1 // SPDX-License-Identifier: GPL-2.0+
2 // Copyright (c) 2016-2017 Hisilicon Limited.
3
4 #include <linux/etherdevice.h>
5 #include <linux/iopoll.h>
6 #include <net/rtnetlink.h>
7 #include "hclgevf_cmd.h"
8 #include "hclgevf_main.h"
9 #include "hclgevf_regs.h"
10 #include "hclge_mbx.h"
11 #include "hnae3.h"
12 #include "hclgevf_devlink.h"
13 #include "hclge_comm_rss.h"
14 #include "hclgevf_trace.h"
15
16 #define HCLGEVF_NAME "hclgevf"
17
18 #define HCLGEVF_RESET_MAX_FAIL_CNT 5
19
20 static int hclgevf_reset_hdev(struct hclgevf_dev *hdev);
21 static void hclgevf_task_schedule(struct hclgevf_dev *hdev,
22 unsigned long delay);
23
24 static struct hnae3_ae_algo ae_algovf;
25
26 static struct workqueue_struct *hclgevf_wq;
27
28 static const struct pci_device_id ae_algovf_pci_tbl[] = {
29 {PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_VF), 0},
30 {PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_RDMA_DCB_PFC_VF),
31 HNAE3_DEV_SUPPORT_ROCE_DCB_BITS},
32 /* required last entry */
33 {0, }
34 };
35
36 MODULE_DEVICE_TABLE(pci, ae_algovf_pci_tbl);
37
38 /* hclgevf_cmd_send - send command to command queue
39 * @hw: pointer to the hw struct
40 * @desc: prefilled descriptor for describing the command
41 * @num : the number of descriptors to be sent
42 *
43 * This is the main send command for command queue, it
44 * sends the queue, cleans the queue, etc
45 */
hclgevf_cmd_send(struct hclgevf_hw * hw,struct hclge_desc * desc,int num)46 int hclgevf_cmd_send(struct hclgevf_hw *hw, struct hclge_desc *desc, int num)
47 {
48 return hclge_comm_cmd_send(&hw->hw, desc, num);
49 }
50
hclgevf_trace_cmd_send(struct hclge_comm_hw * hw,struct hclge_desc * desc,int num,bool is_special)51 static void hclgevf_trace_cmd_send(struct hclge_comm_hw *hw, struct hclge_desc *desc,
52 int num, bool is_special)
53 {
54 int i;
55
56 trace_hclge_vf_cmd_send(hw, desc, 0, num);
57
58 if (is_special)
59 return;
60
61 for (i = 1; i < num; i++)
62 trace_hclge_vf_cmd_send(hw, &desc[i], i, num);
63 }
64
hclgevf_trace_cmd_get(struct hclge_comm_hw * hw,struct hclge_desc * desc,int num,bool is_special)65 static void hclgevf_trace_cmd_get(struct hclge_comm_hw *hw, struct hclge_desc *desc,
66 int num, bool is_special)
67 {
68 int i;
69
70 if (!HCLGE_COMM_SEND_SYNC(le16_to_cpu(desc->flag)))
71 return;
72
73 trace_hclge_vf_cmd_get(hw, desc, 0, num);
74
75 if (is_special)
76 return;
77
78 for (i = 1; i < num; i++)
79 trace_hclge_vf_cmd_get(hw, &desc[i], i, num);
80 }
81
82 static const struct hclge_comm_cmq_ops hclgevf_cmq_ops = {
83 .trace_cmd_send = hclgevf_trace_cmd_send,
84 .trace_cmd_get = hclgevf_trace_cmd_get,
85 };
86
hclgevf_arq_init(struct hclgevf_dev * hdev)87 void hclgevf_arq_init(struct hclgevf_dev *hdev)
88 {
89 struct hclge_comm_cmq *cmdq = &hdev->hw.hw.cmq;
90
91 spin_lock(&cmdq->crq.lock);
92 /* initialize the pointers of async rx queue of mailbox */
93 hdev->arq.hdev = hdev;
94 hdev->arq.head = 0;
95 hdev->arq.tail = 0;
96 atomic_set(&hdev->arq.count, 0);
97 spin_unlock(&cmdq->crq.lock);
98 }
99
hclgevf_ae_get_hdev(struct hnae3_handle * handle)100 struct hclgevf_dev *hclgevf_ae_get_hdev(struct hnae3_handle *handle)
101 {
102 if (!handle->client)
103 return container_of(handle, struct hclgevf_dev, nic);
104 else if (handle->client->type == HNAE3_CLIENT_ROCE)
105 return container_of(handle, struct hclgevf_dev, roce);
106 else
107 return container_of(handle, struct hclgevf_dev, nic);
108 }
109
hclgevf_update_stats(struct hnae3_handle * handle)110 static void hclgevf_update_stats(struct hnae3_handle *handle)
111 {
112 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
113 int status;
114
115 status = hclge_comm_tqps_update_stats(handle, &hdev->hw.hw);
116 if (status)
117 dev_err(&hdev->pdev->dev,
118 "VF update of TQPS stats fail, status = %d.\n",
119 status);
120 }
121
hclgevf_get_sset_count(struct hnae3_handle * handle,int strset)122 static int hclgevf_get_sset_count(struct hnae3_handle *handle, int strset)
123 {
124 if (strset == ETH_SS_TEST)
125 return -EOPNOTSUPP;
126 else if (strset == ETH_SS_STATS)
127 return hclge_comm_tqps_get_sset_count(handle);
128
129 return 0;
130 }
131
hclgevf_get_strings(struct hnae3_handle * handle,u32 strset,u8 * data)132 static void hclgevf_get_strings(struct hnae3_handle *handle, u32 strset,
133 u8 *data)
134 {
135 u8 *p = (char *)data;
136
137 if (strset == ETH_SS_STATS)
138 p = hclge_comm_tqps_get_strings(handle, p);
139 }
140
hclgevf_get_stats(struct hnae3_handle * handle,u64 * data)141 static void hclgevf_get_stats(struct hnae3_handle *handle, u64 *data)
142 {
143 hclge_comm_tqps_get_stats(handle, data);
144 }
145
hclgevf_build_send_msg(struct hclge_vf_to_pf_msg * msg,u8 code,u8 subcode)146 static void hclgevf_build_send_msg(struct hclge_vf_to_pf_msg *msg, u8 code,
147 u8 subcode)
148 {
149 if (msg) {
150 memset(msg, 0, sizeof(struct hclge_vf_to_pf_msg));
151 msg->code = code;
152 msg->subcode = subcode;
153 }
154 }
155
hclgevf_get_basic_info(struct hclgevf_dev * hdev)156 static int hclgevf_get_basic_info(struct hclgevf_dev *hdev)
157 {
158 struct hnae3_ae_dev *ae_dev = hdev->ae_dev;
159 u8 resp_msg[HCLGE_MBX_MAX_RESP_DATA_SIZE];
160 struct hclge_basic_info *basic_info;
161 struct hclge_vf_to_pf_msg send_msg;
162 unsigned long caps;
163 int status;
164
165 hclgevf_build_send_msg(&send_msg, HCLGE_MBX_GET_BASIC_INFO, 0);
166 status = hclgevf_send_mbx_msg(hdev, &send_msg, true, resp_msg,
167 sizeof(resp_msg));
168 if (status) {
169 dev_err(&hdev->pdev->dev,
170 "failed to get basic info from pf, ret = %d", status);
171 return status;
172 }
173
174 basic_info = (struct hclge_basic_info *)resp_msg;
175
176 hdev->hw_tc_map = basic_info->hw_tc_map;
177 hdev->mbx_api_version = le16_to_cpu(basic_info->mbx_api_version);
178 caps = le32_to_cpu(basic_info->pf_caps);
179 if (test_bit(HNAE3_PF_SUPPORT_VLAN_FLTR_MDF_B, &caps))
180 set_bit(HNAE3_DEV_SUPPORT_VLAN_FLTR_MDF_B, ae_dev->caps);
181
182 return 0;
183 }
184
hclgevf_get_port_base_vlan_filter_state(struct hclgevf_dev * hdev)185 static int hclgevf_get_port_base_vlan_filter_state(struct hclgevf_dev *hdev)
186 {
187 struct hnae3_handle *nic = &hdev->nic;
188 struct hclge_vf_to_pf_msg send_msg;
189 u8 resp_msg;
190 int ret;
191
192 hclgevf_build_send_msg(&send_msg, HCLGE_MBX_SET_VLAN,
193 HCLGE_MBX_GET_PORT_BASE_VLAN_STATE);
194 ret = hclgevf_send_mbx_msg(hdev, &send_msg, true, &resp_msg,
195 sizeof(u8));
196 if (ret) {
197 dev_err(&hdev->pdev->dev,
198 "VF request to get port based vlan state failed %d",
199 ret);
200 return ret;
201 }
202
203 nic->port_base_vlan_state = resp_msg;
204
205 return 0;
206 }
207
hclgevf_get_queue_info(struct hclgevf_dev * hdev)208 static int hclgevf_get_queue_info(struct hclgevf_dev *hdev)
209 {
210 #define HCLGEVF_TQPS_RSS_INFO_LEN 6
211
212 struct hclge_mbx_vf_queue_info *queue_info;
213 u8 resp_msg[HCLGEVF_TQPS_RSS_INFO_LEN];
214 struct hclge_vf_to_pf_msg send_msg;
215 int status;
216
217 hclgevf_build_send_msg(&send_msg, HCLGE_MBX_GET_QINFO, 0);
218 status = hclgevf_send_mbx_msg(hdev, &send_msg, true, resp_msg,
219 HCLGEVF_TQPS_RSS_INFO_LEN);
220 if (status) {
221 dev_err(&hdev->pdev->dev,
222 "VF request to get tqp info from PF failed %d",
223 status);
224 return status;
225 }
226
227 queue_info = (struct hclge_mbx_vf_queue_info *)resp_msg;
228 hdev->num_tqps = le16_to_cpu(queue_info->num_tqps);
229 hdev->rss_size_max = le16_to_cpu(queue_info->rss_size);
230 hdev->rx_buf_len = le16_to_cpu(queue_info->rx_buf_len);
231
232 return 0;
233 }
234
hclgevf_get_queue_depth(struct hclgevf_dev * hdev)235 static int hclgevf_get_queue_depth(struct hclgevf_dev *hdev)
236 {
237 #define HCLGEVF_TQPS_DEPTH_INFO_LEN 4
238
239 struct hclge_mbx_vf_queue_depth *queue_depth;
240 u8 resp_msg[HCLGEVF_TQPS_DEPTH_INFO_LEN];
241 struct hclge_vf_to_pf_msg send_msg;
242 int ret;
243
244 hclgevf_build_send_msg(&send_msg, HCLGE_MBX_GET_QDEPTH, 0);
245 ret = hclgevf_send_mbx_msg(hdev, &send_msg, true, resp_msg,
246 HCLGEVF_TQPS_DEPTH_INFO_LEN);
247 if (ret) {
248 dev_err(&hdev->pdev->dev,
249 "VF request to get tqp depth info from PF failed %d",
250 ret);
251 return ret;
252 }
253
254 queue_depth = (struct hclge_mbx_vf_queue_depth *)resp_msg;
255 hdev->num_tx_desc = le16_to_cpu(queue_depth->num_tx_desc);
256 hdev->num_rx_desc = le16_to_cpu(queue_depth->num_rx_desc);
257
258 return 0;
259 }
260
hclgevf_get_qid_global(struct hnae3_handle * handle,u16 queue_id)261 static u16 hclgevf_get_qid_global(struct hnae3_handle *handle, u16 queue_id)
262 {
263 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
264 struct hclge_vf_to_pf_msg send_msg;
265 u16 qid_in_pf = 0;
266 u8 resp_data[2];
267 int ret;
268
269 hclgevf_build_send_msg(&send_msg, HCLGE_MBX_GET_QID_IN_PF, 0);
270 *(__le16 *)send_msg.data = cpu_to_le16(queue_id);
271 ret = hclgevf_send_mbx_msg(hdev, &send_msg, true, resp_data,
272 sizeof(resp_data));
273 if (!ret)
274 qid_in_pf = le16_to_cpu(*(__le16 *)resp_data);
275
276 return qid_in_pf;
277 }
278
hclgevf_get_pf_media_type(struct hclgevf_dev * hdev)279 static int hclgevf_get_pf_media_type(struct hclgevf_dev *hdev)
280 {
281 struct hclge_vf_to_pf_msg send_msg;
282 u8 resp_msg[2];
283 int ret;
284
285 hclgevf_build_send_msg(&send_msg, HCLGE_MBX_GET_MEDIA_TYPE, 0);
286 ret = hclgevf_send_mbx_msg(hdev, &send_msg, true, resp_msg,
287 sizeof(resp_msg));
288 if (ret) {
289 dev_err(&hdev->pdev->dev,
290 "VF request to get the pf port media type failed %d",
291 ret);
292 return ret;
293 }
294
295 hdev->hw.mac.media_type = resp_msg[0];
296 hdev->hw.mac.module_type = resp_msg[1];
297
298 return 0;
299 }
300
hclgevf_alloc_tqps(struct hclgevf_dev * hdev)301 static int hclgevf_alloc_tqps(struct hclgevf_dev *hdev)
302 {
303 struct hnae3_ae_dev *ae_dev = pci_get_drvdata(hdev->pdev);
304 struct hclge_comm_tqp *tqp;
305 int i;
306
307 hdev->htqp = devm_kcalloc(&hdev->pdev->dev, hdev->num_tqps,
308 sizeof(struct hclge_comm_tqp), GFP_KERNEL);
309 if (!hdev->htqp)
310 return -ENOMEM;
311
312 tqp = hdev->htqp;
313
314 for (i = 0; i < hdev->num_tqps; i++) {
315 tqp->dev = &hdev->pdev->dev;
316 tqp->index = i;
317
318 tqp->q.ae_algo = &ae_algovf;
319 tqp->q.buf_size = hdev->rx_buf_len;
320 tqp->q.tx_desc_num = hdev->num_tx_desc;
321 tqp->q.rx_desc_num = hdev->num_rx_desc;
322
323 /* need an extended offset to configure queues >=
324 * HCLGEVF_TQP_MAX_SIZE_DEV_V2.
325 */
326 if (i < HCLGEVF_TQP_MAX_SIZE_DEV_V2)
327 tqp->q.io_base = hdev->hw.hw.io_base +
328 HCLGEVF_TQP_REG_OFFSET +
329 i * HCLGEVF_TQP_REG_SIZE;
330 else
331 tqp->q.io_base = hdev->hw.hw.io_base +
332 HCLGEVF_TQP_REG_OFFSET +
333 HCLGEVF_TQP_EXT_REG_OFFSET +
334 (i - HCLGEVF_TQP_MAX_SIZE_DEV_V2) *
335 HCLGEVF_TQP_REG_SIZE;
336
337 /* when device supports tx push and has device memory,
338 * the queue can execute push mode or doorbell mode on
339 * device memory.
340 */
341 if (test_bit(HNAE3_DEV_SUPPORT_TX_PUSH_B, ae_dev->caps))
342 tqp->q.mem_base = hdev->hw.hw.mem_base +
343 HCLGEVF_TQP_MEM_OFFSET(hdev, i);
344
345 tqp++;
346 }
347
348 return 0;
349 }
350
hclgevf_knic_setup(struct hclgevf_dev * hdev)351 static int hclgevf_knic_setup(struct hclgevf_dev *hdev)
352 {
353 struct hnae3_handle *nic = &hdev->nic;
354 struct hnae3_knic_private_info *kinfo;
355 u16 new_tqps = hdev->num_tqps;
356 unsigned int i;
357 u8 num_tc = 0;
358
359 kinfo = &nic->kinfo;
360 kinfo->num_tx_desc = hdev->num_tx_desc;
361 kinfo->num_rx_desc = hdev->num_rx_desc;
362 kinfo->rx_buf_len = hdev->rx_buf_len;
363 for (i = 0; i < HCLGE_COMM_MAX_TC_NUM; i++)
364 if (hdev->hw_tc_map & BIT(i))
365 num_tc++;
366
367 num_tc = num_tc ? num_tc : 1;
368 kinfo->tc_info.num_tc = num_tc;
369 kinfo->rss_size = min_t(u16, hdev->rss_size_max, new_tqps / num_tc);
370 new_tqps = kinfo->rss_size * num_tc;
371 kinfo->num_tqps = min(new_tqps, hdev->num_tqps);
372
373 kinfo->tqp = devm_kcalloc(&hdev->pdev->dev, kinfo->num_tqps,
374 sizeof(struct hnae3_queue *), GFP_KERNEL);
375 if (!kinfo->tqp)
376 return -ENOMEM;
377
378 for (i = 0; i < kinfo->num_tqps; i++) {
379 hdev->htqp[i].q.handle = &hdev->nic;
380 hdev->htqp[i].q.tqp_index = i;
381 kinfo->tqp[i] = &hdev->htqp[i].q;
382 }
383
384 /* after init the max rss_size and tqps, adjust the default tqp numbers
385 * and rss size with the actual vector numbers
386 */
387 kinfo->num_tqps = min_t(u16, hdev->num_nic_msix - 1, kinfo->num_tqps);
388 kinfo->rss_size = min_t(u16, kinfo->num_tqps / num_tc,
389 kinfo->rss_size);
390
391 return 0;
392 }
393
hclgevf_request_link_info(struct hclgevf_dev * hdev)394 static void hclgevf_request_link_info(struct hclgevf_dev *hdev)
395 {
396 struct hclge_vf_to_pf_msg send_msg;
397 int status;
398
399 hclgevf_build_send_msg(&send_msg, HCLGE_MBX_GET_LINK_STATUS, 0);
400 status = hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0);
401 if (status)
402 dev_err(&hdev->pdev->dev,
403 "VF failed to fetch link status(%d) from PF", status);
404 }
405
hclgevf_update_link_status(struct hclgevf_dev * hdev,int link_state)406 void hclgevf_update_link_status(struct hclgevf_dev *hdev, int link_state)
407 {
408 struct hnae3_handle *rhandle = &hdev->roce;
409 struct hnae3_handle *handle = &hdev->nic;
410 struct hnae3_client *rclient;
411 struct hnae3_client *client;
412
413 if (test_and_set_bit(HCLGEVF_STATE_LINK_UPDATING, &hdev->state))
414 return;
415
416 client = handle->client;
417 rclient = hdev->roce_client;
418
419 link_state =
420 test_bit(HCLGEVF_STATE_DOWN, &hdev->state) ? 0 : link_state;
421 if (link_state != hdev->hw.mac.link) {
422 hdev->hw.mac.link = link_state;
423 client->ops->link_status_change(handle, !!link_state);
424 if (rclient && rclient->ops->link_status_change)
425 rclient->ops->link_status_change(rhandle, !!link_state);
426 }
427
428 clear_bit(HCLGEVF_STATE_LINK_UPDATING, &hdev->state);
429 }
430
hclgevf_update_link_mode(struct hclgevf_dev * hdev)431 static void hclgevf_update_link_mode(struct hclgevf_dev *hdev)
432 {
433 #define HCLGEVF_ADVERTISING 0
434 #define HCLGEVF_SUPPORTED 1
435
436 struct hclge_vf_to_pf_msg send_msg;
437
438 hclgevf_build_send_msg(&send_msg, HCLGE_MBX_GET_LINK_MODE, 0);
439 send_msg.data[0] = HCLGEVF_ADVERTISING;
440 hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0);
441 send_msg.data[0] = HCLGEVF_SUPPORTED;
442 hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0);
443 }
444
hclgevf_set_handle_info(struct hclgevf_dev * hdev)445 static int hclgevf_set_handle_info(struct hclgevf_dev *hdev)
446 {
447 struct hnae3_handle *nic = &hdev->nic;
448 int ret;
449
450 nic->ae_algo = &ae_algovf;
451 nic->pdev = hdev->pdev;
452 bitmap_copy(nic->numa_node_mask.bits, hdev->numa_node_mask.bits,
453 MAX_NUMNODES);
454 nic->flags |= HNAE3_SUPPORT_VF;
455 nic->kinfo.io_base = hdev->hw.hw.io_base;
456
457 ret = hclgevf_knic_setup(hdev);
458 if (ret)
459 dev_err(&hdev->pdev->dev, "VF knic setup failed %d\n",
460 ret);
461 return ret;
462 }
463
hclgevf_free_vector(struct hclgevf_dev * hdev,int vector_id)464 static void hclgevf_free_vector(struct hclgevf_dev *hdev, int vector_id)
465 {
466 if (hdev->vector_status[vector_id] == HCLGEVF_INVALID_VPORT) {
467 dev_warn(&hdev->pdev->dev,
468 "vector(vector_id %d) has been freed.\n", vector_id);
469 return;
470 }
471
472 hdev->vector_status[vector_id] = HCLGEVF_INVALID_VPORT;
473 hdev->num_msi_left += 1;
474 hdev->num_msi_used -= 1;
475 }
476
hclgevf_get_vector(struct hnae3_handle * handle,u16 vector_num,struct hnae3_vector_info * vector_info)477 static int hclgevf_get_vector(struct hnae3_handle *handle, u16 vector_num,
478 struct hnae3_vector_info *vector_info)
479 {
480 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
481 struct hnae3_vector_info *vector = vector_info;
482 int alloc = 0;
483 int i, j;
484
485 vector_num = min_t(u16, hdev->num_nic_msix - 1, vector_num);
486 vector_num = min(hdev->num_msi_left, vector_num);
487
488 for (j = 0; j < vector_num; j++) {
489 for (i = HCLGEVF_MISC_VECTOR_NUM + 1; i < hdev->num_msi; i++) {
490 if (hdev->vector_status[i] == HCLGEVF_INVALID_VPORT) {
491 vector->vector = pci_irq_vector(hdev->pdev, i);
492 vector->io_addr = hdev->hw.hw.io_base +
493 HCLGEVF_VECTOR_REG_BASE +
494 (i - 1) * HCLGEVF_VECTOR_REG_OFFSET;
495 hdev->vector_status[i] = 0;
496 hdev->vector_irq[i] = vector->vector;
497
498 vector++;
499 alloc++;
500
501 break;
502 }
503 }
504 }
505 hdev->num_msi_left -= alloc;
506 hdev->num_msi_used += alloc;
507
508 return alloc;
509 }
510
hclgevf_get_vector_index(struct hclgevf_dev * hdev,int vector)511 static int hclgevf_get_vector_index(struct hclgevf_dev *hdev, int vector)
512 {
513 int i;
514
515 for (i = 0; i < hdev->num_msi; i++)
516 if (vector == hdev->vector_irq[i])
517 return i;
518
519 return -EINVAL;
520 }
521
522 /* for revision 0x20, vf shared the same rss config with pf */
hclgevf_get_rss_hash_key(struct hclgevf_dev * hdev)523 static int hclgevf_get_rss_hash_key(struct hclgevf_dev *hdev)
524 {
525 #define HCLGEVF_RSS_MBX_RESP_LEN 8
526 struct hclge_comm_rss_cfg *rss_cfg = &hdev->rss_cfg;
527 u8 resp_msg[HCLGEVF_RSS_MBX_RESP_LEN];
528 struct hclge_vf_to_pf_msg send_msg;
529 u16 msg_num, hash_key_index;
530 u8 index;
531 int ret;
532
533 hclgevf_build_send_msg(&send_msg, HCLGE_MBX_GET_RSS_KEY, 0);
534 msg_num = (HCLGE_COMM_RSS_KEY_SIZE + HCLGEVF_RSS_MBX_RESP_LEN - 1) /
535 HCLGEVF_RSS_MBX_RESP_LEN;
536 for (index = 0; index < msg_num; index++) {
537 send_msg.data[0] = index;
538 ret = hclgevf_send_mbx_msg(hdev, &send_msg, true, resp_msg,
539 HCLGEVF_RSS_MBX_RESP_LEN);
540 if (ret) {
541 dev_err(&hdev->pdev->dev,
542 "VF get rss hash key from PF failed, ret=%d",
543 ret);
544 return ret;
545 }
546
547 hash_key_index = HCLGEVF_RSS_MBX_RESP_LEN * index;
548 if (index == msg_num - 1)
549 memcpy(&rss_cfg->rss_hash_key[hash_key_index],
550 &resp_msg[0],
551 HCLGE_COMM_RSS_KEY_SIZE - hash_key_index);
552 else
553 memcpy(&rss_cfg->rss_hash_key[hash_key_index],
554 &resp_msg[0], HCLGEVF_RSS_MBX_RESP_LEN);
555 }
556
557 return 0;
558 }
559
hclgevf_get_rss(struct hnae3_handle * handle,u32 * indir,u8 * key,u8 * hfunc)560 static int hclgevf_get_rss(struct hnae3_handle *handle, u32 *indir, u8 *key,
561 u8 *hfunc)
562 {
563 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
564 struct hclge_comm_rss_cfg *rss_cfg = &hdev->rss_cfg;
565 int ret;
566
567 if (hdev->ae_dev->dev_version >= HNAE3_DEVICE_VERSION_V2) {
568 hclge_comm_get_rss_hash_info(rss_cfg, key, hfunc);
569 } else {
570 if (hfunc)
571 *hfunc = ETH_RSS_HASH_TOP;
572 if (key) {
573 ret = hclgevf_get_rss_hash_key(hdev);
574 if (ret)
575 return ret;
576 memcpy(key, rss_cfg->rss_hash_key,
577 HCLGE_COMM_RSS_KEY_SIZE);
578 }
579 }
580
581 hclge_comm_get_rss_indir_tbl(rss_cfg, indir,
582 hdev->ae_dev->dev_specs.rss_ind_tbl_size);
583
584 return 0;
585 }
586
hclgevf_set_rss(struct hnae3_handle * handle,const u32 * indir,const u8 * key,const u8 hfunc)587 static int hclgevf_set_rss(struct hnae3_handle *handle, const u32 *indir,
588 const u8 *key, const u8 hfunc)
589 {
590 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
591 struct hclge_comm_rss_cfg *rss_cfg = &hdev->rss_cfg;
592 int ret, i;
593
594 if (hdev->ae_dev->dev_version >= HNAE3_DEVICE_VERSION_V2) {
595 ret = hclge_comm_set_rss_hash_key(rss_cfg, &hdev->hw.hw, key,
596 hfunc);
597 if (ret)
598 return ret;
599 }
600
601 /* update the shadow RSS table with user specified qids */
602 for (i = 0; i < hdev->ae_dev->dev_specs.rss_ind_tbl_size; i++)
603 rss_cfg->rss_indirection_tbl[i] = indir[i];
604
605 /* update the hardware */
606 return hclge_comm_set_rss_indir_table(hdev->ae_dev, &hdev->hw.hw,
607 rss_cfg->rss_indirection_tbl);
608 }
609
hclgevf_set_rss_tuple(struct hnae3_handle * handle,struct ethtool_rxnfc * nfc)610 static int hclgevf_set_rss_tuple(struct hnae3_handle *handle,
611 struct ethtool_rxnfc *nfc)
612 {
613 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
614 int ret;
615
616 if (hdev->ae_dev->dev_version < HNAE3_DEVICE_VERSION_V2)
617 return -EOPNOTSUPP;
618
619 ret = hclge_comm_set_rss_tuple(hdev->ae_dev, &hdev->hw.hw,
620 &hdev->rss_cfg, nfc);
621 if (ret)
622 dev_err(&hdev->pdev->dev,
623 "failed to set rss tuple, ret = %d.\n", ret);
624
625 return ret;
626 }
627
hclgevf_get_rss_tuple(struct hnae3_handle * handle,struct ethtool_rxnfc * nfc)628 static int hclgevf_get_rss_tuple(struct hnae3_handle *handle,
629 struct ethtool_rxnfc *nfc)
630 {
631 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
632 u8 tuple_sets;
633 int ret;
634
635 if (hdev->ae_dev->dev_version < HNAE3_DEVICE_VERSION_V2)
636 return -EOPNOTSUPP;
637
638 nfc->data = 0;
639
640 ret = hclge_comm_get_rss_tuple(&hdev->rss_cfg, nfc->flow_type,
641 &tuple_sets);
642 if (ret || !tuple_sets)
643 return ret;
644
645 nfc->data = hclge_comm_convert_rss_tuple(tuple_sets);
646
647 return 0;
648 }
649
hclgevf_get_tc_size(struct hnae3_handle * handle)650 static int hclgevf_get_tc_size(struct hnae3_handle *handle)
651 {
652 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
653 struct hclge_comm_rss_cfg *rss_cfg = &hdev->rss_cfg;
654
655 return rss_cfg->rss_size;
656 }
657
hclgevf_bind_ring_to_vector(struct hnae3_handle * handle,bool en,int vector_id,struct hnae3_ring_chain_node * ring_chain)658 static int hclgevf_bind_ring_to_vector(struct hnae3_handle *handle, bool en,
659 int vector_id,
660 struct hnae3_ring_chain_node *ring_chain)
661 {
662 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
663 struct hclge_vf_to_pf_msg send_msg;
664 struct hnae3_ring_chain_node *node;
665 int status;
666 int i = 0;
667
668 memset(&send_msg, 0, sizeof(send_msg));
669 send_msg.code = en ? HCLGE_MBX_MAP_RING_TO_VECTOR :
670 HCLGE_MBX_UNMAP_RING_TO_VECTOR;
671 send_msg.vector_id = vector_id;
672
673 for (node = ring_chain; node; node = node->next) {
674 send_msg.param[i].ring_type =
675 hnae3_get_bit(node->flag, HNAE3_RING_TYPE_B);
676
677 send_msg.param[i].tqp_index = node->tqp_index;
678 send_msg.param[i].int_gl_index =
679 hnae3_get_field(node->int_gl_idx,
680 HNAE3_RING_GL_IDX_M,
681 HNAE3_RING_GL_IDX_S);
682
683 i++;
684 if (i == HCLGE_MBX_MAX_RING_CHAIN_PARAM_NUM || !node->next) {
685 send_msg.ring_num = i;
686
687 status = hclgevf_send_mbx_msg(hdev, &send_msg, false,
688 NULL, 0);
689 if (status) {
690 dev_err(&hdev->pdev->dev,
691 "Map TQP fail, status is %d.\n",
692 status);
693 return status;
694 }
695 i = 0;
696 }
697 }
698
699 return 0;
700 }
701
hclgevf_map_ring_to_vector(struct hnae3_handle * handle,int vector,struct hnae3_ring_chain_node * ring_chain)702 static int hclgevf_map_ring_to_vector(struct hnae3_handle *handle, int vector,
703 struct hnae3_ring_chain_node *ring_chain)
704 {
705 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
706 int vector_id;
707
708 vector_id = hclgevf_get_vector_index(hdev, vector);
709 if (vector_id < 0) {
710 dev_err(&handle->pdev->dev,
711 "Get vector index fail. ret =%d\n", vector_id);
712 return vector_id;
713 }
714
715 return hclgevf_bind_ring_to_vector(handle, true, vector_id, ring_chain);
716 }
717
hclgevf_unmap_ring_from_vector(struct hnae3_handle * handle,int vector,struct hnae3_ring_chain_node * ring_chain)718 static int hclgevf_unmap_ring_from_vector(
719 struct hnae3_handle *handle,
720 int vector,
721 struct hnae3_ring_chain_node *ring_chain)
722 {
723 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
724 int ret, vector_id;
725
726 if (test_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state))
727 return 0;
728
729 vector_id = hclgevf_get_vector_index(hdev, vector);
730 if (vector_id < 0) {
731 dev_err(&handle->pdev->dev,
732 "Get vector index fail. ret =%d\n", vector_id);
733 return vector_id;
734 }
735
736 ret = hclgevf_bind_ring_to_vector(handle, false, vector_id, ring_chain);
737 if (ret)
738 dev_err(&handle->pdev->dev,
739 "Unmap ring from vector fail. vector=%d, ret =%d\n",
740 vector_id,
741 ret);
742
743 return ret;
744 }
745
hclgevf_put_vector(struct hnae3_handle * handle,int vector)746 static int hclgevf_put_vector(struct hnae3_handle *handle, int vector)
747 {
748 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
749 int vector_id;
750
751 vector_id = hclgevf_get_vector_index(hdev, vector);
752 if (vector_id < 0) {
753 dev_err(&handle->pdev->dev,
754 "hclgevf_put_vector get vector index fail. ret =%d\n",
755 vector_id);
756 return vector_id;
757 }
758
759 hclgevf_free_vector(hdev, vector_id);
760
761 return 0;
762 }
763
hclgevf_cmd_set_promisc_mode(struct hclgevf_dev * hdev,bool en_uc_pmc,bool en_mc_pmc,bool en_bc_pmc)764 static int hclgevf_cmd_set_promisc_mode(struct hclgevf_dev *hdev,
765 bool en_uc_pmc, bool en_mc_pmc,
766 bool en_bc_pmc)
767 {
768 struct hnae3_handle *handle = &hdev->nic;
769 struct hclge_vf_to_pf_msg send_msg;
770 int ret;
771
772 memset(&send_msg, 0, sizeof(send_msg));
773 send_msg.code = HCLGE_MBX_SET_PROMISC_MODE;
774 send_msg.en_bc = en_bc_pmc ? 1 : 0;
775 send_msg.en_uc = en_uc_pmc ? 1 : 0;
776 send_msg.en_mc = en_mc_pmc ? 1 : 0;
777 send_msg.en_limit_promisc = test_bit(HNAE3_PFLAG_LIMIT_PROMISC,
778 &handle->priv_flags) ? 1 : 0;
779
780 ret = hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0);
781 if (ret)
782 dev_err(&hdev->pdev->dev,
783 "Set promisc mode fail, status is %d.\n", ret);
784
785 return ret;
786 }
787
hclgevf_set_promisc_mode(struct hnae3_handle * handle,bool en_uc_pmc,bool en_mc_pmc)788 static int hclgevf_set_promisc_mode(struct hnae3_handle *handle, bool en_uc_pmc,
789 bool en_mc_pmc)
790 {
791 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
792 bool en_bc_pmc;
793
794 en_bc_pmc = hdev->ae_dev->dev_version >= HNAE3_DEVICE_VERSION_V2;
795
796 return hclgevf_cmd_set_promisc_mode(hdev, en_uc_pmc, en_mc_pmc,
797 en_bc_pmc);
798 }
799
hclgevf_request_update_promisc_mode(struct hnae3_handle * handle)800 static void hclgevf_request_update_promisc_mode(struct hnae3_handle *handle)
801 {
802 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
803
804 set_bit(HCLGEVF_STATE_PROMISC_CHANGED, &hdev->state);
805 hclgevf_task_schedule(hdev, 0);
806 }
807
hclgevf_sync_promisc_mode(struct hclgevf_dev * hdev)808 static void hclgevf_sync_promisc_mode(struct hclgevf_dev *hdev)
809 {
810 struct hnae3_handle *handle = &hdev->nic;
811 bool en_uc_pmc = handle->netdev_flags & HNAE3_UPE;
812 bool en_mc_pmc = handle->netdev_flags & HNAE3_MPE;
813 int ret;
814
815 if (test_bit(HCLGEVF_STATE_PROMISC_CHANGED, &hdev->state)) {
816 ret = hclgevf_set_promisc_mode(handle, en_uc_pmc, en_mc_pmc);
817 if (!ret)
818 clear_bit(HCLGEVF_STATE_PROMISC_CHANGED, &hdev->state);
819 }
820 }
821
hclgevf_tqp_enable_cmd_send(struct hclgevf_dev * hdev,u16 tqp_id,u16 stream_id,bool enable)822 static int hclgevf_tqp_enable_cmd_send(struct hclgevf_dev *hdev, u16 tqp_id,
823 u16 stream_id, bool enable)
824 {
825 struct hclgevf_cfg_com_tqp_queue_cmd *req;
826 struct hclge_desc desc;
827
828 req = (struct hclgevf_cfg_com_tqp_queue_cmd *)desc.data;
829
830 hclgevf_cmd_setup_basic_desc(&desc, HCLGE_OPC_CFG_COM_TQP_QUEUE, false);
831 req->tqp_id = cpu_to_le16(tqp_id & HCLGEVF_RING_ID_MASK);
832 req->stream_id = cpu_to_le16(stream_id);
833 if (enable)
834 req->enable |= 1U << HCLGEVF_TQP_ENABLE_B;
835
836 return hclgevf_cmd_send(&hdev->hw, &desc, 1);
837 }
838
hclgevf_tqp_enable(struct hnae3_handle * handle,bool enable)839 static int hclgevf_tqp_enable(struct hnae3_handle *handle, bool enable)
840 {
841 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
842 int ret;
843 u16 i;
844
845 for (i = 0; i < handle->kinfo.num_tqps; i++) {
846 ret = hclgevf_tqp_enable_cmd_send(hdev, i, 0, enable);
847 if (ret)
848 return ret;
849 }
850
851 return 0;
852 }
853
hclgevf_get_host_mac_addr(struct hclgevf_dev * hdev,u8 * p)854 static int hclgevf_get_host_mac_addr(struct hclgevf_dev *hdev, u8 *p)
855 {
856 struct hclge_vf_to_pf_msg send_msg;
857 u8 host_mac[ETH_ALEN];
858 int status;
859
860 hclgevf_build_send_msg(&send_msg, HCLGE_MBX_GET_MAC_ADDR, 0);
861 status = hclgevf_send_mbx_msg(hdev, &send_msg, true, host_mac,
862 ETH_ALEN);
863 if (status) {
864 dev_err(&hdev->pdev->dev,
865 "fail to get VF MAC from host %d", status);
866 return status;
867 }
868
869 ether_addr_copy(p, host_mac);
870
871 return 0;
872 }
873
hclgevf_get_mac_addr(struct hnae3_handle * handle,u8 * p)874 static void hclgevf_get_mac_addr(struct hnae3_handle *handle, u8 *p)
875 {
876 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
877 u8 host_mac_addr[ETH_ALEN];
878
879 if (hclgevf_get_host_mac_addr(hdev, host_mac_addr))
880 return;
881
882 hdev->has_pf_mac = !is_zero_ether_addr(host_mac_addr);
883 if (hdev->has_pf_mac)
884 ether_addr_copy(p, host_mac_addr);
885 else
886 ether_addr_copy(p, hdev->hw.mac.mac_addr);
887 }
888
hclgevf_set_mac_addr(struct hnae3_handle * handle,const void * p,bool is_first)889 static int hclgevf_set_mac_addr(struct hnae3_handle *handle, const void *p,
890 bool is_first)
891 {
892 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
893 u8 *old_mac_addr = (u8 *)hdev->hw.mac.mac_addr;
894 struct hclge_vf_to_pf_msg send_msg;
895 u8 *new_mac_addr = (u8 *)p;
896 int status;
897
898 hclgevf_build_send_msg(&send_msg, HCLGE_MBX_SET_UNICAST, 0);
899 send_msg.subcode = HCLGE_MBX_MAC_VLAN_UC_MODIFY;
900 ether_addr_copy(send_msg.data, new_mac_addr);
901 if (is_first && !hdev->has_pf_mac)
902 eth_zero_addr(&send_msg.data[ETH_ALEN]);
903 else
904 ether_addr_copy(&send_msg.data[ETH_ALEN], old_mac_addr);
905 status = hclgevf_send_mbx_msg(hdev, &send_msg, true, NULL, 0);
906 if (!status)
907 ether_addr_copy(hdev->hw.mac.mac_addr, new_mac_addr);
908
909 return status;
910 }
911
912 static struct hclgevf_mac_addr_node *
hclgevf_find_mac_node(struct list_head * list,const u8 * mac_addr)913 hclgevf_find_mac_node(struct list_head *list, const u8 *mac_addr)
914 {
915 struct hclgevf_mac_addr_node *mac_node, *tmp;
916
917 list_for_each_entry_safe(mac_node, tmp, list, node)
918 if (ether_addr_equal(mac_addr, mac_node->mac_addr))
919 return mac_node;
920
921 return NULL;
922 }
923
hclgevf_update_mac_node(struct hclgevf_mac_addr_node * mac_node,enum HCLGEVF_MAC_NODE_STATE state)924 static void hclgevf_update_mac_node(struct hclgevf_mac_addr_node *mac_node,
925 enum HCLGEVF_MAC_NODE_STATE state)
926 {
927 switch (state) {
928 /* from set_rx_mode or tmp_add_list */
929 case HCLGEVF_MAC_TO_ADD:
930 if (mac_node->state == HCLGEVF_MAC_TO_DEL)
931 mac_node->state = HCLGEVF_MAC_ACTIVE;
932 break;
933 /* only from set_rx_mode */
934 case HCLGEVF_MAC_TO_DEL:
935 if (mac_node->state == HCLGEVF_MAC_TO_ADD) {
936 list_del(&mac_node->node);
937 kfree(mac_node);
938 } else {
939 mac_node->state = HCLGEVF_MAC_TO_DEL;
940 }
941 break;
942 /* only from tmp_add_list, the mac_node->state won't be
943 * HCLGEVF_MAC_ACTIVE
944 */
945 case HCLGEVF_MAC_ACTIVE:
946 if (mac_node->state == HCLGEVF_MAC_TO_ADD)
947 mac_node->state = HCLGEVF_MAC_ACTIVE;
948 break;
949 }
950 }
951
hclgevf_update_mac_list(struct hnae3_handle * handle,enum HCLGEVF_MAC_NODE_STATE state,enum HCLGEVF_MAC_ADDR_TYPE mac_type,const unsigned char * addr)952 static int hclgevf_update_mac_list(struct hnae3_handle *handle,
953 enum HCLGEVF_MAC_NODE_STATE state,
954 enum HCLGEVF_MAC_ADDR_TYPE mac_type,
955 const unsigned char *addr)
956 {
957 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
958 struct hclgevf_mac_addr_node *mac_node;
959 struct list_head *list;
960
961 list = (mac_type == HCLGEVF_MAC_ADDR_UC) ?
962 &hdev->mac_table.uc_mac_list : &hdev->mac_table.mc_mac_list;
963
964 spin_lock_bh(&hdev->mac_table.mac_list_lock);
965
966 /* if the mac addr is already in the mac list, no need to add a new
967 * one into it, just check the mac addr state, convert it to a new
968 * state, or just remove it, or do nothing.
969 */
970 mac_node = hclgevf_find_mac_node(list, addr);
971 if (mac_node) {
972 hclgevf_update_mac_node(mac_node, state);
973 spin_unlock_bh(&hdev->mac_table.mac_list_lock);
974 return 0;
975 }
976 /* if this address is never added, unnecessary to delete */
977 if (state == HCLGEVF_MAC_TO_DEL) {
978 spin_unlock_bh(&hdev->mac_table.mac_list_lock);
979 return -ENOENT;
980 }
981
982 mac_node = kzalloc(sizeof(*mac_node), GFP_ATOMIC);
983 if (!mac_node) {
984 spin_unlock_bh(&hdev->mac_table.mac_list_lock);
985 return -ENOMEM;
986 }
987
988 mac_node->state = state;
989 ether_addr_copy(mac_node->mac_addr, addr);
990 list_add_tail(&mac_node->node, list);
991
992 spin_unlock_bh(&hdev->mac_table.mac_list_lock);
993 return 0;
994 }
995
hclgevf_add_uc_addr(struct hnae3_handle * handle,const unsigned char * addr)996 static int hclgevf_add_uc_addr(struct hnae3_handle *handle,
997 const unsigned char *addr)
998 {
999 return hclgevf_update_mac_list(handle, HCLGEVF_MAC_TO_ADD,
1000 HCLGEVF_MAC_ADDR_UC, addr);
1001 }
1002
hclgevf_rm_uc_addr(struct hnae3_handle * handle,const unsigned char * addr)1003 static int hclgevf_rm_uc_addr(struct hnae3_handle *handle,
1004 const unsigned char *addr)
1005 {
1006 return hclgevf_update_mac_list(handle, HCLGEVF_MAC_TO_DEL,
1007 HCLGEVF_MAC_ADDR_UC, addr);
1008 }
1009
hclgevf_add_mc_addr(struct hnae3_handle * handle,const unsigned char * addr)1010 static int hclgevf_add_mc_addr(struct hnae3_handle *handle,
1011 const unsigned char *addr)
1012 {
1013 return hclgevf_update_mac_list(handle, HCLGEVF_MAC_TO_ADD,
1014 HCLGEVF_MAC_ADDR_MC, addr);
1015 }
1016
hclgevf_rm_mc_addr(struct hnae3_handle * handle,const unsigned char * addr)1017 static int hclgevf_rm_mc_addr(struct hnae3_handle *handle,
1018 const unsigned char *addr)
1019 {
1020 return hclgevf_update_mac_list(handle, HCLGEVF_MAC_TO_DEL,
1021 HCLGEVF_MAC_ADDR_MC, addr);
1022 }
1023
hclgevf_add_del_mac_addr(struct hclgevf_dev * hdev,struct hclgevf_mac_addr_node * mac_node,enum HCLGEVF_MAC_ADDR_TYPE mac_type)1024 static int hclgevf_add_del_mac_addr(struct hclgevf_dev *hdev,
1025 struct hclgevf_mac_addr_node *mac_node,
1026 enum HCLGEVF_MAC_ADDR_TYPE mac_type)
1027 {
1028 struct hclge_vf_to_pf_msg send_msg;
1029 u8 code, subcode;
1030
1031 if (mac_type == HCLGEVF_MAC_ADDR_UC) {
1032 code = HCLGE_MBX_SET_UNICAST;
1033 if (mac_node->state == HCLGEVF_MAC_TO_ADD)
1034 subcode = HCLGE_MBX_MAC_VLAN_UC_ADD;
1035 else
1036 subcode = HCLGE_MBX_MAC_VLAN_UC_REMOVE;
1037 } else {
1038 code = HCLGE_MBX_SET_MULTICAST;
1039 if (mac_node->state == HCLGEVF_MAC_TO_ADD)
1040 subcode = HCLGE_MBX_MAC_VLAN_MC_ADD;
1041 else
1042 subcode = HCLGE_MBX_MAC_VLAN_MC_REMOVE;
1043 }
1044
1045 hclgevf_build_send_msg(&send_msg, code, subcode);
1046 ether_addr_copy(send_msg.data, mac_node->mac_addr);
1047 return hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0);
1048 }
1049
hclgevf_config_mac_list(struct hclgevf_dev * hdev,struct list_head * list,enum HCLGEVF_MAC_ADDR_TYPE mac_type)1050 static void hclgevf_config_mac_list(struct hclgevf_dev *hdev,
1051 struct list_head *list,
1052 enum HCLGEVF_MAC_ADDR_TYPE mac_type)
1053 {
1054 char format_mac_addr[HNAE3_FORMAT_MAC_ADDR_LEN];
1055 struct hclgevf_mac_addr_node *mac_node, *tmp;
1056 int ret;
1057
1058 list_for_each_entry_safe(mac_node, tmp, list, node) {
1059 ret = hclgevf_add_del_mac_addr(hdev, mac_node, mac_type);
1060 if (ret) {
1061 hnae3_format_mac_addr(format_mac_addr,
1062 mac_node->mac_addr);
1063 dev_err(&hdev->pdev->dev,
1064 "failed to configure mac %s, state = %d, ret = %d\n",
1065 format_mac_addr, mac_node->state, ret);
1066 return;
1067 }
1068 if (mac_node->state == HCLGEVF_MAC_TO_ADD) {
1069 mac_node->state = HCLGEVF_MAC_ACTIVE;
1070 } else {
1071 list_del(&mac_node->node);
1072 kfree(mac_node);
1073 }
1074 }
1075 }
1076
hclgevf_sync_from_add_list(struct list_head * add_list,struct list_head * mac_list)1077 static void hclgevf_sync_from_add_list(struct list_head *add_list,
1078 struct list_head *mac_list)
1079 {
1080 struct hclgevf_mac_addr_node *mac_node, *tmp, *new_node;
1081
1082 list_for_each_entry_safe(mac_node, tmp, add_list, node) {
1083 /* if the mac address from tmp_add_list is not in the
1084 * uc/mc_mac_list, it means have received a TO_DEL request
1085 * during the time window of sending mac config request to PF
1086 * If mac_node state is ACTIVE, then change its state to TO_DEL,
1087 * then it will be removed at next time. If is TO_ADD, it means
1088 * send TO_ADD request failed, so just remove the mac node.
1089 */
1090 new_node = hclgevf_find_mac_node(mac_list, mac_node->mac_addr);
1091 if (new_node) {
1092 hclgevf_update_mac_node(new_node, mac_node->state);
1093 list_del(&mac_node->node);
1094 kfree(mac_node);
1095 } else if (mac_node->state == HCLGEVF_MAC_ACTIVE) {
1096 mac_node->state = HCLGEVF_MAC_TO_DEL;
1097 list_move_tail(&mac_node->node, mac_list);
1098 } else {
1099 list_del(&mac_node->node);
1100 kfree(mac_node);
1101 }
1102 }
1103 }
1104
hclgevf_sync_from_del_list(struct list_head * del_list,struct list_head * mac_list)1105 static void hclgevf_sync_from_del_list(struct list_head *del_list,
1106 struct list_head *mac_list)
1107 {
1108 struct hclgevf_mac_addr_node *mac_node, *tmp, *new_node;
1109
1110 list_for_each_entry_safe(mac_node, tmp, del_list, node) {
1111 new_node = hclgevf_find_mac_node(mac_list, mac_node->mac_addr);
1112 if (new_node) {
1113 /* If the mac addr is exist in the mac list, it means
1114 * received a new request TO_ADD during the time window
1115 * of sending mac addr configurrequest to PF, so just
1116 * change the mac state to ACTIVE.
1117 */
1118 new_node->state = HCLGEVF_MAC_ACTIVE;
1119 list_del(&mac_node->node);
1120 kfree(mac_node);
1121 } else {
1122 list_move_tail(&mac_node->node, mac_list);
1123 }
1124 }
1125 }
1126
hclgevf_clear_list(struct list_head * list)1127 static void hclgevf_clear_list(struct list_head *list)
1128 {
1129 struct hclgevf_mac_addr_node *mac_node, *tmp;
1130
1131 list_for_each_entry_safe(mac_node, tmp, list, node) {
1132 list_del(&mac_node->node);
1133 kfree(mac_node);
1134 }
1135 }
1136
hclgevf_sync_mac_list(struct hclgevf_dev * hdev,enum HCLGEVF_MAC_ADDR_TYPE mac_type)1137 static void hclgevf_sync_mac_list(struct hclgevf_dev *hdev,
1138 enum HCLGEVF_MAC_ADDR_TYPE mac_type)
1139 {
1140 struct hclgevf_mac_addr_node *mac_node, *tmp, *new_node;
1141 struct list_head tmp_add_list, tmp_del_list;
1142 struct list_head *list;
1143
1144 INIT_LIST_HEAD(&tmp_add_list);
1145 INIT_LIST_HEAD(&tmp_del_list);
1146
1147 /* move the mac addr to the tmp_add_list and tmp_del_list, then
1148 * we can add/delete these mac addr outside the spin lock
1149 */
1150 list = (mac_type == HCLGEVF_MAC_ADDR_UC) ?
1151 &hdev->mac_table.uc_mac_list : &hdev->mac_table.mc_mac_list;
1152
1153 spin_lock_bh(&hdev->mac_table.mac_list_lock);
1154
1155 list_for_each_entry_safe(mac_node, tmp, list, node) {
1156 switch (mac_node->state) {
1157 case HCLGEVF_MAC_TO_DEL:
1158 list_move_tail(&mac_node->node, &tmp_del_list);
1159 break;
1160 case HCLGEVF_MAC_TO_ADD:
1161 new_node = kzalloc(sizeof(*new_node), GFP_ATOMIC);
1162 if (!new_node)
1163 goto stop_traverse;
1164
1165 ether_addr_copy(new_node->mac_addr, mac_node->mac_addr);
1166 new_node->state = mac_node->state;
1167 list_add_tail(&new_node->node, &tmp_add_list);
1168 break;
1169 default:
1170 break;
1171 }
1172 }
1173
1174 stop_traverse:
1175 spin_unlock_bh(&hdev->mac_table.mac_list_lock);
1176
1177 /* delete first, in order to get max mac table space for adding */
1178 hclgevf_config_mac_list(hdev, &tmp_del_list, mac_type);
1179 hclgevf_config_mac_list(hdev, &tmp_add_list, mac_type);
1180
1181 /* if some mac addresses were added/deleted fail, move back to the
1182 * mac_list, and retry at next time.
1183 */
1184 spin_lock_bh(&hdev->mac_table.mac_list_lock);
1185
1186 hclgevf_sync_from_del_list(&tmp_del_list, list);
1187 hclgevf_sync_from_add_list(&tmp_add_list, list);
1188
1189 spin_unlock_bh(&hdev->mac_table.mac_list_lock);
1190 }
1191
hclgevf_sync_mac_table(struct hclgevf_dev * hdev)1192 static void hclgevf_sync_mac_table(struct hclgevf_dev *hdev)
1193 {
1194 hclgevf_sync_mac_list(hdev, HCLGEVF_MAC_ADDR_UC);
1195 hclgevf_sync_mac_list(hdev, HCLGEVF_MAC_ADDR_MC);
1196 }
1197
hclgevf_uninit_mac_list(struct hclgevf_dev * hdev)1198 static void hclgevf_uninit_mac_list(struct hclgevf_dev *hdev)
1199 {
1200 spin_lock_bh(&hdev->mac_table.mac_list_lock);
1201
1202 hclgevf_clear_list(&hdev->mac_table.uc_mac_list);
1203 hclgevf_clear_list(&hdev->mac_table.mc_mac_list);
1204
1205 spin_unlock_bh(&hdev->mac_table.mac_list_lock);
1206 }
1207
hclgevf_enable_vlan_filter(struct hnae3_handle * handle,bool enable)1208 static int hclgevf_enable_vlan_filter(struct hnae3_handle *handle, bool enable)
1209 {
1210 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1211 struct hnae3_ae_dev *ae_dev = hdev->ae_dev;
1212 struct hclge_vf_to_pf_msg send_msg;
1213
1214 if (!test_bit(HNAE3_DEV_SUPPORT_VLAN_FLTR_MDF_B, ae_dev->caps))
1215 return -EOPNOTSUPP;
1216
1217 hclgevf_build_send_msg(&send_msg, HCLGE_MBX_SET_VLAN,
1218 HCLGE_MBX_ENABLE_VLAN_FILTER);
1219 send_msg.data[0] = enable ? 1 : 0;
1220
1221 return hclgevf_send_mbx_msg(hdev, &send_msg, true, NULL, 0);
1222 }
1223
hclgevf_set_vlan_filter(struct hnae3_handle * handle,__be16 proto,u16 vlan_id,bool is_kill)1224 static int hclgevf_set_vlan_filter(struct hnae3_handle *handle,
1225 __be16 proto, u16 vlan_id,
1226 bool is_kill)
1227 {
1228 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1229 struct hclge_mbx_vlan_filter *vlan_filter;
1230 struct hclge_vf_to_pf_msg send_msg;
1231 int ret;
1232
1233 if (vlan_id > HCLGEVF_MAX_VLAN_ID)
1234 return -EINVAL;
1235
1236 if (proto != htons(ETH_P_8021Q))
1237 return -EPROTONOSUPPORT;
1238
1239 /* When device is resetting or reset failed, firmware is unable to
1240 * handle mailbox. Just record the vlan id, and remove it after
1241 * reset finished.
1242 */
1243 if ((test_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state) ||
1244 test_bit(HCLGEVF_STATE_RST_FAIL, &hdev->state)) && is_kill) {
1245 set_bit(vlan_id, hdev->vlan_del_fail_bmap);
1246 return -EBUSY;
1247 } else if (!is_kill && test_bit(vlan_id, hdev->vlan_del_fail_bmap)) {
1248 clear_bit(vlan_id, hdev->vlan_del_fail_bmap);
1249 }
1250
1251 hclgevf_build_send_msg(&send_msg, HCLGE_MBX_SET_VLAN,
1252 HCLGE_MBX_VLAN_FILTER);
1253 vlan_filter = (struct hclge_mbx_vlan_filter *)send_msg.data;
1254 vlan_filter->is_kill = is_kill;
1255 vlan_filter->vlan_id = cpu_to_le16(vlan_id);
1256 vlan_filter->proto = cpu_to_le16(be16_to_cpu(proto));
1257
1258 /* when remove hw vlan filter failed, record the vlan id,
1259 * and try to remove it from hw later, to be consistence
1260 * with stack.
1261 */
1262 ret = hclgevf_send_mbx_msg(hdev, &send_msg, true, NULL, 0);
1263 if (is_kill && ret)
1264 set_bit(vlan_id, hdev->vlan_del_fail_bmap);
1265
1266 return ret;
1267 }
1268
hclgevf_sync_vlan_filter(struct hclgevf_dev * hdev)1269 static void hclgevf_sync_vlan_filter(struct hclgevf_dev *hdev)
1270 {
1271 #define HCLGEVF_MAX_SYNC_COUNT 60
1272 struct hnae3_handle *handle = &hdev->nic;
1273 int ret, sync_cnt = 0;
1274 u16 vlan_id;
1275
1276 if (bitmap_empty(hdev->vlan_del_fail_bmap, VLAN_N_VID))
1277 return;
1278
1279 rtnl_lock();
1280 vlan_id = find_first_bit(hdev->vlan_del_fail_bmap, VLAN_N_VID);
1281 while (vlan_id != VLAN_N_VID) {
1282 ret = hclgevf_set_vlan_filter(handle, htons(ETH_P_8021Q),
1283 vlan_id, true);
1284 if (ret)
1285 break;
1286
1287 clear_bit(vlan_id, hdev->vlan_del_fail_bmap);
1288 sync_cnt++;
1289 if (sync_cnt >= HCLGEVF_MAX_SYNC_COUNT)
1290 break;
1291
1292 vlan_id = find_first_bit(hdev->vlan_del_fail_bmap, VLAN_N_VID);
1293 }
1294 rtnl_unlock();
1295 }
1296
hclgevf_en_hw_strip_rxvtag_cmd(struct hclgevf_dev * hdev,bool enable)1297 static int hclgevf_en_hw_strip_rxvtag_cmd(struct hclgevf_dev *hdev, bool enable)
1298 {
1299 struct hclge_vf_to_pf_msg send_msg;
1300
1301 hclgevf_build_send_msg(&send_msg, HCLGE_MBX_SET_VLAN,
1302 HCLGE_MBX_VLAN_RX_OFF_CFG);
1303 send_msg.data[0] = enable ? 1 : 0;
1304 return hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0);
1305 }
1306
hclgevf_en_hw_strip_rxvtag(struct hnae3_handle * handle,bool enable)1307 static int hclgevf_en_hw_strip_rxvtag(struct hnae3_handle *handle, bool enable)
1308 {
1309 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1310 int ret;
1311
1312 ret = hclgevf_en_hw_strip_rxvtag_cmd(hdev, enable);
1313 if (ret)
1314 return ret;
1315
1316 hdev->rxvtag_strip_en = enable;
1317 return 0;
1318 }
1319
hclgevf_reset_tqp(struct hnae3_handle * handle)1320 static int hclgevf_reset_tqp(struct hnae3_handle *handle)
1321 {
1322 #define HCLGEVF_RESET_ALL_QUEUE_DONE 1U
1323 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1324 struct hclge_vf_to_pf_msg send_msg;
1325 u8 return_status = 0;
1326 int ret;
1327 u16 i;
1328
1329 /* disable vf queue before send queue reset msg to PF */
1330 ret = hclgevf_tqp_enable(handle, false);
1331 if (ret) {
1332 dev_err(&hdev->pdev->dev, "failed to disable tqp, ret = %d\n",
1333 ret);
1334 return ret;
1335 }
1336
1337 hclgevf_build_send_msg(&send_msg, HCLGE_MBX_QUEUE_RESET, 0);
1338
1339 ret = hclgevf_send_mbx_msg(hdev, &send_msg, true, &return_status,
1340 sizeof(return_status));
1341 if (ret || return_status == HCLGEVF_RESET_ALL_QUEUE_DONE)
1342 return ret;
1343
1344 for (i = 1; i < handle->kinfo.num_tqps; i++) {
1345 hclgevf_build_send_msg(&send_msg, HCLGE_MBX_QUEUE_RESET, 0);
1346 *(__le16 *)send_msg.data = cpu_to_le16(i);
1347 ret = hclgevf_send_mbx_msg(hdev, &send_msg, true, NULL, 0);
1348 if (ret)
1349 return ret;
1350 }
1351
1352 return 0;
1353 }
1354
hclgevf_set_mtu(struct hnae3_handle * handle,int new_mtu)1355 static int hclgevf_set_mtu(struct hnae3_handle *handle, int new_mtu)
1356 {
1357 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1358 struct hclge_mbx_mtu_info *mtu_info;
1359 struct hclge_vf_to_pf_msg send_msg;
1360
1361 hclgevf_build_send_msg(&send_msg, HCLGE_MBX_SET_MTU, 0);
1362 mtu_info = (struct hclge_mbx_mtu_info *)send_msg.data;
1363 mtu_info->mtu = cpu_to_le32(new_mtu);
1364
1365 return hclgevf_send_mbx_msg(hdev, &send_msg, true, NULL, 0);
1366 }
1367
hclgevf_notify_client(struct hclgevf_dev * hdev,enum hnae3_reset_notify_type type)1368 static int hclgevf_notify_client(struct hclgevf_dev *hdev,
1369 enum hnae3_reset_notify_type type)
1370 {
1371 struct hnae3_client *client = hdev->nic_client;
1372 struct hnae3_handle *handle = &hdev->nic;
1373 int ret;
1374
1375 if (!test_bit(HCLGEVF_STATE_NIC_REGISTERED, &hdev->state) ||
1376 !client)
1377 return 0;
1378
1379 if (!client->ops->reset_notify)
1380 return -EOPNOTSUPP;
1381
1382 ret = client->ops->reset_notify(handle, type);
1383 if (ret)
1384 dev_err(&hdev->pdev->dev, "notify nic client failed %d(%d)\n",
1385 type, ret);
1386
1387 return ret;
1388 }
1389
hclgevf_notify_roce_client(struct hclgevf_dev * hdev,enum hnae3_reset_notify_type type)1390 static int hclgevf_notify_roce_client(struct hclgevf_dev *hdev,
1391 enum hnae3_reset_notify_type type)
1392 {
1393 struct hnae3_client *client = hdev->roce_client;
1394 struct hnae3_handle *handle = &hdev->roce;
1395 int ret;
1396
1397 if (!test_bit(HCLGEVF_STATE_ROCE_REGISTERED, &hdev->state) || !client)
1398 return 0;
1399
1400 if (!client->ops->reset_notify)
1401 return -EOPNOTSUPP;
1402
1403 ret = client->ops->reset_notify(handle, type);
1404 if (ret)
1405 dev_err(&hdev->pdev->dev, "notify roce client failed %d(%d)",
1406 type, ret);
1407 return ret;
1408 }
1409
hclgevf_set_reset_pending(struct hclgevf_dev * hdev,enum hnae3_reset_type reset_type)1410 static void hclgevf_set_reset_pending(struct hclgevf_dev *hdev,
1411 enum hnae3_reset_type reset_type)
1412 {
1413 /* When an incorrect reset type is executed, the get_reset_level
1414 * function generates the HNAE3_NONE_RESET flag. As a result, this
1415 * type do not need to pending.
1416 */
1417 if (reset_type != HNAE3_NONE_RESET)
1418 set_bit(reset_type, &hdev->reset_pending);
1419 }
1420
hclgevf_reset_wait(struct hclgevf_dev * hdev)1421 static int hclgevf_reset_wait(struct hclgevf_dev *hdev)
1422 {
1423 #define HCLGEVF_RESET_WAIT_US 20000
1424 #define HCLGEVF_RESET_WAIT_CNT 2000
1425 #define HCLGEVF_RESET_WAIT_TIMEOUT_US \
1426 (HCLGEVF_RESET_WAIT_US * HCLGEVF_RESET_WAIT_CNT)
1427
1428 u32 val;
1429 int ret;
1430
1431 if (hdev->reset_type == HNAE3_VF_RESET)
1432 ret = readl_poll_timeout(hdev->hw.hw.io_base +
1433 HCLGEVF_VF_RST_ING, val,
1434 !(val & HCLGEVF_VF_RST_ING_BIT),
1435 HCLGEVF_RESET_WAIT_US,
1436 HCLGEVF_RESET_WAIT_TIMEOUT_US);
1437 else
1438 ret = readl_poll_timeout(hdev->hw.hw.io_base +
1439 HCLGEVF_RST_ING, val,
1440 !(val & HCLGEVF_RST_ING_BITS),
1441 HCLGEVF_RESET_WAIT_US,
1442 HCLGEVF_RESET_WAIT_TIMEOUT_US);
1443
1444 /* hardware completion status should be available by this time */
1445 if (ret) {
1446 dev_err(&hdev->pdev->dev,
1447 "couldn't get reset done status from h/w, timeout!\n");
1448 return ret;
1449 }
1450
1451 /* we will wait a bit more to let reset of the stack to complete. This
1452 * might happen in case reset assertion was made by PF. Yes, this also
1453 * means we might end up waiting bit more even for VF reset.
1454 */
1455 if (hdev->reset_type == HNAE3_VF_FULL_RESET)
1456 msleep(5000);
1457 else
1458 msleep(500);
1459
1460 return 0;
1461 }
1462
hclgevf_reset_handshake(struct hclgevf_dev * hdev,bool enable)1463 static void hclgevf_reset_handshake(struct hclgevf_dev *hdev, bool enable)
1464 {
1465 u32 reg_val;
1466
1467 reg_val = hclgevf_read_dev(&hdev->hw, HCLGE_COMM_NIC_CSQ_DEPTH_REG);
1468 if (enable)
1469 reg_val |= HCLGEVF_NIC_SW_RST_RDY;
1470 else
1471 reg_val &= ~HCLGEVF_NIC_SW_RST_RDY;
1472
1473 hclgevf_write_dev(&hdev->hw, HCLGE_COMM_NIC_CSQ_DEPTH_REG,
1474 reg_val);
1475 }
1476
hclgevf_reset_stack(struct hclgevf_dev * hdev)1477 static int hclgevf_reset_stack(struct hclgevf_dev *hdev)
1478 {
1479 int ret;
1480
1481 /* uninitialize the nic client */
1482 ret = hclgevf_notify_client(hdev, HNAE3_UNINIT_CLIENT);
1483 if (ret)
1484 return ret;
1485
1486 /* re-initialize the hclge device */
1487 ret = hclgevf_reset_hdev(hdev);
1488 if (ret) {
1489 dev_err(&hdev->pdev->dev,
1490 "hclge device re-init failed, VF is disabled!\n");
1491 return ret;
1492 }
1493
1494 /* bring up the nic client again */
1495 ret = hclgevf_notify_client(hdev, HNAE3_INIT_CLIENT);
1496 if (ret)
1497 return ret;
1498
1499 /* clear handshake status with IMP */
1500 hclgevf_reset_handshake(hdev, false);
1501
1502 /* bring up the nic to enable TX/RX again */
1503 return hclgevf_notify_client(hdev, HNAE3_UP_CLIENT);
1504 }
1505
hclgevf_reset_prepare_wait(struct hclgevf_dev * hdev)1506 static int hclgevf_reset_prepare_wait(struct hclgevf_dev *hdev)
1507 {
1508 #define HCLGEVF_RESET_SYNC_TIME 100
1509
1510 if (hdev->reset_type == HNAE3_VF_FUNC_RESET) {
1511 struct hclge_vf_to_pf_msg send_msg;
1512 int ret;
1513
1514 hclgevf_build_send_msg(&send_msg, HCLGE_MBX_RESET, 0);
1515 ret = hclgevf_send_mbx_msg(hdev, &send_msg, true, NULL, 0);
1516 if (ret) {
1517 dev_err(&hdev->pdev->dev,
1518 "failed to assert VF reset, ret = %d\n", ret);
1519 return ret;
1520 }
1521 hdev->rst_stats.vf_func_rst_cnt++;
1522 }
1523
1524 set_bit(HCLGE_COMM_STATE_CMD_DISABLE, &hdev->hw.hw.comm_state);
1525 /* inform hardware that preparatory work is done */
1526 msleep(HCLGEVF_RESET_SYNC_TIME);
1527 hclgevf_reset_handshake(hdev, true);
1528 dev_info(&hdev->pdev->dev, "prepare reset(%d) wait done\n",
1529 hdev->reset_type);
1530
1531 return 0;
1532 }
1533
hclgevf_dump_rst_info(struct hclgevf_dev * hdev)1534 static void hclgevf_dump_rst_info(struct hclgevf_dev *hdev)
1535 {
1536 dev_info(&hdev->pdev->dev, "VF function reset count: %u\n",
1537 hdev->rst_stats.vf_func_rst_cnt);
1538 dev_info(&hdev->pdev->dev, "FLR reset count: %u\n",
1539 hdev->rst_stats.flr_rst_cnt);
1540 dev_info(&hdev->pdev->dev, "VF reset count: %u\n",
1541 hdev->rst_stats.vf_rst_cnt);
1542 dev_info(&hdev->pdev->dev, "reset done count: %u\n",
1543 hdev->rst_stats.rst_done_cnt);
1544 dev_info(&hdev->pdev->dev, "HW reset done count: %u\n",
1545 hdev->rst_stats.hw_rst_done_cnt);
1546 dev_info(&hdev->pdev->dev, "reset count: %u\n",
1547 hdev->rst_stats.rst_cnt);
1548 dev_info(&hdev->pdev->dev, "reset fail count: %u\n",
1549 hdev->rst_stats.rst_fail_cnt);
1550 dev_info(&hdev->pdev->dev, "vector0 interrupt enable status: 0x%x\n",
1551 hclgevf_read_dev(&hdev->hw, HCLGEVF_MISC_VECTOR_REG_BASE));
1552 dev_info(&hdev->pdev->dev, "vector0 interrupt status: 0x%x\n",
1553 hclgevf_read_dev(&hdev->hw, HCLGE_COMM_VECTOR0_CMDQ_STATE_REG));
1554 dev_info(&hdev->pdev->dev, "handshake status: 0x%x\n",
1555 hclgevf_read_dev(&hdev->hw, HCLGE_COMM_NIC_CSQ_DEPTH_REG));
1556 dev_info(&hdev->pdev->dev, "function reset status: 0x%x\n",
1557 hclgevf_read_dev(&hdev->hw, HCLGEVF_RST_ING));
1558 dev_info(&hdev->pdev->dev, "hdev state: 0x%lx\n", hdev->state);
1559 }
1560
hclgevf_reset_err_handle(struct hclgevf_dev * hdev)1561 static void hclgevf_reset_err_handle(struct hclgevf_dev *hdev)
1562 {
1563 /* recover handshake status with IMP when reset fail */
1564 hclgevf_reset_handshake(hdev, true);
1565 hdev->rst_stats.rst_fail_cnt++;
1566 dev_err(&hdev->pdev->dev, "failed to reset VF(%u)\n",
1567 hdev->rst_stats.rst_fail_cnt);
1568
1569 if (hdev->rst_stats.rst_fail_cnt < HCLGEVF_RESET_MAX_FAIL_CNT)
1570 hclgevf_set_reset_pending(hdev, hdev->reset_type);
1571
1572 if (hclgevf_is_reset_pending(hdev)) {
1573 set_bit(HCLGEVF_RESET_PENDING, &hdev->reset_state);
1574 hclgevf_reset_task_schedule(hdev);
1575 } else {
1576 set_bit(HCLGEVF_STATE_RST_FAIL, &hdev->state);
1577 hclgevf_dump_rst_info(hdev);
1578 }
1579 }
1580
hclgevf_reset_prepare(struct hclgevf_dev * hdev)1581 static int hclgevf_reset_prepare(struct hclgevf_dev *hdev)
1582 {
1583 int ret;
1584
1585 hdev->rst_stats.rst_cnt++;
1586
1587 /* perform reset of the stack & ae device for a client */
1588 ret = hclgevf_notify_roce_client(hdev, HNAE3_DOWN_CLIENT);
1589 if (ret)
1590 return ret;
1591
1592 rtnl_lock();
1593 /* bring down the nic to stop any ongoing TX/RX */
1594 ret = hclgevf_notify_client(hdev, HNAE3_DOWN_CLIENT);
1595 rtnl_unlock();
1596 if (ret)
1597 return ret;
1598
1599 return hclgevf_reset_prepare_wait(hdev);
1600 }
1601
hclgevf_reset_rebuild(struct hclgevf_dev * hdev)1602 static int hclgevf_reset_rebuild(struct hclgevf_dev *hdev)
1603 {
1604 int ret;
1605
1606 hdev->rst_stats.hw_rst_done_cnt++;
1607 ret = hclgevf_notify_roce_client(hdev, HNAE3_UNINIT_CLIENT);
1608 if (ret)
1609 return ret;
1610
1611 rtnl_lock();
1612 /* now, re-initialize the nic client and ae device */
1613 ret = hclgevf_reset_stack(hdev);
1614 rtnl_unlock();
1615 if (ret) {
1616 dev_err(&hdev->pdev->dev, "failed to reset VF stack\n");
1617 return ret;
1618 }
1619
1620 ret = hclgevf_notify_roce_client(hdev, HNAE3_INIT_CLIENT);
1621 /* ignore RoCE notify error if it fails HCLGEVF_RESET_MAX_FAIL_CNT - 1
1622 * times
1623 */
1624 if (ret &&
1625 hdev->rst_stats.rst_fail_cnt < HCLGEVF_RESET_MAX_FAIL_CNT - 1)
1626 return ret;
1627
1628 ret = hclgevf_notify_roce_client(hdev, HNAE3_UP_CLIENT);
1629 if (ret)
1630 return ret;
1631
1632 hdev->last_reset_time = jiffies;
1633 hdev->rst_stats.rst_done_cnt++;
1634 hdev->rst_stats.rst_fail_cnt = 0;
1635 clear_bit(HCLGEVF_STATE_RST_FAIL, &hdev->state);
1636
1637 return 0;
1638 }
1639
hclgevf_reset(struct hclgevf_dev * hdev)1640 static void hclgevf_reset(struct hclgevf_dev *hdev)
1641 {
1642 if (hclgevf_reset_prepare(hdev))
1643 goto err_reset;
1644
1645 /* check if VF could successfully fetch the hardware reset completion
1646 * status from the hardware
1647 */
1648 if (hclgevf_reset_wait(hdev)) {
1649 /* can't do much in this situation, will disable VF */
1650 dev_err(&hdev->pdev->dev,
1651 "failed to fetch H/W reset completion status\n");
1652 goto err_reset;
1653 }
1654
1655 if (hclgevf_reset_rebuild(hdev))
1656 goto err_reset;
1657
1658 return;
1659
1660 err_reset:
1661 hclgevf_reset_err_handle(hdev);
1662 }
1663
hclgevf_get_reset_level(unsigned long * addr)1664 static enum hnae3_reset_type hclgevf_get_reset_level(unsigned long *addr)
1665 {
1666 enum hnae3_reset_type rst_level = HNAE3_NONE_RESET;
1667
1668 /* return the highest priority reset level amongst all */
1669 if (test_bit(HNAE3_VF_RESET, addr)) {
1670 rst_level = HNAE3_VF_RESET;
1671 clear_bit(HNAE3_VF_RESET, addr);
1672 clear_bit(HNAE3_VF_PF_FUNC_RESET, addr);
1673 clear_bit(HNAE3_VF_FUNC_RESET, addr);
1674 } else if (test_bit(HNAE3_VF_FULL_RESET, addr)) {
1675 rst_level = HNAE3_VF_FULL_RESET;
1676 clear_bit(HNAE3_VF_FULL_RESET, addr);
1677 clear_bit(HNAE3_VF_FUNC_RESET, addr);
1678 } else if (test_bit(HNAE3_VF_PF_FUNC_RESET, addr)) {
1679 rst_level = HNAE3_VF_PF_FUNC_RESET;
1680 clear_bit(HNAE3_VF_PF_FUNC_RESET, addr);
1681 clear_bit(HNAE3_VF_FUNC_RESET, addr);
1682 } else if (test_bit(HNAE3_VF_FUNC_RESET, addr)) {
1683 rst_level = HNAE3_VF_FUNC_RESET;
1684 clear_bit(HNAE3_VF_FUNC_RESET, addr);
1685 } else if (test_bit(HNAE3_FLR_RESET, addr)) {
1686 rst_level = HNAE3_FLR_RESET;
1687 clear_bit(HNAE3_FLR_RESET, addr);
1688 }
1689
1690 clear_bit(HNAE3_NONE_RESET, addr);
1691
1692 return rst_level;
1693 }
1694
hclgevf_reset_event(struct pci_dev * pdev,struct hnae3_handle * handle)1695 static void hclgevf_reset_event(struct pci_dev *pdev,
1696 struct hnae3_handle *handle)
1697 {
1698 struct hnae3_ae_dev *ae_dev = pci_get_drvdata(pdev);
1699 struct hclgevf_dev *hdev = ae_dev->priv;
1700
1701 if (hdev->default_reset_request)
1702 hdev->reset_level =
1703 hclgevf_get_reset_level(&hdev->default_reset_request);
1704 else
1705 hdev->reset_level = HNAE3_VF_FUNC_RESET;
1706
1707 dev_info(&hdev->pdev->dev, "received reset request from VF enet, reset level is %d\n",
1708 hdev->reset_level);
1709
1710 /* reset of this VF requested */
1711 set_bit(HCLGEVF_RESET_REQUESTED, &hdev->reset_state);
1712 hclgevf_reset_task_schedule(hdev);
1713
1714 hdev->last_reset_time = jiffies;
1715 }
1716
hclgevf_set_def_reset_request(struct hnae3_ae_dev * ae_dev,enum hnae3_reset_type rst_type)1717 static void hclgevf_set_def_reset_request(struct hnae3_ae_dev *ae_dev,
1718 enum hnae3_reset_type rst_type)
1719 {
1720 #define HCLGEVF_SUPPORT_RESET_TYPE \
1721 (BIT(HNAE3_VF_RESET) | BIT(HNAE3_VF_FUNC_RESET) | \
1722 BIT(HNAE3_VF_PF_FUNC_RESET) | BIT(HNAE3_VF_FULL_RESET) | \
1723 BIT(HNAE3_FLR_RESET) | BIT(HNAE3_VF_EXP_RESET))
1724
1725 struct hclgevf_dev *hdev = ae_dev->priv;
1726
1727 if (!(BIT(rst_type) & HCLGEVF_SUPPORT_RESET_TYPE)) {
1728 /* To prevent reset triggered by hclge_reset_event */
1729 set_bit(HNAE3_NONE_RESET, &hdev->default_reset_request);
1730 dev_info(&hdev->pdev->dev, "unsupported reset type %d\n",
1731 rst_type);
1732 return;
1733 }
1734 set_bit(rst_type, &hdev->default_reset_request);
1735 }
1736
hclgevf_enable_vector(struct hclgevf_misc_vector * vector,bool en)1737 static void hclgevf_enable_vector(struct hclgevf_misc_vector *vector, bool en)
1738 {
1739 writel(en ? 1 : 0, vector->addr);
1740 }
1741
hclgevf_reset_prepare_general(struct hnae3_ae_dev * ae_dev,enum hnae3_reset_type rst_type)1742 static void hclgevf_reset_prepare_general(struct hnae3_ae_dev *ae_dev,
1743 enum hnae3_reset_type rst_type)
1744 {
1745 #define HCLGEVF_RESET_RETRY_WAIT_MS 500
1746 #define HCLGEVF_RESET_RETRY_CNT 5
1747
1748 struct hclgevf_dev *hdev = ae_dev->priv;
1749 int retry_cnt = 0;
1750 int ret;
1751
1752 while (retry_cnt++ < HCLGEVF_RESET_RETRY_CNT) {
1753 down(&hdev->reset_sem);
1754 set_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state);
1755 hdev->reset_type = rst_type;
1756 ret = hclgevf_reset_prepare(hdev);
1757 if (!ret && !hdev->reset_pending)
1758 break;
1759
1760 dev_err(&hdev->pdev->dev,
1761 "failed to prepare to reset, ret=%d, reset_pending:0x%lx, retry_cnt:%d\n",
1762 ret, hdev->reset_pending, retry_cnt);
1763 clear_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state);
1764 up(&hdev->reset_sem);
1765 msleep(HCLGEVF_RESET_RETRY_WAIT_MS);
1766 }
1767
1768 /* disable misc vector before reset done */
1769 hclgevf_enable_vector(&hdev->misc_vector, false);
1770
1771 if (hdev->reset_type == HNAE3_FLR_RESET)
1772 hdev->rst_stats.flr_rst_cnt++;
1773 }
1774
hclgevf_reset_done(struct hnae3_ae_dev * ae_dev)1775 static void hclgevf_reset_done(struct hnae3_ae_dev *ae_dev)
1776 {
1777 struct hclgevf_dev *hdev = ae_dev->priv;
1778 int ret;
1779
1780 hclgevf_enable_vector(&hdev->misc_vector, true);
1781
1782 ret = hclgevf_reset_rebuild(hdev);
1783 if (ret)
1784 dev_warn(&hdev->pdev->dev, "fail to rebuild, ret=%d\n",
1785 ret);
1786
1787 hdev->reset_type = HNAE3_NONE_RESET;
1788 if (test_and_clear_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state))
1789 up(&hdev->reset_sem);
1790 }
1791
hclgevf_get_fw_version(struct hnae3_handle * handle)1792 static u32 hclgevf_get_fw_version(struct hnae3_handle *handle)
1793 {
1794 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1795
1796 return hdev->fw_version;
1797 }
1798
hclgevf_get_misc_vector(struct hclgevf_dev * hdev)1799 static void hclgevf_get_misc_vector(struct hclgevf_dev *hdev)
1800 {
1801 struct hclgevf_misc_vector *vector = &hdev->misc_vector;
1802
1803 vector->vector_irq = pci_irq_vector(hdev->pdev,
1804 HCLGEVF_MISC_VECTOR_NUM);
1805 vector->addr = hdev->hw.hw.io_base + HCLGEVF_MISC_VECTOR_REG_BASE;
1806 /* vector status always valid for Vector 0 */
1807 hdev->vector_status[HCLGEVF_MISC_VECTOR_NUM] = 0;
1808 hdev->vector_irq[HCLGEVF_MISC_VECTOR_NUM] = vector->vector_irq;
1809
1810 hdev->num_msi_left -= 1;
1811 hdev->num_msi_used += 1;
1812 }
1813
hclgevf_reset_task_schedule(struct hclgevf_dev * hdev)1814 void hclgevf_reset_task_schedule(struct hclgevf_dev *hdev)
1815 {
1816 if (!test_bit(HCLGEVF_STATE_REMOVING, &hdev->state) &&
1817 test_bit(HCLGEVF_STATE_SERVICE_INITED, &hdev->state) &&
1818 !test_and_set_bit(HCLGEVF_STATE_RST_SERVICE_SCHED,
1819 &hdev->state))
1820 mod_delayed_work(hclgevf_wq, &hdev->service_task, 0);
1821 }
1822
hclgevf_mbx_task_schedule(struct hclgevf_dev * hdev)1823 void hclgevf_mbx_task_schedule(struct hclgevf_dev *hdev)
1824 {
1825 if (!test_bit(HCLGEVF_STATE_REMOVING, &hdev->state) &&
1826 !test_and_set_bit(HCLGEVF_STATE_MBX_SERVICE_SCHED,
1827 &hdev->state))
1828 mod_delayed_work(hclgevf_wq, &hdev->service_task, 0);
1829 }
1830
hclgevf_task_schedule(struct hclgevf_dev * hdev,unsigned long delay)1831 static void hclgevf_task_schedule(struct hclgevf_dev *hdev,
1832 unsigned long delay)
1833 {
1834 if (!test_bit(HCLGEVF_STATE_REMOVING, &hdev->state) &&
1835 !test_bit(HCLGEVF_STATE_RST_FAIL, &hdev->state))
1836 mod_delayed_work(hclgevf_wq, &hdev->service_task, delay);
1837 }
1838
hclgevf_reset_service_task(struct hclgevf_dev * hdev)1839 static void hclgevf_reset_service_task(struct hclgevf_dev *hdev)
1840 {
1841 #define HCLGEVF_MAX_RESET_ATTEMPTS_CNT 3
1842
1843 if (!test_and_clear_bit(HCLGEVF_STATE_RST_SERVICE_SCHED, &hdev->state))
1844 return;
1845
1846 down(&hdev->reset_sem);
1847 set_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state);
1848
1849 if (test_and_clear_bit(HCLGEVF_RESET_PENDING,
1850 &hdev->reset_state)) {
1851 /* PF has intimated that it is about to reset the hardware.
1852 * We now have to poll & check if hardware has actually
1853 * completed the reset sequence. On hardware reset completion,
1854 * VF needs to reset the client and ae device.
1855 */
1856 hdev->reset_attempts = 0;
1857
1858 hdev->last_reset_time = jiffies;
1859 hdev->reset_type =
1860 hclgevf_get_reset_level(&hdev->reset_pending);
1861 if (hdev->reset_type != HNAE3_NONE_RESET)
1862 hclgevf_reset(hdev);
1863 } else if (test_and_clear_bit(HCLGEVF_RESET_REQUESTED,
1864 &hdev->reset_state)) {
1865 /* we could be here when either of below happens:
1866 * 1. reset was initiated due to watchdog timeout caused by
1867 * a. IMP was earlier reset and our TX got choked down and
1868 * which resulted in watchdog reacting and inducing VF
1869 * reset. This also means our cmdq would be unreliable.
1870 * b. problem in TX due to other lower layer(example link
1871 * layer not functioning properly etc.)
1872 * 2. VF reset might have been initiated due to some config
1873 * change.
1874 *
1875 * NOTE: Theres no clear way to detect above cases than to react
1876 * to the response of PF for this reset request. PF will ack the
1877 * 1b and 2. cases but we will not get any intimation about 1a
1878 * from PF as cmdq would be in unreliable state i.e. mailbox
1879 * communication between PF and VF would be broken.
1880 *
1881 * if we are never geting into pending state it means either:
1882 * 1. PF is not receiving our request which could be due to IMP
1883 * reset
1884 * 2. PF is screwed
1885 * We cannot do much for 2. but to check first we can try reset
1886 * our PCIe + stack and see if it alleviates the problem.
1887 */
1888 if (hdev->reset_attempts > HCLGEVF_MAX_RESET_ATTEMPTS_CNT) {
1889 /* prepare for full reset of stack + pcie interface */
1890 hclgevf_set_reset_pending(hdev, HNAE3_VF_FULL_RESET);
1891
1892 /* "defer" schedule the reset task again */
1893 set_bit(HCLGEVF_RESET_PENDING, &hdev->reset_state);
1894 } else {
1895 hdev->reset_attempts++;
1896
1897 hclgevf_set_reset_pending(hdev, hdev->reset_level);
1898 set_bit(HCLGEVF_RESET_PENDING, &hdev->reset_state);
1899 }
1900 hclgevf_reset_task_schedule(hdev);
1901 }
1902
1903 hdev->reset_type = HNAE3_NONE_RESET;
1904 clear_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state);
1905 up(&hdev->reset_sem);
1906 }
1907
hclgevf_mailbox_service_task(struct hclgevf_dev * hdev)1908 static void hclgevf_mailbox_service_task(struct hclgevf_dev *hdev)
1909 {
1910 if (!test_and_clear_bit(HCLGEVF_STATE_MBX_SERVICE_SCHED, &hdev->state))
1911 return;
1912
1913 if (test_and_set_bit(HCLGEVF_STATE_MBX_HANDLING, &hdev->state))
1914 return;
1915
1916 hclgevf_mbx_async_handler(hdev);
1917
1918 clear_bit(HCLGEVF_STATE_MBX_HANDLING, &hdev->state);
1919 }
1920
hclgevf_keep_alive(struct hclgevf_dev * hdev)1921 static void hclgevf_keep_alive(struct hclgevf_dev *hdev)
1922 {
1923 struct hclge_vf_to_pf_msg send_msg;
1924 int ret;
1925
1926 if (test_bit(HCLGE_COMM_STATE_CMD_DISABLE, &hdev->hw.hw.comm_state))
1927 return;
1928
1929 hclgevf_build_send_msg(&send_msg, HCLGE_MBX_KEEP_ALIVE, 0);
1930 ret = hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0);
1931 if (ret)
1932 dev_err(&hdev->pdev->dev,
1933 "VF sends keep alive cmd failed(=%d)\n", ret);
1934 }
1935
hclgevf_periodic_service_task(struct hclgevf_dev * hdev)1936 static void hclgevf_periodic_service_task(struct hclgevf_dev *hdev)
1937 {
1938 unsigned long delta = round_jiffies_relative(HZ);
1939 struct hnae3_handle *handle = &hdev->nic;
1940
1941 if (test_bit(HCLGEVF_STATE_RST_FAIL, &hdev->state) ||
1942 test_bit(HCLGE_COMM_STATE_CMD_DISABLE, &hdev->hw.hw.comm_state))
1943 return;
1944
1945 if (time_is_after_jiffies(hdev->last_serv_processed + HZ)) {
1946 delta = jiffies - hdev->last_serv_processed;
1947
1948 if (delta < round_jiffies_relative(HZ)) {
1949 delta = round_jiffies_relative(HZ) - delta;
1950 goto out;
1951 }
1952 }
1953
1954 hdev->serv_processed_cnt++;
1955 if (!(hdev->serv_processed_cnt % HCLGEVF_KEEP_ALIVE_TASK_INTERVAL))
1956 hclgevf_keep_alive(hdev);
1957
1958 if (test_bit(HCLGEVF_STATE_DOWN, &hdev->state)) {
1959 hdev->last_serv_processed = jiffies;
1960 goto out;
1961 }
1962
1963 if (!(hdev->serv_processed_cnt % HCLGEVF_STATS_TIMER_INTERVAL))
1964 hclge_comm_tqps_update_stats(handle, &hdev->hw.hw);
1965
1966 /* VF does not need to request link status when this bit is set, because
1967 * PF will push its link status to VFs when link status changed.
1968 */
1969 if (!test_bit(HCLGEVF_STATE_PF_PUSH_LINK_STATUS, &hdev->state))
1970 hclgevf_request_link_info(hdev);
1971
1972 hclgevf_update_link_mode(hdev);
1973
1974 hclgevf_sync_vlan_filter(hdev);
1975
1976 hclgevf_sync_mac_table(hdev);
1977
1978 hclgevf_sync_promisc_mode(hdev);
1979
1980 hdev->last_serv_processed = jiffies;
1981
1982 out:
1983 hclgevf_task_schedule(hdev, delta);
1984 }
1985
hclgevf_service_task(struct work_struct * work)1986 static void hclgevf_service_task(struct work_struct *work)
1987 {
1988 struct hclgevf_dev *hdev = container_of(work, struct hclgevf_dev,
1989 service_task.work);
1990
1991 hclgevf_reset_service_task(hdev);
1992 hclgevf_mailbox_service_task(hdev);
1993 hclgevf_periodic_service_task(hdev);
1994
1995 /* Handle reset and mbx again in case periodical task delays the
1996 * handling by calling hclgevf_task_schedule() in
1997 * hclgevf_periodic_service_task()
1998 */
1999 hclgevf_reset_service_task(hdev);
2000 hclgevf_mailbox_service_task(hdev);
2001 }
2002
hclgevf_clear_event_cause(struct hclgevf_dev * hdev,u32 regclr)2003 static void hclgevf_clear_event_cause(struct hclgevf_dev *hdev, u32 regclr)
2004 {
2005 hclgevf_write_dev(&hdev->hw, HCLGE_COMM_VECTOR0_CMDQ_SRC_REG, regclr);
2006 }
2007
hclgevf_check_evt_cause(struct hclgevf_dev * hdev,u32 * clearval)2008 static enum hclgevf_evt_cause hclgevf_check_evt_cause(struct hclgevf_dev *hdev,
2009 u32 *clearval)
2010 {
2011 u32 val, cmdq_stat_reg, rst_ing_reg;
2012
2013 /* fetch the events from their corresponding regs */
2014 cmdq_stat_reg = hclgevf_read_dev(&hdev->hw,
2015 HCLGE_COMM_VECTOR0_CMDQ_STATE_REG);
2016 if (BIT(HCLGEVF_VECTOR0_RST_INT_B) & cmdq_stat_reg) {
2017 rst_ing_reg = hclgevf_read_dev(&hdev->hw, HCLGEVF_RST_ING);
2018 dev_info(&hdev->pdev->dev,
2019 "receive reset interrupt 0x%x!\n", rst_ing_reg);
2020 hclgevf_set_reset_pending(hdev, HNAE3_VF_RESET);
2021 set_bit(HCLGEVF_RESET_PENDING, &hdev->reset_state);
2022 set_bit(HCLGE_COMM_STATE_CMD_DISABLE, &hdev->hw.hw.comm_state);
2023 *clearval = ~(1U << HCLGEVF_VECTOR0_RST_INT_B);
2024 hdev->rst_stats.vf_rst_cnt++;
2025 /* set up VF hardware reset status, its PF will clear
2026 * this status when PF has initialized done.
2027 */
2028 val = hclgevf_read_dev(&hdev->hw, HCLGEVF_VF_RST_ING);
2029 hclgevf_write_dev(&hdev->hw, HCLGEVF_VF_RST_ING,
2030 val | HCLGEVF_VF_RST_ING_BIT);
2031 return HCLGEVF_VECTOR0_EVENT_RST;
2032 }
2033
2034 /* check for vector0 mailbox(=CMDQ RX) event source */
2035 if (BIT(HCLGEVF_VECTOR0_RX_CMDQ_INT_B) & cmdq_stat_reg) {
2036 /* for revision 0x21, clearing interrupt is writing bit 0
2037 * to the clear register, writing bit 1 means to keep the
2038 * old value.
2039 * for revision 0x20, the clear register is a read & write
2040 * register, so we should just write 0 to the bit we are
2041 * handling, and keep other bits as cmdq_stat_reg.
2042 */
2043 if (hdev->ae_dev->dev_version >= HNAE3_DEVICE_VERSION_V2)
2044 *clearval = ~(1U << HCLGEVF_VECTOR0_RX_CMDQ_INT_B);
2045 else
2046 *clearval = cmdq_stat_reg &
2047 ~BIT(HCLGEVF_VECTOR0_RX_CMDQ_INT_B);
2048
2049 return HCLGEVF_VECTOR0_EVENT_MBX;
2050 }
2051
2052 /* print other vector0 event source */
2053 dev_info(&hdev->pdev->dev,
2054 "vector 0 interrupt from unknown source, cmdq_src = %#x\n",
2055 cmdq_stat_reg);
2056
2057 return HCLGEVF_VECTOR0_EVENT_OTHER;
2058 }
2059
hclgevf_reset_timer(struct timer_list * t)2060 static void hclgevf_reset_timer(struct timer_list *t)
2061 {
2062 struct hclgevf_dev *hdev = from_timer(hdev, t, reset_timer);
2063
2064 hclgevf_clear_event_cause(hdev, HCLGEVF_VECTOR0_EVENT_RST);
2065 hclgevf_reset_task_schedule(hdev);
2066 }
2067
hclgevf_misc_irq_handle(int irq,void * data)2068 static irqreturn_t hclgevf_misc_irq_handle(int irq, void *data)
2069 {
2070 #define HCLGEVF_RESET_DELAY 5
2071
2072 enum hclgevf_evt_cause event_cause;
2073 struct hclgevf_dev *hdev = data;
2074 u32 clearval;
2075
2076 hclgevf_enable_vector(&hdev->misc_vector, false);
2077 event_cause = hclgevf_check_evt_cause(hdev, &clearval);
2078 if (event_cause != HCLGEVF_VECTOR0_EVENT_OTHER)
2079 hclgevf_clear_event_cause(hdev, clearval);
2080
2081 switch (event_cause) {
2082 case HCLGEVF_VECTOR0_EVENT_RST:
2083 mod_timer(&hdev->reset_timer,
2084 jiffies + msecs_to_jiffies(HCLGEVF_RESET_DELAY));
2085 break;
2086 case HCLGEVF_VECTOR0_EVENT_MBX:
2087 hclgevf_mbx_handler(hdev);
2088 break;
2089 default:
2090 break;
2091 }
2092
2093 hclgevf_enable_vector(&hdev->misc_vector, true);
2094
2095 return IRQ_HANDLED;
2096 }
2097
hclgevf_configure(struct hclgevf_dev * hdev)2098 static int hclgevf_configure(struct hclgevf_dev *hdev)
2099 {
2100 int ret;
2101
2102 hdev->gro_en = true;
2103
2104 ret = hclgevf_get_basic_info(hdev);
2105 if (ret)
2106 return ret;
2107
2108 /* get current port based vlan state from PF */
2109 ret = hclgevf_get_port_base_vlan_filter_state(hdev);
2110 if (ret)
2111 return ret;
2112
2113 /* get queue configuration from PF */
2114 ret = hclgevf_get_queue_info(hdev);
2115 if (ret)
2116 return ret;
2117
2118 /* get queue depth info from PF */
2119 ret = hclgevf_get_queue_depth(hdev);
2120 if (ret)
2121 return ret;
2122
2123 return hclgevf_get_pf_media_type(hdev);
2124 }
2125
hclgevf_alloc_hdev(struct hnae3_ae_dev * ae_dev)2126 static int hclgevf_alloc_hdev(struct hnae3_ae_dev *ae_dev)
2127 {
2128 struct pci_dev *pdev = ae_dev->pdev;
2129 struct hclgevf_dev *hdev;
2130
2131 hdev = devm_kzalloc(&pdev->dev, sizeof(*hdev), GFP_KERNEL);
2132 if (!hdev)
2133 return -ENOMEM;
2134
2135 hdev->pdev = pdev;
2136 hdev->ae_dev = ae_dev;
2137 ae_dev->priv = hdev;
2138
2139 return 0;
2140 }
2141
hclgevf_init_roce_base_info(struct hclgevf_dev * hdev)2142 static int hclgevf_init_roce_base_info(struct hclgevf_dev *hdev)
2143 {
2144 struct hnae3_handle *roce = &hdev->roce;
2145 struct hnae3_handle *nic = &hdev->nic;
2146
2147 roce->rinfo.num_vectors = hdev->num_roce_msix;
2148
2149 if (hdev->num_msi_left < roce->rinfo.num_vectors ||
2150 hdev->num_msi_left == 0)
2151 return -EINVAL;
2152
2153 roce->rinfo.base_vector = hdev->roce_base_msix_offset;
2154
2155 roce->rinfo.netdev = nic->kinfo.netdev;
2156 roce->rinfo.roce_io_base = hdev->hw.hw.io_base;
2157 roce->rinfo.roce_mem_base = hdev->hw.hw.mem_base;
2158
2159 roce->pdev = nic->pdev;
2160 roce->ae_algo = nic->ae_algo;
2161 bitmap_copy(roce->numa_node_mask.bits, nic->numa_node_mask.bits,
2162 MAX_NUMNODES);
2163 return 0;
2164 }
2165
hclgevf_config_gro(struct hclgevf_dev * hdev)2166 static int hclgevf_config_gro(struct hclgevf_dev *hdev)
2167 {
2168 struct hclgevf_cfg_gro_status_cmd *req;
2169 struct hclge_desc desc;
2170 int ret;
2171
2172 if (!hnae3_ae_dev_gro_supported(hdev->ae_dev))
2173 return 0;
2174
2175 hclgevf_cmd_setup_basic_desc(&desc, HCLGE_OPC_GRO_GENERIC_CONFIG,
2176 false);
2177 req = (struct hclgevf_cfg_gro_status_cmd *)desc.data;
2178
2179 req->gro_en = hdev->gro_en ? 1 : 0;
2180
2181 ret = hclgevf_cmd_send(&hdev->hw, &desc, 1);
2182 if (ret)
2183 dev_err(&hdev->pdev->dev,
2184 "VF GRO hardware config cmd failed, ret = %d.\n", ret);
2185
2186 return ret;
2187 }
2188
hclgevf_rss_init_hw(struct hclgevf_dev * hdev)2189 static int hclgevf_rss_init_hw(struct hclgevf_dev *hdev)
2190 {
2191 struct hclge_comm_rss_cfg *rss_cfg = &hdev->rss_cfg;
2192 u16 tc_offset[HCLGE_COMM_MAX_TC_NUM];
2193 u16 tc_valid[HCLGE_COMM_MAX_TC_NUM];
2194 u16 tc_size[HCLGE_COMM_MAX_TC_NUM];
2195 int ret;
2196
2197 if (hdev->ae_dev->dev_version >= HNAE3_DEVICE_VERSION_V2) {
2198 ret = hclge_comm_set_rss_algo_key(&hdev->hw.hw,
2199 rss_cfg->rss_algo,
2200 rss_cfg->rss_hash_key);
2201 if (ret)
2202 return ret;
2203
2204 ret = hclge_comm_set_rss_input_tuple(&hdev->hw.hw, rss_cfg);
2205 if (ret)
2206 return ret;
2207 }
2208
2209 ret = hclge_comm_set_rss_indir_table(hdev->ae_dev, &hdev->hw.hw,
2210 rss_cfg->rss_indirection_tbl);
2211 if (ret)
2212 return ret;
2213
2214 hclge_comm_get_rss_tc_info(rss_cfg->rss_size, hdev->hw_tc_map,
2215 tc_offset, tc_valid, tc_size);
2216
2217 return hclge_comm_set_rss_tc_mode(&hdev->hw.hw, tc_offset,
2218 tc_valid, tc_size);
2219 }
2220
hclgevf_init_vlan_config(struct hclgevf_dev * hdev,bool rxvtag_strip_en)2221 static int hclgevf_init_vlan_config(struct hclgevf_dev *hdev,
2222 bool rxvtag_strip_en)
2223 {
2224 struct hnae3_handle *nic = &hdev->nic;
2225 int ret;
2226
2227 ret = hclgevf_en_hw_strip_rxvtag(nic, rxvtag_strip_en);
2228 if (ret) {
2229 dev_err(&hdev->pdev->dev,
2230 "failed to enable rx vlan offload, ret = %d\n", ret);
2231 return ret;
2232 }
2233
2234 return hclgevf_set_vlan_filter(&hdev->nic, htons(ETH_P_8021Q), 0,
2235 false);
2236 }
2237
hclgevf_flush_link_update(struct hclgevf_dev * hdev)2238 static void hclgevf_flush_link_update(struct hclgevf_dev *hdev)
2239 {
2240 #define HCLGEVF_FLUSH_LINK_TIMEOUT 100000
2241
2242 unsigned long last = hdev->serv_processed_cnt;
2243 int i = 0;
2244
2245 while (test_bit(HCLGEVF_STATE_LINK_UPDATING, &hdev->state) &&
2246 i++ < HCLGEVF_FLUSH_LINK_TIMEOUT &&
2247 last == hdev->serv_processed_cnt)
2248 usleep_range(1, 1);
2249 }
2250
hclgevf_set_timer_task(struct hnae3_handle * handle,bool enable)2251 static void hclgevf_set_timer_task(struct hnae3_handle *handle, bool enable)
2252 {
2253 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2254
2255 if (enable) {
2256 hclgevf_task_schedule(hdev, 0);
2257 } else {
2258 set_bit(HCLGEVF_STATE_DOWN, &hdev->state);
2259
2260 smp_mb__after_atomic(); /* flush memory to make sure DOWN is seen by service task */
2261 hclgevf_flush_link_update(hdev);
2262 }
2263 }
2264
hclgevf_ae_start(struct hnae3_handle * handle)2265 static int hclgevf_ae_start(struct hnae3_handle *handle)
2266 {
2267 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2268
2269 clear_bit(HCLGEVF_STATE_DOWN, &hdev->state);
2270 clear_bit(HCLGEVF_STATE_PF_PUSH_LINK_STATUS, &hdev->state);
2271
2272 hclge_comm_reset_tqp_stats(handle);
2273
2274 hclgevf_request_link_info(hdev);
2275
2276 hclgevf_update_link_mode(hdev);
2277
2278 return 0;
2279 }
2280
hclgevf_ae_stop(struct hnae3_handle * handle)2281 static void hclgevf_ae_stop(struct hnae3_handle *handle)
2282 {
2283 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2284
2285 set_bit(HCLGEVF_STATE_DOWN, &hdev->state);
2286
2287 if (hdev->reset_type != HNAE3_VF_RESET)
2288 hclgevf_reset_tqp(handle);
2289
2290 hclge_comm_reset_tqp_stats(handle);
2291 hclgevf_update_link_status(hdev, 0);
2292 }
2293
hclgevf_set_alive(struct hnae3_handle * handle,bool alive)2294 static int hclgevf_set_alive(struct hnae3_handle *handle, bool alive)
2295 {
2296 #define HCLGEVF_STATE_ALIVE 1
2297 #define HCLGEVF_STATE_NOT_ALIVE 0
2298
2299 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2300 struct hclge_vf_to_pf_msg send_msg;
2301
2302 hclgevf_build_send_msg(&send_msg, HCLGE_MBX_SET_ALIVE, 0);
2303 send_msg.data[0] = alive ? HCLGEVF_STATE_ALIVE :
2304 HCLGEVF_STATE_NOT_ALIVE;
2305 return hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0);
2306 }
2307
hclgevf_client_start(struct hnae3_handle * handle)2308 static int hclgevf_client_start(struct hnae3_handle *handle)
2309 {
2310 return hclgevf_set_alive(handle, true);
2311 }
2312
hclgevf_client_stop(struct hnae3_handle * handle)2313 static void hclgevf_client_stop(struct hnae3_handle *handle)
2314 {
2315 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2316 int ret;
2317
2318 ret = hclgevf_set_alive(handle, false);
2319 if (ret)
2320 dev_warn(&hdev->pdev->dev,
2321 "%s failed %d\n", __func__, ret);
2322 }
2323
hclgevf_state_init(struct hclgevf_dev * hdev)2324 static void hclgevf_state_init(struct hclgevf_dev *hdev)
2325 {
2326 clear_bit(HCLGEVF_STATE_MBX_SERVICE_SCHED, &hdev->state);
2327 clear_bit(HCLGEVF_STATE_MBX_HANDLING, &hdev->state);
2328 clear_bit(HCLGEVF_STATE_RST_FAIL, &hdev->state);
2329
2330 INIT_DELAYED_WORK(&hdev->service_task, hclgevf_service_task);
2331 /* timer needs to be initialized before misc irq */
2332 timer_setup(&hdev->reset_timer, hclgevf_reset_timer, 0);
2333
2334 mutex_init(&hdev->mbx_resp.mbx_mutex);
2335 sema_init(&hdev->reset_sem, 1);
2336
2337 spin_lock_init(&hdev->mac_table.mac_list_lock);
2338 INIT_LIST_HEAD(&hdev->mac_table.uc_mac_list);
2339 INIT_LIST_HEAD(&hdev->mac_table.mc_mac_list);
2340
2341 /* bring the device down */
2342 set_bit(HCLGEVF_STATE_DOWN, &hdev->state);
2343 }
2344
hclgevf_state_uninit(struct hclgevf_dev * hdev)2345 static void hclgevf_state_uninit(struct hclgevf_dev *hdev)
2346 {
2347 set_bit(HCLGEVF_STATE_DOWN, &hdev->state);
2348 set_bit(HCLGEVF_STATE_REMOVING, &hdev->state);
2349
2350 if (hdev->service_task.work.func)
2351 cancel_delayed_work_sync(&hdev->service_task);
2352
2353 mutex_destroy(&hdev->mbx_resp.mbx_mutex);
2354 }
2355
hclgevf_init_msi(struct hclgevf_dev * hdev)2356 static int hclgevf_init_msi(struct hclgevf_dev *hdev)
2357 {
2358 struct pci_dev *pdev = hdev->pdev;
2359 int vectors;
2360 int i;
2361
2362 if (hnae3_dev_roce_supported(hdev))
2363 vectors = pci_alloc_irq_vectors(pdev,
2364 hdev->roce_base_msix_offset + 1,
2365 hdev->num_msi,
2366 PCI_IRQ_MSIX);
2367 else
2368 vectors = pci_alloc_irq_vectors(pdev, HNAE3_MIN_VECTOR_NUM,
2369 hdev->num_msi,
2370 PCI_IRQ_MSI | PCI_IRQ_MSIX);
2371
2372 if (vectors < 0) {
2373 dev_err(&pdev->dev,
2374 "failed(%d) to allocate MSI/MSI-X vectors\n",
2375 vectors);
2376 return vectors;
2377 }
2378 if (vectors < hdev->num_msi)
2379 dev_warn(&hdev->pdev->dev,
2380 "requested %u MSI/MSI-X, but allocated %d MSI/MSI-X\n",
2381 hdev->num_msi, vectors);
2382
2383 hdev->num_msi = vectors;
2384 hdev->num_msi_left = vectors;
2385
2386 hdev->vector_status = devm_kcalloc(&pdev->dev, hdev->num_msi,
2387 sizeof(u16), GFP_KERNEL);
2388 if (!hdev->vector_status) {
2389 pci_free_irq_vectors(pdev);
2390 return -ENOMEM;
2391 }
2392
2393 for (i = 0; i < hdev->num_msi; i++)
2394 hdev->vector_status[i] = HCLGEVF_INVALID_VPORT;
2395
2396 hdev->vector_irq = devm_kcalloc(&pdev->dev, hdev->num_msi,
2397 sizeof(int), GFP_KERNEL);
2398 if (!hdev->vector_irq) {
2399 devm_kfree(&pdev->dev, hdev->vector_status);
2400 pci_free_irq_vectors(pdev);
2401 return -ENOMEM;
2402 }
2403
2404 return 0;
2405 }
2406
hclgevf_uninit_msi(struct hclgevf_dev * hdev)2407 static void hclgevf_uninit_msi(struct hclgevf_dev *hdev)
2408 {
2409 struct pci_dev *pdev = hdev->pdev;
2410
2411 devm_kfree(&pdev->dev, hdev->vector_status);
2412 devm_kfree(&pdev->dev, hdev->vector_irq);
2413 pci_free_irq_vectors(pdev);
2414 }
2415
hclgevf_misc_irq_init(struct hclgevf_dev * hdev)2416 static int hclgevf_misc_irq_init(struct hclgevf_dev *hdev)
2417 {
2418 int ret;
2419
2420 hclgevf_get_misc_vector(hdev);
2421
2422 snprintf(hdev->misc_vector.name, HNAE3_INT_NAME_LEN, "%s-misc-%s",
2423 HCLGEVF_NAME, pci_name(hdev->pdev));
2424 ret = request_irq(hdev->misc_vector.vector_irq, hclgevf_misc_irq_handle,
2425 0, hdev->misc_vector.name, hdev);
2426 if (ret) {
2427 dev_err(&hdev->pdev->dev, "VF failed to request misc irq(%d)\n",
2428 hdev->misc_vector.vector_irq);
2429 return ret;
2430 }
2431
2432 hclgevf_clear_event_cause(hdev, 0);
2433
2434 /* enable misc. vector(vector 0) */
2435 hclgevf_enable_vector(&hdev->misc_vector, true);
2436
2437 return ret;
2438 }
2439
hclgevf_misc_irq_uninit(struct hclgevf_dev * hdev)2440 static void hclgevf_misc_irq_uninit(struct hclgevf_dev *hdev)
2441 {
2442 /* disable misc vector(vector 0) */
2443 hclgevf_enable_vector(&hdev->misc_vector, false);
2444 synchronize_irq(hdev->misc_vector.vector_irq);
2445 free_irq(hdev->misc_vector.vector_irq, hdev);
2446 hclgevf_free_vector(hdev, 0);
2447 }
2448
hclgevf_info_show(struct hclgevf_dev * hdev)2449 static void hclgevf_info_show(struct hclgevf_dev *hdev)
2450 {
2451 struct device *dev = &hdev->pdev->dev;
2452
2453 dev_info(dev, "VF info begin:\n");
2454
2455 dev_info(dev, "Task queue pairs numbers: %u\n", hdev->num_tqps);
2456 dev_info(dev, "Desc num per TX queue: %u\n", hdev->num_tx_desc);
2457 dev_info(dev, "Desc num per RX queue: %u\n", hdev->num_rx_desc);
2458 dev_info(dev, "Numbers of vports: %u\n", hdev->num_alloc_vport);
2459 dev_info(dev, "HW tc map: 0x%x\n", hdev->hw_tc_map);
2460 dev_info(dev, "PF media type of this VF: %u\n",
2461 hdev->hw.mac.media_type);
2462
2463 dev_info(dev, "VF info end.\n");
2464 }
2465
hclgevf_init_nic_client_instance(struct hnae3_ae_dev * ae_dev,struct hnae3_client * client)2466 static int hclgevf_init_nic_client_instance(struct hnae3_ae_dev *ae_dev,
2467 struct hnae3_client *client)
2468 {
2469 struct hclgevf_dev *hdev = ae_dev->priv;
2470 int rst_cnt = hdev->rst_stats.rst_cnt;
2471 int ret;
2472
2473 ret = client->ops->init_instance(&hdev->nic);
2474 if (ret)
2475 return ret;
2476
2477 set_bit(HCLGEVF_STATE_NIC_REGISTERED, &hdev->state);
2478 if (test_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state) ||
2479 rst_cnt != hdev->rst_stats.rst_cnt) {
2480 clear_bit(HCLGEVF_STATE_NIC_REGISTERED, &hdev->state);
2481
2482 client->ops->uninit_instance(&hdev->nic, 0);
2483 return -EBUSY;
2484 }
2485
2486 hnae3_set_client_init_flag(client, ae_dev, 1);
2487
2488 if (netif_msg_drv(&hdev->nic))
2489 hclgevf_info_show(hdev);
2490
2491 return 0;
2492 }
2493
hclgevf_init_roce_client_instance(struct hnae3_ae_dev * ae_dev,struct hnae3_client * client)2494 static int hclgevf_init_roce_client_instance(struct hnae3_ae_dev *ae_dev,
2495 struct hnae3_client *client)
2496 {
2497 struct hclgevf_dev *hdev = ae_dev->priv;
2498 int ret;
2499
2500 if (!hnae3_dev_roce_supported(hdev) || !hdev->roce_client ||
2501 !hdev->nic_client)
2502 return 0;
2503
2504 ret = hclgevf_init_roce_base_info(hdev);
2505 if (ret)
2506 return ret;
2507
2508 ret = client->ops->init_instance(&hdev->roce);
2509 if (ret)
2510 return ret;
2511
2512 set_bit(HCLGEVF_STATE_ROCE_REGISTERED, &hdev->state);
2513 hnae3_set_client_init_flag(client, ae_dev, 1);
2514
2515 return 0;
2516 }
2517
hclgevf_init_client_instance(struct hnae3_client * client,struct hnae3_ae_dev * ae_dev)2518 static int hclgevf_init_client_instance(struct hnae3_client *client,
2519 struct hnae3_ae_dev *ae_dev)
2520 {
2521 struct hclgevf_dev *hdev = ae_dev->priv;
2522 int ret;
2523
2524 switch (client->type) {
2525 case HNAE3_CLIENT_KNIC:
2526 hdev->nic_client = client;
2527 hdev->nic.client = client;
2528
2529 ret = hclgevf_init_nic_client_instance(ae_dev, client);
2530 if (ret)
2531 goto clear_nic;
2532
2533 ret = hclgevf_init_roce_client_instance(ae_dev,
2534 hdev->roce_client);
2535 if (ret)
2536 goto clear_roce;
2537
2538 break;
2539 case HNAE3_CLIENT_ROCE:
2540 if (hnae3_dev_roce_supported(hdev)) {
2541 hdev->roce_client = client;
2542 hdev->roce.client = client;
2543 }
2544
2545 ret = hclgevf_init_roce_client_instance(ae_dev, client);
2546 if (ret)
2547 goto clear_roce;
2548
2549 break;
2550 default:
2551 return -EINVAL;
2552 }
2553
2554 return 0;
2555
2556 clear_nic:
2557 hdev->nic_client = NULL;
2558 hdev->nic.client = NULL;
2559 return ret;
2560 clear_roce:
2561 hdev->roce_client = NULL;
2562 hdev->roce.client = NULL;
2563 return ret;
2564 }
2565
hclgevf_uninit_client_instance(struct hnae3_client * client,struct hnae3_ae_dev * ae_dev)2566 static void hclgevf_uninit_client_instance(struct hnae3_client *client,
2567 struct hnae3_ae_dev *ae_dev)
2568 {
2569 struct hclgevf_dev *hdev = ae_dev->priv;
2570
2571 /* un-init roce, if it exists */
2572 if (hdev->roce_client) {
2573 while (test_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state))
2574 msleep(HCLGEVF_WAIT_RESET_DONE);
2575 clear_bit(HCLGEVF_STATE_ROCE_REGISTERED, &hdev->state);
2576
2577 hdev->roce_client->ops->uninit_instance(&hdev->roce, 0);
2578 hdev->roce_client = NULL;
2579 hdev->roce.client = NULL;
2580 }
2581
2582 /* un-init nic/unic, if this was not called by roce client */
2583 if (client->ops->uninit_instance && hdev->nic_client &&
2584 client->type != HNAE3_CLIENT_ROCE) {
2585 while (test_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state))
2586 msleep(HCLGEVF_WAIT_RESET_DONE);
2587 clear_bit(HCLGEVF_STATE_NIC_REGISTERED, &hdev->state);
2588
2589 client->ops->uninit_instance(&hdev->nic, 0);
2590 hdev->nic_client = NULL;
2591 hdev->nic.client = NULL;
2592 }
2593 }
2594
hclgevf_dev_mem_map(struct hclgevf_dev * hdev)2595 static int hclgevf_dev_mem_map(struct hclgevf_dev *hdev)
2596 {
2597 struct pci_dev *pdev = hdev->pdev;
2598 struct hclgevf_hw *hw = &hdev->hw;
2599
2600 /* for device does not have device memory, return directly */
2601 if (!(pci_select_bars(pdev, IORESOURCE_MEM) & BIT(HCLGEVF_MEM_BAR)))
2602 return 0;
2603
2604 hw->hw.mem_base =
2605 devm_ioremap_wc(&pdev->dev,
2606 pci_resource_start(pdev, HCLGEVF_MEM_BAR),
2607 pci_resource_len(pdev, HCLGEVF_MEM_BAR));
2608 if (!hw->hw.mem_base) {
2609 dev_err(&pdev->dev, "failed to map device memory\n");
2610 return -EFAULT;
2611 }
2612
2613 return 0;
2614 }
2615
hclgevf_pci_init(struct hclgevf_dev * hdev)2616 static int hclgevf_pci_init(struct hclgevf_dev *hdev)
2617 {
2618 struct pci_dev *pdev = hdev->pdev;
2619 struct hclgevf_hw *hw;
2620 int ret;
2621
2622 ret = pci_enable_device(pdev);
2623 if (ret) {
2624 dev_err(&pdev->dev, "failed to enable PCI device\n");
2625 return ret;
2626 }
2627
2628 ret = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
2629 if (ret) {
2630 dev_err(&pdev->dev, "can't set consistent PCI DMA, exiting");
2631 goto err_disable_device;
2632 }
2633
2634 ret = pci_request_regions(pdev, HCLGEVF_DRIVER_NAME);
2635 if (ret) {
2636 dev_err(&pdev->dev, "PCI request regions failed %d\n", ret);
2637 goto err_disable_device;
2638 }
2639
2640 pci_set_master(pdev);
2641 hw = &hdev->hw;
2642 hw->hw.io_base = pci_iomap(pdev, 2, 0);
2643 if (!hw->hw.io_base) {
2644 dev_err(&pdev->dev, "can't map configuration register space\n");
2645 ret = -ENOMEM;
2646 goto err_release_regions;
2647 }
2648
2649 ret = hclgevf_dev_mem_map(hdev);
2650 if (ret)
2651 goto err_unmap_io_base;
2652
2653 return 0;
2654
2655 err_unmap_io_base:
2656 pci_iounmap(pdev, hdev->hw.hw.io_base);
2657 err_release_regions:
2658 pci_release_regions(pdev);
2659 err_disable_device:
2660 pci_disable_device(pdev);
2661
2662 return ret;
2663 }
2664
hclgevf_pci_uninit(struct hclgevf_dev * hdev)2665 static void hclgevf_pci_uninit(struct hclgevf_dev *hdev)
2666 {
2667 struct pci_dev *pdev = hdev->pdev;
2668
2669 if (hdev->hw.hw.mem_base)
2670 devm_iounmap(&pdev->dev, hdev->hw.hw.mem_base);
2671
2672 pci_iounmap(pdev, hdev->hw.hw.io_base);
2673 pci_release_regions(pdev);
2674 pci_disable_device(pdev);
2675 }
2676
hclgevf_query_vf_resource(struct hclgevf_dev * hdev)2677 static int hclgevf_query_vf_resource(struct hclgevf_dev *hdev)
2678 {
2679 struct hclgevf_query_res_cmd *req;
2680 struct hclge_desc desc;
2681 int ret;
2682
2683 hclgevf_cmd_setup_basic_desc(&desc, HCLGE_OPC_QUERY_VF_RSRC, true);
2684 ret = hclgevf_cmd_send(&hdev->hw, &desc, 1);
2685 if (ret) {
2686 dev_err(&hdev->pdev->dev,
2687 "query vf resource failed, ret = %d.\n", ret);
2688 return ret;
2689 }
2690
2691 req = (struct hclgevf_query_res_cmd *)desc.data;
2692
2693 if (hnae3_dev_roce_supported(hdev)) {
2694 hdev->roce_base_msix_offset =
2695 hnae3_get_field(le16_to_cpu(req->msixcap_localid_ba_rocee),
2696 HCLGEVF_MSIX_OFT_ROCEE_M,
2697 HCLGEVF_MSIX_OFT_ROCEE_S);
2698 hdev->num_roce_msix =
2699 hnae3_get_field(le16_to_cpu(req->vf_intr_vector_number),
2700 HCLGEVF_VEC_NUM_M, HCLGEVF_VEC_NUM_S);
2701
2702 /* nic's msix numbers is always equals to the roce's. */
2703 hdev->num_nic_msix = hdev->num_roce_msix;
2704
2705 /* VF should have NIC vectors and Roce vectors, NIC vectors
2706 * are queued before Roce vectors. The offset is fixed to 64.
2707 */
2708 hdev->num_msi = hdev->num_roce_msix +
2709 hdev->roce_base_msix_offset;
2710 } else {
2711 hdev->num_msi =
2712 hnae3_get_field(le16_to_cpu(req->vf_intr_vector_number),
2713 HCLGEVF_VEC_NUM_M, HCLGEVF_VEC_NUM_S);
2714
2715 hdev->num_nic_msix = hdev->num_msi;
2716 }
2717
2718 if (hdev->num_nic_msix < HNAE3_MIN_VECTOR_NUM) {
2719 dev_err(&hdev->pdev->dev,
2720 "Just %u msi resources, not enough for vf(min:2).\n",
2721 hdev->num_nic_msix);
2722 return -EINVAL;
2723 }
2724
2725 return 0;
2726 }
2727
hclgevf_set_default_dev_specs(struct hclgevf_dev * hdev)2728 static void hclgevf_set_default_dev_specs(struct hclgevf_dev *hdev)
2729 {
2730 #define HCLGEVF_MAX_NON_TSO_BD_NUM 8U
2731
2732 struct hnae3_ae_dev *ae_dev = pci_get_drvdata(hdev->pdev);
2733
2734 ae_dev->dev_specs.max_non_tso_bd_num =
2735 HCLGEVF_MAX_NON_TSO_BD_NUM;
2736 ae_dev->dev_specs.rss_ind_tbl_size = HCLGEVF_RSS_IND_TBL_SIZE;
2737 ae_dev->dev_specs.rss_key_size = HCLGE_COMM_RSS_KEY_SIZE;
2738 ae_dev->dev_specs.max_int_gl = HCLGEVF_DEF_MAX_INT_GL;
2739 ae_dev->dev_specs.max_frm_size = HCLGEVF_MAC_MAX_FRAME;
2740 }
2741
hclgevf_parse_dev_specs(struct hclgevf_dev * hdev,struct hclge_desc * desc)2742 static void hclgevf_parse_dev_specs(struct hclgevf_dev *hdev,
2743 struct hclge_desc *desc)
2744 {
2745 struct hnae3_ae_dev *ae_dev = pci_get_drvdata(hdev->pdev);
2746 struct hclgevf_dev_specs_0_cmd *req0;
2747 struct hclgevf_dev_specs_1_cmd *req1;
2748
2749 req0 = (struct hclgevf_dev_specs_0_cmd *)desc[0].data;
2750 req1 = (struct hclgevf_dev_specs_1_cmd *)desc[1].data;
2751
2752 ae_dev->dev_specs.max_non_tso_bd_num = req0->max_non_tso_bd_num;
2753 ae_dev->dev_specs.rss_ind_tbl_size =
2754 le16_to_cpu(req0->rss_ind_tbl_size);
2755 ae_dev->dev_specs.int_ql_max = le16_to_cpu(req0->int_ql_max);
2756 ae_dev->dev_specs.rss_key_size = le16_to_cpu(req0->rss_key_size);
2757 ae_dev->dev_specs.max_int_gl = le16_to_cpu(req1->max_int_gl);
2758 ae_dev->dev_specs.max_frm_size = le16_to_cpu(req1->max_frm_size);
2759 }
2760
hclgevf_check_dev_specs(struct hclgevf_dev * hdev)2761 static void hclgevf_check_dev_specs(struct hclgevf_dev *hdev)
2762 {
2763 struct hnae3_dev_specs *dev_specs = &hdev->ae_dev->dev_specs;
2764
2765 if (!dev_specs->max_non_tso_bd_num)
2766 dev_specs->max_non_tso_bd_num = HCLGEVF_MAX_NON_TSO_BD_NUM;
2767 if (!dev_specs->rss_ind_tbl_size)
2768 dev_specs->rss_ind_tbl_size = HCLGEVF_RSS_IND_TBL_SIZE;
2769 if (!dev_specs->rss_key_size)
2770 dev_specs->rss_key_size = HCLGE_COMM_RSS_KEY_SIZE;
2771 if (!dev_specs->max_int_gl)
2772 dev_specs->max_int_gl = HCLGEVF_DEF_MAX_INT_GL;
2773 if (!dev_specs->max_frm_size)
2774 dev_specs->max_frm_size = HCLGEVF_MAC_MAX_FRAME;
2775 }
2776
hclgevf_query_dev_specs(struct hclgevf_dev * hdev)2777 static int hclgevf_query_dev_specs(struct hclgevf_dev *hdev)
2778 {
2779 struct hclge_desc desc[HCLGEVF_QUERY_DEV_SPECS_BD_NUM];
2780 int ret;
2781 int i;
2782
2783 /* set default specifications as devices lower than version V3 do not
2784 * support querying specifications from firmware.
2785 */
2786 if (hdev->ae_dev->dev_version < HNAE3_DEVICE_VERSION_V3) {
2787 hclgevf_set_default_dev_specs(hdev);
2788 return 0;
2789 }
2790
2791 for (i = 0; i < HCLGEVF_QUERY_DEV_SPECS_BD_NUM - 1; i++) {
2792 hclgevf_cmd_setup_basic_desc(&desc[i],
2793 HCLGE_OPC_QUERY_DEV_SPECS, true);
2794 desc[i].flag |= cpu_to_le16(HCLGE_COMM_CMD_FLAG_NEXT);
2795 }
2796 hclgevf_cmd_setup_basic_desc(&desc[i], HCLGE_OPC_QUERY_DEV_SPECS, true);
2797
2798 ret = hclgevf_cmd_send(&hdev->hw, desc, HCLGEVF_QUERY_DEV_SPECS_BD_NUM);
2799 if (ret)
2800 return ret;
2801
2802 hclgevf_parse_dev_specs(hdev, desc);
2803 hclgevf_check_dev_specs(hdev);
2804
2805 return 0;
2806 }
2807
hclgevf_pci_reset(struct hclgevf_dev * hdev)2808 static int hclgevf_pci_reset(struct hclgevf_dev *hdev)
2809 {
2810 struct pci_dev *pdev = hdev->pdev;
2811 int ret = 0;
2812
2813 if ((hdev->reset_type == HNAE3_VF_FULL_RESET ||
2814 hdev->reset_type == HNAE3_FLR_RESET) &&
2815 test_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state)) {
2816 hclgevf_misc_irq_uninit(hdev);
2817 hclgevf_uninit_msi(hdev);
2818 clear_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state);
2819 }
2820
2821 if (!test_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state)) {
2822 pci_set_master(pdev);
2823 ret = hclgevf_init_msi(hdev);
2824 if (ret) {
2825 dev_err(&pdev->dev,
2826 "failed(%d) to init MSI/MSI-X\n", ret);
2827 return ret;
2828 }
2829
2830 ret = hclgevf_misc_irq_init(hdev);
2831 if (ret) {
2832 hclgevf_uninit_msi(hdev);
2833 dev_err(&pdev->dev, "failed(%d) to init Misc IRQ(vector0)\n",
2834 ret);
2835 return ret;
2836 }
2837
2838 set_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state);
2839 }
2840
2841 return ret;
2842 }
2843
hclgevf_clear_vport_list(struct hclgevf_dev * hdev)2844 static int hclgevf_clear_vport_list(struct hclgevf_dev *hdev)
2845 {
2846 struct hclge_vf_to_pf_msg send_msg;
2847
2848 hclgevf_build_send_msg(&send_msg, HCLGE_MBX_HANDLE_VF_TBL,
2849 HCLGE_MBX_VPORT_LIST_CLEAR);
2850 return hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0);
2851 }
2852
hclgevf_init_rxd_adv_layout(struct hclgevf_dev * hdev)2853 static void hclgevf_init_rxd_adv_layout(struct hclgevf_dev *hdev)
2854 {
2855 if (hnae3_ae_dev_rxd_adv_layout_supported(hdev->ae_dev))
2856 hclgevf_write_dev(&hdev->hw, HCLGEVF_RXD_ADV_LAYOUT_EN_REG, 1);
2857 }
2858
hclgevf_uninit_rxd_adv_layout(struct hclgevf_dev * hdev)2859 static void hclgevf_uninit_rxd_adv_layout(struct hclgevf_dev *hdev)
2860 {
2861 if (hnae3_ae_dev_rxd_adv_layout_supported(hdev->ae_dev))
2862 hclgevf_write_dev(&hdev->hw, HCLGEVF_RXD_ADV_LAYOUT_EN_REG, 0);
2863 }
2864
hclgevf_reset_hdev(struct hclgevf_dev * hdev)2865 static int hclgevf_reset_hdev(struct hclgevf_dev *hdev)
2866 {
2867 struct pci_dev *pdev = hdev->pdev;
2868 int ret;
2869
2870 ret = hclgevf_pci_reset(hdev);
2871 if (ret) {
2872 dev_err(&pdev->dev, "pci reset failed %d\n", ret);
2873 return ret;
2874 }
2875
2876 hclgevf_arq_init(hdev);
2877
2878 ret = hclge_comm_cmd_init(hdev->ae_dev, &hdev->hw.hw,
2879 &hdev->fw_version, false,
2880 hdev->reset_pending);
2881 if (ret) {
2882 dev_err(&pdev->dev, "cmd failed %d\n", ret);
2883 return ret;
2884 }
2885
2886 ret = hclgevf_rss_init_hw(hdev);
2887 if (ret) {
2888 dev_err(&hdev->pdev->dev,
2889 "failed(%d) to initialize RSS\n", ret);
2890 return ret;
2891 }
2892
2893 ret = hclgevf_config_gro(hdev);
2894 if (ret)
2895 return ret;
2896
2897 ret = hclgevf_init_vlan_config(hdev, hdev->rxvtag_strip_en);
2898 if (ret) {
2899 dev_err(&hdev->pdev->dev,
2900 "failed(%d) to initialize VLAN config\n", ret);
2901 return ret;
2902 }
2903
2904 /* get current port based vlan state from PF */
2905 ret = hclgevf_get_port_base_vlan_filter_state(hdev);
2906 if (ret)
2907 return ret;
2908
2909 set_bit(HCLGEVF_STATE_PROMISC_CHANGED, &hdev->state);
2910
2911 hclgevf_init_rxd_adv_layout(hdev);
2912
2913 dev_info(&hdev->pdev->dev, "Reset done\n");
2914
2915 return 0;
2916 }
2917
hclgevf_init_hdev(struct hclgevf_dev * hdev)2918 static int hclgevf_init_hdev(struct hclgevf_dev *hdev)
2919 {
2920 struct pci_dev *pdev = hdev->pdev;
2921 int ret;
2922
2923 ret = hclgevf_pci_init(hdev);
2924 if (ret)
2925 return ret;
2926
2927 ret = hclge_comm_cmd_queue_init(hdev->pdev, &hdev->hw.hw);
2928 if (ret)
2929 goto err_cmd_queue_init;
2930
2931 hclgevf_arq_init(hdev);
2932
2933 hclge_comm_cmd_init_ops(&hdev->hw.hw, &hclgevf_cmq_ops);
2934 ret = hclge_comm_cmd_init(hdev->ae_dev, &hdev->hw.hw,
2935 &hdev->fw_version, false,
2936 hdev->reset_pending);
2937 if (ret)
2938 goto err_cmd_init;
2939
2940 /* Get vf resource */
2941 ret = hclgevf_query_vf_resource(hdev);
2942 if (ret)
2943 goto err_cmd_init;
2944
2945 ret = hclgevf_query_dev_specs(hdev);
2946 if (ret) {
2947 dev_err(&pdev->dev,
2948 "failed to query dev specifications, ret = %d\n", ret);
2949 goto err_cmd_init;
2950 }
2951
2952 ret = hclgevf_init_msi(hdev);
2953 if (ret) {
2954 dev_err(&pdev->dev, "failed(%d) to init MSI/MSI-X\n", ret);
2955 goto err_cmd_init;
2956 }
2957
2958 hclgevf_state_init(hdev);
2959 hdev->reset_level = HNAE3_VF_FUNC_RESET;
2960 hdev->reset_type = HNAE3_NONE_RESET;
2961
2962 ret = hclgevf_misc_irq_init(hdev);
2963 if (ret)
2964 goto err_misc_irq_init;
2965
2966 set_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state);
2967
2968 ret = hclgevf_configure(hdev);
2969 if (ret) {
2970 dev_err(&pdev->dev, "failed(%d) to fetch configuration\n", ret);
2971 goto err_config;
2972 }
2973
2974 ret = hclgevf_alloc_tqps(hdev);
2975 if (ret) {
2976 dev_err(&pdev->dev, "failed(%d) to allocate TQPs\n", ret);
2977 goto err_config;
2978 }
2979
2980 ret = hclgevf_set_handle_info(hdev);
2981 if (ret)
2982 goto err_config;
2983
2984 ret = hclgevf_config_gro(hdev);
2985 if (ret)
2986 goto err_config;
2987
2988 /* Initialize RSS for this VF */
2989 ret = hclge_comm_rss_init_cfg(&hdev->nic, hdev->ae_dev,
2990 &hdev->rss_cfg);
2991 if (ret) {
2992 dev_err(&pdev->dev, "failed to init rss cfg, ret = %d\n", ret);
2993 goto err_config;
2994 }
2995
2996 ret = hclgevf_rss_init_hw(hdev);
2997 if (ret) {
2998 dev_err(&hdev->pdev->dev,
2999 "failed(%d) to initialize RSS\n", ret);
3000 goto err_config;
3001 }
3002
3003 /* ensure vf tbl list as empty before init */
3004 ret = hclgevf_clear_vport_list(hdev);
3005 if (ret) {
3006 dev_err(&pdev->dev,
3007 "failed to clear tbl list configuration, ret = %d.\n",
3008 ret);
3009 goto err_config;
3010 }
3011
3012 ret = hclgevf_init_vlan_config(hdev, true);
3013 if (ret) {
3014 dev_err(&hdev->pdev->dev,
3015 "failed(%d) to initialize VLAN config\n", ret);
3016 goto err_config;
3017 }
3018
3019 hclgevf_init_rxd_adv_layout(hdev);
3020
3021 ret = hclgevf_devlink_init(hdev);
3022 if (ret)
3023 goto err_config;
3024
3025 set_bit(HCLGEVF_STATE_SERVICE_INITED, &hdev->state);
3026
3027 hdev->last_reset_time = jiffies;
3028 dev_info(&hdev->pdev->dev, "finished initializing %s driver\n",
3029 HCLGEVF_DRIVER_NAME);
3030
3031 hclgevf_task_schedule(hdev, round_jiffies_relative(HZ));
3032
3033 return 0;
3034
3035 err_config:
3036 hclgevf_misc_irq_uninit(hdev);
3037 err_misc_irq_init:
3038 hclgevf_state_uninit(hdev);
3039 hclgevf_uninit_msi(hdev);
3040 err_cmd_init:
3041 hclge_comm_cmd_uninit(hdev->ae_dev, &hdev->hw.hw);
3042 err_cmd_queue_init:
3043 hclgevf_pci_uninit(hdev);
3044 clear_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state);
3045 return ret;
3046 }
3047
hclgevf_uninit_hdev(struct hclgevf_dev * hdev)3048 static void hclgevf_uninit_hdev(struct hclgevf_dev *hdev)
3049 {
3050 struct hclge_vf_to_pf_msg send_msg;
3051
3052 hclgevf_state_uninit(hdev);
3053 hclgevf_uninit_rxd_adv_layout(hdev);
3054
3055 hclgevf_build_send_msg(&send_msg, HCLGE_MBX_VF_UNINIT, 0);
3056 hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0);
3057
3058 if (test_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state)) {
3059 hclgevf_misc_irq_uninit(hdev);
3060 hclgevf_uninit_msi(hdev);
3061 }
3062
3063 hclge_comm_cmd_uninit(hdev->ae_dev, &hdev->hw.hw);
3064 hclgevf_devlink_uninit(hdev);
3065 hclgevf_pci_uninit(hdev);
3066 hclgevf_uninit_mac_list(hdev);
3067 }
3068
hclgevf_init_ae_dev(struct hnae3_ae_dev * ae_dev)3069 static int hclgevf_init_ae_dev(struct hnae3_ae_dev *ae_dev)
3070 {
3071 struct pci_dev *pdev = ae_dev->pdev;
3072 int ret;
3073
3074 ret = hclgevf_alloc_hdev(ae_dev);
3075 if (ret) {
3076 dev_err(&pdev->dev, "hclge device allocation failed\n");
3077 return ret;
3078 }
3079
3080 ret = hclgevf_init_hdev(ae_dev->priv);
3081 if (ret) {
3082 dev_err(&pdev->dev, "hclge device initialization failed\n");
3083 return ret;
3084 }
3085
3086 return 0;
3087 }
3088
hclgevf_uninit_ae_dev(struct hnae3_ae_dev * ae_dev)3089 static void hclgevf_uninit_ae_dev(struct hnae3_ae_dev *ae_dev)
3090 {
3091 struct hclgevf_dev *hdev = ae_dev->priv;
3092
3093 hclgevf_uninit_hdev(hdev);
3094 ae_dev->priv = NULL;
3095 }
3096
hclgevf_get_max_channels(struct hclgevf_dev * hdev)3097 static u32 hclgevf_get_max_channels(struct hclgevf_dev *hdev)
3098 {
3099 return min(hdev->rss_size_max, hdev->num_tqps);
3100 }
3101
3102 /**
3103 * hclgevf_get_channels - Get the current channels enabled and max supported.
3104 * @handle: hardware information for network interface
3105 * @ch: ethtool channels structure
3106 *
3107 * We don't support separate tx and rx queues as channels. The other count
3108 * represents how many queues are being used for control. max_combined counts
3109 * how many queue pairs we can support. They may not be mapped 1 to 1 with
3110 * q_vectors since we support a lot more queue pairs than q_vectors.
3111 **/
hclgevf_get_channels(struct hnae3_handle * handle,struct ethtool_channels * ch)3112 static void hclgevf_get_channels(struct hnae3_handle *handle,
3113 struct ethtool_channels *ch)
3114 {
3115 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3116
3117 ch->max_combined = hclgevf_get_max_channels(hdev);
3118 ch->other_count = 0;
3119 ch->max_other = 0;
3120 ch->combined_count = handle->kinfo.rss_size;
3121 }
3122
hclgevf_get_tqps_and_rss_info(struct hnae3_handle * handle,u16 * alloc_tqps,u16 * max_rss_size)3123 static void hclgevf_get_tqps_and_rss_info(struct hnae3_handle *handle,
3124 u16 *alloc_tqps, u16 *max_rss_size)
3125 {
3126 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3127
3128 *alloc_tqps = hdev->num_tqps;
3129 *max_rss_size = hdev->rss_size_max;
3130 }
3131
hclgevf_update_rss_size(struct hnae3_handle * handle,u32 new_tqps_num)3132 static void hclgevf_update_rss_size(struct hnae3_handle *handle,
3133 u32 new_tqps_num)
3134 {
3135 struct hnae3_knic_private_info *kinfo = &handle->kinfo;
3136 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3137 u16 max_rss_size;
3138
3139 kinfo->req_rss_size = new_tqps_num;
3140
3141 max_rss_size = min_t(u16, hdev->rss_size_max,
3142 hdev->num_tqps / kinfo->tc_info.num_tc);
3143
3144 /* Use the user's configuration when it is not larger than
3145 * max_rss_size, otherwise, use the maximum specification value.
3146 */
3147 if (kinfo->req_rss_size != kinfo->rss_size && kinfo->req_rss_size &&
3148 kinfo->req_rss_size <= max_rss_size)
3149 kinfo->rss_size = kinfo->req_rss_size;
3150 else if (kinfo->rss_size > max_rss_size ||
3151 (!kinfo->req_rss_size && kinfo->rss_size < max_rss_size))
3152 kinfo->rss_size = max_rss_size;
3153
3154 kinfo->num_tqps = kinfo->tc_info.num_tc * kinfo->rss_size;
3155 }
3156
hclgevf_set_channels(struct hnae3_handle * handle,u32 new_tqps_num,bool rxfh_configured)3157 static int hclgevf_set_channels(struct hnae3_handle *handle, u32 new_tqps_num,
3158 bool rxfh_configured)
3159 {
3160 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3161 struct hnae3_knic_private_info *kinfo = &handle->kinfo;
3162 u16 tc_offset[HCLGE_COMM_MAX_TC_NUM];
3163 u16 tc_valid[HCLGE_COMM_MAX_TC_NUM];
3164 u16 tc_size[HCLGE_COMM_MAX_TC_NUM];
3165 u16 cur_rss_size = kinfo->rss_size;
3166 u16 cur_tqps = kinfo->num_tqps;
3167 u32 *rss_indir;
3168 unsigned int i;
3169 int ret;
3170
3171 hclgevf_update_rss_size(handle, new_tqps_num);
3172
3173 hclge_comm_get_rss_tc_info(kinfo->rss_size, hdev->hw_tc_map,
3174 tc_offset, tc_valid, tc_size);
3175 ret = hclge_comm_set_rss_tc_mode(&hdev->hw.hw, tc_offset,
3176 tc_valid, tc_size);
3177 if (ret)
3178 return ret;
3179
3180 /* RSS indirection table has been configured by user */
3181 if (rxfh_configured)
3182 goto out;
3183
3184 /* Reinitializes the rss indirect table according to the new RSS size */
3185 rss_indir = kcalloc(hdev->ae_dev->dev_specs.rss_ind_tbl_size,
3186 sizeof(u32), GFP_KERNEL);
3187 if (!rss_indir)
3188 return -ENOMEM;
3189
3190 for (i = 0; i < hdev->ae_dev->dev_specs.rss_ind_tbl_size; i++)
3191 rss_indir[i] = i % kinfo->rss_size;
3192
3193 hdev->rss_cfg.rss_size = kinfo->rss_size;
3194
3195 ret = hclgevf_set_rss(handle, rss_indir, NULL, 0);
3196 if (ret)
3197 dev_err(&hdev->pdev->dev, "set rss indir table fail, ret=%d\n",
3198 ret);
3199
3200 kfree(rss_indir);
3201
3202 out:
3203 if (!ret)
3204 dev_info(&hdev->pdev->dev,
3205 "Channels changed, rss_size from %u to %u, tqps from %u to %u",
3206 cur_rss_size, kinfo->rss_size,
3207 cur_tqps, kinfo->rss_size * kinfo->tc_info.num_tc);
3208
3209 return ret;
3210 }
3211
hclgevf_get_status(struct hnae3_handle * handle)3212 static int hclgevf_get_status(struct hnae3_handle *handle)
3213 {
3214 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3215
3216 return hdev->hw.mac.link;
3217 }
3218
hclgevf_get_ksettings_an_result(struct hnae3_handle * handle,u8 * auto_neg,u32 * speed,u8 * duplex,u32 * lane_num)3219 static void hclgevf_get_ksettings_an_result(struct hnae3_handle *handle,
3220 u8 *auto_neg, u32 *speed,
3221 u8 *duplex, u32 *lane_num)
3222 {
3223 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3224
3225 if (speed)
3226 *speed = hdev->hw.mac.speed;
3227 if (duplex)
3228 *duplex = hdev->hw.mac.duplex;
3229 if (auto_neg)
3230 *auto_neg = AUTONEG_DISABLE;
3231 }
3232
hclgevf_update_speed_duplex(struct hclgevf_dev * hdev,u32 speed,u8 duplex)3233 void hclgevf_update_speed_duplex(struct hclgevf_dev *hdev, u32 speed,
3234 u8 duplex)
3235 {
3236 hdev->hw.mac.speed = speed;
3237 hdev->hw.mac.duplex = duplex;
3238 }
3239
hclgevf_gro_en(struct hnae3_handle * handle,bool enable)3240 static int hclgevf_gro_en(struct hnae3_handle *handle, bool enable)
3241 {
3242 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3243 bool gro_en_old = hdev->gro_en;
3244 int ret;
3245
3246 hdev->gro_en = enable;
3247 ret = hclgevf_config_gro(hdev);
3248 if (ret)
3249 hdev->gro_en = gro_en_old;
3250
3251 return ret;
3252 }
3253
hclgevf_get_media_type(struct hnae3_handle * handle,u8 * media_type,u8 * module_type)3254 static void hclgevf_get_media_type(struct hnae3_handle *handle, u8 *media_type,
3255 u8 *module_type)
3256 {
3257 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3258
3259 if (media_type)
3260 *media_type = hdev->hw.mac.media_type;
3261
3262 if (module_type)
3263 *module_type = hdev->hw.mac.module_type;
3264 }
3265
hclgevf_get_hw_reset_stat(struct hnae3_handle * handle)3266 static bool hclgevf_get_hw_reset_stat(struct hnae3_handle *handle)
3267 {
3268 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3269
3270 return !!hclgevf_read_dev(&hdev->hw, HCLGEVF_RST_ING);
3271 }
3272
hclgevf_get_cmdq_stat(struct hnae3_handle * handle)3273 static bool hclgevf_get_cmdq_stat(struct hnae3_handle *handle)
3274 {
3275 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3276
3277 return test_bit(HCLGE_COMM_STATE_CMD_DISABLE, &hdev->hw.hw.comm_state);
3278 }
3279
hclgevf_ae_dev_resetting(struct hnae3_handle * handle)3280 static bool hclgevf_ae_dev_resetting(struct hnae3_handle *handle)
3281 {
3282 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3283
3284 return test_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state);
3285 }
3286
hclgevf_ae_dev_reset_cnt(struct hnae3_handle * handle)3287 static unsigned long hclgevf_ae_dev_reset_cnt(struct hnae3_handle *handle)
3288 {
3289 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3290
3291 return hdev->rst_stats.hw_rst_done_cnt;
3292 }
3293
hclgevf_get_link_mode(struct hnae3_handle * handle,unsigned long * supported,unsigned long * advertising)3294 static void hclgevf_get_link_mode(struct hnae3_handle *handle,
3295 unsigned long *supported,
3296 unsigned long *advertising)
3297 {
3298 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3299
3300 *supported = hdev->hw.mac.supported;
3301 *advertising = hdev->hw.mac.advertising;
3302 }
3303
hclgevf_update_port_base_vlan_info(struct hclgevf_dev * hdev,u16 state,struct hclge_mbx_port_base_vlan * port_base_vlan)3304 void hclgevf_update_port_base_vlan_info(struct hclgevf_dev *hdev, u16 state,
3305 struct hclge_mbx_port_base_vlan *port_base_vlan)
3306 {
3307 struct hnae3_handle *nic = &hdev->nic;
3308 struct hclge_vf_to_pf_msg send_msg;
3309 int ret;
3310
3311 rtnl_lock();
3312
3313 if (test_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state) ||
3314 test_bit(HCLGEVF_STATE_RST_FAIL, &hdev->state)) {
3315 dev_warn(&hdev->pdev->dev,
3316 "is resetting when updating port based vlan info\n");
3317 rtnl_unlock();
3318 return;
3319 }
3320
3321 ret = hclgevf_notify_client(hdev, HNAE3_DOWN_CLIENT);
3322 if (ret) {
3323 rtnl_unlock();
3324 return;
3325 }
3326
3327 /* send msg to PF and wait update port based vlan info */
3328 hclgevf_build_send_msg(&send_msg, HCLGE_MBX_SET_VLAN,
3329 HCLGE_MBX_PORT_BASE_VLAN_CFG);
3330 memcpy(send_msg.data, port_base_vlan, sizeof(*port_base_vlan));
3331 ret = hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0);
3332 if (!ret) {
3333 if (state == HNAE3_PORT_BASE_VLAN_DISABLE)
3334 nic->port_base_vlan_state = state;
3335 else
3336 nic->port_base_vlan_state = HNAE3_PORT_BASE_VLAN_ENABLE;
3337 }
3338
3339 hclgevf_notify_client(hdev, HNAE3_UP_CLIENT);
3340 rtnl_unlock();
3341 }
3342
3343 static const struct hnae3_ae_ops hclgevf_ops = {
3344 .init_ae_dev = hclgevf_init_ae_dev,
3345 .uninit_ae_dev = hclgevf_uninit_ae_dev,
3346 .reset_prepare = hclgevf_reset_prepare_general,
3347 .reset_done = hclgevf_reset_done,
3348 .init_client_instance = hclgevf_init_client_instance,
3349 .uninit_client_instance = hclgevf_uninit_client_instance,
3350 .start = hclgevf_ae_start,
3351 .stop = hclgevf_ae_stop,
3352 .client_start = hclgevf_client_start,
3353 .client_stop = hclgevf_client_stop,
3354 .map_ring_to_vector = hclgevf_map_ring_to_vector,
3355 .unmap_ring_from_vector = hclgevf_unmap_ring_from_vector,
3356 .get_vector = hclgevf_get_vector,
3357 .put_vector = hclgevf_put_vector,
3358 .reset_queue = hclgevf_reset_tqp,
3359 .get_mac_addr = hclgevf_get_mac_addr,
3360 .set_mac_addr = hclgevf_set_mac_addr,
3361 .add_uc_addr = hclgevf_add_uc_addr,
3362 .rm_uc_addr = hclgevf_rm_uc_addr,
3363 .add_mc_addr = hclgevf_add_mc_addr,
3364 .rm_mc_addr = hclgevf_rm_mc_addr,
3365 .get_stats = hclgevf_get_stats,
3366 .update_stats = hclgevf_update_stats,
3367 .get_strings = hclgevf_get_strings,
3368 .get_sset_count = hclgevf_get_sset_count,
3369 .get_rss_key_size = hclge_comm_get_rss_key_size,
3370 .get_rss = hclgevf_get_rss,
3371 .set_rss = hclgevf_set_rss,
3372 .get_rss_tuple = hclgevf_get_rss_tuple,
3373 .set_rss_tuple = hclgevf_set_rss_tuple,
3374 .get_tc_size = hclgevf_get_tc_size,
3375 .get_fw_version = hclgevf_get_fw_version,
3376 .set_vlan_filter = hclgevf_set_vlan_filter,
3377 .enable_vlan_filter = hclgevf_enable_vlan_filter,
3378 .enable_hw_strip_rxvtag = hclgevf_en_hw_strip_rxvtag,
3379 .reset_event = hclgevf_reset_event,
3380 .set_default_reset_request = hclgevf_set_def_reset_request,
3381 .set_channels = hclgevf_set_channels,
3382 .get_channels = hclgevf_get_channels,
3383 .get_tqps_and_rss_info = hclgevf_get_tqps_and_rss_info,
3384 .get_regs_len = hclgevf_get_regs_len,
3385 .get_regs = hclgevf_get_regs,
3386 .get_status = hclgevf_get_status,
3387 .get_ksettings_an_result = hclgevf_get_ksettings_an_result,
3388 .get_media_type = hclgevf_get_media_type,
3389 .get_hw_reset_stat = hclgevf_get_hw_reset_stat,
3390 .ae_dev_resetting = hclgevf_ae_dev_resetting,
3391 .ae_dev_reset_cnt = hclgevf_ae_dev_reset_cnt,
3392 .set_gro_en = hclgevf_gro_en,
3393 .set_mtu = hclgevf_set_mtu,
3394 .get_global_queue_id = hclgevf_get_qid_global,
3395 .set_timer_task = hclgevf_set_timer_task,
3396 .get_link_mode = hclgevf_get_link_mode,
3397 .set_promisc_mode = hclgevf_set_promisc_mode,
3398 .request_update_promisc_mode = hclgevf_request_update_promisc_mode,
3399 .get_cmdq_stat = hclgevf_get_cmdq_stat,
3400 };
3401
3402 static struct hnae3_ae_algo ae_algovf = {
3403 .ops = &hclgevf_ops,
3404 .pdev_id_table = ae_algovf_pci_tbl,
3405 };
3406
hclgevf_init(void)3407 static int __init hclgevf_init(void)
3408 {
3409 pr_info("%s is initializing\n", HCLGEVF_NAME);
3410
3411 hclgevf_wq = alloc_workqueue("%s", WQ_UNBOUND, 0, HCLGEVF_NAME);
3412 if (!hclgevf_wq) {
3413 pr_err("%s: failed to create workqueue\n", HCLGEVF_NAME);
3414 return -ENOMEM;
3415 }
3416
3417 hnae3_register_ae_algo(&ae_algovf);
3418
3419 return 0;
3420 }
3421
hclgevf_exit(void)3422 static void __exit hclgevf_exit(void)
3423 {
3424 hnae3_acquire_unload_lock();
3425 hnae3_unregister_ae_algo(&ae_algovf);
3426 destroy_workqueue(hclgevf_wq);
3427 hnae3_release_unload_lock();
3428 }
3429 module_init(hclgevf_init);
3430 module_exit(hclgevf_exit);
3431
3432 MODULE_LICENSE("GPL");
3433 MODULE_AUTHOR("Huawei Tech. Co., Ltd.");
3434 MODULE_DESCRIPTION("HCLGEVF Driver");
3435 MODULE_VERSION(HCLGEVF_MOD_VERSION);
3436