• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * Fast Ethernet Controller (FEC) driver for Motorola MPC8xx.
4  * Copyright (c) 1997 Dan Malek (dmalek@jlc.net)
5  *
6  * Right now, I am very wasteful with the buffers.  I allocate memory
7  * pages and then divide them into 2K frame buffers.  This way I know I
8  * have buffers large enough to hold one frame within one buffer descriptor.
9  * Once I get this working, I will use 64 or 128 byte CPM buffers, which
10  * will be much more memory efficient and will easily handle lots of
11  * small packets.
12  *
13  * Much better multiple PHY support by Magnus Damm.
14  * Copyright (c) 2000 Ericsson Radio Systems AB.
15  *
16  * Support for FEC controller of ColdFire processors.
17  * Copyright (c) 2001-2005 Greg Ungerer (gerg@snapgear.com)
18  *
19  * Bug fixes and cleanup by Philippe De Muyter (phdm@macqel.be)
20  * Copyright (c) 2004-2006 Macq Electronique SA.
21  *
22  * Copyright (C) 2010-2011 Freescale Semiconductor, Inc.
23  */
24 
25 #include <linux/module.h>
26 #include <linux/kernel.h>
27 #include <linux/string.h>
28 #include <linux/pm_runtime.h>
29 #include <linux/ptrace.h>
30 #include <linux/errno.h>
31 #include <linux/ioport.h>
32 #include <linux/slab.h>
33 #include <linux/interrupt.h>
34 #include <linux/delay.h>
35 #include <linux/netdevice.h>
36 #include <linux/etherdevice.h>
37 #include <linux/skbuff.h>
38 #include <linux/in.h>
39 #include <linux/ip.h>
40 #include <net/ip.h>
41 #include <net/page_pool/helpers.h>
42 #include <net/selftests.h>
43 #include <net/tso.h>
44 #include <linux/tcp.h>
45 #include <linux/udp.h>
46 #include <linux/icmp.h>
47 #include <linux/spinlock.h>
48 #include <linux/workqueue.h>
49 #include <linux/bitops.h>
50 #include <linux/io.h>
51 #include <linux/irq.h>
52 #include <linux/clk.h>
53 #include <linux/crc32.h>
54 #include <linux/platform_device.h>
55 #include <linux/property.h>
56 #include <linux/mdio.h>
57 #include <linux/phy.h>
58 #include <linux/fec.h>
59 #include <linux/of.h>
60 #include <linux/of_mdio.h>
61 #include <linux/of_net.h>
62 #include <linux/regulator/consumer.h>
63 #include <linux/if_vlan.h>
64 #include <linux/pinctrl/consumer.h>
65 #include <linux/gpio/consumer.h>
66 #include <linux/prefetch.h>
67 #include <linux/mfd/syscon.h>
68 #include <linux/regmap.h>
69 #include <soc/imx/cpuidle.h>
70 #include <linux/filter.h>
71 #include <linux/bpf.h>
72 #include <linux/bpf_trace.h>
73 
74 #include <asm/cacheflush.h>
75 
76 #include "fec.h"
77 
78 static void set_multicast_list(struct net_device *ndev);
79 static void fec_enet_itr_coal_set(struct net_device *ndev);
80 static int fec_enet_xdp_tx_xmit(struct fec_enet_private *fep,
81 				int cpu, struct xdp_buff *xdp,
82 				u32 dma_sync_len);
83 
84 #define DRIVER_NAME	"fec"
85 
86 static const u16 fec_enet_vlan_pri_to_queue[8] = {0, 0, 1, 1, 1, 2, 2, 2};
87 
88 #define FEC_ENET_RSEM_V	0x84
89 #define FEC_ENET_RSFL_V	16
90 #define FEC_ENET_RAEM_V	0x8
91 #define FEC_ENET_RAFL_V	0x8
92 #define FEC_ENET_OPD_V	0xFFF0
93 #define FEC_MDIO_PM_TIMEOUT  100 /* ms */
94 
95 #define FEC_ENET_XDP_PASS          0
96 #define FEC_ENET_XDP_CONSUMED      BIT(0)
97 #define FEC_ENET_XDP_TX            BIT(1)
98 #define FEC_ENET_XDP_REDIR         BIT(2)
99 
100 struct fec_devinfo {
101 	u32 quirks;
102 };
103 
104 static const struct fec_devinfo fec_imx25_info = {
105 	.quirks = FEC_QUIRK_USE_GASKET | FEC_QUIRK_MIB_CLEAR |
106 		  FEC_QUIRK_HAS_FRREG | FEC_QUIRK_HAS_MDIO_C45,
107 };
108 
109 static const struct fec_devinfo fec_imx27_info = {
110 	.quirks = FEC_QUIRK_MIB_CLEAR | FEC_QUIRK_HAS_FRREG |
111 		  FEC_QUIRK_HAS_MDIO_C45,
112 };
113 
114 static const struct fec_devinfo fec_imx28_info = {
115 	.quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_SWAP_FRAME |
116 		  FEC_QUIRK_SINGLE_MDIO | FEC_QUIRK_HAS_RACC |
117 		  FEC_QUIRK_HAS_FRREG | FEC_QUIRK_CLEAR_SETUP_MII |
118 		  FEC_QUIRK_NO_HARD_RESET | FEC_QUIRK_HAS_MDIO_C45,
119 };
120 
121 static const struct fec_devinfo fec_imx6q_info = {
122 	.quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT |
123 		  FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM |
124 		  FEC_QUIRK_HAS_VLAN | FEC_QUIRK_ERR006358 |
125 		  FEC_QUIRK_HAS_RACC | FEC_QUIRK_CLEAR_SETUP_MII |
126 		  FEC_QUIRK_HAS_PMQOS | FEC_QUIRK_HAS_MDIO_C45,
127 };
128 
129 static const struct fec_devinfo fec_mvf600_info = {
130 	.quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_RACC |
131 		  FEC_QUIRK_HAS_MDIO_C45,
132 };
133 
134 static const struct fec_devinfo fec_imx6sx_info = {
135 	.quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT |
136 		  FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM |
137 		  FEC_QUIRK_HAS_VLAN | FEC_QUIRK_HAS_AVB |
138 		  FEC_QUIRK_ERR007885 | FEC_QUIRK_BUG_CAPTURE |
139 		  FEC_QUIRK_HAS_RACC | FEC_QUIRK_HAS_COALESCE |
140 		  FEC_QUIRK_CLEAR_SETUP_MII | FEC_QUIRK_HAS_MULTI_QUEUES |
141 		  FEC_QUIRK_HAS_MDIO_C45,
142 };
143 
144 static const struct fec_devinfo fec_imx6ul_info = {
145 	.quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT |
146 		  FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM |
147 		  FEC_QUIRK_HAS_VLAN | FEC_QUIRK_ERR007885 |
148 		  FEC_QUIRK_BUG_CAPTURE | FEC_QUIRK_HAS_RACC |
149 		  FEC_QUIRK_HAS_COALESCE | FEC_QUIRK_CLEAR_SETUP_MII |
150 		  FEC_QUIRK_HAS_MDIO_C45,
151 };
152 
153 static const struct fec_devinfo fec_imx8mq_info = {
154 	.quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT |
155 		  FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM |
156 		  FEC_QUIRK_HAS_VLAN | FEC_QUIRK_HAS_AVB |
157 		  FEC_QUIRK_ERR007885 | FEC_QUIRK_BUG_CAPTURE |
158 		  FEC_QUIRK_HAS_RACC | FEC_QUIRK_HAS_COALESCE |
159 		  FEC_QUIRK_CLEAR_SETUP_MII | FEC_QUIRK_HAS_MULTI_QUEUES |
160 		  FEC_QUIRK_HAS_EEE | FEC_QUIRK_WAKEUP_FROM_INT2 |
161 		  FEC_QUIRK_HAS_MDIO_C45,
162 };
163 
164 static const struct fec_devinfo fec_imx8qm_info = {
165 	.quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT |
166 		  FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM |
167 		  FEC_QUIRK_HAS_VLAN | FEC_QUIRK_HAS_AVB |
168 		  FEC_QUIRK_ERR007885 | FEC_QUIRK_BUG_CAPTURE |
169 		  FEC_QUIRK_HAS_RACC | FEC_QUIRK_HAS_COALESCE |
170 		  FEC_QUIRK_CLEAR_SETUP_MII | FEC_QUIRK_HAS_MULTI_QUEUES |
171 		  FEC_QUIRK_DELAYED_CLKS_SUPPORT | FEC_QUIRK_HAS_MDIO_C45,
172 };
173 
174 static const struct fec_devinfo fec_s32v234_info = {
175 	.quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT |
176 		  FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM |
177 		  FEC_QUIRK_HAS_VLAN | FEC_QUIRK_HAS_AVB |
178 		  FEC_QUIRK_ERR007885 | FEC_QUIRK_BUG_CAPTURE |
179 		  FEC_QUIRK_HAS_MDIO_C45,
180 };
181 
182 static struct platform_device_id fec_devtype[] = {
183 	{
184 		/* keep it for coldfire */
185 		.name = DRIVER_NAME,
186 		.driver_data = 0,
187 	}, {
188 		/* sentinel */
189 	}
190 };
191 MODULE_DEVICE_TABLE(platform, fec_devtype);
192 
193 static const struct of_device_id fec_dt_ids[] = {
194 	{ .compatible = "fsl,imx25-fec", .data = &fec_imx25_info, },
195 	{ .compatible = "fsl,imx27-fec", .data = &fec_imx27_info, },
196 	{ .compatible = "fsl,imx28-fec", .data = &fec_imx28_info, },
197 	{ .compatible = "fsl,imx6q-fec", .data = &fec_imx6q_info, },
198 	{ .compatible = "fsl,mvf600-fec", .data = &fec_mvf600_info, },
199 	{ .compatible = "fsl,imx6sx-fec", .data = &fec_imx6sx_info, },
200 	{ .compatible = "fsl,imx6ul-fec", .data = &fec_imx6ul_info, },
201 	{ .compatible = "fsl,imx8mq-fec", .data = &fec_imx8mq_info, },
202 	{ .compatible = "fsl,imx8qm-fec", .data = &fec_imx8qm_info, },
203 	{ .compatible = "fsl,s32v234-fec", .data = &fec_s32v234_info, },
204 	{ /* sentinel */ }
205 };
206 MODULE_DEVICE_TABLE(of, fec_dt_ids);
207 
208 static unsigned char macaddr[ETH_ALEN];
209 module_param_array(macaddr, byte, NULL, 0);
210 MODULE_PARM_DESC(macaddr, "FEC Ethernet MAC address");
211 
212 #if defined(CONFIG_M5272)
213 /*
214  * Some hardware gets it MAC address out of local flash memory.
215  * if this is non-zero then assume it is the address to get MAC from.
216  */
217 #if defined(CONFIG_NETtel)
218 #define	FEC_FLASHMAC	0xf0006006
219 #elif defined(CONFIG_GILBARCONAP) || defined(CONFIG_SCALES)
220 #define	FEC_FLASHMAC	0xf0006000
221 #elif defined(CONFIG_CANCam)
222 #define	FEC_FLASHMAC	0xf0020000
223 #elif defined (CONFIG_M5272C3)
224 #define	FEC_FLASHMAC	(0xffe04000 + 4)
225 #elif defined(CONFIG_MOD5272)
226 #define FEC_FLASHMAC	0xffc0406b
227 #else
228 #define	FEC_FLASHMAC	0
229 #endif
230 #endif /* CONFIG_M5272 */
231 
232 /* The FEC stores dest/src/type/vlan, data, and checksum for receive packets.
233  *
234  * 2048 byte skbufs are allocated. However, alignment requirements
235  * varies between FEC variants. Worst case is 64, so round down by 64.
236  */
237 #define PKT_MAXBUF_SIZE		(round_down(2048 - 64, 64))
238 #define PKT_MINBUF_SIZE		64
239 
240 /* FEC receive acceleration */
241 #define FEC_RACC_IPDIS		BIT(1)
242 #define FEC_RACC_PRODIS		BIT(2)
243 #define FEC_RACC_SHIFT16	BIT(7)
244 #define FEC_RACC_OPTIONS	(FEC_RACC_IPDIS | FEC_RACC_PRODIS)
245 
246 /* MIB Control Register */
247 #define FEC_MIB_CTRLSTAT_DISABLE	BIT(31)
248 
249 /*
250  * The 5270/5271/5280/5282/532x RX control register also contains maximum frame
251  * size bits. Other FEC hardware does not, so we need to take that into
252  * account when setting it.
253  */
254 #if defined(CONFIG_M523x) || defined(CONFIG_M527x) || defined(CONFIG_M528x) || \
255     defined(CONFIG_M520x) || defined(CONFIG_M532x) || defined(CONFIG_ARM) || \
256     defined(CONFIG_ARM64)
257 #define	OPT_FRAME_SIZE	(PKT_MAXBUF_SIZE << 16)
258 #else
259 #define	OPT_FRAME_SIZE	0
260 #endif
261 
262 /* FEC MII MMFR bits definition */
263 #define FEC_MMFR_ST		(1 << 30)
264 #define FEC_MMFR_ST_C45		(0)
265 #define FEC_MMFR_OP_READ	(2 << 28)
266 #define FEC_MMFR_OP_READ_C45	(3 << 28)
267 #define FEC_MMFR_OP_WRITE	(1 << 28)
268 #define FEC_MMFR_OP_ADDR_WRITE	(0)
269 #define FEC_MMFR_PA(v)		((v & 0x1f) << 23)
270 #define FEC_MMFR_RA(v)		((v & 0x1f) << 18)
271 #define FEC_MMFR_TA		(2 << 16)
272 #define FEC_MMFR_DATA(v)	(v & 0xffff)
273 /* FEC ECR bits definition */
274 #define FEC_ECR_RESET           BIT(0)
275 #define FEC_ECR_ETHEREN         BIT(1)
276 #define FEC_ECR_MAGICEN         BIT(2)
277 #define FEC_ECR_SLEEP           BIT(3)
278 #define FEC_ECR_EN1588          BIT(4)
279 #define FEC_ECR_BYTESWP         BIT(8)
280 /* FEC RCR bits definition */
281 #define FEC_RCR_LOOP            BIT(0)
282 #define FEC_RCR_HALFDPX         BIT(1)
283 #define FEC_RCR_MII             BIT(2)
284 #define FEC_RCR_PROMISC         BIT(3)
285 #define FEC_RCR_BC_REJ          BIT(4)
286 #define FEC_RCR_FLOWCTL         BIT(5)
287 #define FEC_RCR_RMII            BIT(8)
288 #define FEC_RCR_10BASET         BIT(9)
289 /* TX WMARK bits */
290 #define FEC_TXWMRK_STRFWD       BIT(8)
291 
292 #define FEC_MII_TIMEOUT		30000 /* us */
293 
294 /* Transmitter timeout */
295 #define TX_TIMEOUT (2 * HZ)
296 
297 #define FEC_PAUSE_FLAG_AUTONEG	0x1
298 #define FEC_PAUSE_FLAG_ENABLE	0x2
299 #define FEC_WOL_HAS_MAGIC_PACKET	(0x1 << 0)
300 #define FEC_WOL_FLAG_ENABLE		(0x1 << 1)
301 #define FEC_WOL_FLAG_SLEEP_ON		(0x1 << 2)
302 
303 /* Max number of allowed TCP segments for software TSO */
304 #define FEC_MAX_TSO_SEGS	100
305 #define FEC_MAX_SKB_DESCS	(FEC_MAX_TSO_SEGS * 2 + MAX_SKB_FRAGS)
306 
307 #define IS_TSO_HEADER(txq, addr) \
308 	((addr >= txq->tso_hdrs_dma) && \
309 	(addr < txq->tso_hdrs_dma + txq->bd.ring_size * TSO_HEADER_SIZE))
310 
311 static int mii_cnt;
312 
fec_enet_get_nextdesc(struct bufdesc * bdp,struct bufdesc_prop * bd)313 static struct bufdesc *fec_enet_get_nextdesc(struct bufdesc *bdp,
314 					     struct bufdesc_prop *bd)
315 {
316 	return (bdp >= bd->last) ? bd->base
317 			: (struct bufdesc *)(((void *)bdp) + bd->dsize);
318 }
319 
fec_enet_get_prevdesc(struct bufdesc * bdp,struct bufdesc_prop * bd)320 static struct bufdesc *fec_enet_get_prevdesc(struct bufdesc *bdp,
321 					     struct bufdesc_prop *bd)
322 {
323 	return (bdp <= bd->base) ? bd->last
324 			: (struct bufdesc *)(((void *)bdp) - bd->dsize);
325 }
326 
fec_enet_get_bd_index(struct bufdesc * bdp,struct bufdesc_prop * bd)327 static int fec_enet_get_bd_index(struct bufdesc *bdp,
328 				 struct bufdesc_prop *bd)
329 {
330 	return ((const char *)bdp - (const char *)bd->base) >> bd->dsize_log2;
331 }
332 
fec_enet_get_free_txdesc_num(struct fec_enet_priv_tx_q * txq)333 static int fec_enet_get_free_txdesc_num(struct fec_enet_priv_tx_q *txq)
334 {
335 	int entries;
336 
337 	entries = (((const char *)txq->dirty_tx -
338 			(const char *)txq->bd.cur) >> txq->bd.dsize_log2) - 1;
339 
340 	return entries >= 0 ? entries : entries + txq->bd.ring_size;
341 }
342 
swap_buffer(void * bufaddr,int len)343 static void swap_buffer(void *bufaddr, int len)
344 {
345 	int i;
346 	unsigned int *buf = bufaddr;
347 
348 	for (i = 0; i < len; i += 4, buf++)
349 		swab32s(buf);
350 }
351 
fec_dump(struct net_device * ndev)352 static void fec_dump(struct net_device *ndev)
353 {
354 	struct fec_enet_private *fep = netdev_priv(ndev);
355 	struct bufdesc *bdp;
356 	struct fec_enet_priv_tx_q *txq;
357 	int index = 0;
358 
359 	netdev_info(ndev, "TX ring dump\n");
360 	pr_info("Nr     SC     addr       len  SKB\n");
361 
362 	txq = fep->tx_queue[0];
363 	bdp = txq->bd.base;
364 
365 	do {
366 		pr_info("%3u %c%c 0x%04x 0x%08x %4u %p\n",
367 			index,
368 			bdp == txq->bd.cur ? 'S' : ' ',
369 			bdp == txq->dirty_tx ? 'H' : ' ',
370 			fec16_to_cpu(bdp->cbd_sc),
371 			fec32_to_cpu(bdp->cbd_bufaddr),
372 			fec16_to_cpu(bdp->cbd_datlen),
373 			txq->tx_buf[index].buf_p);
374 		bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
375 		index++;
376 	} while (bdp != txq->bd.base);
377 }
378 
379 /*
380  * Coldfire does not support DMA coherent allocations, and has historically used
381  * a band-aid with a manual flush in fec_enet_rx_queue.
382  */
383 #if defined(CONFIG_COLDFIRE) && !defined(CONFIG_COLDFIRE_COHERENT_DMA)
fec_dma_alloc(struct device * dev,size_t size,dma_addr_t * handle,gfp_t gfp)384 static void *fec_dma_alloc(struct device *dev, size_t size, dma_addr_t *handle,
385 		gfp_t gfp)
386 {
387 	return dma_alloc_noncoherent(dev, size, handle, DMA_BIDIRECTIONAL, gfp);
388 }
389 
fec_dma_free(struct device * dev,size_t size,void * cpu_addr,dma_addr_t handle)390 static void fec_dma_free(struct device *dev, size_t size, void *cpu_addr,
391 		dma_addr_t handle)
392 {
393 	dma_free_noncoherent(dev, size, cpu_addr, handle, DMA_BIDIRECTIONAL);
394 }
395 #else /* !CONFIG_COLDFIRE || CONFIG_COLDFIRE_COHERENT_DMA */
fec_dma_alloc(struct device * dev,size_t size,dma_addr_t * handle,gfp_t gfp)396 static void *fec_dma_alloc(struct device *dev, size_t size, dma_addr_t *handle,
397 		gfp_t gfp)
398 {
399 	return dma_alloc_coherent(dev, size, handle, gfp);
400 }
401 
fec_dma_free(struct device * dev,size_t size,void * cpu_addr,dma_addr_t handle)402 static void fec_dma_free(struct device *dev, size_t size, void *cpu_addr,
403 		dma_addr_t handle)
404 {
405 	dma_free_coherent(dev, size, cpu_addr, handle);
406 }
407 #endif /* !CONFIG_COLDFIRE || CONFIG_COLDFIRE_COHERENT_DMA */
408 
409 struct fec_dma_devres {
410 	size_t		size;
411 	void		*vaddr;
412 	dma_addr_t	dma_handle;
413 };
414 
fec_dmam_release(struct device * dev,void * res)415 static void fec_dmam_release(struct device *dev, void *res)
416 {
417 	struct fec_dma_devres *this = res;
418 
419 	fec_dma_free(dev, this->size, this->vaddr, this->dma_handle);
420 }
421 
fec_dmam_alloc(struct device * dev,size_t size,dma_addr_t * handle,gfp_t gfp)422 static void *fec_dmam_alloc(struct device *dev, size_t size, dma_addr_t *handle,
423 		gfp_t gfp)
424 {
425 	struct fec_dma_devres *dr;
426 	void *vaddr;
427 
428 	dr = devres_alloc(fec_dmam_release, sizeof(*dr), gfp);
429 	if (!dr)
430 		return NULL;
431 	vaddr = fec_dma_alloc(dev, size, handle, gfp);
432 	if (!vaddr) {
433 		devres_free(dr);
434 		return NULL;
435 	}
436 	dr->vaddr = vaddr;
437 	dr->dma_handle = *handle;
438 	dr->size = size;
439 	devres_add(dev, dr);
440 	return vaddr;
441 }
442 
is_ipv4_pkt(struct sk_buff * skb)443 static inline bool is_ipv4_pkt(struct sk_buff *skb)
444 {
445 	return skb->protocol == htons(ETH_P_IP) && ip_hdr(skb)->version == 4;
446 }
447 
448 static int
fec_enet_clear_csum(struct sk_buff * skb,struct net_device * ndev)449 fec_enet_clear_csum(struct sk_buff *skb, struct net_device *ndev)
450 {
451 	/* Only run for packets requiring a checksum. */
452 	if (skb->ip_summed != CHECKSUM_PARTIAL)
453 		return 0;
454 
455 	if (unlikely(skb_cow_head(skb, 0)))
456 		return -1;
457 
458 	if (is_ipv4_pkt(skb))
459 		ip_hdr(skb)->check = 0;
460 	*(__sum16 *)(skb->head + skb->csum_start + skb->csum_offset) = 0;
461 
462 	return 0;
463 }
464 
465 static int
fec_enet_create_page_pool(struct fec_enet_private * fep,struct fec_enet_priv_rx_q * rxq,int size)466 fec_enet_create_page_pool(struct fec_enet_private *fep,
467 			  struct fec_enet_priv_rx_q *rxq, int size)
468 {
469 	struct bpf_prog *xdp_prog = READ_ONCE(fep->xdp_prog);
470 	struct page_pool_params pp_params = {
471 		.order = 0,
472 		.flags = PP_FLAG_DMA_MAP | PP_FLAG_DMA_SYNC_DEV,
473 		.pool_size = size,
474 		.nid = dev_to_node(&fep->pdev->dev),
475 		.dev = &fep->pdev->dev,
476 		.dma_dir = xdp_prog ? DMA_BIDIRECTIONAL : DMA_FROM_DEVICE,
477 		.offset = FEC_ENET_XDP_HEADROOM,
478 		.max_len = FEC_ENET_RX_FRSIZE,
479 	};
480 	int err;
481 
482 	rxq->page_pool = page_pool_create(&pp_params);
483 	if (IS_ERR(rxq->page_pool)) {
484 		err = PTR_ERR(rxq->page_pool);
485 		rxq->page_pool = NULL;
486 		return err;
487 	}
488 
489 	err = xdp_rxq_info_reg(&rxq->xdp_rxq, fep->netdev, rxq->id, 0);
490 	if (err < 0)
491 		goto err_free_pp;
492 
493 	err = xdp_rxq_info_reg_mem_model(&rxq->xdp_rxq, MEM_TYPE_PAGE_POOL,
494 					 rxq->page_pool);
495 	if (err)
496 		goto err_unregister_rxq;
497 
498 	return 0;
499 
500 err_unregister_rxq:
501 	xdp_rxq_info_unreg(&rxq->xdp_rxq);
502 err_free_pp:
503 	page_pool_destroy(rxq->page_pool);
504 	rxq->page_pool = NULL;
505 	return err;
506 }
507 
508 static struct bufdesc *
fec_enet_txq_submit_frag_skb(struct fec_enet_priv_tx_q * txq,struct sk_buff * skb,struct net_device * ndev)509 fec_enet_txq_submit_frag_skb(struct fec_enet_priv_tx_q *txq,
510 			     struct sk_buff *skb,
511 			     struct net_device *ndev)
512 {
513 	struct fec_enet_private *fep = netdev_priv(ndev);
514 	struct bufdesc *bdp = txq->bd.cur;
515 	struct bufdesc_ex *ebdp;
516 	int nr_frags = skb_shinfo(skb)->nr_frags;
517 	int frag, frag_len;
518 	unsigned short status;
519 	unsigned int estatus = 0;
520 	skb_frag_t *this_frag;
521 	unsigned int index;
522 	void *bufaddr;
523 	dma_addr_t addr;
524 	int i;
525 
526 	for (frag = 0; frag < nr_frags; frag++) {
527 		this_frag = &skb_shinfo(skb)->frags[frag];
528 		bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
529 		ebdp = (struct bufdesc_ex *)bdp;
530 
531 		status = fec16_to_cpu(bdp->cbd_sc);
532 		status &= ~BD_ENET_TX_STATS;
533 		status |= (BD_ENET_TX_TC | BD_ENET_TX_READY);
534 		frag_len = skb_frag_size(&skb_shinfo(skb)->frags[frag]);
535 
536 		/* Handle the last BD specially */
537 		if (frag == nr_frags - 1) {
538 			status |= (BD_ENET_TX_INTR | BD_ENET_TX_LAST);
539 			if (fep->bufdesc_ex) {
540 				estatus |= BD_ENET_TX_INT;
541 				if (unlikely(skb_shinfo(skb)->tx_flags &
542 					SKBTX_HW_TSTAMP && fep->hwts_tx_en))
543 					estatus |= BD_ENET_TX_TS;
544 			}
545 		}
546 
547 		if (fep->bufdesc_ex) {
548 			if (fep->quirks & FEC_QUIRK_HAS_AVB)
549 				estatus |= FEC_TX_BD_FTYPE(txq->bd.qid);
550 			if (skb->ip_summed == CHECKSUM_PARTIAL)
551 				estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS;
552 
553 			ebdp->cbd_bdu = 0;
554 			ebdp->cbd_esc = cpu_to_fec32(estatus);
555 		}
556 
557 		bufaddr = skb_frag_address(this_frag);
558 
559 		index = fec_enet_get_bd_index(bdp, &txq->bd);
560 		if (((unsigned long) bufaddr) & fep->tx_align ||
561 			fep->quirks & FEC_QUIRK_SWAP_FRAME) {
562 			memcpy(txq->tx_bounce[index], bufaddr, frag_len);
563 			bufaddr = txq->tx_bounce[index];
564 
565 			if (fep->quirks & FEC_QUIRK_SWAP_FRAME)
566 				swap_buffer(bufaddr, frag_len);
567 		}
568 
569 		addr = dma_map_single(&fep->pdev->dev, bufaddr, frag_len,
570 				      DMA_TO_DEVICE);
571 		if (dma_mapping_error(&fep->pdev->dev, addr)) {
572 			if (net_ratelimit())
573 				netdev_err(ndev, "Tx DMA memory map failed\n");
574 			goto dma_mapping_error;
575 		}
576 
577 		bdp->cbd_bufaddr = cpu_to_fec32(addr);
578 		bdp->cbd_datlen = cpu_to_fec16(frag_len);
579 		/* Make sure the updates to rest of the descriptor are
580 		 * performed before transferring ownership.
581 		 */
582 		wmb();
583 		bdp->cbd_sc = cpu_to_fec16(status);
584 	}
585 
586 	return bdp;
587 dma_mapping_error:
588 	bdp = txq->bd.cur;
589 	for (i = 0; i < frag; i++) {
590 		bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
591 		dma_unmap_single(&fep->pdev->dev, fec32_to_cpu(bdp->cbd_bufaddr),
592 				 fec16_to_cpu(bdp->cbd_datlen), DMA_TO_DEVICE);
593 	}
594 	return ERR_PTR(-ENOMEM);
595 }
596 
fec_enet_txq_submit_skb(struct fec_enet_priv_tx_q * txq,struct sk_buff * skb,struct net_device * ndev)597 static int fec_enet_txq_submit_skb(struct fec_enet_priv_tx_q *txq,
598 				   struct sk_buff *skb, struct net_device *ndev)
599 {
600 	struct fec_enet_private *fep = netdev_priv(ndev);
601 	int nr_frags = skb_shinfo(skb)->nr_frags;
602 	struct bufdesc *bdp, *last_bdp;
603 	void *bufaddr;
604 	dma_addr_t addr;
605 	unsigned short status;
606 	unsigned short buflen;
607 	unsigned int estatus = 0;
608 	unsigned int index;
609 	int entries_free;
610 
611 	entries_free = fec_enet_get_free_txdesc_num(txq);
612 	if (entries_free < MAX_SKB_FRAGS + 1) {
613 		dev_kfree_skb_any(skb);
614 		if (net_ratelimit())
615 			netdev_err(ndev, "NOT enough BD for SG!\n");
616 		return NETDEV_TX_OK;
617 	}
618 
619 	/* Protocol checksum off-load for TCP and UDP. */
620 	if (fec_enet_clear_csum(skb, ndev)) {
621 		dev_kfree_skb_any(skb);
622 		return NETDEV_TX_OK;
623 	}
624 
625 	/* Fill in a Tx ring entry */
626 	bdp = txq->bd.cur;
627 	last_bdp = bdp;
628 	status = fec16_to_cpu(bdp->cbd_sc);
629 	status &= ~BD_ENET_TX_STATS;
630 
631 	/* Set buffer length and buffer pointer */
632 	bufaddr = skb->data;
633 	buflen = skb_headlen(skb);
634 
635 	index = fec_enet_get_bd_index(bdp, &txq->bd);
636 	if (((unsigned long) bufaddr) & fep->tx_align ||
637 		fep->quirks & FEC_QUIRK_SWAP_FRAME) {
638 		memcpy(txq->tx_bounce[index], skb->data, buflen);
639 		bufaddr = txq->tx_bounce[index];
640 
641 		if (fep->quirks & FEC_QUIRK_SWAP_FRAME)
642 			swap_buffer(bufaddr, buflen);
643 	}
644 
645 	/* Push the data cache so the CPM does not get stale memory data. */
646 	addr = dma_map_single(&fep->pdev->dev, bufaddr, buflen, DMA_TO_DEVICE);
647 	if (dma_mapping_error(&fep->pdev->dev, addr)) {
648 		dev_kfree_skb_any(skb);
649 		if (net_ratelimit())
650 			netdev_err(ndev, "Tx DMA memory map failed\n");
651 		return NETDEV_TX_OK;
652 	}
653 
654 	if (nr_frags) {
655 		last_bdp = fec_enet_txq_submit_frag_skb(txq, skb, ndev);
656 		if (IS_ERR(last_bdp)) {
657 			dma_unmap_single(&fep->pdev->dev, addr,
658 					 buflen, DMA_TO_DEVICE);
659 			dev_kfree_skb_any(skb);
660 			return NETDEV_TX_OK;
661 		}
662 	} else {
663 		status |= (BD_ENET_TX_INTR | BD_ENET_TX_LAST);
664 		if (fep->bufdesc_ex) {
665 			estatus = BD_ENET_TX_INT;
666 			if (unlikely(skb_shinfo(skb)->tx_flags &
667 				SKBTX_HW_TSTAMP && fep->hwts_tx_en))
668 				estatus |= BD_ENET_TX_TS;
669 		}
670 	}
671 	bdp->cbd_bufaddr = cpu_to_fec32(addr);
672 	bdp->cbd_datlen = cpu_to_fec16(buflen);
673 
674 	if (fep->bufdesc_ex) {
675 
676 		struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
677 
678 		if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP &&
679 			fep->hwts_tx_en))
680 			skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
681 
682 		if (fep->quirks & FEC_QUIRK_HAS_AVB)
683 			estatus |= FEC_TX_BD_FTYPE(txq->bd.qid);
684 
685 		if (skb->ip_summed == CHECKSUM_PARTIAL)
686 			estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS;
687 
688 		ebdp->cbd_bdu = 0;
689 		ebdp->cbd_esc = cpu_to_fec32(estatus);
690 	}
691 
692 	index = fec_enet_get_bd_index(last_bdp, &txq->bd);
693 	/* Save skb pointer */
694 	txq->tx_buf[index].buf_p = skb;
695 
696 	/* Make sure the updates to rest of the descriptor are performed before
697 	 * transferring ownership.
698 	 */
699 	wmb();
700 
701 	/* Send it on its way.  Tell FEC it's ready, interrupt when done,
702 	 * it's the last BD of the frame, and to put the CRC on the end.
703 	 */
704 	status |= (BD_ENET_TX_READY | BD_ENET_TX_TC);
705 	bdp->cbd_sc = cpu_to_fec16(status);
706 
707 	/* If this was the last BD in the ring, start at the beginning again. */
708 	bdp = fec_enet_get_nextdesc(last_bdp, &txq->bd);
709 
710 	skb_tx_timestamp(skb);
711 
712 	/* Make sure the update to bdp is performed before txq->bd.cur. */
713 	wmb();
714 	txq->bd.cur = bdp;
715 
716 	/* Trigger transmission start */
717 	if (!(fep->quirks & FEC_QUIRK_ERR007885) ||
718 	    !readl(txq->bd.reg_desc_active) ||
719 	    !readl(txq->bd.reg_desc_active) ||
720 	    !readl(txq->bd.reg_desc_active) ||
721 	    !readl(txq->bd.reg_desc_active))
722 		writel(0, txq->bd.reg_desc_active);
723 
724 	return 0;
725 }
726 
727 static int
fec_enet_txq_put_data_tso(struct fec_enet_priv_tx_q * txq,struct sk_buff * skb,struct net_device * ndev,struct bufdesc * bdp,int index,char * data,int size,bool last_tcp,bool is_last)728 fec_enet_txq_put_data_tso(struct fec_enet_priv_tx_q *txq, struct sk_buff *skb,
729 			  struct net_device *ndev,
730 			  struct bufdesc *bdp, int index, char *data,
731 			  int size, bool last_tcp, bool is_last)
732 {
733 	struct fec_enet_private *fep = netdev_priv(ndev);
734 	struct bufdesc_ex *ebdp = container_of(bdp, struct bufdesc_ex, desc);
735 	unsigned short status;
736 	unsigned int estatus = 0;
737 	dma_addr_t addr;
738 
739 	status = fec16_to_cpu(bdp->cbd_sc);
740 	status &= ~BD_ENET_TX_STATS;
741 
742 	status |= (BD_ENET_TX_TC | BD_ENET_TX_READY);
743 
744 	if (((unsigned long) data) & fep->tx_align ||
745 		fep->quirks & FEC_QUIRK_SWAP_FRAME) {
746 		memcpy(txq->tx_bounce[index], data, size);
747 		data = txq->tx_bounce[index];
748 
749 		if (fep->quirks & FEC_QUIRK_SWAP_FRAME)
750 			swap_buffer(data, size);
751 	}
752 
753 	addr = dma_map_single(&fep->pdev->dev, data, size, DMA_TO_DEVICE);
754 	if (dma_mapping_error(&fep->pdev->dev, addr)) {
755 		dev_kfree_skb_any(skb);
756 		if (net_ratelimit())
757 			netdev_err(ndev, "Tx DMA memory map failed\n");
758 		return NETDEV_TX_OK;
759 	}
760 
761 	bdp->cbd_datlen = cpu_to_fec16(size);
762 	bdp->cbd_bufaddr = cpu_to_fec32(addr);
763 
764 	if (fep->bufdesc_ex) {
765 		if (fep->quirks & FEC_QUIRK_HAS_AVB)
766 			estatus |= FEC_TX_BD_FTYPE(txq->bd.qid);
767 		if (skb->ip_summed == CHECKSUM_PARTIAL)
768 			estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS;
769 		ebdp->cbd_bdu = 0;
770 		ebdp->cbd_esc = cpu_to_fec32(estatus);
771 	}
772 
773 	/* Handle the last BD specially */
774 	if (last_tcp)
775 		status |= (BD_ENET_TX_LAST | BD_ENET_TX_TC);
776 	if (is_last) {
777 		status |= BD_ENET_TX_INTR;
778 		if (fep->bufdesc_ex)
779 			ebdp->cbd_esc |= cpu_to_fec32(BD_ENET_TX_INT);
780 	}
781 
782 	bdp->cbd_sc = cpu_to_fec16(status);
783 
784 	return 0;
785 }
786 
787 static int
fec_enet_txq_put_hdr_tso(struct fec_enet_priv_tx_q * txq,struct sk_buff * skb,struct net_device * ndev,struct bufdesc * bdp,int index)788 fec_enet_txq_put_hdr_tso(struct fec_enet_priv_tx_q *txq,
789 			 struct sk_buff *skb, struct net_device *ndev,
790 			 struct bufdesc *bdp, int index)
791 {
792 	struct fec_enet_private *fep = netdev_priv(ndev);
793 	int hdr_len = skb_tcp_all_headers(skb);
794 	struct bufdesc_ex *ebdp = container_of(bdp, struct bufdesc_ex, desc);
795 	void *bufaddr;
796 	unsigned long dmabuf;
797 	unsigned short status;
798 	unsigned int estatus = 0;
799 
800 	status = fec16_to_cpu(bdp->cbd_sc);
801 	status &= ~BD_ENET_TX_STATS;
802 	status |= (BD_ENET_TX_TC | BD_ENET_TX_READY);
803 
804 	bufaddr = txq->tso_hdrs + index * TSO_HEADER_SIZE;
805 	dmabuf = txq->tso_hdrs_dma + index * TSO_HEADER_SIZE;
806 	if (((unsigned long)bufaddr) & fep->tx_align ||
807 		fep->quirks & FEC_QUIRK_SWAP_FRAME) {
808 		memcpy(txq->tx_bounce[index], skb->data, hdr_len);
809 		bufaddr = txq->tx_bounce[index];
810 
811 		if (fep->quirks & FEC_QUIRK_SWAP_FRAME)
812 			swap_buffer(bufaddr, hdr_len);
813 
814 		dmabuf = dma_map_single(&fep->pdev->dev, bufaddr,
815 					hdr_len, DMA_TO_DEVICE);
816 		if (dma_mapping_error(&fep->pdev->dev, dmabuf)) {
817 			dev_kfree_skb_any(skb);
818 			if (net_ratelimit())
819 				netdev_err(ndev, "Tx DMA memory map failed\n");
820 			return NETDEV_TX_OK;
821 		}
822 	}
823 
824 	bdp->cbd_bufaddr = cpu_to_fec32(dmabuf);
825 	bdp->cbd_datlen = cpu_to_fec16(hdr_len);
826 
827 	if (fep->bufdesc_ex) {
828 		if (fep->quirks & FEC_QUIRK_HAS_AVB)
829 			estatus |= FEC_TX_BD_FTYPE(txq->bd.qid);
830 		if (skb->ip_summed == CHECKSUM_PARTIAL)
831 			estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS;
832 		ebdp->cbd_bdu = 0;
833 		ebdp->cbd_esc = cpu_to_fec32(estatus);
834 	}
835 
836 	bdp->cbd_sc = cpu_to_fec16(status);
837 
838 	return 0;
839 }
840 
fec_enet_txq_submit_tso(struct fec_enet_priv_tx_q * txq,struct sk_buff * skb,struct net_device * ndev)841 static int fec_enet_txq_submit_tso(struct fec_enet_priv_tx_q *txq,
842 				   struct sk_buff *skb,
843 				   struct net_device *ndev)
844 {
845 	struct fec_enet_private *fep = netdev_priv(ndev);
846 	int hdr_len, total_len, data_left;
847 	struct bufdesc *bdp = txq->bd.cur;
848 	struct bufdesc *tmp_bdp;
849 	struct bufdesc_ex *ebdp;
850 	struct tso_t tso;
851 	unsigned int index = 0;
852 	int ret;
853 
854 	if (tso_count_descs(skb) >= fec_enet_get_free_txdesc_num(txq)) {
855 		dev_kfree_skb_any(skb);
856 		if (net_ratelimit())
857 			netdev_err(ndev, "NOT enough BD for TSO!\n");
858 		return NETDEV_TX_OK;
859 	}
860 
861 	/* Protocol checksum off-load for TCP and UDP. */
862 	if (fec_enet_clear_csum(skb, ndev)) {
863 		dev_kfree_skb_any(skb);
864 		return NETDEV_TX_OK;
865 	}
866 
867 	/* Initialize the TSO handler, and prepare the first payload */
868 	hdr_len = tso_start(skb, &tso);
869 
870 	total_len = skb->len - hdr_len;
871 	while (total_len > 0) {
872 		char *hdr;
873 
874 		index = fec_enet_get_bd_index(bdp, &txq->bd);
875 		data_left = min_t(int, skb_shinfo(skb)->gso_size, total_len);
876 		total_len -= data_left;
877 
878 		/* prepare packet headers: MAC + IP + TCP */
879 		hdr = txq->tso_hdrs + index * TSO_HEADER_SIZE;
880 		tso_build_hdr(skb, hdr, &tso, data_left, total_len == 0);
881 		ret = fec_enet_txq_put_hdr_tso(txq, skb, ndev, bdp, index);
882 		if (ret)
883 			goto err_release;
884 
885 		while (data_left > 0) {
886 			int size;
887 
888 			size = min_t(int, tso.size, data_left);
889 			bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
890 			index = fec_enet_get_bd_index(bdp, &txq->bd);
891 			ret = fec_enet_txq_put_data_tso(txq, skb, ndev,
892 							bdp, index,
893 							tso.data, size,
894 							size == data_left,
895 							total_len == 0);
896 			if (ret)
897 				goto err_release;
898 
899 			data_left -= size;
900 			tso_build_data(skb, &tso, size);
901 		}
902 
903 		bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
904 	}
905 
906 	/* Save skb pointer */
907 	txq->tx_buf[index].buf_p = skb;
908 
909 	skb_tx_timestamp(skb);
910 	txq->bd.cur = bdp;
911 
912 	/* Trigger transmission start */
913 	if (!(fep->quirks & FEC_QUIRK_ERR007885) ||
914 	    !readl(txq->bd.reg_desc_active) ||
915 	    !readl(txq->bd.reg_desc_active) ||
916 	    !readl(txq->bd.reg_desc_active) ||
917 	    !readl(txq->bd.reg_desc_active))
918 		writel(0, txq->bd.reg_desc_active);
919 
920 	return 0;
921 
922 err_release:
923 	/* Release all used data descriptors for TSO */
924 	tmp_bdp = txq->bd.cur;
925 
926 	while (tmp_bdp != bdp) {
927 		/* Unmap data buffers */
928 		if (tmp_bdp->cbd_bufaddr &&
929 		    !IS_TSO_HEADER(txq, fec32_to_cpu(tmp_bdp->cbd_bufaddr)))
930 			dma_unmap_single(&fep->pdev->dev,
931 					 fec32_to_cpu(tmp_bdp->cbd_bufaddr),
932 					 fec16_to_cpu(tmp_bdp->cbd_datlen),
933 					 DMA_TO_DEVICE);
934 
935 		/* Clear standard buffer descriptor fields */
936 		tmp_bdp->cbd_sc = 0;
937 		tmp_bdp->cbd_datlen = 0;
938 		tmp_bdp->cbd_bufaddr = 0;
939 
940 		/* Handle extended descriptor if enabled */
941 		if (fep->bufdesc_ex) {
942 			ebdp = (struct bufdesc_ex *)tmp_bdp;
943 			ebdp->cbd_esc = 0;
944 		}
945 
946 		tmp_bdp = fec_enet_get_nextdesc(tmp_bdp, &txq->bd);
947 	}
948 
949 	dev_kfree_skb_any(skb);
950 
951 	return ret;
952 }
953 
954 static netdev_tx_t
fec_enet_start_xmit(struct sk_buff * skb,struct net_device * ndev)955 fec_enet_start_xmit(struct sk_buff *skb, struct net_device *ndev)
956 {
957 	struct fec_enet_private *fep = netdev_priv(ndev);
958 	int entries_free;
959 	unsigned short queue;
960 	struct fec_enet_priv_tx_q *txq;
961 	struct netdev_queue *nq;
962 	int ret;
963 
964 	queue = skb_get_queue_mapping(skb);
965 	txq = fep->tx_queue[queue];
966 	nq = netdev_get_tx_queue(ndev, queue);
967 
968 	if (skb_is_gso(skb))
969 		ret = fec_enet_txq_submit_tso(txq, skb, ndev);
970 	else
971 		ret = fec_enet_txq_submit_skb(txq, skb, ndev);
972 	if (ret)
973 		return ret;
974 
975 	entries_free = fec_enet_get_free_txdesc_num(txq);
976 	if (entries_free <= txq->tx_stop_threshold)
977 		netif_tx_stop_queue(nq);
978 
979 	return NETDEV_TX_OK;
980 }
981 
982 /* Init RX & TX buffer descriptors
983  */
fec_enet_bd_init(struct net_device * dev)984 static void fec_enet_bd_init(struct net_device *dev)
985 {
986 	struct fec_enet_private *fep = netdev_priv(dev);
987 	struct fec_enet_priv_tx_q *txq;
988 	struct fec_enet_priv_rx_q *rxq;
989 	struct bufdesc *bdp;
990 	unsigned int i;
991 	unsigned int q;
992 
993 	for (q = 0; q < fep->num_rx_queues; q++) {
994 		/* Initialize the receive buffer descriptors. */
995 		rxq = fep->rx_queue[q];
996 		bdp = rxq->bd.base;
997 
998 		for (i = 0; i < rxq->bd.ring_size; i++) {
999 
1000 			/* Initialize the BD for every fragment in the page. */
1001 			if (bdp->cbd_bufaddr)
1002 				bdp->cbd_sc = cpu_to_fec16(BD_ENET_RX_EMPTY);
1003 			else
1004 				bdp->cbd_sc = cpu_to_fec16(0);
1005 			bdp = fec_enet_get_nextdesc(bdp, &rxq->bd);
1006 		}
1007 
1008 		/* Set the last buffer to wrap */
1009 		bdp = fec_enet_get_prevdesc(bdp, &rxq->bd);
1010 		bdp->cbd_sc |= cpu_to_fec16(BD_SC_WRAP);
1011 
1012 		rxq->bd.cur = rxq->bd.base;
1013 	}
1014 
1015 	for (q = 0; q < fep->num_tx_queues; q++) {
1016 		/* ...and the same for transmit */
1017 		txq = fep->tx_queue[q];
1018 		bdp = txq->bd.base;
1019 		txq->bd.cur = bdp;
1020 
1021 		for (i = 0; i < txq->bd.ring_size; i++) {
1022 			/* Initialize the BD for every fragment in the page. */
1023 			bdp->cbd_sc = cpu_to_fec16(0);
1024 			if (txq->tx_buf[i].type == FEC_TXBUF_T_SKB) {
1025 				if (bdp->cbd_bufaddr &&
1026 				    !IS_TSO_HEADER(txq, fec32_to_cpu(bdp->cbd_bufaddr)))
1027 					dma_unmap_single(&fep->pdev->dev,
1028 							 fec32_to_cpu(bdp->cbd_bufaddr),
1029 							 fec16_to_cpu(bdp->cbd_datlen),
1030 							 DMA_TO_DEVICE);
1031 				if (txq->tx_buf[i].buf_p)
1032 					dev_kfree_skb_any(txq->tx_buf[i].buf_p);
1033 			} else if (txq->tx_buf[i].type == FEC_TXBUF_T_XDP_NDO) {
1034 				if (bdp->cbd_bufaddr)
1035 					dma_unmap_single(&fep->pdev->dev,
1036 							 fec32_to_cpu(bdp->cbd_bufaddr),
1037 							 fec16_to_cpu(bdp->cbd_datlen),
1038 							 DMA_TO_DEVICE);
1039 
1040 				if (txq->tx_buf[i].buf_p)
1041 					xdp_return_frame(txq->tx_buf[i].buf_p);
1042 			} else {
1043 				struct page *page = txq->tx_buf[i].buf_p;
1044 
1045 				if (page)
1046 					page_pool_put_page(page->pp, page, 0, false);
1047 			}
1048 
1049 			txq->tx_buf[i].buf_p = NULL;
1050 			/* restore default tx buffer type: FEC_TXBUF_T_SKB */
1051 			txq->tx_buf[i].type = FEC_TXBUF_T_SKB;
1052 			bdp->cbd_bufaddr = cpu_to_fec32(0);
1053 			bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
1054 		}
1055 
1056 		/* Set the last buffer to wrap */
1057 		bdp = fec_enet_get_prevdesc(bdp, &txq->bd);
1058 		bdp->cbd_sc |= cpu_to_fec16(BD_SC_WRAP);
1059 		txq->dirty_tx = bdp;
1060 	}
1061 }
1062 
fec_enet_active_rxring(struct net_device * ndev)1063 static void fec_enet_active_rxring(struct net_device *ndev)
1064 {
1065 	struct fec_enet_private *fep = netdev_priv(ndev);
1066 	int i;
1067 
1068 	for (i = 0; i < fep->num_rx_queues; i++)
1069 		writel(0, fep->rx_queue[i]->bd.reg_desc_active);
1070 }
1071 
fec_enet_enable_ring(struct net_device * ndev)1072 static void fec_enet_enable_ring(struct net_device *ndev)
1073 {
1074 	struct fec_enet_private *fep = netdev_priv(ndev);
1075 	struct fec_enet_priv_tx_q *txq;
1076 	struct fec_enet_priv_rx_q *rxq;
1077 	int i;
1078 
1079 	for (i = 0; i < fep->num_rx_queues; i++) {
1080 		rxq = fep->rx_queue[i];
1081 		writel(rxq->bd.dma, fep->hwp + FEC_R_DES_START(i));
1082 		writel(PKT_MAXBUF_SIZE, fep->hwp + FEC_R_BUFF_SIZE(i));
1083 
1084 		/* enable DMA1/2 */
1085 		if (i)
1086 			writel(RCMR_MATCHEN | RCMR_CMP(i),
1087 			       fep->hwp + FEC_RCMR(i));
1088 	}
1089 
1090 	for (i = 0; i < fep->num_tx_queues; i++) {
1091 		txq = fep->tx_queue[i];
1092 		writel(txq->bd.dma, fep->hwp + FEC_X_DES_START(i));
1093 
1094 		/* enable DMA1/2 */
1095 		if (i)
1096 			writel(DMA_CLASS_EN | IDLE_SLOPE(i),
1097 			       fep->hwp + FEC_DMA_CFG(i));
1098 	}
1099 }
1100 
1101 /* Whack a reset.  We should wait for this.
1102  * For i.MX6SX SOC, enet use AXI bus, we use disable MAC
1103  * instead of reset MAC itself.
1104  */
fec_ctrl_reset(struct fec_enet_private * fep,bool allow_wol)1105 static void fec_ctrl_reset(struct fec_enet_private *fep, bool allow_wol)
1106 {
1107 	u32 val;
1108 
1109 	if (!allow_wol || !(fep->wol_flag & FEC_WOL_FLAG_SLEEP_ON)) {
1110 		if (fep->quirks & FEC_QUIRK_HAS_MULTI_QUEUES ||
1111 		    ((fep->quirks & FEC_QUIRK_NO_HARD_RESET) && fep->link)) {
1112 			writel(0, fep->hwp + FEC_ECNTRL);
1113 		} else {
1114 			writel(FEC_ECR_RESET, fep->hwp + FEC_ECNTRL);
1115 			udelay(10);
1116 		}
1117 	} else {
1118 		val = readl(fep->hwp + FEC_ECNTRL);
1119 		val |= (FEC_ECR_MAGICEN | FEC_ECR_SLEEP);
1120 		writel(val, fep->hwp + FEC_ECNTRL);
1121 	}
1122 }
1123 
1124 /*
1125  * This function is called to start or restart the FEC during a link
1126  * change, transmit timeout, or to reconfigure the FEC.  The network
1127  * packet processing for this device must be stopped before this call.
1128  */
1129 static void
fec_restart(struct net_device * ndev)1130 fec_restart(struct net_device *ndev)
1131 {
1132 	struct fec_enet_private *fep = netdev_priv(ndev);
1133 	u32 temp_mac[2];
1134 	u32 rcntl = OPT_FRAME_SIZE | 0x04;
1135 	u32 ecntl = FEC_ECR_ETHEREN;
1136 
1137 	if (fep->bufdesc_ex)
1138 		fec_ptp_save_state(fep);
1139 
1140 	fec_ctrl_reset(fep, false);
1141 
1142 	/*
1143 	 * enet-mac reset will reset mac address registers too,
1144 	 * so need to reconfigure it.
1145 	 */
1146 	memcpy(&temp_mac, ndev->dev_addr, ETH_ALEN);
1147 	writel((__force u32)cpu_to_be32(temp_mac[0]),
1148 	       fep->hwp + FEC_ADDR_LOW);
1149 	writel((__force u32)cpu_to_be32(temp_mac[1]),
1150 	       fep->hwp + FEC_ADDR_HIGH);
1151 
1152 	/* Clear any outstanding interrupt, except MDIO. */
1153 	writel((0xffffffff & ~FEC_ENET_MII), fep->hwp + FEC_IEVENT);
1154 
1155 	fec_enet_bd_init(ndev);
1156 
1157 	fec_enet_enable_ring(ndev);
1158 
1159 	/* Enable MII mode */
1160 	if (fep->full_duplex == DUPLEX_FULL) {
1161 		/* FD enable */
1162 		writel(0x04, fep->hwp + FEC_X_CNTRL);
1163 	} else {
1164 		/* No Rcv on Xmit */
1165 		rcntl |= 0x02;
1166 		writel(0x0, fep->hwp + FEC_X_CNTRL);
1167 	}
1168 
1169 	/* Set MII speed */
1170 	writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED);
1171 
1172 #if !defined(CONFIG_M5272)
1173 	if (fep->quirks & FEC_QUIRK_HAS_RACC) {
1174 		u32 val = readl(fep->hwp + FEC_RACC);
1175 
1176 		/* align IP header */
1177 		val |= FEC_RACC_SHIFT16;
1178 		if (fep->csum_flags & FLAG_RX_CSUM_ENABLED)
1179 			/* set RX checksum */
1180 			val |= FEC_RACC_OPTIONS;
1181 		else
1182 			val &= ~FEC_RACC_OPTIONS;
1183 		writel(val, fep->hwp + FEC_RACC);
1184 		writel(PKT_MAXBUF_SIZE, fep->hwp + FEC_FTRL);
1185 	}
1186 #endif
1187 
1188 	/*
1189 	 * The phy interface and speed need to get configured
1190 	 * differently on enet-mac.
1191 	 */
1192 	if (fep->quirks & FEC_QUIRK_ENET_MAC) {
1193 		/* Enable flow control and length check */
1194 		rcntl |= 0x40000000 | 0x00000020;
1195 
1196 		/* RGMII, RMII or MII */
1197 		if (fep->phy_interface == PHY_INTERFACE_MODE_RGMII ||
1198 		    fep->phy_interface == PHY_INTERFACE_MODE_RGMII_ID ||
1199 		    fep->phy_interface == PHY_INTERFACE_MODE_RGMII_RXID ||
1200 		    fep->phy_interface == PHY_INTERFACE_MODE_RGMII_TXID)
1201 			rcntl |= (1 << 6);
1202 		else if (fep->phy_interface == PHY_INTERFACE_MODE_RMII)
1203 			rcntl |= FEC_RCR_RMII;
1204 		else
1205 			rcntl &= ~FEC_RCR_RMII;
1206 
1207 		/* 1G, 100M or 10M */
1208 		if (ndev->phydev) {
1209 			if (ndev->phydev->speed == SPEED_1000)
1210 				ecntl |= (1 << 5);
1211 			else if (ndev->phydev->speed == SPEED_100)
1212 				rcntl &= ~FEC_RCR_10BASET;
1213 			else
1214 				rcntl |= FEC_RCR_10BASET;
1215 		}
1216 	} else {
1217 #ifdef FEC_MIIGSK_ENR
1218 		if (fep->quirks & FEC_QUIRK_USE_GASKET) {
1219 			u32 cfgr;
1220 			/* disable the gasket and wait */
1221 			writel(0, fep->hwp + FEC_MIIGSK_ENR);
1222 			while (readl(fep->hwp + FEC_MIIGSK_ENR) & 4)
1223 				udelay(1);
1224 
1225 			/*
1226 			 * configure the gasket:
1227 			 *   RMII, 50 MHz, no loopback, no echo
1228 			 *   MII, 25 MHz, no loopback, no echo
1229 			 */
1230 			cfgr = (fep->phy_interface == PHY_INTERFACE_MODE_RMII)
1231 				? BM_MIIGSK_CFGR_RMII : BM_MIIGSK_CFGR_MII;
1232 			if (ndev->phydev && ndev->phydev->speed == SPEED_10)
1233 				cfgr |= BM_MIIGSK_CFGR_FRCONT_10M;
1234 			writel(cfgr, fep->hwp + FEC_MIIGSK_CFGR);
1235 
1236 			/* re-enable the gasket */
1237 			writel(2, fep->hwp + FEC_MIIGSK_ENR);
1238 		}
1239 #endif
1240 	}
1241 
1242 #if !defined(CONFIG_M5272)
1243 	/* enable pause frame*/
1244 	if ((fep->pause_flag & FEC_PAUSE_FLAG_ENABLE) ||
1245 	    ((fep->pause_flag & FEC_PAUSE_FLAG_AUTONEG) &&
1246 	     ndev->phydev && ndev->phydev->pause)) {
1247 		rcntl |= FEC_RCR_FLOWCTL;
1248 
1249 		/* set FIFO threshold parameter to reduce overrun */
1250 		writel(FEC_ENET_RSEM_V, fep->hwp + FEC_R_FIFO_RSEM);
1251 		writel(FEC_ENET_RSFL_V, fep->hwp + FEC_R_FIFO_RSFL);
1252 		writel(FEC_ENET_RAEM_V, fep->hwp + FEC_R_FIFO_RAEM);
1253 		writel(FEC_ENET_RAFL_V, fep->hwp + FEC_R_FIFO_RAFL);
1254 
1255 		/* OPD */
1256 		writel(FEC_ENET_OPD_V, fep->hwp + FEC_OPD);
1257 	} else {
1258 		rcntl &= ~FEC_RCR_FLOWCTL;
1259 	}
1260 #endif /* !defined(CONFIG_M5272) */
1261 
1262 	writel(rcntl, fep->hwp + FEC_R_CNTRL);
1263 
1264 	/* Setup multicast filter. */
1265 	set_multicast_list(ndev);
1266 #ifndef CONFIG_M5272
1267 	writel(0, fep->hwp + FEC_HASH_TABLE_HIGH);
1268 	writel(0, fep->hwp + FEC_HASH_TABLE_LOW);
1269 #endif
1270 
1271 	if (fep->quirks & FEC_QUIRK_ENET_MAC) {
1272 		/* enable ENET endian swap */
1273 		ecntl |= FEC_ECR_BYTESWP;
1274 		/* enable ENET store and forward mode */
1275 		writel(FEC_TXWMRK_STRFWD, fep->hwp + FEC_X_WMRK);
1276 	}
1277 
1278 	if (fep->bufdesc_ex)
1279 		ecntl |= FEC_ECR_EN1588;
1280 
1281 	if (fep->quirks & FEC_QUIRK_DELAYED_CLKS_SUPPORT &&
1282 	    fep->rgmii_txc_dly)
1283 		ecntl |= FEC_ENET_TXC_DLY;
1284 	if (fep->quirks & FEC_QUIRK_DELAYED_CLKS_SUPPORT &&
1285 	    fep->rgmii_rxc_dly)
1286 		ecntl |= FEC_ENET_RXC_DLY;
1287 
1288 #ifndef CONFIG_M5272
1289 	/* Enable the MIB statistic event counters */
1290 	writel(0 << 31, fep->hwp + FEC_MIB_CTRLSTAT);
1291 #endif
1292 
1293 	/* And last, enable the transmit and receive processing */
1294 	writel(ecntl, fep->hwp + FEC_ECNTRL);
1295 	fec_enet_active_rxring(ndev);
1296 
1297 	if (fep->bufdesc_ex) {
1298 		fec_ptp_start_cyclecounter(ndev);
1299 		fec_ptp_restore_state(fep);
1300 	}
1301 
1302 	/* Enable interrupts we wish to service */
1303 	if (fep->link)
1304 		writel(FEC_DEFAULT_IMASK, fep->hwp + FEC_IMASK);
1305 	else
1306 		writel(0, fep->hwp + FEC_IMASK);
1307 
1308 	/* Init the interrupt coalescing */
1309 	if (fep->quirks & FEC_QUIRK_HAS_COALESCE)
1310 		fec_enet_itr_coal_set(ndev);
1311 }
1312 
fec_enet_ipc_handle_init(struct fec_enet_private * fep)1313 static int fec_enet_ipc_handle_init(struct fec_enet_private *fep)
1314 {
1315 	if (!(of_machine_is_compatible("fsl,imx8qm") ||
1316 	      of_machine_is_compatible("fsl,imx8qxp") ||
1317 	      of_machine_is_compatible("fsl,imx8dxl")))
1318 		return 0;
1319 
1320 	return imx_scu_get_handle(&fep->ipc_handle);
1321 }
1322 
fec_enet_ipg_stop_set(struct fec_enet_private * fep,bool enabled)1323 static void fec_enet_ipg_stop_set(struct fec_enet_private *fep, bool enabled)
1324 {
1325 	struct device_node *np = fep->pdev->dev.of_node;
1326 	u32 rsrc_id, val;
1327 	int idx;
1328 
1329 	if (!np || !fep->ipc_handle)
1330 		return;
1331 
1332 	idx = of_alias_get_id(np, "ethernet");
1333 	if (idx < 0)
1334 		idx = 0;
1335 	rsrc_id = idx ? IMX_SC_R_ENET_1 : IMX_SC_R_ENET_0;
1336 
1337 	val = enabled ? 1 : 0;
1338 	imx_sc_misc_set_control(fep->ipc_handle, rsrc_id, IMX_SC_C_IPG_STOP, val);
1339 }
1340 
fec_enet_stop_mode(struct fec_enet_private * fep,bool enabled)1341 static void fec_enet_stop_mode(struct fec_enet_private *fep, bool enabled)
1342 {
1343 	struct fec_platform_data *pdata = fep->pdev->dev.platform_data;
1344 	struct fec_stop_mode_gpr *stop_gpr = &fep->stop_gpr;
1345 
1346 	if (stop_gpr->gpr) {
1347 		if (enabled)
1348 			regmap_update_bits(stop_gpr->gpr, stop_gpr->reg,
1349 					   BIT(stop_gpr->bit),
1350 					   BIT(stop_gpr->bit));
1351 		else
1352 			regmap_update_bits(stop_gpr->gpr, stop_gpr->reg,
1353 					   BIT(stop_gpr->bit), 0);
1354 	} else if (pdata && pdata->sleep_mode_enable) {
1355 		pdata->sleep_mode_enable(enabled);
1356 	} else {
1357 		fec_enet_ipg_stop_set(fep, enabled);
1358 	}
1359 }
1360 
fec_irqs_disable(struct net_device * ndev)1361 static void fec_irqs_disable(struct net_device *ndev)
1362 {
1363 	struct fec_enet_private *fep = netdev_priv(ndev);
1364 
1365 	writel(0, fep->hwp + FEC_IMASK);
1366 }
1367 
fec_irqs_disable_except_wakeup(struct net_device * ndev)1368 static void fec_irqs_disable_except_wakeup(struct net_device *ndev)
1369 {
1370 	struct fec_enet_private *fep = netdev_priv(ndev);
1371 
1372 	writel(0, fep->hwp + FEC_IMASK);
1373 	writel(FEC_ENET_WAKEUP, fep->hwp + FEC_IMASK);
1374 }
1375 
1376 static void
fec_stop(struct net_device * ndev)1377 fec_stop(struct net_device *ndev)
1378 {
1379 	struct fec_enet_private *fep = netdev_priv(ndev);
1380 	u32 rmii_mode = readl(fep->hwp + FEC_R_CNTRL) & FEC_RCR_RMII;
1381 	u32 val;
1382 
1383 	/* We cannot expect a graceful transmit stop without link !!! */
1384 	if (fep->link) {
1385 		writel(1, fep->hwp + FEC_X_CNTRL); /* Graceful transmit stop */
1386 		udelay(10);
1387 		if (!(readl(fep->hwp + FEC_IEVENT) & FEC_ENET_GRA))
1388 			netdev_err(ndev, "Graceful transmit stop did not complete!\n");
1389 	}
1390 
1391 	if (fep->bufdesc_ex)
1392 		fec_ptp_save_state(fep);
1393 
1394 	fec_ctrl_reset(fep, true);
1395 	writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED);
1396 	writel(FEC_DEFAULT_IMASK, fep->hwp + FEC_IMASK);
1397 
1398 	/* We have to keep ENET enabled to have MII interrupt stay working */
1399 	if (fep->quirks & FEC_QUIRK_ENET_MAC &&
1400 		!(fep->wol_flag & FEC_WOL_FLAG_SLEEP_ON)) {
1401 		writel(FEC_ECR_ETHEREN, fep->hwp + FEC_ECNTRL);
1402 		writel(rmii_mode, fep->hwp + FEC_R_CNTRL);
1403 	}
1404 
1405 	if (fep->bufdesc_ex) {
1406 		val = readl(fep->hwp + FEC_ECNTRL);
1407 		val |= FEC_ECR_EN1588;
1408 		writel(val, fep->hwp + FEC_ECNTRL);
1409 
1410 		fec_ptp_start_cyclecounter(ndev);
1411 		fec_ptp_restore_state(fep);
1412 	}
1413 }
1414 
1415 static void
fec_timeout(struct net_device * ndev,unsigned int txqueue)1416 fec_timeout(struct net_device *ndev, unsigned int txqueue)
1417 {
1418 	struct fec_enet_private *fep = netdev_priv(ndev);
1419 
1420 	fec_dump(ndev);
1421 
1422 	ndev->stats.tx_errors++;
1423 
1424 	schedule_work(&fep->tx_timeout_work);
1425 }
1426 
fec_enet_timeout_work(struct work_struct * work)1427 static void fec_enet_timeout_work(struct work_struct *work)
1428 {
1429 	struct fec_enet_private *fep =
1430 		container_of(work, struct fec_enet_private, tx_timeout_work);
1431 	struct net_device *ndev = fep->netdev;
1432 
1433 	rtnl_lock();
1434 	if (netif_device_present(ndev) || netif_running(ndev)) {
1435 		napi_disable(&fep->napi);
1436 		netif_tx_lock_bh(ndev);
1437 		fec_restart(ndev);
1438 		netif_tx_wake_all_queues(ndev);
1439 		netif_tx_unlock_bh(ndev);
1440 		napi_enable(&fep->napi);
1441 	}
1442 	rtnl_unlock();
1443 }
1444 
1445 static void
fec_enet_hwtstamp(struct fec_enet_private * fep,unsigned ts,struct skb_shared_hwtstamps * hwtstamps)1446 fec_enet_hwtstamp(struct fec_enet_private *fep, unsigned ts,
1447 	struct skb_shared_hwtstamps *hwtstamps)
1448 {
1449 	unsigned long flags;
1450 	u64 ns;
1451 
1452 	spin_lock_irqsave(&fep->tmreg_lock, flags);
1453 	ns = timecounter_cyc2time(&fep->tc, ts);
1454 	spin_unlock_irqrestore(&fep->tmreg_lock, flags);
1455 
1456 	memset(hwtstamps, 0, sizeof(*hwtstamps));
1457 	hwtstamps->hwtstamp = ns_to_ktime(ns);
1458 }
1459 
1460 static void
fec_enet_tx_queue(struct net_device * ndev,u16 queue_id,int budget)1461 fec_enet_tx_queue(struct net_device *ndev, u16 queue_id, int budget)
1462 {
1463 	struct	fec_enet_private *fep;
1464 	struct xdp_frame *xdpf;
1465 	struct bufdesc *bdp;
1466 	unsigned short status;
1467 	struct	sk_buff	*skb;
1468 	struct fec_enet_priv_tx_q *txq;
1469 	struct netdev_queue *nq;
1470 	int	index = 0;
1471 	int	entries_free;
1472 	struct page *page;
1473 	int frame_len;
1474 
1475 	fep = netdev_priv(ndev);
1476 
1477 	txq = fep->tx_queue[queue_id];
1478 	/* get next bdp of dirty_tx */
1479 	nq = netdev_get_tx_queue(ndev, queue_id);
1480 	bdp = txq->dirty_tx;
1481 
1482 	/* get next bdp of dirty_tx */
1483 	bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
1484 
1485 	while (bdp != READ_ONCE(txq->bd.cur)) {
1486 		/* Order the load of bd.cur and cbd_sc */
1487 		rmb();
1488 		status = fec16_to_cpu(READ_ONCE(bdp->cbd_sc));
1489 		if (status & BD_ENET_TX_READY)
1490 			break;
1491 
1492 		index = fec_enet_get_bd_index(bdp, &txq->bd);
1493 
1494 		if (txq->tx_buf[index].type == FEC_TXBUF_T_SKB) {
1495 			skb = txq->tx_buf[index].buf_p;
1496 			if (bdp->cbd_bufaddr &&
1497 			    !IS_TSO_HEADER(txq, fec32_to_cpu(bdp->cbd_bufaddr)))
1498 				dma_unmap_single(&fep->pdev->dev,
1499 						 fec32_to_cpu(bdp->cbd_bufaddr),
1500 						 fec16_to_cpu(bdp->cbd_datlen),
1501 						 DMA_TO_DEVICE);
1502 			bdp->cbd_bufaddr = cpu_to_fec32(0);
1503 			if (!skb)
1504 				goto tx_buf_done;
1505 		} else {
1506 			/* Tx processing cannot call any XDP (or page pool) APIs if
1507 			 * the "budget" is 0. Because NAPI is called with budget of
1508 			 * 0 (such as netpoll) indicates we may be in an IRQ context,
1509 			 * however, we can't use the page pool from IRQ context.
1510 			 */
1511 			if (unlikely(!budget))
1512 				break;
1513 
1514 			if (txq->tx_buf[index].type == FEC_TXBUF_T_XDP_NDO) {
1515 				xdpf = txq->tx_buf[index].buf_p;
1516 				if (bdp->cbd_bufaddr)
1517 					dma_unmap_single(&fep->pdev->dev,
1518 							 fec32_to_cpu(bdp->cbd_bufaddr),
1519 							 fec16_to_cpu(bdp->cbd_datlen),
1520 							 DMA_TO_DEVICE);
1521 			} else {
1522 				page = txq->tx_buf[index].buf_p;
1523 			}
1524 
1525 			bdp->cbd_bufaddr = cpu_to_fec32(0);
1526 			if (unlikely(!txq->tx_buf[index].buf_p)) {
1527 				txq->tx_buf[index].type = FEC_TXBUF_T_SKB;
1528 				goto tx_buf_done;
1529 			}
1530 
1531 			frame_len = fec16_to_cpu(bdp->cbd_datlen);
1532 		}
1533 
1534 		/* Check for errors. */
1535 		if (status & (BD_ENET_TX_HB | BD_ENET_TX_LC |
1536 				   BD_ENET_TX_RL | BD_ENET_TX_UN |
1537 				   BD_ENET_TX_CSL)) {
1538 			ndev->stats.tx_errors++;
1539 			if (status & BD_ENET_TX_HB)  /* No heartbeat */
1540 				ndev->stats.tx_heartbeat_errors++;
1541 			if (status & BD_ENET_TX_LC)  /* Late collision */
1542 				ndev->stats.tx_window_errors++;
1543 			if (status & BD_ENET_TX_RL)  /* Retrans limit */
1544 				ndev->stats.tx_aborted_errors++;
1545 			if (status & BD_ENET_TX_UN)  /* Underrun */
1546 				ndev->stats.tx_fifo_errors++;
1547 			if (status & BD_ENET_TX_CSL) /* Carrier lost */
1548 				ndev->stats.tx_carrier_errors++;
1549 		} else {
1550 			ndev->stats.tx_packets++;
1551 
1552 			if (txq->tx_buf[index].type == FEC_TXBUF_T_SKB)
1553 				ndev->stats.tx_bytes += skb->len;
1554 			else
1555 				ndev->stats.tx_bytes += frame_len;
1556 		}
1557 
1558 		/* Deferred means some collisions occurred during transmit,
1559 		 * but we eventually sent the packet OK.
1560 		 */
1561 		if (status & BD_ENET_TX_DEF)
1562 			ndev->stats.collisions++;
1563 
1564 		if (txq->tx_buf[index].type == FEC_TXBUF_T_SKB) {
1565 			/* NOTE: SKBTX_IN_PROGRESS being set does not imply it's we who
1566 			 * are to time stamp the packet, so we still need to check time
1567 			 * stamping enabled flag.
1568 			 */
1569 			if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS &&
1570 				     fep->hwts_tx_en) && fep->bufdesc_ex) {
1571 				struct skb_shared_hwtstamps shhwtstamps;
1572 				struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
1573 
1574 				fec_enet_hwtstamp(fep, fec32_to_cpu(ebdp->ts), &shhwtstamps);
1575 				skb_tstamp_tx(skb, &shhwtstamps);
1576 			}
1577 
1578 			/* Free the sk buffer associated with this last transmit */
1579 			napi_consume_skb(skb, budget);
1580 		} else if (txq->tx_buf[index].type == FEC_TXBUF_T_XDP_NDO) {
1581 			xdp_return_frame_rx_napi(xdpf);
1582 		} else { /* recycle pages of XDP_TX frames */
1583 			/* The dma_sync_size = 0 as XDP_TX has already synced DMA for_device */
1584 			page_pool_put_page(page->pp, page, 0, true);
1585 		}
1586 
1587 		txq->tx_buf[index].buf_p = NULL;
1588 		/* restore default tx buffer type: FEC_TXBUF_T_SKB */
1589 		txq->tx_buf[index].type = FEC_TXBUF_T_SKB;
1590 
1591 tx_buf_done:
1592 		/* Make sure the update to bdp and tx_buf are performed
1593 		 * before dirty_tx
1594 		 */
1595 		wmb();
1596 		txq->dirty_tx = bdp;
1597 
1598 		/* Update pointer to next buffer descriptor to be transmitted */
1599 		bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
1600 
1601 		/* Since we have freed up a buffer, the ring is no longer full
1602 		 */
1603 		if (netif_tx_queue_stopped(nq)) {
1604 			entries_free = fec_enet_get_free_txdesc_num(txq);
1605 			if (entries_free >= txq->tx_wake_threshold)
1606 				netif_tx_wake_queue(nq);
1607 		}
1608 	}
1609 
1610 	/* ERR006358: Keep the transmitter going */
1611 	if (bdp != txq->bd.cur &&
1612 	    readl(txq->bd.reg_desc_active) == 0)
1613 		writel(0, txq->bd.reg_desc_active);
1614 }
1615 
fec_enet_tx(struct net_device * ndev,int budget)1616 static void fec_enet_tx(struct net_device *ndev, int budget)
1617 {
1618 	struct fec_enet_private *fep = netdev_priv(ndev);
1619 	int i;
1620 
1621 	/* Make sure that AVB queues are processed first. */
1622 	for (i = fep->num_tx_queues - 1; i >= 0; i--)
1623 		fec_enet_tx_queue(ndev, i, budget);
1624 }
1625 
fec_enet_update_cbd(struct fec_enet_priv_rx_q * rxq,struct bufdesc * bdp,int index)1626 static int fec_enet_update_cbd(struct fec_enet_priv_rx_q *rxq,
1627 				struct bufdesc *bdp, int index)
1628 {
1629 	struct page *new_page;
1630 	dma_addr_t phys_addr;
1631 
1632 	new_page = page_pool_dev_alloc_pages(rxq->page_pool);
1633 	if (unlikely(!new_page))
1634 		return -ENOMEM;
1635 
1636 	rxq->rx_skb_info[index].page = new_page;
1637 	rxq->rx_skb_info[index].offset = FEC_ENET_XDP_HEADROOM;
1638 	phys_addr = page_pool_get_dma_addr(new_page) + FEC_ENET_XDP_HEADROOM;
1639 	bdp->cbd_bufaddr = cpu_to_fec32(phys_addr);
1640 
1641 	return 0;
1642 }
1643 
1644 static u32
fec_enet_run_xdp(struct fec_enet_private * fep,struct bpf_prog * prog,struct xdp_buff * xdp,struct fec_enet_priv_rx_q * rxq,int cpu)1645 fec_enet_run_xdp(struct fec_enet_private *fep, struct bpf_prog *prog,
1646 		 struct xdp_buff *xdp, struct fec_enet_priv_rx_q *rxq, int cpu)
1647 {
1648 	unsigned int sync, len = xdp->data_end - xdp->data;
1649 	u32 ret = FEC_ENET_XDP_PASS;
1650 	struct page *page;
1651 	int err;
1652 	u32 act;
1653 
1654 	act = bpf_prog_run_xdp(prog, xdp);
1655 
1656 	/* Due xdp_adjust_tail and xdp_adjust_head: DMA sync for_device cover
1657 	 * max len CPU touch
1658 	 */
1659 	sync = xdp->data_end - xdp->data;
1660 	sync = max(sync, len);
1661 
1662 	switch (act) {
1663 	case XDP_PASS:
1664 		rxq->stats[RX_XDP_PASS]++;
1665 		ret = FEC_ENET_XDP_PASS;
1666 		break;
1667 
1668 	case XDP_REDIRECT:
1669 		rxq->stats[RX_XDP_REDIRECT]++;
1670 		err = xdp_do_redirect(fep->netdev, xdp, prog);
1671 		if (unlikely(err))
1672 			goto xdp_err;
1673 
1674 		ret = FEC_ENET_XDP_REDIR;
1675 		break;
1676 
1677 	case XDP_TX:
1678 		rxq->stats[RX_XDP_TX]++;
1679 		err = fec_enet_xdp_tx_xmit(fep, cpu, xdp, sync);
1680 		if (unlikely(err)) {
1681 			rxq->stats[RX_XDP_TX_ERRORS]++;
1682 			goto xdp_err;
1683 		}
1684 
1685 		ret = FEC_ENET_XDP_TX;
1686 		break;
1687 
1688 	default:
1689 		bpf_warn_invalid_xdp_action(fep->netdev, prog, act);
1690 		fallthrough;
1691 
1692 	case XDP_ABORTED:
1693 		fallthrough;    /* handle aborts by dropping packet */
1694 
1695 	case XDP_DROP:
1696 		rxq->stats[RX_XDP_DROP]++;
1697 xdp_err:
1698 		ret = FEC_ENET_XDP_CONSUMED;
1699 		page = virt_to_head_page(xdp->data);
1700 		page_pool_put_page(rxq->page_pool, page, sync, true);
1701 		if (act != XDP_DROP)
1702 			trace_xdp_exception(fep->netdev, prog, act);
1703 		break;
1704 	}
1705 
1706 	return ret;
1707 }
1708 
1709 /* During a receive, the bd_rx.cur points to the current incoming buffer.
1710  * When we update through the ring, if the next incoming buffer has
1711  * not been given to the system, we just set the empty indicator,
1712  * effectively tossing the packet.
1713  */
1714 static int
fec_enet_rx_queue(struct net_device * ndev,int budget,u16 queue_id)1715 fec_enet_rx_queue(struct net_device *ndev, int budget, u16 queue_id)
1716 {
1717 	struct fec_enet_private *fep = netdev_priv(ndev);
1718 	struct fec_enet_priv_rx_q *rxq;
1719 	struct bufdesc *bdp;
1720 	unsigned short status;
1721 	struct  sk_buff *skb;
1722 	ushort	pkt_len;
1723 	__u8 *data;
1724 	int	pkt_received = 0;
1725 	struct	bufdesc_ex *ebdp = NULL;
1726 	bool	vlan_packet_rcvd = false;
1727 	u16	vlan_tag;
1728 	int	index = 0;
1729 	bool	need_swap = fep->quirks & FEC_QUIRK_SWAP_FRAME;
1730 	struct bpf_prog *xdp_prog = READ_ONCE(fep->xdp_prog);
1731 	u32 ret, xdp_result = FEC_ENET_XDP_PASS;
1732 	u32 data_start = FEC_ENET_XDP_HEADROOM;
1733 	int cpu = smp_processor_id();
1734 	struct xdp_buff xdp;
1735 	struct page *page;
1736 	__fec32 cbd_bufaddr;
1737 	u32 sub_len = 4;
1738 
1739 #if !defined(CONFIG_M5272)
1740 	/*If it has the FEC_QUIRK_HAS_RACC quirk property, the bit of
1741 	 * FEC_RACC_SHIFT16 is set by default in the probe function.
1742 	 */
1743 	if (fep->quirks & FEC_QUIRK_HAS_RACC) {
1744 		data_start += 2;
1745 		sub_len += 2;
1746 	}
1747 #endif
1748 
1749 #if defined(CONFIG_COLDFIRE) && !defined(CONFIG_COLDFIRE_COHERENT_DMA)
1750 	/*
1751 	 * Hacky flush of all caches instead of using the DMA API for the TSO
1752 	 * headers.
1753 	 */
1754 	flush_cache_all();
1755 #endif
1756 	rxq = fep->rx_queue[queue_id];
1757 
1758 	/* First, grab all of the stats for the incoming packet.
1759 	 * These get messed up if we get called due to a busy condition.
1760 	 */
1761 	bdp = rxq->bd.cur;
1762 	xdp_init_buff(&xdp, PAGE_SIZE, &rxq->xdp_rxq);
1763 
1764 	while (!((status = fec16_to_cpu(bdp->cbd_sc)) & BD_ENET_RX_EMPTY)) {
1765 
1766 		if (pkt_received >= budget)
1767 			break;
1768 		pkt_received++;
1769 
1770 		writel(FEC_ENET_RXF_GET(queue_id), fep->hwp + FEC_IEVENT);
1771 
1772 		/* Check for errors. */
1773 		status ^= BD_ENET_RX_LAST;
1774 		if (status & (BD_ENET_RX_LG | BD_ENET_RX_SH | BD_ENET_RX_NO |
1775 			   BD_ENET_RX_CR | BD_ENET_RX_OV | BD_ENET_RX_LAST |
1776 			   BD_ENET_RX_CL)) {
1777 			ndev->stats.rx_errors++;
1778 			if (status & BD_ENET_RX_OV) {
1779 				/* FIFO overrun */
1780 				ndev->stats.rx_fifo_errors++;
1781 				goto rx_processing_done;
1782 			}
1783 			if (status & (BD_ENET_RX_LG | BD_ENET_RX_SH
1784 						| BD_ENET_RX_LAST)) {
1785 				/* Frame too long or too short. */
1786 				ndev->stats.rx_length_errors++;
1787 				if (status & BD_ENET_RX_LAST)
1788 					netdev_err(ndev, "rcv is not +last\n");
1789 			}
1790 			if (status & BD_ENET_RX_CR)	/* CRC Error */
1791 				ndev->stats.rx_crc_errors++;
1792 			/* Report late collisions as a frame error. */
1793 			if (status & (BD_ENET_RX_NO | BD_ENET_RX_CL))
1794 				ndev->stats.rx_frame_errors++;
1795 			goto rx_processing_done;
1796 		}
1797 
1798 		/* Process the incoming frame. */
1799 		ndev->stats.rx_packets++;
1800 		pkt_len = fec16_to_cpu(bdp->cbd_datlen);
1801 		ndev->stats.rx_bytes += pkt_len;
1802 
1803 		index = fec_enet_get_bd_index(bdp, &rxq->bd);
1804 		page = rxq->rx_skb_info[index].page;
1805 		cbd_bufaddr = bdp->cbd_bufaddr;
1806 		if (fec_enet_update_cbd(rxq, bdp, index)) {
1807 			ndev->stats.rx_dropped++;
1808 			goto rx_processing_done;
1809 		}
1810 
1811 		dma_sync_single_for_cpu(&fep->pdev->dev,
1812 					fec32_to_cpu(cbd_bufaddr),
1813 					pkt_len,
1814 					DMA_FROM_DEVICE);
1815 		prefetch(page_address(page));
1816 
1817 		if (xdp_prog) {
1818 			xdp_buff_clear_frags_flag(&xdp);
1819 			/* subtract 16bit shift and FCS */
1820 			xdp_prepare_buff(&xdp, page_address(page),
1821 					 data_start, pkt_len - sub_len, false);
1822 			ret = fec_enet_run_xdp(fep, xdp_prog, &xdp, rxq, cpu);
1823 			xdp_result |= ret;
1824 			if (ret != FEC_ENET_XDP_PASS)
1825 				goto rx_processing_done;
1826 		}
1827 
1828 		/* The packet length includes FCS, but we don't want to
1829 		 * include that when passing upstream as it messes up
1830 		 * bridging applications.
1831 		 */
1832 		skb = build_skb(page_address(page), PAGE_SIZE);
1833 		if (unlikely(!skb)) {
1834 			page_pool_recycle_direct(rxq->page_pool, page);
1835 			ndev->stats.rx_dropped++;
1836 
1837 			netdev_err_once(ndev, "build_skb failed!\n");
1838 			goto rx_processing_done;
1839 		}
1840 
1841 		skb_reserve(skb, data_start);
1842 		skb_put(skb, pkt_len - sub_len);
1843 		skb_mark_for_recycle(skb);
1844 
1845 		if (unlikely(need_swap)) {
1846 			data = page_address(page) + FEC_ENET_XDP_HEADROOM;
1847 			swap_buffer(data, pkt_len);
1848 		}
1849 		data = skb->data;
1850 
1851 		/* Extract the enhanced buffer descriptor */
1852 		ebdp = NULL;
1853 		if (fep->bufdesc_ex)
1854 			ebdp = (struct bufdesc_ex *)bdp;
1855 
1856 		/* If this is a VLAN packet remove the VLAN Tag */
1857 		vlan_packet_rcvd = false;
1858 		if ((ndev->features & NETIF_F_HW_VLAN_CTAG_RX) &&
1859 		    fep->bufdesc_ex &&
1860 		    (ebdp->cbd_esc & cpu_to_fec32(BD_ENET_RX_VLAN))) {
1861 			/* Push and remove the vlan tag */
1862 			struct vlan_hdr *vlan_header =
1863 					(struct vlan_hdr *) (data + ETH_HLEN);
1864 			vlan_tag = ntohs(vlan_header->h_vlan_TCI);
1865 
1866 			vlan_packet_rcvd = true;
1867 
1868 			memmove(skb->data + VLAN_HLEN, data, ETH_ALEN * 2);
1869 			skb_pull(skb, VLAN_HLEN);
1870 		}
1871 
1872 		skb->protocol = eth_type_trans(skb, ndev);
1873 
1874 		/* Get receive timestamp from the skb */
1875 		if (fep->hwts_rx_en && fep->bufdesc_ex)
1876 			fec_enet_hwtstamp(fep, fec32_to_cpu(ebdp->ts),
1877 					  skb_hwtstamps(skb));
1878 
1879 		if (fep->bufdesc_ex &&
1880 		    (fep->csum_flags & FLAG_RX_CSUM_ENABLED)) {
1881 			if (!(ebdp->cbd_esc & cpu_to_fec32(FLAG_RX_CSUM_ERROR))) {
1882 				/* don't check it */
1883 				skb->ip_summed = CHECKSUM_UNNECESSARY;
1884 			} else {
1885 				skb_checksum_none_assert(skb);
1886 			}
1887 		}
1888 
1889 		/* Handle received VLAN packets */
1890 		if (vlan_packet_rcvd)
1891 			__vlan_hwaccel_put_tag(skb,
1892 					       htons(ETH_P_8021Q),
1893 					       vlan_tag);
1894 
1895 		skb_record_rx_queue(skb, queue_id);
1896 		napi_gro_receive(&fep->napi, skb);
1897 
1898 rx_processing_done:
1899 		/* Clear the status flags for this buffer */
1900 		status &= ~BD_ENET_RX_STATS;
1901 
1902 		/* Mark the buffer empty */
1903 		status |= BD_ENET_RX_EMPTY;
1904 
1905 		if (fep->bufdesc_ex) {
1906 			struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
1907 
1908 			ebdp->cbd_esc = cpu_to_fec32(BD_ENET_RX_INT);
1909 			ebdp->cbd_prot = 0;
1910 			ebdp->cbd_bdu = 0;
1911 		}
1912 		/* Make sure the updates to rest of the descriptor are
1913 		 * performed before transferring ownership.
1914 		 */
1915 		wmb();
1916 		bdp->cbd_sc = cpu_to_fec16(status);
1917 
1918 		/* Update BD pointer to next entry */
1919 		bdp = fec_enet_get_nextdesc(bdp, &rxq->bd);
1920 
1921 		/* Doing this here will keep the FEC running while we process
1922 		 * incoming frames.  On a heavily loaded network, we should be
1923 		 * able to keep up at the expense of system resources.
1924 		 */
1925 		writel(0, rxq->bd.reg_desc_active);
1926 	}
1927 	rxq->bd.cur = bdp;
1928 
1929 	if (xdp_result & FEC_ENET_XDP_REDIR)
1930 		xdp_do_flush();
1931 
1932 	return pkt_received;
1933 }
1934 
fec_enet_rx(struct net_device * ndev,int budget)1935 static int fec_enet_rx(struct net_device *ndev, int budget)
1936 {
1937 	struct fec_enet_private *fep = netdev_priv(ndev);
1938 	int i, done = 0;
1939 
1940 	/* Make sure that AVB queues are processed first. */
1941 	for (i = fep->num_rx_queues - 1; i >= 0; i--)
1942 		done += fec_enet_rx_queue(ndev, budget - done, i);
1943 
1944 	return done;
1945 }
1946 
fec_enet_collect_events(struct fec_enet_private * fep)1947 static bool fec_enet_collect_events(struct fec_enet_private *fep)
1948 {
1949 	uint int_events;
1950 
1951 	int_events = readl(fep->hwp + FEC_IEVENT);
1952 
1953 	/* Don't clear MDIO events, we poll for those */
1954 	int_events &= ~FEC_ENET_MII;
1955 
1956 	writel(int_events, fep->hwp + FEC_IEVENT);
1957 
1958 	return int_events != 0;
1959 }
1960 
1961 static irqreturn_t
fec_enet_interrupt(int irq,void * dev_id)1962 fec_enet_interrupt(int irq, void *dev_id)
1963 {
1964 	struct net_device *ndev = dev_id;
1965 	struct fec_enet_private *fep = netdev_priv(ndev);
1966 	irqreturn_t ret = IRQ_NONE;
1967 
1968 	if (fec_enet_collect_events(fep) && fep->link) {
1969 		ret = IRQ_HANDLED;
1970 
1971 		if (napi_schedule_prep(&fep->napi)) {
1972 			/* Disable interrupts */
1973 			writel(0, fep->hwp + FEC_IMASK);
1974 			__napi_schedule(&fep->napi);
1975 		}
1976 	}
1977 
1978 	return ret;
1979 }
1980 
fec_enet_rx_napi(struct napi_struct * napi,int budget)1981 static int fec_enet_rx_napi(struct napi_struct *napi, int budget)
1982 {
1983 	struct net_device *ndev = napi->dev;
1984 	struct fec_enet_private *fep = netdev_priv(ndev);
1985 	int done = 0;
1986 
1987 	do {
1988 		done += fec_enet_rx(ndev, budget - done);
1989 		fec_enet_tx(ndev, budget);
1990 	} while ((done < budget) && fec_enet_collect_events(fep));
1991 
1992 	if (done < budget) {
1993 		napi_complete_done(napi, done);
1994 		writel(FEC_DEFAULT_IMASK, fep->hwp + FEC_IMASK);
1995 	}
1996 
1997 	return done;
1998 }
1999 
2000 /* ------------------------------------------------------------------------- */
fec_get_mac(struct net_device * ndev)2001 static int fec_get_mac(struct net_device *ndev)
2002 {
2003 	struct fec_enet_private *fep = netdev_priv(ndev);
2004 	unsigned char *iap, tmpaddr[ETH_ALEN];
2005 	int ret;
2006 
2007 	/*
2008 	 * try to get mac address in following order:
2009 	 *
2010 	 * 1) module parameter via kernel command line in form
2011 	 *    fec.macaddr=0x00,0x04,0x9f,0x01,0x30,0xe0
2012 	 */
2013 	iap = macaddr;
2014 
2015 	/*
2016 	 * 2) from device tree data
2017 	 */
2018 	if (!is_valid_ether_addr(iap)) {
2019 		struct device_node *np = fep->pdev->dev.of_node;
2020 		if (np) {
2021 			ret = of_get_mac_address(np, tmpaddr);
2022 			if (!ret)
2023 				iap = tmpaddr;
2024 			else if (ret == -EPROBE_DEFER)
2025 				return ret;
2026 		}
2027 	}
2028 
2029 	/*
2030 	 * 3) from flash or fuse (via platform data)
2031 	 */
2032 	if (!is_valid_ether_addr(iap)) {
2033 #ifdef CONFIG_M5272
2034 		if (FEC_FLASHMAC)
2035 			iap = (unsigned char *)FEC_FLASHMAC;
2036 #else
2037 		struct fec_platform_data *pdata = dev_get_platdata(&fep->pdev->dev);
2038 
2039 		if (pdata)
2040 			iap = (unsigned char *)&pdata->mac;
2041 #endif
2042 	}
2043 
2044 	/*
2045 	 * 4) FEC mac registers set by bootloader
2046 	 */
2047 	if (!is_valid_ether_addr(iap)) {
2048 		*((__be32 *) &tmpaddr[0]) =
2049 			cpu_to_be32(readl(fep->hwp + FEC_ADDR_LOW));
2050 		*((__be16 *) &tmpaddr[4]) =
2051 			cpu_to_be16(readl(fep->hwp + FEC_ADDR_HIGH) >> 16);
2052 		iap = &tmpaddr[0];
2053 	}
2054 
2055 	/*
2056 	 * 5) random mac address
2057 	 */
2058 	if (!is_valid_ether_addr(iap)) {
2059 		/* Report it and use a random ethernet address instead */
2060 		dev_err(&fep->pdev->dev, "Invalid MAC address: %pM\n", iap);
2061 		eth_hw_addr_random(ndev);
2062 		dev_info(&fep->pdev->dev, "Using random MAC address: %pM\n",
2063 			 ndev->dev_addr);
2064 		return 0;
2065 	}
2066 
2067 	/* Adjust MAC if using macaddr */
2068 	eth_hw_addr_gen(ndev, iap, iap == macaddr ? fep->dev_id : 0);
2069 
2070 	return 0;
2071 }
2072 
2073 /* ------------------------------------------------------------------------- */
2074 
2075 /*
2076  * Phy section
2077  */
2078 
2079 /* LPI Sleep Ts count base on tx clk (clk_ref).
2080  * The lpi sleep cnt value = X us / (cycle_ns).
2081  */
fec_enet_us_to_tx_cycle(struct net_device * ndev,int us)2082 static int fec_enet_us_to_tx_cycle(struct net_device *ndev, int us)
2083 {
2084 	struct fec_enet_private *fep = netdev_priv(ndev);
2085 
2086 	return us * (fep->clk_ref_rate / 1000) / 1000;
2087 }
2088 
fec_enet_eee_mode_set(struct net_device * ndev,bool enable)2089 static int fec_enet_eee_mode_set(struct net_device *ndev, bool enable)
2090 {
2091 	struct fec_enet_private *fep = netdev_priv(ndev);
2092 	struct ethtool_keee *p = &fep->eee;
2093 	unsigned int sleep_cycle, wake_cycle;
2094 
2095 	if (enable) {
2096 		sleep_cycle = fec_enet_us_to_tx_cycle(ndev, p->tx_lpi_timer);
2097 		wake_cycle = sleep_cycle;
2098 	} else {
2099 		sleep_cycle = 0;
2100 		wake_cycle = 0;
2101 	}
2102 
2103 	writel(sleep_cycle, fep->hwp + FEC_LPI_SLEEP);
2104 	writel(wake_cycle, fep->hwp + FEC_LPI_WAKE);
2105 
2106 	return 0;
2107 }
2108 
fec_enet_adjust_link(struct net_device * ndev)2109 static void fec_enet_adjust_link(struct net_device *ndev)
2110 {
2111 	struct fec_enet_private *fep = netdev_priv(ndev);
2112 	struct phy_device *phy_dev = ndev->phydev;
2113 	int status_change = 0;
2114 
2115 	/*
2116 	 * If the netdev is down, or is going down, we're not interested
2117 	 * in link state events, so just mark our idea of the link as down
2118 	 * and ignore the event.
2119 	 */
2120 	if (!netif_running(ndev) || !netif_device_present(ndev)) {
2121 		fep->link = 0;
2122 	} else if (phy_dev->link) {
2123 		if (!fep->link) {
2124 			fep->link = phy_dev->link;
2125 			status_change = 1;
2126 		}
2127 
2128 		if (fep->full_duplex != phy_dev->duplex) {
2129 			fep->full_duplex = phy_dev->duplex;
2130 			status_change = 1;
2131 		}
2132 
2133 		if (phy_dev->speed != fep->speed) {
2134 			fep->speed = phy_dev->speed;
2135 			status_change = 1;
2136 		}
2137 
2138 		/* if any of the above changed restart the FEC */
2139 		if (status_change) {
2140 			netif_stop_queue(ndev);
2141 			napi_disable(&fep->napi);
2142 			netif_tx_lock_bh(ndev);
2143 			fec_restart(ndev);
2144 			netif_tx_wake_all_queues(ndev);
2145 			netif_tx_unlock_bh(ndev);
2146 			napi_enable(&fep->napi);
2147 		}
2148 		if (fep->quirks & FEC_QUIRK_HAS_EEE)
2149 			fec_enet_eee_mode_set(ndev, phy_dev->enable_tx_lpi);
2150 	} else {
2151 		if (fep->link) {
2152 			netif_stop_queue(ndev);
2153 			napi_disable(&fep->napi);
2154 			netif_tx_lock_bh(ndev);
2155 			fec_stop(ndev);
2156 			netif_tx_unlock_bh(ndev);
2157 			napi_enable(&fep->napi);
2158 			fep->link = phy_dev->link;
2159 			status_change = 1;
2160 		}
2161 	}
2162 
2163 	if (status_change)
2164 		phy_print_status(phy_dev);
2165 }
2166 
fec_enet_mdio_wait(struct fec_enet_private * fep)2167 static int fec_enet_mdio_wait(struct fec_enet_private *fep)
2168 {
2169 	uint ievent;
2170 	int ret;
2171 
2172 	ret = readl_poll_timeout_atomic(fep->hwp + FEC_IEVENT, ievent,
2173 					ievent & FEC_ENET_MII, 2, 30000);
2174 
2175 	if (!ret)
2176 		writel(FEC_ENET_MII, fep->hwp + FEC_IEVENT);
2177 
2178 	return ret;
2179 }
2180 
fec_enet_mdio_read_c22(struct mii_bus * bus,int mii_id,int regnum)2181 static int fec_enet_mdio_read_c22(struct mii_bus *bus, int mii_id, int regnum)
2182 {
2183 	struct fec_enet_private *fep = bus->priv;
2184 	struct device *dev = &fep->pdev->dev;
2185 	int ret = 0, frame_start, frame_addr, frame_op;
2186 
2187 	ret = pm_runtime_resume_and_get(dev);
2188 	if (ret < 0)
2189 		return ret;
2190 
2191 	/* C22 read */
2192 	frame_op = FEC_MMFR_OP_READ;
2193 	frame_start = FEC_MMFR_ST;
2194 	frame_addr = regnum;
2195 
2196 	/* start a read op */
2197 	writel(frame_start | frame_op |
2198 	       FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(frame_addr) |
2199 	       FEC_MMFR_TA, fep->hwp + FEC_MII_DATA);
2200 
2201 	/* wait for end of transfer */
2202 	ret = fec_enet_mdio_wait(fep);
2203 	if (ret) {
2204 		netdev_err(fep->netdev, "MDIO read timeout\n");
2205 		goto out;
2206 	}
2207 
2208 	ret = FEC_MMFR_DATA(readl(fep->hwp + FEC_MII_DATA));
2209 
2210 out:
2211 	pm_runtime_mark_last_busy(dev);
2212 	pm_runtime_put_autosuspend(dev);
2213 
2214 	return ret;
2215 }
2216 
fec_enet_mdio_read_c45(struct mii_bus * bus,int mii_id,int devad,int regnum)2217 static int fec_enet_mdio_read_c45(struct mii_bus *bus, int mii_id,
2218 				  int devad, int regnum)
2219 {
2220 	struct fec_enet_private *fep = bus->priv;
2221 	struct device *dev = &fep->pdev->dev;
2222 	int ret = 0, frame_start, frame_op;
2223 
2224 	ret = pm_runtime_resume_and_get(dev);
2225 	if (ret < 0)
2226 		return ret;
2227 
2228 	frame_start = FEC_MMFR_ST_C45;
2229 
2230 	/* write address */
2231 	writel(frame_start | FEC_MMFR_OP_ADDR_WRITE |
2232 	       FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(devad) |
2233 	       FEC_MMFR_TA | (regnum & 0xFFFF),
2234 	       fep->hwp + FEC_MII_DATA);
2235 
2236 	/* wait for end of transfer */
2237 	ret = fec_enet_mdio_wait(fep);
2238 	if (ret) {
2239 		netdev_err(fep->netdev, "MDIO address write timeout\n");
2240 		goto out;
2241 	}
2242 
2243 	frame_op = FEC_MMFR_OP_READ_C45;
2244 
2245 	/* start a read op */
2246 	writel(frame_start | frame_op |
2247 	       FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(devad) |
2248 	       FEC_MMFR_TA, fep->hwp + FEC_MII_DATA);
2249 
2250 	/* wait for end of transfer */
2251 	ret = fec_enet_mdio_wait(fep);
2252 	if (ret) {
2253 		netdev_err(fep->netdev, "MDIO read timeout\n");
2254 		goto out;
2255 	}
2256 
2257 	ret = FEC_MMFR_DATA(readl(fep->hwp + FEC_MII_DATA));
2258 
2259 out:
2260 	pm_runtime_mark_last_busy(dev);
2261 	pm_runtime_put_autosuspend(dev);
2262 
2263 	return ret;
2264 }
2265 
fec_enet_mdio_write_c22(struct mii_bus * bus,int mii_id,int regnum,u16 value)2266 static int fec_enet_mdio_write_c22(struct mii_bus *bus, int mii_id, int regnum,
2267 				   u16 value)
2268 {
2269 	struct fec_enet_private *fep = bus->priv;
2270 	struct device *dev = &fep->pdev->dev;
2271 	int ret, frame_start, frame_addr;
2272 
2273 	ret = pm_runtime_resume_and_get(dev);
2274 	if (ret < 0)
2275 		return ret;
2276 
2277 	/* C22 write */
2278 	frame_start = FEC_MMFR_ST;
2279 	frame_addr = regnum;
2280 
2281 	/* start a write op */
2282 	writel(frame_start | FEC_MMFR_OP_WRITE |
2283 	       FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(frame_addr) |
2284 	       FEC_MMFR_TA | FEC_MMFR_DATA(value),
2285 	       fep->hwp + FEC_MII_DATA);
2286 
2287 	/* wait for end of transfer */
2288 	ret = fec_enet_mdio_wait(fep);
2289 	if (ret)
2290 		netdev_err(fep->netdev, "MDIO write timeout\n");
2291 
2292 	pm_runtime_mark_last_busy(dev);
2293 	pm_runtime_put_autosuspend(dev);
2294 
2295 	return ret;
2296 }
2297 
fec_enet_mdio_write_c45(struct mii_bus * bus,int mii_id,int devad,int regnum,u16 value)2298 static int fec_enet_mdio_write_c45(struct mii_bus *bus, int mii_id,
2299 				   int devad, int regnum, u16 value)
2300 {
2301 	struct fec_enet_private *fep = bus->priv;
2302 	struct device *dev = &fep->pdev->dev;
2303 	int ret, frame_start;
2304 
2305 	ret = pm_runtime_resume_and_get(dev);
2306 	if (ret < 0)
2307 		return ret;
2308 
2309 	frame_start = FEC_MMFR_ST_C45;
2310 
2311 	/* write address */
2312 	writel(frame_start | FEC_MMFR_OP_ADDR_WRITE |
2313 	       FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(devad) |
2314 	       FEC_MMFR_TA | (regnum & 0xFFFF),
2315 	       fep->hwp + FEC_MII_DATA);
2316 
2317 	/* wait for end of transfer */
2318 	ret = fec_enet_mdio_wait(fep);
2319 	if (ret) {
2320 		netdev_err(fep->netdev, "MDIO address write timeout\n");
2321 		goto out;
2322 	}
2323 
2324 	/* start a write op */
2325 	writel(frame_start | FEC_MMFR_OP_WRITE |
2326 	       FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(devad) |
2327 	       FEC_MMFR_TA | FEC_MMFR_DATA(value),
2328 	       fep->hwp + FEC_MII_DATA);
2329 
2330 	/* wait for end of transfer */
2331 	ret = fec_enet_mdio_wait(fep);
2332 	if (ret)
2333 		netdev_err(fep->netdev, "MDIO write timeout\n");
2334 
2335 out:
2336 	pm_runtime_mark_last_busy(dev);
2337 	pm_runtime_put_autosuspend(dev);
2338 
2339 	return ret;
2340 }
2341 
fec_enet_phy_reset_after_clk_enable(struct net_device * ndev)2342 static void fec_enet_phy_reset_after_clk_enable(struct net_device *ndev)
2343 {
2344 	struct fec_enet_private *fep = netdev_priv(ndev);
2345 	struct phy_device *phy_dev = ndev->phydev;
2346 
2347 	if (phy_dev) {
2348 		phy_reset_after_clk_enable(phy_dev);
2349 	} else if (fep->phy_node) {
2350 		/*
2351 		 * If the PHY still is not bound to the MAC, but there is
2352 		 * OF PHY node and a matching PHY device instance already,
2353 		 * use the OF PHY node to obtain the PHY device instance,
2354 		 * and then use that PHY device instance when triggering
2355 		 * the PHY reset.
2356 		 */
2357 		phy_dev = of_phy_find_device(fep->phy_node);
2358 		phy_reset_after_clk_enable(phy_dev);
2359 		if (phy_dev)
2360 			put_device(&phy_dev->mdio.dev);
2361 	}
2362 }
2363 
fec_enet_clk_enable(struct net_device * ndev,bool enable)2364 static int fec_enet_clk_enable(struct net_device *ndev, bool enable)
2365 {
2366 	struct fec_enet_private *fep = netdev_priv(ndev);
2367 	int ret;
2368 
2369 	if (enable) {
2370 		ret = clk_prepare_enable(fep->clk_enet_out);
2371 		if (ret)
2372 			return ret;
2373 
2374 		if (fep->clk_ptp) {
2375 			mutex_lock(&fep->ptp_clk_mutex);
2376 			ret = clk_prepare_enable(fep->clk_ptp);
2377 			if (ret) {
2378 				mutex_unlock(&fep->ptp_clk_mutex);
2379 				goto failed_clk_ptp;
2380 			} else {
2381 				fep->ptp_clk_on = true;
2382 			}
2383 			mutex_unlock(&fep->ptp_clk_mutex);
2384 		}
2385 
2386 		ret = clk_prepare_enable(fep->clk_ref);
2387 		if (ret)
2388 			goto failed_clk_ref;
2389 
2390 		ret = clk_prepare_enable(fep->clk_2x_txclk);
2391 		if (ret)
2392 			goto failed_clk_2x_txclk;
2393 
2394 		fec_enet_phy_reset_after_clk_enable(ndev);
2395 	} else {
2396 		clk_disable_unprepare(fep->clk_enet_out);
2397 		if (fep->clk_ptp) {
2398 			mutex_lock(&fep->ptp_clk_mutex);
2399 			clk_disable_unprepare(fep->clk_ptp);
2400 			fep->ptp_clk_on = false;
2401 			mutex_unlock(&fep->ptp_clk_mutex);
2402 		}
2403 		clk_disable_unprepare(fep->clk_ref);
2404 		clk_disable_unprepare(fep->clk_2x_txclk);
2405 	}
2406 
2407 	return 0;
2408 
2409 failed_clk_2x_txclk:
2410 	if (fep->clk_ref)
2411 		clk_disable_unprepare(fep->clk_ref);
2412 failed_clk_ref:
2413 	if (fep->clk_ptp) {
2414 		mutex_lock(&fep->ptp_clk_mutex);
2415 		clk_disable_unprepare(fep->clk_ptp);
2416 		fep->ptp_clk_on = false;
2417 		mutex_unlock(&fep->ptp_clk_mutex);
2418 	}
2419 failed_clk_ptp:
2420 	clk_disable_unprepare(fep->clk_enet_out);
2421 
2422 	return ret;
2423 }
2424 
fec_enet_parse_rgmii_delay(struct fec_enet_private * fep,struct device_node * np)2425 static int fec_enet_parse_rgmii_delay(struct fec_enet_private *fep,
2426 				      struct device_node *np)
2427 {
2428 	u32 rgmii_tx_delay, rgmii_rx_delay;
2429 
2430 	/* For rgmii tx internal delay, valid values are 0ps and 2000ps */
2431 	if (!of_property_read_u32(np, "tx-internal-delay-ps", &rgmii_tx_delay)) {
2432 		if (rgmii_tx_delay != 0 && rgmii_tx_delay != 2000) {
2433 			dev_err(&fep->pdev->dev, "The only allowed RGMII TX delay values are: 0ps, 2000ps");
2434 			return -EINVAL;
2435 		} else if (rgmii_tx_delay == 2000) {
2436 			fep->rgmii_txc_dly = true;
2437 		}
2438 	}
2439 
2440 	/* For rgmii rx internal delay, valid values are 0ps and 2000ps */
2441 	if (!of_property_read_u32(np, "rx-internal-delay-ps", &rgmii_rx_delay)) {
2442 		if (rgmii_rx_delay != 0 && rgmii_rx_delay != 2000) {
2443 			dev_err(&fep->pdev->dev, "The only allowed RGMII RX delay values are: 0ps, 2000ps");
2444 			return -EINVAL;
2445 		} else if (rgmii_rx_delay == 2000) {
2446 			fep->rgmii_rxc_dly = true;
2447 		}
2448 	}
2449 
2450 	return 0;
2451 }
2452 
fec_enet_mii_probe(struct net_device * ndev)2453 static int fec_enet_mii_probe(struct net_device *ndev)
2454 {
2455 	struct fec_enet_private *fep = netdev_priv(ndev);
2456 	struct phy_device *phy_dev = NULL;
2457 	char mdio_bus_id[MII_BUS_ID_SIZE];
2458 	char phy_name[MII_BUS_ID_SIZE + 3];
2459 	int phy_id;
2460 	int dev_id = fep->dev_id;
2461 
2462 	if (fep->phy_node) {
2463 		phy_dev = of_phy_connect(ndev, fep->phy_node,
2464 					 &fec_enet_adjust_link, 0,
2465 					 fep->phy_interface);
2466 		if (!phy_dev) {
2467 			netdev_err(ndev, "Unable to connect to phy\n");
2468 			return -ENODEV;
2469 		}
2470 	} else {
2471 		/* check for attached phy */
2472 		for (phy_id = 0; (phy_id < PHY_MAX_ADDR); phy_id++) {
2473 			if (!mdiobus_is_registered_device(fep->mii_bus, phy_id))
2474 				continue;
2475 			if (dev_id--)
2476 				continue;
2477 			strscpy(mdio_bus_id, fep->mii_bus->id, MII_BUS_ID_SIZE);
2478 			break;
2479 		}
2480 
2481 		if (phy_id >= PHY_MAX_ADDR) {
2482 			netdev_info(ndev, "no PHY, assuming direct connection to switch\n");
2483 			strscpy(mdio_bus_id, "fixed-0", MII_BUS_ID_SIZE);
2484 			phy_id = 0;
2485 		}
2486 
2487 		snprintf(phy_name, sizeof(phy_name),
2488 			 PHY_ID_FMT, mdio_bus_id, phy_id);
2489 		phy_dev = phy_connect(ndev, phy_name, &fec_enet_adjust_link,
2490 				      fep->phy_interface);
2491 	}
2492 
2493 	if (IS_ERR(phy_dev)) {
2494 		netdev_err(ndev, "could not attach to PHY\n");
2495 		return PTR_ERR(phy_dev);
2496 	}
2497 
2498 	/* mask with MAC supported features */
2499 	if (fep->quirks & FEC_QUIRK_HAS_GBIT) {
2500 		phy_set_max_speed(phy_dev, 1000);
2501 		phy_remove_link_mode(phy_dev,
2502 				     ETHTOOL_LINK_MODE_1000baseT_Half_BIT);
2503 #if !defined(CONFIG_M5272)
2504 		phy_support_sym_pause(phy_dev);
2505 #endif
2506 	}
2507 	else
2508 		phy_set_max_speed(phy_dev, 100);
2509 
2510 	if (fep->quirks & FEC_QUIRK_HAS_EEE)
2511 		phy_support_eee(phy_dev);
2512 
2513 	fep->link = 0;
2514 	fep->full_duplex = 0;
2515 
2516 	phy_attached_info(phy_dev);
2517 
2518 	return 0;
2519 }
2520 
fec_enet_mii_init(struct platform_device * pdev)2521 static int fec_enet_mii_init(struct platform_device *pdev)
2522 {
2523 	static struct mii_bus *fec0_mii_bus;
2524 	struct net_device *ndev = platform_get_drvdata(pdev);
2525 	struct fec_enet_private *fep = netdev_priv(ndev);
2526 	bool suppress_preamble = false;
2527 	struct phy_device *phydev;
2528 	struct device_node *node;
2529 	int err = -ENXIO;
2530 	u32 mii_speed, holdtime;
2531 	u32 bus_freq;
2532 	int addr;
2533 
2534 	/*
2535 	 * The i.MX28 dual fec interfaces are not equal.
2536 	 * Here are the differences:
2537 	 *
2538 	 *  - fec0 supports MII & RMII modes while fec1 only supports RMII
2539 	 *  - fec0 acts as the 1588 time master while fec1 is slave
2540 	 *  - external phys can only be configured by fec0
2541 	 *
2542 	 * That is to say fec1 can not work independently. It only works
2543 	 * when fec0 is working. The reason behind this design is that the
2544 	 * second interface is added primarily for Switch mode.
2545 	 *
2546 	 * Because of the last point above, both phys are attached on fec0
2547 	 * mdio interface in board design, and need to be configured by
2548 	 * fec0 mii_bus.
2549 	 */
2550 	if ((fep->quirks & FEC_QUIRK_SINGLE_MDIO) && fep->dev_id > 0) {
2551 		/* fec1 uses fec0 mii_bus */
2552 		if (mii_cnt && fec0_mii_bus) {
2553 			fep->mii_bus = fec0_mii_bus;
2554 			mii_cnt++;
2555 			return 0;
2556 		}
2557 		return -ENOENT;
2558 	}
2559 
2560 	bus_freq = 2500000; /* 2.5MHz by default */
2561 	node = of_get_child_by_name(pdev->dev.of_node, "mdio");
2562 	if (node) {
2563 		of_property_read_u32(node, "clock-frequency", &bus_freq);
2564 		suppress_preamble = of_property_read_bool(node,
2565 							  "suppress-preamble");
2566 	}
2567 
2568 	/*
2569 	 * Set MII speed (= clk_get_rate() / 2 * phy_speed)
2570 	 *
2571 	 * The formula for FEC MDC is 'ref_freq / (MII_SPEED x 2)' while
2572 	 * for ENET-MAC is 'ref_freq / ((MII_SPEED + 1) x 2)'.  The i.MX28
2573 	 * Reference Manual has an error on this, and gets fixed on i.MX6Q
2574 	 * document.
2575 	 */
2576 	mii_speed = DIV_ROUND_UP(clk_get_rate(fep->clk_ipg), bus_freq * 2);
2577 	if (fep->quirks & FEC_QUIRK_ENET_MAC)
2578 		mii_speed--;
2579 	if (mii_speed > 63) {
2580 		dev_err(&pdev->dev,
2581 			"fec clock (%lu) too fast to get right mii speed\n",
2582 			clk_get_rate(fep->clk_ipg));
2583 		err = -EINVAL;
2584 		goto err_out;
2585 	}
2586 
2587 	/*
2588 	 * The i.MX28 and i.MX6 types have another filed in the MSCR (aka
2589 	 * MII_SPEED) register that defines the MDIO output hold time. Earlier
2590 	 * versions are RAZ there, so just ignore the difference and write the
2591 	 * register always.
2592 	 * The minimal hold time according to IEE802.3 (clause 22) is 10 ns.
2593 	 * HOLDTIME + 1 is the number of clk cycles the fec is holding the
2594 	 * output.
2595 	 * The HOLDTIME bitfield takes values between 0 and 7 (inclusive).
2596 	 * Given that ceil(clkrate / 5000000) <= 64, the calculation for
2597 	 * holdtime cannot result in a value greater than 3.
2598 	 */
2599 	holdtime = DIV_ROUND_UP(clk_get_rate(fep->clk_ipg), 100000000) - 1;
2600 
2601 	fep->phy_speed = mii_speed << 1 | holdtime << 8;
2602 
2603 	if (suppress_preamble)
2604 		fep->phy_speed |= BIT(7);
2605 
2606 	if (fep->quirks & FEC_QUIRK_CLEAR_SETUP_MII) {
2607 		/* Clear MMFR to avoid to generate MII event by writing MSCR.
2608 		 * MII event generation condition:
2609 		 * - writing MSCR:
2610 		 *	- mmfr[31:0]_not_zero & mscr[7:0]_is_zero &
2611 		 *	  mscr_reg_data_in[7:0] != 0
2612 		 * - writing MMFR:
2613 		 *	- mscr[7:0]_not_zero
2614 		 */
2615 		writel(0, fep->hwp + FEC_MII_DATA);
2616 	}
2617 
2618 	writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED);
2619 
2620 	/* Clear any pending transaction complete indication */
2621 	writel(FEC_ENET_MII, fep->hwp + FEC_IEVENT);
2622 
2623 	fep->mii_bus = mdiobus_alloc();
2624 	if (fep->mii_bus == NULL) {
2625 		err = -ENOMEM;
2626 		goto err_out;
2627 	}
2628 
2629 	fep->mii_bus->name = "fec_enet_mii_bus";
2630 	fep->mii_bus->read = fec_enet_mdio_read_c22;
2631 	fep->mii_bus->write = fec_enet_mdio_write_c22;
2632 	if (fep->quirks & FEC_QUIRK_HAS_MDIO_C45) {
2633 		fep->mii_bus->read_c45 = fec_enet_mdio_read_c45;
2634 		fep->mii_bus->write_c45 = fec_enet_mdio_write_c45;
2635 	}
2636 	snprintf(fep->mii_bus->id, MII_BUS_ID_SIZE, "%s-%x",
2637 		pdev->name, fep->dev_id + 1);
2638 	fep->mii_bus->priv = fep;
2639 	fep->mii_bus->parent = &pdev->dev;
2640 
2641 	err = of_mdiobus_register(fep->mii_bus, node);
2642 	if (err)
2643 		goto err_out_free_mdiobus;
2644 	of_node_put(node);
2645 
2646 	/* find all the PHY devices on the bus and set mac_managed_pm to true */
2647 	for (addr = 0; addr < PHY_MAX_ADDR; addr++) {
2648 		phydev = mdiobus_get_phy(fep->mii_bus, addr);
2649 		if (phydev)
2650 			phydev->mac_managed_pm = true;
2651 	}
2652 
2653 	mii_cnt++;
2654 
2655 	/* save fec0 mii_bus */
2656 	if (fep->quirks & FEC_QUIRK_SINGLE_MDIO)
2657 		fec0_mii_bus = fep->mii_bus;
2658 
2659 	return 0;
2660 
2661 err_out_free_mdiobus:
2662 	mdiobus_free(fep->mii_bus);
2663 err_out:
2664 	of_node_put(node);
2665 	return err;
2666 }
2667 
fec_enet_mii_remove(struct fec_enet_private * fep)2668 static void fec_enet_mii_remove(struct fec_enet_private *fep)
2669 {
2670 	if (--mii_cnt == 0) {
2671 		mdiobus_unregister(fep->mii_bus);
2672 		mdiobus_free(fep->mii_bus);
2673 	}
2674 }
2675 
fec_enet_get_drvinfo(struct net_device * ndev,struct ethtool_drvinfo * info)2676 static void fec_enet_get_drvinfo(struct net_device *ndev,
2677 				 struct ethtool_drvinfo *info)
2678 {
2679 	struct fec_enet_private *fep = netdev_priv(ndev);
2680 
2681 	strscpy(info->driver, fep->pdev->dev.driver->name,
2682 		sizeof(info->driver));
2683 	strscpy(info->bus_info, dev_name(&ndev->dev), sizeof(info->bus_info));
2684 }
2685 
fec_enet_get_regs_len(struct net_device * ndev)2686 static int fec_enet_get_regs_len(struct net_device *ndev)
2687 {
2688 	struct fec_enet_private *fep = netdev_priv(ndev);
2689 	struct resource *r;
2690 	int s = 0;
2691 
2692 	r = platform_get_resource(fep->pdev, IORESOURCE_MEM, 0);
2693 	if (r)
2694 		s = resource_size(r);
2695 
2696 	return s;
2697 }
2698 
2699 /* List of registers that can be safety be read to dump them with ethtool */
2700 #if defined(CONFIG_M523x) || defined(CONFIG_M527x) || defined(CONFIG_M528x) || \
2701 	defined(CONFIG_M520x) || defined(CONFIG_M532x) || defined(CONFIG_ARM) || \
2702 	defined(CONFIG_ARM64) || defined(CONFIG_COMPILE_TEST)
2703 static __u32 fec_enet_register_version = 2;
2704 static u32 fec_enet_register_offset[] = {
2705 	FEC_IEVENT, FEC_IMASK, FEC_R_DES_ACTIVE_0, FEC_X_DES_ACTIVE_0,
2706 	FEC_ECNTRL, FEC_MII_DATA, FEC_MII_SPEED, FEC_MIB_CTRLSTAT, FEC_R_CNTRL,
2707 	FEC_X_CNTRL, FEC_ADDR_LOW, FEC_ADDR_HIGH, FEC_OPD, FEC_TXIC0, FEC_TXIC1,
2708 	FEC_TXIC2, FEC_RXIC0, FEC_RXIC1, FEC_RXIC2, FEC_HASH_TABLE_HIGH,
2709 	FEC_HASH_TABLE_LOW, FEC_GRP_HASH_TABLE_HIGH, FEC_GRP_HASH_TABLE_LOW,
2710 	FEC_X_WMRK, FEC_R_BOUND, FEC_R_FSTART, FEC_R_DES_START_1,
2711 	FEC_X_DES_START_1, FEC_R_BUFF_SIZE_1, FEC_R_DES_START_2,
2712 	FEC_X_DES_START_2, FEC_R_BUFF_SIZE_2, FEC_R_DES_START_0,
2713 	FEC_X_DES_START_0, FEC_R_BUFF_SIZE_0, FEC_R_FIFO_RSFL, FEC_R_FIFO_RSEM,
2714 	FEC_R_FIFO_RAEM, FEC_R_FIFO_RAFL, FEC_RACC, FEC_RCMR_1, FEC_RCMR_2,
2715 	FEC_DMA_CFG_1, FEC_DMA_CFG_2, FEC_R_DES_ACTIVE_1, FEC_X_DES_ACTIVE_1,
2716 	FEC_R_DES_ACTIVE_2, FEC_X_DES_ACTIVE_2, FEC_QOS_SCHEME,
2717 	RMON_T_DROP, RMON_T_PACKETS, RMON_T_BC_PKT, RMON_T_MC_PKT,
2718 	RMON_T_CRC_ALIGN, RMON_T_UNDERSIZE, RMON_T_OVERSIZE, RMON_T_FRAG,
2719 	RMON_T_JAB, RMON_T_COL, RMON_T_P64, RMON_T_P65TO127, RMON_T_P128TO255,
2720 	RMON_T_P256TO511, RMON_T_P512TO1023, RMON_T_P1024TO2047,
2721 	RMON_T_P_GTE2048, RMON_T_OCTETS,
2722 	IEEE_T_DROP, IEEE_T_FRAME_OK, IEEE_T_1COL, IEEE_T_MCOL, IEEE_T_DEF,
2723 	IEEE_T_LCOL, IEEE_T_EXCOL, IEEE_T_MACERR, IEEE_T_CSERR, IEEE_T_SQE,
2724 	IEEE_T_FDXFC, IEEE_T_OCTETS_OK,
2725 	RMON_R_PACKETS, RMON_R_BC_PKT, RMON_R_MC_PKT, RMON_R_CRC_ALIGN,
2726 	RMON_R_UNDERSIZE, RMON_R_OVERSIZE, RMON_R_FRAG, RMON_R_JAB,
2727 	RMON_R_RESVD_O, RMON_R_P64, RMON_R_P65TO127, RMON_R_P128TO255,
2728 	RMON_R_P256TO511, RMON_R_P512TO1023, RMON_R_P1024TO2047,
2729 	RMON_R_P_GTE2048, RMON_R_OCTETS,
2730 	IEEE_R_DROP, IEEE_R_FRAME_OK, IEEE_R_CRC, IEEE_R_ALIGN, IEEE_R_MACERR,
2731 	IEEE_R_FDXFC, IEEE_R_OCTETS_OK
2732 };
2733 /* for i.MX6ul */
2734 static u32 fec_enet_register_offset_6ul[] = {
2735 	FEC_IEVENT, FEC_IMASK, FEC_R_DES_ACTIVE_0, FEC_X_DES_ACTIVE_0,
2736 	FEC_ECNTRL, FEC_MII_DATA, FEC_MII_SPEED, FEC_MIB_CTRLSTAT, FEC_R_CNTRL,
2737 	FEC_X_CNTRL, FEC_ADDR_LOW, FEC_ADDR_HIGH, FEC_OPD, FEC_TXIC0, FEC_RXIC0,
2738 	FEC_HASH_TABLE_HIGH, FEC_HASH_TABLE_LOW, FEC_GRP_HASH_TABLE_HIGH,
2739 	FEC_GRP_HASH_TABLE_LOW, FEC_X_WMRK, FEC_R_DES_START_0,
2740 	FEC_X_DES_START_0, FEC_R_BUFF_SIZE_0, FEC_R_FIFO_RSFL, FEC_R_FIFO_RSEM,
2741 	FEC_R_FIFO_RAEM, FEC_R_FIFO_RAFL, FEC_RACC,
2742 	RMON_T_DROP, RMON_T_PACKETS, RMON_T_BC_PKT, RMON_T_MC_PKT,
2743 	RMON_T_CRC_ALIGN, RMON_T_UNDERSIZE, RMON_T_OVERSIZE, RMON_T_FRAG,
2744 	RMON_T_JAB, RMON_T_COL, RMON_T_P64, RMON_T_P65TO127, RMON_T_P128TO255,
2745 	RMON_T_P256TO511, RMON_T_P512TO1023, RMON_T_P1024TO2047,
2746 	RMON_T_P_GTE2048, RMON_T_OCTETS,
2747 	IEEE_T_DROP, IEEE_T_FRAME_OK, IEEE_T_1COL, IEEE_T_MCOL, IEEE_T_DEF,
2748 	IEEE_T_LCOL, IEEE_T_EXCOL, IEEE_T_MACERR, IEEE_T_CSERR, IEEE_T_SQE,
2749 	IEEE_T_FDXFC, IEEE_T_OCTETS_OK,
2750 	RMON_R_PACKETS, RMON_R_BC_PKT, RMON_R_MC_PKT, RMON_R_CRC_ALIGN,
2751 	RMON_R_UNDERSIZE, RMON_R_OVERSIZE, RMON_R_FRAG, RMON_R_JAB,
2752 	RMON_R_RESVD_O, RMON_R_P64, RMON_R_P65TO127, RMON_R_P128TO255,
2753 	RMON_R_P256TO511, RMON_R_P512TO1023, RMON_R_P1024TO2047,
2754 	RMON_R_P_GTE2048, RMON_R_OCTETS,
2755 	IEEE_R_DROP, IEEE_R_FRAME_OK, IEEE_R_CRC, IEEE_R_ALIGN, IEEE_R_MACERR,
2756 	IEEE_R_FDXFC, IEEE_R_OCTETS_OK
2757 };
2758 #else
2759 static __u32 fec_enet_register_version = 1;
2760 static u32 fec_enet_register_offset[] = {
2761 	FEC_ECNTRL, FEC_IEVENT, FEC_IMASK, FEC_IVEC, FEC_R_DES_ACTIVE_0,
2762 	FEC_R_DES_ACTIVE_1, FEC_R_DES_ACTIVE_2, FEC_X_DES_ACTIVE_0,
2763 	FEC_X_DES_ACTIVE_1, FEC_X_DES_ACTIVE_2, FEC_MII_DATA, FEC_MII_SPEED,
2764 	FEC_R_BOUND, FEC_R_FSTART, FEC_X_WMRK, FEC_X_FSTART, FEC_R_CNTRL,
2765 	FEC_MAX_FRM_LEN, FEC_X_CNTRL, FEC_ADDR_LOW, FEC_ADDR_HIGH,
2766 	FEC_GRP_HASH_TABLE_HIGH, FEC_GRP_HASH_TABLE_LOW, FEC_R_DES_START_0,
2767 	FEC_R_DES_START_1, FEC_R_DES_START_2, FEC_X_DES_START_0,
2768 	FEC_X_DES_START_1, FEC_X_DES_START_2, FEC_R_BUFF_SIZE_0,
2769 	FEC_R_BUFF_SIZE_1, FEC_R_BUFF_SIZE_2
2770 };
2771 #endif
2772 
fec_enet_get_regs(struct net_device * ndev,struct ethtool_regs * regs,void * regbuf)2773 static void fec_enet_get_regs(struct net_device *ndev,
2774 			      struct ethtool_regs *regs, void *regbuf)
2775 {
2776 	struct fec_enet_private *fep = netdev_priv(ndev);
2777 	u32 __iomem *theregs = (u32 __iomem *)fep->hwp;
2778 	struct device *dev = &fep->pdev->dev;
2779 	u32 *buf = (u32 *)regbuf;
2780 	u32 i, off;
2781 	int ret;
2782 #if defined(CONFIG_M523x) || defined(CONFIG_M527x) || defined(CONFIG_M528x) || \
2783 	defined(CONFIG_M520x) || defined(CONFIG_M532x) || defined(CONFIG_ARM) || \
2784 	defined(CONFIG_ARM64) || defined(CONFIG_COMPILE_TEST)
2785 	u32 *reg_list;
2786 	u32 reg_cnt;
2787 
2788 	if (!of_machine_is_compatible("fsl,imx6ul")) {
2789 		reg_list = fec_enet_register_offset;
2790 		reg_cnt = ARRAY_SIZE(fec_enet_register_offset);
2791 	} else {
2792 		reg_list = fec_enet_register_offset_6ul;
2793 		reg_cnt = ARRAY_SIZE(fec_enet_register_offset_6ul);
2794 	}
2795 #else
2796 	/* coldfire */
2797 	static u32 *reg_list = fec_enet_register_offset;
2798 	static const u32 reg_cnt = ARRAY_SIZE(fec_enet_register_offset);
2799 #endif
2800 	ret = pm_runtime_resume_and_get(dev);
2801 	if (ret < 0)
2802 		return;
2803 
2804 	regs->version = fec_enet_register_version;
2805 
2806 	memset(buf, 0, regs->len);
2807 
2808 	for (i = 0; i < reg_cnt; i++) {
2809 		off = reg_list[i];
2810 
2811 		if ((off == FEC_R_BOUND || off == FEC_R_FSTART) &&
2812 		    !(fep->quirks & FEC_QUIRK_HAS_FRREG))
2813 			continue;
2814 
2815 		off >>= 2;
2816 		buf[off] = readl(&theregs[off]);
2817 	}
2818 
2819 	pm_runtime_mark_last_busy(dev);
2820 	pm_runtime_put_autosuspend(dev);
2821 }
2822 
fec_enet_get_ts_info(struct net_device * ndev,struct kernel_ethtool_ts_info * info)2823 static int fec_enet_get_ts_info(struct net_device *ndev,
2824 				struct kernel_ethtool_ts_info *info)
2825 {
2826 	struct fec_enet_private *fep = netdev_priv(ndev);
2827 
2828 	if (fep->bufdesc_ex) {
2829 
2830 		info->so_timestamping = SOF_TIMESTAMPING_TX_SOFTWARE |
2831 					SOF_TIMESTAMPING_TX_HARDWARE |
2832 					SOF_TIMESTAMPING_RX_HARDWARE |
2833 					SOF_TIMESTAMPING_RAW_HARDWARE;
2834 		if (fep->ptp_clock)
2835 			info->phc_index = ptp_clock_index(fep->ptp_clock);
2836 
2837 		info->tx_types = (1 << HWTSTAMP_TX_OFF) |
2838 				 (1 << HWTSTAMP_TX_ON);
2839 
2840 		info->rx_filters = (1 << HWTSTAMP_FILTER_NONE) |
2841 				   (1 << HWTSTAMP_FILTER_ALL);
2842 		return 0;
2843 	} else {
2844 		return ethtool_op_get_ts_info(ndev, info);
2845 	}
2846 }
2847 
2848 #if !defined(CONFIG_M5272)
2849 
fec_enet_get_pauseparam(struct net_device * ndev,struct ethtool_pauseparam * pause)2850 static void fec_enet_get_pauseparam(struct net_device *ndev,
2851 				    struct ethtool_pauseparam *pause)
2852 {
2853 	struct fec_enet_private *fep = netdev_priv(ndev);
2854 
2855 	pause->autoneg = (fep->pause_flag & FEC_PAUSE_FLAG_AUTONEG) != 0;
2856 	pause->tx_pause = (fep->pause_flag & FEC_PAUSE_FLAG_ENABLE) != 0;
2857 	pause->rx_pause = pause->tx_pause;
2858 }
2859 
fec_enet_set_pauseparam(struct net_device * ndev,struct ethtool_pauseparam * pause)2860 static int fec_enet_set_pauseparam(struct net_device *ndev,
2861 				   struct ethtool_pauseparam *pause)
2862 {
2863 	struct fec_enet_private *fep = netdev_priv(ndev);
2864 
2865 	if (!ndev->phydev)
2866 		return -ENODEV;
2867 
2868 	if (pause->tx_pause != pause->rx_pause) {
2869 		netdev_info(ndev,
2870 			"hardware only support enable/disable both tx and rx");
2871 		return -EINVAL;
2872 	}
2873 
2874 	fep->pause_flag = 0;
2875 
2876 	/* tx pause must be same as rx pause */
2877 	fep->pause_flag |= pause->rx_pause ? FEC_PAUSE_FLAG_ENABLE : 0;
2878 	fep->pause_flag |= pause->autoneg ? FEC_PAUSE_FLAG_AUTONEG : 0;
2879 
2880 	phy_set_sym_pause(ndev->phydev, pause->rx_pause, pause->tx_pause,
2881 			  pause->autoneg);
2882 
2883 	if (pause->autoneg) {
2884 		if (netif_running(ndev))
2885 			fec_stop(ndev);
2886 		phy_start_aneg(ndev->phydev);
2887 	}
2888 	if (netif_running(ndev)) {
2889 		napi_disable(&fep->napi);
2890 		netif_tx_lock_bh(ndev);
2891 		fec_restart(ndev);
2892 		netif_tx_wake_all_queues(ndev);
2893 		netif_tx_unlock_bh(ndev);
2894 		napi_enable(&fep->napi);
2895 	}
2896 
2897 	return 0;
2898 }
2899 
2900 static const struct fec_stat {
2901 	char name[ETH_GSTRING_LEN];
2902 	u16 offset;
2903 } fec_stats[] = {
2904 	/* RMON TX */
2905 	{ "tx_dropped", RMON_T_DROP },
2906 	{ "tx_packets", RMON_T_PACKETS },
2907 	{ "tx_broadcast", RMON_T_BC_PKT },
2908 	{ "tx_multicast", RMON_T_MC_PKT },
2909 	{ "tx_crc_errors", RMON_T_CRC_ALIGN },
2910 	{ "tx_undersize", RMON_T_UNDERSIZE },
2911 	{ "tx_oversize", RMON_T_OVERSIZE },
2912 	{ "tx_fragment", RMON_T_FRAG },
2913 	{ "tx_jabber", RMON_T_JAB },
2914 	{ "tx_collision", RMON_T_COL },
2915 	{ "tx_64byte", RMON_T_P64 },
2916 	{ "tx_65to127byte", RMON_T_P65TO127 },
2917 	{ "tx_128to255byte", RMON_T_P128TO255 },
2918 	{ "tx_256to511byte", RMON_T_P256TO511 },
2919 	{ "tx_512to1023byte", RMON_T_P512TO1023 },
2920 	{ "tx_1024to2047byte", RMON_T_P1024TO2047 },
2921 	{ "tx_GTE2048byte", RMON_T_P_GTE2048 },
2922 	{ "tx_octets", RMON_T_OCTETS },
2923 
2924 	/* IEEE TX */
2925 	{ "IEEE_tx_drop", IEEE_T_DROP },
2926 	{ "IEEE_tx_frame_ok", IEEE_T_FRAME_OK },
2927 	{ "IEEE_tx_1col", IEEE_T_1COL },
2928 	{ "IEEE_tx_mcol", IEEE_T_MCOL },
2929 	{ "IEEE_tx_def", IEEE_T_DEF },
2930 	{ "IEEE_tx_lcol", IEEE_T_LCOL },
2931 	{ "IEEE_tx_excol", IEEE_T_EXCOL },
2932 	{ "IEEE_tx_macerr", IEEE_T_MACERR },
2933 	{ "IEEE_tx_cserr", IEEE_T_CSERR },
2934 	{ "IEEE_tx_sqe", IEEE_T_SQE },
2935 	{ "IEEE_tx_fdxfc", IEEE_T_FDXFC },
2936 	{ "IEEE_tx_octets_ok", IEEE_T_OCTETS_OK },
2937 
2938 	/* RMON RX */
2939 	{ "rx_packets", RMON_R_PACKETS },
2940 	{ "rx_broadcast", RMON_R_BC_PKT },
2941 	{ "rx_multicast", RMON_R_MC_PKT },
2942 	{ "rx_crc_errors", RMON_R_CRC_ALIGN },
2943 	{ "rx_undersize", RMON_R_UNDERSIZE },
2944 	{ "rx_oversize", RMON_R_OVERSIZE },
2945 	{ "rx_fragment", RMON_R_FRAG },
2946 	{ "rx_jabber", RMON_R_JAB },
2947 	{ "rx_64byte", RMON_R_P64 },
2948 	{ "rx_65to127byte", RMON_R_P65TO127 },
2949 	{ "rx_128to255byte", RMON_R_P128TO255 },
2950 	{ "rx_256to511byte", RMON_R_P256TO511 },
2951 	{ "rx_512to1023byte", RMON_R_P512TO1023 },
2952 	{ "rx_1024to2047byte", RMON_R_P1024TO2047 },
2953 	{ "rx_GTE2048byte", RMON_R_P_GTE2048 },
2954 	{ "rx_octets", RMON_R_OCTETS },
2955 
2956 	/* IEEE RX */
2957 	{ "IEEE_rx_drop", IEEE_R_DROP },
2958 	{ "IEEE_rx_frame_ok", IEEE_R_FRAME_OK },
2959 	{ "IEEE_rx_crc", IEEE_R_CRC },
2960 	{ "IEEE_rx_align", IEEE_R_ALIGN },
2961 	{ "IEEE_rx_macerr", IEEE_R_MACERR },
2962 	{ "IEEE_rx_fdxfc", IEEE_R_FDXFC },
2963 	{ "IEEE_rx_octets_ok", IEEE_R_OCTETS_OK },
2964 };
2965 
2966 #define FEC_STATS_SIZE		(ARRAY_SIZE(fec_stats) * sizeof(u64))
2967 
2968 static const char *fec_xdp_stat_strs[XDP_STATS_TOTAL] = {
2969 	"rx_xdp_redirect",           /* RX_XDP_REDIRECT = 0, */
2970 	"rx_xdp_pass",               /* RX_XDP_PASS, */
2971 	"rx_xdp_drop",               /* RX_XDP_DROP, */
2972 	"rx_xdp_tx",                 /* RX_XDP_TX, */
2973 	"rx_xdp_tx_errors",          /* RX_XDP_TX_ERRORS, */
2974 	"tx_xdp_xmit",               /* TX_XDP_XMIT, */
2975 	"tx_xdp_xmit_errors",        /* TX_XDP_XMIT_ERRORS, */
2976 };
2977 
fec_enet_update_ethtool_stats(struct net_device * dev)2978 static void fec_enet_update_ethtool_stats(struct net_device *dev)
2979 {
2980 	struct fec_enet_private *fep = netdev_priv(dev);
2981 	int i;
2982 
2983 	for (i = 0; i < ARRAY_SIZE(fec_stats); i++)
2984 		fep->ethtool_stats[i] = readl(fep->hwp + fec_stats[i].offset);
2985 }
2986 
fec_enet_get_xdp_stats(struct fec_enet_private * fep,u64 * data)2987 static void fec_enet_get_xdp_stats(struct fec_enet_private *fep, u64 *data)
2988 {
2989 	u64 xdp_stats[XDP_STATS_TOTAL] = { 0 };
2990 	struct fec_enet_priv_rx_q *rxq;
2991 	int i, j;
2992 
2993 	for (i = fep->num_rx_queues - 1; i >= 0; i--) {
2994 		rxq = fep->rx_queue[i];
2995 
2996 		for (j = 0; j < XDP_STATS_TOTAL; j++)
2997 			xdp_stats[j] += rxq->stats[j];
2998 	}
2999 
3000 	memcpy(data, xdp_stats, sizeof(xdp_stats));
3001 }
3002 
fec_enet_page_pool_stats(struct fec_enet_private * fep,u64 * data)3003 static void fec_enet_page_pool_stats(struct fec_enet_private *fep, u64 *data)
3004 {
3005 #ifdef CONFIG_PAGE_POOL_STATS
3006 	struct page_pool_stats stats = {};
3007 	struct fec_enet_priv_rx_q *rxq;
3008 	int i;
3009 
3010 	for (i = fep->num_rx_queues - 1; i >= 0; i--) {
3011 		rxq = fep->rx_queue[i];
3012 
3013 		if (!rxq->page_pool)
3014 			continue;
3015 
3016 		page_pool_get_stats(rxq->page_pool, &stats);
3017 	}
3018 
3019 	page_pool_ethtool_stats_get(data, &stats);
3020 #endif
3021 }
3022 
fec_enet_get_ethtool_stats(struct net_device * dev,struct ethtool_stats * stats,u64 * data)3023 static void fec_enet_get_ethtool_stats(struct net_device *dev,
3024 				       struct ethtool_stats *stats, u64 *data)
3025 {
3026 	struct fec_enet_private *fep = netdev_priv(dev);
3027 
3028 	if (netif_running(dev))
3029 		fec_enet_update_ethtool_stats(dev);
3030 
3031 	memcpy(data, fep->ethtool_stats, FEC_STATS_SIZE);
3032 	data += FEC_STATS_SIZE / sizeof(u64);
3033 
3034 	fec_enet_get_xdp_stats(fep, data);
3035 	data += XDP_STATS_TOTAL;
3036 
3037 	fec_enet_page_pool_stats(fep, data);
3038 }
3039 
fec_enet_get_strings(struct net_device * netdev,u32 stringset,u8 * data)3040 static void fec_enet_get_strings(struct net_device *netdev,
3041 	u32 stringset, u8 *data)
3042 {
3043 	int i;
3044 	switch (stringset) {
3045 	case ETH_SS_STATS:
3046 		for (i = 0; i < ARRAY_SIZE(fec_stats); i++) {
3047 			ethtool_puts(&data, fec_stats[i].name);
3048 		}
3049 		for (i = 0; i < ARRAY_SIZE(fec_xdp_stat_strs); i++) {
3050 			ethtool_puts(&data, fec_xdp_stat_strs[i]);
3051 		}
3052 		page_pool_ethtool_stats_get_strings(data);
3053 
3054 		break;
3055 	case ETH_SS_TEST:
3056 		net_selftest_get_strings(data);
3057 		break;
3058 	}
3059 }
3060 
fec_enet_get_sset_count(struct net_device * dev,int sset)3061 static int fec_enet_get_sset_count(struct net_device *dev, int sset)
3062 {
3063 	int count;
3064 
3065 	switch (sset) {
3066 	case ETH_SS_STATS:
3067 		count = ARRAY_SIZE(fec_stats) + XDP_STATS_TOTAL;
3068 		count += page_pool_ethtool_stats_get_count();
3069 		return count;
3070 
3071 	case ETH_SS_TEST:
3072 		return net_selftest_get_count();
3073 	default:
3074 		return -EOPNOTSUPP;
3075 	}
3076 }
3077 
fec_enet_clear_ethtool_stats(struct net_device * dev)3078 static void fec_enet_clear_ethtool_stats(struct net_device *dev)
3079 {
3080 	struct fec_enet_private *fep = netdev_priv(dev);
3081 	struct fec_enet_priv_rx_q *rxq;
3082 	int i, j;
3083 
3084 	/* Disable MIB statistics counters */
3085 	writel(FEC_MIB_CTRLSTAT_DISABLE, fep->hwp + FEC_MIB_CTRLSTAT);
3086 
3087 	for (i = 0; i < ARRAY_SIZE(fec_stats); i++)
3088 		writel(0, fep->hwp + fec_stats[i].offset);
3089 
3090 	for (i = fep->num_rx_queues - 1; i >= 0; i--) {
3091 		rxq = fep->rx_queue[i];
3092 		for (j = 0; j < XDP_STATS_TOTAL; j++)
3093 			rxq->stats[j] = 0;
3094 	}
3095 
3096 	/* Don't disable MIB statistics counters */
3097 	writel(0, fep->hwp + FEC_MIB_CTRLSTAT);
3098 }
3099 
3100 #else	/* !defined(CONFIG_M5272) */
3101 #define FEC_STATS_SIZE	0
fec_enet_update_ethtool_stats(struct net_device * dev)3102 static inline void fec_enet_update_ethtool_stats(struct net_device *dev)
3103 {
3104 }
3105 
fec_enet_clear_ethtool_stats(struct net_device * dev)3106 static inline void fec_enet_clear_ethtool_stats(struct net_device *dev)
3107 {
3108 }
3109 #endif /* !defined(CONFIG_M5272) */
3110 
3111 /* ITR clock source is enet system clock (clk_ahb).
3112  * TCTT unit is cycle_ns * 64 cycle
3113  * So, the ICTT value = X us / (cycle_ns * 64)
3114  */
fec_enet_us_to_itr_clock(struct net_device * ndev,int us)3115 static int fec_enet_us_to_itr_clock(struct net_device *ndev, int us)
3116 {
3117 	struct fec_enet_private *fep = netdev_priv(ndev);
3118 
3119 	return us * (fep->itr_clk_rate / 64000) / 1000;
3120 }
3121 
3122 /* Set threshold for interrupt coalescing */
fec_enet_itr_coal_set(struct net_device * ndev)3123 static void fec_enet_itr_coal_set(struct net_device *ndev)
3124 {
3125 	struct fec_enet_private *fep = netdev_priv(ndev);
3126 	u32 rx_itr = 0, tx_itr = 0;
3127 	int rx_ictt, tx_ictt;
3128 
3129 	rx_ictt = fec_enet_us_to_itr_clock(ndev, fep->rx_time_itr);
3130 	tx_ictt = fec_enet_us_to_itr_clock(ndev, fep->tx_time_itr);
3131 
3132 	if (rx_ictt > 0 && fep->rx_pkts_itr > 1) {
3133 		/* Enable with enet system clock as Interrupt Coalescing timer Clock Source */
3134 		rx_itr = FEC_ITR_EN | FEC_ITR_CLK_SEL;
3135 		rx_itr |= FEC_ITR_ICFT(fep->rx_pkts_itr);
3136 		rx_itr |= FEC_ITR_ICTT(rx_ictt);
3137 	}
3138 
3139 	if (tx_ictt > 0 && fep->tx_pkts_itr > 1) {
3140 		/* Enable with enet system clock as Interrupt Coalescing timer Clock Source */
3141 		tx_itr = FEC_ITR_EN | FEC_ITR_CLK_SEL;
3142 		tx_itr |= FEC_ITR_ICFT(fep->tx_pkts_itr);
3143 		tx_itr |= FEC_ITR_ICTT(tx_ictt);
3144 	}
3145 
3146 	writel(tx_itr, fep->hwp + FEC_TXIC0);
3147 	writel(rx_itr, fep->hwp + FEC_RXIC0);
3148 	if (fep->quirks & FEC_QUIRK_HAS_MULTI_QUEUES) {
3149 		writel(tx_itr, fep->hwp + FEC_TXIC1);
3150 		writel(rx_itr, fep->hwp + FEC_RXIC1);
3151 		writel(tx_itr, fep->hwp + FEC_TXIC2);
3152 		writel(rx_itr, fep->hwp + FEC_RXIC2);
3153 	}
3154 }
3155 
fec_enet_get_coalesce(struct net_device * ndev,struct ethtool_coalesce * ec,struct kernel_ethtool_coalesce * kernel_coal,struct netlink_ext_ack * extack)3156 static int fec_enet_get_coalesce(struct net_device *ndev,
3157 				 struct ethtool_coalesce *ec,
3158 				 struct kernel_ethtool_coalesce *kernel_coal,
3159 				 struct netlink_ext_ack *extack)
3160 {
3161 	struct fec_enet_private *fep = netdev_priv(ndev);
3162 
3163 	if (!(fep->quirks & FEC_QUIRK_HAS_COALESCE))
3164 		return -EOPNOTSUPP;
3165 
3166 	ec->rx_coalesce_usecs = fep->rx_time_itr;
3167 	ec->rx_max_coalesced_frames = fep->rx_pkts_itr;
3168 
3169 	ec->tx_coalesce_usecs = fep->tx_time_itr;
3170 	ec->tx_max_coalesced_frames = fep->tx_pkts_itr;
3171 
3172 	return 0;
3173 }
3174 
fec_enet_set_coalesce(struct net_device * ndev,struct ethtool_coalesce * ec,struct kernel_ethtool_coalesce * kernel_coal,struct netlink_ext_ack * extack)3175 static int fec_enet_set_coalesce(struct net_device *ndev,
3176 				 struct ethtool_coalesce *ec,
3177 				 struct kernel_ethtool_coalesce *kernel_coal,
3178 				 struct netlink_ext_ack *extack)
3179 {
3180 	struct fec_enet_private *fep = netdev_priv(ndev);
3181 	struct device *dev = &fep->pdev->dev;
3182 	unsigned int cycle;
3183 
3184 	if (!(fep->quirks & FEC_QUIRK_HAS_COALESCE))
3185 		return -EOPNOTSUPP;
3186 
3187 	if (ec->rx_max_coalesced_frames > 255) {
3188 		dev_err(dev, "Rx coalesced frames exceed hardware limitation\n");
3189 		return -EINVAL;
3190 	}
3191 
3192 	if (ec->tx_max_coalesced_frames > 255) {
3193 		dev_err(dev, "Tx coalesced frame exceed hardware limitation\n");
3194 		return -EINVAL;
3195 	}
3196 
3197 	cycle = fec_enet_us_to_itr_clock(ndev, ec->rx_coalesce_usecs);
3198 	if (cycle > 0xFFFF) {
3199 		dev_err(dev, "Rx coalesced usec exceed hardware limitation\n");
3200 		return -EINVAL;
3201 	}
3202 
3203 	cycle = fec_enet_us_to_itr_clock(ndev, ec->tx_coalesce_usecs);
3204 	if (cycle > 0xFFFF) {
3205 		dev_err(dev, "Tx coalesced usec exceed hardware limitation\n");
3206 		return -EINVAL;
3207 	}
3208 
3209 	fep->rx_time_itr = ec->rx_coalesce_usecs;
3210 	fep->rx_pkts_itr = ec->rx_max_coalesced_frames;
3211 
3212 	fep->tx_time_itr = ec->tx_coalesce_usecs;
3213 	fep->tx_pkts_itr = ec->tx_max_coalesced_frames;
3214 
3215 	fec_enet_itr_coal_set(ndev);
3216 
3217 	return 0;
3218 }
3219 
3220 static int
fec_enet_get_eee(struct net_device * ndev,struct ethtool_keee * edata)3221 fec_enet_get_eee(struct net_device *ndev, struct ethtool_keee *edata)
3222 {
3223 	struct fec_enet_private *fep = netdev_priv(ndev);
3224 	struct ethtool_keee *p = &fep->eee;
3225 
3226 	if (!(fep->quirks & FEC_QUIRK_HAS_EEE))
3227 		return -EOPNOTSUPP;
3228 
3229 	if (!netif_running(ndev))
3230 		return -ENETDOWN;
3231 
3232 	edata->tx_lpi_timer = p->tx_lpi_timer;
3233 
3234 	return phy_ethtool_get_eee(ndev->phydev, edata);
3235 }
3236 
3237 static int
fec_enet_set_eee(struct net_device * ndev,struct ethtool_keee * edata)3238 fec_enet_set_eee(struct net_device *ndev, struct ethtool_keee *edata)
3239 {
3240 	struct fec_enet_private *fep = netdev_priv(ndev);
3241 	struct ethtool_keee *p = &fep->eee;
3242 
3243 	if (!(fep->quirks & FEC_QUIRK_HAS_EEE))
3244 		return -EOPNOTSUPP;
3245 
3246 	if (!netif_running(ndev))
3247 		return -ENETDOWN;
3248 
3249 	p->tx_lpi_timer = edata->tx_lpi_timer;
3250 
3251 	return phy_ethtool_set_eee(ndev->phydev, edata);
3252 }
3253 
3254 static void
fec_enet_get_wol(struct net_device * ndev,struct ethtool_wolinfo * wol)3255 fec_enet_get_wol(struct net_device *ndev, struct ethtool_wolinfo *wol)
3256 {
3257 	struct fec_enet_private *fep = netdev_priv(ndev);
3258 
3259 	if (fep->wol_flag & FEC_WOL_HAS_MAGIC_PACKET) {
3260 		wol->supported = WAKE_MAGIC;
3261 		wol->wolopts = fep->wol_flag & FEC_WOL_FLAG_ENABLE ? WAKE_MAGIC : 0;
3262 	} else {
3263 		wol->supported = wol->wolopts = 0;
3264 	}
3265 }
3266 
3267 static int
fec_enet_set_wol(struct net_device * ndev,struct ethtool_wolinfo * wol)3268 fec_enet_set_wol(struct net_device *ndev, struct ethtool_wolinfo *wol)
3269 {
3270 	struct fec_enet_private *fep = netdev_priv(ndev);
3271 
3272 	if (!(fep->wol_flag & FEC_WOL_HAS_MAGIC_PACKET))
3273 		return -EINVAL;
3274 
3275 	if (wol->wolopts & ~WAKE_MAGIC)
3276 		return -EINVAL;
3277 
3278 	device_set_wakeup_enable(&ndev->dev, wol->wolopts & WAKE_MAGIC);
3279 	if (device_may_wakeup(&ndev->dev))
3280 		fep->wol_flag |= FEC_WOL_FLAG_ENABLE;
3281 	else
3282 		fep->wol_flag &= (~FEC_WOL_FLAG_ENABLE);
3283 
3284 	return 0;
3285 }
3286 
3287 static const struct ethtool_ops fec_enet_ethtool_ops = {
3288 	.supported_coalesce_params = ETHTOOL_COALESCE_USECS |
3289 				     ETHTOOL_COALESCE_MAX_FRAMES,
3290 	.get_drvinfo		= fec_enet_get_drvinfo,
3291 	.get_regs_len		= fec_enet_get_regs_len,
3292 	.get_regs		= fec_enet_get_regs,
3293 	.nway_reset		= phy_ethtool_nway_reset,
3294 	.get_link		= ethtool_op_get_link,
3295 	.get_coalesce		= fec_enet_get_coalesce,
3296 	.set_coalesce		= fec_enet_set_coalesce,
3297 #ifndef CONFIG_M5272
3298 	.get_pauseparam		= fec_enet_get_pauseparam,
3299 	.set_pauseparam		= fec_enet_set_pauseparam,
3300 	.get_strings		= fec_enet_get_strings,
3301 	.get_ethtool_stats	= fec_enet_get_ethtool_stats,
3302 	.get_sset_count		= fec_enet_get_sset_count,
3303 #endif
3304 	.get_ts_info		= fec_enet_get_ts_info,
3305 	.get_wol		= fec_enet_get_wol,
3306 	.set_wol		= fec_enet_set_wol,
3307 	.get_eee		= fec_enet_get_eee,
3308 	.set_eee		= fec_enet_set_eee,
3309 	.get_link_ksettings	= phy_ethtool_get_link_ksettings,
3310 	.set_link_ksettings	= phy_ethtool_set_link_ksettings,
3311 	.self_test		= net_selftest,
3312 };
3313 
fec_enet_free_buffers(struct net_device * ndev)3314 static void fec_enet_free_buffers(struct net_device *ndev)
3315 {
3316 	struct fec_enet_private *fep = netdev_priv(ndev);
3317 	unsigned int i;
3318 	struct fec_enet_priv_tx_q *txq;
3319 	struct fec_enet_priv_rx_q *rxq;
3320 	unsigned int q;
3321 
3322 	for (q = 0; q < fep->num_rx_queues; q++) {
3323 		rxq = fep->rx_queue[q];
3324 		for (i = 0; i < rxq->bd.ring_size; i++)
3325 			page_pool_put_full_page(rxq->page_pool, rxq->rx_skb_info[i].page, false);
3326 
3327 		for (i = 0; i < XDP_STATS_TOTAL; i++)
3328 			rxq->stats[i] = 0;
3329 
3330 		if (xdp_rxq_info_is_reg(&rxq->xdp_rxq))
3331 			xdp_rxq_info_unreg(&rxq->xdp_rxq);
3332 		page_pool_destroy(rxq->page_pool);
3333 		rxq->page_pool = NULL;
3334 	}
3335 
3336 	for (q = 0; q < fep->num_tx_queues; q++) {
3337 		txq = fep->tx_queue[q];
3338 		for (i = 0; i < txq->bd.ring_size; i++) {
3339 			kfree(txq->tx_bounce[i]);
3340 			txq->tx_bounce[i] = NULL;
3341 
3342 			if (!txq->tx_buf[i].buf_p) {
3343 				txq->tx_buf[i].type = FEC_TXBUF_T_SKB;
3344 				continue;
3345 			}
3346 
3347 			if (txq->tx_buf[i].type == FEC_TXBUF_T_SKB) {
3348 				dev_kfree_skb(txq->tx_buf[i].buf_p);
3349 			} else if (txq->tx_buf[i].type == FEC_TXBUF_T_XDP_NDO) {
3350 				xdp_return_frame(txq->tx_buf[i].buf_p);
3351 			} else {
3352 				struct page *page = txq->tx_buf[i].buf_p;
3353 
3354 				page_pool_put_page(page->pp, page, 0, false);
3355 			}
3356 
3357 			txq->tx_buf[i].buf_p = NULL;
3358 			txq->tx_buf[i].type = FEC_TXBUF_T_SKB;
3359 		}
3360 	}
3361 }
3362 
fec_enet_free_queue(struct net_device * ndev)3363 static void fec_enet_free_queue(struct net_device *ndev)
3364 {
3365 	struct fec_enet_private *fep = netdev_priv(ndev);
3366 	int i;
3367 	struct fec_enet_priv_tx_q *txq;
3368 
3369 	for (i = 0; i < fep->num_tx_queues; i++)
3370 		if (fep->tx_queue[i] && fep->tx_queue[i]->tso_hdrs) {
3371 			txq = fep->tx_queue[i];
3372 			fec_dma_free(&fep->pdev->dev,
3373 				     txq->bd.ring_size * TSO_HEADER_SIZE,
3374 				     txq->tso_hdrs, txq->tso_hdrs_dma);
3375 		}
3376 
3377 	for (i = 0; i < fep->num_rx_queues; i++)
3378 		kfree(fep->rx_queue[i]);
3379 	for (i = 0; i < fep->num_tx_queues; i++)
3380 		kfree(fep->tx_queue[i]);
3381 }
3382 
fec_enet_alloc_queue(struct net_device * ndev)3383 static int fec_enet_alloc_queue(struct net_device *ndev)
3384 {
3385 	struct fec_enet_private *fep = netdev_priv(ndev);
3386 	int i;
3387 	int ret = 0;
3388 	struct fec_enet_priv_tx_q *txq;
3389 
3390 	for (i = 0; i < fep->num_tx_queues; i++) {
3391 		txq = kzalloc(sizeof(*txq), GFP_KERNEL);
3392 		if (!txq) {
3393 			ret = -ENOMEM;
3394 			goto alloc_failed;
3395 		}
3396 
3397 		fep->tx_queue[i] = txq;
3398 		txq->bd.ring_size = TX_RING_SIZE;
3399 		fep->total_tx_ring_size += fep->tx_queue[i]->bd.ring_size;
3400 
3401 		txq->tx_stop_threshold = FEC_MAX_SKB_DESCS;
3402 		txq->tx_wake_threshold = FEC_MAX_SKB_DESCS + 2 * MAX_SKB_FRAGS;
3403 
3404 		txq->tso_hdrs = fec_dma_alloc(&fep->pdev->dev,
3405 					txq->bd.ring_size * TSO_HEADER_SIZE,
3406 					&txq->tso_hdrs_dma, GFP_KERNEL);
3407 		if (!txq->tso_hdrs) {
3408 			ret = -ENOMEM;
3409 			goto alloc_failed;
3410 		}
3411 	}
3412 
3413 	for (i = 0; i < fep->num_rx_queues; i++) {
3414 		fep->rx_queue[i] = kzalloc(sizeof(*fep->rx_queue[i]),
3415 					   GFP_KERNEL);
3416 		if (!fep->rx_queue[i]) {
3417 			ret = -ENOMEM;
3418 			goto alloc_failed;
3419 		}
3420 
3421 		fep->rx_queue[i]->bd.ring_size = RX_RING_SIZE;
3422 		fep->total_rx_ring_size += fep->rx_queue[i]->bd.ring_size;
3423 	}
3424 	return ret;
3425 
3426 alloc_failed:
3427 	fec_enet_free_queue(ndev);
3428 	return ret;
3429 }
3430 
3431 static int
fec_enet_alloc_rxq_buffers(struct net_device * ndev,unsigned int queue)3432 fec_enet_alloc_rxq_buffers(struct net_device *ndev, unsigned int queue)
3433 {
3434 	struct fec_enet_private *fep = netdev_priv(ndev);
3435 	struct fec_enet_priv_rx_q *rxq;
3436 	dma_addr_t phys_addr;
3437 	struct bufdesc	*bdp;
3438 	struct page *page;
3439 	int i, err;
3440 
3441 	rxq = fep->rx_queue[queue];
3442 	bdp = rxq->bd.base;
3443 
3444 	err = fec_enet_create_page_pool(fep, rxq, rxq->bd.ring_size);
3445 	if (err < 0) {
3446 		netdev_err(ndev, "%s failed queue %d (%d)\n", __func__, queue, err);
3447 		return err;
3448 	}
3449 
3450 	for (i = 0; i < rxq->bd.ring_size; i++) {
3451 		page = page_pool_dev_alloc_pages(rxq->page_pool);
3452 		if (!page)
3453 			goto err_alloc;
3454 
3455 		phys_addr = page_pool_get_dma_addr(page) + FEC_ENET_XDP_HEADROOM;
3456 		bdp->cbd_bufaddr = cpu_to_fec32(phys_addr);
3457 
3458 		rxq->rx_skb_info[i].page = page;
3459 		rxq->rx_skb_info[i].offset = FEC_ENET_XDP_HEADROOM;
3460 		bdp->cbd_sc = cpu_to_fec16(BD_ENET_RX_EMPTY);
3461 
3462 		if (fep->bufdesc_ex) {
3463 			struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
3464 			ebdp->cbd_esc = cpu_to_fec32(BD_ENET_RX_INT);
3465 		}
3466 
3467 		bdp = fec_enet_get_nextdesc(bdp, &rxq->bd);
3468 	}
3469 
3470 	/* Set the last buffer to wrap. */
3471 	bdp = fec_enet_get_prevdesc(bdp, &rxq->bd);
3472 	bdp->cbd_sc |= cpu_to_fec16(BD_SC_WRAP);
3473 	return 0;
3474 
3475  err_alloc:
3476 	fec_enet_free_buffers(ndev);
3477 	return -ENOMEM;
3478 }
3479 
3480 static int
fec_enet_alloc_txq_buffers(struct net_device * ndev,unsigned int queue)3481 fec_enet_alloc_txq_buffers(struct net_device *ndev, unsigned int queue)
3482 {
3483 	struct fec_enet_private *fep = netdev_priv(ndev);
3484 	unsigned int i;
3485 	struct bufdesc  *bdp;
3486 	struct fec_enet_priv_tx_q *txq;
3487 
3488 	txq = fep->tx_queue[queue];
3489 	bdp = txq->bd.base;
3490 	for (i = 0; i < txq->bd.ring_size; i++) {
3491 		txq->tx_bounce[i] = kmalloc(FEC_ENET_TX_FRSIZE, GFP_KERNEL);
3492 		if (!txq->tx_bounce[i])
3493 			goto err_alloc;
3494 
3495 		bdp->cbd_sc = cpu_to_fec16(0);
3496 		bdp->cbd_bufaddr = cpu_to_fec32(0);
3497 
3498 		if (fep->bufdesc_ex) {
3499 			struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
3500 			ebdp->cbd_esc = cpu_to_fec32(BD_ENET_TX_INT);
3501 		}
3502 
3503 		bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
3504 	}
3505 
3506 	/* Set the last buffer to wrap. */
3507 	bdp = fec_enet_get_prevdesc(bdp, &txq->bd);
3508 	bdp->cbd_sc |= cpu_to_fec16(BD_SC_WRAP);
3509 
3510 	return 0;
3511 
3512  err_alloc:
3513 	fec_enet_free_buffers(ndev);
3514 	return -ENOMEM;
3515 }
3516 
fec_enet_alloc_buffers(struct net_device * ndev)3517 static int fec_enet_alloc_buffers(struct net_device *ndev)
3518 {
3519 	struct fec_enet_private *fep = netdev_priv(ndev);
3520 	unsigned int i;
3521 
3522 	for (i = 0; i < fep->num_rx_queues; i++)
3523 		if (fec_enet_alloc_rxq_buffers(ndev, i))
3524 			return -ENOMEM;
3525 
3526 	for (i = 0; i < fep->num_tx_queues; i++)
3527 		if (fec_enet_alloc_txq_buffers(ndev, i))
3528 			return -ENOMEM;
3529 	return 0;
3530 }
3531 
3532 static int
fec_enet_open(struct net_device * ndev)3533 fec_enet_open(struct net_device *ndev)
3534 {
3535 	struct fec_enet_private *fep = netdev_priv(ndev);
3536 	int ret;
3537 	bool reset_again;
3538 
3539 	ret = pm_runtime_resume_and_get(&fep->pdev->dev);
3540 	if (ret < 0)
3541 		return ret;
3542 
3543 	pinctrl_pm_select_default_state(&fep->pdev->dev);
3544 	ret = fec_enet_clk_enable(ndev, true);
3545 	if (ret)
3546 		goto clk_enable;
3547 
3548 	/* During the first fec_enet_open call the PHY isn't probed at this
3549 	 * point. Therefore the phy_reset_after_clk_enable() call within
3550 	 * fec_enet_clk_enable() fails. As we need this reset in order to be
3551 	 * sure the PHY is working correctly we check if we need to reset again
3552 	 * later when the PHY is probed
3553 	 */
3554 	if (ndev->phydev && ndev->phydev->drv)
3555 		reset_again = false;
3556 	else
3557 		reset_again = true;
3558 
3559 	/* I should reset the ring buffers here, but I don't yet know
3560 	 * a simple way to do that.
3561 	 */
3562 
3563 	ret = fec_enet_alloc_buffers(ndev);
3564 	if (ret)
3565 		goto err_enet_alloc;
3566 
3567 	/* Init MAC prior to mii bus probe */
3568 	fec_restart(ndev);
3569 
3570 	/* Call phy_reset_after_clk_enable() again if it failed during
3571 	 * phy_reset_after_clk_enable() before because the PHY wasn't probed.
3572 	 */
3573 	if (reset_again)
3574 		fec_enet_phy_reset_after_clk_enable(ndev);
3575 
3576 	/* Probe and connect to PHY when open the interface */
3577 	ret = fec_enet_mii_probe(ndev);
3578 	if (ret)
3579 		goto err_enet_mii_probe;
3580 
3581 	if (fep->quirks & FEC_QUIRK_ERR006687)
3582 		imx6q_cpuidle_fec_irqs_used();
3583 
3584 	if (fep->quirks & FEC_QUIRK_HAS_PMQOS)
3585 		cpu_latency_qos_add_request(&fep->pm_qos_req, 0);
3586 
3587 	napi_enable(&fep->napi);
3588 	phy_start(ndev->phydev);
3589 	netif_tx_start_all_queues(ndev);
3590 
3591 	device_set_wakeup_enable(&ndev->dev, fep->wol_flag &
3592 				 FEC_WOL_FLAG_ENABLE);
3593 
3594 	return 0;
3595 
3596 err_enet_mii_probe:
3597 	fec_enet_free_buffers(ndev);
3598 err_enet_alloc:
3599 	fec_enet_clk_enable(ndev, false);
3600 clk_enable:
3601 	pm_runtime_mark_last_busy(&fep->pdev->dev);
3602 	pm_runtime_put_autosuspend(&fep->pdev->dev);
3603 	pinctrl_pm_select_sleep_state(&fep->pdev->dev);
3604 	return ret;
3605 }
3606 
3607 static int
fec_enet_close(struct net_device * ndev)3608 fec_enet_close(struct net_device *ndev)
3609 {
3610 	struct fec_enet_private *fep = netdev_priv(ndev);
3611 
3612 	phy_stop(ndev->phydev);
3613 
3614 	if (netif_device_present(ndev)) {
3615 		napi_disable(&fep->napi);
3616 		netif_tx_disable(ndev);
3617 		fec_stop(ndev);
3618 	}
3619 
3620 	phy_disconnect(ndev->phydev);
3621 
3622 	if (fep->quirks & FEC_QUIRK_ERR006687)
3623 		imx6q_cpuidle_fec_irqs_unused();
3624 
3625 	fec_enet_update_ethtool_stats(ndev);
3626 
3627 	fec_enet_clk_enable(ndev, false);
3628 	if (fep->quirks & FEC_QUIRK_HAS_PMQOS)
3629 		cpu_latency_qos_remove_request(&fep->pm_qos_req);
3630 
3631 	pinctrl_pm_select_sleep_state(&fep->pdev->dev);
3632 	pm_runtime_mark_last_busy(&fep->pdev->dev);
3633 	pm_runtime_put_autosuspend(&fep->pdev->dev);
3634 
3635 	fec_enet_free_buffers(ndev);
3636 
3637 	return 0;
3638 }
3639 
3640 /* Set or clear the multicast filter for this adaptor.
3641  * Skeleton taken from sunlance driver.
3642  * The CPM Ethernet implementation allows Multicast as well as individual
3643  * MAC address filtering.  Some of the drivers check to make sure it is
3644  * a group multicast address, and discard those that are not.  I guess I
3645  * will do the same for now, but just remove the test if you want
3646  * individual filtering as well (do the upper net layers want or support
3647  * this kind of feature?).
3648  */
3649 
3650 #define FEC_HASH_BITS	6		/* #bits in hash */
3651 
set_multicast_list(struct net_device * ndev)3652 static void set_multicast_list(struct net_device *ndev)
3653 {
3654 	struct fec_enet_private *fep = netdev_priv(ndev);
3655 	struct netdev_hw_addr *ha;
3656 	unsigned int crc, tmp;
3657 	unsigned char hash;
3658 	unsigned int hash_high = 0, hash_low = 0;
3659 
3660 	if (ndev->flags & IFF_PROMISC) {
3661 		tmp = readl(fep->hwp + FEC_R_CNTRL);
3662 		tmp |= 0x8;
3663 		writel(tmp, fep->hwp + FEC_R_CNTRL);
3664 		return;
3665 	}
3666 
3667 	tmp = readl(fep->hwp + FEC_R_CNTRL);
3668 	tmp &= ~0x8;
3669 	writel(tmp, fep->hwp + FEC_R_CNTRL);
3670 
3671 	if (ndev->flags & IFF_ALLMULTI) {
3672 		/* Catch all multicast addresses, so set the
3673 		 * filter to all 1's
3674 		 */
3675 		writel(0xffffffff, fep->hwp + FEC_GRP_HASH_TABLE_HIGH);
3676 		writel(0xffffffff, fep->hwp + FEC_GRP_HASH_TABLE_LOW);
3677 
3678 		return;
3679 	}
3680 
3681 	/* Add the addresses in hash register */
3682 	netdev_for_each_mc_addr(ha, ndev) {
3683 		/* calculate crc32 value of mac address */
3684 		crc = ether_crc_le(ndev->addr_len, ha->addr);
3685 
3686 		/* only upper 6 bits (FEC_HASH_BITS) are used
3687 		 * which point to specific bit in the hash registers
3688 		 */
3689 		hash = (crc >> (32 - FEC_HASH_BITS)) & 0x3f;
3690 
3691 		if (hash > 31)
3692 			hash_high |= 1 << (hash - 32);
3693 		else
3694 			hash_low |= 1 << hash;
3695 	}
3696 
3697 	writel(hash_high, fep->hwp + FEC_GRP_HASH_TABLE_HIGH);
3698 	writel(hash_low, fep->hwp + FEC_GRP_HASH_TABLE_LOW);
3699 }
3700 
3701 /* Set a MAC change in hardware. */
3702 static int
fec_set_mac_address(struct net_device * ndev,void * p)3703 fec_set_mac_address(struct net_device *ndev, void *p)
3704 {
3705 	struct fec_enet_private *fep = netdev_priv(ndev);
3706 	struct sockaddr *addr = p;
3707 
3708 	if (addr) {
3709 		if (!is_valid_ether_addr(addr->sa_data))
3710 			return -EADDRNOTAVAIL;
3711 		eth_hw_addr_set(ndev, addr->sa_data);
3712 	}
3713 
3714 	/* Add netif status check here to avoid system hang in below case:
3715 	 * ifconfig ethx down; ifconfig ethx hw ether xx:xx:xx:xx:xx:xx;
3716 	 * After ethx down, fec all clocks are gated off and then register
3717 	 * access causes system hang.
3718 	 */
3719 	if (!netif_running(ndev))
3720 		return 0;
3721 
3722 	writel(ndev->dev_addr[3] | (ndev->dev_addr[2] << 8) |
3723 		(ndev->dev_addr[1] << 16) | (ndev->dev_addr[0] << 24),
3724 		fep->hwp + FEC_ADDR_LOW);
3725 	writel((ndev->dev_addr[5] << 16) | (ndev->dev_addr[4] << 24),
3726 		fep->hwp + FEC_ADDR_HIGH);
3727 	return 0;
3728 }
3729 
fec_enet_set_netdev_features(struct net_device * netdev,netdev_features_t features)3730 static inline void fec_enet_set_netdev_features(struct net_device *netdev,
3731 	netdev_features_t features)
3732 {
3733 	struct fec_enet_private *fep = netdev_priv(netdev);
3734 	netdev_features_t changed = features ^ netdev->features;
3735 
3736 	netdev->features = features;
3737 
3738 	/* Receive checksum has been changed */
3739 	if (changed & NETIF_F_RXCSUM) {
3740 		if (features & NETIF_F_RXCSUM)
3741 			fep->csum_flags |= FLAG_RX_CSUM_ENABLED;
3742 		else
3743 			fep->csum_flags &= ~FLAG_RX_CSUM_ENABLED;
3744 	}
3745 }
3746 
fec_set_features(struct net_device * netdev,netdev_features_t features)3747 static int fec_set_features(struct net_device *netdev,
3748 	netdev_features_t features)
3749 {
3750 	struct fec_enet_private *fep = netdev_priv(netdev);
3751 	netdev_features_t changed = features ^ netdev->features;
3752 
3753 	if (netif_running(netdev) && changed & NETIF_F_RXCSUM) {
3754 		napi_disable(&fep->napi);
3755 		netif_tx_lock_bh(netdev);
3756 		fec_stop(netdev);
3757 		fec_enet_set_netdev_features(netdev, features);
3758 		fec_restart(netdev);
3759 		netif_tx_wake_all_queues(netdev);
3760 		netif_tx_unlock_bh(netdev);
3761 		napi_enable(&fep->napi);
3762 	} else {
3763 		fec_enet_set_netdev_features(netdev, features);
3764 	}
3765 
3766 	return 0;
3767 }
3768 
fec_enet_select_queue(struct net_device * ndev,struct sk_buff * skb,struct net_device * sb_dev)3769 static u16 fec_enet_select_queue(struct net_device *ndev, struct sk_buff *skb,
3770 				 struct net_device *sb_dev)
3771 {
3772 	struct fec_enet_private *fep = netdev_priv(ndev);
3773 	u16 vlan_tag = 0;
3774 
3775 	if (!(fep->quirks & FEC_QUIRK_HAS_AVB))
3776 		return netdev_pick_tx(ndev, skb, NULL);
3777 
3778 	/* VLAN is present in the payload.*/
3779 	if (eth_type_vlan(skb->protocol)) {
3780 		struct vlan_ethhdr *vhdr = skb_vlan_eth_hdr(skb);
3781 
3782 		vlan_tag = ntohs(vhdr->h_vlan_TCI);
3783 	/*  VLAN is present in the skb but not yet pushed in the payload.*/
3784 	} else if (skb_vlan_tag_present(skb)) {
3785 		vlan_tag = skb->vlan_tci;
3786 	} else {
3787 		return vlan_tag;
3788 	}
3789 
3790 	return fec_enet_vlan_pri_to_queue[vlan_tag >> 13];
3791 }
3792 
fec_enet_bpf(struct net_device * dev,struct netdev_bpf * bpf)3793 static int fec_enet_bpf(struct net_device *dev, struct netdev_bpf *bpf)
3794 {
3795 	struct fec_enet_private *fep = netdev_priv(dev);
3796 	bool is_run = netif_running(dev);
3797 	struct bpf_prog *old_prog;
3798 
3799 	switch (bpf->command) {
3800 	case XDP_SETUP_PROG:
3801 		/* No need to support the SoCs that require to
3802 		 * do the frame swap because the performance wouldn't be
3803 		 * better than the skb mode.
3804 		 */
3805 		if (fep->quirks & FEC_QUIRK_SWAP_FRAME)
3806 			return -EOPNOTSUPP;
3807 
3808 		if (!bpf->prog)
3809 			xdp_features_clear_redirect_target(dev);
3810 
3811 		if (is_run) {
3812 			napi_disable(&fep->napi);
3813 			netif_tx_disable(dev);
3814 		}
3815 
3816 		old_prog = xchg(&fep->xdp_prog, bpf->prog);
3817 		if (old_prog)
3818 			bpf_prog_put(old_prog);
3819 
3820 		fec_restart(dev);
3821 
3822 		if (is_run) {
3823 			napi_enable(&fep->napi);
3824 			netif_tx_start_all_queues(dev);
3825 		}
3826 
3827 		if (bpf->prog)
3828 			xdp_features_set_redirect_target(dev, false);
3829 
3830 		return 0;
3831 
3832 	case XDP_SETUP_XSK_POOL:
3833 		return -EOPNOTSUPP;
3834 
3835 	default:
3836 		return -EOPNOTSUPP;
3837 	}
3838 }
3839 
3840 static int
fec_enet_xdp_get_tx_queue(struct fec_enet_private * fep,int index)3841 fec_enet_xdp_get_tx_queue(struct fec_enet_private *fep, int index)
3842 {
3843 	if (unlikely(index < 0))
3844 		return 0;
3845 
3846 	return (index % fep->num_tx_queues);
3847 }
3848 
fec_enet_txq_xmit_frame(struct fec_enet_private * fep,struct fec_enet_priv_tx_q * txq,void * frame,u32 dma_sync_len,bool ndo_xmit)3849 static int fec_enet_txq_xmit_frame(struct fec_enet_private *fep,
3850 				   struct fec_enet_priv_tx_q *txq,
3851 				   void *frame, u32 dma_sync_len,
3852 				   bool ndo_xmit)
3853 {
3854 	unsigned int index, status, estatus;
3855 	struct bufdesc *bdp;
3856 	dma_addr_t dma_addr;
3857 	int entries_free;
3858 	u16 frame_len;
3859 
3860 	entries_free = fec_enet_get_free_txdesc_num(txq);
3861 	if (entries_free < MAX_SKB_FRAGS + 1) {
3862 		netdev_err_once(fep->netdev, "NOT enough BD for SG!\n");
3863 		return -EBUSY;
3864 	}
3865 
3866 	/* Fill in a Tx ring entry */
3867 	bdp = txq->bd.cur;
3868 	status = fec16_to_cpu(bdp->cbd_sc);
3869 	status &= ~BD_ENET_TX_STATS;
3870 
3871 	index = fec_enet_get_bd_index(bdp, &txq->bd);
3872 
3873 	if (ndo_xmit) {
3874 		struct xdp_frame *xdpf = frame;
3875 
3876 		dma_addr = dma_map_single(&fep->pdev->dev, xdpf->data,
3877 					  xdpf->len, DMA_TO_DEVICE);
3878 		if (dma_mapping_error(&fep->pdev->dev, dma_addr))
3879 			return -ENOMEM;
3880 
3881 		frame_len = xdpf->len;
3882 		txq->tx_buf[index].buf_p = xdpf;
3883 		txq->tx_buf[index].type = FEC_TXBUF_T_XDP_NDO;
3884 	} else {
3885 		struct xdp_buff *xdpb = frame;
3886 		struct page *page;
3887 
3888 		page = virt_to_page(xdpb->data);
3889 		dma_addr = page_pool_get_dma_addr(page) +
3890 			   (xdpb->data - xdpb->data_hard_start);
3891 		dma_sync_single_for_device(&fep->pdev->dev, dma_addr,
3892 					   dma_sync_len, DMA_BIDIRECTIONAL);
3893 		frame_len = xdpb->data_end - xdpb->data;
3894 		txq->tx_buf[index].buf_p = page;
3895 		txq->tx_buf[index].type = FEC_TXBUF_T_XDP_TX;
3896 	}
3897 
3898 	status |= (BD_ENET_TX_INTR | BD_ENET_TX_LAST);
3899 	if (fep->bufdesc_ex)
3900 		estatus = BD_ENET_TX_INT;
3901 
3902 	bdp->cbd_bufaddr = cpu_to_fec32(dma_addr);
3903 	bdp->cbd_datlen = cpu_to_fec16(frame_len);
3904 
3905 	if (fep->bufdesc_ex) {
3906 		struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
3907 
3908 		if (fep->quirks & FEC_QUIRK_HAS_AVB)
3909 			estatus |= FEC_TX_BD_FTYPE(txq->bd.qid);
3910 
3911 		ebdp->cbd_bdu = 0;
3912 		ebdp->cbd_esc = cpu_to_fec32(estatus);
3913 	}
3914 
3915 	/* Make sure the updates to rest of the descriptor are performed before
3916 	 * transferring ownership.
3917 	 */
3918 	dma_wmb();
3919 
3920 	/* Send it on its way.  Tell FEC it's ready, interrupt when done,
3921 	 * it's the last BD of the frame, and to put the CRC on the end.
3922 	 */
3923 	status |= (BD_ENET_TX_READY | BD_ENET_TX_TC);
3924 	bdp->cbd_sc = cpu_to_fec16(status);
3925 
3926 	/* If this was the last BD in the ring, start at the beginning again. */
3927 	bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
3928 
3929 	/* Make sure the update to bdp are performed before txq->bd.cur. */
3930 	dma_wmb();
3931 
3932 	txq->bd.cur = bdp;
3933 
3934 	/* Trigger transmission start */
3935 	writel(0, txq->bd.reg_desc_active);
3936 
3937 	return 0;
3938 }
3939 
fec_enet_xdp_tx_xmit(struct fec_enet_private * fep,int cpu,struct xdp_buff * xdp,u32 dma_sync_len)3940 static int fec_enet_xdp_tx_xmit(struct fec_enet_private *fep,
3941 				int cpu, struct xdp_buff *xdp,
3942 				u32 dma_sync_len)
3943 {
3944 	struct fec_enet_priv_tx_q *txq;
3945 	struct netdev_queue *nq;
3946 	int queue, ret;
3947 
3948 	queue = fec_enet_xdp_get_tx_queue(fep, cpu);
3949 	txq = fep->tx_queue[queue];
3950 	nq = netdev_get_tx_queue(fep->netdev, queue);
3951 
3952 	__netif_tx_lock(nq, cpu);
3953 
3954 	/* Avoid tx timeout as XDP shares the queue with kernel stack */
3955 	txq_trans_cond_update(nq);
3956 	ret = fec_enet_txq_xmit_frame(fep, txq, xdp, dma_sync_len, false);
3957 
3958 	__netif_tx_unlock(nq);
3959 
3960 	return ret;
3961 }
3962 
fec_enet_xdp_xmit(struct net_device * dev,int num_frames,struct xdp_frame ** frames,u32 flags)3963 static int fec_enet_xdp_xmit(struct net_device *dev,
3964 			     int num_frames,
3965 			     struct xdp_frame **frames,
3966 			     u32 flags)
3967 {
3968 	struct fec_enet_private *fep = netdev_priv(dev);
3969 	struct fec_enet_priv_tx_q *txq;
3970 	int cpu = smp_processor_id();
3971 	unsigned int sent_frames = 0;
3972 	struct netdev_queue *nq;
3973 	unsigned int queue;
3974 	int i;
3975 
3976 	queue = fec_enet_xdp_get_tx_queue(fep, cpu);
3977 	txq = fep->tx_queue[queue];
3978 	nq = netdev_get_tx_queue(fep->netdev, queue);
3979 
3980 	__netif_tx_lock(nq, cpu);
3981 
3982 	/* Avoid tx timeout as XDP shares the queue with kernel stack */
3983 	txq_trans_cond_update(nq);
3984 	for (i = 0; i < num_frames; i++) {
3985 		if (fec_enet_txq_xmit_frame(fep, txq, frames[i], 0, true) < 0)
3986 			break;
3987 		sent_frames++;
3988 	}
3989 
3990 	__netif_tx_unlock(nq);
3991 
3992 	return sent_frames;
3993 }
3994 
fec_hwtstamp_get(struct net_device * ndev,struct kernel_hwtstamp_config * config)3995 static int fec_hwtstamp_get(struct net_device *ndev,
3996 			    struct kernel_hwtstamp_config *config)
3997 {
3998 	struct fec_enet_private *fep = netdev_priv(ndev);
3999 
4000 	if (!netif_running(ndev))
4001 		return -EINVAL;
4002 
4003 	if (!fep->bufdesc_ex)
4004 		return -EOPNOTSUPP;
4005 
4006 	fec_ptp_get(ndev, config);
4007 
4008 	return 0;
4009 }
4010 
fec_hwtstamp_set(struct net_device * ndev,struct kernel_hwtstamp_config * config,struct netlink_ext_ack * extack)4011 static int fec_hwtstamp_set(struct net_device *ndev,
4012 			    struct kernel_hwtstamp_config *config,
4013 			    struct netlink_ext_ack *extack)
4014 {
4015 	struct fec_enet_private *fep = netdev_priv(ndev);
4016 
4017 	if (!netif_running(ndev))
4018 		return -EINVAL;
4019 
4020 	if (!fep->bufdesc_ex)
4021 		return -EOPNOTSUPP;
4022 
4023 	return fec_ptp_set(ndev, config, extack);
4024 }
4025 
4026 static const struct net_device_ops fec_netdev_ops = {
4027 	.ndo_open		= fec_enet_open,
4028 	.ndo_stop		= fec_enet_close,
4029 	.ndo_start_xmit		= fec_enet_start_xmit,
4030 	.ndo_select_queue       = fec_enet_select_queue,
4031 	.ndo_set_rx_mode	= set_multicast_list,
4032 	.ndo_validate_addr	= eth_validate_addr,
4033 	.ndo_tx_timeout		= fec_timeout,
4034 	.ndo_set_mac_address	= fec_set_mac_address,
4035 	.ndo_eth_ioctl		= phy_do_ioctl_running,
4036 	.ndo_set_features	= fec_set_features,
4037 	.ndo_bpf		= fec_enet_bpf,
4038 	.ndo_xdp_xmit		= fec_enet_xdp_xmit,
4039 	.ndo_hwtstamp_get	= fec_hwtstamp_get,
4040 	.ndo_hwtstamp_set	= fec_hwtstamp_set,
4041 };
4042 
4043 static const unsigned short offset_des_active_rxq[] = {
4044 	FEC_R_DES_ACTIVE_0, FEC_R_DES_ACTIVE_1, FEC_R_DES_ACTIVE_2
4045 };
4046 
4047 static const unsigned short offset_des_active_txq[] = {
4048 	FEC_X_DES_ACTIVE_0, FEC_X_DES_ACTIVE_1, FEC_X_DES_ACTIVE_2
4049 };
4050 
4051  /*
4052   * XXX:  We need to clean up on failure exits here.
4053   *
4054   */
fec_enet_init(struct net_device * ndev)4055 static int fec_enet_init(struct net_device *ndev)
4056 {
4057 	struct fec_enet_private *fep = netdev_priv(ndev);
4058 	struct bufdesc *cbd_base;
4059 	dma_addr_t bd_dma;
4060 	int bd_size;
4061 	unsigned int i;
4062 	unsigned dsize = fep->bufdesc_ex ? sizeof(struct bufdesc_ex) :
4063 			sizeof(struct bufdesc);
4064 	unsigned dsize_log2 = __fls(dsize);
4065 	int ret;
4066 
4067 	WARN_ON(dsize != (1 << dsize_log2));
4068 #if defined(CONFIG_ARM) || defined(CONFIG_ARM64)
4069 	fep->rx_align = 0xf;
4070 	fep->tx_align = 0xf;
4071 #else
4072 	fep->rx_align = 0x3;
4073 	fep->tx_align = 0x3;
4074 #endif
4075 	fep->rx_pkts_itr = FEC_ITR_ICFT_DEFAULT;
4076 	fep->tx_pkts_itr = FEC_ITR_ICFT_DEFAULT;
4077 	fep->rx_time_itr = FEC_ITR_ICTT_DEFAULT;
4078 	fep->tx_time_itr = FEC_ITR_ICTT_DEFAULT;
4079 
4080 	/* Check mask of the streaming and coherent API */
4081 	ret = dma_set_mask_and_coherent(&fep->pdev->dev, DMA_BIT_MASK(32));
4082 	if (ret < 0) {
4083 		dev_warn(&fep->pdev->dev, "No suitable DMA available\n");
4084 		return ret;
4085 	}
4086 
4087 	ret = fec_enet_alloc_queue(ndev);
4088 	if (ret)
4089 		return ret;
4090 
4091 	bd_size = (fep->total_tx_ring_size + fep->total_rx_ring_size) * dsize;
4092 
4093 	/* Allocate memory for buffer descriptors. */
4094 	cbd_base = fec_dmam_alloc(&fep->pdev->dev, bd_size, &bd_dma,
4095 				  GFP_KERNEL);
4096 	if (!cbd_base) {
4097 		ret = -ENOMEM;
4098 		goto free_queue_mem;
4099 	}
4100 
4101 	/* Get the Ethernet address */
4102 	ret = fec_get_mac(ndev);
4103 	if (ret)
4104 		goto free_queue_mem;
4105 
4106 	/* Set receive and transmit descriptor base. */
4107 	for (i = 0; i < fep->num_rx_queues; i++) {
4108 		struct fec_enet_priv_rx_q *rxq = fep->rx_queue[i];
4109 		unsigned size = dsize * rxq->bd.ring_size;
4110 
4111 		rxq->bd.qid = i;
4112 		rxq->bd.base = cbd_base;
4113 		rxq->bd.cur = cbd_base;
4114 		rxq->bd.dma = bd_dma;
4115 		rxq->bd.dsize = dsize;
4116 		rxq->bd.dsize_log2 = dsize_log2;
4117 		rxq->bd.reg_desc_active = fep->hwp + offset_des_active_rxq[i];
4118 		bd_dma += size;
4119 		cbd_base = (struct bufdesc *)(((void *)cbd_base) + size);
4120 		rxq->bd.last = (struct bufdesc *)(((void *)cbd_base) - dsize);
4121 	}
4122 
4123 	for (i = 0; i < fep->num_tx_queues; i++) {
4124 		struct fec_enet_priv_tx_q *txq = fep->tx_queue[i];
4125 		unsigned size = dsize * txq->bd.ring_size;
4126 
4127 		txq->bd.qid = i;
4128 		txq->bd.base = cbd_base;
4129 		txq->bd.cur = cbd_base;
4130 		txq->bd.dma = bd_dma;
4131 		txq->bd.dsize = dsize;
4132 		txq->bd.dsize_log2 = dsize_log2;
4133 		txq->bd.reg_desc_active = fep->hwp + offset_des_active_txq[i];
4134 		bd_dma += size;
4135 		cbd_base = (struct bufdesc *)(((void *)cbd_base) + size);
4136 		txq->bd.last = (struct bufdesc *)(((void *)cbd_base) - dsize);
4137 	}
4138 
4139 
4140 	/* The FEC Ethernet specific entries in the device structure */
4141 	ndev->watchdog_timeo = TX_TIMEOUT;
4142 	ndev->netdev_ops = &fec_netdev_ops;
4143 	ndev->ethtool_ops = &fec_enet_ethtool_ops;
4144 
4145 	writel(FEC_RX_DISABLED_IMASK, fep->hwp + FEC_IMASK);
4146 	netif_napi_add(ndev, &fep->napi, fec_enet_rx_napi);
4147 
4148 	if (fep->quirks & FEC_QUIRK_HAS_VLAN)
4149 		/* enable hw VLAN support */
4150 		ndev->features |= NETIF_F_HW_VLAN_CTAG_RX;
4151 
4152 	if (fep->quirks & FEC_QUIRK_HAS_CSUM) {
4153 		netif_set_tso_max_segs(ndev, FEC_MAX_TSO_SEGS);
4154 
4155 		/* enable hw accelerator */
4156 		ndev->features |= (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM
4157 				| NETIF_F_RXCSUM | NETIF_F_SG | NETIF_F_TSO);
4158 		fep->csum_flags |= FLAG_RX_CSUM_ENABLED;
4159 	}
4160 
4161 	if (fep->quirks & FEC_QUIRK_HAS_MULTI_QUEUES) {
4162 		fep->tx_align = 0;
4163 		fep->rx_align = 0x3f;
4164 	}
4165 
4166 	ndev->hw_features = ndev->features;
4167 
4168 	if (!(fep->quirks & FEC_QUIRK_SWAP_FRAME))
4169 		ndev->xdp_features = NETDEV_XDP_ACT_BASIC |
4170 				     NETDEV_XDP_ACT_REDIRECT;
4171 
4172 	fec_restart(ndev);
4173 
4174 	if (fep->quirks & FEC_QUIRK_MIB_CLEAR)
4175 		fec_enet_clear_ethtool_stats(ndev);
4176 	else
4177 		fec_enet_update_ethtool_stats(ndev);
4178 
4179 	return 0;
4180 
4181 free_queue_mem:
4182 	fec_enet_free_queue(ndev);
4183 	return ret;
4184 }
4185 
fec_enet_deinit(struct net_device * ndev)4186 static void fec_enet_deinit(struct net_device *ndev)
4187 {
4188 	struct fec_enet_private *fep = netdev_priv(ndev);
4189 
4190 	netif_napi_del(&fep->napi);
4191 	fec_enet_free_queue(ndev);
4192 }
4193 
4194 #ifdef CONFIG_OF
fec_reset_phy(struct platform_device * pdev)4195 static int fec_reset_phy(struct platform_device *pdev)
4196 {
4197 	struct gpio_desc *phy_reset;
4198 	int msec = 1, phy_post_delay = 0;
4199 	struct device_node *np = pdev->dev.of_node;
4200 	int err;
4201 
4202 	if (!np)
4203 		return 0;
4204 
4205 	err = of_property_read_u32(np, "phy-reset-duration", &msec);
4206 	/* A sane reset duration should not be longer than 1s */
4207 	if (!err && msec > 1000)
4208 		msec = 1;
4209 
4210 	err = of_property_read_u32(np, "phy-reset-post-delay", &phy_post_delay);
4211 	/* valid reset duration should be less than 1s */
4212 	if (!err && phy_post_delay > 1000)
4213 		return -EINVAL;
4214 
4215 	phy_reset = devm_gpiod_get_optional(&pdev->dev, "phy-reset",
4216 					    GPIOD_OUT_HIGH);
4217 	if (IS_ERR(phy_reset))
4218 		return dev_err_probe(&pdev->dev, PTR_ERR(phy_reset),
4219 				     "failed to get phy-reset-gpios\n");
4220 
4221 	if (!phy_reset)
4222 		return 0;
4223 
4224 	if (msec > 20)
4225 		msleep(msec);
4226 	else
4227 		usleep_range(msec * 1000, msec * 1000 + 1000);
4228 
4229 	gpiod_set_value_cansleep(phy_reset, 0);
4230 
4231 	if (!phy_post_delay)
4232 		return 0;
4233 
4234 	if (phy_post_delay > 20)
4235 		msleep(phy_post_delay);
4236 	else
4237 		usleep_range(phy_post_delay * 1000,
4238 			     phy_post_delay * 1000 + 1000);
4239 
4240 	return 0;
4241 }
4242 #else /* CONFIG_OF */
fec_reset_phy(struct platform_device * pdev)4243 static int fec_reset_phy(struct platform_device *pdev)
4244 {
4245 	/*
4246 	 * In case of platform probe, the reset has been done
4247 	 * by machine code.
4248 	 */
4249 	return 0;
4250 }
4251 #endif /* CONFIG_OF */
4252 
4253 static void
fec_enet_get_queue_num(struct platform_device * pdev,int * num_tx,int * num_rx)4254 fec_enet_get_queue_num(struct platform_device *pdev, int *num_tx, int *num_rx)
4255 {
4256 	struct device_node *np = pdev->dev.of_node;
4257 
4258 	*num_tx = *num_rx = 1;
4259 
4260 	if (!np || !of_device_is_available(np))
4261 		return;
4262 
4263 	/* parse the num of tx and rx queues */
4264 	of_property_read_u32(np, "fsl,num-tx-queues", num_tx);
4265 
4266 	of_property_read_u32(np, "fsl,num-rx-queues", num_rx);
4267 
4268 	if (*num_tx < 1 || *num_tx > FEC_ENET_MAX_TX_QS) {
4269 		dev_warn(&pdev->dev, "Invalid num_tx(=%d), fall back to 1\n",
4270 			 *num_tx);
4271 		*num_tx = 1;
4272 		return;
4273 	}
4274 
4275 	if (*num_rx < 1 || *num_rx > FEC_ENET_MAX_RX_QS) {
4276 		dev_warn(&pdev->dev, "Invalid num_rx(=%d), fall back to 1\n",
4277 			 *num_rx);
4278 		*num_rx = 1;
4279 		return;
4280 	}
4281 
4282 }
4283 
fec_enet_get_irq_cnt(struct platform_device * pdev)4284 static int fec_enet_get_irq_cnt(struct platform_device *pdev)
4285 {
4286 	int irq_cnt = platform_irq_count(pdev);
4287 
4288 	if (irq_cnt > FEC_IRQ_NUM)
4289 		irq_cnt = FEC_IRQ_NUM;	/* last for pps */
4290 	else if (irq_cnt == 2)
4291 		irq_cnt = 1;	/* last for pps */
4292 	else if (irq_cnt <= 0)
4293 		irq_cnt = 1;	/* At least 1 irq is needed */
4294 	return irq_cnt;
4295 }
4296 
fec_enet_get_wakeup_irq(struct platform_device * pdev)4297 static void fec_enet_get_wakeup_irq(struct platform_device *pdev)
4298 {
4299 	struct net_device *ndev = platform_get_drvdata(pdev);
4300 	struct fec_enet_private *fep = netdev_priv(ndev);
4301 
4302 	if (fep->quirks & FEC_QUIRK_WAKEUP_FROM_INT2)
4303 		fep->wake_irq = fep->irq[2];
4304 	else
4305 		fep->wake_irq = fep->irq[0];
4306 }
4307 
fec_enet_init_stop_mode(struct fec_enet_private * fep,struct device_node * np)4308 static int fec_enet_init_stop_mode(struct fec_enet_private *fep,
4309 				   struct device_node *np)
4310 {
4311 	struct device_node *gpr_np;
4312 	u32 out_val[3];
4313 	int ret = 0;
4314 
4315 	gpr_np = of_parse_phandle(np, "fsl,stop-mode", 0);
4316 	if (!gpr_np)
4317 		return 0;
4318 
4319 	ret = of_property_read_u32_array(np, "fsl,stop-mode", out_val,
4320 					 ARRAY_SIZE(out_val));
4321 	if (ret) {
4322 		dev_dbg(&fep->pdev->dev, "no stop mode property\n");
4323 		goto out;
4324 	}
4325 
4326 	fep->stop_gpr.gpr = syscon_node_to_regmap(gpr_np);
4327 	if (IS_ERR(fep->stop_gpr.gpr)) {
4328 		dev_err(&fep->pdev->dev, "could not find gpr regmap\n");
4329 		ret = PTR_ERR(fep->stop_gpr.gpr);
4330 		fep->stop_gpr.gpr = NULL;
4331 		goto out;
4332 	}
4333 
4334 	fep->stop_gpr.reg = out_val[1];
4335 	fep->stop_gpr.bit = out_val[2];
4336 
4337 out:
4338 	of_node_put(gpr_np);
4339 
4340 	return ret;
4341 }
4342 
4343 static int
fec_probe(struct platform_device * pdev)4344 fec_probe(struct platform_device *pdev)
4345 {
4346 	struct fec_enet_private *fep;
4347 	struct fec_platform_data *pdata;
4348 	phy_interface_t interface;
4349 	struct net_device *ndev;
4350 	int i, irq, ret = 0;
4351 	static int dev_id;
4352 	struct device_node *np = pdev->dev.of_node, *phy_node;
4353 	int num_tx_qs;
4354 	int num_rx_qs;
4355 	char irq_name[8];
4356 	int irq_cnt;
4357 	const struct fec_devinfo *dev_info;
4358 
4359 	fec_enet_get_queue_num(pdev, &num_tx_qs, &num_rx_qs);
4360 
4361 	/* Init network device */
4362 	ndev = alloc_etherdev_mqs(sizeof(struct fec_enet_private) +
4363 				  FEC_STATS_SIZE, num_tx_qs, num_rx_qs);
4364 	if (!ndev)
4365 		return -ENOMEM;
4366 
4367 	SET_NETDEV_DEV(ndev, &pdev->dev);
4368 
4369 	/* setup board info structure */
4370 	fep = netdev_priv(ndev);
4371 
4372 	dev_info = device_get_match_data(&pdev->dev);
4373 	if (!dev_info)
4374 		dev_info = (const struct fec_devinfo *)pdev->id_entry->driver_data;
4375 	if (dev_info)
4376 		fep->quirks = dev_info->quirks;
4377 
4378 	fep->netdev = ndev;
4379 	fep->num_rx_queues = num_rx_qs;
4380 	fep->num_tx_queues = num_tx_qs;
4381 
4382 #if !defined(CONFIG_M5272)
4383 	/* default enable pause frame auto negotiation */
4384 	if (fep->quirks & FEC_QUIRK_HAS_GBIT)
4385 		fep->pause_flag |= FEC_PAUSE_FLAG_AUTONEG;
4386 #endif
4387 
4388 	/* Select default pin state */
4389 	pinctrl_pm_select_default_state(&pdev->dev);
4390 
4391 	fep->hwp = devm_platform_ioremap_resource(pdev, 0);
4392 	if (IS_ERR(fep->hwp)) {
4393 		ret = PTR_ERR(fep->hwp);
4394 		goto failed_ioremap;
4395 	}
4396 
4397 	fep->pdev = pdev;
4398 	fep->dev_id = dev_id++;
4399 
4400 	platform_set_drvdata(pdev, ndev);
4401 
4402 	if ((of_machine_is_compatible("fsl,imx6q") ||
4403 	     of_machine_is_compatible("fsl,imx6dl")) &&
4404 	    !of_property_read_bool(np, "fsl,err006687-workaround-present"))
4405 		fep->quirks |= FEC_QUIRK_ERR006687;
4406 
4407 	ret = fec_enet_ipc_handle_init(fep);
4408 	if (ret)
4409 		goto failed_ipc_init;
4410 
4411 	if (of_property_read_bool(np, "fsl,magic-packet"))
4412 		fep->wol_flag |= FEC_WOL_HAS_MAGIC_PACKET;
4413 
4414 	ret = fec_enet_init_stop_mode(fep, np);
4415 	if (ret)
4416 		goto failed_stop_mode;
4417 
4418 	phy_node = of_parse_phandle(np, "phy-handle", 0);
4419 	if (!phy_node && of_phy_is_fixed_link(np)) {
4420 		ret = of_phy_register_fixed_link(np);
4421 		if (ret < 0) {
4422 			dev_err(&pdev->dev,
4423 				"broken fixed-link specification\n");
4424 			goto failed_phy;
4425 		}
4426 		phy_node = of_node_get(np);
4427 	}
4428 	fep->phy_node = phy_node;
4429 
4430 	ret = of_get_phy_mode(pdev->dev.of_node, &interface);
4431 	if (ret) {
4432 		pdata = dev_get_platdata(&pdev->dev);
4433 		if (pdata)
4434 			fep->phy_interface = pdata->phy;
4435 		else
4436 			fep->phy_interface = PHY_INTERFACE_MODE_MII;
4437 	} else {
4438 		fep->phy_interface = interface;
4439 	}
4440 
4441 	ret = fec_enet_parse_rgmii_delay(fep, np);
4442 	if (ret)
4443 		goto failed_rgmii_delay;
4444 
4445 	fep->clk_ipg = devm_clk_get(&pdev->dev, "ipg");
4446 	if (IS_ERR(fep->clk_ipg)) {
4447 		ret = PTR_ERR(fep->clk_ipg);
4448 		goto failed_clk;
4449 	}
4450 
4451 	fep->clk_ahb = devm_clk_get(&pdev->dev, "ahb");
4452 	if (IS_ERR(fep->clk_ahb)) {
4453 		ret = PTR_ERR(fep->clk_ahb);
4454 		goto failed_clk;
4455 	}
4456 
4457 	fep->itr_clk_rate = clk_get_rate(fep->clk_ahb);
4458 
4459 	/* enet_out is optional, depends on board */
4460 	fep->clk_enet_out = devm_clk_get_optional(&pdev->dev, "enet_out");
4461 	if (IS_ERR(fep->clk_enet_out)) {
4462 		ret = PTR_ERR(fep->clk_enet_out);
4463 		goto failed_clk;
4464 	}
4465 
4466 	fep->ptp_clk_on = false;
4467 	mutex_init(&fep->ptp_clk_mutex);
4468 
4469 	/* clk_ref is optional, depends on board */
4470 	fep->clk_ref = devm_clk_get_optional(&pdev->dev, "enet_clk_ref");
4471 	if (IS_ERR(fep->clk_ref)) {
4472 		ret = PTR_ERR(fep->clk_ref);
4473 		goto failed_clk;
4474 	}
4475 	fep->clk_ref_rate = clk_get_rate(fep->clk_ref);
4476 
4477 	/* clk_2x_txclk is optional, depends on board */
4478 	if (fep->rgmii_txc_dly || fep->rgmii_rxc_dly) {
4479 		fep->clk_2x_txclk = devm_clk_get(&pdev->dev, "enet_2x_txclk");
4480 		if (IS_ERR(fep->clk_2x_txclk))
4481 			fep->clk_2x_txclk = NULL;
4482 	}
4483 
4484 	fep->bufdesc_ex = fep->quirks & FEC_QUIRK_HAS_BUFDESC_EX;
4485 	fep->clk_ptp = devm_clk_get(&pdev->dev, "ptp");
4486 	if (IS_ERR(fep->clk_ptp)) {
4487 		fep->clk_ptp = NULL;
4488 		fep->bufdesc_ex = false;
4489 	}
4490 
4491 	ret = fec_enet_clk_enable(ndev, true);
4492 	if (ret)
4493 		goto failed_clk;
4494 
4495 	ret = clk_prepare_enable(fep->clk_ipg);
4496 	if (ret)
4497 		goto failed_clk_ipg;
4498 	ret = clk_prepare_enable(fep->clk_ahb);
4499 	if (ret)
4500 		goto failed_clk_ahb;
4501 
4502 	fep->reg_phy = devm_regulator_get_optional(&pdev->dev, "phy");
4503 	if (!IS_ERR(fep->reg_phy)) {
4504 		ret = regulator_enable(fep->reg_phy);
4505 		if (ret) {
4506 			dev_err(&pdev->dev,
4507 				"Failed to enable phy regulator: %d\n", ret);
4508 			goto failed_regulator;
4509 		}
4510 	} else {
4511 		if (PTR_ERR(fep->reg_phy) == -EPROBE_DEFER) {
4512 			ret = -EPROBE_DEFER;
4513 			goto failed_regulator;
4514 		}
4515 		fep->reg_phy = NULL;
4516 	}
4517 
4518 	pm_runtime_set_autosuspend_delay(&pdev->dev, FEC_MDIO_PM_TIMEOUT);
4519 	pm_runtime_use_autosuspend(&pdev->dev);
4520 	pm_runtime_get_noresume(&pdev->dev);
4521 	pm_runtime_set_active(&pdev->dev);
4522 	pm_runtime_enable(&pdev->dev);
4523 
4524 	ret = fec_reset_phy(pdev);
4525 	if (ret)
4526 		goto failed_reset;
4527 
4528 	irq_cnt = fec_enet_get_irq_cnt(pdev);
4529 	if (fep->bufdesc_ex)
4530 		fec_ptp_init(pdev, irq_cnt);
4531 
4532 	ret = fec_enet_init(ndev);
4533 	if (ret)
4534 		goto failed_init;
4535 
4536 	for (i = 0; i < irq_cnt; i++) {
4537 		snprintf(irq_name, sizeof(irq_name), "int%d", i);
4538 		irq = platform_get_irq_byname_optional(pdev, irq_name);
4539 		if (irq < 0)
4540 			irq = platform_get_irq(pdev, i);
4541 		if (irq < 0) {
4542 			ret = irq;
4543 			goto failed_irq;
4544 		}
4545 		ret = devm_request_irq(&pdev->dev, irq, fec_enet_interrupt,
4546 				       0, pdev->name, ndev);
4547 		if (ret)
4548 			goto failed_irq;
4549 
4550 		fep->irq[i] = irq;
4551 	}
4552 
4553 	/* Decide which interrupt line is wakeup capable */
4554 	fec_enet_get_wakeup_irq(pdev);
4555 
4556 	ret = fec_enet_mii_init(pdev);
4557 	if (ret)
4558 		goto failed_mii_init;
4559 
4560 	/* Carrier starts down, phylib will bring it up */
4561 	netif_carrier_off(ndev);
4562 	fec_enet_clk_enable(ndev, false);
4563 	pinctrl_pm_select_sleep_state(&pdev->dev);
4564 
4565 	ndev->max_mtu = PKT_MAXBUF_SIZE - ETH_HLEN - ETH_FCS_LEN;
4566 
4567 	ret = register_netdev(ndev);
4568 	if (ret)
4569 		goto failed_register;
4570 
4571 	device_init_wakeup(&ndev->dev, fep->wol_flag &
4572 			   FEC_WOL_HAS_MAGIC_PACKET);
4573 
4574 	if (fep->bufdesc_ex && fep->ptp_clock)
4575 		netdev_info(ndev, "registered PHC device %d\n", fep->dev_id);
4576 
4577 	INIT_WORK(&fep->tx_timeout_work, fec_enet_timeout_work);
4578 
4579 	pm_runtime_mark_last_busy(&pdev->dev);
4580 	pm_runtime_put_autosuspend(&pdev->dev);
4581 
4582 	return 0;
4583 
4584 failed_register:
4585 	fec_enet_mii_remove(fep);
4586 failed_mii_init:
4587 failed_irq:
4588 	fec_enet_deinit(ndev);
4589 failed_init:
4590 	fec_ptp_stop(pdev);
4591 failed_reset:
4592 	pm_runtime_put_noidle(&pdev->dev);
4593 	pm_runtime_disable(&pdev->dev);
4594 	if (fep->reg_phy)
4595 		regulator_disable(fep->reg_phy);
4596 failed_regulator:
4597 	clk_disable_unprepare(fep->clk_ahb);
4598 failed_clk_ahb:
4599 	clk_disable_unprepare(fep->clk_ipg);
4600 failed_clk_ipg:
4601 	fec_enet_clk_enable(ndev, false);
4602 failed_clk:
4603 failed_rgmii_delay:
4604 	if (of_phy_is_fixed_link(np))
4605 		of_phy_deregister_fixed_link(np);
4606 	of_node_put(phy_node);
4607 failed_stop_mode:
4608 failed_ipc_init:
4609 failed_phy:
4610 	dev_id--;
4611 failed_ioremap:
4612 	free_netdev(ndev);
4613 
4614 	return ret;
4615 }
4616 
4617 static void
fec_drv_remove(struct platform_device * pdev)4618 fec_drv_remove(struct platform_device *pdev)
4619 {
4620 	struct net_device *ndev = platform_get_drvdata(pdev);
4621 	struct fec_enet_private *fep = netdev_priv(ndev);
4622 	struct device_node *np = pdev->dev.of_node;
4623 	int ret;
4624 
4625 	ret = pm_runtime_get_sync(&pdev->dev);
4626 	if (ret < 0)
4627 		dev_err(&pdev->dev,
4628 			"Failed to resume device in remove callback (%pe)\n",
4629 			ERR_PTR(ret));
4630 
4631 	cancel_work_sync(&fep->tx_timeout_work);
4632 	fec_ptp_stop(pdev);
4633 	unregister_netdev(ndev);
4634 	fec_enet_mii_remove(fep);
4635 	if (fep->reg_phy)
4636 		regulator_disable(fep->reg_phy);
4637 
4638 	if (of_phy_is_fixed_link(np))
4639 		of_phy_deregister_fixed_link(np);
4640 	of_node_put(fep->phy_node);
4641 
4642 	/* After pm_runtime_get_sync() failed, the clks are still off, so skip
4643 	 * disabling them again.
4644 	 */
4645 	if (ret >= 0) {
4646 		clk_disable_unprepare(fep->clk_ahb);
4647 		clk_disable_unprepare(fep->clk_ipg);
4648 	}
4649 	pm_runtime_put_noidle(&pdev->dev);
4650 	pm_runtime_disable(&pdev->dev);
4651 
4652 	fec_enet_deinit(ndev);
4653 	free_netdev(ndev);
4654 }
4655 
fec_suspend(struct device * dev)4656 static int fec_suspend(struct device *dev)
4657 {
4658 	struct net_device *ndev = dev_get_drvdata(dev);
4659 	struct fec_enet_private *fep = netdev_priv(ndev);
4660 	int ret;
4661 
4662 	rtnl_lock();
4663 	if (netif_running(ndev)) {
4664 		if (fep->wol_flag & FEC_WOL_FLAG_ENABLE)
4665 			fep->wol_flag |= FEC_WOL_FLAG_SLEEP_ON;
4666 		phy_stop(ndev->phydev);
4667 		napi_disable(&fep->napi);
4668 		netif_tx_lock_bh(ndev);
4669 		netif_device_detach(ndev);
4670 		netif_tx_unlock_bh(ndev);
4671 		fec_stop(ndev);
4672 		if (!(fep->wol_flag & FEC_WOL_FLAG_ENABLE)) {
4673 			fec_irqs_disable(ndev);
4674 			pinctrl_pm_select_sleep_state(&fep->pdev->dev);
4675 		} else {
4676 			fec_irqs_disable_except_wakeup(ndev);
4677 			if (fep->wake_irq > 0) {
4678 				disable_irq(fep->wake_irq);
4679 				enable_irq_wake(fep->wake_irq);
4680 			}
4681 			fec_enet_stop_mode(fep, true);
4682 		}
4683 		/* It's safe to disable clocks since interrupts are masked */
4684 		fec_enet_clk_enable(ndev, false);
4685 
4686 		fep->rpm_active = !pm_runtime_status_suspended(dev);
4687 		if (fep->rpm_active) {
4688 			ret = pm_runtime_force_suspend(dev);
4689 			if (ret < 0) {
4690 				rtnl_unlock();
4691 				return ret;
4692 			}
4693 		}
4694 	}
4695 	rtnl_unlock();
4696 
4697 	if (fep->reg_phy && !(fep->wol_flag & FEC_WOL_FLAG_ENABLE))
4698 		regulator_disable(fep->reg_phy);
4699 
4700 	/* SOC supply clock to phy, when clock is disabled, phy link down
4701 	 * SOC control phy regulator, when regulator is disabled, phy link down
4702 	 */
4703 	if (fep->clk_enet_out || fep->reg_phy)
4704 		fep->link = 0;
4705 
4706 	return 0;
4707 }
4708 
fec_resume(struct device * dev)4709 static int fec_resume(struct device *dev)
4710 {
4711 	struct net_device *ndev = dev_get_drvdata(dev);
4712 	struct fec_enet_private *fep = netdev_priv(ndev);
4713 	int ret;
4714 	int val;
4715 
4716 	if (fep->reg_phy && !(fep->wol_flag & FEC_WOL_FLAG_ENABLE)) {
4717 		ret = regulator_enable(fep->reg_phy);
4718 		if (ret)
4719 			return ret;
4720 	}
4721 
4722 	rtnl_lock();
4723 	if (netif_running(ndev)) {
4724 		if (fep->rpm_active)
4725 			pm_runtime_force_resume(dev);
4726 
4727 		ret = fec_enet_clk_enable(ndev, true);
4728 		if (ret) {
4729 			rtnl_unlock();
4730 			goto failed_clk;
4731 		}
4732 		if (fep->wol_flag & FEC_WOL_FLAG_ENABLE) {
4733 			fec_enet_stop_mode(fep, false);
4734 			if (fep->wake_irq) {
4735 				disable_irq_wake(fep->wake_irq);
4736 				enable_irq(fep->wake_irq);
4737 			}
4738 
4739 			val = readl(fep->hwp + FEC_ECNTRL);
4740 			val &= ~(FEC_ECR_MAGICEN | FEC_ECR_SLEEP);
4741 			writel(val, fep->hwp + FEC_ECNTRL);
4742 			fep->wol_flag &= ~FEC_WOL_FLAG_SLEEP_ON;
4743 		} else {
4744 			pinctrl_pm_select_default_state(&fep->pdev->dev);
4745 		}
4746 		fec_restart(ndev);
4747 		netif_tx_lock_bh(ndev);
4748 		netif_device_attach(ndev);
4749 		netif_tx_unlock_bh(ndev);
4750 		napi_enable(&fep->napi);
4751 		phy_init_hw(ndev->phydev);
4752 		phy_start(ndev->phydev);
4753 	}
4754 	rtnl_unlock();
4755 
4756 	return 0;
4757 
4758 failed_clk:
4759 	if (fep->reg_phy)
4760 		regulator_disable(fep->reg_phy);
4761 	return ret;
4762 }
4763 
fec_runtime_suspend(struct device * dev)4764 static int fec_runtime_suspend(struct device *dev)
4765 {
4766 	struct net_device *ndev = dev_get_drvdata(dev);
4767 	struct fec_enet_private *fep = netdev_priv(ndev);
4768 
4769 	clk_disable_unprepare(fep->clk_ahb);
4770 	clk_disable_unprepare(fep->clk_ipg);
4771 
4772 	return 0;
4773 }
4774 
fec_runtime_resume(struct device * dev)4775 static int fec_runtime_resume(struct device *dev)
4776 {
4777 	struct net_device *ndev = dev_get_drvdata(dev);
4778 	struct fec_enet_private *fep = netdev_priv(ndev);
4779 	int ret;
4780 
4781 	ret = clk_prepare_enable(fep->clk_ahb);
4782 	if (ret)
4783 		return ret;
4784 	ret = clk_prepare_enable(fep->clk_ipg);
4785 	if (ret)
4786 		goto failed_clk_ipg;
4787 
4788 	return 0;
4789 
4790 failed_clk_ipg:
4791 	clk_disable_unprepare(fep->clk_ahb);
4792 	return ret;
4793 }
4794 
4795 static const struct dev_pm_ops fec_pm_ops = {
4796 	SYSTEM_SLEEP_PM_OPS(fec_suspend, fec_resume)
4797 	RUNTIME_PM_OPS(fec_runtime_suspend, fec_runtime_resume, NULL)
4798 };
4799 
4800 static struct platform_driver fec_driver = {
4801 	.driver	= {
4802 		.name	= DRIVER_NAME,
4803 		.pm	= pm_ptr(&fec_pm_ops),
4804 		.of_match_table = fec_dt_ids,
4805 		.suppress_bind_attrs = true,
4806 	},
4807 	.id_table = fec_devtype,
4808 	.probe	= fec_probe,
4809 	.remove_new = fec_drv_remove,
4810 };
4811 
4812 module_platform_driver(fec_driver);
4813 
4814 MODULE_DESCRIPTION("NXP Fast Ethernet Controller (FEC) driver");
4815 MODULE_LICENSE("GPL");
4816