• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright (c) 2018, Intel Corporation. */
3 
4 /* The driver transmit and receive code */
5 
6 #include <linux/mm.h>
7 #include <linux/netdevice.h>
8 #include <linux/prefetch.h>
9 #include <linux/bpf_trace.h>
10 #include <net/dsfield.h>
11 #include <net/mpls.h>
12 #include <net/xdp.h>
13 #include "ice_txrx_lib.h"
14 #include "ice_lib.h"
15 #include "ice.h"
16 #include "ice_trace.h"
17 #include "ice_dcb_lib.h"
18 #include "ice_xsk.h"
19 #include "ice_eswitch.h"
20 
21 #define ICE_RX_HDR_SIZE		256
22 
23 #define FDIR_DESC_RXDID 0x40
24 #define ICE_FDIR_CLEAN_DELAY 10
25 
26 /**
27  * ice_prgm_fdir_fltr - Program a Flow Director filter
28  * @vsi: VSI to send dummy packet
29  * @fdir_desc: flow director descriptor
30  * @raw_packet: allocated buffer for flow director
31  */
32 int
ice_prgm_fdir_fltr(struct ice_vsi * vsi,struct ice_fltr_desc * fdir_desc,u8 * raw_packet)33 ice_prgm_fdir_fltr(struct ice_vsi *vsi, struct ice_fltr_desc *fdir_desc,
34 		   u8 *raw_packet)
35 {
36 	struct ice_tx_buf *tx_buf, *first;
37 	struct ice_fltr_desc *f_desc;
38 	struct ice_tx_desc *tx_desc;
39 	struct ice_tx_ring *tx_ring;
40 	struct device *dev;
41 	dma_addr_t dma;
42 	u32 td_cmd;
43 	u16 i;
44 
45 	/* VSI and Tx ring */
46 	if (!vsi)
47 		return -ENOENT;
48 	tx_ring = vsi->tx_rings[0];
49 	if (!tx_ring || !tx_ring->desc)
50 		return -ENOENT;
51 	dev = tx_ring->dev;
52 
53 	/* we are using two descriptors to add/del a filter and we can wait */
54 	for (i = ICE_FDIR_CLEAN_DELAY; ICE_DESC_UNUSED(tx_ring) < 2; i--) {
55 		if (!i)
56 			return -EAGAIN;
57 		msleep_interruptible(1);
58 	}
59 
60 	dma = dma_map_single(dev, raw_packet, ICE_FDIR_MAX_RAW_PKT_SIZE,
61 			     DMA_TO_DEVICE);
62 
63 	if (dma_mapping_error(dev, dma))
64 		return -EINVAL;
65 
66 	/* grab the next descriptor */
67 	i = tx_ring->next_to_use;
68 	first = &tx_ring->tx_buf[i];
69 	f_desc = ICE_TX_FDIRDESC(tx_ring, i);
70 	memcpy(f_desc, fdir_desc, sizeof(*f_desc));
71 
72 	i++;
73 	i = (i < tx_ring->count) ? i : 0;
74 	tx_desc = ICE_TX_DESC(tx_ring, i);
75 	tx_buf = &tx_ring->tx_buf[i];
76 
77 	i++;
78 	tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
79 
80 	memset(tx_buf, 0, sizeof(*tx_buf));
81 	dma_unmap_len_set(tx_buf, len, ICE_FDIR_MAX_RAW_PKT_SIZE);
82 	dma_unmap_addr_set(tx_buf, dma, dma);
83 
84 	tx_desc->buf_addr = cpu_to_le64(dma);
85 	td_cmd = ICE_TXD_LAST_DESC_CMD | ICE_TX_DESC_CMD_DUMMY |
86 		 ICE_TX_DESC_CMD_RE;
87 
88 	tx_buf->type = ICE_TX_BUF_DUMMY;
89 	tx_buf->raw_buf = raw_packet;
90 
91 	tx_desc->cmd_type_offset_bsz =
92 		ice_build_ctob(td_cmd, 0, ICE_FDIR_MAX_RAW_PKT_SIZE, 0);
93 
94 	/* Force memory write to complete before letting h/w know
95 	 * there are new descriptors to fetch.
96 	 */
97 	wmb();
98 
99 	/* mark the data descriptor to be watched */
100 	first->next_to_watch = tx_desc;
101 
102 	writel(tx_ring->next_to_use, tx_ring->tail);
103 
104 	return 0;
105 }
106 
107 /**
108  * ice_unmap_and_free_tx_buf - Release a Tx buffer
109  * @ring: the ring that owns the buffer
110  * @tx_buf: the buffer to free
111  */
112 static void
ice_unmap_and_free_tx_buf(struct ice_tx_ring * ring,struct ice_tx_buf * tx_buf)113 ice_unmap_and_free_tx_buf(struct ice_tx_ring *ring, struct ice_tx_buf *tx_buf)
114 {
115 	if (dma_unmap_len(tx_buf, len))
116 		dma_unmap_page(ring->dev,
117 			       dma_unmap_addr(tx_buf, dma),
118 			       dma_unmap_len(tx_buf, len),
119 			       DMA_TO_DEVICE);
120 
121 	switch (tx_buf->type) {
122 	case ICE_TX_BUF_DUMMY:
123 		devm_kfree(ring->dev, tx_buf->raw_buf);
124 		break;
125 	case ICE_TX_BUF_SKB:
126 		dev_kfree_skb_any(tx_buf->skb);
127 		break;
128 	case ICE_TX_BUF_XDP_TX:
129 		page_frag_free(tx_buf->raw_buf);
130 		break;
131 	case ICE_TX_BUF_XDP_XMIT:
132 		xdp_return_frame(tx_buf->xdpf);
133 		break;
134 	}
135 
136 	tx_buf->next_to_watch = NULL;
137 	tx_buf->type = ICE_TX_BUF_EMPTY;
138 	dma_unmap_len_set(tx_buf, len, 0);
139 	/* tx_buf must be completely set up in the transmit path */
140 }
141 
txring_txq(const struct ice_tx_ring * ring)142 static struct netdev_queue *txring_txq(const struct ice_tx_ring *ring)
143 {
144 	return netdev_get_tx_queue(ring->netdev, ring->q_index);
145 }
146 
147 /**
148  * ice_clean_tx_ring - Free any empty Tx buffers
149  * @tx_ring: ring to be cleaned
150  */
ice_clean_tx_ring(struct ice_tx_ring * tx_ring)151 void ice_clean_tx_ring(struct ice_tx_ring *tx_ring)
152 {
153 	u32 size;
154 	u16 i;
155 
156 	if (ice_ring_is_xdp(tx_ring) && tx_ring->xsk_pool) {
157 		ice_xsk_clean_xdp_ring(tx_ring);
158 		goto tx_skip_free;
159 	}
160 
161 	/* ring already cleared, nothing to do */
162 	if (!tx_ring->tx_buf)
163 		return;
164 
165 	/* Free all the Tx ring sk_buffs */
166 	for (i = 0; i < tx_ring->count; i++)
167 		ice_unmap_and_free_tx_buf(tx_ring, &tx_ring->tx_buf[i]);
168 
169 tx_skip_free:
170 	memset(tx_ring->tx_buf, 0, sizeof(*tx_ring->tx_buf) * tx_ring->count);
171 
172 	size = ALIGN(tx_ring->count * sizeof(struct ice_tx_desc),
173 		     PAGE_SIZE);
174 	/* Zero out the descriptor ring */
175 	memset(tx_ring->desc, 0, size);
176 
177 	tx_ring->next_to_use = 0;
178 	tx_ring->next_to_clean = 0;
179 
180 	if (!tx_ring->netdev)
181 		return;
182 
183 	/* cleanup Tx queue statistics */
184 	netdev_tx_reset_queue(txring_txq(tx_ring));
185 }
186 
187 /**
188  * ice_free_tx_ring - Free Tx resources per queue
189  * @tx_ring: Tx descriptor ring for a specific queue
190  *
191  * Free all transmit software resources
192  */
ice_free_tx_ring(struct ice_tx_ring * tx_ring)193 void ice_free_tx_ring(struct ice_tx_ring *tx_ring)
194 {
195 	u32 size;
196 
197 	ice_clean_tx_ring(tx_ring);
198 	devm_kfree(tx_ring->dev, tx_ring->tx_buf);
199 	tx_ring->tx_buf = NULL;
200 
201 	if (tx_ring->desc) {
202 		size = ALIGN(tx_ring->count * sizeof(struct ice_tx_desc),
203 			     PAGE_SIZE);
204 		dmam_free_coherent(tx_ring->dev, size,
205 				   tx_ring->desc, tx_ring->dma);
206 		tx_ring->desc = NULL;
207 	}
208 }
209 
210 /**
211  * ice_clean_tx_irq - Reclaim resources after transmit completes
212  * @tx_ring: Tx ring to clean
213  * @napi_budget: Used to determine if we are in netpoll
214  *
215  * Returns true if there's any budget left (e.g. the clean is finished)
216  */
ice_clean_tx_irq(struct ice_tx_ring * tx_ring,int napi_budget)217 static bool ice_clean_tx_irq(struct ice_tx_ring *tx_ring, int napi_budget)
218 {
219 	unsigned int total_bytes = 0, total_pkts = 0;
220 	unsigned int budget = ICE_DFLT_IRQ_WORK;
221 	struct ice_vsi *vsi = tx_ring->vsi;
222 	s16 i = tx_ring->next_to_clean;
223 	struct ice_tx_desc *tx_desc;
224 	struct ice_tx_buf *tx_buf;
225 
226 	/* get the bql data ready */
227 	netdev_txq_bql_complete_prefetchw(txring_txq(tx_ring));
228 
229 	tx_buf = &tx_ring->tx_buf[i];
230 	tx_desc = ICE_TX_DESC(tx_ring, i);
231 	i -= tx_ring->count;
232 
233 	prefetch(&vsi->state);
234 
235 	do {
236 		struct ice_tx_desc *eop_desc = tx_buf->next_to_watch;
237 
238 		/* if next_to_watch is not set then there is no work pending */
239 		if (!eop_desc)
240 			break;
241 
242 		/* follow the guidelines of other drivers */
243 		prefetchw(&tx_buf->skb->users);
244 
245 		smp_rmb();	/* prevent any other reads prior to eop_desc */
246 
247 		ice_trace(clean_tx_irq, tx_ring, tx_desc, tx_buf);
248 		/* if the descriptor isn't done, no work yet to do */
249 		if (!(eop_desc->cmd_type_offset_bsz &
250 		      cpu_to_le64(ICE_TX_DESC_DTYPE_DESC_DONE)))
251 			break;
252 
253 		/* clear next_to_watch to prevent false hangs */
254 		tx_buf->next_to_watch = NULL;
255 
256 		/* update the statistics for this packet */
257 		total_bytes += tx_buf->bytecount;
258 		total_pkts += tx_buf->gso_segs;
259 
260 		/* free the skb */
261 		napi_consume_skb(tx_buf->skb, napi_budget);
262 
263 		/* unmap skb header data */
264 		dma_unmap_single(tx_ring->dev,
265 				 dma_unmap_addr(tx_buf, dma),
266 				 dma_unmap_len(tx_buf, len),
267 				 DMA_TO_DEVICE);
268 
269 		/* clear tx_buf data */
270 		tx_buf->type = ICE_TX_BUF_EMPTY;
271 		dma_unmap_len_set(tx_buf, len, 0);
272 
273 		/* unmap remaining buffers */
274 		while (tx_desc != eop_desc) {
275 			ice_trace(clean_tx_irq_unmap, tx_ring, tx_desc, tx_buf);
276 			tx_buf++;
277 			tx_desc++;
278 			i++;
279 			if (unlikely(!i)) {
280 				i -= tx_ring->count;
281 				tx_buf = tx_ring->tx_buf;
282 				tx_desc = ICE_TX_DESC(tx_ring, 0);
283 			}
284 
285 			/* unmap any remaining paged data */
286 			if (dma_unmap_len(tx_buf, len)) {
287 				dma_unmap_page(tx_ring->dev,
288 					       dma_unmap_addr(tx_buf, dma),
289 					       dma_unmap_len(tx_buf, len),
290 					       DMA_TO_DEVICE);
291 				dma_unmap_len_set(tx_buf, len, 0);
292 			}
293 		}
294 		ice_trace(clean_tx_irq_unmap_eop, tx_ring, tx_desc, tx_buf);
295 
296 		/* move us one more past the eop_desc for start of next pkt */
297 		tx_buf++;
298 		tx_desc++;
299 		i++;
300 		if (unlikely(!i)) {
301 			i -= tx_ring->count;
302 			tx_buf = tx_ring->tx_buf;
303 			tx_desc = ICE_TX_DESC(tx_ring, 0);
304 		}
305 
306 		prefetch(tx_desc);
307 
308 		/* update budget accounting */
309 		budget--;
310 	} while (likely(budget));
311 
312 	i += tx_ring->count;
313 	tx_ring->next_to_clean = i;
314 
315 	ice_update_tx_ring_stats(tx_ring, total_pkts, total_bytes);
316 	netdev_tx_completed_queue(txring_txq(tx_ring), total_pkts, total_bytes);
317 
318 #define TX_WAKE_THRESHOLD ((s16)(DESC_NEEDED * 2))
319 	if (unlikely(total_pkts && netif_carrier_ok(tx_ring->netdev) &&
320 		     (ICE_DESC_UNUSED(tx_ring) >= TX_WAKE_THRESHOLD))) {
321 		/* Make sure that anybody stopping the queue after this
322 		 * sees the new next_to_clean.
323 		 */
324 		smp_mb();
325 		if (netif_tx_queue_stopped(txring_txq(tx_ring)) &&
326 		    !test_bit(ICE_VSI_DOWN, vsi->state)) {
327 			netif_tx_wake_queue(txring_txq(tx_ring));
328 			++tx_ring->ring_stats->tx_stats.restart_q;
329 		}
330 	}
331 
332 	return !!budget;
333 }
334 
335 /**
336  * ice_setup_tx_ring - Allocate the Tx descriptors
337  * @tx_ring: the Tx ring to set up
338  *
339  * Return 0 on success, negative on error
340  */
ice_setup_tx_ring(struct ice_tx_ring * tx_ring)341 int ice_setup_tx_ring(struct ice_tx_ring *tx_ring)
342 {
343 	struct device *dev = tx_ring->dev;
344 	u32 size;
345 
346 	if (!dev)
347 		return -ENOMEM;
348 
349 	/* warn if we are about to overwrite the pointer */
350 	WARN_ON(tx_ring->tx_buf);
351 	tx_ring->tx_buf =
352 		devm_kcalloc(dev, sizeof(*tx_ring->tx_buf), tx_ring->count,
353 			     GFP_KERNEL);
354 	if (!tx_ring->tx_buf)
355 		return -ENOMEM;
356 
357 	/* round up to nearest page */
358 	size = ALIGN(tx_ring->count * sizeof(struct ice_tx_desc),
359 		     PAGE_SIZE);
360 	tx_ring->desc = dmam_alloc_coherent(dev, size, &tx_ring->dma,
361 					    GFP_KERNEL);
362 	if (!tx_ring->desc) {
363 		dev_err(dev, "Unable to allocate memory for the Tx descriptor ring, size=%d\n",
364 			size);
365 		goto err;
366 	}
367 
368 	tx_ring->next_to_use = 0;
369 	tx_ring->next_to_clean = 0;
370 	tx_ring->ring_stats->tx_stats.prev_pkt = -1;
371 	return 0;
372 
373 err:
374 	devm_kfree(dev, tx_ring->tx_buf);
375 	tx_ring->tx_buf = NULL;
376 	return -ENOMEM;
377 }
378 
379 /**
380  * ice_clean_rx_ring - Free Rx buffers
381  * @rx_ring: ring to be cleaned
382  */
ice_clean_rx_ring(struct ice_rx_ring * rx_ring)383 void ice_clean_rx_ring(struct ice_rx_ring *rx_ring)
384 {
385 	struct xdp_buff *xdp = &rx_ring->xdp;
386 	struct device *dev = rx_ring->dev;
387 	u32 size;
388 	u16 i;
389 
390 	/* ring already cleared, nothing to do */
391 	if (!rx_ring->rx_buf)
392 		return;
393 
394 	if (rx_ring->xsk_pool) {
395 		ice_xsk_clean_rx_ring(rx_ring);
396 		goto rx_skip_free;
397 	}
398 
399 	if (xdp->data) {
400 		xdp_return_buff(xdp);
401 		xdp->data = NULL;
402 	}
403 
404 	/* Free all the Rx ring sk_buffs */
405 	for (i = 0; i < rx_ring->count; i++) {
406 		struct ice_rx_buf *rx_buf = &rx_ring->rx_buf[i];
407 
408 		if (!rx_buf->page)
409 			continue;
410 
411 		/* Invalidate cache lines that may have been written to by
412 		 * device so that we avoid corrupting memory.
413 		 */
414 		dma_sync_single_range_for_cpu(dev, rx_buf->dma,
415 					      rx_buf->page_offset,
416 					      rx_ring->rx_buf_len,
417 					      DMA_FROM_DEVICE);
418 
419 		/* free resources associated with mapping */
420 		dma_unmap_page_attrs(dev, rx_buf->dma, ice_rx_pg_size(rx_ring),
421 				     DMA_FROM_DEVICE, ICE_RX_DMA_ATTR);
422 		__page_frag_cache_drain(rx_buf->page, rx_buf->pagecnt_bias);
423 
424 		rx_buf->page = NULL;
425 		rx_buf->page_offset = 0;
426 	}
427 
428 rx_skip_free:
429 	if (rx_ring->xsk_pool)
430 		memset(rx_ring->xdp_buf, 0, array_size(rx_ring->count, sizeof(*rx_ring->xdp_buf)));
431 	else
432 		memset(rx_ring->rx_buf, 0, array_size(rx_ring->count, sizeof(*rx_ring->rx_buf)));
433 
434 	/* Zero out the descriptor ring */
435 	size = ALIGN(rx_ring->count * sizeof(union ice_32byte_rx_desc),
436 		     PAGE_SIZE);
437 	memset(rx_ring->desc, 0, size);
438 
439 	rx_ring->next_to_alloc = 0;
440 	rx_ring->next_to_clean = 0;
441 	rx_ring->first_desc = 0;
442 	rx_ring->next_to_use = 0;
443 }
444 
445 /**
446  * ice_free_rx_ring - Free Rx resources
447  * @rx_ring: ring to clean the resources from
448  *
449  * Free all receive software resources
450  */
ice_free_rx_ring(struct ice_rx_ring * rx_ring)451 void ice_free_rx_ring(struct ice_rx_ring *rx_ring)
452 {
453 	u32 size;
454 
455 	ice_clean_rx_ring(rx_ring);
456 	if (rx_ring->vsi->type == ICE_VSI_PF)
457 		if (xdp_rxq_info_is_reg(&rx_ring->xdp_rxq))
458 			xdp_rxq_info_unreg(&rx_ring->xdp_rxq);
459 	WRITE_ONCE(rx_ring->xdp_prog, NULL);
460 	if (rx_ring->xsk_pool) {
461 		kfree(rx_ring->xdp_buf);
462 		rx_ring->xdp_buf = NULL;
463 	} else {
464 		kfree(rx_ring->rx_buf);
465 		rx_ring->rx_buf = NULL;
466 	}
467 
468 	if (rx_ring->desc) {
469 		size = ALIGN(rx_ring->count * sizeof(union ice_32byte_rx_desc),
470 			     PAGE_SIZE);
471 		dmam_free_coherent(rx_ring->dev, size,
472 				   rx_ring->desc, rx_ring->dma);
473 		rx_ring->desc = NULL;
474 	}
475 }
476 
477 /**
478  * ice_setup_rx_ring - Allocate the Rx descriptors
479  * @rx_ring: the Rx ring to set up
480  *
481  * Return 0 on success, negative on error
482  */
ice_setup_rx_ring(struct ice_rx_ring * rx_ring)483 int ice_setup_rx_ring(struct ice_rx_ring *rx_ring)
484 {
485 	struct device *dev = rx_ring->dev;
486 	u32 size;
487 
488 	if (!dev)
489 		return -ENOMEM;
490 
491 	/* warn if we are about to overwrite the pointer */
492 	WARN_ON(rx_ring->rx_buf);
493 	rx_ring->rx_buf =
494 		kcalloc(rx_ring->count, sizeof(*rx_ring->rx_buf), GFP_KERNEL);
495 	if (!rx_ring->rx_buf)
496 		return -ENOMEM;
497 
498 	/* round up to nearest page */
499 	size = ALIGN(rx_ring->count * sizeof(union ice_32byte_rx_desc),
500 		     PAGE_SIZE);
501 	rx_ring->desc = dmam_alloc_coherent(dev, size, &rx_ring->dma,
502 					    GFP_KERNEL);
503 	if (!rx_ring->desc) {
504 		dev_err(dev, "Unable to allocate memory for the Rx descriptor ring, size=%d\n",
505 			size);
506 		goto err;
507 	}
508 
509 	rx_ring->next_to_use = 0;
510 	rx_ring->next_to_clean = 0;
511 	rx_ring->first_desc = 0;
512 
513 	if (ice_is_xdp_ena_vsi(rx_ring->vsi))
514 		WRITE_ONCE(rx_ring->xdp_prog, rx_ring->vsi->xdp_prog);
515 
516 	return 0;
517 
518 err:
519 	kfree(rx_ring->rx_buf);
520 	rx_ring->rx_buf = NULL;
521 	return -ENOMEM;
522 }
523 
524 /**
525  * ice_run_xdp - Executes an XDP program on initialized xdp_buff
526  * @rx_ring: Rx ring
527  * @xdp: xdp_buff used as input to the XDP program
528  * @xdp_prog: XDP program to run
529  * @xdp_ring: ring to be used for XDP_TX action
530  * @eop_desc: Last descriptor in packet to read metadata from
531  *
532  * Returns any of ICE_XDP_{PASS, CONSUMED, TX, REDIR}
533  */
534 static u32
ice_run_xdp(struct ice_rx_ring * rx_ring,struct xdp_buff * xdp,struct bpf_prog * xdp_prog,struct ice_tx_ring * xdp_ring,union ice_32b_rx_flex_desc * eop_desc)535 ice_run_xdp(struct ice_rx_ring *rx_ring, struct xdp_buff *xdp,
536 	    struct bpf_prog *xdp_prog, struct ice_tx_ring *xdp_ring,
537 	    union ice_32b_rx_flex_desc *eop_desc)
538 {
539 	unsigned int ret = ICE_XDP_PASS;
540 	u32 act;
541 
542 	if (!xdp_prog)
543 		goto exit;
544 
545 	ice_xdp_meta_set_desc(xdp, eop_desc);
546 
547 	act = bpf_prog_run_xdp(xdp_prog, xdp);
548 	switch (act) {
549 	case XDP_PASS:
550 		break;
551 	case XDP_TX:
552 		if (static_branch_unlikely(&ice_xdp_locking_key))
553 			spin_lock(&xdp_ring->tx_lock);
554 		ret = __ice_xmit_xdp_ring(xdp, xdp_ring, false);
555 		if (static_branch_unlikely(&ice_xdp_locking_key))
556 			spin_unlock(&xdp_ring->tx_lock);
557 		if (ret == ICE_XDP_CONSUMED)
558 			goto out_failure;
559 		break;
560 	case XDP_REDIRECT:
561 		if (xdp_do_redirect(rx_ring->netdev, xdp, xdp_prog))
562 			goto out_failure;
563 		ret = ICE_XDP_REDIR;
564 		break;
565 	default:
566 		bpf_warn_invalid_xdp_action(rx_ring->netdev, xdp_prog, act);
567 		fallthrough;
568 	case XDP_ABORTED:
569 out_failure:
570 		trace_xdp_exception(rx_ring->netdev, xdp_prog, act);
571 		fallthrough;
572 	case XDP_DROP:
573 		ret = ICE_XDP_CONSUMED;
574 	}
575 exit:
576 	return ret;
577 }
578 
579 /**
580  * ice_xmit_xdp_ring - submit frame to XDP ring for transmission
581  * @xdpf: XDP frame that will be converted to XDP buff
582  * @xdp_ring: XDP ring for transmission
583  */
ice_xmit_xdp_ring(const struct xdp_frame * xdpf,struct ice_tx_ring * xdp_ring)584 static int ice_xmit_xdp_ring(const struct xdp_frame *xdpf,
585 			     struct ice_tx_ring *xdp_ring)
586 {
587 	struct xdp_buff xdp;
588 
589 	xdp.data_hard_start = (void *)xdpf;
590 	xdp.data = xdpf->data;
591 	xdp.data_end = xdp.data + xdpf->len;
592 	xdp.frame_sz = xdpf->frame_sz;
593 	xdp.flags = xdpf->flags;
594 
595 	return __ice_xmit_xdp_ring(&xdp, xdp_ring, true);
596 }
597 
598 /**
599  * ice_xdp_xmit - submit packets to XDP ring for transmission
600  * @dev: netdev
601  * @n: number of XDP frames to be transmitted
602  * @frames: XDP frames to be transmitted
603  * @flags: transmit flags
604  *
605  * Returns number of frames successfully sent. Failed frames
606  * will be free'ed by XDP core.
607  * For error cases, a negative errno code is returned and no-frames
608  * are transmitted (caller must handle freeing frames).
609  */
610 int
ice_xdp_xmit(struct net_device * dev,int n,struct xdp_frame ** frames,u32 flags)611 ice_xdp_xmit(struct net_device *dev, int n, struct xdp_frame **frames,
612 	     u32 flags)
613 {
614 	struct ice_netdev_priv *np = netdev_priv(dev);
615 	unsigned int queue_index = smp_processor_id();
616 	struct ice_vsi *vsi = np->vsi;
617 	struct ice_tx_ring *xdp_ring;
618 	struct ice_tx_buf *tx_buf;
619 	int nxmit = 0, i;
620 
621 	if (test_bit(ICE_VSI_DOWN, vsi->state))
622 		return -ENETDOWN;
623 
624 	if (!ice_is_xdp_ena_vsi(vsi))
625 		return -ENXIO;
626 
627 	if (unlikely(flags & ~XDP_XMIT_FLAGS_MASK))
628 		return -EINVAL;
629 
630 	if (static_branch_unlikely(&ice_xdp_locking_key)) {
631 		queue_index %= vsi->num_xdp_txq;
632 		xdp_ring = vsi->xdp_rings[queue_index];
633 		spin_lock(&xdp_ring->tx_lock);
634 	} else {
635 		/* Generally, should not happen */
636 		if (unlikely(queue_index >= vsi->num_xdp_txq))
637 			return -ENXIO;
638 		xdp_ring = vsi->xdp_rings[queue_index];
639 	}
640 
641 	tx_buf = &xdp_ring->tx_buf[xdp_ring->next_to_use];
642 	for (i = 0; i < n; i++) {
643 		const struct xdp_frame *xdpf = frames[i];
644 		int err;
645 
646 		err = ice_xmit_xdp_ring(xdpf, xdp_ring);
647 		if (err != ICE_XDP_TX)
648 			break;
649 		nxmit++;
650 	}
651 
652 	tx_buf->rs_idx = ice_set_rs_bit(xdp_ring);
653 	if (unlikely(flags & XDP_XMIT_FLUSH))
654 		ice_xdp_ring_update_tail(xdp_ring);
655 
656 	if (static_branch_unlikely(&ice_xdp_locking_key))
657 		spin_unlock(&xdp_ring->tx_lock);
658 
659 	return nxmit;
660 }
661 
662 /**
663  * ice_alloc_mapped_page - recycle or make a new page
664  * @rx_ring: ring to use
665  * @bi: rx_buf struct to modify
666  *
667  * Returns true if the page was successfully allocated or
668  * reused.
669  */
670 static bool
ice_alloc_mapped_page(struct ice_rx_ring * rx_ring,struct ice_rx_buf * bi)671 ice_alloc_mapped_page(struct ice_rx_ring *rx_ring, struct ice_rx_buf *bi)
672 {
673 	struct page *page = bi->page;
674 	dma_addr_t dma;
675 
676 	/* since we are recycling buffers we should seldom need to alloc */
677 	if (likely(page))
678 		return true;
679 
680 	/* alloc new page for storage */
681 	page = dev_alloc_pages(ice_rx_pg_order(rx_ring));
682 	if (unlikely(!page)) {
683 		rx_ring->ring_stats->rx_stats.alloc_page_failed++;
684 		return false;
685 	}
686 
687 	/* map page for use */
688 	dma = dma_map_page_attrs(rx_ring->dev, page, 0, ice_rx_pg_size(rx_ring),
689 				 DMA_FROM_DEVICE, ICE_RX_DMA_ATTR);
690 
691 	/* if mapping failed free memory back to system since
692 	 * there isn't much point in holding memory we can't use
693 	 */
694 	if (dma_mapping_error(rx_ring->dev, dma)) {
695 		__free_pages(page, ice_rx_pg_order(rx_ring));
696 		rx_ring->ring_stats->rx_stats.alloc_page_failed++;
697 		return false;
698 	}
699 
700 	bi->dma = dma;
701 	bi->page = page;
702 	bi->page_offset = rx_ring->rx_offset;
703 	page_ref_add(page, USHRT_MAX - 1);
704 	bi->pagecnt_bias = USHRT_MAX;
705 
706 	return true;
707 }
708 
709 /**
710  * ice_alloc_rx_bufs - Replace used receive buffers
711  * @rx_ring: ring to place buffers on
712  * @cleaned_count: number of buffers to replace
713  *
714  * Returns false if all allocations were successful, true if any fail. Returning
715  * true signals to the caller that we didn't replace cleaned_count buffers and
716  * there is more work to do.
717  *
718  * First, try to clean "cleaned_count" Rx buffers. Then refill the cleaned Rx
719  * buffers. Then bump tail at most one time. Grouping like this lets us avoid
720  * multiple tail writes per call.
721  */
ice_alloc_rx_bufs(struct ice_rx_ring * rx_ring,unsigned int cleaned_count)722 bool ice_alloc_rx_bufs(struct ice_rx_ring *rx_ring, unsigned int cleaned_count)
723 {
724 	union ice_32b_rx_flex_desc *rx_desc;
725 	u16 ntu = rx_ring->next_to_use;
726 	struct ice_rx_buf *bi;
727 
728 	/* do nothing if no valid netdev defined */
729 	if ((!rx_ring->netdev && rx_ring->vsi->type != ICE_VSI_CTRL) ||
730 	    !cleaned_count)
731 		return false;
732 
733 	/* get the Rx descriptor and buffer based on next_to_use */
734 	rx_desc = ICE_RX_DESC(rx_ring, ntu);
735 	bi = &rx_ring->rx_buf[ntu];
736 
737 	do {
738 		/* if we fail here, we have work remaining */
739 		if (!ice_alloc_mapped_page(rx_ring, bi))
740 			break;
741 
742 		/* sync the buffer for use by the device */
743 		dma_sync_single_range_for_device(rx_ring->dev, bi->dma,
744 						 bi->page_offset,
745 						 rx_ring->rx_buf_len,
746 						 DMA_FROM_DEVICE);
747 
748 		/* Refresh the desc even if buffer_addrs didn't change
749 		 * because each write-back erases this info.
750 		 */
751 		rx_desc->read.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset);
752 
753 		rx_desc++;
754 		bi++;
755 		ntu++;
756 		if (unlikely(ntu == rx_ring->count)) {
757 			rx_desc = ICE_RX_DESC(rx_ring, 0);
758 			bi = rx_ring->rx_buf;
759 			ntu = 0;
760 		}
761 
762 		/* clear the status bits for the next_to_use descriptor */
763 		rx_desc->wb.status_error0 = 0;
764 
765 		cleaned_count--;
766 	} while (cleaned_count);
767 
768 	if (rx_ring->next_to_use != ntu)
769 		ice_release_rx_desc(rx_ring, ntu);
770 
771 	return !!cleaned_count;
772 }
773 
774 /**
775  * ice_rx_buf_adjust_pg_offset - Prepare Rx buffer for reuse
776  * @rx_buf: Rx buffer to adjust
777  * @size: Size of adjustment
778  *
779  * Update the offset within page so that Rx buf will be ready to be reused.
780  * For systems with PAGE_SIZE < 8192 this function will flip the page offset
781  * so the second half of page assigned to Rx buffer will be used, otherwise
782  * the offset is moved by "size" bytes
783  */
784 static void
ice_rx_buf_adjust_pg_offset(struct ice_rx_buf * rx_buf,unsigned int size)785 ice_rx_buf_adjust_pg_offset(struct ice_rx_buf *rx_buf, unsigned int size)
786 {
787 #if (PAGE_SIZE < 8192)
788 	/* flip page offset to other buffer */
789 	rx_buf->page_offset ^= size;
790 #else
791 	/* move offset up to the next cache line */
792 	rx_buf->page_offset += size;
793 #endif
794 }
795 
796 /**
797  * ice_can_reuse_rx_page - Determine if page can be reused for another Rx
798  * @rx_buf: buffer containing the page
799  *
800  * If page is reusable, we have a green light for calling ice_reuse_rx_page,
801  * which will assign the current buffer to the buffer that next_to_alloc is
802  * pointing to; otherwise, the DMA mapping needs to be destroyed and
803  * page freed
804  */
805 static bool
ice_can_reuse_rx_page(struct ice_rx_buf * rx_buf)806 ice_can_reuse_rx_page(struct ice_rx_buf *rx_buf)
807 {
808 	unsigned int pagecnt_bias = rx_buf->pagecnt_bias;
809 	struct page *page = rx_buf->page;
810 
811 	/* avoid re-using remote and pfmemalloc pages */
812 	if (!dev_page_is_reusable(page))
813 		return false;
814 
815 	/* if we are only owner of page we can reuse it */
816 	if (unlikely(rx_buf->pgcnt - pagecnt_bias > 1))
817 		return false;
818 #if (PAGE_SIZE >= 8192)
819 #define ICE_LAST_OFFSET \
820 	(SKB_WITH_OVERHEAD(PAGE_SIZE) - ICE_RXBUF_3072)
821 	if (rx_buf->page_offset > ICE_LAST_OFFSET)
822 		return false;
823 #endif /* PAGE_SIZE >= 8192) */
824 
825 	/* If we have drained the page fragment pool we need to update
826 	 * the pagecnt_bias and page count so that we fully restock the
827 	 * number of references the driver holds.
828 	 */
829 	if (unlikely(pagecnt_bias == 1)) {
830 		page_ref_add(page, USHRT_MAX - 1);
831 		rx_buf->pagecnt_bias = USHRT_MAX;
832 	}
833 
834 	return true;
835 }
836 
837 /**
838  * ice_add_xdp_frag - Add contents of Rx buffer to xdp buf as a frag
839  * @rx_ring: Rx descriptor ring to transact packets on
840  * @xdp: xdp buff to place the data into
841  * @rx_buf: buffer containing page to add
842  * @size: packet length from rx_desc
843  *
844  * This function will add the data contained in rx_buf->page to the xdp buf.
845  * It will just attach the page as a frag.
846  */
847 static int
ice_add_xdp_frag(struct ice_rx_ring * rx_ring,struct xdp_buff * xdp,struct ice_rx_buf * rx_buf,const unsigned int size)848 ice_add_xdp_frag(struct ice_rx_ring *rx_ring, struct xdp_buff *xdp,
849 		 struct ice_rx_buf *rx_buf, const unsigned int size)
850 {
851 	struct skb_shared_info *sinfo = xdp_get_shared_info_from_buff(xdp);
852 
853 	if (!size)
854 		return 0;
855 
856 	if (!xdp_buff_has_frags(xdp)) {
857 		sinfo->nr_frags = 0;
858 		sinfo->xdp_frags_size = 0;
859 		xdp_buff_set_frags_flag(xdp);
860 	}
861 
862 	if (unlikely(sinfo->nr_frags == MAX_SKB_FRAGS))
863 		return -ENOMEM;
864 
865 	__skb_fill_page_desc_noacc(sinfo, sinfo->nr_frags++, rx_buf->page,
866 				   rx_buf->page_offset, size);
867 	sinfo->xdp_frags_size += size;
868 
869 	if (page_is_pfmemalloc(rx_buf->page))
870 		xdp_buff_set_frag_pfmemalloc(xdp);
871 
872 	return 0;
873 }
874 
875 /**
876  * ice_reuse_rx_page - page flip buffer and store it back on the ring
877  * @rx_ring: Rx descriptor ring to store buffers on
878  * @old_buf: donor buffer to have page reused
879  *
880  * Synchronizes page for reuse by the adapter
881  */
882 static void
ice_reuse_rx_page(struct ice_rx_ring * rx_ring,struct ice_rx_buf * old_buf)883 ice_reuse_rx_page(struct ice_rx_ring *rx_ring, struct ice_rx_buf *old_buf)
884 {
885 	u16 nta = rx_ring->next_to_alloc;
886 	struct ice_rx_buf *new_buf;
887 
888 	new_buf = &rx_ring->rx_buf[nta];
889 
890 	/* update, and store next to alloc */
891 	nta++;
892 	rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0;
893 
894 	/* Transfer page from old buffer to new buffer.
895 	 * Move each member individually to avoid possible store
896 	 * forwarding stalls and unnecessary copy of skb.
897 	 */
898 	new_buf->dma = old_buf->dma;
899 	new_buf->page = old_buf->page;
900 	new_buf->page_offset = old_buf->page_offset;
901 	new_buf->pagecnt_bias = old_buf->pagecnt_bias;
902 }
903 
904 /**
905  * ice_get_rx_buf - Fetch Rx buffer and synchronize data for use
906  * @rx_ring: Rx descriptor ring to transact packets on
907  * @size: size of buffer to add to skb
908  * @ntc: index of next to clean element
909  *
910  * This function will pull an Rx buffer from the ring and synchronize it
911  * for use by the CPU.
912  */
913 static struct ice_rx_buf *
ice_get_rx_buf(struct ice_rx_ring * rx_ring,const unsigned int size,const unsigned int ntc)914 ice_get_rx_buf(struct ice_rx_ring *rx_ring, const unsigned int size,
915 	       const unsigned int ntc)
916 {
917 	struct ice_rx_buf *rx_buf;
918 
919 	rx_buf = &rx_ring->rx_buf[ntc];
920 	prefetchw(rx_buf->page);
921 
922 	if (!size)
923 		return rx_buf;
924 	/* we are reusing so sync this buffer for CPU use */
925 	dma_sync_single_range_for_cpu(rx_ring->dev, rx_buf->dma,
926 				      rx_buf->page_offset, size,
927 				      DMA_FROM_DEVICE);
928 
929 	/* We have pulled a buffer for use, so decrement pagecnt_bias */
930 	rx_buf->pagecnt_bias--;
931 
932 	return rx_buf;
933 }
934 
935 /**
936  * ice_get_pgcnts - grab page_count() for gathered fragments
937  * @rx_ring: Rx descriptor ring to store the page counts on
938  * @ntc: the next to clean element (not included in this frame!)
939  *
940  * This function is intended to be called right before running XDP
941  * program so that the page recycling mechanism will be able to take
942  * a correct decision regarding underlying pages; this is done in such
943  * way as XDP program can change the refcount of page
944  */
ice_get_pgcnts(struct ice_rx_ring * rx_ring,unsigned int ntc)945 static void ice_get_pgcnts(struct ice_rx_ring *rx_ring, unsigned int ntc)
946 {
947 	u32 idx = rx_ring->first_desc;
948 	struct ice_rx_buf *rx_buf;
949 	u32 cnt = rx_ring->count;
950 
951 	while (idx != ntc) {
952 		rx_buf = &rx_ring->rx_buf[idx];
953 		rx_buf->pgcnt = page_count(rx_buf->page);
954 
955 		if (++idx == cnt)
956 			idx = 0;
957 	}
958 }
959 
960 /**
961  * ice_build_skb - Build skb around an existing buffer
962  * @rx_ring: Rx descriptor ring to transact packets on
963  * @xdp: xdp_buff pointing to the data
964  *
965  * This function builds an skb around an existing XDP buffer, taking care
966  * to set up the skb correctly and avoid any memcpy overhead. Driver has
967  * already combined frags (if any) to skb_shared_info.
968  */
969 static struct sk_buff *
ice_build_skb(struct ice_rx_ring * rx_ring,struct xdp_buff * xdp)970 ice_build_skb(struct ice_rx_ring *rx_ring, struct xdp_buff *xdp)
971 {
972 	u8 metasize = xdp->data - xdp->data_meta;
973 	struct skb_shared_info *sinfo = NULL;
974 	unsigned int nr_frags;
975 	struct sk_buff *skb;
976 
977 	if (unlikely(xdp_buff_has_frags(xdp))) {
978 		sinfo = xdp_get_shared_info_from_buff(xdp);
979 		nr_frags = sinfo->nr_frags;
980 	}
981 
982 	/* Prefetch first cache line of first page. If xdp->data_meta
983 	 * is unused, this points exactly as xdp->data, otherwise we
984 	 * likely have a consumer accessing first few bytes of meta
985 	 * data, and then actual data.
986 	 */
987 	net_prefetch(xdp->data_meta);
988 	/* build an skb around the page buffer */
989 	skb = napi_build_skb(xdp->data_hard_start, xdp->frame_sz);
990 	if (unlikely(!skb))
991 		return NULL;
992 
993 	/* must to record Rx queue, otherwise OS features such as
994 	 * symmetric queue won't work
995 	 */
996 	skb_record_rx_queue(skb, rx_ring->q_index);
997 
998 	/* update pointers within the skb to store the data */
999 	skb_reserve(skb, xdp->data - xdp->data_hard_start);
1000 	__skb_put(skb, xdp->data_end - xdp->data);
1001 	if (metasize)
1002 		skb_metadata_set(skb, metasize);
1003 
1004 	if (unlikely(xdp_buff_has_frags(xdp)))
1005 		xdp_update_skb_shared_info(skb, nr_frags,
1006 					   sinfo->xdp_frags_size,
1007 					   nr_frags * xdp->frame_sz,
1008 					   xdp_buff_is_frag_pfmemalloc(xdp));
1009 
1010 	return skb;
1011 }
1012 
1013 /**
1014  * ice_construct_skb - Allocate skb and populate it
1015  * @rx_ring: Rx descriptor ring to transact packets on
1016  * @xdp: xdp_buff pointing to the data
1017  *
1018  * This function allocates an skb. It then populates it with the page
1019  * data from the current receive descriptor, taking care to set up the
1020  * skb correctly.
1021  */
1022 static struct sk_buff *
ice_construct_skb(struct ice_rx_ring * rx_ring,struct xdp_buff * xdp)1023 ice_construct_skb(struct ice_rx_ring *rx_ring, struct xdp_buff *xdp)
1024 {
1025 	unsigned int size = xdp->data_end - xdp->data;
1026 	struct skb_shared_info *sinfo = NULL;
1027 	struct ice_rx_buf *rx_buf;
1028 	unsigned int nr_frags = 0;
1029 	unsigned int headlen;
1030 	struct sk_buff *skb;
1031 
1032 	/* prefetch first cache line of first page */
1033 	net_prefetch(xdp->data);
1034 
1035 	if (unlikely(xdp_buff_has_frags(xdp))) {
1036 		sinfo = xdp_get_shared_info_from_buff(xdp);
1037 		nr_frags = sinfo->nr_frags;
1038 	}
1039 
1040 	/* allocate a skb to store the frags */
1041 	skb = napi_alloc_skb(&rx_ring->q_vector->napi, ICE_RX_HDR_SIZE);
1042 	if (unlikely(!skb))
1043 		return NULL;
1044 
1045 	rx_buf = &rx_ring->rx_buf[rx_ring->first_desc];
1046 	skb_record_rx_queue(skb, rx_ring->q_index);
1047 	/* Determine available headroom for copy */
1048 	headlen = size;
1049 	if (headlen > ICE_RX_HDR_SIZE)
1050 		headlen = eth_get_headlen(skb->dev, xdp->data, ICE_RX_HDR_SIZE);
1051 
1052 	/* align pull length to size of long to optimize memcpy performance */
1053 	memcpy(__skb_put(skb, headlen), xdp->data, ALIGN(headlen,
1054 							 sizeof(long)));
1055 
1056 	/* if we exhaust the linear part then add what is left as a frag */
1057 	size -= headlen;
1058 	if (size) {
1059 		/* besides adding here a partial frag, we are going to add
1060 		 * frags from xdp_buff, make sure there is enough space for
1061 		 * them
1062 		 */
1063 		if (unlikely(nr_frags >= MAX_SKB_FRAGS - 1)) {
1064 			dev_kfree_skb(skb);
1065 			return NULL;
1066 		}
1067 		skb_add_rx_frag(skb, 0, rx_buf->page,
1068 				rx_buf->page_offset + headlen, size,
1069 				xdp->frame_sz);
1070 	} else {
1071 		/* buffer is unused, restore biased page count in Rx buffer;
1072 		 * data was copied onto skb's linear part so there's no
1073 		 * need for adjusting page offset and we can reuse this buffer
1074 		 * as-is
1075 		 */
1076 		rx_buf->pagecnt_bias++;
1077 	}
1078 
1079 	if (unlikely(xdp_buff_has_frags(xdp))) {
1080 		struct skb_shared_info *skinfo = skb_shinfo(skb);
1081 
1082 		memcpy(&skinfo->frags[skinfo->nr_frags], &sinfo->frags[0],
1083 		       sizeof(skb_frag_t) * nr_frags);
1084 
1085 		xdp_update_skb_shared_info(skb, skinfo->nr_frags + nr_frags,
1086 					   sinfo->xdp_frags_size,
1087 					   nr_frags * xdp->frame_sz,
1088 					   xdp_buff_is_frag_pfmemalloc(xdp));
1089 	}
1090 
1091 	return skb;
1092 }
1093 
1094 /**
1095  * ice_put_rx_buf - Clean up used buffer and either recycle or free
1096  * @rx_ring: Rx descriptor ring to transact packets on
1097  * @rx_buf: Rx buffer to pull data from
1098  *
1099  * This function will clean up the contents of the rx_buf. It will either
1100  * recycle the buffer or unmap it and free the associated resources.
1101  */
1102 static void
ice_put_rx_buf(struct ice_rx_ring * rx_ring,struct ice_rx_buf * rx_buf)1103 ice_put_rx_buf(struct ice_rx_ring *rx_ring, struct ice_rx_buf *rx_buf)
1104 {
1105 	if (!rx_buf)
1106 		return;
1107 
1108 	if (ice_can_reuse_rx_page(rx_buf)) {
1109 		/* hand second half of page back to the ring */
1110 		ice_reuse_rx_page(rx_ring, rx_buf);
1111 	} else {
1112 		/* we are not reusing the buffer so unmap it */
1113 		dma_unmap_page_attrs(rx_ring->dev, rx_buf->dma,
1114 				     ice_rx_pg_size(rx_ring), DMA_FROM_DEVICE,
1115 				     ICE_RX_DMA_ATTR);
1116 		__page_frag_cache_drain(rx_buf->page, rx_buf->pagecnt_bias);
1117 	}
1118 
1119 	/* clear contents of buffer_info */
1120 	rx_buf->page = NULL;
1121 }
1122 
1123 /**
1124  * ice_put_rx_mbuf - ice_put_rx_buf() caller, for all buffers in frame
1125  * @rx_ring: Rx ring with all the auxiliary data
1126  * @xdp: XDP buffer carrying linear + frags part
1127  * @ntc: the next to clean element (not included in this frame!)
1128  * @verdict: return code from XDP program execution
1129  *
1130  * Called after XDP program is completed, or on error with verdict set to
1131  * ICE_XDP_CONSUMED.
1132  *
1133  * Walk through buffers from first_desc to the end of the frame, releasing
1134  * buffers and satisfying internal page recycle mechanism. The action depends
1135  * on verdict from XDP program.
1136  */
ice_put_rx_mbuf(struct ice_rx_ring * rx_ring,struct xdp_buff * xdp,u32 ntc,u32 verdict)1137 static void ice_put_rx_mbuf(struct ice_rx_ring *rx_ring, struct xdp_buff *xdp,
1138 			    u32 ntc, u32 verdict)
1139 {
1140 	u32 idx = rx_ring->first_desc;
1141 	u32 cnt = rx_ring->count;
1142 	struct ice_rx_buf *buf;
1143 	u32 xdp_frags = 0;
1144 	int i = 0;
1145 
1146 	if (unlikely(xdp_buff_has_frags(xdp)))
1147 		xdp_frags = xdp_get_shared_info_from_buff(xdp)->nr_frags;
1148 
1149 	while (idx != ntc) {
1150 		buf = &rx_ring->rx_buf[idx];
1151 		if (++idx == cnt)
1152 			idx = 0;
1153 
1154 		/* An XDP program could release fragments from the end of the
1155 		 * buffer. For these, we need to keep the pagecnt_bias as-is.
1156 		 * To do this, only adjust pagecnt_bias for fragments up to
1157 		 * the total remaining after the XDP program has run.
1158 		 */
1159 		if (verdict != ICE_XDP_CONSUMED)
1160 			ice_rx_buf_adjust_pg_offset(buf, xdp->frame_sz);
1161 		else if (i++ <= xdp_frags)
1162 			buf->pagecnt_bias++;
1163 
1164 		ice_put_rx_buf(rx_ring, buf);
1165 	}
1166 
1167 	xdp->data = NULL;
1168 	rx_ring->first_desc = ntc;
1169 }
1170 
1171 /**
1172  * ice_clean_rx_irq - Clean completed descriptors from Rx ring - bounce buf
1173  * @rx_ring: Rx descriptor ring to transact packets on
1174  * @budget: Total limit on number of packets to process
1175  *
1176  * This function provides a "bounce buffer" approach to Rx interrupt
1177  * processing. The advantage to this is that on systems that have
1178  * expensive overhead for IOMMU access this provides a means of avoiding
1179  * it by maintaining the mapping of the page to the system.
1180  *
1181  * Returns amount of work completed
1182  */
ice_clean_rx_irq(struct ice_rx_ring * rx_ring,int budget)1183 int ice_clean_rx_irq(struct ice_rx_ring *rx_ring, int budget)
1184 {
1185 	unsigned int total_rx_bytes = 0, total_rx_pkts = 0;
1186 	unsigned int offset = rx_ring->rx_offset;
1187 	struct xdp_buff *xdp = &rx_ring->xdp;
1188 	struct ice_tx_ring *xdp_ring = NULL;
1189 	struct bpf_prog *xdp_prog = NULL;
1190 	u32 ntc = rx_ring->next_to_clean;
1191 	u32 cached_ntu, xdp_verdict;
1192 	u32 cnt = rx_ring->count;
1193 	u32 xdp_xmit = 0;
1194 	bool failure;
1195 
1196 	xdp_prog = READ_ONCE(rx_ring->xdp_prog);
1197 	if (xdp_prog) {
1198 		xdp_ring = rx_ring->xdp_ring;
1199 		cached_ntu = xdp_ring->next_to_use;
1200 	}
1201 
1202 	/* start the loop to process Rx packets bounded by 'budget' */
1203 	while (likely(total_rx_pkts < (unsigned int)budget)) {
1204 		union ice_32b_rx_flex_desc *rx_desc;
1205 		struct ice_rx_buf *rx_buf;
1206 		struct sk_buff *skb;
1207 		unsigned int size;
1208 		u16 stat_err_bits;
1209 		u16 vlan_tci;
1210 
1211 		/* get the Rx desc from Rx ring based on 'next_to_clean' */
1212 		rx_desc = ICE_RX_DESC(rx_ring, ntc);
1213 
1214 		/* status_error_len will always be zero for unused descriptors
1215 		 * because it's cleared in cleanup, and overlaps with hdr_addr
1216 		 * which is always zero because packet split isn't used, if the
1217 		 * hardware wrote DD then it will be non-zero
1218 		 */
1219 		stat_err_bits = BIT(ICE_RX_FLEX_DESC_STATUS0_DD_S);
1220 		if (!ice_test_staterr(rx_desc->wb.status_error0, stat_err_bits))
1221 			break;
1222 
1223 		/* This memory barrier is needed to keep us from reading
1224 		 * any other fields out of the rx_desc until we know the
1225 		 * DD bit is set.
1226 		 */
1227 		dma_rmb();
1228 
1229 		ice_trace(clean_rx_irq, rx_ring, rx_desc);
1230 		if (rx_desc->wb.rxdid == FDIR_DESC_RXDID || !rx_ring->netdev) {
1231 			struct ice_vsi *ctrl_vsi = rx_ring->vsi;
1232 
1233 			if (rx_desc->wb.rxdid == FDIR_DESC_RXDID &&
1234 			    ctrl_vsi->vf)
1235 				ice_vc_fdir_irq_handler(ctrl_vsi, rx_desc);
1236 			if (++ntc == cnt)
1237 				ntc = 0;
1238 			rx_ring->first_desc = ntc;
1239 			continue;
1240 		}
1241 
1242 		size = le16_to_cpu(rx_desc->wb.pkt_len) &
1243 			ICE_RX_FLX_DESC_PKT_LEN_M;
1244 
1245 		/* retrieve a buffer from the ring */
1246 		rx_buf = ice_get_rx_buf(rx_ring, size, ntc);
1247 
1248 		/* Increment ntc before calls to ice_put_rx_mbuf() */
1249 		if (++ntc == cnt)
1250 			ntc = 0;
1251 
1252 		if (!xdp->data) {
1253 			void *hard_start;
1254 
1255 			hard_start = page_address(rx_buf->page) + rx_buf->page_offset -
1256 				     offset;
1257 			xdp_prepare_buff(xdp, hard_start, offset, size, !!offset);
1258 			xdp_buff_clear_frags_flag(xdp);
1259 		} else if (ice_add_xdp_frag(rx_ring, xdp, rx_buf, size)) {
1260 			ice_put_rx_mbuf(rx_ring, xdp, ntc, ICE_XDP_CONSUMED);
1261 			break;
1262 		}
1263 
1264 		/* skip if it is NOP desc */
1265 		if (ice_is_non_eop(rx_ring, rx_desc))
1266 			continue;
1267 
1268 		ice_get_pgcnts(rx_ring, ntc);
1269 		xdp_verdict = ice_run_xdp(rx_ring, xdp, xdp_prog, xdp_ring, rx_desc);
1270 		if (xdp_verdict == ICE_XDP_PASS)
1271 			goto construct_skb;
1272 		total_rx_bytes += xdp_get_buff_len(xdp);
1273 		total_rx_pkts++;
1274 
1275 		ice_put_rx_mbuf(rx_ring, xdp, ntc, xdp_verdict);
1276 		xdp_xmit |= xdp_verdict & (ICE_XDP_TX | ICE_XDP_REDIR);
1277 
1278 		continue;
1279 construct_skb:
1280 		if (likely(ice_ring_uses_build_skb(rx_ring)))
1281 			skb = ice_build_skb(rx_ring, xdp);
1282 		else
1283 			skb = ice_construct_skb(rx_ring, xdp);
1284 		/* exit if we failed to retrieve a buffer */
1285 		if (!skb) {
1286 			rx_ring->ring_stats->rx_stats.alloc_buf_failed++;
1287 			xdp_verdict = ICE_XDP_CONSUMED;
1288 		}
1289 		ice_put_rx_mbuf(rx_ring, xdp, ntc, xdp_verdict);
1290 
1291 		if (!skb)
1292 			break;
1293 
1294 		stat_err_bits = BIT(ICE_RX_FLEX_DESC_STATUS0_RXE_S);
1295 		if (unlikely(ice_test_staterr(rx_desc->wb.status_error0,
1296 					      stat_err_bits))) {
1297 			dev_kfree_skb_any(skb);
1298 			continue;
1299 		}
1300 
1301 		vlan_tci = ice_get_vlan_tci(rx_desc);
1302 
1303 		/* pad the skb if needed, to make a valid ethernet frame */
1304 		if (eth_skb_pad(skb))
1305 			continue;
1306 
1307 		/* probably a little skewed due to removing CRC */
1308 		total_rx_bytes += skb->len;
1309 
1310 		/* populate checksum, VLAN, and protocol */
1311 		ice_process_skb_fields(rx_ring, rx_desc, skb);
1312 
1313 		ice_trace(clean_rx_irq_indicate, rx_ring, rx_desc, skb);
1314 		/* send completed skb up the stack */
1315 		ice_receive_skb(rx_ring, skb, vlan_tci);
1316 
1317 		/* update budget accounting */
1318 		total_rx_pkts++;
1319 	}
1320 
1321 	rx_ring->next_to_clean = ntc;
1322 	/* return up to cleaned_count buffers to hardware */
1323 	failure = ice_alloc_rx_bufs(rx_ring, ICE_RX_DESC_UNUSED(rx_ring));
1324 
1325 	if (xdp_xmit)
1326 		ice_finalize_xdp_rx(xdp_ring, xdp_xmit, cached_ntu);
1327 
1328 	if (rx_ring->ring_stats)
1329 		ice_update_rx_ring_stats(rx_ring, total_rx_pkts,
1330 					 total_rx_bytes);
1331 
1332 	/* guarantee a trip back through this routine if there was a failure */
1333 	return failure ? budget : (int)total_rx_pkts;
1334 }
1335 
__ice_update_sample(struct ice_q_vector * q_vector,struct ice_ring_container * rc,struct dim_sample * sample,bool is_tx)1336 static void __ice_update_sample(struct ice_q_vector *q_vector,
1337 				struct ice_ring_container *rc,
1338 				struct dim_sample *sample,
1339 				bool is_tx)
1340 {
1341 	u64 packets = 0, bytes = 0;
1342 
1343 	if (is_tx) {
1344 		struct ice_tx_ring *tx_ring;
1345 
1346 		ice_for_each_tx_ring(tx_ring, *rc) {
1347 			struct ice_ring_stats *ring_stats;
1348 
1349 			ring_stats = tx_ring->ring_stats;
1350 			if (!ring_stats)
1351 				continue;
1352 			packets += ring_stats->stats.pkts;
1353 			bytes += ring_stats->stats.bytes;
1354 		}
1355 	} else {
1356 		struct ice_rx_ring *rx_ring;
1357 
1358 		ice_for_each_rx_ring(rx_ring, *rc) {
1359 			struct ice_ring_stats *ring_stats;
1360 
1361 			ring_stats = rx_ring->ring_stats;
1362 			if (!ring_stats)
1363 				continue;
1364 			packets += ring_stats->stats.pkts;
1365 			bytes += ring_stats->stats.bytes;
1366 		}
1367 	}
1368 
1369 	dim_update_sample(q_vector->total_events, packets, bytes, sample);
1370 	sample->comp_ctr = 0;
1371 
1372 	/* if dim settings get stale, like when not updated for 1
1373 	 * second or longer, force it to start again. This addresses the
1374 	 * frequent case of an idle queue being switched to by the
1375 	 * scheduler. The 1,000 here means 1,000 milliseconds.
1376 	 */
1377 	if (ktime_ms_delta(sample->time, rc->dim.start_sample.time) >= 1000)
1378 		rc->dim.state = DIM_START_MEASURE;
1379 }
1380 
1381 /**
1382  * ice_net_dim - Update net DIM algorithm
1383  * @q_vector: the vector associated with the interrupt
1384  *
1385  * Create a DIM sample and notify net_dim() so that it can possibly decide
1386  * a new ITR value based on incoming packets, bytes, and interrupts.
1387  *
1388  * This function is a no-op if the ring is not configured to dynamic ITR.
1389  */
ice_net_dim(struct ice_q_vector * q_vector)1390 static void ice_net_dim(struct ice_q_vector *q_vector)
1391 {
1392 	struct ice_ring_container *tx = &q_vector->tx;
1393 	struct ice_ring_container *rx = &q_vector->rx;
1394 
1395 	if (ITR_IS_DYNAMIC(tx)) {
1396 		struct dim_sample dim_sample;
1397 
1398 		__ice_update_sample(q_vector, tx, &dim_sample, true);
1399 		net_dim(&tx->dim, dim_sample);
1400 	}
1401 
1402 	if (ITR_IS_DYNAMIC(rx)) {
1403 		struct dim_sample dim_sample;
1404 
1405 		__ice_update_sample(q_vector, rx, &dim_sample, false);
1406 		net_dim(&rx->dim, dim_sample);
1407 	}
1408 }
1409 
1410 /**
1411  * ice_buildreg_itr - build value for writing to the GLINT_DYN_CTL register
1412  * @itr_idx: interrupt throttling index
1413  * @itr: interrupt throttling value in usecs
1414  */
ice_buildreg_itr(u16 itr_idx,u16 itr)1415 static u32 ice_buildreg_itr(u16 itr_idx, u16 itr)
1416 {
1417 	/* The ITR value is reported in microseconds, and the register value is
1418 	 * recorded in 2 microsecond units. For this reason we only need to
1419 	 * shift by the GLINT_DYN_CTL_INTERVAL_S - ICE_ITR_GRAN_S to apply this
1420 	 * granularity as a shift instead of division. The mask makes sure the
1421 	 * ITR value is never odd so we don't accidentally write into the field
1422 	 * prior to the ITR field.
1423 	 */
1424 	itr &= ICE_ITR_MASK;
1425 
1426 	return GLINT_DYN_CTL_INTENA_M | GLINT_DYN_CTL_CLEARPBA_M |
1427 		(itr_idx << GLINT_DYN_CTL_ITR_INDX_S) |
1428 		(itr << (GLINT_DYN_CTL_INTERVAL_S - ICE_ITR_GRAN_S));
1429 }
1430 
1431 /**
1432  * ice_enable_interrupt - re-enable MSI-X interrupt
1433  * @q_vector: the vector associated with the interrupt to enable
1434  *
1435  * If the VSI is down, the interrupt will not be re-enabled. Also,
1436  * when enabling the interrupt always reset the wb_on_itr to false
1437  * and trigger a software interrupt to clean out internal state.
1438  */
ice_enable_interrupt(struct ice_q_vector * q_vector)1439 static void ice_enable_interrupt(struct ice_q_vector *q_vector)
1440 {
1441 	struct ice_vsi *vsi = q_vector->vsi;
1442 	bool wb_en = q_vector->wb_on_itr;
1443 	u32 itr_val;
1444 
1445 	if (test_bit(ICE_DOWN, vsi->state))
1446 		return;
1447 
1448 	/* trigger an ITR delayed software interrupt when exiting busy poll, to
1449 	 * make sure to catch any pending cleanups that might have been missed
1450 	 * due to interrupt state transition. If busy poll or poll isn't
1451 	 * enabled, then don't update ITR, and just enable the interrupt.
1452 	 */
1453 	if (!wb_en) {
1454 		itr_val = ice_buildreg_itr(ICE_ITR_NONE, 0);
1455 	} else {
1456 		q_vector->wb_on_itr = false;
1457 
1458 		/* do two things here with a single write. Set up the third ITR
1459 		 * index to be used for software interrupt moderation, and then
1460 		 * trigger a software interrupt with a rate limit of 20K on
1461 		 * software interrupts, this will help avoid high interrupt
1462 		 * loads due to frequently polling and exiting polling.
1463 		 */
1464 		itr_val = ice_buildreg_itr(ICE_IDX_ITR2, ICE_ITR_20K);
1465 		itr_val |= GLINT_DYN_CTL_SWINT_TRIG_M |
1466 			   ICE_IDX_ITR2 << GLINT_DYN_CTL_SW_ITR_INDX_S |
1467 			   GLINT_DYN_CTL_SW_ITR_INDX_ENA_M;
1468 	}
1469 	wr32(&vsi->back->hw, GLINT_DYN_CTL(q_vector->reg_idx), itr_val);
1470 }
1471 
1472 /**
1473  * ice_set_wb_on_itr - set WB_ON_ITR for this q_vector
1474  * @q_vector: q_vector to set WB_ON_ITR on
1475  *
1476  * We need to tell hardware to write-back completed descriptors even when
1477  * interrupts are disabled. Descriptors will be written back on cache line
1478  * boundaries without WB_ON_ITR enabled, but if we don't enable WB_ON_ITR
1479  * descriptors may not be written back if they don't fill a cache line until
1480  * the next interrupt.
1481  *
1482  * This sets the write-back frequency to whatever was set previously for the
1483  * ITR indices. Also, set the INTENA_MSK bit to make sure hardware knows we
1484  * aren't meddling with the INTENA_M bit.
1485  */
ice_set_wb_on_itr(struct ice_q_vector * q_vector)1486 static void ice_set_wb_on_itr(struct ice_q_vector *q_vector)
1487 {
1488 	struct ice_vsi *vsi = q_vector->vsi;
1489 
1490 	/* already in wb_on_itr mode no need to change it */
1491 	if (q_vector->wb_on_itr)
1492 		return;
1493 
1494 	/* use previously set ITR values for all of the ITR indices by
1495 	 * specifying ICE_ITR_NONE, which will vary in adaptive (AIM) mode and
1496 	 * be static in non-adaptive mode (user configured)
1497 	 */
1498 	wr32(&vsi->back->hw, GLINT_DYN_CTL(q_vector->reg_idx),
1499 	     FIELD_PREP(GLINT_DYN_CTL_ITR_INDX_M, ICE_ITR_NONE) |
1500 	     FIELD_PREP(GLINT_DYN_CTL_INTENA_MSK_M, 1) |
1501 	     FIELD_PREP(GLINT_DYN_CTL_WB_ON_ITR_M, 1));
1502 
1503 	q_vector->wb_on_itr = true;
1504 }
1505 
1506 /**
1507  * ice_napi_poll - NAPI polling Rx/Tx cleanup routine
1508  * @napi: napi struct with our devices info in it
1509  * @budget: amount of work driver is allowed to do this pass, in packets
1510  *
1511  * This function will clean all queues associated with a q_vector.
1512  *
1513  * Returns the amount of work done
1514  */
ice_napi_poll(struct napi_struct * napi,int budget)1515 int ice_napi_poll(struct napi_struct *napi, int budget)
1516 {
1517 	struct ice_q_vector *q_vector =
1518 				container_of(napi, struct ice_q_vector, napi);
1519 	struct ice_tx_ring *tx_ring;
1520 	struct ice_rx_ring *rx_ring;
1521 	bool clean_complete = true;
1522 	int budget_per_ring;
1523 	int work_done = 0;
1524 
1525 	/* Since the actual Tx work is minimal, we can give the Tx a larger
1526 	 * budget and be more aggressive about cleaning up the Tx descriptors.
1527 	 */
1528 	ice_for_each_tx_ring(tx_ring, q_vector->tx) {
1529 		struct xsk_buff_pool *xsk_pool = READ_ONCE(tx_ring->xsk_pool);
1530 		bool wd;
1531 
1532 		if (xsk_pool)
1533 			wd = ice_xmit_zc(tx_ring, xsk_pool);
1534 		else if (ice_ring_is_xdp(tx_ring))
1535 			wd = true;
1536 		else
1537 			wd = ice_clean_tx_irq(tx_ring, budget);
1538 
1539 		if (!wd)
1540 			clean_complete = false;
1541 	}
1542 
1543 	/* Handle case where we are called by netpoll with a budget of 0 */
1544 	if (unlikely(budget <= 0))
1545 		return budget;
1546 
1547 	/* normally we have 1 Rx ring per q_vector */
1548 	if (unlikely(q_vector->num_ring_rx > 1))
1549 		/* We attempt to distribute budget to each Rx queue fairly, but
1550 		 * don't allow the budget to go below 1 because that would exit
1551 		 * polling early.
1552 		 */
1553 		budget_per_ring = max_t(int, budget / q_vector->num_ring_rx, 1);
1554 	else
1555 		/* Max of 1 Rx ring in this q_vector so give it the budget */
1556 		budget_per_ring = budget;
1557 
1558 	ice_for_each_rx_ring(rx_ring, q_vector->rx) {
1559 		struct xsk_buff_pool *xsk_pool = READ_ONCE(rx_ring->xsk_pool);
1560 		int cleaned;
1561 
1562 		/* A dedicated path for zero-copy allows making a single
1563 		 * comparison in the irq context instead of many inside the
1564 		 * ice_clean_rx_irq function and makes the codebase cleaner.
1565 		 */
1566 		cleaned = rx_ring->xsk_pool ?
1567 			  ice_clean_rx_irq_zc(rx_ring, xsk_pool, budget_per_ring) :
1568 			  ice_clean_rx_irq(rx_ring, budget_per_ring);
1569 		work_done += cleaned;
1570 		/* if we clean as many as budgeted, we must not be done */
1571 		if (cleaned >= budget_per_ring)
1572 			clean_complete = false;
1573 	}
1574 
1575 	/* If work not completed, return budget and polling will return */
1576 	if (!clean_complete) {
1577 		/* Set the writeback on ITR so partial completions of
1578 		 * cache-lines will still continue even if we're polling.
1579 		 */
1580 		ice_set_wb_on_itr(q_vector);
1581 		return budget;
1582 	}
1583 
1584 	/* Exit the polling mode, but don't re-enable interrupts if stack might
1585 	 * poll us due to busy-polling
1586 	 */
1587 	if (napi_complete_done(napi, work_done)) {
1588 		ice_net_dim(q_vector);
1589 		ice_enable_interrupt(q_vector);
1590 	} else {
1591 		ice_set_wb_on_itr(q_vector);
1592 	}
1593 
1594 	return min_t(int, work_done, budget - 1);
1595 }
1596 
1597 /**
1598  * __ice_maybe_stop_tx - 2nd level check for Tx stop conditions
1599  * @tx_ring: the ring to be checked
1600  * @size: the size buffer we want to assure is available
1601  *
1602  * Returns -EBUSY if a stop is needed, else 0
1603  */
__ice_maybe_stop_tx(struct ice_tx_ring * tx_ring,unsigned int size)1604 static int __ice_maybe_stop_tx(struct ice_tx_ring *tx_ring, unsigned int size)
1605 {
1606 	netif_tx_stop_queue(txring_txq(tx_ring));
1607 	/* Memory barrier before checking head and tail */
1608 	smp_mb();
1609 
1610 	/* Check again in a case another CPU has just made room available. */
1611 	if (likely(ICE_DESC_UNUSED(tx_ring) < size))
1612 		return -EBUSY;
1613 
1614 	/* A reprieve! - use start_queue because it doesn't call schedule */
1615 	netif_tx_start_queue(txring_txq(tx_ring));
1616 	++tx_ring->ring_stats->tx_stats.restart_q;
1617 	return 0;
1618 }
1619 
1620 /**
1621  * ice_maybe_stop_tx - 1st level check for Tx stop conditions
1622  * @tx_ring: the ring to be checked
1623  * @size:    the size buffer we want to assure is available
1624  *
1625  * Returns 0 if stop is not needed
1626  */
ice_maybe_stop_tx(struct ice_tx_ring * tx_ring,unsigned int size)1627 static int ice_maybe_stop_tx(struct ice_tx_ring *tx_ring, unsigned int size)
1628 {
1629 	if (likely(ICE_DESC_UNUSED(tx_ring) >= size))
1630 		return 0;
1631 
1632 	return __ice_maybe_stop_tx(tx_ring, size);
1633 }
1634 
1635 /**
1636  * ice_tx_map - Build the Tx descriptor
1637  * @tx_ring: ring to send buffer on
1638  * @first: first buffer info buffer to use
1639  * @off: pointer to struct that holds offload parameters
1640  *
1641  * This function loops over the skb data pointed to by *first
1642  * and gets a physical address for each memory location and programs
1643  * it and the length into the transmit descriptor.
1644  */
1645 static void
ice_tx_map(struct ice_tx_ring * tx_ring,struct ice_tx_buf * first,struct ice_tx_offload_params * off)1646 ice_tx_map(struct ice_tx_ring *tx_ring, struct ice_tx_buf *first,
1647 	   struct ice_tx_offload_params *off)
1648 {
1649 	u64 td_offset, td_tag, td_cmd;
1650 	u16 i = tx_ring->next_to_use;
1651 	unsigned int data_len, size;
1652 	struct ice_tx_desc *tx_desc;
1653 	struct ice_tx_buf *tx_buf;
1654 	struct sk_buff *skb;
1655 	skb_frag_t *frag;
1656 	dma_addr_t dma;
1657 	bool kick;
1658 
1659 	td_tag = off->td_l2tag1;
1660 	td_cmd = off->td_cmd;
1661 	td_offset = off->td_offset;
1662 	skb = first->skb;
1663 
1664 	data_len = skb->data_len;
1665 	size = skb_headlen(skb);
1666 
1667 	tx_desc = ICE_TX_DESC(tx_ring, i);
1668 
1669 	if (first->tx_flags & ICE_TX_FLAGS_HW_VLAN) {
1670 		td_cmd |= (u64)ICE_TX_DESC_CMD_IL2TAG1;
1671 		td_tag = first->vid;
1672 	}
1673 
1674 	dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE);
1675 
1676 	tx_buf = first;
1677 
1678 	for (frag = &skb_shinfo(skb)->frags[0];; frag++) {
1679 		unsigned int max_data = ICE_MAX_DATA_PER_TXD_ALIGNED;
1680 
1681 		if (dma_mapping_error(tx_ring->dev, dma))
1682 			goto dma_error;
1683 
1684 		/* record length, and DMA address */
1685 		dma_unmap_len_set(tx_buf, len, size);
1686 		dma_unmap_addr_set(tx_buf, dma, dma);
1687 
1688 		/* align size to end of page */
1689 		max_data += -dma & (ICE_MAX_READ_REQ_SIZE - 1);
1690 		tx_desc->buf_addr = cpu_to_le64(dma);
1691 
1692 		/* account for data chunks larger than the hardware
1693 		 * can handle
1694 		 */
1695 		while (unlikely(size > ICE_MAX_DATA_PER_TXD)) {
1696 			tx_desc->cmd_type_offset_bsz =
1697 				ice_build_ctob(td_cmd, td_offset, max_data,
1698 					       td_tag);
1699 
1700 			tx_desc++;
1701 			i++;
1702 
1703 			if (i == tx_ring->count) {
1704 				tx_desc = ICE_TX_DESC(tx_ring, 0);
1705 				i = 0;
1706 			}
1707 
1708 			dma += max_data;
1709 			size -= max_data;
1710 
1711 			max_data = ICE_MAX_DATA_PER_TXD_ALIGNED;
1712 			tx_desc->buf_addr = cpu_to_le64(dma);
1713 		}
1714 
1715 		if (likely(!data_len))
1716 			break;
1717 
1718 		tx_desc->cmd_type_offset_bsz = ice_build_ctob(td_cmd, td_offset,
1719 							      size, td_tag);
1720 
1721 		tx_desc++;
1722 		i++;
1723 
1724 		if (i == tx_ring->count) {
1725 			tx_desc = ICE_TX_DESC(tx_ring, 0);
1726 			i = 0;
1727 		}
1728 
1729 		size = skb_frag_size(frag);
1730 		data_len -= size;
1731 
1732 		dma = skb_frag_dma_map(tx_ring->dev, frag, 0, size,
1733 				       DMA_TO_DEVICE);
1734 
1735 		tx_buf = &tx_ring->tx_buf[i];
1736 		tx_buf->type = ICE_TX_BUF_FRAG;
1737 	}
1738 
1739 	/* record SW timestamp if HW timestamp is not available */
1740 	skb_tx_timestamp(first->skb);
1741 
1742 	i++;
1743 	if (i == tx_ring->count)
1744 		i = 0;
1745 
1746 	/* write last descriptor with RS and EOP bits */
1747 	td_cmd |= (u64)ICE_TXD_LAST_DESC_CMD;
1748 	tx_desc->cmd_type_offset_bsz =
1749 			ice_build_ctob(td_cmd, td_offset, size, td_tag);
1750 
1751 	/* Force memory writes to complete before letting h/w know there
1752 	 * are new descriptors to fetch.
1753 	 *
1754 	 * We also use this memory barrier to make certain all of the
1755 	 * status bits have been updated before next_to_watch is written.
1756 	 */
1757 	wmb();
1758 
1759 	/* set next_to_watch value indicating a packet is present */
1760 	first->next_to_watch = tx_desc;
1761 
1762 	tx_ring->next_to_use = i;
1763 
1764 	ice_maybe_stop_tx(tx_ring, DESC_NEEDED);
1765 
1766 	/* notify HW of packet */
1767 	kick = __netdev_tx_sent_queue(txring_txq(tx_ring), first->bytecount,
1768 				      netdev_xmit_more());
1769 	if (kick)
1770 		/* notify HW of packet */
1771 		writel(i, tx_ring->tail);
1772 
1773 	return;
1774 
1775 dma_error:
1776 	/* clear DMA mappings for failed tx_buf map */
1777 	for (;;) {
1778 		tx_buf = &tx_ring->tx_buf[i];
1779 		ice_unmap_and_free_tx_buf(tx_ring, tx_buf);
1780 		if (tx_buf == first)
1781 			break;
1782 		if (i == 0)
1783 			i = tx_ring->count;
1784 		i--;
1785 	}
1786 
1787 	tx_ring->next_to_use = i;
1788 }
1789 
1790 /**
1791  * ice_tx_csum - Enable Tx checksum offloads
1792  * @first: pointer to the first descriptor
1793  * @off: pointer to struct that holds offload parameters
1794  *
1795  * Returns 0 or error (negative) if checksum offload can't happen, 1 otherwise.
1796  */
1797 static
ice_tx_csum(struct ice_tx_buf * first,struct ice_tx_offload_params * off)1798 int ice_tx_csum(struct ice_tx_buf *first, struct ice_tx_offload_params *off)
1799 {
1800 	u32 l4_len = 0, l3_len = 0, l2_len = 0;
1801 	struct sk_buff *skb = first->skb;
1802 	union {
1803 		struct iphdr *v4;
1804 		struct ipv6hdr *v6;
1805 		unsigned char *hdr;
1806 	} ip;
1807 	union {
1808 		struct tcphdr *tcp;
1809 		unsigned char *hdr;
1810 	} l4;
1811 	__be16 frag_off, protocol;
1812 	unsigned char *exthdr;
1813 	u32 offset, cmd = 0;
1814 	u8 l4_proto = 0;
1815 
1816 	if (skb->ip_summed != CHECKSUM_PARTIAL)
1817 		return 0;
1818 
1819 	protocol = vlan_get_protocol(skb);
1820 
1821 	if (eth_p_mpls(protocol)) {
1822 		ip.hdr = skb_inner_network_header(skb);
1823 		l4.hdr = skb_checksum_start(skb);
1824 	} else {
1825 		ip.hdr = skb_network_header(skb);
1826 		l4.hdr = skb_transport_header(skb);
1827 	}
1828 
1829 	/* compute outer L2 header size */
1830 	l2_len = ip.hdr - skb->data;
1831 	offset = (l2_len / 2) << ICE_TX_DESC_LEN_MACLEN_S;
1832 
1833 	/* set the tx_flags to indicate the IP protocol type. this is
1834 	 * required so that checksum header computation below is accurate.
1835 	 */
1836 	if (ip.v4->version == 4)
1837 		first->tx_flags |= ICE_TX_FLAGS_IPV4;
1838 	else if (ip.v6->version == 6)
1839 		first->tx_flags |= ICE_TX_FLAGS_IPV6;
1840 
1841 	if (skb->encapsulation) {
1842 		bool gso_ena = false;
1843 		u32 tunnel = 0;
1844 
1845 		/* define outer network header type */
1846 		if (first->tx_flags & ICE_TX_FLAGS_IPV4) {
1847 			tunnel |= (first->tx_flags & ICE_TX_FLAGS_TSO) ?
1848 				  ICE_TX_CTX_EIPT_IPV4 :
1849 				  ICE_TX_CTX_EIPT_IPV4_NO_CSUM;
1850 			l4_proto = ip.v4->protocol;
1851 		} else if (first->tx_flags & ICE_TX_FLAGS_IPV6) {
1852 			int ret;
1853 
1854 			tunnel |= ICE_TX_CTX_EIPT_IPV6;
1855 			exthdr = ip.hdr + sizeof(*ip.v6);
1856 			l4_proto = ip.v6->nexthdr;
1857 			ret = ipv6_skip_exthdr(skb, exthdr - skb->data,
1858 					       &l4_proto, &frag_off);
1859 			if (ret < 0)
1860 				return -1;
1861 		}
1862 
1863 		/* define outer transport */
1864 		switch (l4_proto) {
1865 		case IPPROTO_UDP:
1866 			tunnel |= ICE_TXD_CTX_UDP_TUNNELING;
1867 			first->tx_flags |= ICE_TX_FLAGS_TUNNEL;
1868 			break;
1869 		case IPPROTO_GRE:
1870 			tunnel |= ICE_TXD_CTX_GRE_TUNNELING;
1871 			first->tx_flags |= ICE_TX_FLAGS_TUNNEL;
1872 			break;
1873 		case IPPROTO_IPIP:
1874 		case IPPROTO_IPV6:
1875 			first->tx_flags |= ICE_TX_FLAGS_TUNNEL;
1876 			l4.hdr = skb_inner_network_header(skb);
1877 			break;
1878 		default:
1879 			if (first->tx_flags & ICE_TX_FLAGS_TSO)
1880 				return -1;
1881 
1882 			skb_checksum_help(skb);
1883 			return 0;
1884 		}
1885 
1886 		/* compute outer L3 header size */
1887 		tunnel |= ((l4.hdr - ip.hdr) / 4) <<
1888 			  ICE_TXD_CTX_QW0_EIPLEN_S;
1889 
1890 		/* switch IP header pointer from outer to inner header */
1891 		ip.hdr = skb_inner_network_header(skb);
1892 
1893 		/* compute tunnel header size */
1894 		tunnel |= ((ip.hdr - l4.hdr) / 2) <<
1895 			   ICE_TXD_CTX_QW0_NATLEN_S;
1896 
1897 		gso_ena = skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL;
1898 		/* indicate if we need to offload outer UDP header */
1899 		if ((first->tx_flags & ICE_TX_FLAGS_TSO) && !gso_ena &&
1900 		    (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_TUNNEL_CSUM))
1901 			tunnel |= ICE_TXD_CTX_QW0_L4T_CS_M;
1902 
1903 		/* record tunnel offload values */
1904 		off->cd_tunnel_params |= tunnel;
1905 
1906 		/* set DTYP=1 to indicate that it's an Tx context descriptor
1907 		 * in IPsec tunnel mode with Tx offloads in Quad word 1
1908 		 */
1909 		off->cd_qw1 |= (u64)ICE_TX_DESC_DTYPE_CTX;
1910 
1911 		/* switch L4 header pointer from outer to inner */
1912 		l4.hdr = skb_inner_transport_header(skb);
1913 		l4_proto = 0;
1914 
1915 		/* reset type as we transition from outer to inner headers */
1916 		first->tx_flags &= ~(ICE_TX_FLAGS_IPV4 | ICE_TX_FLAGS_IPV6);
1917 		if (ip.v4->version == 4)
1918 			first->tx_flags |= ICE_TX_FLAGS_IPV4;
1919 		if (ip.v6->version == 6)
1920 			first->tx_flags |= ICE_TX_FLAGS_IPV6;
1921 	}
1922 
1923 	/* Enable IP checksum offloads */
1924 	if (first->tx_flags & ICE_TX_FLAGS_IPV4) {
1925 		l4_proto = ip.v4->protocol;
1926 		/* the stack computes the IP header already, the only time we
1927 		 * need the hardware to recompute it is in the case of TSO.
1928 		 */
1929 		if (first->tx_flags & ICE_TX_FLAGS_TSO)
1930 			cmd |= ICE_TX_DESC_CMD_IIPT_IPV4_CSUM;
1931 		else
1932 			cmd |= ICE_TX_DESC_CMD_IIPT_IPV4;
1933 
1934 	} else if (first->tx_flags & ICE_TX_FLAGS_IPV6) {
1935 		cmd |= ICE_TX_DESC_CMD_IIPT_IPV6;
1936 		exthdr = ip.hdr + sizeof(*ip.v6);
1937 		l4_proto = ip.v6->nexthdr;
1938 		if (l4.hdr != exthdr)
1939 			ipv6_skip_exthdr(skb, exthdr - skb->data, &l4_proto,
1940 					 &frag_off);
1941 	} else {
1942 		return -1;
1943 	}
1944 
1945 	/* compute inner L3 header size */
1946 	l3_len = l4.hdr - ip.hdr;
1947 	offset |= (l3_len / 4) << ICE_TX_DESC_LEN_IPLEN_S;
1948 
1949 	/* Enable L4 checksum offloads */
1950 	switch (l4_proto) {
1951 	case IPPROTO_TCP:
1952 		/* enable checksum offloads */
1953 		cmd |= ICE_TX_DESC_CMD_L4T_EOFT_TCP;
1954 		l4_len = l4.tcp->doff;
1955 		offset |= l4_len << ICE_TX_DESC_LEN_L4_LEN_S;
1956 		break;
1957 	case IPPROTO_UDP:
1958 		/* enable UDP checksum offload */
1959 		cmd |= ICE_TX_DESC_CMD_L4T_EOFT_UDP;
1960 		l4_len = (sizeof(struct udphdr) >> 2);
1961 		offset |= l4_len << ICE_TX_DESC_LEN_L4_LEN_S;
1962 		break;
1963 	case IPPROTO_SCTP:
1964 		/* enable SCTP checksum offload */
1965 		cmd |= ICE_TX_DESC_CMD_L4T_EOFT_SCTP;
1966 		l4_len = sizeof(struct sctphdr) >> 2;
1967 		offset |= l4_len << ICE_TX_DESC_LEN_L4_LEN_S;
1968 		break;
1969 
1970 	default:
1971 		if (first->tx_flags & ICE_TX_FLAGS_TSO)
1972 			return -1;
1973 		skb_checksum_help(skb);
1974 		return 0;
1975 	}
1976 
1977 	off->td_cmd |= cmd;
1978 	off->td_offset |= offset;
1979 	return 1;
1980 }
1981 
1982 /**
1983  * ice_tx_prepare_vlan_flags - prepare generic Tx VLAN tagging flags for HW
1984  * @tx_ring: ring to send buffer on
1985  * @first: pointer to struct ice_tx_buf
1986  *
1987  * Checks the skb and set up correspondingly several generic transmit flags
1988  * related to VLAN tagging for the HW, such as VLAN, DCB, etc.
1989  */
1990 static void
ice_tx_prepare_vlan_flags(struct ice_tx_ring * tx_ring,struct ice_tx_buf * first)1991 ice_tx_prepare_vlan_flags(struct ice_tx_ring *tx_ring, struct ice_tx_buf *first)
1992 {
1993 	struct sk_buff *skb = first->skb;
1994 
1995 	/* nothing left to do, software offloaded VLAN */
1996 	if (!skb_vlan_tag_present(skb) && eth_type_vlan(skb->protocol))
1997 		return;
1998 
1999 	/* the VLAN ethertype/tpid is determined by VSI configuration and netdev
2000 	 * feature flags, which the driver only allows either 802.1Q or 802.1ad
2001 	 * VLAN offloads exclusively so we only care about the VLAN ID here
2002 	 */
2003 	if (skb_vlan_tag_present(skb)) {
2004 		first->vid = skb_vlan_tag_get(skb);
2005 		if (tx_ring->flags & ICE_TX_FLAGS_RING_VLAN_L2TAG2)
2006 			first->tx_flags |= ICE_TX_FLAGS_HW_OUTER_SINGLE_VLAN;
2007 		else
2008 			first->tx_flags |= ICE_TX_FLAGS_HW_VLAN;
2009 	}
2010 
2011 	ice_tx_prepare_vlan_flags_dcb(tx_ring, first);
2012 }
2013 
2014 /**
2015  * ice_tso - computes mss and TSO length to prepare for TSO
2016  * @first: pointer to struct ice_tx_buf
2017  * @off: pointer to struct that holds offload parameters
2018  *
2019  * Returns 0 or error (negative) if TSO can't happen, 1 otherwise.
2020  */
2021 static
ice_tso(struct ice_tx_buf * first,struct ice_tx_offload_params * off)2022 int ice_tso(struct ice_tx_buf *first, struct ice_tx_offload_params *off)
2023 {
2024 	struct sk_buff *skb = first->skb;
2025 	union {
2026 		struct iphdr *v4;
2027 		struct ipv6hdr *v6;
2028 		unsigned char *hdr;
2029 	} ip;
2030 	union {
2031 		struct tcphdr *tcp;
2032 		struct udphdr *udp;
2033 		unsigned char *hdr;
2034 	} l4;
2035 	u64 cd_mss, cd_tso_len;
2036 	__be16 protocol;
2037 	u32 paylen;
2038 	u8 l4_start;
2039 	int err;
2040 
2041 	if (skb->ip_summed != CHECKSUM_PARTIAL)
2042 		return 0;
2043 
2044 	if (!skb_is_gso(skb))
2045 		return 0;
2046 
2047 	err = skb_cow_head(skb, 0);
2048 	if (err < 0)
2049 		return err;
2050 
2051 	protocol = vlan_get_protocol(skb);
2052 
2053 	if (eth_p_mpls(protocol))
2054 		ip.hdr = skb_inner_network_header(skb);
2055 	else
2056 		ip.hdr = skb_network_header(skb);
2057 	l4.hdr = skb_checksum_start(skb);
2058 
2059 	/* initialize outer IP header fields */
2060 	if (ip.v4->version == 4) {
2061 		ip.v4->tot_len = 0;
2062 		ip.v4->check = 0;
2063 	} else {
2064 		ip.v6->payload_len = 0;
2065 	}
2066 
2067 	if (skb_shinfo(skb)->gso_type & (SKB_GSO_GRE |
2068 					 SKB_GSO_GRE_CSUM |
2069 					 SKB_GSO_IPXIP4 |
2070 					 SKB_GSO_IPXIP6 |
2071 					 SKB_GSO_UDP_TUNNEL |
2072 					 SKB_GSO_UDP_TUNNEL_CSUM)) {
2073 		if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL) &&
2074 		    (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_TUNNEL_CSUM)) {
2075 			l4.udp->len = 0;
2076 
2077 			/* determine offset of outer transport header */
2078 			l4_start = (u8)(l4.hdr - skb->data);
2079 
2080 			/* remove payload length from outer checksum */
2081 			paylen = skb->len - l4_start;
2082 			csum_replace_by_diff(&l4.udp->check,
2083 					     (__force __wsum)htonl(paylen));
2084 		}
2085 
2086 		/* reset pointers to inner headers */
2087 		ip.hdr = skb_inner_network_header(skb);
2088 		l4.hdr = skb_inner_transport_header(skb);
2089 
2090 		/* initialize inner IP header fields */
2091 		if (ip.v4->version == 4) {
2092 			ip.v4->tot_len = 0;
2093 			ip.v4->check = 0;
2094 		} else {
2095 			ip.v6->payload_len = 0;
2096 		}
2097 	}
2098 
2099 	/* determine offset of transport header */
2100 	l4_start = (u8)(l4.hdr - skb->data);
2101 
2102 	/* remove payload length from checksum */
2103 	paylen = skb->len - l4_start;
2104 
2105 	if (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4) {
2106 		csum_replace_by_diff(&l4.udp->check,
2107 				     (__force __wsum)htonl(paylen));
2108 		/* compute length of UDP segmentation header */
2109 		off->header_len = (u8)sizeof(l4.udp) + l4_start;
2110 	} else {
2111 		csum_replace_by_diff(&l4.tcp->check,
2112 				     (__force __wsum)htonl(paylen));
2113 		/* compute length of TCP segmentation header */
2114 		off->header_len = (u8)((l4.tcp->doff * 4) + l4_start);
2115 	}
2116 
2117 	/* update gso_segs and bytecount */
2118 	first->gso_segs = skb_shinfo(skb)->gso_segs;
2119 	first->bytecount += (first->gso_segs - 1) * off->header_len;
2120 
2121 	cd_tso_len = skb->len - off->header_len;
2122 	cd_mss = skb_shinfo(skb)->gso_size;
2123 
2124 	/* record cdesc_qw1 with TSO parameters */
2125 	off->cd_qw1 |= (u64)(ICE_TX_DESC_DTYPE_CTX |
2126 			     (ICE_TX_CTX_DESC_TSO << ICE_TXD_CTX_QW1_CMD_S) |
2127 			     (cd_tso_len << ICE_TXD_CTX_QW1_TSO_LEN_S) |
2128 			     (cd_mss << ICE_TXD_CTX_QW1_MSS_S));
2129 	first->tx_flags |= ICE_TX_FLAGS_TSO;
2130 	return 1;
2131 }
2132 
2133 /**
2134  * ice_txd_use_count  - estimate the number of descriptors needed for Tx
2135  * @size: transmit request size in bytes
2136  *
2137  * Due to hardware alignment restrictions (4K alignment), we need to
2138  * assume that we can have no more than 12K of data per descriptor, even
2139  * though each descriptor can take up to 16K - 1 bytes of aligned memory.
2140  * Thus, we need to divide by 12K. But division is slow! Instead,
2141  * we decompose the operation into shifts and one relatively cheap
2142  * multiply operation.
2143  *
2144  * To divide by 12K, we first divide by 4K, then divide by 3:
2145  *     To divide by 4K, shift right by 12 bits
2146  *     To divide by 3, multiply by 85, then divide by 256
2147  *     (Divide by 256 is done by shifting right by 8 bits)
2148  * Finally, we add one to round up. Because 256 isn't an exact multiple of
2149  * 3, we'll underestimate near each multiple of 12K. This is actually more
2150  * accurate as we have 4K - 1 of wiggle room that we can fit into the last
2151  * segment. For our purposes this is accurate out to 1M which is orders of
2152  * magnitude greater than our largest possible GSO size.
2153  *
2154  * This would then be implemented as:
2155  *     return (((size >> 12) * 85) >> 8) + ICE_DESCS_FOR_SKB_DATA_PTR;
2156  *
2157  * Since multiplication and division are commutative, we can reorder
2158  * operations into:
2159  *     return ((size * 85) >> 20) + ICE_DESCS_FOR_SKB_DATA_PTR;
2160  */
ice_txd_use_count(unsigned int size)2161 static unsigned int ice_txd_use_count(unsigned int size)
2162 {
2163 	return ((size * 85) >> 20) + ICE_DESCS_FOR_SKB_DATA_PTR;
2164 }
2165 
2166 /**
2167  * ice_xmit_desc_count - calculate number of Tx descriptors needed
2168  * @skb: send buffer
2169  *
2170  * Returns number of data descriptors needed for this skb.
2171  */
ice_xmit_desc_count(struct sk_buff * skb)2172 static unsigned int ice_xmit_desc_count(struct sk_buff *skb)
2173 {
2174 	const skb_frag_t *frag = &skb_shinfo(skb)->frags[0];
2175 	unsigned int nr_frags = skb_shinfo(skb)->nr_frags;
2176 	unsigned int count = 0, size = skb_headlen(skb);
2177 
2178 	for (;;) {
2179 		count += ice_txd_use_count(size);
2180 
2181 		if (!nr_frags--)
2182 			break;
2183 
2184 		size = skb_frag_size(frag++);
2185 	}
2186 
2187 	return count;
2188 }
2189 
2190 /**
2191  * __ice_chk_linearize - Check if there are more than 8 buffers per packet
2192  * @skb: send buffer
2193  *
2194  * Note: This HW can't DMA more than 8 buffers to build a packet on the wire
2195  * and so we need to figure out the cases where we need to linearize the skb.
2196  *
2197  * For TSO we need to count the TSO header and segment payload separately.
2198  * As such we need to check cases where we have 7 fragments or more as we
2199  * can potentially require 9 DMA transactions, 1 for the TSO header, 1 for
2200  * the segment payload in the first descriptor, and another 7 for the
2201  * fragments.
2202  */
__ice_chk_linearize(struct sk_buff * skb)2203 static bool __ice_chk_linearize(struct sk_buff *skb)
2204 {
2205 	const skb_frag_t *frag, *stale;
2206 	int nr_frags, sum;
2207 
2208 	/* no need to check if number of frags is less than 7 */
2209 	nr_frags = skb_shinfo(skb)->nr_frags;
2210 	if (nr_frags < (ICE_MAX_BUF_TXD - 1))
2211 		return false;
2212 
2213 	/* We need to walk through the list and validate that each group
2214 	 * of 6 fragments totals at least gso_size.
2215 	 */
2216 	nr_frags -= ICE_MAX_BUF_TXD - 2;
2217 	frag = &skb_shinfo(skb)->frags[0];
2218 
2219 	/* Initialize size to the negative value of gso_size minus 1. We
2220 	 * use this as the worst case scenario in which the frag ahead
2221 	 * of us only provides one byte which is why we are limited to 6
2222 	 * descriptors for a single transmit as the header and previous
2223 	 * fragment are already consuming 2 descriptors.
2224 	 */
2225 	sum = 1 - skb_shinfo(skb)->gso_size;
2226 
2227 	/* Add size of frags 0 through 4 to create our initial sum */
2228 	sum += skb_frag_size(frag++);
2229 	sum += skb_frag_size(frag++);
2230 	sum += skb_frag_size(frag++);
2231 	sum += skb_frag_size(frag++);
2232 	sum += skb_frag_size(frag++);
2233 
2234 	/* Walk through fragments adding latest fragment, testing it, and
2235 	 * then removing stale fragments from the sum.
2236 	 */
2237 	for (stale = &skb_shinfo(skb)->frags[0];; stale++) {
2238 		int stale_size = skb_frag_size(stale);
2239 
2240 		sum += skb_frag_size(frag++);
2241 
2242 		/* The stale fragment may present us with a smaller
2243 		 * descriptor than the actual fragment size. To account
2244 		 * for that we need to remove all the data on the front and
2245 		 * figure out what the remainder would be in the last
2246 		 * descriptor associated with the fragment.
2247 		 */
2248 		if (stale_size > ICE_MAX_DATA_PER_TXD) {
2249 			int align_pad = -(skb_frag_off(stale)) &
2250 					(ICE_MAX_READ_REQ_SIZE - 1);
2251 
2252 			sum -= align_pad;
2253 			stale_size -= align_pad;
2254 
2255 			do {
2256 				sum -= ICE_MAX_DATA_PER_TXD_ALIGNED;
2257 				stale_size -= ICE_MAX_DATA_PER_TXD_ALIGNED;
2258 			} while (stale_size > ICE_MAX_DATA_PER_TXD);
2259 		}
2260 
2261 		/* if sum is negative we failed to make sufficient progress */
2262 		if (sum < 0)
2263 			return true;
2264 
2265 		if (!nr_frags--)
2266 			break;
2267 
2268 		sum -= stale_size;
2269 	}
2270 
2271 	return false;
2272 }
2273 
2274 /**
2275  * ice_chk_linearize - Check if there are more than 8 fragments per packet
2276  * @skb:      send buffer
2277  * @count:    number of buffers used
2278  *
2279  * Note: Our HW can't scatter-gather more than 8 fragments to build
2280  * a packet on the wire and so we need to figure out the cases where we
2281  * need to linearize the skb.
2282  */
ice_chk_linearize(struct sk_buff * skb,unsigned int count)2283 static bool ice_chk_linearize(struct sk_buff *skb, unsigned int count)
2284 {
2285 	/* Both TSO and single send will work if count is less than 8 */
2286 	if (likely(count < ICE_MAX_BUF_TXD))
2287 		return false;
2288 
2289 	if (skb_is_gso(skb))
2290 		return __ice_chk_linearize(skb);
2291 
2292 	/* we can support up to 8 data buffers for a single send */
2293 	return count != ICE_MAX_BUF_TXD;
2294 }
2295 
2296 /**
2297  * ice_tstamp - set up context descriptor for hardware timestamp
2298  * @tx_ring: pointer to the Tx ring to send buffer on
2299  * @skb: pointer to the SKB we're sending
2300  * @first: Tx buffer
2301  * @off: Tx offload parameters
2302  */
2303 static void
ice_tstamp(struct ice_tx_ring * tx_ring,struct sk_buff * skb,struct ice_tx_buf * first,struct ice_tx_offload_params * off)2304 ice_tstamp(struct ice_tx_ring *tx_ring, struct sk_buff *skb,
2305 	   struct ice_tx_buf *first, struct ice_tx_offload_params *off)
2306 {
2307 	s8 idx;
2308 
2309 	/* only timestamp the outbound packet if the user has requested it */
2310 	if (likely(!(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP)))
2311 		return;
2312 
2313 	/* Tx timestamps cannot be sampled when doing TSO */
2314 	if (first->tx_flags & ICE_TX_FLAGS_TSO)
2315 		return;
2316 
2317 	/* Grab an open timestamp slot */
2318 	idx = ice_ptp_request_ts(tx_ring->tx_tstamps, skb);
2319 	if (idx < 0) {
2320 		tx_ring->vsi->back->ptp.tx_hwtstamp_skipped++;
2321 		return;
2322 	}
2323 
2324 	off->cd_qw1 |= (u64)(ICE_TX_DESC_DTYPE_CTX |
2325 			     (ICE_TX_CTX_DESC_TSYN << ICE_TXD_CTX_QW1_CMD_S) |
2326 			     ((u64)idx << ICE_TXD_CTX_QW1_TSO_LEN_S));
2327 	first->tx_flags |= ICE_TX_FLAGS_TSYN;
2328 }
2329 
2330 /**
2331  * ice_xmit_frame_ring - Sends buffer on Tx ring
2332  * @skb: send buffer
2333  * @tx_ring: ring to send buffer on
2334  *
2335  * Returns NETDEV_TX_OK if sent, else an error code
2336  */
2337 static netdev_tx_t
ice_xmit_frame_ring(struct sk_buff * skb,struct ice_tx_ring * tx_ring)2338 ice_xmit_frame_ring(struct sk_buff *skb, struct ice_tx_ring *tx_ring)
2339 {
2340 	struct ice_tx_offload_params offload = { 0 };
2341 	struct ice_vsi *vsi = tx_ring->vsi;
2342 	struct ice_tx_buf *first;
2343 	struct ethhdr *eth;
2344 	unsigned int count;
2345 	int tso, csum;
2346 
2347 	ice_trace(xmit_frame_ring, tx_ring, skb);
2348 
2349 	if (unlikely(ipv6_hopopt_jumbo_remove(skb)))
2350 		goto out_drop;
2351 
2352 	count = ice_xmit_desc_count(skb);
2353 	if (ice_chk_linearize(skb, count)) {
2354 		if (__skb_linearize(skb))
2355 			goto out_drop;
2356 		count = ice_txd_use_count(skb->len);
2357 		tx_ring->ring_stats->tx_stats.tx_linearize++;
2358 	}
2359 
2360 	/* need: 1 descriptor per page * PAGE_SIZE/ICE_MAX_DATA_PER_TXD,
2361 	 *       + 1 desc for skb_head_len/ICE_MAX_DATA_PER_TXD,
2362 	 *       + 4 desc gap to avoid the cache line where head is,
2363 	 *       + 1 desc for context descriptor,
2364 	 * otherwise try next time
2365 	 */
2366 	if (ice_maybe_stop_tx(tx_ring, count + ICE_DESCS_PER_CACHE_LINE +
2367 			      ICE_DESCS_FOR_CTX_DESC)) {
2368 		tx_ring->ring_stats->tx_stats.tx_busy++;
2369 		return NETDEV_TX_BUSY;
2370 	}
2371 
2372 	/* prefetch for bql data which is infrequently used */
2373 	netdev_txq_bql_enqueue_prefetchw(txring_txq(tx_ring));
2374 
2375 	offload.tx_ring = tx_ring;
2376 
2377 	/* record the location of the first descriptor for this packet */
2378 	first = &tx_ring->tx_buf[tx_ring->next_to_use];
2379 	first->skb = skb;
2380 	first->type = ICE_TX_BUF_SKB;
2381 	first->bytecount = max_t(unsigned int, skb->len, ETH_ZLEN);
2382 	first->gso_segs = 1;
2383 	first->tx_flags = 0;
2384 
2385 	/* prepare the VLAN tagging flags for Tx */
2386 	ice_tx_prepare_vlan_flags(tx_ring, first);
2387 	if (first->tx_flags & ICE_TX_FLAGS_HW_OUTER_SINGLE_VLAN) {
2388 		offload.cd_qw1 |= (u64)(ICE_TX_DESC_DTYPE_CTX |
2389 					(ICE_TX_CTX_DESC_IL2TAG2 <<
2390 					ICE_TXD_CTX_QW1_CMD_S));
2391 		offload.cd_l2tag2 = first->vid;
2392 	}
2393 
2394 	/* set up TSO offload */
2395 	tso = ice_tso(first, &offload);
2396 	if (tso < 0)
2397 		goto out_drop;
2398 
2399 	/* always set up Tx checksum offload */
2400 	csum = ice_tx_csum(first, &offload);
2401 	if (csum < 0)
2402 		goto out_drop;
2403 
2404 	/* allow CONTROL frames egress from main VSI if FW LLDP disabled */
2405 	eth = (struct ethhdr *)skb_mac_header(skb);
2406 	if (unlikely((skb->priority == TC_PRIO_CONTROL ||
2407 		      eth->h_proto == htons(ETH_P_LLDP)) &&
2408 		     vsi->type == ICE_VSI_PF &&
2409 		     vsi->port_info->qos_cfg.is_sw_lldp))
2410 		offload.cd_qw1 |= (u64)(ICE_TX_DESC_DTYPE_CTX |
2411 					ICE_TX_CTX_DESC_SWTCH_UPLINK <<
2412 					ICE_TXD_CTX_QW1_CMD_S);
2413 
2414 	ice_tstamp(tx_ring, skb, first, &offload);
2415 	if ((ice_is_switchdev_running(vsi->back) ||
2416 	     ice_lag_is_switchdev_running(vsi->back)) &&
2417 	    vsi->type != ICE_VSI_SF)
2418 		ice_eswitch_set_target_vsi(skb, &offload);
2419 
2420 	if (offload.cd_qw1 & ICE_TX_DESC_DTYPE_CTX) {
2421 		struct ice_tx_ctx_desc *cdesc;
2422 		u16 i = tx_ring->next_to_use;
2423 
2424 		/* grab the next descriptor */
2425 		cdesc = ICE_TX_CTX_DESC(tx_ring, i);
2426 		i++;
2427 		tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
2428 
2429 		/* setup context descriptor */
2430 		cdesc->tunneling_params = cpu_to_le32(offload.cd_tunnel_params);
2431 		cdesc->l2tag2 = cpu_to_le16(offload.cd_l2tag2);
2432 		cdesc->rsvd = cpu_to_le16(0);
2433 		cdesc->qw1 = cpu_to_le64(offload.cd_qw1);
2434 	}
2435 
2436 	ice_tx_map(tx_ring, first, &offload);
2437 	return NETDEV_TX_OK;
2438 
2439 out_drop:
2440 	ice_trace(xmit_frame_ring_drop, tx_ring, skb);
2441 	dev_kfree_skb_any(skb);
2442 	return NETDEV_TX_OK;
2443 }
2444 
2445 /**
2446  * ice_start_xmit - Selects the correct VSI and Tx queue to send buffer
2447  * @skb: send buffer
2448  * @netdev: network interface device structure
2449  *
2450  * Returns NETDEV_TX_OK if sent, else an error code
2451  */
ice_start_xmit(struct sk_buff * skb,struct net_device * netdev)2452 netdev_tx_t ice_start_xmit(struct sk_buff *skb, struct net_device *netdev)
2453 {
2454 	struct ice_netdev_priv *np = netdev_priv(netdev);
2455 	struct ice_vsi *vsi = np->vsi;
2456 	struct ice_tx_ring *tx_ring;
2457 
2458 	tx_ring = vsi->tx_rings[skb->queue_mapping];
2459 
2460 	/* hardware can't handle really short frames, hardware padding works
2461 	 * beyond this point
2462 	 */
2463 	if (skb_put_padto(skb, ICE_MIN_TX_LEN))
2464 		return NETDEV_TX_OK;
2465 
2466 	return ice_xmit_frame_ring(skb, tx_ring);
2467 }
2468 
2469 /**
2470  * ice_get_dscp_up - return the UP/TC value for a SKB
2471  * @dcbcfg: DCB config that contains DSCP to UP/TC mapping
2472  * @skb: SKB to query for info to determine UP/TC
2473  *
2474  * This function is to only be called when the PF is in L3 DSCP PFC mode
2475  */
ice_get_dscp_up(struct ice_dcbx_cfg * dcbcfg,struct sk_buff * skb)2476 static u8 ice_get_dscp_up(struct ice_dcbx_cfg *dcbcfg, struct sk_buff *skb)
2477 {
2478 	u8 dscp = 0;
2479 
2480 	if (skb->protocol == htons(ETH_P_IP))
2481 		dscp = ipv4_get_dsfield(ip_hdr(skb)) >> 2;
2482 	else if (skb->protocol == htons(ETH_P_IPV6))
2483 		dscp = ipv6_get_dsfield(ipv6_hdr(skb)) >> 2;
2484 
2485 	return dcbcfg->dscp_map[dscp];
2486 }
2487 
2488 u16
ice_select_queue(struct net_device * netdev,struct sk_buff * skb,struct net_device * sb_dev)2489 ice_select_queue(struct net_device *netdev, struct sk_buff *skb,
2490 		 struct net_device *sb_dev)
2491 {
2492 	struct ice_pf *pf = ice_netdev_to_pf(netdev);
2493 	struct ice_dcbx_cfg *dcbcfg;
2494 
2495 	dcbcfg = &pf->hw.port_info->qos_cfg.local_dcbx_cfg;
2496 	if (dcbcfg->pfc_mode == ICE_QOS_MODE_DSCP)
2497 		skb->priority = ice_get_dscp_up(dcbcfg, skb);
2498 
2499 	return netdev_pick_tx(netdev, skb, sb_dev);
2500 }
2501 
2502 /**
2503  * ice_clean_ctrl_tx_irq - interrupt handler for flow director Tx queue
2504  * @tx_ring: tx_ring to clean
2505  */
ice_clean_ctrl_tx_irq(struct ice_tx_ring * tx_ring)2506 void ice_clean_ctrl_tx_irq(struct ice_tx_ring *tx_ring)
2507 {
2508 	struct ice_vsi *vsi = tx_ring->vsi;
2509 	s16 i = tx_ring->next_to_clean;
2510 	int budget = ICE_DFLT_IRQ_WORK;
2511 	struct ice_tx_desc *tx_desc;
2512 	struct ice_tx_buf *tx_buf;
2513 
2514 	tx_buf = &tx_ring->tx_buf[i];
2515 	tx_desc = ICE_TX_DESC(tx_ring, i);
2516 	i -= tx_ring->count;
2517 
2518 	do {
2519 		struct ice_tx_desc *eop_desc = tx_buf->next_to_watch;
2520 
2521 		/* if next_to_watch is not set then there is no pending work */
2522 		if (!eop_desc)
2523 			break;
2524 
2525 		/* prevent any other reads prior to eop_desc */
2526 		smp_rmb();
2527 
2528 		/* if the descriptor isn't done, no work to do */
2529 		if (!(eop_desc->cmd_type_offset_bsz &
2530 		      cpu_to_le64(ICE_TX_DESC_DTYPE_DESC_DONE)))
2531 			break;
2532 
2533 		/* clear next_to_watch to prevent false hangs */
2534 		tx_buf->next_to_watch = NULL;
2535 		tx_desc->buf_addr = 0;
2536 		tx_desc->cmd_type_offset_bsz = 0;
2537 
2538 		/* move past filter desc */
2539 		tx_buf++;
2540 		tx_desc++;
2541 		i++;
2542 		if (unlikely(!i)) {
2543 			i -= tx_ring->count;
2544 			tx_buf = tx_ring->tx_buf;
2545 			tx_desc = ICE_TX_DESC(tx_ring, 0);
2546 		}
2547 
2548 		/* unmap the data header */
2549 		if (dma_unmap_len(tx_buf, len))
2550 			dma_unmap_single(tx_ring->dev,
2551 					 dma_unmap_addr(tx_buf, dma),
2552 					 dma_unmap_len(tx_buf, len),
2553 					 DMA_TO_DEVICE);
2554 		if (tx_buf->type == ICE_TX_BUF_DUMMY)
2555 			devm_kfree(tx_ring->dev, tx_buf->raw_buf);
2556 
2557 		/* clear next_to_watch to prevent false hangs */
2558 		tx_buf->type = ICE_TX_BUF_EMPTY;
2559 		tx_buf->tx_flags = 0;
2560 		tx_buf->next_to_watch = NULL;
2561 		dma_unmap_len_set(tx_buf, len, 0);
2562 		tx_desc->buf_addr = 0;
2563 		tx_desc->cmd_type_offset_bsz = 0;
2564 
2565 		/* move past eop_desc for start of next FD desc */
2566 		tx_buf++;
2567 		tx_desc++;
2568 		i++;
2569 		if (unlikely(!i)) {
2570 			i -= tx_ring->count;
2571 			tx_buf = tx_ring->tx_buf;
2572 			tx_desc = ICE_TX_DESC(tx_ring, 0);
2573 		}
2574 
2575 		budget--;
2576 	} while (likely(budget));
2577 
2578 	i += tx_ring->count;
2579 	tx_ring->next_to_clean = i;
2580 
2581 	/* re-enable interrupt if needed */
2582 	ice_irq_dynamic_ena(&vsi->back->hw, vsi, vsi->q_vectors[0]);
2583 }
2584