channel;
918 }
919
dpaa_setup_egress(const struct dpaa_priv * priv,struct dpaa_fq * fq,struct fman_port * port,const struct qman_fq * template)920 static inline void dpaa_setup_egress(const struct dpaa_priv *priv,
921 struct dpaa_fq *fq,
922 struct fman_port *port,
923 const struct qman_fq *template)
924 {
925 fq->fq_base = *template;
926 fq->net_dev = priv->net_dev;
927
928 if (port) {
929 fq->flags = QMAN_FQ_FLAG_TO_DCPORTAL;
930 fq->channel = (u16)fman_port_get_qman_channel_id(port);
931 } else {
932 fq->flags = QMAN_FQ_FLAG_NO_MODIFY;
933 }
934 }
935
dpaa_fq_setup(struct dpaa_priv * priv,const struct dpaa_fq_cbs * fq_cbs,struct fman_port * tx_port)936 static int dpaa_fq_setup(struct dpaa_priv *priv,
937 const struct dpaa_fq_cbs *fq_cbs,
938 struct fman_port *tx_port)
939 {
940 int egress_cnt = 0, conf_cnt = 0, num_portals = 0, portal_cnt = 0, cpu;
941 const cpumask_t *affine_cpus = qman_affine_cpus();
942 struct dpaa_fq *fq;
943 u16 *channels;
944
945 channels = kcalloc(num_possible_cpus(), sizeof(u16), GFP_KERNEL);
946 if (!channels)
947 return -ENOMEM;
948
949 for_each_cpu_and(cpu, affine_cpus, cpu_online_mask)
950 channels[num_portals++] = qman_affine_channel(cpu);
951
952 if (num_portals == 0)
953 dev_err(priv->net_dev->dev.parent,
954 "No Qman software (affine) channels found\n");
955
956 /* Initialize each FQ in the list */
957 list_for_each_entry(fq, &priv->dpaa_fq_list, list) {
958 switch (fq->fq_type) {
959 case FQ_TYPE_RX_DEFAULT:
960 dpaa_setup_ingress(priv, fq, &fq_cbs->rx_defq);
961 break;
962 case FQ_TYPE_RX_ERROR:
963 dpaa_setup_ingress(priv, fq, &fq_cbs->rx_errq);
964 break;
965 case FQ_TYPE_RX_PCD:
966 if (!num_portals)
967 continue;
968 dpaa_setup_ingress(priv, fq, &fq_cbs->rx_defq);
969 fq->channel = channels[portal_cnt++ % num_portals];
970 break;
971 case FQ_TYPE_TX:
972 dpaa_setup_egress(priv, fq, tx_port,
973 &fq_cbs->egress_ern);
974 priv->egress_fqs[egress_cnt++] = &fq->fq_base;
975 break;
976 case FQ_TYPE_TX_CONF_MQ:
977 priv->conf_fqs[conf_cnt++] = &fq->fq_base;
978 fallthrough;
979 case FQ_TYPE_TX_CONFIRM:
980 dpaa_setup_ingress(priv, fq, &fq_cbs->tx_defq);
981 break;
982 case FQ_TYPE_TX_ERROR:
983 dpaa_setup_ingress(priv, fq, &fq_cbs->tx_errq);
984 break;
985 default:
986 dev_warn(priv->net_dev->dev.parent,
987 "Unknown FQ type detected!\n");
988 break;
989 }
990 }
991
992 kfree(channels);
993
994 return 0;
995 }
996
dpaa_tx_fq_to_id(const struct dpaa_priv * priv,struct qman_fq * tx_fq)997 static inline int dpaa_tx_fq_to_id(const struct dpaa_priv *priv,
998 struct qman_fq *tx_fq)
999 {
1000 int i;
1001
1002 for (i = 0; i < dpaa_max_num_txqs(); i++)
1003 if (priv->egress_fqs[i] == tx_fq)
1004 return i;
1005
1006 return -EINVAL;
1007 }
1008
dpaa_fq_init(struct dpaa_fq * dpaa_fq,bool td_enable)1009 static int dpaa_fq_init(struct dpaa_fq *dpaa_fq, bool td_enable)
1010 {
1011 const struct dpaa_priv *priv;
1012 struct qman_fq *confq = NULL;
1013 struct qm_mcc_initfq initfq;
1014 struct device *dev;
1015 struct qman_fq *fq;
1016 int queue_id;
1017 int err;
1018
1019 priv = netdev_priv(dpaa_fq->net_dev);
1020 dev = dpaa_fq->net_dev->dev.parent;
1021
1022 if (dpaa_fq->fqid == 0)
1023 dpaa_fq->flags |= QMAN_FQ_FLAG_DYNAMIC_FQID;
1024
1025 dpaa_fq->init = !(dpaa_fq->flags & QMAN_FQ_FLAG_NO_MODIFY);
1026
1027 err = qman_create_fq(dpaa_fq->fqid, dpaa_fq->flags, &dpaa_fq->fq_base);
1028 if (err) {
1029 dev_err(dev, "qman_create_fq() failed\n");
1030 return err;
1031 }
1032 fq = &dpaa_fq->fq_base;
1033
1034 if (dpaa_fq->init) {
1035 memset(&initfq, 0, sizeof(initfq));
1036
1037 initfq.we_mask = cpu_to_be16(QM_INITFQ_WE_FQCTRL);
1038 /* Note: we may get to keep an empty FQ in cache */
1039 initfq.fqd.fq_ctrl = cpu_to_be16(QM_FQCTRL_PREFERINCACHE);
1040
1041 /* Try to reduce the number of portal interrupts for
1042 * Tx Confirmation FQs.
1043 */
1044 if (dpaa_fq->fq_type == FQ_TYPE_TX_CONFIRM)
1045 initfq.fqd.fq_ctrl |= cpu_to_be16(QM_FQCTRL_AVOIDBLOCK);
1046
1047 /* FQ placement */
1048 initfq.we_mask |= cpu_to_be16(QM_INITFQ_WE_DESTWQ);
1049
1050 qm_fqd_set_destwq(&initfq.fqd, dpaa_fq->channel, dpaa_fq->wq);
1051
1052 /* Put all egress queues in a congestion group of their own.
1053 * Sensu stricto, the Tx confirmation queues are Rx FQs,
1054 * rather than Tx - but they nonetheless account for the
1055 * memory footprint on behalf of egress traffic. We therefore
1056 * place them in the netdev's CGR, along with the Tx FQs.
1057 */
1058 if (dpaa_fq->fq_type == FQ_TYPE_TX ||
1059 dpaa_fq->fq_type == FQ_TYPE_TX_CONFIRM ||
1060 dpaa_fq->fq_type == FQ_TYPE_TX_CONF_MQ) {
1061 initfq.we_mask |= cpu_to_be16(QM_INITFQ_WE_CGID);
1062 initfq.fqd.fq_ctrl |= cpu_to_be16(QM_FQCTRL_CGE);
1063 initfq.fqd.cgid = (u8)priv->cgr_data.cgr.cgrid;
1064 /* Set a fixed overhead accounting, in an attempt to
1065 * reduce the impact of fixed-size skb shells and the
1066 * driver's needed headroom on system memory. This is
1067 * especially the case when the egress traffic is
1068 * composed of small datagrams.
1069 * Unfortunately, QMan's OAL value is capped to an
1070 * insufficient value, but even that is better than
1071 * no overhead accounting at all.
1072 */
1073 initfq.we_mask |= cpu_to_be16(QM_INITFQ_WE_OAC);
1074 qm_fqd_set_oac(&initfq.fqd, QM_OAC_CG);
1075 qm_fqd_set_oal(&initfq.fqd,
1076 min(sizeof(struct sk_buff) +
1077 priv->tx_headroom,
1078 (size_t)FSL_QMAN_MAX_OAL));
1079 }
1080
1081 if (td_enable) {
1082 initfq.we_mask |= cpu_to_be16(QM_INITFQ_WE_TDTHRESH);
1083 qm_fqd_set_taildrop(&initfq.fqd, DPAA_FQ_TD, 1);
1084 initfq.fqd.fq_ctrl = cpu_to_be16(QM_FQCTRL_TDE);
1085 }
1086
1087 if (dpaa_fq->fq_type == FQ_TYPE_TX) {
1088 queue_id = dpaa_tx_fq_to_id(priv, &dpaa_fq->fq_base);
1089 if (queue_id >= 0)
1090 confq = priv->conf_fqs[queue_id];
1091 if (confq) {
1092 initfq.we_mask |=
1093 cpu_to_be16(QM_INITFQ_WE_CONTEXTA);
1094 /* ContextA: OVOM=1(use contextA2 bits instead of ICAD)
1095 * A2V=1 (contextA A2 field is valid)
1096 * A0V=1 (contextA A0 field is valid)
1097 * B0V=1 (contextB field is valid)
1098 * ContextA A2: EBD=1 (deallocate buffers inside FMan)
1099 * ContextB B0(ASPID): 0 (absolute Virtual Storage ID)
1100 */
1101 qm_fqd_context_a_set64(&initfq.fqd,
1102 0x1e00000080000000ULL);
1103 }
1104 }
1105
1106 /* Put all the ingress queues in our "ingress CGR". */
1107 if (priv->use_ingress_cgr &&
1108 (dpaa_fq->fq_type == FQ_TYPE_RX_DEFAULT ||
1109 dpaa_fq->fq_type == FQ_TYPE_RX_ERROR ||
1110 dpaa_fq->fq_type == FQ_TYPE_RX_PCD)) {
1111 initfq.we_mask |= cpu_to_be16(QM_INITFQ_WE_CGID);
1112 initfq.fqd.fq_ctrl |= cpu_to_be16(QM_FQCTRL_CGE);
1113 initfq.fqd.cgid = (u8)priv->ingress_cgr.cgrid;
1114 /* Set a fixed overhead accounting, just like for the
1115 * egress CGR.
1116 */
1117 initfq.we_mask |= cpu_to_be16(QM_INITFQ_WE_OAC);
1118 qm_fqd_set_oac(&initfq.fqd, QM_OAC_CG);
1119 qm_fqd_set_oal(&initfq.fqd,
1120 min(sizeof(struct sk_buff) +
1121 priv->tx_headroom,
1122 (size_t)FSL_QMAN_MAX_OAL));
1123 }
1124
1125 /* Initialization common to all ingress queues */
1126 if (dpaa_fq->flags & QMAN_FQ_FLAG_NO_ENQUEUE) {
1127 initfq.we_mask |= cpu_to_be16(QM_INITFQ_WE_CONTEXTA);
1128 initfq.fqd.fq_ctrl |= cpu_to_be16(QM_FQCTRL_HOLDACTIVE |
1129 QM_FQCTRL_CTXASTASHING);
1130 initfq.fqd.context_a.stashing.exclusive =
1131 QM_STASHING_EXCL_DATA | QM_STASHING_EXCL_CTX |
1132 QM_STASHING_EXCL_ANNOTATION;
1133 qm_fqd_set_stashing(&initfq.fqd, 1, 2,
1134 DIV_ROUND_UP(sizeof(struct qman_fq),
1135 64));
1136 }
1137
1138 err = qman_init_fq(fq, QMAN_INITFQ_FLAG_SCHED, &initfq);
1139 if (err < 0) {
1140 dev_err(dev, "qman_init_fq(%u) = %d\n",
1141 qman_fq_fqid(fq), err);
1142 qman_destroy_fq(fq);
1143 return err;
1144 }
1145 }
1146
1147 dpaa_fq->fqid = qman_fq_fqid(fq);
1148
1149 if (dpaa_fq->fq_type == FQ_TYPE_RX_DEFAULT ||
1150 dpaa_fq->fq_type == FQ_TYPE_RX_PCD) {
1151 err = xdp_rxq_info_reg(&dpaa_fq->xdp_rxq, dpaa_fq->net_dev,
1152 dpaa_fq->fqid, 0);
1153 if (err) {
1154 dev_err(dev, "xdp_rxq_info_reg() = %d\n", err);
1155 return err;
1156 }
1157
1158 err = xdp_rxq_info_reg_mem_model(&dpaa_fq->xdp_rxq,
1159 MEM_TYPE_PAGE_ORDER0, NULL);
1160 if (err) {
1161 dev_err(dev, "xdp_rxq_info_reg_mem_model() = %d\n",
1162 err);
1163 xdp_rxq_info_unreg(&dpaa_fq->xdp_rxq);
1164 return err;
1165 }
1166 }
1167
1168 return 0;
1169 }
1170
dpaa_fq_free_entry(struct device * dev,struct qman_fq * fq)1171 static int dpaa_fq_free_entry(struct device *dev, struct qman_fq *fq)
1172 {
1173 const struct dpaa_priv *priv;
1174 struct dpaa_fq *dpaa_fq;
1175 int err, error;
1176
1177 err = 0;
1178
1179 dpaa_fq = container_of(fq, struct dpaa_fq, fq_base);
1180 priv = netdev_priv(dpaa_fq->net_dev);
1181
1182 if (dpaa_fq->init) {
1183 err = qman_retire_fq(fq, NULL);
1184 if (err < 0 && netif_msg_drv(priv))
1185 dev_err(dev, "qman_retire_fq(%u) = %d\n",
1186 qman_fq_fqid(fq), err);
1187
1188 error = qman_oos_fq(fq);
1189 if (error < 0 && netif_msg_drv(priv)) {
1190 dev_err(dev, "qman_oos_fq(%u) = %d\n",
1191 qman_fq_fqid(fq), error);
1192 if (err >= 0)
1193 err = error;
1194 }
1195 }
1196
1197 if ((dpaa_fq->fq_type == FQ_TYPE_RX_DEFAULT ||
1198 dpaa_fq->fq_type == FQ_TYPE_RX_PCD) &&
1199 xdp_rxq_info_is_reg(&dpaa_fq->xdp_rxq))
1200 xdp_rxq_info_unreg(&dpaa_fq->xdp_rxq);
1201
1202 qman_destroy_fq(fq);
1203 list_del(&dpaa_fq->list);
1204
1205 return err;
1206 }
1207
dpaa_fq_free(struct device * dev,struct list_head * list)1208 static int dpaa_fq_free(struct device *dev, struct list_head *list)
1209 {
1210 struct dpaa_fq *dpaa_fq, *tmp;
1211 int err, error;
1212
1213 err = 0;
1214 list_for_each_entry_safe(dpaa_fq, tmp, list, list) {
1215 error = dpaa_fq_free_entry(dev, (struct qman_fq *)dpaa_fq);
1216 if (error < 0 && err >= 0)
1217 err = error;
1218 }
1219
1220 return err;
1221 }
1222
dpaa_eth_init_tx_port(struct fman_port * port,struct dpaa_fq * errq,struct dpaa_fq * defq,struct dpaa_buffer_layout * buf_layout)1223 static int dpaa_eth_init_tx_port(struct fman_port *port, struct dpaa_fq *errq,
1224 struct dpaa_fq *defq,
1225 struct dpaa_buffer_layout *buf_layout)
1226 {
1227 struct fman_buffer_prefix_content buf_prefix_content;
1228 struct fman_port_params params;
1229 int err;
1230
1231 memset(¶ms, 0, sizeof(params));
1232 memset(&buf_prefix_content, 0, sizeof(buf_prefix_content));
1233
1234 buf_prefix_content.priv_data_size = buf_layout->priv_data_size;
1235 buf_prefix_content.pass_prs_result = true;
1236 buf_prefix_content.pass_hash_result = true;
1237 buf_prefix_content.pass_time_stamp = true;
1238 buf_prefix_content.data_align = DPAA_FD_DATA_ALIGNMENT;
1239
1240 params.specific_params.non_rx_params.err_fqid = errq->fqid;
1241 params.specific_params.non_rx_params.dflt_fqid = defq->fqid;
1242
1243 err = fman_port_config(port, ¶ms);
1244 if (err) {
1245 pr_err("%s: fman_port_config failed\n", __func__);
1246 return err;
1247 }
1248
1249 err = fman_port_cfg_buf_prefix_content(port, &buf_prefix_content);
1250 if (err) {
1251 pr_err("%s: fman_port_cfg_buf_prefix_content failed\n",
1252 __func__);
1253 return err;
1254 }
1255
1256 err = fman_port_init(port);
1257 if (err)
1258 pr_err("%s: fm_port_init failed\n", __func__);
1259
1260 return err;
1261 }
1262
dpaa_eth_init_rx_port(struct fman_port * port,struct dpaa_bp * bp,struct dpaa_fq * errq,struct dpaa_fq * defq,struct dpaa_fq * pcdq,struct dpaa_buffer_layout * buf_layout)1263 static int dpaa_eth_init_rx_port(struct fman_port *port, struct dpaa_bp *bp,
1264 struct dpaa_fq *errq,
1265 struct dpaa_fq *defq, struct dpaa_fq *pcdq,
1266 struct dpaa_buffer_layout *buf_layout)
1267 {
1268 struct fman_buffer_prefix_content buf_prefix_content;
1269 struct fman_port_rx_params *rx_p;
1270 struct fman_port_params params;
1271 int err;
1272
1273 memset(¶ms, 0, sizeof(params));
1274 memset(&buf_prefix_content, 0, sizeof(buf_prefix_content));
1275
1276 buf_prefix_content.priv_data_size = buf_layout->priv_data_size;
1277 buf_prefix_content.pass_prs_result = true;
1278 buf_prefix_content.pass_hash_result = true;
1279 buf_prefix_content.pass_time_stamp = true;
1280 buf_prefix_content.data_align = DPAA_FD_RX_DATA_ALIGNMENT;
1281
1282 rx_p = ¶ms.specific_params.rx_params;
1283 rx_p->err_fqid = errq->fqid;
1284 rx_p->dflt_fqid = defq->fqid;
1285 if (pcdq) {
1286 rx_p->pcd_base_fqid = pcdq->fqid;
1287 rx_p->pcd_fqs_count = DPAA_ETH_PCD_RXQ_NUM;
1288 }
1289
1290 rx_p->ext_buf_pools.num_of_pools_used = 1;
1291 rx_p->ext_buf_pools.ext_buf_pool[0].id = bp->bpid;
1292 rx_p->ext_buf_pools.ext_buf_pool[0].size = (u16)bp->size;
1293
1294 err = fman_port_config(port, ¶ms);
1295 if (err) {
1296 pr_err("%s: fman_port_config failed\n", __func__);
1297 return err;
1298 }
1299
1300 err = fman_port_cfg_buf_prefix_content(port, &buf_prefix_content);
1301 if (err) {
1302 pr_err("%s: fman_port_cfg_buf_prefix_content failed\n",
1303 __func__);
1304 return err;
1305 }
1306
1307 err = fman_port_init(port);
1308 if (err)
1309 pr_err("%s: fm_port_init failed\n", __func__);
1310
1311 return err;
1312 }
1313
dpaa_eth_init_ports(struct mac_device * mac_dev,struct dpaa_bp * bp,struct fm_port_fqs * port_fqs,struct dpaa_buffer_layout * buf_layout,struct device * dev)1314 static int dpaa_eth_init_ports(struct mac_device *mac_dev,
1315 struct dpaa_bp *bp,
1316 struct fm_port_fqs *port_fqs,
1317 struct dpaa_buffer_layout *buf_layout,
1318 struct device *dev)
1319 {
1320 struct fman_port *rxport = mac_dev->port[RX];
1321 struct fman_port *txport = mac_dev->port[TX];
1322 int err;
1323
1324 err = dpaa_eth_init_tx_port(txport, port_fqs->tx_errq,
1325 port_fqs->tx_defq, &buf_layout[TX]);
1326 if (err)
1327 return err;
1328
1329 err = dpaa_eth_init_rx_port(rxport, bp, port_fqs->rx_errq,
1330 port_fqs->rx_defq, port_fqs->rx_pcdq,
1331 &buf_layout[RX]);
1332
1333 return err;
1334 }
1335
dpaa_bman_release(const struct dpaa_bp * dpaa_bp,struct bm_buffer * bmb,int cnt)1336 static int dpaa_bman_release(const struct dpaa_bp *dpaa_bp,
1337 struct bm_buffer *bmb, int cnt)
1338 {
1339 int err;
1340
1341 err = bman_release(dpaa_bp->pool, bmb, cnt);
1342 /* Should never occur, address anyway to avoid leaking the buffers */
1343 if (WARN_ON(err) && dpaa_bp->free_buf_cb)
1344 while (cnt-- > 0)
1345 dpaa_bp->free_buf_cb(dpaa_bp, &bmb[cnt]);
1346
1347 return cnt;
1348 }
1349
dpaa_release_sgt_members(struct qm_sg_entry * sgt)1350 static void dpaa_release_sgt_members(struct qm_sg_entry *sgt)
1351 {
1352 struct bm_buffer bmb[DPAA_BUFF_RELEASE_MAX];
1353 struct dpaa_bp *dpaa_bp;
1354 int i = 0, j;
1355
1356 memset(bmb, 0, sizeof(bmb));
1357
1358 do {
1359 dpaa_bp = dpaa_bpid2pool(sgt[i].bpid);
1360 if (!dpaa_bp)
1361 return;
1362
1363 j = 0;
1364 do {
1365 WARN_ON(qm_sg_entry_is_ext(&sgt[i]));
1366
1367 bm_buffer_set64(&bmb[j], qm_sg_entry_get64(&sgt[i]));
1368
1369 j++; i++;
1370 } while (j < ARRAY_SIZE(bmb) &&
1371 !qm_sg_entry_is_final(&sgt[i - 1]) &&
1372 sgt[i - 1].bpid == sgt[i].bpid);
1373
1374 dpaa_bman_release(dpaa_bp, bmb, j);
1375 } while (!qm_sg_entry_is_final(&sgt[i - 1]));
1376 }
1377
dpaa_fd_release(const struct net_device * net_dev,const struct qm_fd * fd)1378 static void dpaa_fd_release(const struct net_device *net_dev,
1379 const struct qm_fd *fd)
1380 {
1381 struct qm_sg_entry *sgt;
1382 struct dpaa_bp *dpaa_bp;
1383 struct bm_buffer bmb;
1384 dma_addr_t addr;
1385 void *vaddr;
1386
1387 bmb.data = 0;
1388 bm_buffer_set64(&bmb, qm_fd_addr(fd));
1389
1390 dpaa_bp = dpaa_bpid2pool(fd->bpid);
1391 if (!dpaa_bp)
1392 return;
1393
1394 if (qm_fd_get_format(fd) == qm_fd_sg) {
1395 vaddr = phys_to_virt(qm_fd_addr(fd));
1396 sgt = vaddr + qm_fd_get_offset(fd);
1397
1398 dma_unmap_page(dpaa_bp->priv->rx_dma_dev, qm_fd_addr(fd),
1399 DPAA_BP_RAW_SIZE, DMA_FROM_DEVICE);
1400
1401 dpaa_release_sgt_members(sgt);
1402
1403 addr = dma_map_page(dpaa_bp->priv->rx_dma_dev,
1404 virt_to_page(vaddr), 0, DPAA_BP_RAW_SIZE,
1405 DMA_FROM_DEVICE);
1406 if (dma_mapping_error(dpaa_bp->priv->rx_dma_dev, addr)) {
1407 netdev_err(net_dev, "DMA mapping failed\n");
1408 return;
1409 }
1410 bm_buffer_set64(&bmb, addr);
1411 }
1412
1413 dpaa_bman_release(dpaa_bp, &bmb, 1);
1414 }
1415
count_ern(struct dpaa_percpu_priv * percpu_priv,const union qm_mr_entry * msg)1416 static void count_ern(struct dpaa_percpu_priv *percpu_priv,
1417 const union qm_mr_entry *msg)
1418 {
1419 switch (msg->ern.rc & QM_MR_RC_MASK) {
1420 case QM_MR_RC_CGR_TAILDROP:
1421 percpu_priv->ern_cnt.cg_tdrop++;
1422 break;
1423 case QM_MR_RC_WRED:
1424 percpu_priv->ern_cnt.wred++;
1425 break;
1426 case QM_MR_RC_ERROR:
1427 percpu_priv->ern_cnt.err_cond++;
1428 break;
1429 case QM_MR_RC_ORPWINDOW_EARLY:
1430 percpu_priv->ern_cnt.early_window++;
1431 break;
1432 case QM_MR_RC_ORPWINDOW_LATE:
1433 percpu_priv->ern_cnt.late_window++;
1434 break;
1435 case QM_MR_RC_FQ_TAILDROP:
1436 percpu_priv->ern_cnt.fq_tdrop++;
1437 break;
1438 case QM_MR_RC_ORPWINDOW_RETIRED:
1439 percpu_priv->ern_cnt.fq_retired++;
1440 break;
1441 case QM_MR_RC_ORP_ZERO:
1442 percpu_priv->ern_cnt.orp_zero++;
1443 break;
1444 }
1445 }
1446
1447 /* Turn on HW checksum computation for this outgoing frame.
1448 * If the current protocol is not something we support in this regard
1449 * (or if the stack has already computed the SW checksum), we do nothing.
1450 *
1451 * Returns 0 if all goes well (or HW csum doesn't apply), and a negative value
1452 * otherwise.
1453 *
1454 * Note that this function may modify the fd->cmd field and the skb data buffer
1455 * (the Parse Results area).
1456 */
dpaa_enable_tx_csum(struct dpaa_priv * priv,struct sk_buff * skb,struct qm_fd * fd,void * parse_results)1457 static int dpaa_enable_tx_csum(struct dpaa_priv *priv,
1458 struct sk_buff *skb,
1459 struct qm_fd *fd,
1460 void *parse_results)
1461 {
1462 struct fman_prs_result *parse_result;
1463 u16 ethertype = ntohs(skb->protocol);
1464 struct ipv6hdr *ipv6h = NULL;
1465 struct iphdr *iph;
1466 int retval = 0;
1467 u8 l4_proto;
1468
1469 if (skb->ip_summed != CHECKSUM_PARTIAL)
1470 return 0;
1471
1472 /* Note: L3 csum seems to be already computed in sw, but we can't choose
1473 * L4 alone from the FM configuration anyway.
1474 */
1475
1476 /* Fill in some fields of the Parse Results array, so the FMan
1477 * can find them as if they came from the FMan Parser.
1478 */
1479 parse_result = (struct fman_prs_result *)parse_results;
1480
1481 /* If we're dealing with VLAN, get the real Ethernet type */
1482 if (ethertype == ETH_P_8021Q)
1483 ethertype = ntohs(skb_vlan_eth_hdr(skb)->h_vlan_encapsulated_proto);
1484
1485 /* Fill in the relevant L3 parse result fields
1486 * and read the L4 protocol type
1487 */
1488 switch (ethertype) {
1489 case ETH_P_IP:
1490 parse_result->l3r = cpu_to_be16(FM_L3_PARSE_RESULT_IPV4);
1491 iph = ip_hdr(skb);
1492 WARN_ON(!iph);
1493 l4_proto = iph->protocol;
1494 break;
1495 case ETH_P_IPV6:
1496 parse_result->l3r = cpu_to_be16(FM_L3_PARSE_RESULT_IPV6);
1497 ipv6h = ipv6_hdr(skb);
1498 WARN_ON(!ipv6h);
1499 l4_proto = ipv6h->nexthdr;
1500 break;
1501 default:
1502 /* We shouldn't even be here */
1503 if (net_ratelimit())
1504 netif_alert(priv, tx_err, priv->net_dev,
1505 "Can't compute HW csum for L3 proto 0x%x\n",
1506 ntohs(skb->protocol));
1507 retval = -EIO;
1508 goto return_error;
1509 }
1510
1511 /* Fill in the relevant L4 parse result fields */
1512 switch (l4_proto) {
1513 case IPPROTO_UDP:
1514 parse_result->l4r = FM_L4_PARSE_RESULT_UDP;
1515 break;
1516 case IPPROTO_TCP:
1517 parse_result->l4r = FM_L4_PARSE_RESULT_TCP;
1518 break;
1519 default:
1520 if (net_ratelimit())
1521 netif_alert(priv, tx_err, priv->net_dev,
1522 "Can't compute HW csum for L4 proto 0x%x\n",
1523 l4_proto);
1524 retval = -EIO;
1525 goto return_error;
1526 }
1527
1528 /* At index 0 is IPOffset_1 as defined in the Parse Results */
1529 parse_result->ip_off[0] = (u8)skb_network_offset(skb);
1530 parse_result->l4_off = (u8)skb_transport_offset(skb);
1531
1532 /* Enable L3 (and L4, if TCP or UDP) HW checksum. */
1533 fd->cmd |= cpu_to_be32(FM_FD_CMD_RPD | FM_FD_CMD_DTC);
1534
1535 /* On P1023 and similar platforms fd->cmd interpretation could
1536 * be disabled by setting CONTEXT_A bit ICMD; currently this bit
1537 * is not set so we do not need to check; in the future, if/when
1538 * using context_a we need to check this bit
1539 */
1540
1541 return_error:
1542 return retval;
1543 }
1544
dpaa_bp_add_8_bufs(const struct dpaa_bp * dpaa_bp)1545 static int dpaa_bp_add_8_bufs(const struct dpaa_bp *dpaa_bp)
1546 {
1547 struct net_device *net_dev = dpaa_bp->priv->net_dev;
1548 struct bm_buffer bmb[8];
1549 dma_addr_t addr;
1550 struct page *p;
1551 u8 i;
1552
1553 for (i = 0; i < 8; i++) {
1554 p = dev_alloc_pages(0);
1555 if (unlikely(!p)) {
1556 netdev_err(net_dev, "dev_alloc_pages() failed\n");
1557 goto release_previous_buffs;
1558 }
1559
1560 addr = dma_map_page(dpaa_bp->priv->rx_dma_dev, p, 0,
1561 DPAA_BP_RAW_SIZE, DMA_FROM_DEVICE);
1562 if (unlikely(dma_mapping_error(dpaa_bp->priv->rx_dma_dev,
1563 addr))) {
1564 netdev_err(net_dev, "DMA map failed\n");
1565 goto release_previous_buffs;
1566 }
1567
1568 bmb[i].data = 0;
1569 bm_buffer_set64(&bmb[i], addr);
1570 }
1571
1572 release_bufs:
1573 return dpaa_bman_release(dpaa_bp, bmb, i);
1574
1575 release_previous_buffs:
1576 WARN_ONCE(1, "dpaa_eth: failed to add buffers on Rx\n");
1577
1578 bm_buffer_set64(&bmb[i], 0);
1579 /* Avoid releasing a completely null buffer; bman_release() requires
1580 * at least one buffer.
1581 */
1582 if (likely(i))
1583 goto release_bufs;
1584
1585 return 0;
1586 }
1587
dpaa_bp_seed(struct dpaa_bp * dpaa_bp)1588 static int dpaa_bp_seed(struct dpaa_bp *dpaa_bp)
1589 {
1590 int i;
1591
1592 /* Give each CPU an allotment of "config_count" buffers */
1593 for_each_possible_cpu(i) {
1594 int *count_ptr = per_cpu_ptr(dpaa_bp->percpu_count, i);
1595 int j;
1596
1597 /* Although we access another CPU's counters here
1598 * we do it at boot time so it is safe
1599 */
1600 for (j = 0; j < dpaa_bp->config_count; j += 8)
1601 *count_ptr += dpaa_bp_add_8_bufs(dpaa_bp);
1602 }
1603 return 0;
1604 }
1605
1606 /* Add buffers/(pages) for Rx processing whenever bpool count falls below
1607 * REFILL_THRESHOLD.
1608 */
dpaa_eth_refill_bpool(struct dpaa_bp * dpaa_bp,int * countptr)1609 static int dpaa_eth_refill_bpool(struct dpaa_bp *dpaa_bp, int *countptr)
1610 {
1611 int count = *countptr;
1612 int new_bufs;
1613
1614 if (unlikely(count < FSL_DPAA_ETH_REFILL_THRESHOLD)) {
1615 do {
1616 new_bufs = dpaa_bp_add_8_bufs(dpaa_bp);
1617 if (unlikely(!new_bufs)) {
1618 /* Avoid looping forever if we've temporarily
1619 * run out of memory. We'll try again at the
1620 * next NAPI cycle.
1621 */
1622 break;
1623 }
1624 count += new_bufs;
1625 } while (count < FSL_DPAA_ETH_MAX_BUF_COUNT);
1626
1627 *countptr = count;
1628 if (unlikely(count < FSL_DPAA_ETH_MAX_BUF_COUNT))
1629 return -ENOMEM;
1630 }
1631
1632 return 0;
1633 }
1634
dpaa_eth_refill_bpools(struct dpaa_priv * priv)1635 static int dpaa_eth_refill_bpools(struct dpaa_priv *priv)
1636 {
1637 struct dpaa_bp *dpaa_bp;
1638 int *countptr;
1639
1640 dpaa_bp = priv->dpaa_bp;
1641 if (!dpaa_bp)
1642 return -EINVAL;
1643 countptr = this_cpu_ptr(dpaa_bp->percpu_count);
1644
1645 return dpaa_eth_refill_bpool(dpaa_bp, countptr);
1646 }
1647
1648 /* Cleanup function for outgoing frame descriptors that were built on Tx path,
1649 * either contiguous frames or scatter/gather ones.
1650 * Skb freeing is not handled here.
1651 *
1652 * This function may be called on error paths in the Tx function, so guard
1653 * against cases when not all fd relevant fields were filled in. To avoid
1654 * reading the invalid transmission timestamp for the error paths set ts to
1655 * false.
1656 *
1657 * Return the skb backpointer, since for S/G frames the buffer containing it
1658 * gets freed here.
1659 *
1660 * No skb backpointer is set when transmitting XDP frames. Cleanup the buffer
1661 * and return NULL in this case.
1662 */
dpaa_cleanup_tx_fd(const struct dpaa_priv * priv,const struct qm_fd * fd,bool ts)1663 static struct sk_buff *dpaa_cleanup_tx_fd(const struct dpaa_priv *priv,
1664 const struct qm_fd *fd, bool ts)
1665 {
1666 const enum dma_data_direction dma_dir = DMA_TO_DEVICE;
1667 struct device *dev = priv->net_dev->dev.parent;
1668 struct skb_shared_hwtstamps shhwtstamps;
1669 dma_addr_t addr = qm_fd_addr(fd);
1670 void *vaddr = phys_to_virt(addr);
1671 const struct qm_sg_entry *sgt;
1672 struct dpaa_eth_swbp *swbp;
1673 struct sk_buff *skb;
1674 u64 ns;
1675 int i;
1676
1677 if (unlikely(qm_fd_get_format(fd) == qm_fd_sg)) {
1678 dma_unmap_page(priv->tx_dma_dev, addr,
1679 qm_fd_get_offset(fd) + DPAA_SGT_SIZE,
1680 dma_dir);
1681
1682 /* The sgt buffer has been allocated with netdev_alloc_frag(),
1683 * it's from lowmem.
1684 */
1685 sgt = vaddr + qm_fd_get_offset(fd);
1686
1687 /* sgt[0] is from lowmem, was dma_map_single()-ed */
1688 dma_unmap_single(priv->tx_dma_dev, qm_sg_addr(&sgt[0]),
1689 qm_sg_entry_get_len(&sgt[0]), dma_dir);
1690
1691 /* remaining pages were mapped with skb_frag_dma_map() */
1692 for (i = 1; (i < DPAA_SGT_MAX_ENTRIES) &&
1693 !qm_sg_entry_is_final(&sgt[i - 1]); i++) {
1694 WARN_ON(qm_sg_entry_is_ext(&sgt[i]));
1695
1696 dma_unmap_page(priv->tx_dma_dev, qm_sg_addr(&sgt[i]),
1697 qm_sg_entry_get_len(&sgt[i]), dma_dir);
1698 }
1699 } else {
1700 dma_unmap_single(priv->tx_dma_dev, addr,
1701 qm_fd_get_offset(fd) + qm_fd_get_length(fd),
1702 dma_dir);
1703 }
1704
1705 swbp = (struct dpaa_eth_swbp *)vaddr;
1706 skb = swbp->skb;
1707
1708 /* No skb backpointer is set when running XDP. An xdp_frame
1709 * backpointer is saved instead.
1710 */
1711 if (!skb) {
1712 xdp_return_frame(swbp->xdpf);
1713 return NULL;
1714 }
1715
1716 /* DMA unmapping is required before accessing the HW provided info */
1717 if (ts && priv->tx_tstamp &&
1718 skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) {
1719 memset(&shhwtstamps, 0, sizeof(shhwtstamps));
1720
1721 if (!fman_port_get_tstamp(priv->mac_dev->port[TX], vaddr,
1722 &ns)) {
1723 shhwtstamps.hwtstamp = ns_to_ktime(ns);
1724 skb_tstamp_tx(skb, &shhwtstamps);
1725 } else {
1726 dev_warn(dev, "fman_port_get_tstamp failed!\n");
1727 }
1728 }
1729
1730 if (qm_fd_get_format(fd) == qm_fd_sg)
1731 /* Free the page that we allocated on Tx for the SGT */
1732 free_pages((unsigned long)vaddr, 0);
1733
1734 return skb;
1735 }
1736
rx_csum_offload(const struct dpaa_priv * priv,const struct qm_fd * fd)1737 static u8 rx_csum_offload(const struct dpaa_priv *priv, const struct qm_fd *fd)
1738 {
1739 /* The parser has run and performed L4 checksum validation.
1740 * We know there were no parser errors (and implicitly no
1741 * L4 csum error), otherwise we wouldn't be here.
1742 */
1743 if ((priv->net_dev->features & NETIF_F_RXCSUM) &&
1744 (be32_to_cpu(fd->status) & FM_FD_STAT_L4CV))
1745 return CHECKSUM_UNNECESSARY;
1746
1747 /* We're here because either the parser didn't run or the L4 checksum
1748 * was not verified. This may include the case of a UDP frame with
1749 * checksum zero or an L4 proto other than TCP/UDP
1750 */
1751 return CHECKSUM_NONE;
1752 }
1753
1754 #define PTR_IS_ALIGNED(x, a) (IS_ALIGNED((unsigned long)(x), (a)))
1755
1756 /* Build a linear skb around the received buffer.
1757 * We are guaranteed there is enough room at the end of the data buffer to
1758 * accommodate the shared info area of the skb.
1759 */
contig_fd_to_skb(const struct dpaa_priv * priv,const struct qm_fd * fd)1760 static struct sk_buff *contig_fd_to_skb(const struct dpaa_priv *priv,
1761 const struct qm_fd *fd)
1762 {
1763 ssize_t fd_off = qm_fd_get_offset(fd);
1764 dma_addr_t addr = qm_fd_addr(fd);
1765 struct dpaa_bp *dpaa_bp;
1766 struct sk_buff *skb;
1767 void *vaddr;
1768
1769 vaddr = phys_to_virt(addr);
1770 WARN_ON(!IS_ALIGNED((unsigned long)vaddr, SMP_CACHE_BYTES));
1771
1772 dpaa_bp = dpaa_bpid2pool(fd->bpid);
1773 if (!dpaa_bp)
1774 goto free_buffer;
1775
1776 skb = build_skb(vaddr, dpaa_bp->size +
1777 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)));
1778 if (WARN_ONCE(!skb, "Build skb failure on Rx\n"))
1779 goto free_buffer;
1780 skb_reserve(skb, fd_off);
1781 skb_put(skb, qm_fd_get_length(fd));
1782
1783 skb->ip_summed = rx_csum_offload(priv, fd);
1784
1785 return skb;
1786
1787 free_buffer:
1788 free_pages((unsigned long)vaddr, 0);
1789 return NULL;
1790 }
1791
1792 /* Build an skb with the data of the first S/G entry in the linear portion and
1793 * the rest of the frame as skb fragments.
1794 *
1795 * The page fragment holding the S/G Table is recycled here.
1796 */
sg_fd_to_skb(const struct dpaa_priv * priv,const struct qm_fd * fd)1797 static struct sk_buff *sg_fd_to_skb(const struct dpaa_priv *priv,
1798 const struct qm_fd *fd)
1799 {
1800 ssize_t fd_off = qm_fd_get_offset(fd);
1801 dma_addr_t addr = qm_fd_addr(fd);
1802 const struct qm_sg_entry *sgt;
1803 struct page *page, *head_page;
1804 struct dpaa_bp *dpaa_bp;
1805 void *vaddr, *sg_vaddr;
1806 int frag_off, frag_len;
1807 struct sk_buff *skb;
1808 dma_addr_t sg_addr;
1809 int page_offset;
1810 unsigned int sz;
1811 int *count_ptr;
1812 int i, j;
1813
1814 vaddr = phys_to_virt(addr);
1815 WARN_ON(!IS_ALIGNED((unsigned long)vaddr, SMP_CACHE_BYTES));
1816
1817 /* Iterate through the SGT entries and add data buffers to the skb */
1818 sgt = vaddr + fd_off;
1819 skb = NULL;
1820 for (i = 0; i < DPAA_SGT_MAX_ENTRIES; i++) {
1821 /* Extension bit is not supported */
1822 WARN_ON(qm_sg_entry_is_ext(&sgt[i]));
1823
1824 sg_addr = qm_sg_addr(&sgt[i]);
1825 sg_vaddr = phys_to_virt(sg_addr);
1826 WARN_ON(!PTR_IS_ALIGNED(sg_vaddr, SMP_CACHE_BYTES));
1827
1828 dma_unmap_page(priv->rx_dma_dev, sg_addr,
1829 DPAA_BP_RAW_SIZE, DMA_FROM_DEVICE);
1830
1831 /* We may use multiple Rx pools */
1832 dpaa_bp = dpaa_bpid2pool(sgt[i].bpid);
1833 if (!dpaa_bp)
1834 goto free_buffers;
1835
1836 if (!skb) {
1837 sz = dpaa_bp->size +
1838 SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
1839 skb = build_skb(sg_vaddr, sz);
1840 if (WARN_ON(!skb))
1841 goto free_buffers;
1842
1843 skb->ip_summed = rx_csum_offload(priv, fd);
1844
1845 /* Make sure forwarded skbs will have enough space
1846 * on Tx, if extra headers are added.
1847 */
1848 WARN_ON(fd_off != priv->rx_headroom);
1849 skb_reserve(skb, fd_off);
1850 skb_put(skb, qm_sg_entry_get_len(&sgt[i]));
1851 } else {
1852 /* Not the first S/G entry; all data from buffer will
1853 * be added in an skb fragment; fragment index is offset
1854 * by one since first S/G entry was incorporated in the
1855 * linear part of the skb.
1856 *
1857 * Caution: 'page' may be a tail page.
1858 */
1859 page = virt_to_page(sg_vaddr);
1860 head_page = virt_to_head_page(sg_vaddr);
1861
1862 /* Compute offset in (possibly tail) page */
1863 page_offset = ((unsigned long)sg_vaddr &
1864 (PAGE_SIZE - 1)) +
1865 (page_address(page) - page_address(head_page));
1866 /* page_offset only refers to the beginning of sgt[i];
1867 * but the buffer itself may have an internal offset.
1868 */
1869 frag_off = qm_sg_entry_get_off(&sgt[i]) + page_offset;
1870 frag_len = qm_sg_entry_get_len(&sgt[i]);
1871 /* skb_add_rx_frag() does no checking on the page; if
1872 * we pass it a tail page, we'll end up with
1873 * bad page accounting and eventually with segafults.
1874 */
1875 skb_add_rx_frag(skb, i - 1, head_page, frag_off,
1876 frag_len, dpaa_bp->size);
1877 }
1878
1879 /* Update the pool count for the current {cpu x bpool} */
1880 count_ptr = this_cpu_ptr(dpaa_bp->percpu_count);
1881 (*count_ptr)--;
1882
1883 if (qm_sg_entry_is_final(&sgt[i]))
1884 break;
1885 }
1886 WARN_ONCE(i == DPAA_SGT_MAX_ENTRIES, "No final bit on SGT\n");
1887
1888 /* free the SG table buffer */
1889 free_pages((unsigned long)vaddr, 0);
1890
1891 return skb;
1892
1893 free_buffers:
1894 /* free all the SG entries */
1895 for (j = 0; j < DPAA_SGT_MAX_ENTRIES ; j++) {
1896 sg_addr = qm_sg_addr(&sgt[j]);
1897 sg_vaddr = phys_to_virt(sg_addr);
1898 /* all pages 0..i were unmaped */
1899 if (j > i)
1900 dma_unmap_page(priv->rx_dma_dev, qm_sg_addr(&sgt[j]),
1901 DPAA_BP_RAW_SIZE, DMA_FROM_DEVICE);
1902 free_pages((unsigned long)sg_vaddr, 0);
1903 /* counters 0..i-1 were decremented */
1904 if (j >= i) {
1905 dpaa_bp = dpaa_bpid2pool(sgt[j].bpid);
1906 if (dpaa_bp) {
1907 count_ptr = this_cpu_ptr(dpaa_bp->percpu_count);
1908 (*count_ptr)--;
1909 }
1910 }
1911
1912 if (qm_sg_entry_is_final(&sgt[j]))
1913 break;
1914 }
1915 /* free the SGT fragment */
1916 free_pages((unsigned long)vaddr, 0);
1917
1918 return NULL;
1919 }
1920
skb_to_contig_fd(struct dpaa_priv * priv,struct sk_buff * skb,struct qm_fd * fd,int * offset)1921 static int skb_to_contig_fd(struct dpaa_priv *priv,
1922 struct sk_buff *skb, struct qm_fd *fd,
1923 int *offset)
1924 {
1925 struct net_device *net_dev = priv->net_dev;
1926 enum dma_data_direction dma_dir;
1927 struct dpaa_eth_swbp *swbp;
1928 unsigned char *buff_start;
1929 dma_addr_t addr;
1930 int err;
1931
1932 /* We are guaranteed to have at least tx_headroom bytes
1933 * available, so just use that for offset.
1934 */
1935 fd->bpid = FSL_DPAA_BPID_INV;
1936 buff_start = skb->data - priv->tx_headroom;
1937 dma_dir = DMA_TO_DEVICE;
1938
1939 swbp = (struct dpaa_eth_swbp *)buff_start;
1940 swbp->skb = skb;
1941
1942 /* Enable L3/L4 hardware checksum computation.
1943 *
1944 * We must do this before dma_map_single(DMA_TO_DEVICE), because we may
1945 * need to write into the skb.
1946 */
1947 err = dpaa_enable_tx_csum(priv, skb, fd,
1948 buff_start + DPAA_TX_PRIV_DATA_SIZE);
1949 if (unlikely(err < 0)) {
1950 if (net_ratelimit())
1951 netif_err(priv, tx_err, net_dev, "HW csum error: %d\n",
1952 err);
1953 return err;
1954 }
1955
1956 /* Fill in the rest of the FD fields */
1957 qm_fd_set_contig(fd, priv->tx_headroom, skb->len);
1958 fd->cmd |= cpu_to_be32(FM_FD_CMD_FCO);
1959
1960 /* Map the entire buffer size that may be seen by FMan, but no more */
1961 addr = dma_map_single(priv->tx_dma_dev, buff_start,
1962 priv->tx_headroom + skb->len, dma_dir);
1963 if (unlikely(dma_mapping_error(priv->tx_dma_dev, addr))) {
1964 if (net_ratelimit())
1965 netif_err(priv, tx_err, net_dev, "dma_map_single() failed\n");
1966 return -EINVAL;
1967 }
1968 qm_fd_addr_set64(fd, addr);
1969
1970 return 0;
1971 }
1972
skb_to_sg_fd(struct dpaa_priv * priv,struct sk_buff * skb,struct qm_fd * fd)1973 static int skb_to_sg_fd(struct dpaa_priv *priv,
1974 struct sk_buff *skb, struct qm_fd *fd)
1975 {
1976 const enum dma_data_direction dma_dir = DMA_TO_DEVICE;
1977 const int nr_frags = skb_shinfo(skb)->nr_frags;
1978 struct net_device *net_dev = priv->net_dev;
1979 struct dpaa_eth_swbp *swbp;
1980 struct qm_sg_entry *sgt;
1981 void *buff_start;
1982 skb_frag_t *frag;
1983 dma_addr_t addr;
1984 size_t frag_len;
1985 struct page *p;
1986 int i, j, err;
1987
1988 /* get a page to store the SGTable */
1989 p = dev_alloc_pages(0);
1990 if (unlikely(!p)) {
1991 netdev_err(net_dev, "dev_alloc_pages() failed\n");
1992 return -ENOMEM;
1993 }
1994 buff_start = page_address(p);
1995
1996 /* Enable L3/L4 hardware checksum computation.
1997 *
1998 * We must do this before dma_map_single(DMA_TO_DEVICE), because we may
1999 * need to write into the skb.
2000 */
2001 err = dpaa_enable_tx_csum(priv, skb, fd,
2002 buff_start + DPAA_TX_PRIV_DATA_SIZE);
2003 if (unlikely(err < 0)) {
2004 if (net_ratelimit())
2005 netif_err(priv, tx_err, net_dev, "HW csum error: %d\n",
2006 err);
2007 goto csum_failed;
2008 }
2009
2010 /* SGT[0] is used by the linear part */
2011 sgt = (struct qm_sg_entry *)(buff_start + priv->tx_headroom);
2012 frag_len = skb_headlen(skb);
2013 qm_sg_entry_set_len(&sgt[0], frag_len);
2014 sgt[0].bpid = FSL_DPAA_BPID_INV;
2015 sgt[0].offset = 0;
2016 addr = dma_map_single(priv->tx_dma_dev, skb->data,
2017 skb_headlen(skb), dma_dir);
2018 if (unlikely(dma_mapping_error(priv->tx_dma_dev, addr))) {
2019 netdev_err(priv->net_dev, "DMA mapping failed\n");
2020 err = -EINVAL;
2021 goto sg0_map_failed;
2022 }
2023 qm_sg_entry_set64(&sgt[0], addr);
2024
2025 /* populate the rest of SGT entries */
2026 for (i = 0; i < nr_frags; i++) {
2027 frag = &skb_shinfo(skb)->frags[i];
2028 frag_len = skb_frag_size(frag);
2029 WARN_ON(!skb_frag_page(frag));
2030 addr = skb_frag_dma_map(priv->tx_dma_dev, frag, 0,
2031 frag_len, dma_dir);
2032 if (unlikely(dma_mapping_error(priv->tx_dma_dev, addr))) {
2033 netdev_err(priv->net_dev, "DMA mapping failed\n");
2034 err = -EINVAL;
2035 goto sg_map_failed;
2036 }
2037
2038 qm_sg_entry_set_len(&sgt[i + 1], frag_len);
2039 sgt[i + 1].bpid = FSL_DPAA_BPID_INV;
2040 sgt[i + 1].offset = 0;
2041
2042 /* keep the offset in the address */
2043 qm_sg_entry_set64(&sgt[i + 1], addr);
2044 }
2045
2046 /* Set the final bit in the last used entry of the SGT */
2047 qm_sg_entry_set_f(&sgt[nr_frags], frag_len);
2048
2049 /* set fd offset to priv->tx_headroom */
2050 qm_fd_set_sg(fd, priv->tx_headroom, skb->len);
2051
2052 /* DMA map the SGT page */
2053 swbp = (struct dpaa_eth_swbp *)buff_start;
2054 swbp->skb = skb;
2055
2056 addr = dma_map_page(priv->tx_dma_dev, p, 0,
2057 priv->tx_headroom + DPAA_SGT_SIZE, dma_dir);
2058 if (unlikely(dma_mapping_error(priv->tx_dma_dev, addr))) {
2059 netdev_err(priv->net_dev, "DMA mapping failed\n");
2060 err = -EINVAL;
2061 goto sgt_map_failed;
2062 }
2063
2064 fd->bpid = FSL_DPAA_BPID_INV;
2065 fd->cmd |= cpu_to_be32(FM_FD_CMD_FCO);
2066 qm_fd_addr_set64(fd, addr);
2067
2068 return 0;
2069
2070 sgt_map_failed:
2071 sg_map_failed:
2072 for (j = 0; j < i; j++)
2073 dma_unmap_page(priv->tx_dma_dev, qm_sg_addr(&sgt[j]),
2074 qm_sg_entry_get_len(&sgt[j]), dma_dir);
2075 sg0_map_failed:
2076 csum_failed:
2077 free_pages((unsigned long)buff_start, 0);
2078
2079 return err;
2080 }
2081
dpaa_xmit(struct dpaa_priv * priv,struct rtnl_link_stats64 * percpu_stats,int queue,struct qm_fd * fd)2082 static inline int dpaa_xmit(struct dpaa_priv *priv,
2083 struct rtnl_link_stats64 *percpu_stats,
2084 int queue,
2085 struct qm_fd *fd)
2086 {
2087 struct qman_fq *egress_fq;
2088 int err, i;
2089
2090 egress_fq = priv->egress_fqs[queue];
2091 if (fd->bpid == FSL_DPAA_BPID_INV)
2092 fd->cmd |= cpu_to_be32(qman_fq_fqid(priv->conf_fqs[queue]));
2093
2094 /* Trace this Tx fd */
2095 trace_dpaa_tx_fd(priv->net_dev, egress_fq, fd);
2096
2097 for (i = 0; i < DPAA_ENQUEUE_RETRIES; i++) {
2098 err = qman_enqueue(egress_fq, fd);
2099 if (err != -EBUSY)
2100 break;
2101 }
2102
2103 if (unlikely(err < 0)) {
2104 percpu_stats->tx_fifo_errors++;
2105 return err;
2106 }
2107
2108 percpu_stats->tx_packets++;
2109 percpu_stats->tx_bytes += qm_fd_get_length(fd);
2110
2111 return 0;
2112 }
2113
2114 #ifdef CONFIG_DPAA_ERRATUM_A050385
dpaa_a050385_wa_skb(struct net_device * net_dev,struct sk_buff ** s)2115 static int dpaa_a050385_wa_skb(struct net_device *net_dev, struct sk_buff **s)
2116 {
2117 struct dpaa_priv *priv = netdev_priv(net_dev);
2118 struct sk_buff *new_skb, *skb = *s;
2119 unsigned char *start, i;
2120
2121 /* check linear buffer alignment */
2122 if (!PTR_IS_ALIGNED(skb->data, DPAA_A050385_ALIGN))
2123 goto workaround;
2124
2125 /* linear buffers just need to have an aligned start */
2126 if (!skb_is_nonlinear(skb))
2127 return 0;
2128
2129 /* linear data size for nonlinear skbs needs to be aligned */
2130 if (!IS_ALIGNED(skb_headlen(skb), DPAA_A050385_ALIGN))
2131 goto workaround;
2132
2133 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2134 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2135
2136 /* all fragments need to have aligned start addresses */
2137 if (!IS_ALIGNED(skb_frag_off(frag), DPAA_A050385_ALIGN))
2138 goto workaround;
2139
2140 /* all but last fragment need to have aligned sizes */
2141 if (!IS_ALIGNED(skb_frag_size(frag), DPAA_A050385_ALIGN) &&
2142 (i < skb_shinfo(skb)->nr_frags - 1))
2143 goto workaround;
2144 }
2145
2146 return 0;
2147
2148 workaround:
2149 /* copy all the skb content into a new linear buffer */
2150 new_skb = netdev_alloc_skb(net_dev, skb->len + DPAA_A050385_ALIGN - 1 +
2151 priv->tx_headroom);
2152 if (!new_skb)
2153 return -ENOMEM;
2154
2155 /* NET_SKB_PAD bytes already reserved, adding up to tx_headroom */
2156 skb_reserve(new_skb, priv->tx_headroom - NET_SKB_PAD);
2157
2158 /* Workaround for DPAA_A050385 requires data start to be aligned */
2159 start = PTR_ALIGN(new_skb->data, DPAA_A050385_ALIGN);
2160 if (start - new_skb->data)
2161 skb_reserve(new_skb, start - new_skb->data);
2162
2163 skb_put(new_skb, skb->len);
2164 skb_copy_bits(skb, 0, new_skb->data, skb->len);
2165 skb_copy_header(new_skb, skb);
2166 new_skb->dev = skb->dev;
2167
2168 /* Copy relevant timestamp info from the old skb to the new */
2169 if (priv->tx_tstamp) {
2170 skb_shinfo(new_skb)->tx_flags = skb_shinfo(skb)->tx_flags;
2171 skb_shinfo(new_skb)->hwtstamps = skb_shinfo(skb)->hwtstamps;
2172 skb_shinfo(new_skb)->tskey = skb_shinfo(skb)->tskey;
2173 if (skb->sk)
2174 skb_set_owner_w(new_skb, skb->sk);
2175 }
2176
2177 /* We move the headroom when we align it so we have to reset the
2178 * network and transport header offsets relative to the new data
2179 * pointer. The checksum offload relies on these offsets.
2180 */
2181 skb_set_network_header(new_skb, skb_network_offset(skb));
2182 skb_set_transport_header(new_skb, skb_transport_offset(skb));
2183
2184 dev_kfree_skb(skb);
2185 *s = new_skb;
2186
2187 return 0;
2188 }
2189
dpaa_a050385_wa_xdpf(struct dpaa_priv * priv,struct xdp_frame ** init_xdpf)2190 static int dpaa_a050385_wa_xdpf(struct dpaa_priv *priv,
2191 struct xdp_frame **init_xdpf)
2192 {
2193 struct xdp_frame *new_xdpf, *xdpf = *init_xdpf;
2194 void *new_buff, *aligned_data;
2195 struct page *p;
2196 u32 data_shift;
2197 int headroom;
2198
2199 /* Check the data alignment and make sure the headroom is large
2200 * enough to store the xdpf backpointer. Use an aligned headroom
2201 * value.
2202 *
2203 * Due to alignment constraints, we give XDP access to the full 256
2204 * byte frame headroom. If the XDP program uses all of it, copy the
2205 * data to a new buffer and make room for storing the backpointer.
2206 */
2207 if (PTR_IS_ALIGNED(xdpf->data, DPAA_FD_DATA_ALIGNMENT) &&
2208 xdpf->headroom >= priv->tx_headroom) {
2209 xdpf->headroom = priv->tx_headroom;
2210 return 0;
2211 }
2212
2213 /* Try to move the data inside the buffer just enough to align it and
2214 * store the xdpf backpointer. If the available headroom isn't large
2215 * enough, resort to allocating a new buffer and copying the data.
2216 */
2217 aligned_data = PTR_ALIGN_DOWN(xdpf->data, DPAA_FD_DATA_ALIGNMENT);
2218 data_shift = xdpf->data - aligned_data;
2219
2220 /* The XDP frame's headroom needs to be large enough to accommodate
2221 * shifting the data as well as storing the xdpf backpointer.
2222 */
2223 if (xdpf->headroom >= data_shift + priv->tx_headroom) {
2224 memmove(aligned_data, xdpf->data, xdpf->len);
2225 xdpf->data = aligned_data;
2226 xdpf->headroom = priv->tx_headroom;
2227 return 0;
2228 }
2229
2230 /* The new xdp_frame is stored in the new buffer. Reserve enough space
2231 * in the headroom for storing it along with the driver's private
2232 * info. The headroom needs to be aligned to DPAA_FD_DATA_ALIGNMENT to
2233 * guarantee the data's alignment in the buffer.
2234 */
2235 headroom = ALIGN(sizeof(*new_xdpf) + priv->tx_headroom,
2236 DPAA_FD_DATA_ALIGNMENT);
2237
2238 /* Assure the extended headroom and data don't overflow the buffer,
2239 * while maintaining the mandatory tailroom.
2240 */
2241 if (headroom + xdpf->len > DPAA_BP_RAW_SIZE -
2242 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
2243 return -ENOMEM;
2244
2245 p = dev_alloc_pages(0);
2246 if (unlikely(!p))
2247 return -ENOMEM;
2248
2249 /* Copy the data to the new buffer at a properly aligned offset */
2250 new_buff = page_address(p);
2251 memcpy(new_buff + headroom, xdpf->data, xdpf->len);
2252
2253 /* Create an XDP frame around the new buffer in a similar fashion
2254 * to xdp_convert_buff_to_frame.
2255 */
2256 new_xdpf = new_buff;
2257 new_xdpf->data = new_buff + headroom;
2258 new_xdpf->len = xdpf->len;
2259 new_xdpf->headroom = priv->tx_headroom;
2260 new_xdpf->frame_sz = DPAA_BP_RAW_SIZE;
2261 new_xdpf->mem.type = MEM_TYPE_PAGE_ORDER0;
2262
2263 /* Release the initial buffer */
2264 xdp_return_frame_rx_napi(xdpf);
2265
2266 *init_xdpf = new_xdpf;
2267 return 0;
2268 }
2269 #endif
2270
2271 static netdev_tx_t
dpaa_start_xmit(struct sk_buff * skb,struct net_device * net_dev)2272 dpaa_start_xmit(struct sk_buff *skb, struct net_device *net_dev)
2273 {
2274 const int queue_mapping = skb_get_queue_mapping(skb);
2275 struct rtnl_link_stats64 *percpu_stats;
2276 struct dpaa_percpu_priv *percpu_priv;
2277 struct netdev_queue *txq;
2278 struct dpaa_priv *priv;
2279 struct qm_fd fd;
2280 bool nonlinear;
2281 int offset = 0;
2282 int err = 0;
2283
2284 priv = netdev_priv(net_dev);
2285 percpu_priv = this_cpu_ptr(priv->percpu_priv);
2286 percpu_stats = &percpu_priv->stats;
2287
2288 qm_fd_clear_fd(&fd);
2289
2290 /* Packet data is always read as 32-bit words, so zero out any part of
2291 * the skb which might be sent if we have to pad the packet
2292 */
2293 if (__skb_put_padto(skb, ETH_ZLEN, false))
2294 goto enomem;
2295
2296 nonlinear = skb_is_nonlinear(skb);
2297 if (!nonlinear) {
2298 /* We're going to store the skb backpointer at the beginning
2299 * of the data buffer, so we need a privately owned skb
2300 *
2301 * We've made sure skb is not shared in dev->priv_flags,
2302 * we need to verify the skb head is not cloned
2303 */
2304 if (skb_cow_head(skb, priv->tx_headroom))
2305 goto enomem;
2306
2307 WARN_ON(skb_is_nonlinear(skb));
2308 }
2309
2310 /* MAX_SKB_FRAGS is equal or larger than our dpaa_SGT_MAX_ENTRIES;
2311 * make sure we don't feed FMan with more fragments than it supports.
2312 */
2313 if (unlikely(nonlinear &&
2314 (skb_shinfo(skb)->nr_frags >= DPAA_SGT_MAX_ENTRIES))) {
2315 /* If the egress skb contains more fragments than we support
2316 * we have no choice but to linearize it ourselves.
2317 */
2318 if (__skb_linearize(skb))
2319 goto enomem;
2320
2321 nonlinear = skb_is_nonlinear(skb);
2322 }
2323
2324 #ifdef CONFIG_DPAA_ERRATUM_A050385
2325 if (unlikely(fman_has_errata_a050385())) {
2326 if (dpaa_a050385_wa_skb(net_dev, &skb))
2327 goto enomem;
2328 nonlinear = skb_is_nonlinear(skb);
2329 }
2330 #endif
2331
2332 if (nonlinear) {
2333 /* Just create a S/G fd based on the skb */
2334 err = skb_to_sg_fd(priv, skb, &fd);
2335 percpu_priv->tx_frag_skbuffs++;
2336 } else {
2337 /* Create a contig FD from this skb */
2338 err = skb_to_contig_fd(priv, skb, &fd, &offset);
2339 }
2340 if (unlikely(err < 0))
2341 goto skb_to_fd_failed;
2342
2343 txq = netdev_get_tx_queue(net_dev, queue_mapping);
2344
2345 /* LLTX requires to do our own update of trans_start */
2346 txq_trans_cond_update(txq);
2347
2348 if (priv->tx_tstamp && skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) {
2349 fd.cmd |= cpu_to_be32(FM_FD_CMD_UPD);
2350 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
2351 }
2352
2353 if (likely(dpaa_xmit(priv, percpu_stats, queue_mapping, &fd) == 0))
2354 return NETDEV_TX_OK;
2355
2356 dpaa_cleanup_tx_fd(priv, &fd, false);
2357 skb_to_fd_failed:
2358 enomem:
2359 percpu_stats->tx_errors++;
2360 dev_kfree_skb(skb);
2361 return NETDEV_TX_OK;
2362 }
2363
dpaa_rx_error(struct net_device * net_dev,const struct dpaa_priv * priv,struct dpaa_percpu_priv * percpu_priv,const struct qm_fd * fd,u32 fqid)2364 static void dpaa_rx_error(struct net_device *net_dev,
2365 const struct dpaa_priv *priv,
2366 struct dpaa_percpu_priv *percpu_priv,
2367 const struct qm_fd *fd,
2368 u32 fqid)
2369 {
2370 if (net_ratelimit())
2371 netif_err(priv, hw, net_dev, "Err FD status = 0x%08x\n",
2372 be32_to_cpu(fd->status) & FM_FD_STAT_RX_ERRORS);
2373
2374 percpu_priv->stats.rx_errors++;
2375
2376 if (be32_to_cpu(fd->status) & FM_FD_ERR_DMA)
2377 percpu_priv->rx_errors.dme++;
2378 if (be32_to_cpu(fd->status) & FM_FD_ERR_PHYSICAL)
2379 percpu_priv->rx_errors.fpe++;
2380 if (be32_to_cpu(fd->status) & FM_FD_ERR_SIZE)
2381 percpu_priv->rx_errors.fse++;
2382 if (be32_to_cpu(fd->status) & FM_FD_ERR_PRS_HDR_ERR)
2383 percpu_priv->rx_errors.phe++;
2384
2385 dpaa_fd_release(net_dev, fd);
2386 }
2387
dpaa_tx_error(struct net_device * net_dev,const struct dpaa_priv * priv,struct dpaa_percpu_priv * percpu_priv,const struct qm_fd * fd,u32 fqid)2388 static void dpaa_tx_error(struct net_device *net_dev,
2389 const struct dpaa_priv *priv,
2390 struct dpaa_percpu_priv *percpu_priv,
2391 const struct qm_fd *fd,
2392 u32 fqid)
2393 {
2394 struct sk_buff *skb;
2395
2396 if (net_ratelimit())
2397 netif_warn(priv, hw, net_dev, "FD status = 0x%08x\n",
2398 be32_to_cpu(fd->status) & FM_FD_STAT_TX_ERRORS);
2399
2400 percpu_priv->stats.tx_errors++;
2401
2402 skb = dpaa_cleanup_tx_fd(priv, fd, false);
2403 dev_kfree_skb(skb);
2404 }
2405
dpaa_eth_poll(struct napi_struct * napi,int budget)2406 static int dpaa_eth_poll(struct napi_struct *napi, int budget)
2407 {
2408 struct dpaa_napi_portal *np =
2409 container_of(napi, struct dpaa_napi_portal, napi);
2410 int cleaned;
2411
2412 np->xdp_act = 0;
2413
2414 cleaned = qman_p_poll_dqrr(np->p, budget);
2415
2416 if (np->xdp_act & XDP_REDIRECT)
2417 xdp_do_flush();
2418
2419 if (cleaned < budget) {
2420 napi_complete_done(napi, cleaned);
2421 qman_p_irqsource_add(np->p, QM_PIRQ_DQRI);
2422 } else if (np->down) {
2423 qman_p_irqsource_add(np->p, QM_PIRQ_DQRI);
2424 }
2425
2426 return cleaned;
2427 }
2428
dpaa_tx_conf(struct net_device * net_dev,const struct dpaa_priv * priv,struct dpaa_percpu_priv * percpu_priv,const struct qm_fd * fd,u32 fqid)2429 static void dpaa_tx_conf(struct net_device *net_dev,
2430 const struct dpaa_priv *priv,
2431 struct dpaa_percpu_priv *percpu_priv,
2432 const struct qm_fd *fd,
2433 u32 fqid)
2434 {
2435 struct sk_buff *skb;
2436
2437 if (unlikely(be32_to_cpu(fd->status) & FM_FD_STAT_TX_ERRORS)) {
2438 if (net_ratelimit())
2439 netif_warn(priv, hw, net_dev, "FD status = 0x%08x\n",
2440 be32_to_cpu(fd->status) &
2441 FM_FD_STAT_TX_ERRORS);
2442
2443 percpu_priv->stats.tx_errors++;
2444 }
2445
2446 percpu_priv->tx_confirm++;
2447
2448 skb = dpaa_cleanup_tx_fd(priv, fd, true);
2449
2450 consume_skb(skb);
2451 }
2452
dpaa_eth_napi_schedule(struct dpaa_percpu_priv * percpu_priv,struct qman_portal * portal,bool sched_napi)2453 static inline int dpaa_eth_napi_schedule(struct dpaa_percpu_priv *percpu_priv,
2454 struct qman_portal *portal, bool sched_napi)
2455 {
2456 if (sched_napi) {
2457 /* Disable QMan IRQ and invoke NAPI */
2458 qman_p_irqsource_remove(portal, QM_PIRQ_DQRI);
2459
2460 percpu_priv->np.p = portal;
2461 napi_schedule(&percpu_priv->np.napi);
2462 percpu_priv->in_interrupt++;
2463 return 1;
2464 }
2465 return 0;
2466 }
2467
rx_error_dqrr(struct qman_portal * portal,struct qman_fq * fq,const struct qm_dqrr_entry * dq,bool sched_napi)2468 static enum qman_cb_dqrr_result rx_error_dqrr(struct qman_portal *portal,
2469 struct qman_fq *fq,
2470 const struct qm_dqrr_entry *dq,
2471 bool sched_napi)
2472 {
2473 struct dpaa_fq *dpaa_fq = container_of(fq, struct dpaa_fq, fq_base);
2474 struct dpaa_percpu_priv *percpu_priv;
2475 struct net_device *net_dev;
2476 struct dpaa_bp *dpaa_bp;
2477 struct dpaa_priv *priv;
2478
2479 net_dev = dpaa_fq->net_dev;
2480 priv = netdev_priv(net_dev);
2481 dpaa_bp = dpaa_bpid2pool(dq->fd.bpid);
2482 if (!dpaa_bp)
2483 return qman_cb_dqrr_consume;
2484
2485 percpu_priv = this_cpu_ptr(priv->percpu_priv);
2486
2487 if (dpaa_eth_napi_schedule(percpu_priv, portal, sched_napi))
2488 return qman_cb_dqrr_stop;
2489
2490 dpaa_eth_refill_bpools(priv);
2491 dpaa_rx_error(net_dev, priv, percpu_priv, &dq->fd, fq->fqid);
2492
2493 return qman_cb_dqrr_consume;
2494 }
2495
dpaa_xdp_xmit_frame(struct net_device * net_dev,struct xdp_frame * xdpf)2496 static int dpaa_xdp_xmit_frame(struct net_device *net_dev,
2497 struct xdp_frame *xdpf)
2498 {
2499 struct dpaa_priv *priv = netdev_priv(net_dev);
2500 struct rtnl_link_stats64 *percpu_stats;
2501 struct dpaa_percpu_priv *percpu_priv;
2502 struct dpaa_eth_swbp *swbp;
2503 struct netdev_queue *txq;
2504 void *buff_start;
2505 struct qm_fd fd;
2506 dma_addr_t addr;
2507 int err;
2508
2509 percpu_priv = this_cpu_ptr(priv->percpu_priv);
2510 percpu_stats = &percpu_priv->stats;
2511
2512 #ifdef CONFIG_DPAA_ERRATUM_A050385
2513 if (unlikely(fman_has_errata_a050385())) {
2514 if (dpaa_a050385_wa_xdpf(priv, &xdpf)) {
2515 err = -ENOMEM;
2516 goto out_error;
2517 }
2518 }
2519 #endif
2520
2521 if (xdpf->headroom < DPAA_TX_PRIV_DATA_SIZE) {
2522 err = -EINVAL;
2523 goto out_error;
2524 }
2525
2526 buff_start = xdpf->data - xdpf->headroom;
2527
2528 /* Leave empty the skb backpointer at the start of the buffer.
2529 * Save the XDP frame for easy cleanup on confirmation.
2530 */
2531 swbp = (struct dpaa_eth_swbp *)buff_start;
2532 swbp->skb = NULL;
2533 swbp->xdpf = xdpf;
2534
2535 qm_fd_clear_fd(&fd);
2536 fd.bpid = FSL_DPAA_BPID_INV;
2537 fd.cmd |= cpu_to_be32(FM_FD_CMD_FCO);
2538 qm_fd_set_contig(&fd, xdpf->headroom, xdpf->len);
2539
2540 addr = dma_map_single(priv->tx_dma_dev, buff_start,
2541 xdpf->headroom + xdpf->len,
2542 DMA_TO_DEVICE);
2543 if (unlikely(dma_mapping_error(priv->tx_dma_dev, addr))) {
2544 err = -EINVAL;
2545 goto out_error;
2546 }
2547
2548 qm_fd_addr_set64(&fd, addr);
2549
2550 /* Bump the trans_start */
2551 txq = netdev_get_tx_queue(net_dev, smp_processor_id());
2552 txq_trans_cond_update(txq);
2553
2554 err = dpaa_xmit(priv, percpu_stats, smp_processor_id(), &fd);
2555 if (err) {
2556 dma_unmap_single(priv->tx_dma_dev, addr,
2557 qm_fd_get_offset(&fd) + qm_fd_get_length(&fd),
2558 DMA_TO_DEVICE);
2559 goto out_error;
2560 }
2561
2562 return 0;
2563
2564 out_error:
2565 percpu_stats->tx_errors++;
2566 return err;
2567 }
2568
dpaa_run_xdp(struct dpaa_priv * priv,struct qm_fd * fd,void * vaddr,struct dpaa_fq * dpaa_fq,unsigned int * xdp_meta_len)2569 static u32 dpaa_run_xdp(struct dpaa_priv *priv, struct qm_fd *fd, void *vaddr,
2570 struct dpaa_fq *dpaa_fq, unsigned int *xdp_meta_len)
2571 {
2572 ssize_t fd_off = qm_fd_get_offset(fd);
2573 struct bpf_prog *xdp_prog;
2574 struct xdp_frame *xdpf;
2575 struct xdp_buff xdp;
2576 u32 xdp_act;
2577 int err;
2578
2579 xdp_prog = READ_ONCE(priv->xdp_prog);
2580 if (!xdp_prog)
2581 return XDP_PASS;
2582
2583 xdp_init_buff(&xdp, DPAA_BP_RAW_SIZE - DPAA_TX_PRIV_DATA_SIZE,
2584 &dpaa_fq->xdp_rxq);
2585 xdp_prepare_buff(&xdp, vaddr + fd_off - XDP_PACKET_HEADROOM,
2586 XDP_PACKET_HEADROOM, qm_fd_get_length(fd), true);
2587
2588 /* We reserve a fixed headroom of 256 bytes under the erratum and we
2589 * offer it all to XDP programs to use. If no room is left for the
2590 * xdpf backpointer on TX, we will need to copy the data.
2591 * Disable metadata support since data realignments might be required
2592 * and the information can be lost.
2593 */
2594 #ifdef CONFIG_DPAA_ERRATUM_A050385
2595 if (unlikely(fman_has_errata_a050385())) {
2596 xdp_set_data_meta_invalid(&xdp);
2597 xdp.data_hard_start = vaddr;
2598 xdp.frame_sz = DPAA_BP_RAW_SIZE;
2599 }
2600 #endif
2601
2602 xdp_act = bpf_prog_run_xdp(xdp_prog, &xdp);
2603
2604 /* Update the length and the offset of the FD */
2605 qm_fd_set_contig(fd, xdp.data - vaddr, xdp.data_end - xdp.data);
2606
2607 switch (xdp_act) {
2608 case XDP_PASS:
2609 #ifdef CONFIG_DPAA_ERRATUM_A050385
2610 *xdp_meta_len = xdp_data_meta_unsupported(&xdp) ? 0 :
2611 xdp.data - xdp.data_meta;
2612 #else
2613 *xdp_meta_len = xdp.data - xdp.data_meta;
2614 #endif
2615 break;
2616 case XDP_TX:
2617 /* We can access the full headroom when sending the frame
2618 * back out
2619 */
2620 xdp.data_hard_start = vaddr;
2621 xdp.frame_sz = DPAA_BP_RAW_SIZE;
2622 xdpf = xdp_convert_buff_to_frame(&xdp);
2623 if (unlikely(!xdpf)) {
2624 free_pages((unsigned long)vaddr, 0);
2625 break;
2626 }
2627
2628 if (dpaa_xdp_xmit_frame(priv->net_dev, xdpf))
2629 xdp_return_frame_rx_napi(xdpf);
2630
2631 break;
2632 case XDP_REDIRECT:
2633 /* Allow redirect to use the full headroom */
2634 xdp.data_hard_start = vaddr;
2635 xdp.frame_sz = DPAA_BP_RAW_SIZE;
2636
2637 err = xdp_do_redirect(priv->net_dev, &xdp, xdp_prog);
2638 if (err) {
2639 trace_xdp_exception(priv->net_dev, xdp_prog, xdp_act);
2640 free_pages((unsigned long)vaddr, 0);
2641 }
2642 break;
2643 default:
2644 bpf_warn_invalid_xdp_action(priv->net_dev, xdp_prog, xdp_act);
2645 fallthrough;
2646 case XDP_ABORTED:
2647 trace_xdp_exception(priv->net_dev, xdp_prog, xdp_act);
2648 fallthrough;
2649 case XDP_DROP:
2650 /* Free the buffer */
2651 free_pages((unsigned long)vaddr, 0);
2652 break;
2653 }
2654
2655 return xdp_act;
2656 }
2657
rx_default_dqrr(struct qman_portal * portal,struct qman_fq * fq,const struct qm_dqrr_entry * dq,bool sched_napi)2658 static enum qman_cb_dqrr_result rx_default_dqrr(struct qman_portal *portal,
2659 struct qman_fq *fq,
2660 const struct qm_dqrr_entry *dq,
2661 bool sched_napi)
2662 {
2663 bool ts_valid = false, hash_valid = false;
2664 struct skb_shared_hwtstamps *shhwtstamps;
2665 unsigned int skb_len, xdp_meta_len = 0;
2666 struct rtnl_link_stats64 *percpu_stats;
2667 struct dpaa_percpu_priv *percpu_priv;
2668 const struct qm_fd *fd = &dq->fd;
2669 dma_addr_t addr = qm_fd_addr(fd);
2670 struct dpaa_napi_portal *np;
2671 enum qm_fd_format fd_format;
2672 struct net_device *net_dev;
2673 u32 fd_status, hash_offset;
2674 struct qm_sg_entry *sgt;
2675 struct dpaa_bp *dpaa_bp;
2676 struct dpaa_fq *dpaa_fq;
2677 struct dpaa_priv *priv;
2678 struct sk_buff *skb;
2679 int *count_ptr;
2680 u32 xdp_act;
2681 void *vaddr;
2682 u32 hash;
2683 u64 ns;
2684
2685 dpaa_fq = container_of(fq, struct dpaa_fq, fq_base);
2686 fd_status = be32_to_cpu(fd->status);
2687 fd_format = qm_fd_get_format(fd);
2688 net_dev = dpaa_fq->net_dev;
2689 priv = netdev_priv(net_dev);
2690 dpaa_bp = dpaa_bpid2pool(dq->fd.bpid);
2691 if (!dpaa_bp)
2692 return qman_cb_dqrr_consume;
2693
2694 /* Trace the Rx fd */
2695 trace_dpaa_rx_fd(net_dev, fq, &dq->fd);
2696
2697 percpu_priv = this_cpu_ptr(priv->percpu_priv);
2698 percpu_stats = &percpu_priv->stats;
2699 np = &percpu_priv->np;
2700
2701 if (unlikely(dpaa_eth_napi_schedule(percpu_priv, portal, sched_napi)))
2702 return qman_cb_dqrr_stop;
2703
2704 /* Make sure we didn't run out of buffers */
2705 if (unlikely(dpaa_eth_refill_bpools(priv))) {
2706 /* Unable to refill the buffer pool due to insufficient
2707 * system memory. Just release the frame back into the pool,
2708 * otherwise we'll soon end up with an empty buffer pool.
2709 */
2710 dpaa_fd_release(net_dev, &dq->fd);
2711 return qman_cb_dqrr_consume;
2712 }
2713
2714 if (unlikely(fd_status & FM_FD_STAT_RX_ERRORS) != 0) {
2715 if (net_ratelimit())
2716 netif_warn(priv, hw, net_dev, "FD status = 0x%08x\n",
2717 fd_status & FM_FD_STAT_RX_ERRORS);
2718
2719 percpu_stats->rx_errors++;
2720 dpaa_fd_release(net_dev, fd);
2721 return qman_cb_dqrr_consume;
2722 }
2723
2724 dma_unmap_page(dpaa_bp->priv->rx_dma_dev, addr, DPAA_BP_RAW_SIZE,
2725 DMA_FROM_DEVICE);
2726
2727 /* prefetch the first 64 bytes of the frame or the SGT start */
2728 vaddr = phys_to_virt(addr);
2729 prefetch(vaddr + qm_fd_get_offset(fd));
2730
2731 /* The only FD types that we may receive are contig and S/G */
2732 WARN_ON((fd_format != qm_fd_contig) && (fd_format != qm_fd_sg));
2733
2734 /* Account for either the contig buffer or the SGT buffer (depending on
2735 * which case we were in) having been removed from the pool.
2736 */
2737 count_ptr = this_cpu_ptr(dpaa_bp->percpu_count);
2738 (*count_ptr)--;
2739
2740 /* Extract the timestamp stored in the headroom before running XDP */
2741 if (priv->rx_tstamp) {
2742 if (!fman_port_get_tstamp(priv->mac_dev->port[RX], vaddr, &ns))
2743 ts_valid = true;
2744 else
2745 WARN_ONCE(1, "fman_port_get_tstamp failed!\n");
2746 }
2747
2748 /* Extract the hash stored in the headroom before running XDP */
2749 if (net_dev->features & NETIF_F_RXHASH && priv->keygen_in_use &&
2750 !fman_port_get_hash_result_offset(priv->mac_dev->port[RX],
2751 &hash_offset)) {
2752 hash = be32_to_cpu(*(u32 *)(vaddr + hash_offset));
2753 hash_valid = true;
2754 }
2755
2756 if (likely(fd_format == qm_fd_contig)) {
2757 xdp_act = dpaa_run_xdp(priv, (struct qm_fd *)fd, vaddr,
2758 dpaa_fq, &xdp_meta_len);
2759 np->xdp_act |= xdp_act;
2760 if (xdp_act != XDP_PASS) {
2761 percpu_stats->rx_packets++;
2762 percpu_stats->rx_bytes += qm_fd_get_length(fd);
2763 return qman_cb_dqrr_consume;
2764 }
2765 skb = contig_fd_to_skb(priv, fd);
2766 } else {
2767 /* XDP doesn't support S/G frames. Return the fragments to the
2768 * buffer pool and release the SGT.
2769 */
2770 if (READ_ONCE(priv->xdp_prog)) {
2771 WARN_ONCE(1, "S/G frames not supported under XDP\n");
2772 sgt = vaddr + qm_fd_get_offset(fd);
2773 dpaa_release_sgt_members(sgt);
2774 free_pages((unsigned long)vaddr, 0);
2775 return qman_cb_dqrr_consume;
2776 }
2777 skb = sg_fd_to_skb(priv, fd);
2778 }
2779 if (!skb)
2780 return qman_cb_dqrr_consume;
2781
2782 if (xdp_meta_len)
2783 skb_metadata_set(skb, xdp_meta_len);
2784
2785 /* Set the previously extracted timestamp */
2786 if (ts_valid) {
2787 shhwtstamps = skb_hwtstamps(skb);
2788 memset(shhwtstamps, 0, sizeof(*shhwtstamps));
2789 shhwtstamps->hwtstamp = ns_to_ktime(ns);
2790 }
2791
2792 skb->protocol = eth_type_trans(skb, net_dev);
2793
2794 /* Set the previously extracted hash */
2795 if (hash_valid) {
2796 enum pkt_hash_types type;
2797
2798 /* if L4 exists, it was used in the hash generation */
2799 type = be32_to_cpu(fd->status) & FM_FD_STAT_L4CV ?
2800 PKT_HASH_TYPE_L4 : PKT_HASH_TYPE_L3;
2801 skb_set_hash(skb, hash, type);
2802 }
2803
2804 skb_len = skb->len;
2805
2806 if (unlikely(netif_receive_skb(skb) == NET_RX_DROP)) {
2807 percpu_stats->rx_dropped++;
2808 return qman_cb_dqrr_consume;
2809 }
2810
2811 percpu_stats->rx_packets++;
2812 percpu_stats->rx_bytes += skb_len;
2813
2814 return qman_cb_dqrr_consume;
2815 }
2816
conf_error_dqrr(struct qman_portal * portal,struct qman_fq * fq,const struct qm_dqrr_entry * dq,bool sched_napi)2817 static enum qman_cb_dqrr_result conf_error_dqrr(struct qman_portal *portal,
2818 struct qman_fq *fq,
2819 const struct qm_dqrr_entry *dq,
2820 bool sched_napi)
2821 {
2822 struct dpaa_percpu_priv *percpu_priv;
2823 struct net_device *net_dev;
2824 struct dpaa_priv *priv;
2825
2826 net_dev = ((struct dpaa_fq *)fq)->net_dev;
2827 priv = netdev_priv(net_dev);
2828
2829 percpu_priv = this_cpu_ptr(priv->percpu_priv);
2830
2831 if (dpaa_eth_napi_schedule(percpu_priv, portal, sched_napi))
2832 return qman_cb_dqrr_stop;
2833
2834 dpaa_tx_error(net_dev, priv, percpu_priv, &dq->fd, fq->fqid);
2835
2836 return qman_cb_dqrr_consume;
2837 }
2838
conf_dflt_dqrr(struct qman_portal * portal,struct qman_fq * fq,const struct qm_dqrr_entry * dq,bool sched_napi)2839 static enum qman_cb_dqrr_result conf_dflt_dqrr(struct qman_portal *portal,
2840 struct qman_fq *fq,
2841 const struct qm_dqrr_entry *dq,
2842 bool sched_napi)
2843 {
2844 struct dpaa_percpu_priv *percpu_priv;
2845 struct net_device *net_dev;
2846 struct dpaa_priv *priv;
2847
2848 net_dev = ((struct dpaa_fq *)fq)->net_dev;
2849 priv = netdev_priv(net_dev);
2850
2851 /* Trace the fd */
2852 trace_dpaa_tx_conf_fd(net_dev, fq, &dq->fd);
2853
2854 percpu_priv = this_cpu_ptr(priv->percpu_priv);
2855
2856 if (dpaa_eth_napi_schedule(percpu_priv, portal, sched_napi))
2857 return qman_cb_dqrr_stop;
2858
2859 dpaa_tx_conf(net_dev, priv, percpu_priv, &dq->fd, fq->fqid);
2860
2861 return qman_cb_dqrr_consume;
2862 }
2863
egress_ern(struct qman_portal * portal,struct qman_fq * fq,const union qm_mr_entry * msg)2864 static void egress_ern(struct qman_portal *portal,
2865 struct qman_fq *fq,
2866 const union qm_mr_entry *msg)
2867 {
2868 const struct qm_fd *fd = &msg->ern.fd;
2869 struct dpaa_percpu_priv *percpu_priv;
2870 const struct dpaa_priv *priv;
2871 struct net_device *net_dev;
2872 struct sk_buff *skb;
2873
2874 net_dev = ((struct dpaa_fq *)fq)->net_dev;
2875 priv = netdev_priv(net_dev);
2876 percpu_priv = this_cpu_ptr(priv->percpu_priv);
2877
2878 percpu_priv->stats.tx_dropped++;
2879 percpu_priv->stats.tx_fifo_errors++;
2880 count_ern(percpu_priv, msg);
2881
2882 skb = dpaa_cleanup_tx_fd(priv, fd, false);
2883 dev_kfree_skb_any(skb);
2884 }
2885
2886 static const struct dpaa_fq_cbs dpaa_fq_cbs = {
2887 .rx_defq = { .cb = { .dqrr = rx_default_dqrr } },
2888 .tx_defq = { .cb = { .dqrr = conf_dflt_dqrr } },
2889 .rx_errq = { .cb = { .dqrr = rx_error_dqrr } },
2890 .tx_errq = { .cb = { .dqrr = conf_error_dqrr } },
2891 .egress_ern = { .cb = { .ern = egress_ern } }
2892 };
2893
dpaa_eth_napi_enable(struct dpaa_priv * priv)2894 static void dpaa_eth_napi_enable(struct dpaa_priv *priv)
2895 {
2896 struct dpaa_percpu_priv *percpu_priv;
2897 int i;
2898
2899 for_each_online_cpu(i) {
2900 percpu_priv = per_cpu_ptr(priv->percpu_priv, i);
2901
2902 percpu_priv->np.down = false;
2903 napi_enable(&percpu_priv->np.napi);
2904 }
2905 }
2906
dpaa_eth_napi_disable(struct dpaa_priv * priv)2907 static void dpaa_eth_napi_disable(struct dpaa_priv *priv)
2908 {
2909 struct dpaa_percpu_priv *percpu_priv;
2910 int i;
2911
2912 for_each_online_cpu(i) {
2913 percpu_priv = per_cpu_ptr(priv->percpu_priv, i);
2914
2915 percpu_priv->np.down = true;
2916 napi_disable(&percpu_priv->np.napi);
2917 }
2918 }
2919
dpaa_open(struct net_device * net_dev)2920 static int dpaa_open(struct net_device *net_dev)
2921 {
2922 struct mac_device *mac_dev;
2923 struct dpaa_priv *priv;
2924 int err, i;
2925
2926 priv = netdev_priv(net_dev);
2927 mac_dev = priv->mac_dev;
2928 dpaa_eth_napi_enable(priv);
2929
2930 err = phylink_of_phy_connect(mac_dev->phylink,
2931 mac_dev->dev->of_node, 0);
2932 if (err)
2933 goto phy_init_failed;
2934
2935 for (i = 0; i < ARRAY_SIZE(mac_dev->port); i++) {
2936 err = fman_port_enable(mac_dev->port[i]);
2937 if (err)
2938 goto mac_start_failed;
2939 }
2940
2941 err = priv->mac_dev->enable(mac_dev->fman_mac);
2942 if (err < 0) {
2943 netif_err(priv, ifup, net_dev, "mac_dev->enable() = %d\n", err);
2944 goto mac_start_failed;
2945 }
2946 phylink_start(mac_dev->phylink);
2947
2948 netif_tx_start_all_queues(net_dev);
2949
2950 return 0;
2951
2952 mac_start_failed:
2953 for (i = 0; i < ARRAY_SIZE(mac_dev->port); i++)
2954 fman_port_disable(mac_dev->port[i]);
2955 phylink_disconnect_phy(mac_dev->phylink);
2956
2957 phy_init_failed:
2958 dpaa_eth_napi_disable(priv);
2959
2960 return err;
2961 }
2962
dpaa_eth_stop(struct net_device * net_dev)2963 static int dpaa_eth_stop(struct net_device *net_dev)
2964 {
2965 struct dpaa_priv *priv;
2966 int err;
2967
2968 err = dpaa_stop(net_dev);
2969
2970 priv = netdev_priv(net_dev);
2971 dpaa_eth_napi_disable(priv);
2972
2973 return err;
2974 }
2975
xdp_validate_mtu(struct dpaa_priv * priv,int mtu)2976 static bool xdp_validate_mtu(struct dpaa_priv *priv, int mtu)
2977 {
2978 int max_contig_data = priv->dpaa_bp->size - priv->rx_headroom;
2979
2980 /* We do not support S/G fragments when XDP is enabled.
2981 * Limit the MTU in relation to the buffer size.
2982 */
2983 if (mtu + VLAN_ETH_HLEN + ETH_FCS_LEN > max_contig_data) {
2984 dev_warn(priv->net_dev->dev.parent,
2985 "The maximum MTU for XDP is %d\n",
2986 max_contig_data - VLAN_ETH_HLEN - ETH_FCS_LEN);
2987 return false;
2988 }
2989
2990 return true;
2991 }
2992
dpaa_change_mtu(struct net_device * net_dev,int new_mtu)2993 static int dpaa_change_mtu(struct net_device *net_dev, int new_mtu)
2994 {
2995 struct dpaa_priv *priv = netdev_priv(net_dev);
2996
2997 if (priv->xdp_prog && !xdp_validate_mtu(priv, new_mtu))
2998 return -EINVAL;
2999
3000 WRITE_ONCE(net_dev->mtu, new_mtu);
3001 return 0;
3002 }
3003
dpaa_setup_xdp(struct net_device * net_dev,struct netdev_bpf * bpf)3004 static int dpaa_setup_xdp(struct net_device *net_dev, struct netdev_bpf *bpf)
3005 {
3006 struct dpaa_priv *priv = netdev_priv(net_dev);
3007 struct bpf_prog *old_prog;
3008 int err;
3009 bool up;
3010
3011 /* S/G fragments are not supported in XDP-mode */
3012 if (bpf->prog && !xdp_validate_mtu(priv, net_dev->mtu)) {
3013 NL_SET_ERR_MSG_MOD(bpf->extack, "MTU too large for XDP");
3014 return -EINVAL;
3015 }
3016
3017 up = netif_running(net_dev);
3018
3019 if (up)
3020 dpaa_eth_stop(net_dev);
3021
3022 old_prog = xchg(&priv->xdp_prog, bpf->prog);
3023 if (old_prog)
3024 bpf_prog_put(old_prog);
3025
3026 if (up) {
3027 err = dpaa_open(net_dev);
3028 if (err) {
3029 NL_SET_ERR_MSG_MOD(bpf->extack, "dpaa_open() failed");
3030 return err;
3031 }
3032 }
3033
3034 return 0;
3035 }
3036
dpaa_xdp(struct net_device * net_dev,struct netdev_bpf * xdp)3037 static int dpaa_xdp(struct net_device *net_dev, struct netdev_bpf *xdp)
3038 {
3039 switch (xdp->command) {
3040 case XDP_SETUP_PROG:
3041 return dpaa_setup_xdp(net_dev, xdp);
3042 default:
3043 return -EINVAL;
3044 }
3045 }
3046
dpaa_xdp_xmit(struct net_device * net_dev,int n,struct xdp_frame ** frames,u32 flags)3047 static int dpaa_xdp_xmit(struct net_device *net_dev, int n,
3048 struct xdp_frame **frames, u32 flags)
3049 {
3050 struct xdp_frame *xdpf;
3051 int i, nxmit = 0;
3052
3053 if (unlikely(flags & ~XDP_XMIT_FLAGS_MASK))
3054 return -EINVAL;
3055
3056 if (!netif_running(net_dev))
3057 return -ENETDOWN;
3058
3059 for (i = 0; i < n; i++) {
3060 xdpf = frames[i];
3061 if (dpaa_xdp_xmit_frame(net_dev, xdpf))
3062 break;
3063 nxmit++;
3064 }
3065
3066 return nxmit;
3067 }
3068
dpaa_ts_ioctl(struct net_device * dev,struct ifreq * rq,int cmd)3069 static int dpaa_ts_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
3070 {
3071 struct dpaa_priv *priv = netdev_priv(dev);
3072 struct hwtstamp_config config;
3073
3074 if (copy_from_user(&config, rq->ifr_data, sizeof(config)))
3075 return -EFAULT;
3076
3077 switch (config.tx_type) {
3078 case HWTSTAMP_TX_OFF:
3079 /* Couldn't disable rx/tx timestamping separately.
3080 * Do nothing here.
3081 */
3082 priv->tx_tstamp = false;
3083 break;
3084 case HWTSTAMP_TX_ON:
3085 priv->mac_dev->set_tstamp(priv->mac_dev->fman_mac, true);
3086 priv->tx_tstamp = true;
3087 break;
3088 default:
3089 return -ERANGE;
3090 }
3091
3092 if (config.rx_filter == HWTSTAMP_FILTER_NONE) {
3093 /* Couldn't disable rx/tx timestamping separately.
3094 * Do nothing here.
3095 */
3096 priv->rx_tstamp = false;
3097 } else {
3098 priv->mac_dev->set_tstamp(priv->mac_dev->fman_mac, true);
3099 priv->rx_tstamp = true;
3100 /* TS is set for all frame types, not only those requested */
3101 config.rx_filter = HWTSTAMP_FILTER_ALL;
3102 }
3103
3104 return copy_to_user(rq->ifr_data, &config, sizeof(config)) ?
3105 -EFAULT : 0;
3106 }
3107
dpaa_ioctl(struct net_device * net_dev,struct ifreq * rq,int cmd)3108 static int dpaa_ioctl(struct net_device *net_dev, struct ifreq *rq, int cmd)
3109 {
3110 int ret = -EINVAL;
3111 struct dpaa_priv *priv = netdev_priv(net_dev);
3112
3113 if (cmd == SIOCGMIIREG) {
3114 if (net_dev->phydev)
3115 return phylink_mii_ioctl(priv->mac_dev->phylink, rq,
3116 cmd);
3117 }
3118
3119 if (cmd == SIOCSHWTSTAMP)
3120 return dpaa_ts_ioctl(net_dev, rq, cmd);
3121
3122 return ret;
3123 }
3124
3125 static const struct net_device_ops dpaa_ops = {
3126 .ndo_open = dpaa_open,
3127 .ndo_start_xmit = dpaa_start_xmit,
3128 .ndo_stop = dpaa_eth_stop,
3129 .ndo_tx_timeout = dpaa_tx_timeout,
3130 .ndo_get_stats64 = dpaa_get_stats64,
3131 .ndo_set_mac_address = dpaa_set_mac_address,
3132 .ndo_validate_addr = eth_validate_addr,
3133 .ndo_set_rx_mode = dpaa_set_rx_mode,
3134 .ndo_eth_ioctl = dpaa_ioctl,
3135 .ndo_setup_tc = dpaa_setup_tc,
3136 .ndo_change_mtu = dpaa_change_mtu,
3137 .ndo_bpf = dpaa_xdp,
3138 .ndo_xdp_xmit = dpaa_xdp_xmit,
3139 };
3140
dpaa_napi_add(struct net_device * net_dev)3141 static int dpaa_napi_add(struct net_device *net_dev)
3142 {
3143 struct dpaa_priv *priv = netdev_priv(net_dev);
3144 struct dpaa_percpu_priv *percpu_priv;
3145 int cpu;
3146
3147 for_each_possible_cpu(cpu) {
3148 percpu_priv = per_cpu_ptr(priv->percpu_priv, cpu);
3149
3150 netif_napi_add(net_dev, &percpu_priv->np.napi, dpaa_eth_poll);
3151 }
3152
3153 return 0;
3154 }
3155
dpaa_napi_del(struct net_device * net_dev)3156 static void dpaa_napi_del(struct net_device *net_dev)
3157 {
3158 struct dpaa_priv *priv = netdev_priv(net_dev);
3159 struct dpaa_percpu_priv *percpu_priv;
3160 int cpu;
3161
3162 for_each_possible_cpu(cpu) {
3163 percpu_priv = per_cpu_ptr(priv->percpu_priv, cpu);
3164
3165 __netif_napi_del(&percpu_priv->np.napi);
3166 }
3167 synchronize_net();
3168 }
3169
dpaa_bp_free_pf(const struct dpaa_bp * bp,struct bm_buffer * bmb)3170 static inline void dpaa_bp_free_pf(const struct dpaa_bp *bp,
3171 struct bm_buffer *bmb)
3172 {
3173 dma_addr_t addr = bm_buf_addr(bmb);
3174
3175 dma_unmap_page(bp->priv->rx_dma_dev, addr, DPAA_BP_RAW_SIZE,
3176 DMA_FROM_DEVICE);
3177
3178 skb_free_frag(phys_to_virt(addr));
3179 }
3180
3181 /* Alloc the dpaa_bp struct and configure default values */
dpaa_bp_alloc(struct device * dev)3182 static struct dpaa_bp *dpaa_bp_alloc(struct device *dev)
3183 {
3184 struct dpaa_bp *dpaa_bp;
3185
3186 dpaa_bp = devm_kzalloc(dev, sizeof(*dpaa_bp), GFP_KERNEL);
3187 if (!dpaa_bp)
3188 return ERR_PTR(-ENOMEM);
3189
3190 dpaa_bp->bpid = FSL_DPAA_BPID_INV;
3191 dpaa_bp->percpu_count = devm_alloc_percpu(dev, *dpaa_bp->percpu_count);
3192 if (!dpaa_bp->percpu_count)
3193 return ERR_PTR(-ENOMEM);
3194
3195 dpaa_bp->config_count = FSL_DPAA_ETH_MAX_BUF_COUNT;
3196
3197 dpaa_bp->seed_cb = dpaa_bp_seed;
3198 dpaa_bp->free_buf_cb = dpaa_bp_free_pf;
3199
3200 return dpaa_bp;
3201 }
3202
3203 /* Place all ingress FQs (Rx Default, Rx Error) in a dedicated CGR.
3204 * We won't be sending congestion notifications to FMan; for now, we just use
3205 * this CGR to generate enqueue rejections to FMan in order to drop the frames
3206 * before they reach our ingress queues and eat up memory.
3207 */
dpaa_ingress_cgr_init(struct dpaa_priv * priv)3208 static int dpaa_ingress_cgr_init(struct dpaa_priv *priv)
3209 {
3210 struct qm_mcc_initcgr initcgr;
3211 u32 cs_th;
3212 int err;
3213
3214 err = qman_alloc_cgrid(&priv->ingress_cgr.cgrid);
3215 if (err < 0) {
3216 if (netif_msg_drv(priv))
3217 pr_err("Error %d allocating CGR ID\n", err);
3218 goto out_error;
3219 }
3220
3221 /* Enable CS TD, but disable Congestion State Change Notifications. */
3222 memset(&initcgr, 0, sizeof(initcgr));
3223 initcgr.we_mask = cpu_to_be16(QM_CGR_WE_CS_THRES);
3224 initcgr.cgr.cscn_en = QM_CGR_EN;
3225 cs_th = DPAA_INGRESS_CS_THRESHOLD;
3226 qm_cgr_cs_thres_set64(&initcgr.cgr.cs_thres, cs_th, 1);
3227
3228 initcgr.we_mask |= cpu_to_be16(QM_CGR_WE_CSTD_EN);
3229 initcgr.cgr.cstd_en = QM_CGR_EN;
3230
3231 /* This CGR will be associated with the SWP affined to the current CPU.
3232 * However, we'll place all our ingress FQs in it.
3233 */
3234 err = qman_create_cgr(&priv->ingress_cgr, QMAN_CGR_FLAG_USE_INIT,
3235 &initcgr);
3236 if (err < 0) {
3237 if (netif_msg_drv(priv))
3238 pr_err("Error %d creating ingress CGR with ID %d\n",
3239 err, priv->ingress_cgr.cgrid);
3240 qman_release_cgrid(priv->ingress_cgr.cgrid);
3241 goto out_error;
3242 }
3243 if (netif_msg_drv(priv))
3244 pr_debug("Created ingress CGR %d for netdev with hwaddr %pM\n",
3245 priv->ingress_cgr.cgrid, priv->mac_dev->addr);
3246
3247 priv->use_ingress_cgr = true;
3248
3249 out_error:
3250 return err;
3251 }
3252
dpaa_get_headroom(struct dpaa_buffer_layout * bl,enum port_type port)3253 static u16 dpaa_get_headroom(struct dpaa_buffer_layout *bl,
3254 enum port_type port)
3255 {
3256 u16 headroom;
3257
3258 /* The frame headroom must accommodate:
3259 * - the driver private data area
3260 * - parse results, hash results, timestamp if selected
3261 * If either hash results or time stamp are selected, both will
3262 * be copied to/from the frame headroom, as TS is located between PR and
3263 * HR in the IC and IC copy size has a granularity of 16bytes
3264 * (see description of FMBM_RICP and FMBM_TICP registers in DPAARM)
3265 *
3266 * Also make sure the headroom is a multiple of data_align bytes
3267 */
3268 headroom = (u16)(bl[port].priv_data_size + DPAA_HWA_SIZE);
3269
3270 if (port == RX) {
3271 #ifdef CONFIG_DPAA_ERRATUM_A050385
3272 if (unlikely(fman_has_errata_a050385()))
3273 headroom = XDP_PACKET_HEADROOM;
3274 #endif
3275
3276 return ALIGN(headroom, DPAA_FD_RX_DATA_ALIGNMENT);
3277 } else {
3278 return ALIGN(headroom, DPAA_FD_DATA_ALIGNMENT);
3279 }
3280 }
3281
dpaa_eth_probe(struct platform_device * pdev)3282 static int dpaa_eth_probe(struct platform_device *pdev)
3283 {
3284 struct net_device *net_dev = NULL;
3285 struct dpaa_bp *dpaa_bp = NULL;
3286 struct dpaa_fq *dpaa_fq, *tmp;
3287 struct dpaa_priv *priv = NULL;
3288 struct fm_port_fqs port_fqs;
3289 struct mac_device *mac_dev;
3290 int err = 0, channel;
3291 struct device *dev;
3292
3293 dev = &pdev->dev;
3294
3295 err = bman_is_probed();
3296 if (!err)
3297 return -EPROBE_DEFER;
3298 if (err < 0) {
3299 dev_err(dev, "failing probe due to bman probe error\n");
3300 return -ENODEV;
3301 }
3302 err = qman_is_probed();
3303 if (!err)
3304 return -EPROBE_DEFER;
3305 if (err < 0) {
3306 dev_err(dev, "failing probe due to qman probe error\n");
3307 return -ENODEV;
3308 }
3309 err = bman_portals_probed();
3310 if (!err)
3311 return -EPROBE_DEFER;
3312 if (err < 0) {
3313 dev_err(dev,
3314 "failing probe due to bman portals probe error\n");
3315 return -ENODEV;
3316 }
3317 err = qman_portals_probed();
3318 if (!err)
3319 return -EPROBE_DEFER;
3320 if (err < 0) {
3321 dev_err(dev,
3322 "failing probe due to qman portals probe error\n");
3323 return -ENODEV;
3324 }
3325
3326 /* Allocate this early, so we can store relevant information in
3327 * the private area
3328 */
3329 net_dev = alloc_etherdev_mq(sizeof(*priv), dpaa_max_num_txqs());
3330 if (!net_dev) {
3331 dev_err(dev, "alloc_etherdev_mq() failed\n");
3332 return -ENOMEM;
3333 }
3334
3335 /* Do this here, so we can be verbose early */
3336 SET_NETDEV_DEV(net_dev, dev->parent);
3337 dev_set_drvdata(dev, net_dev);
3338
3339 priv = netdev_priv(net_dev);
3340 priv->net_dev = net_dev;
3341
3342 priv->msg_enable = netif_msg_init(debug, DPAA_MSG_DEFAULT);
3343
3344 priv->egress_fqs = devm_kcalloc(dev, dpaa_max_num_txqs(),
3345 sizeof(*priv->egress_fqs),
3346 GFP_KERNEL);
3347 if (!priv->egress_fqs) {
3348 err = -ENOMEM;
3349 goto free_netdev;
3350 }
3351
3352 priv->conf_fqs = devm_kcalloc(dev, dpaa_max_num_txqs(),
3353 sizeof(*priv->conf_fqs),
3354 GFP_KERNEL);
3355 if (!priv->conf_fqs) {
3356 err = -ENOMEM;
3357 goto free_netdev;
3358 }
3359
3360 mac_dev = dpaa_mac_dev_get(pdev);
3361 if (IS_ERR(mac_dev)) {
3362 netdev_err(net_dev, "dpaa_mac_dev_get() failed\n");
3363 err = PTR_ERR(mac_dev);
3364 goto free_netdev;
3365 }
3366
3367 /* Devices used for DMA mapping */
3368 priv->rx_dma_dev = fman_port_get_device(mac_dev->port[RX]);
3369 priv->tx_dma_dev = fman_port_get_device(mac_dev->port[TX]);
3370 err = dma_coerce_mask_and_coherent(priv->rx_dma_dev, DMA_BIT_MASK(40));
3371 if (!err)
3372 err = dma_coerce_mask_and_coherent(priv->tx_dma_dev,
3373 DMA_BIT_MASK(40));
3374 if (err) {
3375 netdev_err(net_dev, "dma_coerce_mask_and_coherent() failed\n");
3376 goto free_netdev;
3377 }
3378
3379 /* If fsl_fm_max_frm is set to a higher value than the all-common 1500,
3380 * we choose conservatively and let the user explicitly set a higher
3381 * MTU via ifconfig. Otherwise, the user may end up with different MTUs
3382 * in the same LAN.
3383 * If on the other hand fsl_fm_max_frm has been chosen below 1500,
3384 * start with the maximum allowed.
3385 */
3386 net_dev->mtu = min(dpaa_get_max_mtu(), ETH_DATA_LEN);
3387
3388 netdev_dbg(net_dev, "Setting initial MTU on net device: %d\n",
3389 net_dev->mtu);
3390
3391 priv->buf_layout[RX].priv_data_size = DPAA_RX_PRIV_DATA_SIZE; /* Rx */
3392 priv->buf_layout[TX].priv_data_size = DPAA_TX_PRIV_DATA_SIZE; /* Tx */
3393
3394 /* bp init */
3395 dpaa_bp = dpaa_bp_alloc(dev);
3396 if (IS_ERR(dpaa_bp)) {
3397 err = PTR_ERR(dpaa_bp);
3398 goto free_dpaa_bps;
3399 }
3400 /* the raw size of the buffers used for reception */
3401 dpaa_bp->raw_size = DPAA_BP_RAW_SIZE;
3402 /* avoid runtime computations by keeping the usable size here */
3403 dpaa_bp->size = dpaa_bp_size(dpaa_bp->raw_size);
3404 dpaa_bp->priv = priv;
3405
3406 err = dpaa_bp_alloc_pool(dpaa_bp);
3407 if (err < 0)
3408 goto free_dpaa_bps;
3409 priv->dpaa_bp = dpaa_bp;
3410
3411 INIT_LIST_HEAD(&priv->dpaa_fq_list);
3412
3413 memset(&port_fqs, 0, sizeof(port_fqs));
3414
3415 err = dpaa_alloc_all_fqs(dev, &priv->dpaa_fq_list, &port_fqs);
3416 if (err < 0) {
3417 dev_err(dev, "dpaa_alloc_all_fqs() failed\n");
3418 goto free_dpaa_bps;
3419 }
3420
3421 priv->mac_dev = mac_dev;
3422
3423 channel = dpaa_get_channel();
3424 if (channel < 0) {
3425 dev_err(dev, "dpaa_get_channel() failed\n");
3426 err = channel;
3427 goto free_dpaa_bps;
3428 }
3429
3430 priv->channel = (u16)channel;
3431
3432 /* Walk the CPUs with affine portals
3433 * and add this pool channel to each's dequeue mask.
3434 */
3435 dpaa_eth_add_channel(priv->channel, &pdev->dev);
3436
3437 err = dpaa_fq_setup(priv, &dpaa_fq_cbs, priv->mac_dev->port[TX]);
3438 if (err)
3439 goto free_dpaa_bps;
3440
3441 /* Create a congestion group for this netdev, with
3442 * dynamically-allocated CGR ID.
3443 * Must be executed after probing the MAC, but before
3444 * assigning the egress FQs to the CGRs.
3445 */
3446 err = dpaa_eth_cgr_init(priv);
3447 if (err < 0) {
3448 dev_err(dev, "Error initializing CGR\n");
3449 goto free_dpaa_bps;
3450 }
3451
3452 err = dpaa_ingress_cgr_init(priv);
3453 if (err < 0) {
3454 dev_err(dev, "Error initializing ingress CGR\n");
3455 goto delete_egress_cgr;
3456 }
3457
3458 /* Add the FQs to the interface, and make them active */
3459 list_for_each_entry_safe(dpaa_fq, tmp, &priv->dpaa_fq_list, list) {
3460 err = dpaa_fq_init(dpaa_fq, false);
3461 if (err < 0)
3462 goto free_dpaa_fqs;
3463 }
3464
3465 priv->tx_headroom = dpaa_get_headroom(priv->buf_layout, TX);
3466 priv->rx_headroom = dpaa_get_headroom(priv->buf_layout, RX);
3467
3468 /* All real interfaces need their ports initialized */
3469 err = dpaa_eth_init_ports(mac_dev, dpaa_bp, &port_fqs,
3470 &priv->buf_layout[0], dev);
3471 if (err)
3472 goto free_dpaa_fqs;
3473
3474 /* Rx traffic distribution based on keygen hashing defaults to on */
3475 priv->keygen_in_use = true;
3476
3477 priv->percpu_priv = devm_alloc_percpu(dev, *priv->percpu_priv);
3478 if (!priv->percpu_priv) {
3479 dev_err(dev, "devm_alloc_percpu() failed\n");
3480 err = -ENOMEM;
3481 goto free_dpaa_fqs;
3482 }
3483
3484 priv->num_tc = 1;
3485 netif_set_real_num_tx_queues(net_dev,
3486 priv->num_tc * dpaa_num_txqs_per_tc());
3487
3488 /* Initialize NAPI */
3489 err = dpaa_napi_add(net_dev);
3490 if (err < 0)
3491 goto delete_dpaa_napi;
3492
3493 err = dpaa_netdev_init(net_dev, &dpaa_ops, tx_timeout);
3494 if (err < 0)
3495 goto delete_dpaa_napi;
3496
3497 dpaa_eth_sysfs_init(&net_dev->dev);
3498
3499 netif_info(priv, probe, net_dev, "Probed interface %s\n",
3500 net_dev->name);
3501
3502 return 0;
3503
3504 delete_dpaa_napi:
3505 dpaa_napi_del(net_dev);
3506 free_dpaa_fqs:
3507 dpaa_fq_free(dev, &priv->dpaa_fq_list);
3508 qman_delete_cgr_safe(&priv->ingress_cgr);
3509 qman_release_cgrid(priv->ingress_cgr.cgrid);
3510 delete_egress_cgr:
3511 qman_delete_cgr_safe(&priv->cgr_data.cgr);
3512 qman_release_cgrid(priv->cgr_data.cgr.cgrid);
3513 free_dpaa_bps:
3514 dpaa_bps_free(priv);
3515 free_netdev:
3516 dev_set_drvdata(dev, NULL);
3517 free_netdev(net_dev);
3518
3519 return err;
3520 }
3521
dpaa_remove(struct platform_device * pdev)3522 static void dpaa_remove(struct platform_device *pdev)
3523 {
3524 struct net_device *net_dev;
3525 struct dpaa_priv *priv;
3526 struct device *dev;
3527 int err;
3528
3529 dev = &pdev->dev;
3530 net_dev = dev_get_drvdata(dev);
3531
3532 priv = netdev_priv(net_dev);
3533
3534 dpaa_eth_sysfs_remove(dev);
3535
3536 dev_set_drvdata(dev, NULL);
3537 unregister_netdev(net_dev);
3538 phylink_destroy(priv->mac_dev->phylink);
3539
3540 err = dpaa_fq_free(dev, &priv->dpaa_fq_list);
3541 if (err)
3542 dev_err(dev, "Failed to free FQs on remove (%pE)\n",
3543 ERR_PTR(err));
3544
3545 qman_delete_cgr_safe(&priv->ingress_cgr);
3546 qman_release_cgrid(priv->ingress_cgr.cgrid);
3547 qman_delete_cgr_safe(&priv->cgr_data.cgr);
3548 qman_release_cgrid(priv->cgr_data.cgr.cgrid);
3549
3550 dpaa_napi_del(net_dev);
3551
3552 dpaa_bps_free(priv);
3553
3554 free_netdev(net_dev);
3555 }
3556
3557 static const struct platform_device_id dpaa_devtype[] = {
3558 {
3559 .name = "dpaa-ethernet",
3560 .driver_data = 0,
3561 }, {
3562 }
3563 };
3564 MODULE_DEVICE_TABLE(platform, dpaa_devtype);
3565
3566 static struct platform_driver dpaa_driver = {
3567 .driver = {
3568 .name = KBUILD_MODNAME,
3569 },
3570 .id_table = dpaa_devtype,
3571 .probe = dpaa_eth_probe,
3572 .remove_new = dpaa_remove
3573 };
3574
dpaa_load(void)3575 static int __init dpaa_load(void)
3576 {
3577 int err;
3578
3579 pr_debug("FSL DPAA Ethernet driver\n");
3580
3581 /* initialize dpaa_eth mirror values */
3582 dpaa_rx_extra_headroom = fman_get_rx_extra_headroom();
3583 dpaa_max_frm = fman_get_max_frm();
3584
3585 err = platform_driver_register(&dpaa_driver);
3586 if (err < 0)
3587 pr_err("Error, platform_driver_register() = %d\n", err);
3588
3589 return err;
3590 }
3591 module_init(dpaa_load);
3592
dpaa_unload(void)3593 static void __exit dpaa_unload(void)
3594 {
3595 platform_driver_unregister(&dpaa_driver);
3596
3597 /* Only one channel is used and needs to be released after all
3598 * interfaces are removed
3599 */
3600 dpaa_release_channel();
3601 }
3602 module_exit(dpaa_unload);
3603
3604 MODULE_LICENSE("Dual BSD/GPL");
3605 MODULE_DESCRIPTION("FSL DPAA Ethernet driver");
3606