1 // SPDX-License-Identifier: (GPL-2.0 OR MIT)
2 /* Google virtual Ethernet (gve) driver
3 *
4 * Copyright (C) 2015-2021 Google, Inc.
5 */
6
7 #include "gve.h"
8 #include "gve_adminq.h"
9 #include "gve_utils.h"
10 #include "gve_dqo.h"
11 #include <net/ip.h>
12 #include <linux/tcp.h>
13 #include <linux/slab.h>
14 #include <linux/skbuff.h>
15
16 /* Returns true if tx_bufs are available. */
gve_has_free_tx_qpl_bufs(struct gve_tx_ring * tx,int count)17 static bool gve_has_free_tx_qpl_bufs(struct gve_tx_ring *tx, int count)
18 {
19 int num_avail;
20
21 if (!tx->dqo.qpl)
22 return true;
23
24 num_avail = tx->dqo.num_tx_qpl_bufs -
25 (tx->dqo_tx.alloc_tx_qpl_buf_cnt -
26 tx->dqo_tx.free_tx_qpl_buf_cnt);
27
28 if (count <= num_avail)
29 return true;
30
31 /* Update cached value from dqo_compl. */
32 tx->dqo_tx.free_tx_qpl_buf_cnt =
33 atomic_read_acquire(&tx->dqo_compl.free_tx_qpl_buf_cnt);
34
35 num_avail = tx->dqo.num_tx_qpl_bufs -
36 (tx->dqo_tx.alloc_tx_qpl_buf_cnt -
37 tx->dqo_tx.free_tx_qpl_buf_cnt);
38
39 return count <= num_avail;
40 }
41
42 static s16
gve_alloc_tx_qpl_buf(struct gve_tx_ring * tx)43 gve_alloc_tx_qpl_buf(struct gve_tx_ring *tx)
44 {
45 s16 index;
46
47 index = tx->dqo_tx.free_tx_qpl_buf_head;
48
49 /* No TX buffers available, try to steal the list from the
50 * completion handler.
51 */
52 if (unlikely(index == -1)) {
53 tx->dqo_tx.free_tx_qpl_buf_head =
54 atomic_xchg(&tx->dqo_compl.free_tx_qpl_buf_head, -1);
55 index = tx->dqo_tx.free_tx_qpl_buf_head;
56
57 if (unlikely(index == -1))
58 return index;
59 }
60
61 /* Remove TX buf from free list */
62 tx->dqo_tx.free_tx_qpl_buf_head = tx->dqo.tx_qpl_buf_next[index];
63
64 return index;
65 }
66
67 static void
gve_free_tx_qpl_bufs(struct gve_tx_ring * tx,struct gve_tx_pending_packet_dqo * pkt)68 gve_free_tx_qpl_bufs(struct gve_tx_ring *tx,
69 struct gve_tx_pending_packet_dqo *pkt)
70 {
71 s16 index;
72 int i;
73
74 if (!pkt->num_bufs)
75 return;
76
77 index = pkt->tx_qpl_buf_ids[0];
78 /* Create a linked list of buffers to be added to the free list */
79 for (i = 1; i < pkt->num_bufs; i++) {
80 tx->dqo.tx_qpl_buf_next[index] = pkt->tx_qpl_buf_ids[i];
81 index = pkt->tx_qpl_buf_ids[i];
82 }
83
84 while (true) {
85 s16 old_head = atomic_read_acquire(&tx->dqo_compl.free_tx_qpl_buf_head);
86
87 tx->dqo.tx_qpl_buf_next[index] = old_head;
88 if (atomic_cmpxchg(&tx->dqo_compl.free_tx_qpl_buf_head,
89 old_head,
90 pkt->tx_qpl_buf_ids[0]) == old_head) {
91 break;
92 }
93 }
94
95 atomic_add(pkt->num_bufs, &tx->dqo_compl.free_tx_qpl_buf_cnt);
96 pkt->num_bufs = 0;
97 }
98
99 /* Returns true if a gve_tx_pending_packet_dqo object is available. */
gve_has_pending_packet(struct gve_tx_ring * tx)100 static bool gve_has_pending_packet(struct gve_tx_ring *tx)
101 {
102 /* Check TX path's list. */
103 if (tx->dqo_tx.free_pending_packets != -1)
104 return true;
105
106 /* Check completion handler's list. */
107 if (atomic_read_acquire(&tx->dqo_compl.free_pending_packets) != -1)
108 return true;
109
110 return false;
111 }
112
113 static struct gve_tx_pending_packet_dqo *
gve_alloc_pending_packet(struct gve_tx_ring * tx)114 gve_alloc_pending_packet(struct gve_tx_ring *tx)
115 {
116 struct gve_tx_pending_packet_dqo *pending_packet;
117 s16 index;
118
119 index = tx->dqo_tx.free_pending_packets;
120
121 /* No pending_packets available, try to steal the list from the
122 * completion handler.
123 */
124 if (unlikely(index == -1)) {
125 tx->dqo_tx.free_pending_packets =
126 atomic_xchg(&tx->dqo_compl.free_pending_packets, -1);
127 index = tx->dqo_tx.free_pending_packets;
128
129 if (unlikely(index == -1))
130 return NULL;
131 }
132
133 pending_packet = &tx->dqo.pending_packets[index];
134
135 /* Remove pending_packet from free list */
136 tx->dqo_tx.free_pending_packets = pending_packet->next;
137 pending_packet->state = GVE_PACKET_STATE_PENDING_DATA_COMPL;
138
139 return pending_packet;
140 }
141
142 static void
gve_free_pending_packet(struct gve_tx_ring * tx,struct gve_tx_pending_packet_dqo * pending_packet)143 gve_free_pending_packet(struct gve_tx_ring *tx,
144 struct gve_tx_pending_packet_dqo *pending_packet)
145 {
146 s16 index = pending_packet - tx->dqo.pending_packets;
147
148 pending_packet->state = GVE_PACKET_STATE_UNALLOCATED;
149 while (true) {
150 s16 old_head = atomic_read_acquire(&tx->dqo_compl.free_pending_packets);
151
152 pending_packet->next = old_head;
153 if (atomic_cmpxchg(&tx->dqo_compl.free_pending_packets,
154 old_head, index) == old_head) {
155 break;
156 }
157 }
158 }
159
160 /* gve_tx_free_desc - Cleans up all pending tx requests and buffers.
161 */
gve_tx_clean_pending_packets(struct gve_tx_ring * tx)162 static void gve_tx_clean_pending_packets(struct gve_tx_ring *tx)
163 {
164 int i;
165
166 for (i = 0; i < tx->dqo.num_pending_packets; i++) {
167 struct gve_tx_pending_packet_dqo *cur_state =
168 &tx->dqo.pending_packets[i];
169 int j;
170
171 for (j = 0; j < cur_state->num_bufs; j++) {
172 if (j == 0) {
173 dma_unmap_single(tx->dev,
174 dma_unmap_addr(cur_state, dma[j]),
175 dma_unmap_len(cur_state, len[j]),
176 DMA_TO_DEVICE);
177 } else {
178 dma_unmap_page(tx->dev,
179 dma_unmap_addr(cur_state, dma[j]),
180 dma_unmap_len(cur_state, len[j]),
181 DMA_TO_DEVICE);
182 }
183 }
184 if (cur_state->skb) {
185 dev_consume_skb_any(cur_state->skb);
186 cur_state->skb = NULL;
187 }
188 }
189 }
190
gve_tx_stop_ring_dqo(struct gve_priv * priv,int idx)191 void gve_tx_stop_ring_dqo(struct gve_priv *priv, int idx)
192 {
193 int ntfy_idx = gve_tx_idx_to_ntfy(priv, idx);
194 struct gve_tx_ring *tx = &priv->tx[idx];
195
196 if (!gve_tx_was_added_to_block(priv, idx))
197 return;
198
199 gve_remove_napi(priv, ntfy_idx);
200 gve_clean_tx_done_dqo(priv, tx, /*napi=*/NULL);
201 netdev_tx_reset_queue(tx->netdev_txq);
202 gve_tx_clean_pending_packets(tx);
203 gve_tx_remove_from_block(priv, idx);
204 }
205
gve_tx_free_ring_dqo(struct gve_priv * priv,struct gve_tx_ring * tx,struct gve_tx_alloc_rings_cfg * cfg)206 static void gve_tx_free_ring_dqo(struct gve_priv *priv, struct gve_tx_ring *tx,
207 struct gve_tx_alloc_rings_cfg *cfg)
208 {
209 struct device *hdev = &priv->pdev->dev;
210 int idx = tx->q_num;
211 size_t bytes;
212 u32 qpl_id;
213
214 if (tx->q_resources) {
215 dma_free_coherent(hdev, sizeof(*tx->q_resources),
216 tx->q_resources, tx->q_resources_bus);
217 tx->q_resources = NULL;
218 }
219
220 if (tx->dqo.compl_ring) {
221 bytes = sizeof(tx->dqo.compl_ring[0]) *
222 (tx->dqo.complq_mask + 1);
223 dma_free_coherent(hdev, bytes, tx->dqo.compl_ring,
224 tx->complq_bus_dqo);
225 tx->dqo.compl_ring = NULL;
226 }
227
228 if (tx->dqo.tx_ring) {
229 bytes = sizeof(tx->dqo.tx_ring[0]) * (tx->mask + 1);
230 dma_free_coherent(hdev, bytes, tx->dqo.tx_ring, tx->bus);
231 tx->dqo.tx_ring = NULL;
232 }
233
234 kvfree(tx->dqo.pending_packets);
235 tx->dqo.pending_packets = NULL;
236
237 kvfree(tx->dqo.tx_qpl_buf_next);
238 tx->dqo.tx_qpl_buf_next = NULL;
239
240 if (tx->dqo.qpl) {
241 qpl_id = gve_tx_qpl_id(priv, tx->q_num);
242 gve_free_queue_page_list(priv, tx->dqo.qpl, qpl_id);
243 tx->dqo.qpl = NULL;
244 }
245
246 netif_dbg(priv, drv, priv->dev, "freed tx queue %d\n", idx);
247 }
248
gve_tx_qpl_buf_init(struct gve_tx_ring * tx)249 static int gve_tx_qpl_buf_init(struct gve_tx_ring *tx)
250 {
251 int num_tx_qpl_bufs = GVE_TX_BUFS_PER_PAGE_DQO *
252 tx->dqo.qpl->num_entries;
253 int i;
254
255 tx->dqo.tx_qpl_buf_next = kvcalloc(num_tx_qpl_bufs,
256 sizeof(tx->dqo.tx_qpl_buf_next[0]),
257 GFP_KERNEL);
258 if (!tx->dqo.tx_qpl_buf_next)
259 return -ENOMEM;
260
261 tx->dqo.num_tx_qpl_bufs = num_tx_qpl_bufs;
262
263 /* Generate free TX buf list */
264 for (i = 0; i < num_tx_qpl_bufs - 1; i++)
265 tx->dqo.tx_qpl_buf_next[i] = i + 1;
266 tx->dqo.tx_qpl_buf_next[num_tx_qpl_bufs - 1] = -1;
267
268 atomic_set_release(&tx->dqo_compl.free_tx_qpl_buf_head, -1);
269 return 0;
270 }
271
gve_tx_start_ring_dqo(struct gve_priv * priv,int idx)272 void gve_tx_start_ring_dqo(struct gve_priv *priv, int idx)
273 {
274 int ntfy_idx = gve_tx_idx_to_ntfy(priv, idx);
275 struct gve_tx_ring *tx = &priv->tx[idx];
276
277 gve_tx_add_to_block(priv, idx);
278
279 tx->netdev_txq = netdev_get_tx_queue(priv->dev, idx);
280 gve_add_napi(priv, ntfy_idx, gve_napi_poll_dqo);
281 }
282
gve_tx_alloc_ring_dqo(struct gve_priv * priv,struct gve_tx_alloc_rings_cfg * cfg,struct gve_tx_ring * tx,int idx)283 static int gve_tx_alloc_ring_dqo(struct gve_priv *priv,
284 struct gve_tx_alloc_rings_cfg *cfg,
285 struct gve_tx_ring *tx,
286 int idx)
287 {
288 struct device *hdev = &priv->pdev->dev;
289 int num_pending_packets;
290 int qpl_page_cnt;
291 size_t bytes;
292 u32 qpl_id;
293 int i;
294
295 memset(tx, 0, sizeof(*tx));
296 tx->q_num = idx;
297 tx->dev = hdev;
298 atomic_set_release(&tx->dqo_compl.hw_tx_head, 0);
299
300 /* Queue sizes must be a power of 2 */
301 tx->mask = cfg->ring_size - 1;
302 tx->dqo.complq_mask = tx->mask;
303
304 /* The max number of pending packets determines the maximum number of
305 * descriptors which maybe written to the completion queue.
306 *
307 * We must set the number small enough to make sure we never overrun the
308 * completion queue.
309 */
310 num_pending_packets = tx->dqo.complq_mask + 1;
311
312 /* Reserve space for descriptor completions, which will be reported at
313 * most every GVE_TX_MIN_RE_INTERVAL packets.
314 */
315 num_pending_packets -=
316 (tx->dqo.complq_mask + 1) / GVE_TX_MIN_RE_INTERVAL;
317
318 /* Each packet may have at most 2 buffer completions if it receives both
319 * a miss and reinjection completion.
320 */
321 num_pending_packets /= 2;
322
323 tx->dqo.num_pending_packets = min_t(int, num_pending_packets, S16_MAX);
324 tx->dqo.pending_packets = kvcalloc(tx->dqo.num_pending_packets,
325 sizeof(tx->dqo.pending_packets[0]),
326 GFP_KERNEL);
327 if (!tx->dqo.pending_packets)
328 goto err;
329
330 /* Set up linked list of pending packets */
331 for (i = 0; i < tx->dqo.num_pending_packets - 1; i++)
332 tx->dqo.pending_packets[i].next = i + 1;
333
334 tx->dqo.pending_packets[tx->dqo.num_pending_packets - 1].next = -1;
335 atomic_set_release(&tx->dqo_compl.free_pending_packets, -1);
336 tx->dqo_compl.miss_completions.head = -1;
337 tx->dqo_compl.miss_completions.tail = -1;
338 tx->dqo_compl.timed_out_completions.head = -1;
339 tx->dqo_compl.timed_out_completions.tail = -1;
340
341 bytes = sizeof(tx->dqo.tx_ring[0]) * (tx->mask + 1);
342 tx->dqo.tx_ring = dma_alloc_coherent(hdev, bytes, &tx->bus, GFP_KERNEL);
343 if (!tx->dqo.tx_ring)
344 goto err;
345
346 bytes = sizeof(tx->dqo.compl_ring[0]) * (tx->dqo.complq_mask + 1);
347 tx->dqo.compl_ring = dma_alloc_coherent(hdev, bytes,
348 &tx->complq_bus_dqo,
349 GFP_KERNEL);
350 if (!tx->dqo.compl_ring)
351 goto err;
352
353 tx->q_resources = dma_alloc_coherent(hdev, sizeof(*tx->q_resources),
354 &tx->q_resources_bus, GFP_KERNEL);
355 if (!tx->q_resources)
356 goto err;
357
358 if (!cfg->raw_addressing) {
359 qpl_id = gve_tx_qpl_id(priv, tx->q_num);
360 qpl_page_cnt = priv->tx_pages_per_qpl;
361
362 tx->dqo.qpl = gve_alloc_queue_page_list(priv, qpl_id,
363 qpl_page_cnt);
364 if (!tx->dqo.qpl)
365 goto err;
366
367 if (gve_tx_qpl_buf_init(tx))
368 goto err;
369 }
370
371 return 0;
372
373 err:
374 gve_tx_free_ring_dqo(priv, tx, cfg);
375 return -ENOMEM;
376 }
377
gve_tx_alloc_rings_dqo(struct gve_priv * priv,struct gve_tx_alloc_rings_cfg * cfg)378 int gve_tx_alloc_rings_dqo(struct gve_priv *priv,
379 struct gve_tx_alloc_rings_cfg *cfg)
380 {
381 struct gve_tx_ring *tx = cfg->tx;
382 int err = 0;
383 int i, j;
384
385 if (cfg->start_idx + cfg->num_rings > cfg->qcfg->max_queues) {
386 netif_err(priv, drv, priv->dev,
387 "Cannot alloc more than the max num of Tx rings\n");
388 return -EINVAL;
389 }
390
391 if (cfg->start_idx == 0) {
392 tx = kvcalloc(cfg->qcfg->max_queues, sizeof(struct gve_tx_ring),
393 GFP_KERNEL);
394 if (!tx)
395 return -ENOMEM;
396 } else if (!tx) {
397 netif_err(priv, drv, priv->dev,
398 "Cannot alloc tx rings from a nonzero start idx without tx array\n");
399 return -EINVAL;
400 }
401
402 for (i = cfg->start_idx; i < cfg->start_idx + cfg->num_rings; i++) {
403 err = gve_tx_alloc_ring_dqo(priv, cfg, &tx[i], i);
404 if (err) {
405 netif_err(priv, drv, priv->dev,
406 "Failed to alloc tx ring=%d: err=%d\n",
407 i, err);
408 goto err;
409 }
410 }
411
412 cfg->tx = tx;
413 return 0;
414
415 err:
416 for (j = 0; j < i; j++)
417 gve_tx_free_ring_dqo(priv, &tx[j], cfg);
418 if (cfg->start_idx == 0)
419 kvfree(tx);
420 return err;
421 }
422
gve_tx_free_rings_dqo(struct gve_priv * priv,struct gve_tx_alloc_rings_cfg * cfg)423 void gve_tx_free_rings_dqo(struct gve_priv *priv,
424 struct gve_tx_alloc_rings_cfg *cfg)
425 {
426 struct gve_tx_ring *tx = cfg->tx;
427 int i;
428
429 if (!tx)
430 return;
431
432 for (i = cfg->start_idx; i < cfg->start_idx + cfg->num_rings; i++)
433 gve_tx_free_ring_dqo(priv, &tx[i], cfg);
434
435 if (cfg->start_idx == 0) {
436 kvfree(tx);
437 cfg->tx = NULL;
438 }
439 }
440
441 /* Returns the number of slots available in the ring */
num_avail_tx_slots(const struct gve_tx_ring * tx)442 static u32 num_avail_tx_slots(const struct gve_tx_ring *tx)
443 {
444 u32 num_used = (tx->dqo_tx.tail - tx->dqo_tx.head) & tx->mask;
445
446 return tx->mask - num_used;
447 }
448
gve_has_avail_slots_tx_dqo(struct gve_tx_ring * tx,int desc_count,int buf_count)449 static bool gve_has_avail_slots_tx_dqo(struct gve_tx_ring *tx,
450 int desc_count, int buf_count)
451 {
452 return gve_has_pending_packet(tx) &&
453 num_avail_tx_slots(tx) >= desc_count &&
454 gve_has_free_tx_qpl_bufs(tx, buf_count);
455 }
456
457 /* Stops the queue if available descriptors is less than 'count'.
458 * Return: 0 if stop is not required.
459 */
gve_maybe_stop_tx_dqo(struct gve_tx_ring * tx,int desc_count,int buf_count)460 static int gve_maybe_stop_tx_dqo(struct gve_tx_ring *tx,
461 int desc_count, int buf_count)
462 {
463 if (likely(gve_has_avail_slots_tx_dqo(tx, desc_count, buf_count)))
464 return 0;
465
466 /* Update cached TX head pointer */
467 tx->dqo_tx.head = atomic_read_acquire(&tx->dqo_compl.hw_tx_head);
468
469 if (likely(gve_has_avail_slots_tx_dqo(tx, desc_count, buf_count)))
470 return 0;
471
472 /* No space, so stop the queue */
473 tx->stop_queue++;
474 netif_tx_stop_queue(tx->netdev_txq);
475
476 /* Sync with restarting queue in `gve_tx_poll_dqo()` */
477 mb();
478
479 /* After stopping queue, check if we can transmit again in order to
480 * avoid TOCTOU bug.
481 */
482 tx->dqo_tx.head = atomic_read_acquire(&tx->dqo_compl.hw_tx_head);
483
484 if (likely(!gve_has_avail_slots_tx_dqo(tx, desc_count, buf_count)))
485 return -EBUSY;
486
487 netif_tx_start_queue(tx->netdev_txq);
488 tx->wake_queue++;
489 return 0;
490 }
491
gve_extract_tx_metadata_dqo(const struct sk_buff * skb,struct gve_tx_metadata_dqo * metadata)492 static void gve_extract_tx_metadata_dqo(const struct sk_buff *skb,
493 struct gve_tx_metadata_dqo *metadata)
494 {
495 memset(metadata, 0, sizeof(*metadata));
496 metadata->version = GVE_TX_METADATA_VERSION_DQO;
497
498 if (skb->l4_hash) {
499 u16 path_hash = skb->hash ^ (skb->hash >> 16);
500
501 path_hash &= (1 << 15) - 1;
502 if (unlikely(path_hash == 0))
503 path_hash = ~path_hash;
504
505 metadata->path_hash = path_hash;
506 }
507 }
508
gve_tx_fill_pkt_desc_dqo(struct gve_tx_ring * tx,u32 * desc_idx,struct sk_buff * skb,u32 len,u64 addr,s16 compl_tag,bool eop,bool is_gso)509 static void gve_tx_fill_pkt_desc_dqo(struct gve_tx_ring *tx, u32 *desc_idx,
510 struct sk_buff *skb, u32 len, u64 addr,
511 s16 compl_tag, bool eop, bool is_gso)
512 {
513 const bool checksum_offload_en = skb->ip_summed == CHECKSUM_PARTIAL;
514
515 while (len > 0) {
516 struct gve_tx_pkt_desc_dqo *desc =
517 &tx->dqo.tx_ring[*desc_idx].pkt;
518 u32 cur_len = min_t(u32, len, GVE_TX_MAX_BUF_SIZE_DQO);
519 bool cur_eop = eop && cur_len == len;
520
521 *desc = (struct gve_tx_pkt_desc_dqo){
522 .buf_addr = cpu_to_le64(addr),
523 .dtype = GVE_TX_PKT_DESC_DTYPE_DQO,
524 .end_of_packet = cur_eop,
525 .checksum_offload_enable = checksum_offload_en,
526 .compl_tag = cpu_to_le16(compl_tag),
527 .buf_size = cur_len,
528 };
529
530 addr += cur_len;
531 len -= cur_len;
532 *desc_idx = (*desc_idx + 1) & tx->mask;
533 }
534 }
535
536 /* Validates and prepares `skb` for TSO.
537 *
538 * Returns header length, or < 0 if invalid.
539 */
gve_prep_tso(struct sk_buff * skb)540 static int gve_prep_tso(struct sk_buff *skb)
541 {
542 struct tcphdr *tcp;
543 int header_len;
544 u32 paylen;
545 int err;
546
547 /* Note: HW requires MSS (gso_size) to be <= 9728 and the total length
548 * of the TSO to be <= 262143.
549 *
550 * However, we don't validate these because:
551 * - Hypervisor enforces a limit of 9K MTU
552 * - Kernel will not produce a TSO larger than 64k
553 */
554
555 if (unlikely(skb_shinfo(skb)->gso_size < GVE_TX_MIN_TSO_MSS_DQO))
556 return -1;
557
558 if (!(skb_shinfo(skb)->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)))
559 return -EINVAL;
560
561 /* Needed because we will modify header. */
562 err = skb_cow_head(skb, 0);
563 if (err < 0)
564 return err;
565
566 tcp = tcp_hdr(skb);
567 paylen = skb->len - skb_transport_offset(skb);
568 csum_replace_by_diff(&tcp->check, (__force __wsum)htonl(paylen));
569 header_len = skb_tcp_all_headers(skb);
570
571 if (unlikely(header_len > GVE_TX_MAX_HDR_SIZE_DQO))
572 return -EINVAL;
573
574 return header_len;
575 }
576
gve_tx_fill_tso_ctx_desc(struct gve_tx_tso_context_desc_dqo * desc,const struct sk_buff * skb,const struct gve_tx_metadata_dqo * metadata,int header_len)577 static void gve_tx_fill_tso_ctx_desc(struct gve_tx_tso_context_desc_dqo *desc,
578 const struct sk_buff *skb,
579 const struct gve_tx_metadata_dqo *metadata,
580 int header_len)
581 {
582 *desc = (struct gve_tx_tso_context_desc_dqo){
583 .header_len = header_len,
584 .cmd_dtype = {
585 .dtype = GVE_TX_TSO_CTX_DESC_DTYPE_DQO,
586 .tso = 1,
587 },
588 .flex0 = metadata->bytes[0],
589 .flex5 = metadata->bytes[5],
590 .flex6 = metadata->bytes[6],
591 .flex7 = metadata->bytes[7],
592 .flex8 = metadata->bytes[8],
593 .flex9 = metadata->bytes[9],
594 .flex10 = metadata->bytes[10],
595 .flex11 = metadata->bytes[11],
596 };
597 desc->tso_total_len = skb->len - header_len;
598 desc->mss = skb_shinfo(skb)->gso_size;
599 }
600
601 static void
gve_tx_fill_general_ctx_desc(struct gve_tx_general_context_desc_dqo * desc,const struct gve_tx_metadata_dqo * metadata)602 gve_tx_fill_general_ctx_desc(struct gve_tx_general_context_desc_dqo *desc,
603 const struct gve_tx_metadata_dqo *metadata)
604 {
605 *desc = (struct gve_tx_general_context_desc_dqo){
606 .flex0 = metadata->bytes[0],
607 .flex1 = metadata->bytes[1],
608 .flex2 = metadata->bytes[2],
609 .flex3 = metadata->bytes[3],
610 .flex4 = metadata->bytes[4],
611 .flex5 = metadata->bytes[5],
612 .flex6 = metadata->bytes[6],
613 .flex7 = metadata->bytes[7],
614 .flex8 = metadata->bytes[8],
615 .flex9 = metadata->bytes[9],
616 .flex10 = metadata->bytes[10],
617 .flex11 = metadata->bytes[11],
618 .cmd_dtype = {.dtype = GVE_TX_GENERAL_CTX_DESC_DTYPE_DQO},
619 };
620 }
621
gve_tx_add_skb_no_copy_dqo(struct gve_tx_ring * tx,struct sk_buff * skb,struct gve_tx_pending_packet_dqo * pkt,s16 completion_tag,u32 * desc_idx,bool is_gso)622 static int gve_tx_add_skb_no_copy_dqo(struct gve_tx_ring *tx,
623 struct sk_buff *skb,
624 struct gve_tx_pending_packet_dqo *pkt,
625 s16 completion_tag,
626 u32 *desc_idx,
627 bool is_gso)
628 {
629 const struct skb_shared_info *shinfo = skb_shinfo(skb);
630 int i;
631
632 /* Note: HW requires that the size of a non-TSO packet be within the
633 * range of [17, 9728].
634 *
635 * We don't double check because
636 * - We limited `netdev->min_mtu` to ETH_MIN_MTU.
637 * - Hypervisor won't allow MTU larger than 9216.
638 */
639
640 pkt->num_bufs = 0;
641 /* Map the linear portion of skb */
642 {
643 u32 len = skb_headlen(skb);
644 dma_addr_t addr;
645
646 addr = dma_map_single(tx->dev, skb->data, len, DMA_TO_DEVICE);
647 if (unlikely(dma_mapping_error(tx->dev, addr)))
648 goto err;
649
650 dma_unmap_len_set(pkt, len[pkt->num_bufs], len);
651 dma_unmap_addr_set(pkt, dma[pkt->num_bufs], addr);
652 ++pkt->num_bufs;
653
654 gve_tx_fill_pkt_desc_dqo(tx, desc_idx, skb, len, addr,
655 completion_tag,
656 /*eop=*/shinfo->nr_frags == 0, is_gso);
657 }
658
659 for (i = 0; i < shinfo->nr_frags; i++) {
660 const skb_frag_t *frag = &shinfo->frags[i];
661 bool is_eop = i == (shinfo->nr_frags - 1);
662 u32 len = skb_frag_size(frag);
663 dma_addr_t addr;
664
665 addr = skb_frag_dma_map(tx->dev, frag, 0, len, DMA_TO_DEVICE);
666 if (unlikely(dma_mapping_error(tx->dev, addr)))
667 goto err;
668
669 dma_unmap_len_set(pkt, len[pkt->num_bufs], len);
670 dma_unmap_addr_set(pkt, dma[pkt->num_bufs], addr);
671 ++pkt->num_bufs;
672
673 gve_tx_fill_pkt_desc_dqo(tx, desc_idx, skb, len, addr,
674 completion_tag, is_eop, is_gso);
675 }
676
677 return 0;
678 err:
679 for (i = 0; i < pkt->num_bufs; i++) {
680 if (i == 0) {
681 dma_unmap_single(tx->dev,
682 dma_unmap_addr(pkt, dma[i]),
683 dma_unmap_len(pkt, len[i]),
684 DMA_TO_DEVICE);
685 } else {
686 dma_unmap_page(tx->dev,
687 dma_unmap_addr(pkt, dma[i]),
688 dma_unmap_len(pkt, len[i]),
689 DMA_TO_DEVICE);
690 }
691 }
692 pkt->num_bufs = 0;
693 return -1;
694 }
695
696 /* Tx buffer i corresponds to
697 * qpl_page_id = i / GVE_TX_BUFS_PER_PAGE_DQO
698 * qpl_page_offset = (i % GVE_TX_BUFS_PER_PAGE_DQO) * GVE_TX_BUF_SIZE_DQO
699 */
gve_tx_buf_get_addr(struct gve_tx_ring * tx,s16 index,void ** va,dma_addr_t * dma_addr)700 static void gve_tx_buf_get_addr(struct gve_tx_ring *tx,
701 s16 index,
702 void **va, dma_addr_t *dma_addr)
703 {
704 int page_id = index >> (PAGE_SHIFT - GVE_TX_BUF_SHIFT_DQO);
705 int offset = (index & (GVE_TX_BUFS_PER_PAGE_DQO - 1)) << GVE_TX_BUF_SHIFT_DQO;
706
707 *va = page_address(tx->dqo.qpl->pages[page_id]) + offset;
708 *dma_addr = tx->dqo.qpl->page_buses[page_id] + offset;
709 }
710
gve_tx_add_skb_copy_dqo(struct gve_tx_ring * tx,struct sk_buff * skb,struct gve_tx_pending_packet_dqo * pkt,s16 completion_tag,u32 * desc_idx,bool is_gso)711 static int gve_tx_add_skb_copy_dqo(struct gve_tx_ring *tx,
712 struct sk_buff *skb,
713 struct gve_tx_pending_packet_dqo *pkt,
714 s16 completion_tag,
715 u32 *desc_idx,
716 bool is_gso)
717 {
718 u32 copy_offset = 0;
719 dma_addr_t dma_addr;
720 u32 copy_len;
721 s16 index;
722 void *va;
723
724 /* Break the packet into buffer size chunks */
725 pkt->num_bufs = 0;
726 while (copy_offset < skb->len) {
727 index = gve_alloc_tx_qpl_buf(tx);
728 if (unlikely(index == -1))
729 goto err;
730
731 gve_tx_buf_get_addr(tx, index, &va, &dma_addr);
732 copy_len = min_t(u32, GVE_TX_BUF_SIZE_DQO,
733 skb->len - copy_offset);
734 skb_copy_bits(skb, copy_offset, va, copy_len);
735
736 copy_offset += copy_len;
737 dma_sync_single_for_device(tx->dev, dma_addr,
738 copy_len, DMA_TO_DEVICE);
739 gve_tx_fill_pkt_desc_dqo(tx, desc_idx, skb,
740 copy_len,
741 dma_addr,
742 completion_tag,
743 copy_offset == skb->len,
744 is_gso);
745
746 pkt->tx_qpl_buf_ids[pkt->num_bufs] = index;
747 ++tx->dqo_tx.alloc_tx_qpl_buf_cnt;
748 ++pkt->num_bufs;
749 }
750
751 return 0;
752 err:
753 /* Should not be here if gve_has_free_tx_qpl_bufs() check is correct */
754 gve_free_tx_qpl_bufs(tx, pkt);
755 return -ENOMEM;
756 }
757
758 /* Returns 0 on success, or < 0 on error.
759 *
760 * Before this function is called, the caller must ensure
761 * gve_has_pending_packet(tx) returns true.
762 */
gve_tx_add_skb_dqo(struct gve_tx_ring * tx,struct sk_buff * skb)763 static int gve_tx_add_skb_dqo(struct gve_tx_ring *tx,
764 struct sk_buff *skb)
765 {
766 const bool is_gso = skb_is_gso(skb);
767 u32 desc_idx = tx->dqo_tx.tail;
768 struct gve_tx_pending_packet_dqo *pkt;
769 struct gve_tx_metadata_dqo metadata;
770 s16 completion_tag;
771
772 pkt = gve_alloc_pending_packet(tx);
773 if (!pkt)
774 return -ENOMEM;
775
776 pkt->skb = skb;
777 completion_tag = pkt - tx->dqo.pending_packets;
778
779 gve_extract_tx_metadata_dqo(skb, &metadata);
780 if (is_gso) {
781 int header_len = gve_prep_tso(skb);
782
783 if (unlikely(header_len < 0))
784 goto err;
785
786 gve_tx_fill_tso_ctx_desc(&tx->dqo.tx_ring[desc_idx].tso_ctx,
787 skb, &metadata, header_len);
788 desc_idx = (desc_idx + 1) & tx->mask;
789 }
790
791 gve_tx_fill_general_ctx_desc(&tx->dqo.tx_ring[desc_idx].general_ctx,
792 &metadata);
793 desc_idx = (desc_idx + 1) & tx->mask;
794
795 if (tx->dqo.qpl) {
796 if (gve_tx_add_skb_copy_dqo(tx, skb, pkt,
797 completion_tag,
798 &desc_idx, is_gso))
799 goto err;
800 } else {
801 if (gve_tx_add_skb_no_copy_dqo(tx, skb, pkt,
802 completion_tag,
803 &desc_idx, is_gso))
804 goto err;
805 }
806
807 tx->dqo_tx.posted_packet_desc_cnt += pkt->num_bufs;
808
809 /* Commit the changes to our state */
810 tx->dqo_tx.tail = desc_idx;
811
812 /* Request a descriptor completion on the last descriptor of the
813 * packet if we are allowed to by the HW enforced interval.
814 */
815 {
816 u32 last_desc_idx = (desc_idx - 1) & tx->mask;
817 u32 last_report_event_interval =
818 (last_desc_idx - tx->dqo_tx.last_re_idx) & tx->mask;
819
820 if (unlikely(last_report_event_interval >=
821 GVE_TX_MIN_RE_INTERVAL)) {
822 tx->dqo.tx_ring[last_desc_idx].pkt.report_event = true;
823 tx->dqo_tx.last_re_idx = last_desc_idx;
824 }
825 }
826
827 return 0;
828
829 err:
830 pkt->skb = NULL;
831 gve_free_pending_packet(tx, pkt);
832
833 return -1;
834 }
835
gve_num_descs_per_buf(size_t size)836 static int gve_num_descs_per_buf(size_t size)
837 {
838 return DIV_ROUND_UP(size, GVE_TX_MAX_BUF_SIZE_DQO);
839 }
840
gve_num_buffer_descs_needed(const struct sk_buff * skb)841 static int gve_num_buffer_descs_needed(const struct sk_buff *skb)
842 {
843 const struct skb_shared_info *shinfo = skb_shinfo(skb);
844 int num_descs;
845 int i;
846
847 num_descs = gve_num_descs_per_buf(skb_headlen(skb));
848
849 for (i = 0; i < shinfo->nr_frags; i++) {
850 unsigned int frag_size = skb_frag_size(&shinfo->frags[i]);
851
852 num_descs += gve_num_descs_per_buf(frag_size);
853 }
854
855 return num_descs;
856 }
857
858 /* Returns true if HW is capable of sending TSO represented by `skb`.
859 *
860 * Each segment must not span more than GVE_TX_MAX_DATA_DESCS buffers.
861 * - The header is counted as one buffer for every single segment.
862 * - A buffer which is split between two segments is counted for both.
863 * - If a buffer contains both header and payload, it is counted as two buffers.
864 */
gve_can_send_tso(const struct sk_buff * skb)865 static bool gve_can_send_tso(const struct sk_buff *skb)
866 {
867 const int max_bufs_per_seg = GVE_TX_MAX_DATA_DESCS - 1;
868 const struct skb_shared_info *shinfo = skb_shinfo(skb);
869 const int header_len = skb_tcp_all_headers(skb);
870 const int gso_size = shinfo->gso_size;
871 int cur_seg_num_bufs;
872 int prev_frag_size;
873 int cur_seg_size;
874 int i;
875
876 cur_seg_size = skb_headlen(skb) - header_len;
877 prev_frag_size = skb_headlen(skb);
878 cur_seg_num_bufs = cur_seg_size > 0;
879
880 for (i = 0; i < shinfo->nr_frags; i++) {
881 if (cur_seg_size >= gso_size) {
882 cur_seg_size %= gso_size;
883 cur_seg_num_bufs = cur_seg_size > 0;
884
885 if (prev_frag_size > GVE_TX_MAX_BUF_SIZE_DQO) {
886 int prev_frag_remain = prev_frag_size %
887 GVE_TX_MAX_BUF_SIZE_DQO;
888
889 /* If the last descriptor of the previous frag
890 * is less than cur_seg_size, the segment will
891 * span two descriptors in the previous frag.
892 * Since max gso size (9728) is less than
893 * GVE_TX_MAX_BUF_SIZE_DQO, it is impossible
894 * for the segment to span more than two
895 * descriptors.
896 */
897 if (prev_frag_remain &&
898 cur_seg_size > prev_frag_remain)
899 cur_seg_num_bufs++;
900 }
901 }
902
903 if (unlikely(++cur_seg_num_bufs > max_bufs_per_seg))
904 return false;
905
906 prev_frag_size = skb_frag_size(&shinfo->frags[i]);
907 cur_seg_size += prev_frag_size;
908 }
909
910 return true;
911 }
912
gve_features_check_dqo(struct sk_buff * skb,struct net_device * dev,netdev_features_t features)913 netdev_features_t gve_features_check_dqo(struct sk_buff *skb,
914 struct net_device *dev,
915 netdev_features_t features)
916 {
917 if (skb_is_gso(skb) && !gve_can_send_tso(skb))
918 return features & ~NETIF_F_GSO_MASK;
919
920 return features;
921 }
922
923 /* Attempt to transmit specified SKB.
924 *
925 * Returns 0 if the SKB was transmitted or dropped.
926 * Returns -1 if there is not currently enough space to transmit the SKB.
927 */
gve_try_tx_skb(struct gve_priv * priv,struct gve_tx_ring * tx,struct sk_buff * skb)928 static int gve_try_tx_skb(struct gve_priv *priv, struct gve_tx_ring *tx,
929 struct sk_buff *skb)
930 {
931 int num_buffer_descs;
932 int total_num_descs;
933
934 if (skb_is_gso(skb) && unlikely(ipv6_hopopt_jumbo_remove(skb)))
935 goto drop;
936
937 if (tx->dqo.qpl) {
938 /* We do not need to verify the number of buffers used per
939 * packet or per segment in case of TSO as with 2K size buffers
940 * none of the TX packet rules would be violated.
941 *
942 * gve_can_send_tso() checks that each TCP segment of gso_size is
943 * not distributed over more than 9 SKB frags..
944 */
945 num_buffer_descs = DIV_ROUND_UP(skb->len, GVE_TX_BUF_SIZE_DQO);
946 } else {
947 num_buffer_descs = gve_num_buffer_descs_needed(skb);
948 if (!skb_is_gso(skb)) {
949 if (unlikely(num_buffer_descs > GVE_TX_MAX_DATA_DESCS)) {
950 if (unlikely(skb_linearize(skb) < 0))
951 goto drop;
952
953 num_buffer_descs = 1;
954 }
955 }
956 }
957
958 /* Metadata + (optional TSO) + data descriptors. */
959 total_num_descs = 1 + skb_is_gso(skb) + num_buffer_descs;
960 if (unlikely(gve_maybe_stop_tx_dqo(tx, total_num_descs +
961 GVE_TX_MIN_DESC_PREVENT_CACHE_OVERLAP,
962 num_buffer_descs))) {
963 return -1;
964 }
965
966 if (unlikely(gve_tx_add_skb_dqo(tx, skb) < 0))
967 goto drop;
968
969 netdev_tx_sent_queue(tx->netdev_txq, skb->len);
970 skb_tx_timestamp(skb);
971 return 0;
972
973 drop:
974 tx->dropped_pkt++;
975 dev_kfree_skb_any(skb);
976 return 0;
977 }
978
979 /* Transmit a given skb and ring the doorbell. */
gve_tx_dqo(struct sk_buff * skb,struct net_device * dev)980 netdev_tx_t gve_tx_dqo(struct sk_buff *skb, struct net_device *dev)
981 {
982 struct gve_priv *priv = netdev_priv(dev);
983 struct gve_tx_ring *tx;
984
985 tx = &priv->tx[skb_get_queue_mapping(skb)];
986 if (unlikely(gve_try_tx_skb(priv, tx, skb) < 0)) {
987 /* We need to ring the txq doorbell -- we have stopped the Tx
988 * queue for want of resources, but prior calls to gve_tx()
989 * may have added descriptors without ringing the doorbell.
990 */
991 gve_tx_put_doorbell_dqo(priv, tx->q_resources, tx->dqo_tx.tail);
992 return NETDEV_TX_BUSY;
993 }
994
995 if (!netif_xmit_stopped(tx->netdev_txq) && netdev_xmit_more())
996 return NETDEV_TX_OK;
997
998 gve_tx_put_doorbell_dqo(priv, tx->q_resources, tx->dqo_tx.tail);
999 return NETDEV_TX_OK;
1000 }
1001
add_to_list(struct gve_tx_ring * tx,struct gve_index_list * list,struct gve_tx_pending_packet_dqo * pending_packet)1002 static void add_to_list(struct gve_tx_ring *tx, struct gve_index_list *list,
1003 struct gve_tx_pending_packet_dqo *pending_packet)
1004 {
1005 s16 old_tail, index;
1006
1007 index = pending_packet - tx->dqo.pending_packets;
1008 old_tail = list->tail;
1009 list->tail = index;
1010 if (old_tail == -1)
1011 list->head = index;
1012 else
1013 tx->dqo.pending_packets[old_tail].next = index;
1014
1015 pending_packet->next = -1;
1016 pending_packet->prev = old_tail;
1017 }
1018
remove_from_list(struct gve_tx_ring * tx,struct gve_index_list * list,struct gve_tx_pending_packet_dqo * pkt)1019 static void remove_from_list(struct gve_tx_ring *tx,
1020 struct gve_index_list *list,
1021 struct gve_tx_pending_packet_dqo *pkt)
1022 {
1023 s16 prev_index, next_index;
1024
1025 prev_index = pkt->prev;
1026 next_index = pkt->next;
1027
1028 if (prev_index == -1) {
1029 /* Node is head */
1030 list->head = next_index;
1031 } else {
1032 tx->dqo.pending_packets[prev_index].next = next_index;
1033 }
1034 if (next_index == -1) {
1035 /* Node is tail */
1036 list->tail = prev_index;
1037 } else {
1038 tx->dqo.pending_packets[next_index].prev = prev_index;
1039 }
1040 }
1041
gve_unmap_packet(struct device * dev,struct gve_tx_pending_packet_dqo * pkt)1042 static void gve_unmap_packet(struct device *dev,
1043 struct gve_tx_pending_packet_dqo *pkt)
1044 {
1045 int i;
1046
1047 /* SKB linear portion is guaranteed to be mapped */
1048 dma_unmap_single(dev, dma_unmap_addr(pkt, dma[0]),
1049 dma_unmap_len(pkt, len[0]), DMA_TO_DEVICE);
1050 for (i = 1; i < pkt->num_bufs; i++) {
1051 dma_unmap_page(dev, dma_unmap_addr(pkt, dma[i]),
1052 dma_unmap_len(pkt, len[i]), DMA_TO_DEVICE);
1053 }
1054 pkt->num_bufs = 0;
1055 }
1056
1057 /* Completion types and expected behavior:
1058 * No Miss compl + Packet compl = Packet completed normally.
1059 * Miss compl + Re-inject compl = Packet completed normally.
1060 * No Miss compl + Re-inject compl = Skipped i.e. packet not completed.
1061 * Miss compl + Packet compl = Skipped i.e. packet not completed.
1062 */
gve_handle_packet_completion(struct gve_priv * priv,struct gve_tx_ring * tx,bool is_napi,u16 compl_tag,u64 * bytes,u64 * pkts,bool is_reinjection)1063 static void gve_handle_packet_completion(struct gve_priv *priv,
1064 struct gve_tx_ring *tx, bool is_napi,
1065 u16 compl_tag, u64 *bytes, u64 *pkts,
1066 bool is_reinjection)
1067 {
1068 struct gve_tx_pending_packet_dqo *pending_packet;
1069
1070 if (unlikely(compl_tag >= tx->dqo.num_pending_packets)) {
1071 net_err_ratelimited("%s: Invalid TX completion tag: %d\n",
1072 priv->dev->name, (int)compl_tag);
1073 return;
1074 }
1075
1076 pending_packet = &tx->dqo.pending_packets[compl_tag];
1077
1078 if (unlikely(is_reinjection)) {
1079 if (unlikely(pending_packet->state ==
1080 GVE_PACKET_STATE_TIMED_OUT_COMPL)) {
1081 net_err_ratelimited("%s: Re-injection completion: %d received after timeout.\n",
1082 priv->dev->name, (int)compl_tag);
1083 /* Packet was already completed as a result of timeout,
1084 * so just remove from list and free pending packet.
1085 */
1086 remove_from_list(tx,
1087 &tx->dqo_compl.timed_out_completions,
1088 pending_packet);
1089 gve_free_pending_packet(tx, pending_packet);
1090 return;
1091 }
1092 if (unlikely(pending_packet->state !=
1093 GVE_PACKET_STATE_PENDING_REINJECT_COMPL)) {
1094 /* No outstanding miss completion but packet allocated
1095 * implies packet receives a re-injection completion
1096 * without a prior miss completion. Return without
1097 * completing the packet.
1098 */
1099 net_err_ratelimited("%s: Re-injection completion received without corresponding miss completion: %d\n",
1100 priv->dev->name, (int)compl_tag);
1101 return;
1102 }
1103 remove_from_list(tx, &tx->dqo_compl.miss_completions,
1104 pending_packet);
1105 } else {
1106 /* Packet is allocated but not a pending data completion. */
1107 if (unlikely(pending_packet->state !=
1108 GVE_PACKET_STATE_PENDING_DATA_COMPL)) {
1109 net_err_ratelimited("%s: No pending data completion: %d\n",
1110 priv->dev->name, (int)compl_tag);
1111 return;
1112 }
1113 }
1114 tx->dqo_tx.completed_packet_desc_cnt += pending_packet->num_bufs;
1115 if (tx->dqo.qpl)
1116 gve_free_tx_qpl_bufs(tx, pending_packet);
1117 else
1118 gve_unmap_packet(tx->dev, pending_packet);
1119
1120 *bytes += pending_packet->skb->len;
1121 (*pkts)++;
1122 napi_consume_skb(pending_packet->skb, is_napi);
1123 pending_packet->skb = NULL;
1124 gve_free_pending_packet(tx, pending_packet);
1125 }
1126
gve_handle_miss_completion(struct gve_priv * priv,struct gve_tx_ring * tx,u16 compl_tag,u64 * bytes,u64 * pkts)1127 static void gve_handle_miss_completion(struct gve_priv *priv,
1128 struct gve_tx_ring *tx, u16 compl_tag,
1129 u64 *bytes, u64 *pkts)
1130 {
1131 struct gve_tx_pending_packet_dqo *pending_packet;
1132
1133 if (unlikely(compl_tag >= tx->dqo.num_pending_packets)) {
1134 net_err_ratelimited("%s: Invalid TX completion tag: %d\n",
1135 priv->dev->name, (int)compl_tag);
1136 return;
1137 }
1138
1139 pending_packet = &tx->dqo.pending_packets[compl_tag];
1140 if (unlikely(pending_packet->state !=
1141 GVE_PACKET_STATE_PENDING_DATA_COMPL)) {
1142 net_err_ratelimited("%s: Unexpected packet state: %d for completion tag : %d\n",
1143 priv->dev->name, (int)pending_packet->state,
1144 (int)compl_tag);
1145 return;
1146 }
1147
1148 pending_packet->state = GVE_PACKET_STATE_PENDING_REINJECT_COMPL;
1149 /* jiffies can wraparound but time comparisons can handle overflows. */
1150 pending_packet->timeout_jiffies =
1151 jiffies +
1152 msecs_to_jiffies(GVE_REINJECT_COMPL_TIMEOUT *
1153 MSEC_PER_SEC);
1154 add_to_list(tx, &tx->dqo_compl.miss_completions, pending_packet);
1155
1156 *bytes += pending_packet->skb->len;
1157 (*pkts)++;
1158 }
1159
remove_miss_completions(struct gve_priv * priv,struct gve_tx_ring * tx)1160 static void remove_miss_completions(struct gve_priv *priv,
1161 struct gve_tx_ring *tx)
1162 {
1163 struct gve_tx_pending_packet_dqo *pending_packet;
1164 s16 next_index;
1165
1166 next_index = tx->dqo_compl.miss_completions.head;
1167 while (next_index != -1) {
1168 pending_packet = &tx->dqo.pending_packets[next_index];
1169 next_index = pending_packet->next;
1170 /* Break early because packets should timeout in order. */
1171 if (time_is_after_jiffies(pending_packet->timeout_jiffies))
1172 break;
1173
1174 remove_from_list(tx, &tx->dqo_compl.miss_completions,
1175 pending_packet);
1176 /* Unmap/free TX buffers and free skb but do not unallocate packet i.e.
1177 * the completion tag is not freed to ensure that the driver
1178 * can take appropriate action if a corresponding valid
1179 * completion is received later.
1180 */
1181 if (tx->dqo.qpl)
1182 gve_free_tx_qpl_bufs(tx, pending_packet);
1183 else
1184 gve_unmap_packet(tx->dev, pending_packet);
1185
1186 /* This indicates the packet was dropped. */
1187 dev_kfree_skb_any(pending_packet->skb);
1188 pending_packet->skb = NULL;
1189 tx->dropped_pkt++;
1190 net_err_ratelimited("%s: No reinjection completion was received for: %d.\n",
1191 priv->dev->name,
1192 (int)(pending_packet - tx->dqo.pending_packets));
1193
1194 pending_packet->state = GVE_PACKET_STATE_TIMED_OUT_COMPL;
1195 pending_packet->timeout_jiffies =
1196 jiffies +
1197 msecs_to_jiffies(GVE_DEALLOCATE_COMPL_TIMEOUT *
1198 MSEC_PER_SEC);
1199 /* Maintain pending packet in another list so the packet can be
1200 * unallocated at a later time.
1201 */
1202 add_to_list(tx, &tx->dqo_compl.timed_out_completions,
1203 pending_packet);
1204 }
1205 }
1206
remove_timed_out_completions(struct gve_priv * priv,struct gve_tx_ring * tx)1207 static void remove_timed_out_completions(struct gve_priv *priv,
1208 struct gve_tx_ring *tx)
1209 {
1210 struct gve_tx_pending_packet_dqo *pending_packet;
1211 s16 next_index;
1212
1213 next_index = tx->dqo_compl.timed_out_completions.head;
1214 while (next_index != -1) {
1215 pending_packet = &tx->dqo.pending_packets[next_index];
1216 next_index = pending_packet->next;
1217 /* Break early because packets should timeout in order. */
1218 if (time_is_after_jiffies(pending_packet->timeout_jiffies))
1219 break;
1220
1221 remove_from_list(tx, &tx->dqo_compl.timed_out_completions,
1222 pending_packet);
1223 gve_free_pending_packet(tx, pending_packet);
1224 }
1225 }
1226
gve_clean_tx_done_dqo(struct gve_priv * priv,struct gve_tx_ring * tx,struct napi_struct * napi)1227 int gve_clean_tx_done_dqo(struct gve_priv *priv, struct gve_tx_ring *tx,
1228 struct napi_struct *napi)
1229 {
1230 u64 reinject_compl_bytes = 0;
1231 u64 reinject_compl_pkts = 0;
1232 int num_descs_cleaned = 0;
1233 u64 miss_compl_bytes = 0;
1234 u64 miss_compl_pkts = 0;
1235 u64 pkt_compl_bytes = 0;
1236 u64 pkt_compl_pkts = 0;
1237
1238 /* Limit in order to avoid blocking for too long */
1239 while (!napi || pkt_compl_pkts < napi->weight) {
1240 struct gve_tx_compl_desc *compl_desc =
1241 &tx->dqo.compl_ring[tx->dqo_compl.head];
1242 u16 type;
1243
1244 if (compl_desc->generation == tx->dqo_compl.cur_gen_bit)
1245 break;
1246
1247 /* Prefetch the next descriptor. */
1248 prefetch(&tx->dqo.compl_ring[(tx->dqo_compl.head + 1) &
1249 tx->dqo.complq_mask]);
1250
1251 /* Do not read data until we own the descriptor */
1252 dma_rmb();
1253 type = compl_desc->type;
1254
1255 if (type == GVE_COMPL_TYPE_DQO_DESC) {
1256 /* This is the last descriptor fetched by HW plus one */
1257 u16 tx_head = le16_to_cpu(compl_desc->tx_head);
1258
1259 atomic_set_release(&tx->dqo_compl.hw_tx_head, tx_head);
1260 } else if (type == GVE_COMPL_TYPE_DQO_PKT) {
1261 u16 compl_tag = le16_to_cpu(compl_desc->completion_tag);
1262 if (compl_tag & GVE_ALT_MISS_COMPL_BIT) {
1263 compl_tag &= ~GVE_ALT_MISS_COMPL_BIT;
1264 gve_handle_miss_completion(priv, tx, compl_tag,
1265 &miss_compl_bytes,
1266 &miss_compl_pkts);
1267 } else {
1268 gve_handle_packet_completion(priv, tx, !!napi,
1269 compl_tag,
1270 &pkt_compl_bytes,
1271 &pkt_compl_pkts,
1272 false);
1273 }
1274 } else if (type == GVE_COMPL_TYPE_DQO_MISS) {
1275 u16 compl_tag = le16_to_cpu(compl_desc->completion_tag);
1276
1277 gve_handle_miss_completion(priv, tx, compl_tag,
1278 &miss_compl_bytes,
1279 &miss_compl_pkts);
1280 } else if (type == GVE_COMPL_TYPE_DQO_REINJECTION) {
1281 u16 compl_tag = le16_to_cpu(compl_desc->completion_tag);
1282
1283 gve_handle_packet_completion(priv, tx, !!napi,
1284 compl_tag,
1285 &reinject_compl_bytes,
1286 &reinject_compl_pkts,
1287 true);
1288 }
1289
1290 tx->dqo_compl.head =
1291 (tx->dqo_compl.head + 1) & tx->dqo.complq_mask;
1292 /* Flip the generation bit when we wrap around */
1293 tx->dqo_compl.cur_gen_bit ^= tx->dqo_compl.head == 0;
1294 num_descs_cleaned++;
1295 }
1296
1297 netdev_tx_completed_queue(tx->netdev_txq,
1298 pkt_compl_pkts + miss_compl_pkts,
1299 pkt_compl_bytes + miss_compl_bytes);
1300
1301 remove_miss_completions(priv, tx);
1302 remove_timed_out_completions(priv, tx);
1303
1304 u64_stats_update_begin(&tx->statss);
1305 tx->bytes_done += pkt_compl_bytes + reinject_compl_bytes;
1306 tx->pkt_done += pkt_compl_pkts + reinject_compl_pkts;
1307 u64_stats_update_end(&tx->statss);
1308 return num_descs_cleaned;
1309 }
1310
gve_tx_poll_dqo(struct gve_notify_block * block,bool do_clean)1311 bool gve_tx_poll_dqo(struct gve_notify_block *block, bool do_clean)
1312 {
1313 struct gve_tx_compl_desc *compl_desc;
1314 struct gve_tx_ring *tx = block->tx;
1315 struct gve_priv *priv = block->priv;
1316
1317 if (do_clean) {
1318 int num_descs_cleaned = gve_clean_tx_done_dqo(priv, tx,
1319 &block->napi);
1320
1321 /* Sync with queue being stopped in `gve_maybe_stop_tx_dqo()` */
1322 mb();
1323
1324 if (netif_tx_queue_stopped(tx->netdev_txq) &&
1325 num_descs_cleaned > 0) {
1326 tx->wake_queue++;
1327 netif_tx_wake_queue(tx->netdev_txq);
1328 }
1329 }
1330
1331 /* Return true if we still have work. */
1332 compl_desc = &tx->dqo.compl_ring[tx->dqo_compl.head];
1333 return compl_desc->generation != tx->dqo_compl.cur_gen_bit;
1334 }
1335