1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3 * Fast Ethernet Controller (FEC) driver for Motorola MPC8xx.
4 * Copyright (c) 1997 Dan Malek (dmalek@jlc.net)
5 *
6 * Right now, I am very wasteful with the buffers. I allocate memory
7 * pages and then divide them into 2K frame buffers. This way I know I
8 * have buffers large enough to hold one frame within one buffer descriptor.
9 * Once I get this working, I will use 64 or 128 byte CPM buffers, which
10 * will be much more memory efficient and will easily handle lots of
11 * small packets.
12 *
13 * Much better multiple PHY support by Magnus Damm.
14 * Copyright (c) 2000 Ericsson Radio Systems AB.
15 *
16 * Support for FEC controller of ColdFire processors.
17 * Copyright (c) 2001-2005 Greg Ungerer (gerg@snapgear.com)
18 *
19 * Bug fixes and cleanup by Philippe De Muyter (phdm@macqel.be)
20 * Copyright (c) 2004-2006 Macq Electronique SA.
21 *
22 * Copyright (C) 2010-2011 Freescale Semiconductor, Inc.
23 */
24
25 #include <linux/module.h>
26 #include <linux/kernel.h>
27 #include <linux/string.h>
28 #include <linux/pm_runtime.h>
29 #include <linux/ptrace.h>
30 #include <linux/errno.h>
31 #include <linux/ioport.h>
32 #include <linux/slab.h>
33 #include <linux/interrupt.h>
34 #include <linux/delay.h>
35 #include <linux/netdevice.h>
36 #include <linux/etherdevice.h>
37 #include <linux/skbuff.h>
38 #include <linux/in.h>
39 #include <linux/ip.h>
40 #include <net/ip.h>
41 #include <net/page_pool/helpers.h>
42 #include <net/selftests.h>
43 #include <net/tso.h>
44 #include <linux/tcp.h>
45 #include <linux/udp.h>
46 #include <linux/icmp.h>
47 #include <linux/spinlock.h>
48 #include <linux/workqueue.h>
49 #include <linux/bitops.h>
50 #include <linux/io.h>
51 #include <linux/irq.h>
52 #include <linux/clk.h>
53 #include <linux/crc32.h>
54 #include <linux/platform_device.h>
55 #include <linux/property.h>
56 #include <linux/mdio.h>
57 #include <linux/phy.h>
58 #include <linux/fec.h>
59 #include <linux/of.h>
60 #include <linux/of_mdio.h>
61 #include <linux/of_net.h>
62 #include <linux/regulator/consumer.h>
63 #include <linux/if_vlan.h>
64 #include <linux/pinctrl/consumer.h>
65 #include <linux/gpio/consumer.h>
66 #include <linux/prefetch.h>
67 #include <linux/mfd/syscon.h>
68 #include <linux/regmap.h>
69 #include <soc/imx/cpuidle.h>
70 #include <linux/filter.h>
71 #include <linux/bpf.h>
72 #include <linux/bpf_trace.h>
73
74 #include <asm/cacheflush.h>
75
76 #include "fec.h"
77
78 static void set_multicast_list(struct net_device *ndev);
79 static void fec_enet_itr_coal_set(struct net_device *ndev);
80 static int fec_enet_xdp_tx_xmit(struct fec_enet_private *fep,
81 int cpu, struct xdp_buff *xdp,
82 u32 dma_sync_len);
83
84 #define DRIVER_NAME "fec"
85
86 static const u16 fec_enet_vlan_pri_to_queue[8] = {0, 0, 1, 1, 1, 2, 2, 2};
87
88 #define FEC_ENET_RSEM_V 0x84
89 #define FEC_ENET_RSFL_V 16
90 #define FEC_ENET_RAEM_V 0x8
91 #define FEC_ENET_RAFL_V 0x8
92 #define FEC_ENET_OPD_V 0xFFF0
93 #define FEC_MDIO_PM_TIMEOUT 100 /* ms */
94
95 #define FEC_ENET_XDP_PASS 0
96 #define FEC_ENET_XDP_CONSUMED BIT(0)
97 #define FEC_ENET_XDP_TX BIT(1)
98 #define FEC_ENET_XDP_REDIR BIT(2)
99
100 struct fec_devinfo {
101 u32 quirks;
102 };
103
104 static const struct fec_devinfo fec_imx25_info = {
105 .quirks = FEC_QUIRK_USE_GASKET | FEC_QUIRK_MIB_CLEAR |
106 FEC_QUIRK_HAS_FRREG | FEC_QUIRK_HAS_MDIO_C45,
107 };
108
109 static const struct fec_devinfo fec_imx27_info = {
110 .quirks = FEC_QUIRK_MIB_CLEAR | FEC_QUIRK_HAS_FRREG |
111 FEC_QUIRK_HAS_MDIO_C45,
112 };
113
114 static const struct fec_devinfo fec_imx28_info = {
115 .quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_SWAP_FRAME |
116 FEC_QUIRK_SINGLE_MDIO | FEC_QUIRK_HAS_RACC |
117 FEC_QUIRK_HAS_FRREG | FEC_QUIRK_CLEAR_SETUP_MII |
118 FEC_QUIRK_NO_HARD_RESET | FEC_QUIRK_HAS_MDIO_C45,
119 };
120
121 static const struct fec_devinfo fec_imx6q_info = {
122 .quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT |
123 FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM |
124 FEC_QUIRK_HAS_VLAN | FEC_QUIRK_ERR006358 |
125 FEC_QUIRK_HAS_RACC | FEC_QUIRK_CLEAR_SETUP_MII |
126 FEC_QUIRK_HAS_PMQOS | FEC_QUIRK_HAS_MDIO_C45,
127 };
128
129 static const struct fec_devinfo fec_mvf600_info = {
130 .quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_RACC |
131 FEC_QUIRK_HAS_MDIO_C45,
132 };
133
134 static const struct fec_devinfo fec_imx6sx_info = {
135 .quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT |
136 FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM |
137 FEC_QUIRK_HAS_VLAN | FEC_QUIRK_HAS_AVB |
138 FEC_QUIRK_ERR007885 | FEC_QUIRK_BUG_CAPTURE |
139 FEC_QUIRK_HAS_RACC | FEC_QUIRK_HAS_COALESCE |
140 FEC_QUIRK_CLEAR_SETUP_MII | FEC_QUIRK_HAS_MULTI_QUEUES |
141 FEC_QUIRK_HAS_MDIO_C45,
142 };
143
144 static const struct fec_devinfo fec_imx6ul_info = {
145 .quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT |
146 FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM |
147 FEC_QUIRK_HAS_VLAN | FEC_QUIRK_ERR007885 |
148 FEC_QUIRK_BUG_CAPTURE | FEC_QUIRK_HAS_RACC |
149 FEC_QUIRK_HAS_COALESCE | FEC_QUIRK_CLEAR_SETUP_MII |
150 FEC_QUIRK_HAS_MDIO_C45,
151 };
152
153 static const struct fec_devinfo fec_imx8mq_info = {
154 .quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT |
155 FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM |
156 FEC_QUIRK_HAS_VLAN | FEC_QUIRK_HAS_AVB |
157 FEC_QUIRK_ERR007885 | FEC_QUIRK_BUG_CAPTURE |
158 FEC_QUIRK_HAS_RACC | FEC_QUIRK_HAS_COALESCE |
159 FEC_QUIRK_CLEAR_SETUP_MII | FEC_QUIRK_HAS_MULTI_QUEUES |
160 FEC_QUIRK_HAS_EEE | FEC_QUIRK_WAKEUP_FROM_INT2 |
161 FEC_QUIRK_HAS_MDIO_C45,
162 };
163
164 static const struct fec_devinfo fec_imx8qm_info = {
165 .quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT |
166 FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM |
167 FEC_QUIRK_HAS_VLAN | FEC_QUIRK_HAS_AVB |
168 FEC_QUIRK_ERR007885 | FEC_QUIRK_BUG_CAPTURE |
169 FEC_QUIRK_HAS_RACC | FEC_QUIRK_HAS_COALESCE |
170 FEC_QUIRK_CLEAR_SETUP_MII | FEC_QUIRK_HAS_MULTI_QUEUES |
171 FEC_QUIRK_DELAYED_CLKS_SUPPORT | FEC_QUIRK_HAS_MDIO_C45,
172 };
173
174 static const struct fec_devinfo fec_s32v234_info = {
175 .quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT |
176 FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM |
177 FEC_QUIRK_HAS_VLAN | FEC_QUIRK_HAS_AVB |
178 FEC_QUIRK_ERR007885 | FEC_QUIRK_BUG_CAPTURE |
179 FEC_QUIRK_HAS_MDIO_C45,
180 };
181
182 static struct platform_device_id fec_devtype[] = {
183 {
184 /* keep it for coldfire */
185 .name = DRIVER_NAME,
186 .driver_data = 0,
187 }, {
188 /* sentinel */
189 }
190 };
191 MODULE_DEVICE_TABLE(platform, fec_devtype);
192
193 static const struct of_device_id fec_dt_ids[] = {
194 { .compatible = "fsl,imx25-fec", .data = &fec_imx25_info, },
195 { .compatible = "fsl,imx27-fec", .data = &fec_imx27_info, },
196 { .compatible = "fsl,imx28-fec", .data = &fec_imx28_info, },
197 { .compatible = "fsl,imx6q-fec", .data = &fec_imx6q_info, },
198 { .compatible = "fsl,mvf600-fec", .data = &fec_mvf600_info, },
199 { .compatible = "fsl,imx6sx-fec", .data = &fec_imx6sx_info, },
200 { .compatible = "fsl,imx6ul-fec", .data = &fec_imx6ul_info, },
201 { .compatible = "fsl,imx8mq-fec", .data = &fec_imx8mq_info, },
202 { .compatible = "fsl,imx8qm-fec", .data = &fec_imx8qm_info, },
203 { .compatible = "fsl,s32v234-fec", .data = &fec_s32v234_info, },
204 { /* sentinel */ }
205 };
206 MODULE_DEVICE_TABLE(of, fec_dt_ids);
207
208 static unsigned char macaddr[ETH_ALEN];
209 module_param_array(macaddr, byte, NULL, 0);
210 MODULE_PARM_DESC(macaddr, "FEC Ethernet MAC address");
211
212 #if defined(CONFIG_M5272)
213 /*
214 * Some hardware gets it MAC address out of local flash memory.
215 * if this is non-zero then assume it is the address to get MAC from.
216 */
217 #if defined(CONFIG_NETtel)
218 #define FEC_FLASHMAC 0xf0006006
219 #elif defined(CONFIG_GILBARCONAP) || defined(CONFIG_SCALES)
220 #define FEC_FLASHMAC 0xf0006000
221 #elif defined(CONFIG_CANCam)
222 #define FEC_FLASHMAC 0xf0020000
223 #elif defined (CONFIG_M5272C3)
224 #define FEC_FLASHMAC (0xffe04000 + 4)
225 #elif defined(CONFIG_MOD5272)
226 #define FEC_FLASHMAC 0xffc0406b
227 #else
228 #define FEC_FLASHMAC 0
229 #endif
230 #endif /* CONFIG_M5272 */
231
232 /* The FEC stores dest/src/type/vlan, data, and checksum for receive packets.
233 *
234 * 2048 byte skbufs are allocated. However, alignment requirements
235 * varies between FEC variants. Worst case is 64, so round down by 64.
236 */
237 #define PKT_MAXBUF_SIZE (round_down(2048 - 64, 64))
238 #define PKT_MINBUF_SIZE 64
239
240 /* FEC receive acceleration */
241 #define FEC_RACC_IPDIS BIT(1)
242 #define FEC_RACC_PRODIS BIT(2)
243 #define FEC_RACC_SHIFT16 BIT(7)
244 #define FEC_RACC_OPTIONS (FEC_RACC_IPDIS | FEC_RACC_PRODIS)
245
246 /* MIB Control Register */
247 #define FEC_MIB_CTRLSTAT_DISABLE BIT(31)
248
249 /*
250 * The 5270/5271/5280/5282/532x RX control register also contains maximum frame
251 * size bits. Other FEC hardware does not, so we need to take that into
252 * account when setting it.
253 */
254 #if defined(CONFIG_M523x) || defined(CONFIG_M527x) || defined(CONFIG_M528x) || \
255 defined(CONFIG_M520x) || defined(CONFIG_M532x) || defined(CONFIG_ARM) || \
256 defined(CONFIG_ARM64)
257 #define OPT_FRAME_SIZE (PKT_MAXBUF_SIZE << 16)
258 #else
259 #define OPT_FRAME_SIZE 0
260 #endif
261
262 /* FEC MII MMFR bits definition */
263 #define FEC_MMFR_ST (1 << 30)
264 #define FEC_MMFR_ST_C45 (0)
265 #define FEC_MMFR_OP_READ (2 << 28)
266 #define FEC_MMFR_OP_READ_C45 (3 << 28)
267 #define FEC_MMFR_OP_WRITE (1 << 28)
268 #define FEC_MMFR_OP_ADDR_WRITE (0)
269 #define FEC_MMFR_PA(v) ((v & 0x1f) << 23)
270 #define FEC_MMFR_RA(v) ((v & 0x1f) << 18)
271 #define FEC_MMFR_TA (2 << 16)
272 #define FEC_MMFR_DATA(v) (v & 0xffff)
273 /* FEC ECR bits definition */
274 #define FEC_ECR_RESET BIT(0)
275 #define FEC_ECR_ETHEREN BIT(1)
276 #define FEC_ECR_MAGICEN BIT(2)
277 #define FEC_ECR_SLEEP BIT(3)
278 #define FEC_ECR_EN1588 BIT(4)
279 #define FEC_ECR_BYTESWP BIT(8)
280 /* FEC RCR bits definition */
281 #define FEC_RCR_LOOP BIT(0)
282 #define FEC_RCR_HALFDPX BIT(1)
283 #define FEC_RCR_MII BIT(2)
284 #define FEC_RCR_PROMISC BIT(3)
285 #define FEC_RCR_BC_REJ BIT(4)
286 #define FEC_RCR_FLOWCTL BIT(5)
287 #define FEC_RCR_RMII BIT(8)
288 #define FEC_RCR_10BASET BIT(9)
289 /* TX WMARK bits */
290 #define FEC_TXWMRK_STRFWD BIT(8)
291
292 #define FEC_MII_TIMEOUT 30000 /* us */
293
294 /* Transmitter timeout */
295 #define TX_TIMEOUT (2 * HZ)
296
297 #define FEC_PAUSE_FLAG_AUTONEG 0x1
298 #define FEC_PAUSE_FLAG_ENABLE 0x2
299 #define FEC_WOL_HAS_MAGIC_PACKET (0x1 << 0)
300 #define FEC_WOL_FLAG_ENABLE (0x1 << 1)
301 #define FEC_WOL_FLAG_SLEEP_ON (0x1 << 2)
302
303 /* Max number of allowed TCP segments for software TSO */
304 #define FEC_MAX_TSO_SEGS 100
305 #define FEC_MAX_SKB_DESCS (FEC_MAX_TSO_SEGS * 2 + MAX_SKB_FRAGS)
306
307 #define IS_TSO_HEADER(txq, addr) \
308 ((addr >= txq->tso_hdrs_dma) && \
309 (addr < txq->tso_hdrs_dma + txq->bd.ring_size * TSO_HEADER_SIZE))
310
311 static int mii_cnt;
312
fec_enet_get_nextdesc(struct bufdesc * bdp,struct bufdesc_prop * bd)313 static struct bufdesc *fec_enet_get_nextdesc(struct bufdesc *bdp,
314 struct bufdesc_prop *bd)
315 {
316 return (bdp >= bd->last) ? bd->base
317 : (struct bufdesc *)(((void *)bdp) + bd->dsize);
318 }
319
fec_enet_get_prevdesc(struct bufdesc * bdp,struct bufdesc_prop * bd)320 static struct bufdesc *fec_enet_get_prevdesc(struct bufdesc *bdp,
321 struct bufdesc_prop *bd)
322 {
323 return (bdp <= bd->base) ? bd->last
324 : (struct bufdesc *)(((void *)bdp) - bd->dsize);
325 }
326
fec_enet_get_bd_index(struct bufdesc * bdp,struct bufdesc_prop * bd)327 static int fec_enet_get_bd_index(struct bufdesc *bdp,
328 struct bufdesc_prop *bd)
329 {
330 return ((const char *)bdp - (const char *)bd->base) >> bd->dsize_log2;
331 }
332
fec_enet_get_free_txdesc_num(struct fec_enet_priv_tx_q * txq)333 static int fec_enet_get_free_txdesc_num(struct fec_enet_priv_tx_q *txq)
334 {
335 int entries;
336
337 entries = (((const char *)txq->dirty_tx -
338 (const char *)txq->bd.cur) >> txq->bd.dsize_log2) - 1;
339
340 return entries >= 0 ? entries : entries + txq->bd.ring_size;
341 }
342
swap_buffer(void * bufaddr,int len)343 static void swap_buffer(void *bufaddr, int len)
344 {
345 int i;
346 unsigned int *buf = bufaddr;
347
348 for (i = 0; i < len; i += 4, buf++)
349 swab32s(buf);
350 }
351
fec_dump(struct net_device * ndev)352 static void fec_dump(struct net_device *ndev)
353 {
354 struct fec_enet_private *fep = netdev_priv(ndev);
355 struct bufdesc *bdp;
356 struct fec_enet_priv_tx_q *txq;
357 int index = 0;
358
359 netdev_info(ndev, "TX ring dump\n");
360 pr_info("Nr SC addr len SKB\n");
361
362 txq = fep->tx_queue[0];
363 bdp = txq->bd.base;
364
365 do {
366 pr_info("%3u %c%c 0x%04x 0x%08x %4u %p\n",
367 index,
368 bdp == txq->bd.cur ? 'S' : ' ',
369 bdp == txq->dirty_tx ? 'H' : ' ',
370 fec16_to_cpu(bdp->cbd_sc),
371 fec32_to_cpu(bdp->cbd_bufaddr),
372 fec16_to_cpu(bdp->cbd_datlen),
373 txq->tx_buf[index].buf_p);
374 bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
375 index++;
376 } while (bdp != txq->bd.base);
377 }
378
379 /*
380 * Coldfire does not support DMA coherent allocations, and has historically used
381 * a band-aid with a manual flush in fec_enet_rx_queue.
382 */
383 #if defined(CONFIG_COLDFIRE) && !defined(CONFIG_COLDFIRE_COHERENT_DMA)
fec_dma_alloc(struct device * dev,size_t size,dma_addr_t * handle,gfp_t gfp)384 static void *fec_dma_alloc(struct device *dev, size_t size, dma_addr_t *handle,
385 gfp_t gfp)
386 {
387 return dma_alloc_noncoherent(dev, size, handle, DMA_BIDIRECTIONAL, gfp);
388 }
389
fec_dma_free(struct device * dev,size_t size,void * cpu_addr,dma_addr_t handle)390 static void fec_dma_free(struct device *dev, size_t size, void *cpu_addr,
391 dma_addr_t handle)
392 {
393 dma_free_noncoherent(dev, size, cpu_addr, handle, DMA_BIDIRECTIONAL);
394 }
395 #else /* !CONFIG_COLDFIRE || CONFIG_COLDFIRE_COHERENT_DMA */
fec_dma_alloc(struct device * dev,size_t size,dma_addr_t * handle,gfp_t gfp)396 static void *fec_dma_alloc(struct device *dev, size_t size, dma_addr_t *handle,
397 gfp_t gfp)
398 {
399 return dma_alloc_coherent(dev, size, handle, gfp);
400 }
401
fec_dma_free(struct device * dev,size_t size,void * cpu_addr,dma_addr_t handle)402 static void fec_dma_free(struct device *dev, size_t size, void *cpu_addr,
403 dma_addr_t handle)
404 {
405 dma_free_coherent(dev, size, cpu_addr, handle);
406 }
407 #endif /* !CONFIG_COLDFIRE || CONFIG_COLDFIRE_COHERENT_DMA */
408
409 struct fec_dma_devres {
410 size_t size;
411 void *vaddr;
412 dma_addr_t dma_handle;
413 };
414
fec_dmam_release(struct device * dev,void * res)415 static void fec_dmam_release(struct device *dev, void *res)
416 {
417 struct fec_dma_devres *this = res;
418
419 fec_dma_free(dev, this->size, this->vaddr, this->dma_handle);
420 }
421
fec_dmam_alloc(struct device * dev,size_t size,dma_addr_t * handle,gfp_t gfp)422 static void *fec_dmam_alloc(struct device *dev, size_t size, dma_addr_t *handle,
423 gfp_t gfp)
424 {
425 struct fec_dma_devres *dr;
426 void *vaddr;
427
428 dr = devres_alloc(fec_dmam_release, sizeof(*dr), gfp);
429 if (!dr)
430 return NULL;
431 vaddr = fec_dma_alloc(dev, size, handle, gfp);
432 if (!vaddr) {
433 devres_free(dr);
434 return NULL;
435 }
436 dr->vaddr = vaddr;
437 dr->dma_handle = *handle;
438 dr->size = size;
439 devres_add(dev, dr);
440 return vaddr;
441 }
442
is_ipv4_pkt(struct sk_buff * skb)443 static inline bool is_ipv4_pkt(struct sk_buff *skb)
444 {
445 return skb->protocol == htons(ETH_P_IP) && ip_hdr(skb)->version == 4;
446 }
447
448 static int
fec_enet_clear_csum(struct sk_buff * skb,struct net_device * ndev)449 fec_enet_clear_csum(struct sk_buff *skb, struct net_device *ndev)
450 {
451 /* Only run for packets requiring a checksum. */
452 if (skb->ip_summed != CHECKSUM_PARTIAL)
453 return 0;
454
455 if (unlikely(skb_cow_head(skb, 0)))
456 return -1;
457
458 if (is_ipv4_pkt(skb))
459 ip_hdr(skb)->check = 0;
460 *(__sum16 *)(skb->head + skb->csum_start + skb->csum_offset) = 0;
461
462 return 0;
463 }
464
465 static int
fec_enet_create_page_pool(struct fec_enet_private * fep,struct fec_enet_priv_rx_q * rxq,int size)466 fec_enet_create_page_pool(struct fec_enet_private *fep,
467 struct fec_enet_priv_rx_q *rxq, int size)
468 {
469 struct bpf_prog *xdp_prog = READ_ONCE(fep->xdp_prog);
470 struct page_pool_params pp_params = {
471 .order = 0,
472 .flags = PP_FLAG_DMA_MAP | PP_FLAG_DMA_SYNC_DEV,
473 .pool_size = size,
474 .nid = dev_to_node(&fep->pdev->dev),
475 .dev = &fep->pdev->dev,
476 .dma_dir = xdp_prog ? DMA_BIDIRECTIONAL : DMA_FROM_DEVICE,
477 .offset = FEC_ENET_XDP_HEADROOM,
478 .max_len = FEC_ENET_RX_FRSIZE,
479 };
480 int err;
481
482 rxq->page_pool = page_pool_create(&pp_params);
483 if (IS_ERR(rxq->page_pool)) {
484 err = PTR_ERR(rxq->page_pool);
485 rxq->page_pool = NULL;
486 return err;
487 }
488
489 err = xdp_rxq_info_reg(&rxq->xdp_rxq, fep->netdev, rxq->id, 0);
490 if (err < 0)
491 goto err_free_pp;
492
493 err = xdp_rxq_info_reg_mem_model(&rxq->xdp_rxq, MEM_TYPE_PAGE_POOL,
494 rxq->page_pool);
495 if (err)
496 goto err_unregister_rxq;
497
498 return 0;
499
500 err_unregister_rxq:
501 xdp_rxq_info_unreg(&rxq->xdp_rxq);
502 err_free_pp:
503 page_pool_destroy(rxq->page_pool);
504 rxq->page_pool = NULL;
505 return err;
506 }
507
508 static struct bufdesc *
fec_enet_txq_submit_frag_skb(struct fec_enet_priv_tx_q * txq,struct sk_buff * skb,struct net_device * ndev)509 fec_enet_txq_submit_frag_skb(struct fec_enet_priv_tx_q *txq,
510 struct sk_buff *skb,
511 struct net_device *ndev)
512 {
513 struct fec_enet_private *fep = netdev_priv(ndev);
514 struct bufdesc *bdp = txq->bd.cur;
515 struct bufdesc_ex *ebdp;
516 int nr_frags = skb_shinfo(skb)->nr_frags;
517 int frag, frag_len;
518 unsigned short status;
519 unsigned int estatus = 0;
520 skb_frag_t *this_frag;
521 unsigned int index;
522 void *bufaddr;
523 dma_addr_t addr;
524 int i;
525
526 for (frag = 0; frag < nr_frags; frag++) {
527 this_frag = &skb_shinfo(skb)->frags[frag];
528 bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
529 ebdp = (struct bufdesc_ex *)bdp;
530
531 status = fec16_to_cpu(bdp->cbd_sc);
532 status &= ~BD_ENET_TX_STATS;
533 status |= (BD_ENET_TX_TC | BD_ENET_TX_READY);
534 frag_len = skb_frag_size(&skb_shinfo(skb)->frags[frag]);
535
536 /* Handle the last BD specially */
537 if (frag == nr_frags - 1) {
538 status |= (BD_ENET_TX_INTR | BD_ENET_TX_LAST);
539 if (fep->bufdesc_ex) {
540 estatus |= BD_ENET_TX_INT;
541 if (unlikely(skb_shinfo(skb)->tx_flags &
542 SKBTX_HW_TSTAMP && fep->hwts_tx_en))
543 estatus |= BD_ENET_TX_TS;
544 }
545 }
546
547 if (fep->bufdesc_ex) {
548 if (fep->quirks & FEC_QUIRK_HAS_AVB)
549 estatus |= FEC_TX_BD_FTYPE(txq->bd.qid);
550 if (skb->ip_summed == CHECKSUM_PARTIAL)
551 estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS;
552
553 ebdp->cbd_bdu = 0;
554 ebdp->cbd_esc = cpu_to_fec32(estatus);
555 }
556
557 bufaddr = skb_frag_address(this_frag);
558
559 index = fec_enet_get_bd_index(bdp, &txq->bd);
560 if (((unsigned long) bufaddr) & fep->tx_align ||
561 fep->quirks & FEC_QUIRK_SWAP_FRAME) {
562 memcpy(txq->tx_bounce[index], bufaddr, frag_len);
563 bufaddr = txq->tx_bounce[index];
564
565 if (fep->quirks & FEC_QUIRK_SWAP_FRAME)
566 swap_buffer(bufaddr, frag_len);
567 }
568
569 addr = dma_map_single(&fep->pdev->dev, bufaddr, frag_len,
570 DMA_TO_DEVICE);
571 if (dma_mapping_error(&fep->pdev->dev, addr)) {
572 if (net_ratelimit())
573 netdev_err(ndev, "Tx DMA memory map failed\n");
574 goto dma_mapping_error;
575 }
576
577 bdp->cbd_bufaddr = cpu_to_fec32(addr);
578 bdp->cbd_datlen = cpu_to_fec16(frag_len);
579 /* Make sure the updates to rest of the descriptor are
580 * performed before transferring ownership.
581 */
582 wmb();
583 bdp->cbd_sc = cpu_to_fec16(status);
584 }
585
586 return bdp;
587 dma_mapping_error:
588 bdp = txq->bd.cur;
589 for (i = 0; i < frag; i++) {
590 bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
591 dma_unmap_single(&fep->pdev->dev, fec32_to_cpu(bdp->cbd_bufaddr),
592 fec16_to_cpu(bdp->cbd_datlen), DMA_TO_DEVICE);
593 }
594 return ERR_PTR(-ENOMEM);
595 }
596
fec_enet_txq_submit_skb(struct fec_enet_priv_tx_q * txq,struct sk_buff * skb,struct net_device * ndev)597 static int fec_enet_txq_submit_skb(struct fec_enet_priv_tx_q *txq,
598 struct sk_buff *skb, struct net_device *ndev)
599 {
600 struct fec_enet_private *fep = netdev_priv(ndev);
601 int nr_frags = skb_shinfo(skb)->nr_frags;
602 struct bufdesc *bdp, *last_bdp;
603 void *bufaddr;
604 dma_addr_t addr;
605 unsigned short status;
606 unsigned short buflen;
607 unsigned int estatus = 0;
608 unsigned int index;
609 int entries_free;
610
611 entries_free = fec_enet_get_free_txdesc_num(txq);
612 if (entries_free < MAX_SKB_FRAGS + 1) {
613 dev_kfree_skb_any(skb);
614 if (net_ratelimit())
615 netdev_err(ndev, "NOT enough BD for SG!\n");
616 return NETDEV_TX_OK;
617 }
618
619 /* Protocol checksum off-load for TCP and UDP. */
620 if (fec_enet_clear_csum(skb, ndev)) {
621 dev_kfree_skb_any(skb);
622 return NETDEV_TX_OK;
623 }
624
625 /* Fill in a Tx ring entry */
626 bdp = txq->bd.cur;
627 last_bdp = bdp;
628 status = fec16_to_cpu(bdp->cbd_sc);
629 status &= ~BD_ENET_TX_STATS;
630
631 /* Set buffer length and buffer pointer */
632 bufaddr = skb->data;
633 buflen = skb_headlen(skb);
634
635 index = fec_enet_get_bd_index(bdp, &txq->bd);
636 if (((unsigned long) bufaddr) & fep->tx_align ||
637 fep->quirks & FEC_QUIRK_SWAP_FRAME) {
638 memcpy(txq->tx_bounce[index], skb->data, buflen);
639 bufaddr = txq->tx_bounce[index];
640
641 if (fep->quirks & FEC_QUIRK_SWAP_FRAME)
642 swap_buffer(bufaddr, buflen);
643 }
644
645 /* Push the data cache so the CPM does not get stale memory data. */
646 addr = dma_map_single(&fep->pdev->dev, bufaddr, buflen, DMA_TO_DEVICE);
647 if (dma_mapping_error(&fep->pdev->dev, addr)) {
648 dev_kfree_skb_any(skb);
649 if (net_ratelimit())
650 netdev_err(ndev, "Tx DMA memory map failed\n");
651 return NETDEV_TX_OK;
652 }
653
654 if (nr_frags) {
655 last_bdp = fec_enet_txq_submit_frag_skb(txq, skb, ndev);
656 if (IS_ERR(last_bdp)) {
657 dma_unmap_single(&fep->pdev->dev, addr,
658 buflen, DMA_TO_DEVICE);
659 dev_kfree_skb_any(skb);
660 return NETDEV_TX_OK;
661 }
662 } else {
663 status |= (BD_ENET_TX_INTR | BD_ENET_TX_LAST);
664 if (fep->bufdesc_ex) {
665 estatus = BD_ENET_TX_INT;
666 if (unlikely(skb_shinfo(skb)->tx_flags &
667 SKBTX_HW_TSTAMP && fep->hwts_tx_en))
668 estatus |= BD_ENET_TX_TS;
669 }
670 }
671 bdp->cbd_bufaddr = cpu_to_fec32(addr);
672 bdp->cbd_datlen = cpu_to_fec16(buflen);
673
674 if (fep->bufdesc_ex) {
675
676 struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
677
678 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP &&
679 fep->hwts_tx_en))
680 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
681
682 if (fep->quirks & FEC_QUIRK_HAS_AVB)
683 estatus |= FEC_TX_BD_FTYPE(txq->bd.qid);
684
685 if (skb->ip_summed == CHECKSUM_PARTIAL)
686 estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS;
687
688 ebdp->cbd_bdu = 0;
689 ebdp->cbd_esc = cpu_to_fec32(estatus);
690 }
691
692 index = fec_enet_get_bd_index(last_bdp, &txq->bd);
693 /* Save skb pointer */
694 txq->tx_buf[index].buf_p = skb;
695
696 /* Make sure the updates to rest of the descriptor are performed before
697 * transferring ownership.
698 */
699 wmb();
700
701 /* Send it on its way. Tell FEC it's ready, interrupt when done,
702 * it's the last BD of the frame, and to put the CRC on the end.
703 */
704 status |= (BD_ENET_TX_READY | BD_ENET_TX_TC);
705 bdp->cbd_sc = cpu_to_fec16(status);
706
707 /* If this was the last BD in the ring, start at the beginning again. */
708 bdp = fec_enet_get_nextdesc(last_bdp, &txq->bd);
709
710 skb_tx_timestamp(skb);
711
712 /* Make sure the update to bdp is performed before txq->bd.cur. */
713 wmb();
714 txq->bd.cur = bdp;
715
716 /* Trigger transmission start */
717 if (!(fep->quirks & FEC_QUIRK_ERR007885) ||
718 !readl(txq->bd.reg_desc_active) ||
719 !readl(txq->bd.reg_desc_active) ||
720 !readl(txq->bd.reg_desc_active) ||
721 !readl(txq->bd.reg_desc_active))
722 writel(0, txq->bd.reg_desc_active);
723
724 return 0;
725 }
726
727 static int
fec_enet_txq_put_data_tso(struct fec_enet_priv_tx_q * txq,struct sk_buff * skb,struct net_device * ndev,struct bufdesc * bdp,int index,char * data,int size,bool last_tcp,bool is_last)728 fec_enet_txq_put_data_tso(struct fec_enet_priv_tx_q *txq, struct sk_buff *skb,
729 struct net_device *ndev,
730 struct bufdesc *bdp, int index, char *data,
731 int size, bool last_tcp, bool is_last)
732 {
733 struct fec_enet_private *fep = netdev_priv(ndev);
734 struct bufdesc_ex *ebdp = container_of(bdp, struct bufdesc_ex, desc);
735 unsigned short status;
736 unsigned int estatus = 0;
737 dma_addr_t addr;
738
739 status = fec16_to_cpu(bdp->cbd_sc);
740 status &= ~BD_ENET_TX_STATS;
741
742 status |= (BD_ENET_TX_TC | BD_ENET_TX_READY);
743
744 if (((unsigned long) data) & fep->tx_align ||
745 fep->quirks & FEC_QUIRK_SWAP_FRAME) {
746 memcpy(txq->tx_bounce[index], data, size);
747 data = txq->tx_bounce[index];
748
749 if (fep->quirks & FEC_QUIRK_SWAP_FRAME)
750 swap_buffer(data, size);
751 }
752
753 addr = dma_map_single(&fep->pdev->dev, data, size, DMA_TO_DEVICE);
754 if (dma_mapping_error(&fep->pdev->dev, addr)) {
755 dev_kfree_skb_any(skb);
756 if (net_ratelimit())
757 netdev_err(ndev, "Tx DMA memory map failed\n");
758 return NETDEV_TX_OK;
759 }
760
761 bdp->cbd_datlen = cpu_to_fec16(size);
762 bdp->cbd_bufaddr = cpu_to_fec32(addr);
763
764 if (fep->bufdesc_ex) {
765 if (fep->quirks & FEC_QUIRK_HAS_AVB)
766 estatus |= FEC_TX_BD_FTYPE(txq->bd.qid);
767 if (skb->ip_summed == CHECKSUM_PARTIAL)
768 estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS;
769 ebdp->cbd_bdu = 0;
770 ebdp->cbd_esc = cpu_to_fec32(estatus);
771 }
772
773 /* Handle the last BD specially */
774 if (last_tcp)
775 status |= (BD_ENET_TX_LAST | BD_ENET_TX_TC);
776 if (is_last) {
777 status |= BD_ENET_TX_INTR;
778 if (fep->bufdesc_ex)
779 ebdp->cbd_esc |= cpu_to_fec32(BD_ENET_TX_INT);
780 }
781
782 bdp->cbd_sc = cpu_to_fec16(status);
783
784 return 0;
785 }
786
787 static int
fec_enet_txq_put_hdr_tso(struct fec_enet_priv_tx_q * txq,struct sk_buff * skb,struct net_device * ndev,struct bufdesc * bdp,int index)788 fec_enet_txq_put_hdr_tso(struct fec_enet_priv_tx_q *txq,
789 struct sk_buff *skb, struct net_device *ndev,
790 struct bufdesc *bdp, int index)
791 {
792 struct fec_enet_private *fep = netdev_priv(ndev);
793 int hdr_len = skb_tcp_all_headers(skb);
794 struct bufdesc_ex *ebdp = container_of(bdp, struct bufdesc_ex, desc);
795 void *bufaddr;
796 unsigned long dmabuf;
797 unsigned short status;
798 unsigned int estatus = 0;
799
800 status = fec16_to_cpu(bdp->cbd_sc);
801 status &= ~BD_ENET_TX_STATS;
802 status |= (BD_ENET_TX_TC | BD_ENET_TX_READY);
803
804 bufaddr = txq->tso_hdrs + index * TSO_HEADER_SIZE;
805 dmabuf = txq->tso_hdrs_dma + index * TSO_HEADER_SIZE;
806 if (((unsigned long)bufaddr) & fep->tx_align ||
807 fep->quirks & FEC_QUIRK_SWAP_FRAME) {
808 memcpy(txq->tx_bounce[index], skb->data, hdr_len);
809 bufaddr = txq->tx_bounce[index];
810
811 if (fep->quirks & FEC_QUIRK_SWAP_FRAME)
812 swap_buffer(bufaddr, hdr_len);
813
814 dmabuf = dma_map_single(&fep->pdev->dev, bufaddr,
815 hdr_len, DMA_TO_DEVICE);
816 if (dma_mapping_error(&fep->pdev->dev, dmabuf)) {
817 dev_kfree_skb_any(skb);
818 if (net_ratelimit())
819 netdev_err(ndev, "Tx DMA memory map failed\n");
820 return NETDEV_TX_OK;
821 }
822 }
823
824 bdp->cbd_bufaddr = cpu_to_fec32(dmabuf);
825 bdp->cbd_datlen = cpu_to_fec16(hdr_len);
826
827 if (fep->bufdesc_ex) {
828 if (fep->quirks & FEC_QUIRK_HAS_AVB)
829 estatus |= FEC_TX_BD_FTYPE(txq->bd.qid);
830 if (skb->ip_summed == CHECKSUM_PARTIAL)
831 estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS;
832 ebdp->cbd_bdu = 0;
833 ebdp->cbd_esc = cpu_to_fec32(estatus);
834 }
835
836 bdp->cbd_sc = cpu_to_fec16(status);
837
838 return 0;
839 }
840
fec_enet_txq_submit_tso(struct fec_enet_priv_tx_q * txq,struct sk_buff * skb,struct net_device * ndev)841 static int fec_enet_txq_submit_tso(struct fec_enet_priv_tx_q *txq,
842 struct sk_buff *skb,
843 struct net_device *ndev)
844 {
845 struct fec_enet_private *fep = netdev_priv(ndev);
846 int hdr_len, total_len, data_left;
847 struct bufdesc *bdp = txq->bd.cur;
848 struct bufdesc *tmp_bdp;
849 struct bufdesc_ex *ebdp;
850 struct tso_t tso;
851 unsigned int index = 0;
852 int ret;
853
854 if (tso_count_descs(skb) >= fec_enet_get_free_txdesc_num(txq)) {
855 dev_kfree_skb_any(skb);
856 if (net_ratelimit())
857 netdev_err(ndev, "NOT enough BD for TSO!\n");
858 return NETDEV_TX_OK;
859 }
860
861 /* Protocol checksum off-load for TCP and UDP. */
862 if (fec_enet_clear_csum(skb, ndev)) {
863 dev_kfree_skb_any(skb);
864 return NETDEV_TX_OK;
865 }
866
867 /* Initialize the TSO handler, and prepare the first payload */
868 hdr_len = tso_start(skb, &tso);
869
870 total_len = skb->len - hdr_len;
871 while (total_len > 0) {
872 char *hdr;
873
874 index = fec_enet_get_bd_index(bdp, &txq->bd);
875 data_left = min_t(int, skb_shinfo(skb)->gso_size, total_len);
876 total_len -= data_left;
877
878 /* prepare packet headers: MAC + IP + TCP */
879 hdr = txq->tso_hdrs + index * TSO_HEADER_SIZE;
880 tso_build_hdr(skb, hdr, &tso, data_left, total_len == 0);
881 ret = fec_enet_txq_put_hdr_tso(txq, skb, ndev, bdp, index);
882 if (ret)
883 goto err_release;
884
885 while (data_left > 0) {
886 int size;
887
888 size = min_t(int, tso.size, data_left);
889 bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
890 index = fec_enet_get_bd_index(bdp, &txq->bd);
891 ret = fec_enet_txq_put_data_tso(txq, skb, ndev,
892 bdp, index,
893 tso.data, size,
894 size == data_left,
895 total_len == 0);
896 if (ret)
897 goto err_release;
898
899 data_left -= size;
900 tso_build_data(skb, &tso, size);
901 }
902
903 bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
904 }
905
906 /* Save skb pointer */
907 txq->tx_buf[index].buf_p = skb;
908
909 skb_tx_timestamp(skb);
910 txq->bd.cur = bdp;
911
912 /* Trigger transmission start */
913 if (!(fep->quirks & FEC_QUIRK_ERR007885) ||
914 !readl(txq->bd.reg_desc_active) ||
915 !readl(txq->bd.reg_desc_active) ||
916 !readl(txq->bd.reg_desc_active) ||
917 !readl(txq->bd.reg_desc_active))
918 writel(0, txq->bd.reg_desc_active);
919
920 return 0;
921
922 err_release:
923 /* Release all used data descriptors for TSO */
924 tmp_bdp = txq->bd.cur;
925
926 while (tmp_bdp != bdp) {
927 /* Unmap data buffers */
928 if (tmp_bdp->cbd_bufaddr &&
929 !IS_TSO_HEADER(txq, fec32_to_cpu(tmp_bdp->cbd_bufaddr)))
930 dma_unmap_single(&fep->pdev->dev,
931 fec32_to_cpu(tmp_bdp->cbd_bufaddr),
932 fec16_to_cpu(tmp_bdp->cbd_datlen),
933 DMA_TO_DEVICE);
934
935 /* Clear standard buffer descriptor fields */
936 tmp_bdp->cbd_sc = 0;
937 tmp_bdp->cbd_datlen = 0;
938 tmp_bdp->cbd_bufaddr = 0;
939
940 /* Handle extended descriptor if enabled */
941 if (fep->bufdesc_ex) {
942 ebdp = (struct bufdesc_ex *)tmp_bdp;
943 ebdp->cbd_esc = 0;
944 }
945
946 tmp_bdp = fec_enet_get_nextdesc(tmp_bdp, &txq->bd);
947 }
948
949 dev_kfree_skb_any(skb);
950
951 return ret;
952 }
953
954 static netdev_tx_t
fec_enet_start_xmit(struct sk_buff * skb,struct net_device * ndev)955 fec_enet_start_xmit(struct sk_buff *skb, struct net_device *ndev)
956 {
957 struct fec_enet_private *fep = netdev_priv(ndev);
958 int entries_free;
959 unsigned short queue;
960 struct fec_enet_priv_tx_q *txq;
961 struct netdev_queue *nq;
962 int ret;
963
964 queue = skb_get_queue_mapping(skb);
965 txq = fep->tx_queue[queue];
966 nq = netdev_get_tx_queue(ndev, queue);
967
968 if (skb_is_gso(skb))
969 ret = fec_enet_txq_submit_tso(txq, skb, ndev);
970 else
971 ret = fec_enet_txq_submit_skb(txq, skb, ndev);
972 if (ret)
973 return ret;
974
975 entries_free = fec_enet_get_free_txdesc_num(txq);
976 if (entries_free <= txq->tx_stop_threshold)
977 netif_tx_stop_queue(nq);
978
979 return NETDEV_TX_OK;
980 }
981
982 /* Init RX & TX buffer descriptors
983 */
fec_enet_bd_init(struct net_device * dev)984 static void fec_enet_bd_init(struct net_device *dev)
985 {
986 struct fec_enet_private *fep = netdev_priv(dev);
987 struct fec_enet_priv_tx_q *txq;
988 struct fec_enet_priv_rx_q *rxq;
989 struct bufdesc *bdp;
990 unsigned int i;
991 unsigned int q;
992
993 for (q = 0; q < fep->num_rx_queues; q++) {
994 /* Initialize the receive buffer descriptors. */
995 rxq = fep->rx_queue[q];
996 bdp = rxq->bd.base;
997
998 for (i = 0; i < rxq->bd.ring_size; i++) {
999
1000 /* Initialize the BD for every fragment in the page. */
1001 if (bdp->cbd_bufaddr)
1002 bdp->cbd_sc = cpu_to_fec16(BD_ENET_RX_EMPTY);
1003 else
1004 bdp->cbd_sc = cpu_to_fec16(0);
1005 bdp = fec_enet_get_nextdesc(bdp, &rxq->bd);
1006 }
1007
1008 /* Set the last buffer to wrap */
1009 bdp = fec_enet_get_prevdesc(bdp, &rxq->bd);
1010 bdp->cbd_sc |= cpu_to_fec16(BD_SC_WRAP);
1011
1012 rxq->bd.cur = rxq->bd.base;
1013 }
1014
1015 for (q = 0; q < fep->num_tx_queues; q++) {
1016 /* ...and the same for transmit */
1017 txq = fep->tx_queue[q];
1018 bdp = txq->bd.base;
1019 txq->bd.cur = bdp;
1020
1021 for (i = 0; i < txq->bd.ring_size; i++) {
1022 /* Initialize the BD for every fragment in the page. */
1023 bdp->cbd_sc = cpu_to_fec16(0);
1024 if (txq->tx_buf[i].type == FEC_TXBUF_T_SKB) {
1025 if (bdp->cbd_bufaddr &&
1026 !IS_TSO_HEADER(txq, fec32_to_cpu(bdp->cbd_bufaddr)))
1027 dma_unmap_single(&fep->pdev->dev,
1028 fec32_to_cpu(bdp->cbd_bufaddr),
1029 fec16_to_cpu(bdp->cbd_datlen),
1030 DMA_TO_DEVICE);
1031 if (txq->tx_buf[i].buf_p)
1032 dev_kfree_skb_any(txq->tx_buf[i].buf_p);
1033 } else if (txq->tx_buf[i].type == FEC_TXBUF_T_XDP_NDO) {
1034 if (bdp->cbd_bufaddr)
1035 dma_unmap_single(&fep->pdev->dev,
1036 fec32_to_cpu(bdp->cbd_bufaddr),
1037 fec16_to_cpu(bdp->cbd_datlen),
1038 DMA_TO_DEVICE);
1039
1040 if (txq->tx_buf[i].buf_p)
1041 xdp_return_frame(txq->tx_buf[i].buf_p);
1042 } else {
1043 struct page *page = txq->tx_buf[i].buf_p;
1044
1045 if (page)
1046 page_pool_put_page(page->pp, page, 0, false);
1047 }
1048
1049 txq->tx_buf[i].buf_p = NULL;
1050 /* restore default tx buffer type: FEC_TXBUF_T_SKB */
1051 txq->tx_buf[i].type = FEC_TXBUF_T_SKB;
1052 bdp->cbd_bufaddr = cpu_to_fec32(0);
1053 bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
1054 }
1055
1056 /* Set the last buffer to wrap */
1057 bdp = fec_enet_get_prevdesc(bdp, &txq->bd);
1058 bdp->cbd_sc |= cpu_to_fec16(BD_SC_WRAP);
1059 txq->dirty_tx = bdp;
1060 }
1061 }
1062
fec_enet_active_rxring(struct net_device * ndev)1063 static void fec_enet_active_rxring(struct net_device *ndev)
1064 {
1065 struct fec_enet_private *fep = netdev_priv(ndev);
1066 int i;
1067
1068 for (i = 0; i < fep->num_rx_queues; i++)
1069 writel(0, fep->rx_queue[i]->bd.reg_desc_active);
1070 }
1071
fec_enet_enable_ring(struct net_device * ndev)1072 static void fec_enet_enable_ring(struct net_device *ndev)
1073 {
1074 struct fec_enet_private *fep = netdev_priv(ndev);
1075 struct fec_enet_priv_tx_q *txq;
1076 struct fec_enet_priv_rx_q *rxq;
1077 int i;
1078
1079 for (i = 0; i < fep->num_rx_queues; i++) {
1080 rxq = fep->rx_queue[i];
1081 writel(rxq->bd.dma, fep->hwp + FEC_R_DES_START(i));
1082 writel(PKT_MAXBUF_SIZE, fep->hwp + FEC_R_BUFF_SIZE(i));
1083
1084 /* enable DMA1/2 */
1085 if (i)
1086 writel(RCMR_MATCHEN | RCMR_CMP(i),
1087 fep->hwp + FEC_RCMR(i));
1088 }
1089
1090 for (i = 0; i < fep->num_tx_queues; i++) {
1091 txq = fep->tx_queue[i];
1092 writel(txq->bd.dma, fep->hwp + FEC_X_DES_START(i));
1093
1094 /* enable DMA1/2 */
1095 if (i)
1096 writel(DMA_CLASS_EN | IDLE_SLOPE(i),
1097 fep->hwp + FEC_DMA_CFG(i));
1098 }
1099 }
1100
1101 /* Whack a reset. We should wait for this.
1102 * For i.MX6SX SOC, enet use AXI bus, we use disable MAC
1103 * instead of reset MAC itself.
1104 */
fec_ctrl_reset(struct fec_enet_private * fep,bool allow_wol)1105 static void fec_ctrl_reset(struct fec_enet_private *fep, bool allow_wol)
1106 {
1107 u32 val;
1108
1109 if (!allow_wol || !(fep->wol_flag & FEC_WOL_FLAG_SLEEP_ON)) {
1110 if (fep->quirks & FEC_QUIRK_HAS_MULTI_QUEUES ||
1111 ((fep->quirks & FEC_QUIRK_NO_HARD_RESET) && fep->link)) {
1112 writel(0, fep->hwp + FEC_ECNTRL);
1113 } else {
1114 writel(FEC_ECR_RESET, fep->hwp + FEC_ECNTRL);
1115 udelay(10);
1116 }
1117 } else {
1118 val = readl(fep->hwp + FEC_ECNTRL);
1119 val |= (FEC_ECR_MAGICEN | FEC_ECR_SLEEP);
1120 writel(val, fep->hwp + FEC_ECNTRL);
1121 }
1122 }
1123
1124 /*
1125 * This function is called to start or restart the FEC during a link
1126 * change, transmit timeout, or to reconfigure the FEC. The network
1127 * packet processing for this device must be stopped before this call.
1128 */
1129 static void
fec_restart(struct net_device * ndev)1130 fec_restart(struct net_device *ndev)
1131 {
1132 struct fec_enet_private *fep = netdev_priv(ndev);
1133 u32 temp_mac[2];
1134 u32 rcntl = OPT_FRAME_SIZE | 0x04;
1135 u32 ecntl = FEC_ECR_ETHEREN;
1136
1137 if (fep->bufdesc_ex)
1138 fec_ptp_save_state(fep);
1139
1140 fec_ctrl_reset(fep, false);
1141
1142 /*
1143 * enet-mac reset will reset mac address registers too,
1144 * so need to reconfigure it.
1145 */
1146 memcpy(&temp_mac, ndev->dev_addr, ETH_ALEN);
1147 writel((__force u32)cpu_to_be32(temp_mac[0]),
1148 fep->hwp + FEC_ADDR_LOW);
1149 writel((__force u32)cpu_to_be32(temp_mac[1]),
1150 fep->hwp + FEC_ADDR_HIGH);
1151
1152 /* Clear any outstanding interrupt, except MDIO. */
1153 writel((0xffffffff & ~FEC_ENET_MII), fep->hwp + FEC_IEVENT);
1154
1155 fec_enet_bd_init(ndev);
1156
1157 fec_enet_enable_ring(ndev);
1158
1159 /* Enable MII mode */
1160 if (fep->full_duplex == DUPLEX_FULL) {
1161 /* FD enable */
1162 writel(0x04, fep->hwp + FEC_X_CNTRL);
1163 } else {
1164 /* No Rcv on Xmit */
1165 rcntl |= 0x02;
1166 writel(0x0, fep->hwp + FEC_X_CNTRL);
1167 }
1168
1169 /* Set MII speed */
1170 writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED);
1171
1172 #if !defined(CONFIG_M5272)
1173 if (fep->quirks & FEC_QUIRK_HAS_RACC) {
1174 u32 val = readl(fep->hwp + FEC_RACC);
1175
1176 /* align IP header */
1177 val |= FEC_RACC_SHIFT16;
1178 if (fep->csum_flags & FLAG_RX_CSUM_ENABLED)
1179 /* set RX checksum */
1180 val |= FEC_RACC_OPTIONS;
1181 else
1182 val &= ~FEC_RACC_OPTIONS;
1183 writel(val, fep->hwp + FEC_RACC);
1184 writel(PKT_MAXBUF_SIZE, fep->hwp + FEC_FTRL);
1185 }
1186 #endif
1187
1188 /*
1189 * The phy interface and speed need to get configured
1190 * differently on enet-mac.
1191 */
1192 if (fep->quirks & FEC_QUIRK_ENET_MAC) {
1193 /* Enable flow control and length check */
1194 rcntl |= 0x40000000 | 0x00000020;
1195
1196 /* RGMII, RMII or MII */
1197 if (fep->phy_interface == PHY_INTERFACE_MODE_RGMII ||
1198 fep->phy_interface == PHY_INTERFACE_MODE_RGMII_ID ||
1199 fep->phy_interface == PHY_INTERFACE_MODE_RGMII_RXID ||
1200 fep->phy_interface == PHY_INTERFACE_MODE_RGMII_TXID)
1201 rcntl |= (1 << 6);
1202 else if (fep->phy_interface == PHY_INTERFACE_MODE_RMII)
1203 rcntl |= FEC_RCR_RMII;
1204 else
1205 rcntl &= ~FEC_RCR_RMII;
1206
1207 /* 1G, 100M or 10M */
1208 if (ndev->phydev) {
1209 if (ndev->phydev->speed == SPEED_1000)
1210 ecntl |= (1 << 5);
1211 else if (ndev->phydev->speed == SPEED_100)
1212 rcntl &= ~FEC_RCR_10BASET;
1213 else
1214 rcntl |= FEC_RCR_10BASET;
1215 }
1216 } else {
1217 #ifdef FEC_MIIGSK_ENR
1218 if (fep->quirks & FEC_QUIRK_USE_GASKET) {
1219 u32 cfgr;
1220 /* disable the gasket and wait */
1221 writel(0, fep->hwp + FEC_MIIGSK_ENR);
1222 while (readl(fep->hwp + FEC_MIIGSK_ENR) & 4)
1223 udelay(1);
1224
1225 /*
1226 * configure the gasket:
1227 * RMII, 50 MHz, no loopback, no echo
1228 * MII, 25 MHz, no loopback, no echo
1229 */
1230 cfgr = (fep->phy_interface == PHY_INTERFACE_MODE_RMII)
1231 ? BM_MIIGSK_CFGR_RMII : BM_MIIGSK_CFGR_MII;
1232 if (ndev->phydev && ndev->phydev->speed == SPEED_10)
1233 cfgr |= BM_MIIGSK_CFGR_FRCONT_10M;
1234 writel(cfgr, fep->hwp + FEC_MIIGSK_CFGR);
1235
1236 /* re-enable the gasket */
1237 writel(2, fep->hwp + FEC_MIIGSK_ENR);
1238 }
1239 #endif
1240 }
1241
1242 #if !defined(CONFIG_M5272)
1243 /* enable pause frame*/
1244 if ((fep->pause_flag & FEC_PAUSE_FLAG_ENABLE) ||
1245 ((fep->pause_flag & FEC_PAUSE_FLAG_AUTONEG) &&
1246 ndev->phydev && ndev->phydev->pause)) {
1247 rcntl |= FEC_RCR_FLOWCTL;
1248
1249 /* set FIFO threshold parameter to reduce overrun */
1250 writel(FEC_ENET_RSEM_V, fep->hwp + FEC_R_FIFO_RSEM);
1251 writel(FEC_ENET_RSFL_V, fep->hwp + FEC_R_FIFO_RSFL);
1252 writel(FEC_ENET_RAEM_V, fep->hwp + FEC_R_FIFO_RAEM);
1253 writel(FEC_ENET_RAFL_V, fep->hwp + FEC_R_FIFO_RAFL);
1254
1255 /* OPD */
1256 writel(FEC_ENET_OPD_V, fep->hwp + FEC_OPD);
1257 } else {
1258 rcntl &= ~FEC_RCR_FLOWCTL;
1259 }
1260 #endif /* !defined(CONFIG_M5272) */
1261
1262 writel(rcntl, fep->hwp + FEC_R_CNTRL);
1263
1264 /* Setup multicast filter. */
1265 set_multicast_list(ndev);
1266 #ifndef CONFIG_M5272
1267 writel(0, fep->hwp + FEC_HASH_TABLE_HIGH);
1268 writel(0, fep->hwp + FEC_HASH_TABLE_LOW);
1269 #endif
1270
1271 if (fep->quirks & FEC_QUIRK_ENET_MAC) {
1272 /* enable ENET endian swap */
1273 ecntl |= FEC_ECR_BYTESWP;
1274 /* enable ENET store and forward mode */
1275 writel(FEC_TXWMRK_STRFWD, fep->hwp + FEC_X_WMRK);
1276 }
1277
1278 if (fep->bufdesc_ex)
1279 ecntl |= FEC_ECR_EN1588;
1280
1281 if (fep->quirks & FEC_QUIRK_DELAYED_CLKS_SUPPORT &&
1282 fep->rgmii_txc_dly)
1283 ecntl |= FEC_ENET_TXC_DLY;
1284 if (fep->quirks & FEC_QUIRK_DELAYED_CLKS_SUPPORT &&
1285 fep->rgmii_rxc_dly)
1286 ecntl |= FEC_ENET_RXC_DLY;
1287
1288 #ifndef CONFIG_M5272
1289 /* Enable the MIB statistic event counters */
1290 writel(0 << 31, fep->hwp + FEC_MIB_CTRLSTAT);
1291 #endif
1292
1293 /* And last, enable the transmit and receive processing */
1294 writel(ecntl, fep->hwp + FEC_ECNTRL);
1295 fec_enet_active_rxring(ndev);
1296
1297 if (fep->bufdesc_ex) {
1298 fec_ptp_start_cyclecounter(ndev);
1299 fec_ptp_restore_state(fep);
1300 }
1301
1302 /* Enable interrupts we wish to service */
1303 if (fep->link)
1304 writel(FEC_DEFAULT_IMASK, fep->hwp + FEC_IMASK);
1305 else
1306 writel(0, fep->hwp + FEC_IMASK);
1307
1308 /* Init the interrupt coalescing */
1309 if (fep->quirks & FEC_QUIRK_HAS_COALESCE)
1310 fec_enet_itr_coal_set(ndev);
1311 }
1312
fec_enet_ipc_handle_init(struct fec_enet_private * fep)1313 static int fec_enet_ipc_handle_init(struct fec_enet_private *fep)
1314 {
1315 if (!(of_machine_is_compatible("fsl,imx8qm") ||
1316 of_machine_is_compatible("fsl,imx8qxp") ||
1317 of_machine_is_compatible("fsl,imx8dxl")))
1318 return 0;
1319
1320 return imx_scu_get_handle(&fep->ipc_handle);
1321 }
1322
fec_enet_ipg_stop_set(struct fec_enet_private * fep,bool enabled)1323 static void fec_enet_ipg_stop_set(struct fec_enet_private *fep, bool enabled)
1324 {
1325 struct device_node *np = fep->pdev->dev.of_node;
1326 u32 rsrc_id, val;
1327 int idx;
1328
1329 if (!np || !fep->ipc_handle)
1330 return;
1331
1332 idx = of_alias_get_id(np, "ethernet");
1333 if (idx < 0)
1334 idx = 0;
1335 rsrc_id = idx ? IMX_SC_R_ENET_1 : IMX_SC_R_ENET_0;
1336
1337 val = enabled ? 1 : 0;
1338 imx_sc_misc_set_control(fep->ipc_handle, rsrc_id, IMX_SC_C_IPG_STOP, val);
1339 }
1340
fec_enet_stop_mode(struct fec_enet_private * fep,bool enabled)1341 static void fec_enet_stop_mode(struct fec_enet_private *fep, bool enabled)
1342 {
1343 struct fec_platform_data *pdata = fep->pdev->dev.platform_data;
1344 struct fec_stop_mode_gpr *stop_gpr = &fep->stop_gpr;
1345
1346 if (stop_gpr->gpr) {
1347 if (enabled)
1348 regmap_update_bits(stop_gpr->gpr, stop_gpr->reg,
1349 BIT(stop_gpr->bit),
1350 BIT(stop_gpr->bit));
1351 else
1352 regmap_update_bits(stop_gpr->gpr, stop_gpr->reg,
1353 BIT(stop_gpr->bit), 0);
1354 } else if (pdata && pdata->sleep_mode_enable) {
1355 pdata->sleep_mode_enable(enabled);
1356 } else {
1357 fec_enet_ipg_stop_set(fep, enabled);
1358 }
1359 }
1360
fec_irqs_disable(struct net_device * ndev)1361 static void fec_irqs_disable(struct net_device *ndev)
1362 {
1363 struct fec_enet_private *fep = netdev_priv(ndev);
1364
1365 writel(0, fep->hwp + FEC_IMASK);
1366 }
1367
fec_irqs_disable_except_wakeup(struct net_device * ndev)1368 static void fec_irqs_disable_except_wakeup(struct net_device *ndev)
1369 {
1370 struct fec_enet_private *fep = netdev_priv(ndev);
1371
1372 writel(0, fep->hwp + FEC_IMASK);
1373 writel(FEC_ENET_WAKEUP, fep->hwp + FEC_IMASK);
1374 }
1375
1376 static void
fec_stop(struct net_device * ndev)1377 fec_stop(struct net_device *ndev)
1378 {
1379 struct fec_enet_private *fep = netdev_priv(ndev);
1380 u32 rmii_mode = readl(fep->hwp + FEC_R_CNTRL) & FEC_RCR_RMII;
1381 u32 val;
1382
1383 /* We cannot expect a graceful transmit stop without link !!! */
1384 if (fep->link) {
1385 writel(1, fep->hwp + FEC_X_CNTRL); /* Graceful transmit stop */
1386 udelay(10);
1387 if (!(readl(fep->hwp + FEC_IEVENT) & FEC_ENET_GRA))
1388 netdev_err(ndev, "Graceful transmit stop did not complete!\n");
1389 }
1390
1391 if (fep->bufdesc_ex)
1392 fec_ptp_save_state(fep);
1393
1394 fec_ctrl_reset(fep, true);
1395 writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED);
1396 writel(FEC_DEFAULT_IMASK, fep->hwp + FEC_IMASK);
1397
1398 /* We have to keep ENET enabled to have MII interrupt stay working */
1399 if (fep->quirks & FEC_QUIRK_ENET_MAC &&
1400 !(fep->wol_flag & FEC_WOL_FLAG_SLEEP_ON)) {
1401 writel(FEC_ECR_ETHEREN, fep->hwp + FEC_ECNTRL);
1402 writel(rmii_mode, fep->hwp + FEC_R_CNTRL);
1403 }
1404
1405 if (fep->bufdesc_ex) {
1406 val = readl(fep->hwp + FEC_ECNTRL);
1407 val |= FEC_ECR_EN1588;
1408 writel(val, fep->hwp + FEC_ECNTRL);
1409
1410 fec_ptp_start_cyclecounter(ndev);
1411 fec_ptp_restore_state(fep);
1412 }
1413 }
1414
1415 static void
fec_timeout(struct net_device * ndev,unsigned int txqueue)1416 fec_timeout(struct net_device *ndev, unsigned int txqueue)
1417 {
1418 struct fec_enet_private *fep = netdev_priv(ndev);
1419
1420 fec_dump(ndev);
1421
1422 ndev->stats.tx_errors++;
1423
1424 schedule_work(&fep->tx_timeout_work);
1425 }
1426
fec_enet_timeout_work(struct work_struct * work)1427 static void fec_enet_timeout_work(struct work_struct *work)
1428 {
1429 struct fec_enet_private *fep =
1430 container_of(work, struct fec_enet_private, tx_timeout_work);
1431 struct net_device *ndev = fep->netdev;
1432
1433 rtnl_lock();
1434 if (netif_device_present(ndev) || netif_running(ndev)) {
1435 napi_disable(&fep->napi);
1436 netif_tx_lock_bh(ndev);
1437 fec_restart(ndev);
1438 netif_tx_wake_all_queues(ndev);
1439 netif_tx_unlock_bh(ndev);
1440 napi_enable(&fep->napi);
1441 }
1442 rtnl_unlock();
1443 }
1444
1445 static void
fec_enet_hwtstamp(struct fec_enet_private * fep,unsigned ts,struct skb_shared_hwtstamps * hwtstamps)1446 fec_enet_hwtstamp(struct fec_enet_private *fep, unsigned ts,
1447 struct skb_shared_hwtstamps *hwtstamps)
1448 {
1449 unsigned long flags;
1450 u64 ns;
1451
1452 spin_lock_irqsave(&fep->tmreg_lock, flags);
1453 ns = timecounter_cyc2time(&fep->tc, ts);
1454 spin_unlock_irqrestore(&fep->tmreg_lock, flags);
1455
1456 memset(hwtstamps, 0, sizeof(*hwtstamps));
1457 hwtstamps->hwtstamp = ns_to_ktime(ns);
1458 }
1459
1460 static void
fec_enet_tx_queue(struct net_device * ndev,u16 queue_id,int budget)1461 fec_enet_tx_queue(struct net_device *ndev, u16 queue_id, int budget)
1462 {
1463 struct fec_enet_private *fep;
1464 struct xdp_frame *xdpf;
1465 struct bufdesc *bdp;
1466 unsigned short status;
1467 struct sk_buff *skb;
1468 struct fec_enet_priv_tx_q *txq;
1469 struct netdev_queue *nq;
1470 int index = 0;
1471 int entries_free;
1472 struct page *page;
1473 int frame_len;
1474
1475 fep = netdev_priv(ndev);
1476
1477 txq = fep->tx_queue[queue_id];
1478 /* get next bdp of dirty_tx */
1479 nq = netdev_get_tx_queue(ndev, queue_id);
1480 bdp = txq->dirty_tx;
1481
1482 /* get next bdp of dirty_tx */
1483 bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
1484
1485 while (bdp != READ_ONCE(txq->bd.cur)) {
1486 /* Order the load of bd.cur and cbd_sc */
1487 rmb();
1488 status = fec16_to_cpu(READ_ONCE(bdp->cbd_sc));
1489 if (status & BD_ENET_TX_READY)
1490 break;
1491
1492 index = fec_enet_get_bd_index(bdp, &txq->bd);
1493
1494 if (txq->tx_buf[index].type == FEC_TXBUF_T_SKB) {
1495 skb = txq->tx_buf[index].buf_p;
1496 if (bdp->cbd_bufaddr &&
1497 !IS_TSO_HEADER(txq, fec32_to_cpu(bdp->cbd_bufaddr)))
1498 dma_unmap_single(&fep->pdev->dev,
1499 fec32_to_cpu(bdp->cbd_bufaddr),
1500 fec16_to_cpu(bdp->cbd_datlen),
1501 DMA_TO_DEVICE);
1502 bdp->cbd_bufaddr = cpu_to_fec32(0);
1503 if (!skb)
1504 goto tx_buf_done;
1505 } else {
1506 /* Tx processing cannot call any XDP (or page pool) APIs if
1507 * the "budget" is 0. Because NAPI is called with budget of
1508 * 0 (such as netpoll) indicates we may be in an IRQ context,
1509 * however, we can't use the page pool from IRQ context.
1510 */
1511 if (unlikely(!budget))
1512 break;
1513
1514 if (txq->tx_buf[index].type == FEC_TXBUF_T_XDP_NDO) {
1515 xdpf = txq->tx_buf[index].buf_p;
1516 if (bdp->cbd_bufaddr)
1517 dma_unmap_single(&fep->pdev->dev,
1518 fec32_to_cpu(bdp->cbd_bufaddr),
1519 fec16_to_cpu(bdp->cbd_datlen),
1520 DMA_TO_DEVICE);
1521 } else {
1522 page = txq->tx_buf[index].buf_p;
1523 }
1524
1525 bdp->cbd_bufaddr = cpu_to_fec32(0);
1526 if (unlikely(!txq->tx_buf[index].buf_p)) {
1527 txq->tx_buf[index].type = FEC_TXBUF_T_SKB;
1528 goto tx_buf_done;
1529 }
1530
1531 frame_len = fec16_to_cpu(bdp->cbd_datlen);
1532 }
1533
1534 /* Check for errors. */
1535 if (status & (BD_ENET_TX_HB | BD_ENET_TX_LC |
1536 BD_ENET_TX_RL | BD_ENET_TX_UN |
1537 BD_ENET_TX_CSL)) {
1538 ndev->stats.tx_errors++;
1539 if (status & BD_ENET_TX_HB) /* No heartbeat */
1540 ndev->stats.tx_heartbeat_errors++;
1541 if (status & BD_ENET_TX_LC) /* Late collision */
1542 ndev->stats.tx_window_errors++;
1543 if (status & BD_ENET_TX_RL) /* Retrans limit */
1544 ndev->stats.tx_aborted_errors++;
1545 if (status & BD_ENET_TX_UN) /* Underrun */
1546 ndev->stats.tx_fifo_errors++;
1547 if (status & BD_ENET_TX_CSL) /* Carrier lost */
1548 ndev->stats.tx_carrier_errors++;
1549 } else {
1550 ndev->stats.tx_packets++;
1551
1552 if (txq->tx_buf[index].type == FEC_TXBUF_T_SKB)
1553 ndev->stats.tx_bytes += skb->len;
1554 else
1555 ndev->stats.tx_bytes += frame_len;
1556 }
1557
1558 /* Deferred means some collisions occurred during transmit,
1559 * but we eventually sent the packet OK.
1560 */
1561 if (status & BD_ENET_TX_DEF)
1562 ndev->stats.collisions++;
1563
1564 if (txq->tx_buf[index].type == FEC_TXBUF_T_SKB) {
1565 /* NOTE: SKBTX_IN_PROGRESS being set does not imply it's we who
1566 * are to time stamp the packet, so we still need to check time
1567 * stamping enabled flag.
1568 */
1569 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS &&
1570 fep->hwts_tx_en) && fep->bufdesc_ex) {
1571 struct skb_shared_hwtstamps shhwtstamps;
1572 struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
1573
1574 fec_enet_hwtstamp(fep, fec32_to_cpu(ebdp->ts), &shhwtstamps);
1575 skb_tstamp_tx(skb, &shhwtstamps);
1576 }
1577
1578 /* Free the sk buffer associated with this last transmit */
1579 napi_consume_skb(skb, budget);
1580 } else if (txq->tx_buf[index].type == FEC_TXBUF_T_XDP_NDO) {
1581 xdp_return_frame_rx_napi(xdpf);
1582 } else { /* recycle pages of XDP_TX frames */
1583 /* The dma_sync_size = 0 as XDP_TX has already synced DMA for_device */
1584 page_pool_put_page(page->pp, page, 0, true);
1585 }
1586
1587 txq->tx_buf[index].buf_p = NULL;
1588 /* restore default tx buffer type: FEC_TXBUF_T_SKB */
1589 txq->tx_buf[index].type = FEC_TXBUF_T_SKB;
1590
1591 tx_buf_done:
1592 /* Make sure the update to bdp and tx_buf are performed
1593 * before dirty_tx
1594 */
1595 wmb();
1596 txq->dirty_tx = bdp;
1597
1598 /* Update pointer to next buffer descriptor to be transmitted */
1599 bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
1600
1601 /* Since we have freed up a buffer, the ring is no longer full
1602 */
1603 if (netif_tx_queue_stopped(nq)) {
1604 entries_free = fec_enet_get_free_txdesc_num(txq);
1605 if (entries_free >= txq->tx_wake_threshold)
1606 netif_tx_wake_queue(nq);
1607 }
1608 }
1609
1610 /* ERR006358: Keep the transmitter going */
1611 if (bdp != txq->bd.cur &&
1612 readl(txq->bd.reg_desc_active) == 0)
1613 writel(0, txq->bd.reg_desc_active);
1614 }
1615
fec_enet_tx(struct net_device * ndev,int budget)1616 static void fec_enet_tx(struct net_device *ndev, int budget)
1617 {
1618 struct fec_enet_private *fep = netdev_priv(ndev);
1619 int i;
1620
1621 /* Make sure that AVB queues are processed first. */
1622 for (i = fep->num_tx_queues - 1; i >= 0; i--)
1623 fec_enet_tx_queue(ndev, i, budget);
1624 }
1625
fec_enet_update_cbd(struct fec_enet_priv_rx_q * rxq,struct bufdesc * bdp,int index)1626 static int fec_enet_update_cbd(struct fec_enet_priv_rx_q *rxq,
1627 struct bufdesc *bdp, int index)
1628 {
1629 struct page *new_page;
1630 dma_addr_t phys_addr;
1631
1632 new_page = page_pool_dev_alloc_pages(rxq->page_pool);
1633 if (unlikely(!new_page))
1634 return -ENOMEM;
1635
1636 rxq->rx_skb_info[index].page = new_page;
1637 rxq->rx_skb_info[index].offset = FEC_ENET_XDP_HEADROOM;
1638 phys_addr = page_pool_get_dma_addr(new_page) + FEC_ENET_XDP_HEADROOM;
1639 bdp->cbd_bufaddr = cpu_to_fec32(phys_addr);
1640
1641 return 0;
1642 }
1643
1644 static u32
fec_enet_run_xdp(struct fec_enet_private * fep,struct bpf_prog * prog,struct xdp_buff * xdp,struct fec_enet_priv_rx_q * rxq,int cpu)1645 fec_enet_run_xdp(struct fec_enet_private *fep, struct bpf_prog *prog,
1646 struct xdp_buff *xdp, struct fec_enet_priv_rx_q *rxq, int cpu)
1647 {
1648 unsigned int sync, len = xdp->data_end - xdp->data;
1649 u32 ret = FEC_ENET_XDP_PASS;
1650 struct page *page;
1651 int err;
1652 u32 act;
1653
1654 act = bpf_prog_run_xdp(prog, xdp);
1655
1656 /* Due xdp_adjust_tail and xdp_adjust_head: DMA sync for_device cover
1657 * max len CPU touch
1658 */
1659 sync = xdp->data_end - xdp->data;
1660 sync = max(sync, len);
1661
1662 switch (act) {
1663 case XDP_PASS:
1664 rxq->stats[RX_XDP_PASS]++;
1665 ret = FEC_ENET_XDP_PASS;
1666 break;
1667
1668 case XDP_REDIRECT:
1669 rxq->stats[RX_XDP_REDIRECT]++;
1670 err = xdp_do_redirect(fep->netdev, xdp, prog);
1671 if (unlikely(err))
1672 goto xdp_err;
1673
1674 ret = FEC_ENET_XDP_REDIR;
1675 break;
1676
1677 case XDP_TX:
1678 rxq->stats[RX_XDP_TX]++;
1679 err = fec_enet_xdp_tx_xmit(fep, cpu, xdp, sync);
1680 if (unlikely(err)) {
1681 rxq->stats[RX_XDP_TX_ERRORS]++;
1682 goto xdp_err;
1683 }
1684
1685 ret = FEC_ENET_XDP_TX;
1686 break;
1687
1688 default:
1689 bpf_warn_invalid_xdp_action(fep->netdev, prog, act);
1690 fallthrough;
1691
1692 case XDP_ABORTED:
1693 fallthrough; /* handle aborts by dropping packet */
1694
1695 case XDP_DROP:
1696 rxq->stats[RX_XDP_DROP]++;
1697 xdp_err:
1698 ret = FEC_ENET_XDP_CONSUMED;
1699 page = virt_to_head_page(xdp->data);
1700 page_pool_put_page(rxq->page_pool, page, sync, true);
1701 if (act != XDP_DROP)
1702 trace_xdp_exception(fep->netdev, prog, act);
1703 break;
1704 }
1705
1706 return ret;
1707 }
1708
1709 /* During a receive, the bd_rx.cur points to the current incoming buffer.
1710 * When we update through the ring, if the next incoming buffer has
1711 * not been given to the system, we just set the empty indicator,
1712 * effectively tossing the packet.
1713 */
1714 static int
fec_enet_rx_queue(struct net_device * ndev,int budget,u16 queue_id)1715 fec_enet_rx_queue(struct net_device *ndev, int budget, u16 queue_id)
1716 {
1717 struct fec_enet_private *fep = netdev_priv(ndev);
1718 struct fec_enet_priv_rx_q *rxq;
1719 struct bufdesc *bdp;
1720 unsigned short status;
1721 struct sk_buff *skb;
1722 ushort pkt_len;
1723 __u8 *data;
1724 int pkt_received = 0;
1725 struct bufdesc_ex *ebdp = NULL;
1726 bool vlan_packet_rcvd = false;
1727 u16 vlan_tag;
1728 int index = 0;
1729 bool need_swap = fep->quirks & FEC_QUIRK_SWAP_FRAME;
1730 struct bpf_prog *xdp_prog = READ_ONCE(fep->xdp_prog);
1731 u32 ret, xdp_result = FEC_ENET_XDP_PASS;
1732 u32 data_start = FEC_ENET_XDP_HEADROOM;
1733 int cpu = smp_processor_id();
1734 struct xdp_buff xdp;
1735 struct page *page;
1736 __fec32 cbd_bufaddr;
1737 u32 sub_len = 4;
1738
1739 #if !defined(CONFIG_M5272)
1740 /*If it has the FEC_QUIRK_HAS_RACC quirk property, the bit of
1741 * FEC_RACC_SHIFT16 is set by default in the probe function.
1742 */
1743 if (fep->quirks & FEC_QUIRK_HAS_RACC) {
1744 data_start += 2;
1745 sub_len += 2;
1746 }
1747 #endif
1748
1749 #if defined(CONFIG_COLDFIRE) && !defined(CONFIG_COLDFIRE_COHERENT_DMA)
1750 /*
1751 * Hacky flush of all caches instead of using the DMA API for the TSO
1752 * headers.
1753 */
1754 flush_cache_all();
1755 #endif
1756 rxq = fep->rx_queue[queue_id];
1757
1758 /* First, grab all of the stats for the incoming packet.
1759 * These get messed up if we get called due to a busy condition.
1760 */
1761 bdp = rxq->bd.cur;
1762 xdp_init_buff(&xdp, PAGE_SIZE, &rxq->xdp_rxq);
1763
1764 while (!((status = fec16_to_cpu(bdp->cbd_sc)) & BD_ENET_RX_EMPTY)) {
1765
1766 if (pkt_received >= budget)
1767 break;
1768 pkt_received++;
1769
1770 writel(FEC_ENET_RXF_GET(queue_id), fep->hwp + FEC_IEVENT);
1771
1772 /* Check for errors. */
1773 status ^= BD_ENET_RX_LAST;
1774 if (status & (BD_ENET_RX_LG | BD_ENET_RX_SH | BD_ENET_RX_NO |
1775 BD_ENET_RX_CR | BD_ENET_RX_OV | BD_ENET_RX_LAST |
1776 BD_ENET_RX_CL)) {
1777 ndev->stats.rx_errors++;
1778 if (status & BD_ENET_RX_OV) {
1779 /* FIFO overrun */
1780 ndev->stats.rx_fifo_errors++;
1781 goto rx_processing_done;
1782 }
1783 if (status & (BD_ENET_RX_LG | BD_ENET_RX_SH
1784 | BD_ENET_RX_LAST)) {
1785 /* Frame too long or too short. */
1786 ndev->stats.rx_length_errors++;
1787 if (status & BD_ENET_RX_LAST)
1788 netdev_err(ndev, "rcv is not +last\n");
1789 }
1790 if (status & BD_ENET_RX_CR) /* CRC Error */
1791 ndev->stats.rx_crc_errors++;
1792 /* Report late collisions as a frame error. */
1793 if (status & (BD_ENET_RX_NO | BD_ENET_RX_CL))
1794 ndev->stats.rx_frame_errors++;
1795 goto rx_processing_done;
1796 }
1797
1798 /* Process the incoming frame. */
1799 ndev->stats.rx_packets++;
1800 pkt_len = fec16_to_cpu(bdp->cbd_datlen);
1801 ndev->stats.rx_bytes += pkt_len;
1802
1803 index = fec_enet_get_bd_index(bdp, &rxq->bd);
1804 page = rxq->rx_skb_info[index].page;
1805 cbd_bufaddr = bdp->cbd_bufaddr;
1806 if (fec_enet_update_cbd(rxq, bdp, index)) {
1807 ndev->stats.rx_dropped++;
1808 goto rx_processing_done;
1809 }
1810
1811 dma_sync_single_for_cpu(&fep->pdev->dev,
1812 fec32_to_cpu(cbd_bufaddr),
1813 pkt_len,
1814 DMA_FROM_DEVICE);
1815 prefetch(page_address(page));
1816
1817 if (xdp_prog) {
1818 xdp_buff_clear_frags_flag(&xdp);
1819 /* subtract 16bit shift and FCS */
1820 xdp_prepare_buff(&xdp, page_address(page),
1821 data_start, pkt_len - sub_len, false);
1822 ret = fec_enet_run_xdp(fep, xdp_prog, &xdp, rxq, cpu);
1823 xdp_result |= ret;
1824 if (ret != FEC_ENET_XDP_PASS)
1825 goto rx_processing_done;
1826 }
1827
1828 /* The packet length includes FCS, but we don't want to
1829 * include that when passing upstream as it messes up
1830 * bridging applications.
1831 */
1832 skb = build_skb(page_address(page), PAGE_SIZE);
1833 if (unlikely(!skb)) {
1834 page_pool_recycle_direct(rxq->page_pool, page);
1835 ndev->stats.rx_dropped++;
1836
1837 netdev_err_once(ndev, "build_skb failed!\n");
1838 goto rx_processing_done;
1839 }
1840
1841 skb_reserve(skb, data_start);
1842 skb_put(skb, pkt_len - sub_len);
1843 skb_mark_for_recycle(skb);
1844
1845 if (unlikely(need_swap)) {
1846 data = page_address(page) + FEC_ENET_XDP_HEADROOM;
1847 swap_buffer(data, pkt_len);
1848 }
1849 data = skb->data;
1850
1851 /* Extract the enhanced buffer descriptor */
1852 ebdp = NULL;
1853 if (fep->bufdesc_ex)
1854 ebdp = (struct bufdesc_ex *)bdp;
1855
1856 /* If this is a VLAN packet remove the VLAN Tag */
1857 vlan_packet_rcvd = false;
1858 if ((ndev->features & NETIF_F_HW_VLAN_CTAG_RX) &&
1859 fep->bufdesc_ex &&
1860 (ebdp->cbd_esc & cpu_to_fec32(BD_ENET_RX_VLAN))) {
1861 /* Push and remove the vlan tag */
1862 struct vlan_hdr *vlan_header =
1863 (struct vlan_hdr *) (data + ETH_HLEN);
1864 vlan_tag = ntohs(vlan_header->h_vlan_TCI);
1865
1866 vlan_packet_rcvd = true;
1867
1868 memmove(skb->data + VLAN_HLEN, data, ETH_ALEN * 2);
1869 skb_pull(skb, VLAN_HLEN);
1870 }
1871
1872 skb->protocol = eth_type_trans(skb, ndev);
1873
1874 /* Get receive timestamp from the skb */
1875 if (fep->hwts_rx_en && fep->bufdesc_ex)
1876 fec_enet_hwtstamp(fep, fec32_to_cpu(ebdp->ts),
1877 skb_hwtstamps(skb));
1878
1879 if (fep->bufdesc_ex &&
1880 (fep->csum_flags & FLAG_RX_CSUM_ENABLED)) {
1881 if (!(ebdp->cbd_esc & cpu_to_fec32(FLAG_RX_CSUM_ERROR))) {
1882 /* don't check it */
1883 skb->ip_summed = CHECKSUM_UNNECESSARY;
1884 } else {
1885 skb_checksum_none_assert(skb);
1886 }
1887 }
1888
1889 /* Handle received VLAN packets */
1890 if (vlan_packet_rcvd)
1891 __vlan_hwaccel_put_tag(skb,
1892 htons(ETH_P_8021Q),
1893 vlan_tag);
1894
1895 skb_record_rx_queue(skb, queue_id);
1896 napi_gro_receive(&fep->napi, skb);
1897
1898 rx_processing_done:
1899 /* Clear the status flags for this buffer */
1900 status &= ~BD_ENET_RX_STATS;
1901
1902 /* Mark the buffer empty */
1903 status |= BD_ENET_RX_EMPTY;
1904
1905 if (fep->bufdesc_ex) {
1906 struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
1907
1908 ebdp->cbd_esc = cpu_to_fec32(BD_ENET_RX_INT);
1909 ebdp->cbd_prot = 0;
1910 ebdp->cbd_bdu = 0;
1911 }
1912 /* Make sure the updates to rest of the descriptor are
1913 * performed before transferring ownership.
1914 */
1915 wmb();
1916 bdp->cbd_sc = cpu_to_fec16(status);
1917
1918 /* Update BD pointer to next entry */
1919 bdp = fec_enet_get_nextdesc(bdp, &rxq->bd);
1920
1921 /* Doing this here will keep the FEC running while we process
1922 * incoming frames. On a heavily loaded network, we should be
1923 * able to keep up at the expense of system resources.
1924 */
1925 writel(0, rxq->bd.reg_desc_active);
1926 }
1927 rxq->bd.cur = bdp;
1928
1929 if (xdp_result & FEC_ENET_XDP_REDIR)
1930 xdp_do_flush();
1931
1932 return pkt_received;
1933 }
1934
fec_enet_rx(struct net_device * ndev,int budget)1935 static int fec_enet_rx(struct net_device *ndev, int budget)
1936 {
1937 struct fec_enet_private *fep = netdev_priv(ndev);
1938 int i, done = 0;
1939
1940 /* Make sure that AVB queues are processed first. */
1941 for (i = fep->num_rx_queues - 1; i >= 0; i--)
1942 done += fec_enet_rx_queue(ndev, budget - done, i);
1943
1944 return done;
1945 }
1946
fec_enet_collect_events(struct fec_enet_private * fep)1947 static bool fec_enet_collect_events(struct fec_enet_private *fep)
1948 {
1949 uint int_events;
1950
1951 int_events = readl(fep->hwp + FEC_IEVENT);
1952
1953 /* Don't clear MDIO events, we poll for those */
1954 int_events &= ~FEC_ENET_MII;
1955
1956 writel(int_events, fep->hwp + FEC_IEVENT);
1957
1958 return int_events != 0;
1959 }
1960
1961 static irqreturn_t
fec_enet_interrupt(int irq,void * dev_id)1962 fec_enet_interrupt(int irq, void *dev_id)
1963 {
1964 struct net_device *ndev = dev_id;
1965 struct fec_enet_private *fep = netdev_priv(ndev);
1966 irqreturn_t ret = IRQ_NONE;
1967
1968 if (fec_enet_collect_events(fep) && fep->link) {
1969 ret = IRQ_HANDLED;
1970
1971 if (napi_schedule_prep(&fep->napi)) {
1972 /* Disable interrupts */
1973 writel(0, fep->hwp + FEC_IMASK);
1974 __napi_schedule(&fep->napi);
1975 }
1976 }
1977
1978 return ret;
1979 }
1980
fec_enet_rx_napi(struct napi_struct * napi,int budget)1981 static int fec_enet_rx_napi(struct napi_struct *napi, int budget)
1982 {
1983 struct net_device *ndev = napi->dev;
1984 struct fec_enet_private *fep = netdev_priv(ndev);
1985 int done = 0;
1986
1987 do {
1988 done += fec_enet_rx(ndev, budget - done);
1989 fec_enet_tx(ndev, budget);
1990 } while ((done < budget) && fec_enet_collect_events(fep));
1991
1992 if (done < budget) {
1993 napi_complete_done(napi, done);
1994 writel(FEC_DEFAULT_IMASK, fep->hwp + FEC_IMASK);
1995 }
1996
1997 return done;
1998 }
1999
2000 /* ------------------------------------------------------------------------- */
fec_get_mac(struct net_device * ndev)2001 static int fec_get_mac(struct net_device *ndev)
2002 {
2003 struct fec_enet_private *fep = netdev_priv(ndev);
2004 unsigned char *iap, tmpaddr[ETH_ALEN];
2005 int ret;
2006
2007 /*
2008 * try to get mac address in following order:
2009 *
2010 * 1) module parameter via kernel command line in form
2011 * fec.macaddr=0x00,0x04,0x9f,0x01,0x30,0xe0
2012 */
2013 iap = macaddr;
2014
2015 /*
2016 * 2) from device tree data
2017 */
2018 if (!is_valid_ether_addr(iap)) {
2019 struct device_node *np = fep->pdev->dev.of_node;
2020 if (np) {
2021 ret = of_get_mac_address(np, tmpaddr);
2022 if (!ret)
2023 iap = tmpaddr;
2024 else if (ret == -EPROBE_DEFER)
2025 return ret;
2026 }
2027 }
2028
2029 /*
2030 * 3) from flash or fuse (via platform data)
2031 */
2032 if (!is_valid_ether_addr(iap)) {
2033 #ifdef CONFIG_M5272
2034 if (FEC_FLASHMAC)
2035 iap = (unsigned char *)FEC_FLASHMAC;
2036 #else
2037 struct fec_platform_data *pdata = dev_get_platdata(&fep->pdev->dev);
2038
2039 if (pdata)
2040 iap = (unsigned char *)&pdata->mac;
2041 #endif
2042 }
2043
2044 /*
2045 * 4) FEC mac registers set by bootloader
2046 */
2047 if (!is_valid_ether_addr(iap)) {
2048 *((__be32 *) &tmpaddr[0]) =
2049 cpu_to_be32(readl(fep->hwp + FEC_ADDR_LOW));
2050 *((__be16 *) &tmpaddr[4]) =
2051 cpu_to_be16(readl(fep->hwp + FEC_ADDR_HIGH) >> 16);
2052 iap = &tmpaddr[0];
2053 }
2054
2055 /*
2056 * 5) random mac address
2057 */
2058 if (!is_valid_ether_addr(iap)) {
2059 /* Report it and use a random ethernet address instead */
2060 dev_err(&fep->pdev->dev, "Invalid MAC address: %pM\n", iap);
2061 eth_hw_addr_random(ndev);
2062 dev_info(&fep->pdev->dev, "Using random MAC address: %pM\n",
2063 ndev->dev_addr);
2064 return 0;
2065 }
2066
2067 /* Adjust MAC if using macaddr */
2068 eth_hw_addr_gen(ndev, iap, iap == macaddr ? fep->dev_id : 0);
2069
2070 return 0;
2071 }
2072
2073 /* ------------------------------------------------------------------------- */
2074
2075 /*
2076 * Phy section
2077 */
2078
2079 /* LPI Sleep Ts count base on tx clk (clk_ref).
2080 * The lpi sleep cnt value = X us / (cycle_ns).
2081 */
fec_enet_us_to_tx_cycle(struct net_device * ndev,int us)2082 static int fec_enet_us_to_tx_cycle(struct net_device *ndev, int us)
2083 {
2084 struct fec_enet_private *fep = netdev_priv(ndev);
2085
2086 return us * (fep->clk_ref_rate / 1000) / 1000;
2087 }
2088
fec_enet_eee_mode_set(struct net_device * ndev,bool enable)2089 static int fec_enet_eee_mode_set(struct net_device *ndev, bool enable)
2090 {
2091 struct fec_enet_private *fep = netdev_priv(ndev);
2092 struct ethtool_keee *p = &fep->eee;
2093 unsigned int sleep_cycle, wake_cycle;
2094
2095 if (enable) {
2096 sleep_cycle = fec_enet_us_to_tx_cycle(ndev, p->tx_lpi_timer);
2097 wake_cycle = sleep_cycle;
2098 } else {
2099 sleep_cycle = 0;
2100 wake_cycle = 0;
2101 }
2102
2103 writel(sleep_cycle, fep->hwp + FEC_LPI_SLEEP);
2104 writel(wake_cycle, fep->hwp + FEC_LPI_WAKE);
2105
2106 return 0;
2107 }
2108
fec_enet_adjust_link(struct net_device * ndev)2109 static void fec_enet_adjust_link(struct net_device *ndev)
2110 {
2111 struct fec_enet_private *fep = netdev_priv(ndev);
2112 struct phy_device *phy_dev = ndev->phydev;
2113 int status_change = 0;
2114
2115 /*
2116 * If the netdev is down, or is going down, we're not interested
2117 * in link state events, so just mark our idea of the link as down
2118 * and ignore the event.
2119 */
2120 if (!netif_running(ndev) || !netif_device_present(ndev)) {
2121 fep->link = 0;
2122 } else if (phy_dev->link) {
2123 if (!fep->link) {
2124 fep->link = phy_dev->link;
2125 status_change = 1;
2126 }
2127
2128 if (fep->full_duplex != phy_dev->duplex) {
2129 fep->full_duplex = phy_dev->duplex;
2130 status_change = 1;
2131 }
2132
2133 if (phy_dev->speed != fep->speed) {
2134 fep->speed = phy_dev->speed;
2135 status_change = 1;
2136 }
2137
2138 /* if any of the above changed restart the FEC */
2139 if (status_change) {
2140 netif_stop_queue(ndev);
2141 napi_disable(&fep->napi);
2142 netif_tx_lock_bh(ndev);
2143 fec_restart(ndev);
2144 netif_tx_wake_all_queues(ndev);
2145 netif_tx_unlock_bh(ndev);
2146 napi_enable(&fep->napi);
2147 }
2148 if (fep->quirks & FEC_QUIRK_HAS_EEE)
2149 fec_enet_eee_mode_set(ndev, phy_dev->enable_tx_lpi);
2150 } else {
2151 if (fep->link) {
2152 netif_stop_queue(ndev);
2153 napi_disable(&fep->napi);
2154 netif_tx_lock_bh(ndev);
2155 fec_stop(ndev);
2156 netif_tx_unlock_bh(ndev);
2157 napi_enable(&fep->napi);
2158 fep->link = phy_dev->link;
2159 status_change = 1;
2160 }
2161 }
2162
2163 if (status_change)
2164 phy_print_status(phy_dev);
2165 }
2166
fec_enet_mdio_wait(struct fec_enet_private * fep)2167 static int fec_enet_mdio_wait(struct fec_enet_private *fep)
2168 {
2169 uint ievent;
2170 int ret;
2171
2172 ret = readl_poll_timeout_atomic(fep->hwp + FEC_IEVENT, ievent,
2173 ievent & FEC_ENET_MII, 2, 30000);
2174
2175 if (!ret)
2176 writel(FEC_ENET_MII, fep->hwp + FEC_IEVENT);
2177
2178 return ret;
2179 }
2180
fec_enet_mdio_read_c22(struct mii_bus * bus,int mii_id,int regnum)2181 static int fec_enet_mdio_read_c22(struct mii_bus *bus, int mii_id, int regnum)
2182 {
2183 struct fec_enet_private *fep = bus->priv;
2184 struct device *dev = &fep->pdev->dev;
2185 int ret = 0, frame_start, frame_addr, frame_op;
2186
2187 ret = pm_runtime_resume_and_get(dev);
2188 if (ret < 0)
2189 return ret;
2190
2191 /* C22 read */
2192 frame_op = FEC_MMFR_OP_READ;
2193 frame_start = FEC_MMFR_ST;
2194 frame_addr = regnum;
2195
2196 /* start a read op */
2197 writel(frame_start | frame_op |
2198 FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(frame_addr) |
2199 FEC_MMFR_TA, fep->hwp + FEC_MII_DATA);
2200
2201 /* wait for end of transfer */
2202 ret = fec_enet_mdio_wait(fep);
2203 if (ret) {
2204 netdev_err(fep->netdev, "MDIO read timeout\n");
2205 goto out;
2206 }
2207
2208 ret = FEC_MMFR_DATA(readl(fep->hwp + FEC_MII_DATA));
2209
2210 out:
2211 pm_runtime_mark_last_busy(dev);
2212 pm_runtime_put_autosuspend(dev);
2213
2214 return ret;
2215 }
2216
fec_enet_mdio_read_c45(struct mii_bus * bus,int mii_id,int devad,int regnum)2217 static int fec_enet_mdio_read_c45(struct mii_bus *bus, int mii_id,
2218 int devad, int regnum)
2219 {
2220 struct fec_enet_private *fep = bus->priv;
2221 struct device *dev = &fep->pdev->dev;
2222 int ret = 0, frame_start, frame_op;
2223
2224 ret = pm_runtime_resume_and_get(dev);
2225 if (ret < 0)
2226 return ret;
2227
2228 frame_start = FEC_MMFR_ST_C45;
2229
2230 /* write address */
2231 writel(frame_start | FEC_MMFR_OP_ADDR_WRITE |
2232 FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(devad) |
2233 FEC_MMFR_TA | (regnum & 0xFFFF),
2234 fep->hwp + FEC_MII_DATA);
2235
2236 /* wait for end of transfer */
2237 ret = fec_enet_mdio_wait(fep);
2238 if (ret) {
2239 netdev_err(fep->netdev, "MDIO address write timeout\n");
2240 goto out;
2241 }
2242
2243 frame_op = FEC_MMFR_OP_READ_C45;
2244
2245 /* start a read op */
2246 writel(frame_start | frame_op |
2247 FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(devad) |
2248 FEC_MMFR_TA, fep->hwp + FEC_MII_DATA);
2249
2250 /* wait for end of transfer */
2251 ret = fec_enet_mdio_wait(fep);
2252 if (ret) {
2253 netdev_err(fep->netdev, "MDIO read timeout\n");
2254 goto out;
2255 }
2256
2257 ret = FEC_MMFR_DATA(readl(fep->hwp + FEC_MII_DATA));
2258
2259 out:
2260 pm_runtime_mark_last_busy(dev);
2261 pm_runtime_put_autosuspend(dev);
2262
2263 return ret;
2264 }
2265
fec_enet_mdio_write_c22(struct mii_bus * bus,int mii_id,int regnum,u16 value)2266 static int fec_enet_mdio_write_c22(struct mii_bus *bus, int mii_id, int regnum,
2267 u16 value)
2268 {
2269 struct fec_enet_private *fep = bus->priv;
2270 struct device *dev = &fep->pdev->dev;
2271 int ret, frame_start, frame_addr;
2272
2273 ret = pm_runtime_resume_and_get(dev);
2274 if (ret < 0)
2275 return ret;
2276
2277 /* C22 write */
2278 frame_start = FEC_MMFR_ST;
2279 frame_addr = regnum;
2280
2281 /* start a write op */
2282 writel(frame_start | FEC_MMFR_OP_WRITE |
2283 FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(frame_addr) |
2284 FEC_MMFR_TA | FEC_MMFR_DATA(value),
2285 fep->hwp + FEC_MII_DATA);
2286
2287 /* wait for end of transfer */
2288 ret = fec_enet_mdio_wait(fep);
2289 if (ret)
2290 netdev_err(fep->netdev, "MDIO write timeout\n");
2291
2292 pm_runtime_mark_last_busy(dev);
2293 pm_runtime_put_autosuspend(dev);
2294
2295 return ret;
2296 }
2297
fec_enet_mdio_write_c45(struct mii_bus * bus,int mii_id,int devad,int regnum,u16 value)2298 static int fec_enet_mdio_write_c45(struct mii_bus *bus, int mii_id,
2299 int devad, int regnum, u16 value)
2300 {
2301 struct fec_enet_private *fep = bus->priv;
2302 struct device *dev = &fep->pdev->dev;
2303 int ret, frame_start;
2304
2305 ret = pm_runtime_resume_and_get(dev);
2306 if (ret < 0)
2307 return ret;
2308
2309 frame_start = FEC_MMFR_ST_C45;
2310
2311 /* write address */
2312 writel(frame_start | FEC_MMFR_OP_ADDR_WRITE |
2313 FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(devad) |
2314 FEC_MMFR_TA | (regnum & 0xFFFF),
2315 fep->hwp + FEC_MII_DATA);
2316
2317 /* wait for end of transfer */
2318 ret = fec_enet_mdio_wait(fep);
2319 if (ret) {
2320 netdev_err(fep->netdev, "MDIO address write timeout\n");
2321 goto out;
2322 }
2323
2324 /* start a write op */
2325 writel(frame_start | FEC_MMFR_OP_WRITE |
2326 FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(devad) |
2327 FEC_MMFR_TA | FEC_MMFR_DATA(value),
2328 fep->hwp + FEC_MII_DATA);
2329
2330 /* wait for end of transfer */
2331 ret = fec_enet_mdio_wait(fep);
2332 if (ret)
2333 netdev_err(fep->netdev, "MDIO write timeout\n");
2334
2335 out:
2336 pm_runtime_mark_last_busy(dev);
2337 pm_runtime_put_autosuspend(dev);
2338
2339 return ret;
2340 }
2341
fec_enet_phy_reset_after_clk_enable(struct net_device * ndev)2342 static void fec_enet_phy_reset_after_clk_enable(struct net_device *ndev)
2343 {
2344 struct fec_enet_private *fep = netdev_priv(ndev);
2345 struct phy_device *phy_dev = ndev->phydev;
2346
2347 if (phy_dev) {
2348 phy_reset_after_clk_enable(phy_dev);
2349 } else if (fep->phy_node) {
2350 /*
2351 * If the PHY still is not bound to the MAC, but there is
2352 * OF PHY node and a matching PHY device instance already,
2353 * use the OF PHY node to obtain the PHY device instance,
2354 * and then use that PHY device instance when triggering
2355 * the PHY reset.
2356 */
2357 phy_dev = of_phy_find_device(fep->phy_node);
2358 phy_reset_after_clk_enable(phy_dev);
2359 if (phy_dev)
2360 put_device(&phy_dev->mdio.dev);
2361 }
2362 }
2363
fec_enet_clk_enable(struct net_device * ndev,bool enable)2364 static int fec_enet_clk_enable(struct net_device *ndev, bool enable)
2365 {
2366 struct fec_enet_private *fep = netdev_priv(ndev);
2367 int ret;
2368
2369 if (enable) {
2370 ret = clk_prepare_enable(fep->clk_enet_out);
2371 if (ret)
2372 return ret;
2373
2374 if (fep->clk_ptp) {
2375 mutex_lock(&fep->ptp_clk_mutex);
2376 ret = clk_prepare_enable(fep->clk_ptp);
2377 if (ret) {
2378 mutex_unlock(&fep->ptp_clk_mutex);
2379 goto failed_clk_ptp;
2380 } else {
2381 fep->ptp_clk_on = true;
2382 }
2383 mutex_unlock(&fep->ptp_clk_mutex);
2384 }
2385
2386 ret = clk_prepare_enable(fep->clk_ref);
2387 if (ret)
2388 goto failed_clk_ref;
2389
2390 ret = clk_prepare_enable(fep->clk_2x_txclk);
2391 if (ret)
2392 goto failed_clk_2x_txclk;
2393
2394 fec_enet_phy_reset_after_clk_enable(ndev);
2395 } else {
2396 clk_disable_unprepare(fep->clk_enet_out);
2397 if (fep->clk_ptp) {
2398 mutex_lock(&fep->ptp_clk_mutex);
2399 clk_disable_unprepare(fep->clk_ptp);
2400 fep->ptp_clk_on = false;
2401 mutex_unlock(&fep->ptp_clk_mutex);
2402 }
2403 clk_disable_unprepare(fep->clk_ref);
2404 clk_disable_unprepare(fep->clk_2x_txclk);
2405 }
2406
2407 return 0;
2408
2409 failed_clk_2x_txclk:
2410 if (fep->clk_ref)
2411 clk_disable_unprepare(fep->clk_ref);
2412 failed_clk_ref:
2413 if (fep->clk_ptp) {
2414 mutex_lock(&fep->ptp_clk_mutex);
2415 clk_disable_unprepare(fep->clk_ptp);
2416 fep->ptp_clk_on = false;
2417 mutex_unlock(&fep->ptp_clk_mutex);
2418 }
2419 failed_clk_ptp:
2420 clk_disable_unprepare(fep->clk_enet_out);
2421
2422 return ret;
2423 }
2424
fec_enet_parse_rgmii_delay(struct fec_enet_private * fep,struct device_node * np)2425 static int fec_enet_parse_rgmii_delay(struct fec_enet_private *fep,
2426 struct device_node *np)
2427 {
2428 u32 rgmii_tx_delay, rgmii_rx_delay;
2429
2430 /* For rgmii tx internal delay, valid values are 0ps and 2000ps */
2431 if (!of_property_read_u32(np, "tx-internal-delay-ps", &rgmii_tx_delay)) {
2432 if (rgmii_tx_delay != 0 && rgmii_tx_delay != 2000) {
2433 dev_err(&fep->pdev->dev, "The only allowed RGMII TX delay values are: 0ps, 2000ps");
2434 return -EINVAL;
2435 } else if (rgmii_tx_delay == 2000) {
2436 fep->rgmii_txc_dly = true;
2437 }
2438 }
2439
2440 /* For rgmii rx internal delay, valid values are 0ps and 2000ps */
2441 if (!of_property_read_u32(np, "rx-internal-delay-ps", &rgmii_rx_delay)) {
2442 if (rgmii_rx_delay != 0 && rgmii_rx_delay != 2000) {
2443 dev_err(&fep->pdev->dev, "The only allowed RGMII RX delay values are: 0ps, 2000ps");
2444 return -EINVAL;
2445 } else if (rgmii_rx_delay == 2000) {
2446 fep->rgmii_rxc_dly = true;
2447 }
2448 }
2449
2450 return 0;
2451 }
2452
fec_enet_mii_probe(struct net_device * ndev)2453 static int fec_enet_mii_probe(struct net_device *ndev)
2454 {
2455 struct fec_enet_private *fep = netdev_priv(ndev);
2456 struct phy_device *phy_dev = NULL;
2457 char mdio_bus_id[MII_BUS_ID_SIZE];
2458 char phy_name[MII_BUS_ID_SIZE + 3];
2459 int phy_id;
2460 int dev_id = fep->dev_id;
2461
2462 if (fep->phy_node) {
2463 phy_dev = of_phy_connect(ndev, fep->phy_node,
2464 &fec_enet_adjust_link, 0,
2465 fep->phy_interface);
2466 if (!phy_dev) {
2467 netdev_err(ndev, "Unable to connect to phy\n");
2468 return -ENODEV;
2469 }
2470 } else {
2471 /* check for attached phy */
2472 for (phy_id = 0; (phy_id < PHY_MAX_ADDR); phy_id++) {
2473 if (!mdiobus_is_registered_device(fep->mii_bus, phy_id))
2474 continue;
2475 if (dev_id--)
2476 continue;
2477 strscpy(mdio_bus_id, fep->mii_bus->id, MII_BUS_ID_SIZE);
2478 break;
2479 }
2480
2481 if (phy_id >= PHY_MAX_ADDR) {
2482 netdev_info(ndev, "no PHY, assuming direct connection to switch\n");
2483 strscpy(mdio_bus_id, "fixed-0", MII_BUS_ID_SIZE);
2484 phy_id = 0;
2485 }
2486
2487 snprintf(phy_name, sizeof(phy_name),
2488 PHY_ID_FMT, mdio_bus_id, phy_id);
2489 phy_dev = phy_connect(ndev, phy_name, &fec_enet_adjust_link,
2490 fep->phy_interface);
2491 }
2492
2493 if (IS_ERR(phy_dev)) {
2494 netdev_err(ndev, "could not attach to PHY\n");
2495 return PTR_ERR(phy_dev);
2496 }
2497
2498 /* mask with MAC supported features */
2499 if (fep->quirks & FEC_QUIRK_HAS_GBIT) {
2500 phy_set_max_speed(phy_dev, 1000);
2501 phy_remove_link_mode(phy_dev,
2502 ETHTOOL_LINK_MODE_1000baseT_Half_BIT);
2503 #if !defined(CONFIG_M5272)
2504 phy_support_sym_pause(phy_dev);
2505 #endif
2506 }
2507 else
2508 phy_set_max_speed(phy_dev, 100);
2509
2510 if (fep->quirks & FEC_QUIRK_HAS_EEE)
2511 phy_support_eee(phy_dev);
2512
2513 fep->link = 0;
2514 fep->full_duplex = 0;
2515
2516 phy_attached_info(phy_dev);
2517
2518 return 0;
2519 }
2520
fec_enet_mii_init(struct platform_device * pdev)2521 static int fec_enet_mii_init(struct platform_device *pdev)
2522 {
2523 static struct mii_bus *fec0_mii_bus;
2524 struct net_device *ndev = platform_get_drvdata(pdev);
2525 struct fec_enet_private *fep = netdev_priv(ndev);
2526 bool suppress_preamble = false;
2527 struct phy_device *phydev;
2528 struct device_node *node;
2529 int err = -ENXIO;
2530 u32 mii_speed, holdtime;
2531 u32 bus_freq;
2532 int addr;
2533
2534 /*
2535 * The i.MX28 dual fec interfaces are not equal.
2536 * Here are the differences:
2537 *
2538 * - fec0 supports MII & RMII modes while fec1 only supports RMII
2539 * - fec0 acts as the 1588 time master while fec1 is slave
2540 * - external phys can only be configured by fec0
2541 *
2542 * That is to say fec1 can not work independently. It only works
2543 * when fec0 is working. The reason behind this design is that the
2544 * second interface is added primarily for Switch mode.
2545 *
2546 * Because of the last point above, both phys are attached on fec0
2547 * mdio interface in board design, and need to be configured by
2548 * fec0 mii_bus.
2549 */
2550 if ((fep->quirks & FEC_QUIRK_SINGLE_MDIO) && fep->dev_id > 0) {
2551 /* fec1 uses fec0 mii_bus */
2552 if (mii_cnt && fec0_mii_bus) {
2553 fep->mii_bus = fec0_mii_bus;
2554 mii_cnt++;
2555 return 0;
2556 }
2557 return -ENOENT;
2558 }
2559
2560 bus_freq = 2500000; /* 2.5MHz by default */
2561 node = of_get_child_by_name(pdev->dev.of_node, "mdio");
2562 if (node) {
2563 of_property_read_u32(node, "clock-frequency", &bus_freq);
2564 suppress_preamble = of_property_read_bool(node,
2565 "suppress-preamble");
2566 }
2567
2568 /*
2569 * Set MII speed (= clk_get_rate() / 2 * phy_speed)
2570 *
2571 * The formula for FEC MDC is 'ref_freq / (MII_SPEED x 2)' while
2572 * for ENET-MAC is 'ref_freq / ((MII_SPEED + 1) x 2)'. The i.MX28
2573 * Reference Manual has an error on this, and gets fixed on i.MX6Q
2574 * document.
2575 */
2576 mii_speed = DIV_ROUND_UP(clk_get_rate(fep->clk_ipg), bus_freq * 2);
2577 if (fep->quirks & FEC_QUIRK_ENET_MAC)
2578 mii_speed--;
2579 if (mii_speed > 63) {
2580 dev_err(&pdev->dev,
2581 "fec clock (%lu) too fast to get right mii speed\n",
2582 clk_get_rate(fep->clk_ipg));
2583 err = -EINVAL;
2584 goto err_out;
2585 }
2586
2587 /*
2588 * The i.MX28 and i.MX6 types have another filed in the MSCR (aka
2589 * MII_SPEED) register that defines the MDIO output hold time. Earlier
2590 * versions are RAZ there, so just ignore the difference and write the
2591 * register always.
2592 * The minimal hold time according to IEE802.3 (clause 22) is 10 ns.
2593 * HOLDTIME + 1 is the number of clk cycles the fec is holding the
2594 * output.
2595 * The HOLDTIME bitfield takes values between 0 and 7 (inclusive).
2596 * Given that ceil(clkrate / 5000000) <= 64, the calculation for
2597 * holdtime cannot result in a value greater than 3.
2598 */
2599 holdtime = DIV_ROUND_UP(clk_get_rate(fep->clk_ipg), 100000000) - 1;
2600
2601 fep->phy_speed = mii_speed << 1 | holdtime << 8;
2602
2603 if (suppress_preamble)
2604 fep->phy_speed |= BIT(7);
2605
2606 if (fep->quirks & FEC_QUIRK_CLEAR_SETUP_MII) {
2607 /* Clear MMFR to avoid to generate MII event by writing MSCR.
2608 * MII event generation condition:
2609 * - writing MSCR:
2610 * - mmfr[31:0]_not_zero & mscr[7:0]_is_zero &
2611 * mscr_reg_data_in[7:0] != 0
2612 * - writing MMFR:
2613 * - mscr[7:0]_not_zero
2614 */
2615 writel(0, fep->hwp + FEC_MII_DATA);
2616 }
2617
2618 writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED);
2619
2620 /* Clear any pending transaction complete indication */
2621 writel(FEC_ENET_MII, fep->hwp + FEC_IEVENT);
2622
2623 fep->mii_bus = mdiobus_alloc();
2624 if (fep->mii_bus == NULL) {
2625 err = -ENOMEM;
2626 goto err_out;
2627 }
2628
2629 fep->mii_bus->name = "fec_enet_mii_bus";
2630 fep->mii_bus->read = fec_enet_mdio_read_c22;
2631 fep->mii_bus->write = fec_enet_mdio_write_c22;
2632 if (fep->quirks & FEC_QUIRK_HAS_MDIO_C45) {
2633 fep->mii_bus->read_c45 = fec_enet_mdio_read_c45;
2634 fep->mii_bus->write_c45 = fec_enet_mdio_write_c45;
2635 }
2636 snprintf(fep->mii_bus->id, MII_BUS_ID_SIZE, "%s-%x",
2637 pdev->name, fep->dev_id + 1);
2638 fep->mii_bus->priv = fep;
2639 fep->mii_bus->parent = &pdev->dev;
2640
2641 err = of_mdiobus_register(fep->mii_bus, node);
2642 if (err)
2643 goto err_out_free_mdiobus;
2644 of_node_put(node);
2645
2646 /* find all the PHY devices on the bus and set mac_managed_pm to true */
2647 for (addr = 0; addr < PHY_MAX_ADDR; addr++) {
2648 phydev = mdiobus_get_phy(fep->mii_bus, addr);
2649 if (phydev)
2650 phydev->mac_managed_pm = true;
2651 }
2652
2653 mii_cnt++;
2654
2655 /* save fec0 mii_bus */
2656 if (fep->quirks & FEC_QUIRK_SINGLE_MDIO)
2657 fec0_mii_bus = fep->mii_bus;
2658
2659 return 0;
2660
2661 err_out_free_mdiobus:
2662 mdiobus_free(fep->mii_bus);
2663 err_out:
2664 of_node_put(node);
2665 return err;
2666 }
2667
fec_enet_mii_remove(struct fec_enet_private * fep)2668 static void fec_enet_mii_remove(struct fec_enet_private *fep)
2669 {
2670 if (--mii_cnt == 0) {
2671 mdiobus_unregister(fep->mii_bus);
2672 mdiobus_free(fep->mii_bus);
2673 }
2674 }
2675
fec_enet_get_drvinfo(struct net_device * ndev,struct ethtool_drvinfo * info)2676 static void fec_enet_get_drvinfo(struct net_device *ndev,
2677 struct ethtool_drvinfo *info)
2678 {
2679 struct fec_enet_private *fep = netdev_priv(ndev);
2680
2681 strscpy(info->driver, fep->pdev->dev.driver->name,
2682 sizeof(info->driver));
2683 strscpy(info->bus_info, dev_name(&ndev->dev), sizeof(info->bus_info));
2684 }
2685
fec_enet_get_regs_len(struct net_device * ndev)2686 static int fec_enet_get_regs_len(struct net_device *ndev)
2687 {
2688 struct fec_enet_private *fep = netdev_priv(ndev);
2689 struct resource *r;
2690 int s = 0;
2691
2692 r = platform_get_resource(fep->pdev, IORESOURCE_MEM, 0);
2693 if (r)
2694 s = resource_size(r);
2695
2696 return s;
2697 }
2698
2699 /* List of registers that can be safety be read to dump them with ethtool */
2700 #if defined(CONFIG_M523x) || defined(CONFIG_M527x) || defined(CONFIG_M528x) || \
2701 defined(CONFIG_M520x) || defined(CONFIG_M532x) || defined(CONFIG_ARM) || \
2702 defined(CONFIG_ARM64) || defined(CONFIG_COMPILE_TEST)
2703 static __u32 fec_enet_register_version = 2;
2704 static u32 fec_enet_register_offset[] = {
2705 FEC_IEVENT, FEC_IMASK, FEC_R_DES_ACTIVE_0, FEC_X_DES_ACTIVE_0,
2706 FEC_ECNTRL, FEC_MII_DATA, FEC_MII_SPEED, FEC_MIB_CTRLSTAT, FEC_R_CNTRL,
2707 FEC_X_CNTRL, FEC_ADDR_LOW, FEC_ADDR_HIGH, FEC_OPD, FEC_TXIC0, FEC_TXIC1,
2708 FEC_TXIC2, FEC_RXIC0, FEC_RXIC1, FEC_RXIC2, FEC_HASH_TABLE_HIGH,
2709 FEC_HASH_TABLE_LOW, FEC_GRP_HASH_TABLE_HIGH, FEC_GRP_HASH_TABLE_LOW,
2710 FEC_X_WMRK, FEC_R_BOUND, FEC_R_FSTART, FEC_R_DES_START_1,
2711 FEC_X_DES_START_1, FEC_R_BUFF_SIZE_1, FEC_R_DES_START_2,
2712 FEC_X_DES_START_2, FEC_R_BUFF_SIZE_2, FEC_R_DES_START_0,
2713 FEC_X_DES_START_0, FEC_R_BUFF_SIZE_0, FEC_R_FIFO_RSFL, FEC_R_FIFO_RSEM,
2714 FEC_R_FIFO_RAEM, FEC_R_FIFO_RAFL, FEC_RACC, FEC_RCMR_1, FEC_RCMR_2,
2715 FEC_DMA_CFG_1, FEC_DMA_CFG_2, FEC_R_DES_ACTIVE_1, FEC_X_DES_ACTIVE_1,
2716 FEC_R_DES_ACTIVE_2, FEC_X_DES_ACTIVE_2, FEC_QOS_SCHEME,
2717 RMON_T_DROP, RMON_T_PACKETS, RMON_T_BC_PKT, RMON_T_MC_PKT,
2718 RMON_T_CRC_ALIGN, RMON_T_UNDERSIZE, RMON_T_OVERSIZE, RMON_T_FRAG,
2719 RMON_T_JAB, RMON_T_COL, RMON_T_P64, RMON_T_P65TO127, RMON_T_P128TO255,
2720 RMON_T_P256TO511, RMON_T_P512TO1023, RMON_T_P1024TO2047,
2721 RMON_T_P_GTE2048, RMON_T_OCTETS,
2722 IEEE_T_DROP, IEEE_T_FRAME_OK, IEEE_T_1COL, IEEE_T_MCOL, IEEE_T_DEF,
2723 IEEE_T_LCOL, IEEE_T_EXCOL, IEEE_T_MACERR, IEEE_T_CSERR, IEEE_T_SQE,
2724 IEEE_T_FDXFC, IEEE_T_OCTETS_OK,
2725 RMON_R_PACKETS, RMON_R_BC_PKT, RMON_R_MC_PKT, RMON_R_CRC_ALIGN,
2726 RMON_R_UNDERSIZE, RMON_R_OVERSIZE, RMON_R_FRAG, RMON_R_JAB,
2727 RMON_R_RESVD_O, RMON_R_P64, RMON_R_P65TO127, RMON_R_P128TO255,
2728 RMON_R_P256TO511, RMON_R_P512TO1023, RMON_R_P1024TO2047,
2729 RMON_R_P_GTE2048, RMON_R_OCTETS,
2730 IEEE_R_DROP, IEEE_R_FRAME_OK, IEEE_R_CRC, IEEE_R_ALIGN, IEEE_R_MACERR,
2731 IEEE_R_FDXFC, IEEE_R_OCTETS_OK
2732 };
2733 /* for i.MX6ul */
2734 static u32 fec_enet_register_offset_6ul[] = {
2735 FEC_IEVENT, FEC_IMASK, FEC_R_DES_ACTIVE_0, FEC_X_DES_ACTIVE_0,
2736 FEC_ECNTRL, FEC_MII_DATA, FEC_MII_SPEED, FEC_MIB_CTRLSTAT, FEC_R_CNTRL,
2737 FEC_X_CNTRL, FEC_ADDR_LOW, FEC_ADDR_HIGH, FEC_OPD, FEC_TXIC0, FEC_RXIC0,
2738 FEC_HASH_TABLE_HIGH, FEC_HASH_TABLE_LOW, FEC_GRP_HASH_TABLE_HIGH,
2739 FEC_GRP_HASH_TABLE_LOW, FEC_X_WMRK, FEC_R_DES_START_0,
2740 FEC_X_DES_START_0, FEC_R_BUFF_SIZE_0, FEC_R_FIFO_RSFL, FEC_R_FIFO_RSEM,
2741 FEC_R_FIFO_RAEM, FEC_R_FIFO_RAFL, FEC_RACC,
2742 RMON_T_DROP, RMON_T_PACKETS, RMON_T_BC_PKT, RMON_T_MC_PKT,
2743 RMON_T_CRC_ALIGN, RMON_T_UNDERSIZE, RMON_T_OVERSIZE, RMON_T_FRAG,
2744 RMON_T_JAB, RMON_T_COL, RMON_T_P64, RMON_T_P65TO127, RMON_T_P128TO255,
2745 RMON_T_P256TO511, RMON_T_P512TO1023, RMON_T_P1024TO2047,
2746 RMON_T_P_GTE2048, RMON_T_OCTETS,
2747 IEEE_T_DROP, IEEE_T_FRAME_OK, IEEE_T_1COL, IEEE_T_MCOL, IEEE_T_DEF,
2748 IEEE_T_LCOL, IEEE_T_EXCOL, IEEE_T_MACERR, IEEE_T_CSERR, IEEE_T_SQE,
2749 IEEE_T_FDXFC, IEEE_T_OCTETS_OK,
2750 RMON_R_PACKETS, RMON_R_BC_PKT, RMON_R_MC_PKT, RMON_R_CRC_ALIGN,
2751 RMON_R_UNDERSIZE, RMON_R_OVERSIZE, RMON_R_FRAG, RMON_R_JAB,
2752 RMON_R_RESVD_O, RMON_R_P64, RMON_R_P65TO127, RMON_R_P128TO255,
2753 RMON_R_P256TO511, RMON_R_P512TO1023, RMON_R_P1024TO2047,
2754 RMON_R_P_GTE2048, RMON_R_OCTETS,
2755 IEEE_R_DROP, IEEE_R_FRAME_OK, IEEE_R_CRC, IEEE_R_ALIGN, IEEE_R_MACERR,
2756 IEEE_R_FDXFC, IEEE_R_OCTETS_OK
2757 };
2758 #else
2759 static __u32 fec_enet_register_version = 1;
2760 static u32 fec_enet_register_offset[] = {
2761 FEC_ECNTRL, FEC_IEVENT, FEC_IMASK, FEC_IVEC, FEC_R_DES_ACTIVE_0,
2762 FEC_R_DES_ACTIVE_1, FEC_R_DES_ACTIVE_2, FEC_X_DES_ACTIVE_0,
2763 FEC_X_DES_ACTIVE_1, FEC_X_DES_ACTIVE_2, FEC_MII_DATA, FEC_MII_SPEED,
2764 FEC_R_BOUND, FEC_R_FSTART, FEC_X_WMRK, FEC_X_FSTART, FEC_R_CNTRL,
2765 FEC_MAX_FRM_LEN, FEC_X_CNTRL, FEC_ADDR_LOW, FEC_ADDR_HIGH,
2766 FEC_GRP_HASH_TABLE_HIGH, FEC_GRP_HASH_TABLE_LOW, FEC_R_DES_START_0,
2767 FEC_R_DES_START_1, FEC_R_DES_START_2, FEC_X_DES_START_0,
2768 FEC_X_DES_START_1, FEC_X_DES_START_2, FEC_R_BUFF_SIZE_0,
2769 FEC_R_BUFF_SIZE_1, FEC_R_BUFF_SIZE_2
2770 };
2771 #endif
2772
fec_enet_get_regs(struct net_device * ndev,struct ethtool_regs * regs,void * regbuf)2773 static void fec_enet_get_regs(struct net_device *ndev,
2774 struct ethtool_regs *regs, void *regbuf)
2775 {
2776 struct fec_enet_private *fep = netdev_priv(ndev);
2777 u32 __iomem *theregs = (u32 __iomem *)fep->hwp;
2778 struct device *dev = &fep->pdev->dev;
2779 u32 *buf = (u32 *)regbuf;
2780 u32 i, off;
2781 int ret;
2782 #if defined(CONFIG_M523x) || defined(CONFIG_M527x) || defined(CONFIG_M528x) || \
2783 defined(CONFIG_M520x) || defined(CONFIG_M532x) || defined(CONFIG_ARM) || \
2784 defined(CONFIG_ARM64) || defined(CONFIG_COMPILE_TEST)
2785 u32 *reg_list;
2786 u32 reg_cnt;
2787
2788 if (!of_machine_is_compatible("fsl,imx6ul")) {
2789 reg_list = fec_enet_register_offset;
2790 reg_cnt = ARRAY_SIZE(fec_enet_register_offset);
2791 } else {
2792 reg_list = fec_enet_register_offset_6ul;
2793 reg_cnt = ARRAY_SIZE(fec_enet_register_offset_6ul);
2794 }
2795 #else
2796 /* coldfire */
2797 static u32 *reg_list = fec_enet_register_offset;
2798 static const u32 reg_cnt = ARRAY_SIZE(fec_enet_register_offset);
2799 #endif
2800 ret = pm_runtime_resume_and_get(dev);
2801 if (ret < 0)
2802 return;
2803
2804 regs->version = fec_enet_register_version;
2805
2806 memset(buf, 0, regs->len);
2807
2808 for (i = 0; i < reg_cnt; i++) {
2809 off = reg_list[i];
2810
2811 if ((off == FEC_R_BOUND || off == FEC_R_FSTART) &&
2812 !(fep->quirks & FEC_QUIRK_HAS_FRREG))
2813 continue;
2814
2815 off >>= 2;
2816 buf[off] = readl(&theregs[off]);
2817 }
2818
2819 pm_runtime_mark_last_busy(dev);
2820 pm_runtime_put_autosuspend(dev);
2821 }
2822
fec_enet_get_ts_info(struct net_device * ndev,struct kernel_ethtool_ts_info * info)2823 static int fec_enet_get_ts_info(struct net_device *ndev,
2824 struct kernel_ethtool_ts_info *info)
2825 {
2826 struct fec_enet_private *fep = netdev_priv(ndev);
2827
2828 if (fep->bufdesc_ex) {
2829
2830 info->so_timestamping = SOF_TIMESTAMPING_TX_SOFTWARE |
2831 SOF_TIMESTAMPING_TX_HARDWARE |
2832 SOF_TIMESTAMPING_RX_HARDWARE |
2833 SOF_TIMESTAMPING_RAW_HARDWARE;
2834 if (fep->ptp_clock)
2835 info->phc_index = ptp_clock_index(fep->ptp_clock);
2836
2837 info->tx_types = (1 << HWTSTAMP_TX_OFF) |
2838 (1 << HWTSTAMP_TX_ON);
2839
2840 info->rx_filters = (1 << HWTSTAMP_FILTER_NONE) |
2841 (1 << HWTSTAMP_FILTER_ALL);
2842 return 0;
2843 } else {
2844 return ethtool_op_get_ts_info(ndev, info);
2845 }
2846 }
2847
2848 #if !defined(CONFIG_M5272)
2849
fec_enet_get_pauseparam(struct net_device * ndev,struct ethtool_pauseparam * pause)2850 static void fec_enet_get_pauseparam(struct net_device *ndev,
2851 struct ethtool_pauseparam *pause)
2852 {
2853 struct fec_enet_private *fep = netdev_priv(ndev);
2854
2855 pause->autoneg = (fep->pause_flag & FEC_PAUSE_FLAG_AUTONEG) != 0;
2856 pause->tx_pause = (fep->pause_flag & FEC_PAUSE_FLAG_ENABLE) != 0;
2857 pause->rx_pause = pause->tx_pause;
2858 }
2859
fec_enet_set_pauseparam(struct net_device * ndev,struct ethtool_pauseparam * pause)2860 static int fec_enet_set_pauseparam(struct net_device *ndev,
2861 struct ethtool_pauseparam *pause)
2862 {
2863 struct fec_enet_private *fep = netdev_priv(ndev);
2864
2865 if (!ndev->phydev)
2866 return -ENODEV;
2867
2868 if (pause->tx_pause != pause->rx_pause) {
2869 netdev_info(ndev,
2870 "hardware only support enable/disable both tx and rx");
2871 return -EINVAL;
2872 }
2873
2874 fep->pause_flag = 0;
2875
2876 /* tx pause must be same as rx pause */
2877 fep->pause_flag |= pause->rx_pause ? FEC_PAUSE_FLAG_ENABLE : 0;
2878 fep->pause_flag |= pause->autoneg ? FEC_PAUSE_FLAG_AUTONEG : 0;
2879
2880 phy_set_sym_pause(ndev->phydev, pause->rx_pause, pause->tx_pause,
2881 pause->autoneg);
2882
2883 if (pause->autoneg) {
2884 if (netif_running(ndev))
2885 fec_stop(ndev);
2886 phy_start_aneg(ndev->phydev);
2887 }
2888 if (netif_running(ndev)) {
2889 napi_disable(&fep->napi);
2890 netif_tx_lock_bh(ndev);
2891 fec_restart(ndev);
2892 netif_tx_wake_all_queues(ndev);
2893 netif_tx_unlock_bh(ndev);
2894 napi_enable(&fep->napi);
2895 }
2896
2897 return 0;
2898 }
2899
2900 static const struct fec_stat {
2901 char name[ETH_GSTRING_LEN];
2902 u16 offset;
2903 } fec_stats[] = {
2904 /* RMON TX */
2905 { "tx_dropped", RMON_T_DROP },
2906 { "tx_packets", RMON_T_PACKETS },
2907 { "tx_broadcast", RMON_T_BC_PKT },
2908 { "tx_multicast", RMON_T_MC_PKT },
2909 { "tx_crc_errors", RMON_T_CRC_ALIGN },
2910 { "tx_undersize", RMON_T_UNDERSIZE },
2911 { "tx_oversize", RMON_T_OVERSIZE },
2912 { "tx_fragment", RMON_T_FRAG },
2913 { "tx_jabber", RMON_T_JAB },
2914 { "tx_collision", RMON_T_COL },
2915 { "tx_64byte", RMON_T_P64 },
2916 { "tx_65to127byte", RMON_T_P65TO127 },
2917 { "tx_128to255byte", RMON_T_P128TO255 },
2918 { "tx_256to511byte", RMON_T_P256TO511 },
2919 { "tx_512to1023byte", RMON_T_P512TO1023 },
2920 { "tx_1024to2047byte", RMON_T_P1024TO2047 },
2921 { "tx_GTE2048byte", RMON_T_P_GTE2048 },
2922 { "tx_octets", RMON_T_OCTETS },
2923
2924 /* IEEE TX */
2925 { "IEEE_tx_drop", IEEE_T_DROP },
2926 { "IEEE_tx_frame_ok", IEEE_T_FRAME_OK },
2927 { "IEEE_tx_1col", IEEE_T_1COL },
2928 { "IEEE_tx_mcol", IEEE_T_MCOL },
2929 { "IEEE_tx_def", IEEE_T_DEF },
2930 { "IEEE_tx_lcol", IEEE_T_LCOL },
2931 { "IEEE_tx_excol", IEEE_T_EXCOL },
2932 { "IEEE_tx_macerr", IEEE_T_MACERR },
2933 { "IEEE_tx_cserr", IEEE_T_CSERR },
2934 { "IEEE_tx_sqe", IEEE_T_SQE },
2935 { "IEEE_tx_fdxfc", IEEE_T_FDXFC },
2936 { "IEEE_tx_octets_ok", IEEE_T_OCTETS_OK },
2937
2938 /* RMON RX */
2939 { "rx_packets", RMON_R_PACKETS },
2940 { "rx_broadcast", RMON_R_BC_PKT },
2941 { "rx_multicast", RMON_R_MC_PKT },
2942 { "rx_crc_errors", RMON_R_CRC_ALIGN },
2943 { "rx_undersize", RMON_R_UNDERSIZE },
2944 { "rx_oversize", RMON_R_OVERSIZE },
2945 { "rx_fragment", RMON_R_FRAG },
2946 { "rx_jabber", RMON_R_JAB },
2947 { "rx_64byte", RMON_R_P64 },
2948 { "rx_65to127byte", RMON_R_P65TO127 },
2949 { "rx_128to255byte", RMON_R_P128TO255 },
2950 { "rx_256to511byte", RMON_R_P256TO511 },
2951 { "rx_512to1023byte", RMON_R_P512TO1023 },
2952 { "rx_1024to2047byte", RMON_R_P1024TO2047 },
2953 { "rx_GTE2048byte", RMON_R_P_GTE2048 },
2954 { "rx_octets", RMON_R_OCTETS },
2955
2956 /* IEEE RX */
2957 { "IEEE_rx_drop", IEEE_R_DROP },
2958 { "IEEE_rx_frame_ok", IEEE_R_FRAME_OK },
2959 { "IEEE_rx_crc", IEEE_R_CRC },
2960 { "IEEE_rx_align", IEEE_R_ALIGN },
2961 { "IEEE_rx_macerr", IEEE_R_MACERR },
2962 { "IEEE_rx_fdxfc", IEEE_R_FDXFC },
2963 { "IEEE_rx_octets_ok", IEEE_R_OCTETS_OK },
2964 };
2965
2966 #define FEC_STATS_SIZE (ARRAY_SIZE(fec_stats) * sizeof(u64))
2967
2968 static const char *fec_xdp_stat_strs[XDP_STATS_TOTAL] = {
2969 "rx_xdp_redirect", /* RX_XDP_REDIRECT = 0, */
2970 "rx_xdp_pass", /* RX_XDP_PASS, */
2971 "rx_xdp_drop", /* RX_XDP_DROP, */
2972 "rx_xdp_tx", /* RX_XDP_TX, */
2973 "rx_xdp_tx_errors", /* RX_XDP_TX_ERRORS, */
2974 "tx_xdp_xmit", /* TX_XDP_XMIT, */
2975 "tx_xdp_xmit_errors", /* TX_XDP_XMIT_ERRORS, */
2976 };
2977
fec_enet_update_ethtool_stats(struct net_device * dev)2978 static void fec_enet_update_ethtool_stats(struct net_device *dev)
2979 {
2980 struct fec_enet_private *fep = netdev_priv(dev);
2981 int i;
2982
2983 for (i = 0; i < ARRAY_SIZE(fec_stats); i++)
2984 fep->ethtool_stats[i] = readl(fep->hwp + fec_stats[i].offset);
2985 }
2986
fec_enet_get_xdp_stats(struct fec_enet_private * fep,u64 * data)2987 static void fec_enet_get_xdp_stats(struct fec_enet_private *fep, u64 *data)
2988 {
2989 u64 xdp_stats[XDP_STATS_TOTAL] = { 0 };
2990 struct fec_enet_priv_rx_q *rxq;
2991 int i, j;
2992
2993 for (i = fep->num_rx_queues - 1; i >= 0; i--) {
2994 rxq = fep->rx_queue[i];
2995
2996 for (j = 0; j < XDP_STATS_TOTAL; j++)
2997 xdp_stats[j] += rxq->stats[j];
2998 }
2999
3000 memcpy(data, xdp_stats, sizeof(xdp_stats));
3001 }
3002
fec_enet_page_pool_stats(struct fec_enet_private * fep,u64 * data)3003 static void fec_enet_page_pool_stats(struct fec_enet_private *fep, u64 *data)
3004 {
3005 #ifdef CONFIG_PAGE_POOL_STATS
3006 struct page_pool_stats stats = {};
3007 struct fec_enet_priv_rx_q *rxq;
3008 int i;
3009
3010 for (i = fep->num_rx_queues - 1; i >= 0; i--) {
3011 rxq = fep->rx_queue[i];
3012
3013 if (!rxq->page_pool)
3014 continue;
3015
3016 page_pool_get_stats(rxq->page_pool, &stats);
3017 }
3018
3019 page_pool_ethtool_stats_get(data, &stats);
3020 #endif
3021 }
3022
fec_enet_get_ethtool_stats(struct net_device * dev,struct ethtool_stats * stats,u64 * data)3023 static void fec_enet_get_ethtool_stats(struct net_device *dev,
3024 struct ethtool_stats *stats, u64 *data)
3025 {
3026 struct fec_enet_private *fep = netdev_priv(dev);
3027
3028 if (netif_running(dev))
3029 fec_enet_update_ethtool_stats(dev);
3030
3031 memcpy(data, fep->ethtool_stats, FEC_STATS_SIZE);
3032 data += FEC_STATS_SIZE / sizeof(u64);
3033
3034 fec_enet_get_xdp_stats(fep, data);
3035 data += XDP_STATS_TOTAL;
3036
3037 fec_enet_page_pool_stats(fep, data);
3038 }
3039
fec_enet_get_strings(struct net_device * netdev,u32 stringset,u8 * data)3040 static void fec_enet_get_strings(struct net_device *netdev,
3041 u32 stringset, u8 *data)
3042 {
3043 int i;
3044 switch (stringset) {
3045 case ETH_SS_STATS:
3046 for (i = 0; i < ARRAY_SIZE(fec_stats); i++) {
3047 ethtool_puts(&data, fec_stats[i].name);
3048 }
3049 for (i = 0; i < ARRAY_SIZE(fec_xdp_stat_strs); i++) {
3050 ethtool_puts(&data, fec_xdp_stat_strs[i]);
3051 }
3052 page_pool_ethtool_stats_get_strings(data);
3053
3054 break;
3055 case ETH_SS_TEST:
3056 net_selftest_get_strings(data);
3057 break;
3058 }
3059 }
3060
fec_enet_get_sset_count(struct net_device * dev,int sset)3061 static int fec_enet_get_sset_count(struct net_device *dev, int sset)
3062 {
3063 int count;
3064
3065 switch (sset) {
3066 case ETH_SS_STATS:
3067 count = ARRAY_SIZE(fec_stats) + XDP_STATS_TOTAL;
3068 count += page_pool_ethtool_stats_get_count();
3069 return count;
3070
3071 case ETH_SS_TEST:
3072 return net_selftest_get_count();
3073 default:
3074 return -EOPNOTSUPP;
3075 }
3076 }
3077
fec_enet_clear_ethtool_stats(struct net_device * dev)3078 static void fec_enet_clear_ethtool_stats(struct net_device *dev)
3079 {
3080 struct fec_enet_private *fep = netdev_priv(dev);
3081 struct fec_enet_priv_rx_q *rxq;
3082 int i, j;
3083
3084 /* Disable MIB statistics counters */
3085 writel(FEC_MIB_CTRLSTAT_DISABLE, fep->hwp + FEC_MIB_CTRLSTAT);
3086
3087 for (i = 0; i < ARRAY_SIZE(fec_stats); i++)
3088 writel(0, fep->hwp + fec_stats[i].offset);
3089
3090 for (i = fep->num_rx_queues - 1; i >= 0; i--) {
3091 rxq = fep->rx_queue[i];
3092 for (j = 0; j < XDP_STATS_TOTAL; j++)
3093 rxq->stats[j] = 0;
3094 }
3095
3096 /* Don't disable MIB statistics counters */
3097 writel(0, fep->hwp + FEC_MIB_CTRLSTAT);
3098 }
3099
3100 #else /* !defined(CONFIG_M5272) */
3101 #define FEC_STATS_SIZE 0
fec_enet_update_ethtool_stats(struct net_device * dev)3102 static inline void fec_enet_update_ethtool_stats(struct net_device *dev)
3103 {
3104 }
3105
fec_enet_clear_ethtool_stats(struct net_device * dev)3106 static inline void fec_enet_clear_ethtool_stats(struct net_device *dev)
3107 {
3108 }
3109 #endif /* !defined(CONFIG_M5272) */
3110
3111 /* ITR clock source is enet system clock (clk_ahb).
3112 * TCTT unit is cycle_ns * 64 cycle
3113 * So, the ICTT value = X us / (cycle_ns * 64)
3114 */
fec_enet_us_to_itr_clock(struct net_device * ndev,int us)3115 static int fec_enet_us_to_itr_clock(struct net_device *ndev, int us)
3116 {
3117 struct fec_enet_private *fep = netdev_priv(ndev);
3118
3119 return us * (fep->itr_clk_rate / 64000) / 1000;
3120 }
3121
3122 /* Set threshold for interrupt coalescing */
fec_enet_itr_coal_set(struct net_device * ndev)3123 static void fec_enet_itr_coal_set(struct net_device *ndev)
3124 {
3125 struct fec_enet_private *fep = netdev_priv(ndev);
3126 u32 rx_itr = 0, tx_itr = 0;
3127 int rx_ictt, tx_ictt;
3128
3129 rx_ictt = fec_enet_us_to_itr_clock(ndev, fep->rx_time_itr);
3130 tx_ictt = fec_enet_us_to_itr_clock(ndev, fep->tx_time_itr);
3131
3132 if (rx_ictt > 0 && fep->rx_pkts_itr > 1) {
3133 /* Enable with enet system clock as Interrupt Coalescing timer Clock Source */
3134 rx_itr = FEC_ITR_EN | FEC_ITR_CLK_SEL;
3135 rx_itr |= FEC_ITR_ICFT(fep->rx_pkts_itr);
3136 rx_itr |= FEC_ITR_ICTT(rx_ictt);
3137 }
3138
3139 if (tx_ictt > 0 && fep->tx_pkts_itr > 1) {
3140 /* Enable with enet system clock as Interrupt Coalescing timer Clock Source */
3141 tx_itr = FEC_ITR_EN | FEC_ITR_CLK_SEL;
3142 tx_itr |= FEC_ITR_ICFT(fep->tx_pkts_itr);
3143 tx_itr |= FEC_ITR_ICTT(tx_ictt);
3144 }
3145
3146 writel(tx_itr, fep->hwp + FEC_TXIC0);
3147 writel(rx_itr, fep->hwp + FEC_RXIC0);
3148 if (fep->quirks & FEC_QUIRK_HAS_MULTI_QUEUES) {
3149 writel(tx_itr, fep->hwp + FEC_TXIC1);
3150 writel(rx_itr, fep->hwp + FEC_RXIC1);
3151 writel(tx_itr, fep->hwp + FEC_TXIC2);
3152 writel(rx_itr, fep->hwp + FEC_RXIC2);
3153 }
3154 }
3155
fec_enet_get_coalesce(struct net_device * ndev,struct ethtool_coalesce * ec,struct kernel_ethtool_coalesce * kernel_coal,struct netlink_ext_ack * extack)3156 static int fec_enet_get_coalesce(struct net_device *ndev,
3157 struct ethtool_coalesce *ec,
3158 struct kernel_ethtool_coalesce *kernel_coal,
3159 struct netlink_ext_ack *extack)
3160 {
3161 struct fec_enet_private *fep = netdev_priv(ndev);
3162
3163 if (!(fep->quirks & FEC_QUIRK_HAS_COALESCE))
3164 return -EOPNOTSUPP;
3165
3166 ec->rx_coalesce_usecs = fep->rx_time_itr;
3167 ec->rx_max_coalesced_frames = fep->rx_pkts_itr;
3168
3169 ec->tx_coalesce_usecs = fep->tx_time_itr;
3170 ec->tx_max_coalesced_frames = fep->tx_pkts_itr;
3171
3172 return 0;
3173 }
3174
fec_enet_set_coalesce(struct net_device * ndev,struct ethtool_coalesce * ec,struct kernel_ethtool_coalesce * kernel_coal,struct netlink_ext_ack * extack)3175 static int fec_enet_set_coalesce(struct net_device *ndev,
3176 struct ethtool_coalesce *ec,
3177 struct kernel_ethtool_coalesce *kernel_coal,
3178 struct netlink_ext_ack *extack)
3179 {
3180 struct fec_enet_private *fep = netdev_priv(ndev);
3181 struct device *dev = &fep->pdev->dev;
3182 unsigned int cycle;
3183
3184 if (!(fep->quirks & FEC_QUIRK_HAS_COALESCE))
3185 return -EOPNOTSUPP;
3186
3187 if (ec->rx_max_coalesced_frames > 255) {
3188 dev_err(dev, "Rx coalesced frames exceed hardware limitation\n");
3189 return -EINVAL;
3190 }
3191
3192 if (ec->tx_max_coalesced_frames > 255) {
3193 dev_err(dev, "Tx coalesced frame exceed hardware limitation\n");
3194 return -EINVAL;
3195 }
3196
3197 cycle = fec_enet_us_to_itr_clock(ndev, ec->rx_coalesce_usecs);
3198 if (cycle > 0xFFFF) {
3199 dev_err(dev, "Rx coalesced usec exceed hardware limitation\n");
3200 return -EINVAL;
3201 }
3202
3203 cycle = fec_enet_us_to_itr_clock(ndev, ec->tx_coalesce_usecs);
3204 if (cycle > 0xFFFF) {
3205 dev_err(dev, "Tx coalesced usec exceed hardware limitation\n");
3206 return -EINVAL;
3207 }
3208
3209 fep->rx_time_itr = ec->rx_coalesce_usecs;
3210 fep->rx_pkts_itr = ec->rx_max_coalesced_frames;
3211
3212 fep->tx_time_itr = ec->tx_coalesce_usecs;
3213 fep->tx_pkts_itr = ec->tx_max_coalesced_frames;
3214
3215 fec_enet_itr_coal_set(ndev);
3216
3217 return 0;
3218 }
3219
3220 static int
fec_enet_get_eee(struct net_device * ndev,struct ethtool_keee * edata)3221 fec_enet_get_eee(struct net_device *ndev, struct ethtool_keee *edata)
3222 {
3223 struct fec_enet_private *fep = netdev_priv(ndev);
3224 struct ethtool_keee *p = &fep->eee;
3225
3226 if (!(fep->quirks & FEC_QUIRK_HAS_EEE))
3227 return -EOPNOTSUPP;
3228
3229 if (!netif_running(ndev))
3230 return -ENETDOWN;
3231
3232 edata->tx_lpi_timer = p->tx_lpi_timer;
3233
3234 return phy_ethtool_get_eee(ndev->phydev, edata);
3235 }
3236
3237 static int
fec_enet_set_eee(struct net_device * ndev,struct ethtool_keee * edata)3238 fec_enet_set_eee(struct net_device *ndev, struct ethtool_keee *edata)
3239 {
3240 struct fec_enet_private *fep = netdev_priv(ndev);
3241 struct ethtool_keee *p = &fep->eee;
3242
3243 if (!(fep->quirks & FEC_QUIRK_HAS_EEE))
3244 return -EOPNOTSUPP;
3245
3246 if (!netif_running(ndev))
3247 return -ENETDOWN;
3248
3249 p->tx_lpi_timer = edata->tx_lpi_timer;
3250
3251 return phy_ethtool_set_eee(ndev->phydev, edata);
3252 }
3253
3254 static void
fec_enet_get_wol(struct net_device * ndev,struct ethtool_wolinfo * wol)3255 fec_enet_get_wol(struct net_device *ndev, struct ethtool_wolinfo *wol)
3256 {
3257 struct fec_enet_private *fep = netdev_priv(ndev);
3258
3259 if (fep->wol_flag & FEC_WOL_HAS_MAGIC_PACKET) {
3260 wol->supported = WAKE_MAGIC;
3261 wol->wolopts = fep->wol_flag & FEC_WOL_FLAG_ENABLE ? WAKE_MAGIC : 0;
3262 } else {
3263 wol->supported = wol->wolopts = 0;
3264 }
3265 }
3266
3267 static int
fec_enet_set_wol(struct net_device * ndev,struct ethtool_wolinfo * wol)3268 fec_enet_set_wol(struct net_device *ndev, struct ethtool_wolinfo *wol)
3269 {
3270 struct fec_enet_private *fep = netdev_priv(ndev);
3271
3272 if (!(fep->wol_flag & FEC_WOL_HAS_MAGIC_PACKET))
3273 return -EINVAL;
3274
3275 if (wol->wolopts & ~WAKE_MAGIC)
3276 return -EINVAL;
3277
3278 device_set_wakeup_enable(&ndev->dev, wol->wolopts & WAKE_MAGIC);
3279 if (device_may_wakeup(&ndev->dev))
3280 fep->wol_flag |= FEC_WOL_FLAG_ENABLE;
3281 else
3282 fep->wol_flag &= (~FEC_WOL_FLAG_ENABLE);
3283
3284 return 0;
3285 }
3286
3287 static const struct ethtool_ops fec_enet_ethtool_ops = {
3288 .supported_coalesce_params = ETHTOOL_COALESCE_USECS |
3289 ETHTOOL_COALESCE_MAX_FRAMES,
3290 .get_drvinfo = fec_enet_get_drvinfo,
3291 .get_regs_len = fec_enet_get_regs_len,
3292 .get_regs = fec_enet_get_regs,
3293 .nway_reset = phy_ethtool_nway_reset,
3294 .get_link = ethtool_op_get_link,
3295 .get_coalesce = fec_enet_get_coalesce,
3296 .set_coalesce = fec_enet_set_coalesce,
3297 #ifndef CONFIG_M5272
3298 .get_pauseparam = fec_enet_get_pauseparam,
3299 .set_pauseparam = fec_enet_set_pauseparam,
3300 .get_strings = fec_enet_get_strings,
3301 .get_ethtool_stats = fec_enet_get_ethtool_stats,
3302 .get_sset_count = fec_enet_get_sset_count,
3303 #endif
3304 .get_ts_info = fec_enet_get_ts_info,
3305 .get_wol = fec_enet_get_wol,
3306 .set_wol = fec_enet_set_wol,
3307 .get_eee = fec_enet_get_eee,
3308 .set_eee = fec_enet_set_eee,
3309 .get_link_ksettings = phy_ethtool_get_link_ksettings,
3310 .set_link_ksettings = phy_ethtool_set_link_ksettings,
3311 .self_test = net_selftest,
3312 };
3313
fec_enet_free_buffers(struct net_device * ndev)3314 static void fec_enet_free_buffers(struct net_device *ndev)
3315 {
3316 struct fec_enet_private *fep = netdev_priv(ndev);
3317 unsigned int i;
3318 struct fec_enet_priv_tx_q *txq;
3319 struct fec_enet_priv_rx_q *rxq;
3320 unsigned int q;
3321
3322 for (q = 0; q < fep->num_rx_queues; q++) {
3323 rxq = fep->rx_queue[q];
3324 for (i = 0; i < rxq->bd.ring_size; i++)
3325 page_pool_put_full_page(rxq->page_pool, rxq->rx_skb_info[i].page, false);
3326
3327 for (i = 0; i < XDP_STATS_TOTAL; i++)
3328 rxq->stats[i] = 0;
3329
3330 if (xdp_rxq_info_is_reg(&rxq->xdp_rxq))
3331 xdp_rxq_info_unreg(&rxq->xdp_rxq);
3332 page_pool_destroy(rxq->page_pool);
3333 rxq->page_pool = NULL;
3334 }
3335
3336 for (q = 0; q < fep->num_tx_queues; q++) {
3337 txq = fep->tx_queue[q];
3338 for (i = 0; i < txq->bd.ring_size; i++) {
3339 kfree(txq->tx_bounce[i]);
3340 txq->tx_bounce[i] = NULL;
3341
3342 if (!txq->tx_buf[i].buf_p) {
3343 txq->tx_buf[i].type = FEC_TXBUF_T_SKB;
3344 continue;
3345 }
3346
3347 if (txq->tx_buf[i].type == FEC_TXBUF_T_SKB) {
3348 dev_kfree_skb(txq->tx_buf[i].buf_p);
3349 } else if (txq->tx_buf[i].type == FEC_TXBUF_T_XDP_NDO) {
3350 xdp_return_frame(txq->tx_buf[i].buf_p);
3351 } else {
3352 struct page *page = txq->tx_buf[i].buf_p;
3353
3354 page_pool_put_page(page->pp, page, 0, false);
3355 }
3356
3357 txq->tx_buf[i].buf_p = NULL;
3358 txq->tx_buf[i].type = FEC_TXBUF_T_SKB;
3359 }
3360 }
3361 }
3362
fec_enet_free_queue(struct net_device * ndev)3363 static void fec_enet_free_queue(struct net_device *ndev)
3364 {
3365 struct fec_enet_private *fep = netdev_priv(ndev);
3366 int i;
3367 struct fec_enet_priv_tx_q *txq;
3368
3369 for (i = 0; i < fep->num_tx_queues; i++)
3370 if (fep->tx_queue[i] && fep->tx_queue[i]->tso_hdrs) {
3371 txq = fep->tx_queue[i];
3372 fec_dma_free(&fep->pdev->dev,
3373 txq->bd.ring_size * TSO_HEADER_SIZE,
3374 txq->tso_hdrs, txq->tso_hdrs_dma);
3375 }
3376
3377 for (i = 0; i < fep->num_rx_queues; i++)
3378 kfree(fep->rx_queue[i]);
3379 for (i = 0; i < fep->num_tx_queues; i++)
3380 kfree(fep->tx_queue[i]);
3381 }
3382
fec_enet_alloc_queue(struct net_device * ndev)3383 static int fec_enet_alloc_queue(struct net_device *ndev)
3384 {
3385 struct fec_enet_private *fep = netdev_priv(ndev);
3386 int i;
3387 int ret = 0;
3388 struct fec_enet_priv_tx_q *txq;
3389
3390 for (i = 0; i < fep->num_tx_queues; i++) {
3391 txq = kzalloc(sizeof(*txq), GFP_KERNEL);
3392 if (!txq) {
3393 ret = -ENOMEM;
3394 goto alloc_failed;
3395 }
3396
3397 fep->tx_queue[i] = txq;
3398 txq->bd.ring_size = TX_RING_SIZE;
3399 fep->total_tx_ring_size += fep->tx_queue[i]->bd.ring_size;
3400
3401 txq->tx_stop_threshold = FEC_MAX_SKB_DESCS;
3402 txq->tx_wake_threshold = FEC_MAX_SKB_DESCS + 2 * MAX_SKB_FRAGS;
3403
3404 txq->tso_hdrs = fec_dma_alloc(&fep->pdev->dev,
3405 txq->bd.ring_size * TSO_HEADER_SIZE,
3406 &txq->tso_hdrs_dma, GFP_KERNEL);
3407 if (!txq->tso_hdrs) {
3408 ret = -ENOMEM;
3409 goto alloc_failed;
3410 }
3411 }
3412
3413 for (i = 0; i < fep->num_rx_queues; i++) {
3414 fep->rx_queue[i] = kzalloc(sizeof(*fep->rx_queue[i]),
3415 GFP_KERNEL);
3416 if (!fep->rx_queue[i]) {
3417 ret = -ENOMEM;
3418 goto alloc_failed;
3419 }
3420
3421 fep->rx_queue[i]->bd.ring_size = RX_RING_SIZE;
3422 fep->total_rx_ring_size += fep->rx_queue[i]->bd.ring_size;
3423 }
3424 return ret;
3425
3426 alloc_failed:
3427 fec_enet_free_queue(ndev);
3428 return ret;
3429 }
3430
3431 static int
fec_enet_alloc_rxq_buffers(struct net_device * ndev,unsigned int queue)3432 fec_enet_alloc_rxq_buffers(struct net_device *ndev, unsigned int queue)
3433 {
3434 struct fec_enet_private *fep = netdev_priv(ndev);
3435 struct fec_enet_priv_rx_q *rxq;
3436 dma_addr_t phys_addr;
3437 struct bufdesc *bdp;
3438 struct page *page;
3439 int i, err;
3440
3441 rxq = fep->rx_queue[queue];
3442 bdp = rxq->bd.base;
3443
3444 err = fec_enet_create_page_pool(fep, rxq, rxq->bd.ring_size);
3445 if (err < 0) {
3446 netdev_err(ndev, "%s failed queue %d (%d)\n", __func__, queue, err);
3447 return err;
3448 }
3449
3450 for (i = 0; i < rxq->bd.ring_size; i++) {
3451 page = page_pool_dev_alloc_pages(rxq->page_pool);
3452 if (!page)
3453 goto err_alloc;
3454
3455 phys_addr = page_pool_get_dma_addr(page) + FEC_ENET_XDP_HEADROOM;
3456 bdp->cbd_bufaddr = cpu_to_fec32(phys_addr);
3457
3458 rxq->rx_skb_info[i].page = page;
3459 rxq->rx_skb_info[i].offset = FEC_ENET_XDP_HEADROOM;
3460 bdp->cbd_sc = cpu_to_fec16(BD_ENET_RX_EMPTY);
3461
3462 if (fep->bufdesc_ex) {
3463 struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
3464 ebdp->cbd_esc = cpu_to_fec32(BD_ENET_RX_INT);
3465 }
3466
3467 bdp = fec_enet_get_nextdesc(bdp, &rxq->bd);
3468 }
3469
3470 /* Set the last buffer to wrap. */
3471 bdp = fec_enet_get_prevdesc(bdp, &rxq->bd);
3472 bdp->cbd_sc |= cpu_to_fec16(BD_SC_WRAP);
3473 return 0;
3474
3475 err_alloc:
3476 fec_enet_free_buffers(ndev);
3477 return -ENOMEM;
3478 }
3479
3480 static int
fec_enet_alloc_txq_buffers(struct net_device * ndev,unsigned int queue)3481 fec_enet_alloc_txq_buffers(struct net_device *ndev, unsigned int queue)
3482 {
3483 struct fec_enet_private *fep = netdev_priv(ndev);
3484 unsigned int i;
3485 struct bufdesc *bdp;
3486 struct fec_enet_priv_tx_q *txq;
3487
3488 txq = fep->tx_queue[queue];
3489 bdp = txq->bd.base;
3490 for (i = 0; i < txq->bd.ring_size; i++) {
3491 txq->tx_bounce[i] = kmalloc(FEC_ENET_TX_FRSIZE, GFP_KERNEL);
3492 if (!txq->tx_bounce[i])
3493 goto err_alloc;
3494
3495 bdp->cbd_sc = cpu_to_fec16(0);
3496 bdp->cbd_bufaddr = cpu_to_fec32(0);
3497
3498 if (fep->bufdesc_ex) {
3499 struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
3500 ebdp->cbd_esc = cpu_to_fec32(BD_ENET_TX_INT);
3501 }
3502
3503 bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
3504 }
3505
3506 /* Set the last buffer to wrap. */
3507 bdp = fec_enet_get_prevdesc(bdp, &txq->bd);
3508 bdp->cbd_sc |= cpu_to_fec16(BD_SC_WRAP);
3509
3510 return 0;
3511
3512 err_alloc:
3513 fec_enet_free_buffers(ndev);
3514 return -ENOMEM;
3515 }
3516
fec_enet_alloc_buffers(struct net_device * ndev)3517 static int fec_enet_alloc_buffers(struct net_device *ndev)
3518 {
3519 struct fec_enet_private *fep = netdev_priv(ndev);
3520 unsigned int i;
3521
3522 for (i = 0; i < fep->num_rx_queues; i++)
3523 if (fec_enet_alloc_rxq_buffers(ndev, i))
3524 return -ENOMEM;
3525
3526 for (i = 0; i < fep->num_tx_queues; i++)
3527 if (fec_enet_alloc_txq_buffers(ndev, i))
3528 return -ENOMEM;
3529 return 0;
3530 }
3531
3532 static int
fec_enet_open(struct net_device * ndev)3533 fec_enet_open(struct net_device *ndev)
3534 {
3535 struct fec_enet_private *fep = netdev_priv(ndev);
3536 int ret;
3537 bool reset_again;
3538
3539 ret = pm_runtime_resume_and_get(&fep->pdev->dev);
3540 if (ret < 0)
3541 return ret;
3542
3543 pinctrl_pm_select_default_state(&fep->pdev->dev);
3544 ret = fec_enet_clk_enable(ndev, true);
3545 if (ret)
3546 goto clk_enable;
3547
3548 /* During the first fec_enet_open call the PHY isn't probed at this
3549 * point. Therefore the phy_reset_after_clk_enable() call within
3550 * fec_enet_clk_enable() fails. As we need this reset in order to be
3551 * sure the PHY is working correctly we check if we need to reset again
3552 * later when the PHY is probed
3553 */
3554 if (ndev->phydev && ndev->phydev->drv)
3555 reset_again = false;
3556 else
3557 reset_again = true;
3558
3559 /* I should reset the ring buffers here, but I don't yet know
3560 * a simple way to do that.
3561 */
3562
3563 ret = fec_enet_alloc_buffers(ndev);
3564 if (ret)
3565 goto err_enet_alloc;
3566
3567 /* Init MAC prior to mii bus probe */
3568 fec_restart(ndev);
3569
3570 /* Call phy_reset_after_clk_enable() again if it failed during
3571 * phy_reset_after_clk_enable() before because the PHY wasn't probed.
3572 */
3573 if (reset_again)
3574 fec_enet_phy_reset_after_clk_enable(ndev);
3575
3576 /* Probe and connect to PHY when open the interface */
3577 ret = fec_enet_mii_probe(ndev);
3578 if (ret)
3579 goto err_enet_mii_probe;
3580
3581 if (fep->quirks & FEC_QUIRK_ERR006687)
3582 imx6q_cpuidle_fec_irqs_used();
3583
3584 if (fep->quirks & FEC_QUIRK_HAS_PMQOS)
3585 cpu_latency_qos_add_request(&fep->pm_qos_req, 0);
3586
3587 napi_enable(&fep->napi);
3588 phy_start(ndev->phydev);
3589 netif_tx_start_all_queues(ndev);
3590
3591 device_set_wakeup_enable(&ndev->dev, fep->wol_flag &
3592 FEC_WOL_FLAG_ENABLE);
3593
3594 return 0;
3595
3596 err_enet_mii_probe:
3597 fec_enet_free_buffers(ndev);
3598 err_enet_alloc:
3599 fec_enet_clk_enable(ndev, false);
3600 clk_enable:
3601 pm_runtime_mark_last_busy(&fep->pdev->dev);
3602 pm_runtime_put_autosuspend(&fep->pdev->dev);
3603 pinctrl_pm_select_sleep_state(&fep->pdev->dev);
3604 return ret;
3605 }
3606
3607 static int
fec_enet_close(struct net_device * ndev)3608 fec_enet_close(struct net_device *ndev)
3609 {
3610 struct fec_enet_private *fep = netdev_priv(ndev);
3611
3612 phy_stop(ndev->phydev);
3613
3614 if (netif_device_present(ndev)) {
3615 napi_disable(&fep->napi);
3616 netif_tx_disable(ndev);
3617 fec_stop(ndev);
3618 }
3619
3620 phy_disconnect(ndev->phydev);
3621
3622 if (fep->quirks & FEC_QUIRK_ERR006687)
3623 imx6q_cpuidle_fec_irqs_unused();
3624
3625 fec_enet_update_ethtool_stats(ndev);
3626
3627 fec_enet_clk_enable(ndev, false);
3628 if (fep->quirks & FEC_QUIRK_HAS_PMQOS)
3629 cpu_latency_qos_remove_request(&fep->pm_qos_req);
3630
3631 pinctrl_pm_select_sleep_state(&fep->pdev->dev);
3632 pm_runtime_mark_last_busy(&fep->pdev->dev);
3633 pm_runtime_put_autosuspend(&fep->pdev->dev);
3634
3635 fec_enet_free_buffers(ndev);
3636
3637 return 0;
3638 }
3639
3640 /* Set or clear the multicast filter for this adaptor.
3641 * Skeleton taken from sunlance driver.
3642 * The CPM Ethernet implementation allows Multicast as well as individual
3643 * MAC address filtering. Some of the drivers check to make sure it is
3644 * a group multicast address, and discard those that are not. I guess I
3645 * will do the same for now, but just remove the test if you want
3646 * individual filtering as well (do the upper net layers want or support
3647 * this kind of feature?).
3648 */
3649
3650 #define FEC_HASH_BITS 6 /* #bits in hash */
3651
set_multicast_list(struct net_device * ndev)3652 static void set_multicast_list(struct net_device *ndev)
3653 {
3654 struct fec_enet_private *fep = netdev_priv(ndev);
3655 struct netdev_hw_addr *ha;
3656 unsigned int crc, tmp;
3657 unsigned char hash;
3658 unsigned int hash_high = 0, hash_low = 0;
3659
3660 if (ndev->flags & IFF_PROMISC) {
3661 tmp = readl(fep->hwp + FEC_R_CNTRL);
3662 tmp |= 0x8;
3663 writel(tmp, fep->hwp + FEC_R_CNTRL);
3664 return;
3665 }
3666
3667 tmp = readl(fep->hwp + FEC_R_CNTRL);
3668 tmp &= ~0x8;
3669 writel(tmp, fep->hwp + FEC_R_CNTRL);
3670
3671 if (ndev->flags & IFF_ALLMULTI) {
3672 /* Catch all multicast addresses, so set the
3673 * filter to all 1's
3674 */
3675 writel(0xffffffff, fep->hwp + FEC_GRP_HASH_TABLE_HIGH);
3676 writel(0xffffffff, fep->hwp + FEC_GRP_HASH_TABLE_LOW);
3677
3678 return;
3679 }
3680
3681 /* Add the addresses in hash register */
3682 netdev_for_each_mc_addr(ha, ndev) {
3683 /* calculate crc32 value of mac address */
3684 crc = ether_crc_le(ndev->addr_len, ha->addr);
3685
3686 /* only upper 6 bits (FEC_HASH_BITS) are used
3687 * which point to specific bit in the hash registers
3688 */
3689 hash = (crc >> (32 - FEC_HASH_BITS)) & 0x3f;
3690
3691 if (hash > 31)
3692 hash_high |= 1 << (hash - 32);
3693 else
3694 hash_low |= 1 << hash;
3695 }
3696
3697 writel(hash_high, fep->hwp + FEC_GRP_HASH_TABLE_HIGH);
3698 writel(hash_low, fep->hwp + FEC_GRP_HASH_TABLE_LOW);
3699 }
3700
3701 /* Set a MAC change in hardware. */
3702 static int
fec_set_mac_address(struct net_device * ndev,void * p)3703 fec_set_mac_address(struct net_device *ndev, void *p)
3704 {
3705 struct fec_enet_private *fep = netdev_priv(ndev);
3706 struct sockaddr *addr = p;
3707
3708 if (addr) {
3709 if (!is_valid_ether_addr(addr->sa_data))
3710 return -EADDRNOTAVAIL;
3711 eth_hw_addr_set(ndev, addr->sa_data);
3712 }
3713
3714 /* Add netif status check here to avoid system hang in below case:
3715 * ifconfig ethx down; ifconfig ethx hw ether xx:xx:xx:xx:xx:xx;
3716 * After ethx down, fec all clocks are gated off and then register
3717 * access causes system hang.
3718 */
3719 if (!netif_running(ndev))
3720 return 0;
3721
3722 writel(ndev->dev_addr[3] | (ndev->dev_addr[2] << 8) |
3723 (ndev->dev_addr[1] << 16) | (ndev->dev_addr[0] << 24),
3724 fep->hwp + FEC_ADDR_LOW);
3725 writel((ndev->dev_addr[5] << 16) | (ndev->dev_addr[4] << 24),
3726 fep->hwp + FEC_ADDR_HIGH);
3727 return 0;
3728 }
3729
fec_enet_set_netdev_features(struct net_device * netdev,netdev_features_t features)3730 static inline void fec_enet_set_netdev_features(struct net_device *netdev,
3731 netdev_features_t features)
3732 {
3733 struct fec_enet_private *fep = netdev_priv(netdev);
3734 netdev_features_t changed = features ^ netdev->features;
3735
3736 netdev->features = features;
3737
3738 /* Receive checksum has been changed */
3739 if (changed & NETIF_F_RXCSUM) {
3740 if (features & NETIF_F_RXCSUM)
3741 fep->csum_flags |= FLAG_RX_CSUM_ENABLED;
3742 else
3743 fep->csum_flags &= ~FLAG_RX_CSUM_ENABLED;
3744 }
3745 }
3746
fec_set_features(struct net_device * netdev,netdev_features_t features)3747 static int fec_set_features(struct net_device *netdev,
3748 netdev_features_t features)
3749 {
3750 struct fec_enet_private *fep = netdev_priv(netdev);
3751 netdev_features_t changed = features ^ netdev->features;
3752
3753 if (netif_running(netdev) && changed & NETIF_F_RXCSUM) {
3754 napi_disable(&fep->napi);
3755 netif_tx_lock_bh(netdev);
3756 fec_stop(netdev);
3757 fec_enet_set_netdev_features(netdev, features);
3758 fec_restart(netdev);
3759 netif_tx_wake_all_queues(netdev);
3760 netif_tx_unlock_bh(netdev);
3761 napi_enable(&fep->napi);
3762 } else {
3763 fec_enet_set_netdev_features(netdev, features);
3764 }
3765
3766 return 0;
3767 }
3768
fec_enet_select_queue(struct net_device * ndev,struct sk_buff * skb,struct net_device * sb_dev)3769 static u16 fec_enet_select_queue(struct net_device *ndev, struct sk_buff *skb,
3770 struct net_device *sb_dev)
3771 {
3772 struct fec_enet_private *fep = netdev_priv(ndev);
3773 u16 vlan_tag = 0;
3774
3775 if (!(fep->quirks & FEC_QUIRK_HAS_AVB))
3776 return netdev_pick_tx(ndev, skb, NULL);
3777
3778 /* VLAN is present in the payload.*/
3779 if (eth_type_vlan(skb->protocol)) {
3780 struct vlan_ethhdr *vhdr = skb_vlan_eth_hdr(skb);
3781
3782 vlan_tag = ntohs(vhdr->h_vlan_TCI);
3783 /* VLAN is present in the skb but not yet pushed in the payload.*/
3784 } else if (skb_vlan_tag_present(skb)) {
3785 vlan_tag = skb->vlan_tci;
3786 } else {
3787 return vlan_tag;
3788 }
3789
3790 return fec_enet_vlan_pri_to_queue[vlan_tag >> 13];
3791 }
3792
fec_enet_bpf(struct net_device * dev,struct netdev_bpf * bpf)3793 static int fec_enet_bpf(struct net_device *dev, struct netdev_bpf *bpf)
3794 {
3795 struct fec_enet_private *fep = netdev_priv(dev);
3796 bool is_run = netif_running(dev);
3797 struct bpf_prog *old_prog;
3798
3799 switch (bpf->command) {
3800 case XDP_SETUP_PROG:
3801 /* No need to support the SoCs that require to
3802 * do the frame swap because the performance wouldn't be
3803 * better than the skb mode.
3804 */
3805 if (fep->quirks & FEC_QUIRK_SWAP_FRAME)
3806 return -EOPNOTSUPP;
3807
3808 if (!bpf->prog)
3809 xdp_features_clear_redirect_target(dev);
3810
3811 if (is_run) {
3812 napi_disable(&fep->napi);
3813 netif_tx_disable(dev);
3814 }
3815
3816 old_prog = xchg(&fep->xdp_prog, bpf->prog);
3817 if (old_prog)
3818 bpf_prog_put(old_prog);
3819
3820 fec_restart(dev);
3821
3822 if (is_run) {
3823 napi_enable(&fep->napi);
3824 netif_tx_start_all_queues(dev);
3825 }
3826
3827 if (bpf->prog)
3828 xdp_features_set_redirect_target(dev, false);
3829
3830 return 0;
3831
3832 case XDP_SETUP_XSK_POOL:
3833 return -EOPNOTSUPP;
3834
3835 default:
3836 return -EOPNOTSUPP;
3837 }
3838 }
3839
3840 static int
fec_enet_xdp_get_tx_queue(struct fec_enet_private * fep,int index)3841 fec_enet_xdp_get_tx_queue(struct fec_enet_private *fep, int index)
3842 {
3843 if (unlikely(index < 0))
3844 return 0;
3845
3846 return (index % fep->num_tx_queues);
3847 }
3848
fec_enet_txq_xmit_frame(struct fec_enet_private * fep,struct fec_enet_priv_tx_q * txq,void * frame,u32 dma_sync_len,bool ndo_xmit)3849 static int fec_enet_txq_xmit_frame(struct fec_enet_private *fep,
3850 struct fec_enet_priv_tx_q *txq,
3851 void *frame, u32 dma_sync_len,
3852 bool ndo_xmit)
3853 {
3854 unsigned int index, status, estatus;
3855 struct bufdesc *bdp;
3856 dma_addr_t dma_addr;
3857 int entries_free;
3858 u16 frame_len;
3859
3860 entries_free = fec_enet_get_free_txdesc_num(txq);
3861 if (entries_free < MAX_SKB_FRAGS + 1) {
3862 netdev_err_once(fep->netdev, "NOT enough BD for SG!\n");
3863 return -EBUSY;
3864 }
3865
3866 /* Fill in a Tx ring entry */
3867 bdp = txq->bd.cur;
3868 status = fec16_to_cpu(bdp->cbd_sc);
3869 status &= ~BD_ENET_TX_STATS;
3870
3871 index = fec_enet_get_bd_index(bdp, &txq->bd);
3872
3873 if (ndo_xmit) {
3874 struct xdp_frame *xdpf = frame;
3875
3876 dma_addr = dma_map_single(&fep->pdev->dev, xdpf->data,
3877 xdpf->len, DMA_TO_DEVICE);
3878 if (dma_mapping_error(&fep->pdev->dev, dma_addr))
3879 return -ENOMEM;
3880
3881 frame_len = xdpf->len;
3882 txq->tx_buf[index].buf_p = xdpf;
3883 txq->tx_buf[index].type = FEC_TXBUF_T_XDP_NDO;
3884 } else {
3885 struct xdp_buff *xdpb = frame;
3886 struct page *page;
3887
3888 page = virt_to_page(xdpb->data);
3889 dma_addr = page_pool_get_dma_addr(page) +
3890 (xdpb->data - xdpb->data_hard_start);
3891 dma_sync_single_for_device(&fep->pdev->dev, dma_addr,
3892 dma_sync_len, DMA_BIDIRECTIONAL);
3893 frame_len = xdpb->data_end - xdpb->data;
3894 txq->tx_buf[index].buf_p = page;
3895 txq->tx_buf[index].type = FEC_TXBUF_T_XDP_TX;
3896 }
3897
3898 status |= (BD_ENET_TX_INTR | BD_ENET_TX_LAST);
3899 if (fep->bufdesc_ex)
3900 estatus = BD_ENET_TX_INT;
3901
3902 bdp->cbd_bufaddr = cpu_to_fec32(dma_addr);
3903 bdp->cbd_datlen = cpu_to_fec16(frame_len);
3904
3905 if (fep->bufdesc_ex) {
3906 struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
3907
3908 if (fep->quirks & FEC_QUIRK_HAS_AVB)
3909 estatus |= FEC_TX_BD_FTYPE(txq->bd.qid);
3910
3911 ebdp->cbd_bdu = 0;
3912 ebdp->cbd_esc = cpu_to_fec32(estatus);
3913 }
3914
3915 /* Make sure the updates to rest of the descriptor are performed before
3916 * transferring ownership.
3917 */
3918 dma_wmb();
3919
3920 /* Send it on its way. Tell FEC it's ready, interrupt when done,
3921 * it's the last BD of the frame, and to put the CRC on the end.
3922 */
3923 status |= (BD_ENET_TX_READY | BD_ENET_TX_TC);
3924 bdp->cbd_sc = cpu_to_fec16(status);
3925
3926 /* If this was the last BD in the ring, start at the beginning again. */
3927 bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
3928
3929 /* Make sure the update to bdp are performed before txq->bd.cur. */
3930 dma_wmb();
3931
3932 txq->bd.cur = bdp;
3933
3934 /* Trigger transmission start */
3935 writel(0, txq->bd.reg_desc_active);
3936
3937 return 0;
3938 }
3939
fec_enet_xdp_tx_xmit(struct fec_enet_private * fep,int cpu,struct xdp_buff * xdp,u32 dma_sync_len)3940 static int fec_enet_xdp_tx_xmit(struct fec_enet_private *fep,
3941 int cpu, struct xdp_buff *xdp,
3942 u32 dma_sync_len)
3943 {
3944 struct fec_enet_priv_tx_q *txq;
3945 struct netdev_queue *nq;
3946 int queue, ret;
3947
3948 queue = fec_enet_xdp_get_tx_queue(fep, cpu);
3949 txq = fep->tx_queue[queue];
3950 nq = netdev_get_tx_queue(fep->netdev, queue);
3951
3952 __netif_tx_lock(nq, cpu);
3953
3954 /* Avoid tx timeout as XDP shares the queue with kernel stack */
3955 txq_trans_cond_update(nq);
3956 ret = fec_enet_txq_xmit_frame(fep, txq, xdp, dma_sync_len, false);
3957
3958 __netif_tx_unlock(nq);
3959
3960 return ret;
3961 }
3962
fec_enet_xdp_xmit(struct net_device * dev,int num_frames,struct xdp_frame ** frames,u32 flags)3963 static int fec_enet_xdp_xmit(struct net_device *dev,
3964 int num_frames,
3965 struct xdp_frame **frames,
3966 u32 flags)
3967 {
3968 struct fec_enet_private *fep = netdev_priv(dev);
3969 struct fec_enet_priv_tx_q *txq;
3970 int cpu = smp_processor_id();
3971 unsigned int sent_frames = 0;
3972 struct netdev_queue *nq;
3973 unsigned int queue;
3974 int i;
3975
3976 queue = fec_enet_xdp_get_tx_queue(fep, cpu);
3977 txq = fep->tx_queue[queue];
3978 nq = netdev_get_tx_queue(fep->netdev, queue);
3979
3980 __netif_tx_lock(nq, cpu);
3981
3982 /* Avoid tx timeout as XDP shares the queue with kernel stack */
3983 txq_trans_cond_update(nq);
3984 for (i = 0; i < num_frames; i++) {
3985 if (fec_enet_txq_xmit_frame(fep, txq, frames[i], 0, true) < 0)
3986 break;
3987 sent_frames++;
3988 }
3989
3990 __netif_tx_unlock(nq);
3991
3992 return sent_frames;
3993 }
3994
fec_hwtstamp_get(struct net_device * ndev,struct kernel_hwtstamp_config * config)3995 static int fec_hwtstamp_get(struct net_device *ndev,
3996 struct kernel_hwtstamp_config *config)
3997 {
3998 struct fec_enet_private *fep = netdev_priv(ndev);
3999
4000 if (!netif_running(ndev))
4001 return -EINVAL;
4002
4003 if (!fep->bufdesc_ex)
4004 return -EOPNOTSUPP;
4005
4006 fec_ptp_get(ndev, config);
4007
4008 return 0;
4009 }
4010
fec_hwtstamp_set(struct net_device * ndev,struct kernel_hwtstamp_config * config,struct netlink_ext_ack * extack)4011 static int fec_hwtstamp_set(struct net_device *ndev,
4012 struct kernel_hwtstamp_config *config,
4013 struct netlink_ext_ack *extack)
4014 {
4015 struct fec_enet_private *fep = netdev_priv(ndev);
4016
4017 if (!netif_running(ndev))
4018 return -EINVAL;
4019
4020 if (!fep->bufdesc_ex)
4021 return -EOPNOTSUPP;
4022
4023 return fec_ptp_set(ndev, config, extack);
4024 }
4025
4026 static const struct net_device_ops fec_netdev_ops = {
4027 .ndo_open = fec_enet_open,
4028 .ndo_stop = fec_enet_close,
4029 .ndo_start_xmit = fec_enet_start_xmit,
4030 .ndo_select_queue = fec_enet_select_queue,
4031 .ndo_set_rx_mode = set_multicast_list,
4032 .ndo_validate_addr = eth_validate_addr,
4033 .ndo_tx_timeout = fec_timeout,
4034 .ndo_set_mac_address = fec_set_mac_address,
4035 .ndo_eth_ioctl = phy_do_ioctl_running,
4036 .ndo_set_features = fec_set_features,
4037 .ndo_bpf = fec_enet_bpf,
4038 .ndo_xdp_xmit = fec_enet_xdp_xmit,
4039 .ndo_hwtstamp_get = fec_hwtstamp_get,
4040 .ndo_hwtstamp_set = fec_hwtstamp_set,
4041 };
4042
4043 static const unsigned short offset_des_active_rxq[] = {
4044 FEC_R_DES_ACTIVE_0, FEC_R_DES_ACTIVE_1, FEC_R_DES_ACTIVE_2
4045 };
4046
4047 static const unsigned short offset_des_active_txq[] = {
4048 FEC_X_DES_ACTIVE_0, FEC_X_DES_ACTIVE_1, FEC_X_DES_ACTIVE_2
4049 };
4050
4051 /*
4052 * XXX: We need to clean up on failure exits here.
4053 *
4054 */
fec_enet_init(struct net_device * ndev)4055 static int fec_enet_init(struct net_device *ndev)
4056 {
4057 struct fec_enet_private *fep = netdev_priv(ndev);
4058 struct bufdesc *cbd_base;
4059 dma_addr_t bd_dma;
4060 int bd_size;
4061 unsigned int i;
4062 unsigned dsize = fep->bufdesc_ex ? sizeof(struct bufdesc_ex) :
4063 sizeof(struct bufdesc);
4064 unsigned dsize_log2 = __fls(dsize);
4065 int ret;
4066
4067 WARN_ON(dsize != (1 << dsize_log2));
4068 #if defined(CONFIG_ARM) || defined(CONFIG_ARM64)
4069 fep->rx_align = 0xf;
4070 fep->tx_align = 0xf;
4071 #else
4072 fep->rx_align = 0x3;
4073 fep->tx_align = 0x3;
4074 #endif
4075 fep->rx_pkts_itr = FEC_ITR_ICFT_DEFAULT;
4076 fep->tx_pkts_itr = FEC_ITR_ICFT_DEFAULT;
4077 fep->rx_time_itr = FEC_ITR_ICTT_DEFAULT;
4078 fep->tx_time_itr = FEC_ITR_ICTT_DEFAULT;
4079
4080 /* Check mask of the streaming and coherent API */
4081 ret = dma_set_mask_and_coherent(&fep->pdev->dev, DMA_BIT_MASK(32));
4082 if (ret < 0) {
4083 dev_warn(&fep->pdev->dev, "No suitable DMA available\n");
4084 return ret;
4085 }
4086
4087 ret = fec_enet_alloc_queue(ndev);
4088 if (ret)
4089 return ret;
4090
4091 bd_size = (fep->total_tx_ring_size + fep->total_rx_ring_size) * dsize;
4092
4093 /* Allocate memory for buffer descriptors. */
4094 cbd_base = fec_dmam_alloc(&fep->pdev->dev, bd_size, &bd_dma,
4095 GFP_KERNEL);
4096 if (!cbd_base) {
4097 ret = -ENOMEM;
4098 goto free_queue_mem;
4099 }
4100
4101 /* Get the Ethernet address */
4102 ret = fec_get_mac(ndev);
4103 if (ret)
4104 goto free_queue_mem;
4105
4106 /* Set receive and transmit descriptor base. */
4107 for (i = 0; i < fep->num_rx_queues; i++) {
4108 struct fec_enet_priv_rx_q *rxq = fep->rx_queue[i];
4109 unsigned size = dsize * rxq->bd.ring_size;
4110
4111 rxq->bd.qid = i;
4112 rxq->bd.base = cbd_base;
4113 rxq->bd.cur = cbd_base;
4114 rxq->bd.dma = bd_dma;
4115 rxq->bd.dsize = dsize;
4116 rxq->bd.dsize_log2 = dsize_log2;
4117 rxq->bd.reg_desc_active = fep->hwp + offset_des_active_rxq[i];
4118 bd_dma += size;
4119 cbd_base = (struct bufdesc *)(((void *)cbd_base) + size);
4120 rxq->bd.last = (struct bufdesc *)(((void *)cbd_base) - dsize);
4121 }
4122
4123 for (i = 0; i < fep->num_tx_queues; i++) {
4124 struct fec_enet_priv_tx_q *txq = fep->tx_queue[i];
4125 unsigned size = dsize * txq->bd.ring_size;
4126
4127 txq->bd.qid = i;
4128 txq->bd.base = cbd_base;
4129 txq->bd.cur = cbd_base;
4130 txq->bd.dma = bd_dma;
4131 txq->bd.dsize = dsize;
4132 txq->bd.dsize_log2 = dsize_log2;
4133 txq->bd.reg_desc_active = fep->hwp + offset_des_active_txq[i];
4134 bd_dma += size;
4135 cbd_base = (struct bufdesc *)(((void *)cbd_base) + size);
4136 txq->bd.last = (struct bufdesc *)(((void *)cbd_base) - dsize);
4137 }
4138
4139
4140 /* The FEC Ethernet specific entries in the device structure */
4141 ndev->watchdog_timeo = TX_TIMEOUT;
4142 ndev->netdev_ops = &fec_netdev_ops;
4143 ndev->ethtool_ops = &fec_enet_ethtool_ops;
4144
4145 writel(FEC_RX_DISABLED_IMASK, fep->hwp + FEC_IMASK);
4146 netif_napi_add(ndev, &fep->napi, fec_enet_rx_napi);
4147
4148 if (fep->quirks & FEC_QUIRK_HAS_VLAN)
4149 /* enable hw VLAN support */
4150 ndev->features |= NETIF_F_HW_VLAN_CTAG_RX;
4151
4152 if (fep->quirks & FEC_QUIRK_HAS_CSUM) {
4153 netif_set_tso_max_segs(ndev, FEC_MAX_TSO_SEGS);
4154
4155 /* enable hw accelerator */
4156 ndev->features |= (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM
4157 | NETIF_F_RXCSUM | NETIF_F_SG | NETIF_F_TSO);
4158 fep->csum_flags |= FLAG_RX_CSUM_ENABLED;
4159 }
4160
4161 if (fep->quirks & FEC_QUIRK_HAS_MULTI_QUEUES) {
4162 fep->tx_align = 0;
4163 fep->rx_align = 0x3f;
4164 }
4165
4166 ndev->hw_features = ndev->features;
4167
4168 if (!(fep->quirks & FEC_QUIRK_SWAP_FRAME))
4169 ndev->xdp_features = NETDEV_XDP_ACT_BASIC |
4170 NETDEV_XDP_ACT_REDIRECT;
4171
4172 fec_restart(ndev);
4173
4174 if (fep->quirks & FEC_QUIRK_MIB_CLEAR)
4175 fec_enet_clear_ethtool_stats(ndev);
4176 else
4177 fec_enet_update_ethtool_stats(ndev);
4178
4179 return 0;
4180
4181 free_queue_mem:
4182 fec_enet_free_queue(ndev);
4183 return ret;
4184 }
4185
fec_enet_deinit(struct net_device * ndev)4186 static void fec_enet_deinit(struct net_device *ndev)
4187 {
4188 struct fec_enet_private *fep = netdev_priv(ndev);
4189
4190 netif_napi_del(&fep->napi);
4191 fec_enet_free_queue(ndev);
4192 }
4193
4194 #ifdef CONFIG_OF
fec_reset_phy(struct platform_device * pdev)4195 static int fec_reset_phy(struct platform_device *pdev)
4196 {
4197 struct gpio_desc *phy_reset;
4198 int msec = 1, phy_post_delay = 0;
4199 struct device_node *np = pdev->dev.of_node;
4200 int err;
4201
4202 if (!np)
4203 return 0;
4204
4205 err = of_property_read_u32(np, "phy-reset-duration", &msec);
4206 /* A sane reset duration should not be longer than 1s */
4207 if (!err && msec > 1000)
4208 msec = 1;
4209
4210 err = of_property_read_u32(np, "phy-reset-post-delay", &phy_post_delay);
4211 /* valid reset duration should be less than 1s */
4212 if (!err && phy_post_delay > 1000)
4213 return -EINVAL;
4214
4215 phy_reset = devm_gpiod_get_optional(&pdev->dev, "phy-reset",
4216 GPIOD_OUT_HIGH);
4217 if (IS_ERR(phy_reset))
4218 return dev_err_probe(&pdev->dev, PTR_ERR(phy_reset),
4219 "failed to get phy-reset-gpios\n");
4220
4221 if (!phy_reset)
4222 return 0;
4223
4224 if (msec > 20)
4225 msleep(msec);
4226 else
4227 usleep_range(msec * 1000, msec * 1000 + 1000);
4228
4229 gpiod_set_value_cansleep(phy_reset, 0);
4230
4231 if (!phy_post_delay)
4232 return 0;
4233
4234 if (phy_post_delay > 20)
4235 msleep(phy_post_delay);
4236 else
4237 usleep_range(phy_post_delay * 1000,
4238 phy_post_delay * 1000 + 1000);
4239
4240 return 0;
4241 }
4242 #else /* CONFIG_OF */
fec_reset_phy(struct platform_device * pdev)4243 static int fec_reset_phy(struct platform_device *pdev)
4244 {
4245 /*
4246 * In case of platform probe, the reset has been done
4247 * by machine code.
4248 */
4249 return 0;
4250 }
4251 #endif /* CONFIG_OF */
4252
4253 static void
fec_enet_get_queue_num(struct platform_device * pdev,int * num_tx,int * num_rx)4254 fec_enet_get_queue_num(struct platform_device *pdev, int *num_tx, int *num_rx)
4255 {
4256 struct device_node *np = pdev->dev.of_node;
4257
4258 *num_tx = *num_rx = 1;
4259
4260 if (!np || !of_device_is_available(np))
4261 return;
4262
4263 /* parse the num of tx and rx queues */
4264 of_property_read_u32(np, "fsl,num-tx-queues", num_tx);
4265
4266 of_property_read_u32(np, "fsl,num-rx-queues", num_rx);
4267
4268 if (*num_tx < 1 || *num_tx > FEC_ENET_MAX_TX_QS) {
4269 dev_warn(&pdev->dev, "Invalid num_tx(=%d), fall back to 1\n",
4270 *num_tx);
4271 *num_tx = 1;
4272 return;
4273 }
4274
4275 if (*num_rx < 1 || *num_rx > FEC_ENET_MAX_RX_QS) {
4276 dev_warn(&pdev->dev, "Invalid num_rx(=%d), fall back to 1\n",
4277 *num_rx);
4278 *num_rx = 1;
4279 return;
4280 }
4281
4282 }
4283
fec_enet_get_irq_cnt(struct platform_device * pdev)4284 static int fec_enet_get_irq_cnt(struct platform_device *pdev)
4285 {
4286 int irq_cnt = platform_irq_count(pdev);
4287
4288 if (irq_cnt > FEC_IRQ_NUM)
4289 irq_cnt = FEC_IRQ_NUM; /* last for pps */
4290 else if (irq_cnt == 2)
4291 irq_cnt = 1; /* last for pps */
4292 else if (irq_cnt <= 0)
4293 irq_cnt = 1; /* At least 1 irq is needed */
4294 return irq_cnt;
4295 }
4296
fec_enet_get_wakeup_irq(struct platform_device * pdev)4297 static void fec_enet_get_wakeup_irq(struct platform_device *pdev)
4298 {
4299 struct net_device *ndev = platform_get_drvdata(pdev);
4300 struct fec_enet_private *fep = netdev_priv(ndev);
4301
4302 if (fep->quirks & FEC_QUIRK_WAKEUP_FROM_INT2)
4303 fep->wake_irq = fep->irq[2];
4304 else
4305 fep->wake_irq = fep->irq[0];
4306 }
4307
fec_enet_init_stop_mode(struct fec_enet_private * fep,struct device_node * np)4308 static int fec_enet_init_stop_mode(struct fec_enet_private *fep,
4309 struct device_node *np)
4310 {
4311 struct device_node *gpr_np;
4312 u32 out_val[3];
4313 int ret = 0;
4314
4315 gpr_np = of_parse_phandle(np, "fsl,stop-mode", 0);
4316 if (!gpr_np)
4317 return 0;
4318
4319 ret = of_property_read_u32_array(np, "fsl,stop-mode", out_val,
4320 ARRAY_SIZE(out_val));
4321 if (ret) {
4322 dev_dbg(&fep->pdev->dev, "no stop mode property\n");
4323 goto out;
4324 }
4325
4326 fep->stop_gpr.gpr = syscon_node_to_regmap(gpr_np);
4327 if (IS_ERR(fep->stop_gpr.gpr)) {
4328 dev_err(&fep->pdev->dev, "could not find gpr regmap\n");
4329 ret = PTR_ERR(fep->stop_gpr.gpr);
4330 fep->stop_gpr.gpr = NULL;
4331 goto out;
4332 }
4333
4334 fep->stop_gpr.reg = out_val[1];
4335 fep->stop_gpr.bit = out_val[2];
4336
4337 out:
4338 of_node_put(gpr_np);
4339
4340 return ret;
4341 }
4342
4343 static int
fec_probe(struct platform_device * pdev)4344 fec_probe(struct platform_device *pdev)
4345 {
4346 struct fec_enet_private *fep;
4347 struct fec_platform_data *pdata;
4348 phy_interface_t interface;
4349 struct net_device *ndev;
4350 int i, irq, ret = 0;
4351 static int dev_id;
4352 struct device_node *np = pdev->dev.of_node, *phy_node;
4353 int num_tx_qs;
4354 int num_rx_qs;
4355 char irq_name[8];
4356 int irq_cnt;
4357 const struct fec_devinfo *dev_info;
4358
4359 fec_enet_get_queue_num(pdev, &num_tx_qs, &num_rx_qs);
4360
4361 /* Init network device */
4362 ndev = alloc_etherdev_mqs(sizeof(struct fec_enet_private) +
4363 FEC_STATS_SIZE, num_tx_qs, num_rx_qs);
4364 if (!ndev)
4365 return -ENOMEM;
4366
4367 SET_NETDEV_DEV(ndev, &pdev->dev);
4368
4369 /* setup board info structure */
4370 fep = netdev_priv(ndev);
4371
4372 dev_info = device_get_match_data(&pdev->dev);
4373 if (!dev_info)
4374 dev_info = (const struct fec_devinfo *)pdev->id_entry->driver_data;
4375 if (dev_info)
4376 fep->quirks = dev_info->quirks;
4377
4378 fep->netdev = ndev;
4379 fep->num_rx_queues = num_rx_qs;
4380 fep->num_tx_queues = num_tx_qs;
4381
4382 #if !defined(CONFIG_M5272)
4383 /* default enable pause frame auto negotiation */
4384 if (fep->quirks & FEC_QUIRK_HAS_GBIT)
4385 fep->pause_flag |= FEC_PAUSE_FLAG_AUTONEG;
4386 #endif
4387
4388 /* Select default pin state */
4389 pinctrl_pm_select_default_state(&pdev->dev);
4390
4391 fep->hwp = devm_platform_ioremap_resource(pdev, 0);
4392 if (IS_ERR(fep->hwp)) {
4393 ret = PTR_ERR(fep->hwp);
4394 goto failed_ioremap;
4395 }
4396
4397 fep->pdev = pdev;
4398 fep->dev_id = dev_id++;
4399
4400 platform_set_drvdata(pdev, ndev);
4401
4402 if ((of_machine_is_compatible("fsl,imx6q") ||
4403 of_machine_is_compatible("fsl,imx6dl")) &&
4404 !of_property_read_bool(np, "fsl,err006687-workaround-present"))
4405 fep->quirks |= FEC_QUIRK_ERR006687;
4406
4407 ret = fec_enet_ipc_handle_init(fep);
4408 if (ret)
4409 goto failed_ipc_init;
4410
4411 if (of_property_read_bool(np, "fsl,magic-packet"))
4412 fep->wol_flag |= FEC_WOL_HAS_MAGIC_PACKET;
4413
4414 ret = fec_enet_init_stop_mode(fep, np);
4415 if (ret)
4416 goto failed_stop_mode;
4417
4418 phy_node = of_parse_phandle(np, "phy-handle", 0);
4419 if (!phy_node && of_phy_is_fixed_link(np)) {
4420 ret = of_phy_register_fixed_link(np);
4421 if (ret < 0) {
4422 dev_err(&pdev->dev,
4423 "broken fixed-link specification\n");
4424 goto failed_phy;
4425 }
4426 phy_node = of_node_get(np);
4427 }
4428 fep->phy_node = phy_node;
4429
4430 ret = of_get_phy_mode(pdev->dev.of_node, &interface);
4431 if (ret) {
4432 pdata = dev_get_platdata(&pdev->dev);
4433 if (pdata)
4434 fep->phy_interface = pdata->phy;
4435 else
4436 fep->phy_interface = PHY_INTERFACE_MODE_MII;
4437 } else {
4438 fep->phy_interface = interface;
4439 }
4440
4441 ret = fec_enet_parse_rgmii_delay(fep, np);
4442 if (ret)
4443 goto failed_rgmii_delay;
4444
4445 fep->clk_ipg = devm_clk_get(&pdev->dev, "ipg");
4446 if (IS_ERR(fep->clk_ipg)) {
4447 ret = PTR_ERR(fep->clk_ipg);
4448 goto failed_clk;
4449 }
4450
4451 fep->clk_ahb = devm_clk_get(&pdev->dev, "ahb");
4452 if (IS_ERR(fep->clk_ahb)) {
4453 ret = PTR_ERR(fep->clk_ahb);
4454 goto failed_clk;
4455 }
4456
4457 fep->itr_clk_rate = clk_get_rate(fep->clk_ahb);
4458
4459 /* enet_out is optional, depends on board */
4460 fep->clk_enet_out = devm_clk_get_optional(&pdev->dev, "enet_out");
4461 if (IS_ERR(fep->clk_enet_out)) {
4462 ret = PTR_ERR(fep->clk_enet_out);
4463 goto failed_clk;
4464 }
4465
4466 fep->ptp_clk_on = false;
4467 mutex_init(&fep->ptp_clk_mutex);
4468
4469 /* clk_ref is optional, depends on board */
4470 fep->clk_ref = devm_clk_get_optional(&pdev->dev, "enet_clk_ref");
4471 if (IS_ERR(fep->clk_ref)) {
4472 ret = PTR_ERR(fep->clk_ref);
4473 goto failed_clk;
4474 }
4475 fep->clk_ref_rate = clk_get_rate(fep->clk_ref);
4476
4477 /* clk_2x_txclk is optional, depends on board */
4478 if (fep->rgmii_txc_dly || fep->rgmii_rxc_dly) {
4479 fep->clk_2x_txclk = devm_clk_get(&pdev->dev, "enet_2x_txclk");
4480 if (IS_ERR(fep->clk_2x_txclk))
4481 fep->clk_2x_txclk = NULL;
4482 }
4483
4484 fep->bufdesc_ex = fep->quirks & FEC_QUIRK_HAS_BUFDESC_EX;
4485 fep->clk_ptp = devm_clk_get(&pdev->dev, "ptp");
4486 if (IS_ERR(fep->clk_ptp)) {
4487 fep->clk_ptp = NULL;
4488 fep->bufdesc_ex = false;
4489 }
4490
4491 ret = fec_enet_clk_enable(ndev, true);
4492 if (ret)
4493 goto failed_clk;
4494
4495 ret = clk_prepare_enable(fep->clk_ipg);
4496 if (ret)
4497 goto failed_clk_ipg;
4498 ret = clk_prepare_enable(fep->clk_ahb);
4499 if (ret)
4500 goto failed_clk_ahb;
4501
4502 fep->reg_phy = devm_regulator_get_optional(&pdev->dev, "phy");
4503 if (!IS_ERR(fep->reg_phy)) {
4504 ret = regulator_enable(fep->reg_phy);
4505 if (ret) {
4506 dev_err(&pdev->dev,
4507 "Failed to enable phy regulator: %d\n", ret);
4508 goto failed_regulator;
4509 }
4510 } else {
4511 if (PTR_ERR(fep->reg_phy) == -EPROBE_DEFER) {
4512 ret = -EPROBE_DEFER;
4513 goto failed_regulator;
4514 }
4515 fep->reg_phy = NULL;
4516 }
4517
4518 pm_runtime_set_autosuspend_delay(&pdev->dev, FEC_MDIO_PM_TIMEOUT);
4519 pm_runtime_use_autosuspend(&pdev->dev);
4520 pm_runtime_get_noresume(&pdev->dev);
4521 pm_runtime_set_active(&pdev->dev);
4522 pm_runtime_enable(&pdev->dev);
4523
4524 ret = fec_reset_phy(pdev);
4525 if (ret)
4526 goto failed_reset;
4527
4528 irq_cnt = fec_enet_get_irq_cnt(pdev);
4529 if (fep->bufdesc_ex)
4530 fec_ptp_init(pdev, irq_cnt);
4531
4532 ret = fec_enet_init(ndev);
4533 if (ret)
4534 goto failed_init;
4535
4536 for (i = 0; i < irq_cnt; i++) {
4537 snprintf(irq_name, sizeof(irq_name), "int%d", i);
4538 irq = platform_get_irq_byname_optional(pdev, irq_name);
4539 if (irq < 0)
4540 irq = platform_get_irq(pdev, i);
4541 if (irq < 0) {
4542 ret = irq;
4543 goto failed_irq;
4544 }
4545 ret = devm_request_irq(&pdev->dev, irq, fec_enet_interrupt,
4546 0, pdev->name, ndev);
4547 if (ret)
4548 goto failed_irq;
4549
4550 fep->irq[i] = irq;
4551 }
4552
4553 /* Decide which interrupt line is wakeup capable */
4554 fec_enet_get_wakeup_irq(pdev);
4555
4556 ret = fec_enet_mii_init(pdev);
4557 if (ret)
4558 goto failed_mii_init;
4559
4560 /* Carrier starts down, phylib will bring it up */
4561 netif_carrier_off(ndev);
4562 fec_enet_clk_enable(ndev, false);
4563 pinctrl_pm_select_sleep_state(&pdev->dev);
4564
4565 ndev->max_mtu = PKT_MAXBUF_SIZE - ETH_HLEN - ETH_FCS_LEN;
4566
4567 ret = register_netdev(ndev);
4568 if (ret)
4569 goto failed_register;
4570
4571 device_init_wakeup(&ndev->dev, fep->wol_flag &
4572 FEC_WOL_HAS_MAGIC_PACKET);
4573
4574 if (fep->bufdesc_ex && fep->ptp_clock)
4575 netdev_info(ndev, "registered PHC device %d\n", fep->dev_id);
4576
4577 INIT_WORK(&fep->tx_timeout_work, fec_enet_timeout_work);
4578
4579 pm_runtime_mark_last_busy(&pdev->dev);
4580 pm_runtime_put_autosuspend(&pdev->dev);
4581
4582 return 0;
4583
4584 failed_register:
4585 fec_enet_mii_remove(fep);
4586 failed_mii_init:
4587 failed_irq:
4588 fec_enet_deinit(ndev);
4589 failed_init:
4590 fec_ptp_stop(pdev);
4591 failed_reset:
4592 pm_runtime_put_noidle(&pdev->dev);
4593 pm_runtime_disable(&pdev->dev);
4594 if (fep->reg_phy)
4595 regulator_disable(fep->reg_phy);
4596 failed_regulator:
4597 clk_disable_unprepare(fep->clk_ahb);
4598 failed_clk_ahb:
4599 clk_disable_unprepare(fep->clk_ipg);
4600 failed_clk_ipg:
4601 fec_enet_clk_enable(ndev, false);
4602 failed_clk:
4603 failed_rgmii_delay:
4604 if (of_phy_is_fixed_link(np))
4605 of_phy_deregister_fixed_link(np);
4606 of_node_put(phy_node);
4607 failed_stop_mode:
4608 failed_ipc_init:
4609 failed_phy:
4610 dev_id--;
4611 failed_ioremap:
4612 free_netdev(ndev);
4613
4614 return ret;
4615 }
4616
4617 static void
fec_drv_remove(struct platform_device * pdev)4618 fec_drv_remove(struct platform_device *pdev)
4619 {
4620 struct net_device *ndev = platform_get_drvdata(pdev);
4621 struct fec_enet_private *fep = netdev_priv(ndev);
4622 struct device_node *np = pdev->dev.of_node;
4623 int ret;
4624
4625 ret = pm_runtime_get_sync(&pdev->dev);
4626 if (ret < 0)
4627 dev_err(&pdev->dev,
4628 "Failed to resume device in remove callback (%pe)\n",
4629 ERR_PTR(ret));
4630
4631 cancel_work_sync(&fep->tx_timeout_work);
4632 fec_ptp_stop(pdev);
4633 unregister_netdev(ndev);
4634 fec_enet_mii_remove(fep);
4635 if (fep->reg_phy)
4636 regulator_disable(fep->reg_phy);
4637
4638 if (of_phy_is_fixed_link(np))
4639 of_phy_deregister_fixed_link(np);
4640 of_node_put(fep->phy_node);
4641
4642 /* After pm_runtime_get_sync() failed, the clks are still off, so skip
4643 * disabling them again.
4644 */
4645 if (ret >= 0) {
4646 clk_disable_unprepare(fep->clk_ahb);
4647 clk_disable_unprepare(fep->clk_ipg);
4648 }
4649 pm_runtime_put_noidle(&pdev->dev);
4650 pm_runtime_disable(&pdev->dev);
4651
4652 fec_enet_deinit(ndev);
4653 free_netdev(ndev);
4654 }
4655
fec_suspend(struct device * dev)4656 static int fec_suspend(struct device *dev)
4657 {
4658 struct net_device *ndev = dev_get_drvdata(dev);
4659 struct fec_enet_private *fep = netdev_priv(ndev);
4660 int ret;
4661
4662 rtnl_lock();
4663 if (netif_running(ndev)) {
4664 if (fep->wol_flag & FEC_WOL_FLAG_ENABLE)
4665 fep->wol_flag |= FEC_WOL_FLAG_SLEEP_ON;
4666 phy_stop(ndev->phydev);
4667 napi_disable(&fep->napi);
4668 netif_tx_lock_bh(ndev);
4669 netif_device_detach(ndev);
4670 netif_tx_unlock_bh(ndev);
4671 fec_stop(ndev);
4672 if (!(fep->wol_flag & FEC_WOL_FLAG_ENABLE)) {
4673 fec_irqs_disable(ndev);
4674 pinctrl_pm_select_sleep_state(&fep->pdev->dev);
4675 } else {
4676 fec_irqs_disable_except_wakeup(ndev);
4677 if (fep->wake_irq > 0) {
4678 disable_irq(fep->wake_irq);
4679 enable_irq_wake(fep->wake_irq);
4680 }
4681 fec_enet_stop_mode(fep, true);
4682 }
4683 /* It's safe to disable clocks since interrupts are masked */
4684 fec_enet_clk_enable(ndev, false);
4685
4686 fep->rpm_active = !pm_runtime_status_suspended(dev);
4687 if (fep->rpm_active) {
4688 ret = pm_runtime_force_suspend(dev);
4689 if (ret < 0) {
4690 rtnl_unlock();
4691 return ret;
4692 }
4693 }
4694 }
4695 rtnl_unlock();
4696
4697 if (fep->reg_phy && !(fep->wol_flag & FEC_WOL_FLAG_ENABLE))
4698 regulator_disable(fep->reg_phy);
4699
4700 /* SOC supply clock to phy, when clock is disabled, phy link down
4701 * SOC control phy regulator, when regulator is disabled, phy link down
4702 */
4703 if (fep->clk_enet_out || fep->reg_phy)
4704 fep->link = 0;
4705
4706 return 0;
4707 }
4708
fec_resume(struct device * dev)4709 static int fec_resume(struct device *dev)
4710 {
4711 struct net_device *ndev = dev_get_drvdata(dev);
4712 struct fec_enet_private *fep = netdev_priv(ndev);
4713 int ret;
4714 int val;
4715
4716 if (fep->reg_phy && !(fep->wol_flag & FEC_WOL_FLAG_ENABLE)) {
4717 ret = regulator_enable(fep->reg_phy);
4718 if (ret)
4719 return ret;
4720 }
4721
4722 rtnl_lock();
4723 if (netif_running(ndev)) {
4724 if (fep->rpm_active)
4725 pm_runtime_force_resume(dev);
4726
4727 ret = fec_enet_clk_enable(ndev, true);
4728 if (ret) {
4729 rtnl_unlock();
4730 goto failed_clk;
4731 }
4732 if (fep->wol_flag & FEC_WOL_FLAG_ENABLE) {
4733 fec_enet_stop_mode(fep, false);
4734 if (fep->wake_irq) {
4735 disable_irq_wake(fep->wake_irq);
4736 enable_irq(fep->wake_irq);
4737 }
4738
4739 val = readl(fep->hwp + FEC_ECNTRL);
4740 val &= ~(FEC_ECR_MAGICEN | FEC_ECR_SLEEP);
4741 writel(val, fep->hwp + FEC_ECNTRL);
4742 fep->wol_flag &= ~FEC_WOL_FLAG_SLEEP_ON;
4743 } else {
4744 pinctrl_pm_select_default_state(&fep->pdev->dev);
4745 }
4746 fec_restart(ndev);
4747 netif_tx_lock_bh(ndev);
4748 netif_device_attach(ndev);
4749 netif_tx_unlock_bh(ndev);
4750 napi_enable(&fep->napi);
4751 phy_init_hw(ndev->phydev);
4752 phy_start(ndev->phydev);
4753 }
4754 rtnl_unlock();
4755
4756 return 0;
4757
4758 failed_clk:
4759 if (fep->reg_phy)
4760 regulator_disable(fep->reg_phy);
4761 return ret;
4762 }
4763
fec_runtime_suspend(struct device * dev)4764 static int fec_runtime_suspend(struct device *dev)
4765 {
4766 struct net_device *ndev = dev_get_drvdata(dev);
4767 struct fec_enet_private *fep = netdev_priv(ndev);
4768
4769 clk_disable_unprepare(fep->clk_ahb);
4770 clk_disable_unprepare(fep->clk_ipg);
4771
4772 return 0;
4773 }
4774
fec_runtime_resume(struct device * dev)4775 static int fec_runtime_resume(struct device *dev)
4776 {
4777 struct net_device *ndev = dev_get_drvdata(dev);
4778 struct fec_enet_private *fep = netdev_priv(ndev);
4779 int ret;
4780
4781 ret = clk_prepare_enable(fep->clk_ahb);
4782 if (ret)
4783 return ret;
4784 ret = clk_prepare_enable(fep->clk_ipg);
4785 if (ret)
4786 goto failed_clk_ipg;
4787
4788 return 0;
4789
4790 failed_clk_ipg:
4791 clk_disable_unprepare(fep->clk_ahb);
4792 return ret;
4793 }
4794
4795 static const struct dev_pm_ops fec_pm_ops = {
4796 SYSTEM_SLEEP_PM_OPS(fec_suspend, fec_resume)
4797 RUNTIME_PM_OPS(fec_runtime_suspend, fec_runtime_resume, NULL)
4798 };
4799
4800 static struct platform_driver fec_driver = {
4801 .driver = {
4802 .name = DRIVER_NAME,
4803 .pm = pm_ptr(&fec_pm_ops),
4804 .of_match_table = fec_dt_ids,
4805 .suppress_bind_attrs = true,
4806 },
4807 .id_table = fec_devtype,
4808 .probe = fec_probe,
4809 .remove_new = fec_drv_remove,
4810 };
4811
4812 module_platform_driver(fec_driver);
4813
4814 MODULE_DESCRIPTION("NXP Fast Ethernet Controller (FEC) driver");
4815 MODULE_LICENSE("GPL");
4816