• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright (c)  2018 Intel Corporation */
3 
4 #include <linux/module.h>
5 #include <linux/types.h>
6 #include <linux/if_vlan.h>
7 #include <linux/tcp.h>
8 #include <linux/udp.h>
9 #include <linux/ip.h>
10 #include <linux/pm_runtime.h>
11 #include <net/pkt_sched.h>
12 #include <linux/bpf_trace.h>
13 #include <net/xdp_sock_drv.h>
14 #include <linux/pci.h>
15 #include <linux/mdio.h>
16 
17 #include <net/ipv6.h>
18 
19 #include "igc.h"
20 #include "igc_hw.h"
21 #include "igc_tsn.h"
22 #include "igc_xdp.h"
23 
24 #define DRV_SUMMARY	"Intel(R) 2.5G Ethernet Linux Driver"
25 
26 #define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK)
27 
28 #define IGC_XDP_PASS		0
29 #define IGC_XDP_CONSUMED	BIT(0)
30 #define IGC_XDP_TX		BIT(1)
31 #define IGC_XDP_REDIRECT	BIT(2)
32 
33 static int debug = -1;
34 
35 MODULE_DESCRIPTION(DRV_SUMMARY);
36 MODULE_LICENSE("GPL v2");
37 module_param(debug, int, 0);
38 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
39 
40 char igc_driver_name[] = "igc";
41 static const char igc_driver_string[] = DRV_SUMMARY;
42 static const char igc_copyright[] =
43 	"Copyright(c) 2018 Intel Corporation.";
44 
45 static const struct igc_info *igc_info_tbl[] = {
46 	[board_base] = &igc_base_info,
47 };
48 
49 static const struct pci_device_id igc_pci_tbl[] = {
50 	{ PCI_VDEVICE(INTEL, IGC_DEV_ID_I225_LM), board_base },
51 	{ PCI_VDEVICE(INTEL, IGC_DEV_ID_I225_V), board_base },
52 	{ PCI_VDEVICE(INTEL, IGC_DEV_ID_I225_I), board_base },
53 	{ PCI_VDEVICE(INTEL, IGC_DEV_ID_I220_V), board_base },
54 	{ PCI_VDEVICE(INTEL, IGC_DEV_ID_I225_K), board_base },
55 	{ PCI_VDEVICE(INTEL, IGC_DEV_ID_I225_K2), board_base },
56 	{ PCI_VDEVICE(INTEL, IGC_DEV_ID_I226_K), board_base },
57 	{ PCI_VDEVICE(INTEL, IGC_DEV_ID_I225_LMVP), board_base },
58 	{ PCI_VDEVICE(INTEL, IGC_DEV_ID_I226_LMVP), board_base },
59 	{ PCI_VDEVICE(INTEL, IGC_DEV_ID_I225_IT), board_base },
60 	{ PCI_VDEVICE(INTEL, IGC_DEV_ID_I226_LM), board_base },
61 	{ PCI_VDEVICE(INTEL, IGC_DEV_ID_I226_V), board_base },
62 	{ PCI_VDEVICE(INTEL, IGC_DEV_ID_I226_IT), board_base },
63 	{ PCI_VDEVICE(INTEL, IGC_DEV_ID_I221_V), board_base },
64 	{ PCI_VDEVICE(INTEL, IGC_DEV_ID_I226_BLANK_NVM), board_base },
65 	{ PCI_VDEVICE(INTEL, IGC_DEV_ID_I225_BLANK_NVM), board_base },
66 	/* required last entry */
67 	{0, }
68 };
69 
70 MODULE_DEVICE_TABLE(pci, igc_pci_tbl);
71 
72 enum latency_range {
73 	lowest_latency = 0,
74 	low_latency = 1,
75 	bulk_latency = 2,
76 	latency_invalid = 255
77 };
78 
igc_reset(struct igc_adapter * adapter)79 void igc_reset(struct igc_adapter *adapter)
80 {
81 	struct net_device *dev = adapter->netdev;
82 	struct igc_hw *hw = &adapter->hw;
83 	struct igc_fc_info *fc = &hw->fc;
84 	u32 pba, hwm;
85 
86 	/* Repartition PBA for greater than 9k MTU if required */
87 	pba = IGC_PBA_34K;
88 
89 	/* flow control settings
90 	 * The high water mark must be low enough to fit one full frame
91 	 * after transmitting the pause frame.  As such we must have enough
92 	 * space to allow for us to complete our current transmit and then
93 	 * receive the frame that is in progress from the link partner.
94 	 * Set it to:
95 	 * - the full Rx FIFO size minus one full Tx plus one full Rx frame
96 	 */
97 	hwm = (pba << 10) - (adapter->max_frame_size + MAX_JUMBO_FRAME_SIZE);
98 
99 	fc->high_water = hwm & 0xFFFFFFF0;	/* 16-byte granularity */
100 	fc->low_water = fc->high_water - 16;
101 	fc->pause_time = 0xFFFF;
102 	fc->send_xon = 1;
103 	fc->current_mode = fc->requested_mode;
104 
105 	hw->mac.ops.reset_hw(hw);
106 
107 	if (hw->mac.ops.init_hw(hw))
108 		netdev_err(dev, "Error on hardware initialization\n");
109 
110 	/* Re-establish EEE setting */
111 	igc_set_eee_i225(hw, true, true, true);
112 
113 	if (!netif_running(adapter->netdev))
114 		igc_power_down_phy_copper_base(&adapter->hw);
115 
116 	/* Enable HW to recognize an 802.1Q VLAN Ethernet packet */
117 	wr32(IGC_VET, ETH_P_8021Q);
118 
119 	/* Re-enable PTP, where applicable. */
120 	igc_ptp_reset(adapter);
121 
122 	/* Re-enable TSN offloading, where applicable. */
123 	igc_tsn_reset(adapter);
124 
125 	igc_get_phy_info(hw);
126 }
127 
128 /**
129  * igc_power_up_link - Power up the phy link
130  * @adapter: address of board private structure
131  */
igc_power_up_link(struct igc_adapter * adapter)132 static void igc_power_up_link(struct igc_adapter *adapter)
133 {
134 	igc_reset_phy(&adapter->hw);
135 
136 	igc_power_up_phy_copper(&adapter->hw);
137 
138 	igc_setup_link(&adapter->hw);
139 }
140 
141 /**
142  * igc_release_hw_control - release control of the h/w to f/w
143  * @adapter: address of board private structure
144  *
145  * igc_release_hw_control resets CTRL_EXT:DRV_LOAD bit.
146  * For ASF and Pass Through versions of f/w this means that the
147  * driver is no longer loaded.
148  */
igc_release_hw_control(struct igc_adapter * adapter)149 static void igc_release_hw_control(struct igc_adapter *adapter)
150 {
151 	struct igc_hw *hw = &adapter->hw;
152 	u32 ctrl_ext;
153 
154 	if (!pci_device_is_present(adapter->pdev))
155 		return;
156 
157 	/* Let firmware take over control of h/w */
158 	ctrl_ext = rd32(IGC_CTRL_EXT);
159 	wr32(IGC_CTRL_EXT,
160 	     ctrl_ext & ~IGC_CTRL_EXT_DRV_LOAD);
161 }
162 
163 /**
164  * igc_get_hw_control - get control of the h/w from f/w
165  * @adapter: address of board private structure
166  *
167  * igc_get_hw_control sets CTRL_EXT:DRV_LOAD bit.
168  * For ASF and Pass Through versions of f/w this means that
169  * the driver is loaded.
170  */
igc_get_hw_control(struct igc_adapter * adapter)171 static void igc_get_hw_control(struct igc_adapter *adapter)
172 {
173 	struct igc_hw *hw = &adapter->hw;
174 	u32 ctrl_ext;
175 
176 	/* Let firmware know the driver has taken over */
177 	ctrl_ext = rd32(IGC_CTRL_EXT);
178 	wr32(IGC_CTRL_EXT,
179 	     ctrl_ext | IGC_CTRL_EXT_DRV_LOAD);
180 }
181 
igc_unmap_tx_buffer(struct device * dev,struct igc_tx_buffer * buf)182 static void igc_unmap_tx_buffer(struct device *dev, struct igc_tx_buffer *buf)
183 {
184 	dma_unmap_single(dev, dma_unmap_addr(buf, dma),
185 			 dma_unmap_len(buf, len), DMA_TO_DEVICE);
186 
187 	dma_unmap_len_set(buf, len, 0);
188 }
189 
190 /**
191  * igc_clean_tx_ring - Free Tx Buffers
192  * @tx_ring: ring to be cleaned
193  */
igc_clean_tx_ring(struct igc_ring * tx_ring)194 static void igc_clean_tx_ring(struct igc_ring *tx_ring)
195 {
196 	u16 i = tx_ring->next_to_clean;
197 	struct igc_tx_buffer *tx_buffer = &tx_ring->tx_buffer_info[i];
198 	u32 xsk_frames = 0;
199 
200 	while (i != tx_ring->next_to_use) {
201 		union igc_adv_tx_desc *eop_desc, *tx_desc;
202 
203 		switch (tx_buffer->type) {
204 		case IGC_TX_BUFFER_TYPE_XSK:
205 			xsk_frames++;
206 			break;
207 		case IGC_TX_BUFFER_TYPE_XDP:
208 			xdp_return_frame(tx_buffer->xdpf);
209 			igc_unmap_tx_buffer(tx_ring->dev, tx_buffer);
210 			break;
211 		case IGC_TX_BUFFER_TYPE_SKB:
212 			dev_kfree_skb_any(tx_buffer->skb);
213 			igc_unmap_tx_buffer(tx_ring->dev, tx_buffer);
214 			break;
215 		default:
216 			netdev_warn_once(tx_ring->netdev, "Unknown Tx buffer type\n");
217 			break;
218 		}
219 
220 		/* check for eop_desc to determine the end of the packet */
221 		eop_desc = tx_buffer->next_to_watch;
222 		tx_desc = IGC_TX_DESC(tx_ring, i);
223 
224 		/* unmap remaining buffers */
225 		while (tx_desc != eop_desc) {
226 			tx_buffer++;
227 			tx_desc++;
228 			i++;
229 			if (unlikely(i == tx_ring->count)) {
230 				i = 0;
231 				tx_buffer = tx_ring->tx_buffer_info;
232 				tx_desc = IGC_TX_DESC(tx_ring, 0);
233 			}
234 
235 			/* unmap any remaining paged data */
236 			if (dma_unmap_len(tx_buffer, len))
237 				igc_unmap_tx_buffer(tx_ring->dev, tx_buffer);
238 		}
239 
240 		tx_buffer->next_to_watch = NULL;
241 
242 		/* move us one more past the eop_desc for start of next pkt */
243 		tx_buffer++;
244 		i++;
245 		if (unlikely(i == tx_ring->count)) {
246 			i = 0;
247 			tx_buffer = tx_ring->tx_buffer_info;
248 		}
249 	}
250 
251 	if (tx_ring->xsk_pool && xsk_frames)
252 		xsk_tx_completed(tx_ring->xsk_pool, xsk_frames);
253 
254 	/* reset BQL for queue */
255 	netdev_tx_reset_queue(txring_txq(tx_ring));
256 
257 	/* Zero out the buffer ring */
258 	memset(tx_ring->tx_buffer_info, 0,
259 	       sizeof(*tx_ring->tx_buffer_info) * tx_ring->count);
260 
261 	/* Zero out the descriptor ring */
262 	memset(tx_ring->desc, 0, tx_ring->size);
263 
264 	/* reset next_to_use and next_to_clean */
265 	tx_ring->next_to_use = 0;
266 	tx_ring->next_to_clean = 0;
267 }
268 
269 /**
270  * igc_free_tx_resources - Free Tx Resources per Queue
271  * @tx_ring: Tx descriptor ring for a specific queue
272  *
273  * Free all transmit software resources
274  */
igc_free_tx_resources(struct igc_ring * tx_ring)275 void igc_free_tx_resources(struct igc_ring *tx_ring)
276 {
277 	igc_disable_tx_ring(tx_ring);
278 
279 	vfree(tx_ring->tx_buffer_info);
280 	tx_ring->tx_buffer_info = NULL;
281 
282 	/* if not set, then don't free */
283 	if (!tx_ring->desc)
284 		return;
285 
286 	dma_free_coherent(tx_ring->dev, tx_ring->size,
287 			  tx_ring->desc, tx_ring->dma);
288 
289 	tx_ring->desc = NULL;
290 }
291 
292 /**
293  * igc_free_all_tx_resources - Free Tx Resources for All Queues
294  * @adapter: board private structure
295  *
296  * Free all transmit software resources
297  */
igc_free_all_tx_resources(struct igc_adapter * adapter)298 static void igc_free_all_tx_resources(struct igc_adapter *adapter)
299 {
300 	int i;
301 
302 	for (i = 0; i < adapter->num_tx_queues; i++)
303 		igc_free_tx_resources(adapter->tx_ring[i]);
304 }
305 
306 /**
307  * igc_clean_all_tx_rings - Free Tx Buffers for all queues
308  * @adapter: board private structure
309  */
igc_clean_all_tx_rings(struct igc_adapter * adapter)310 static void igc_clean_all_tx_rings(struct igc_adapter *adapter)
311 {
312 	int i;
313 
314 	for (i = 0; i < adapter->num_tx_queues; i++)
315 		if (adapter->tx_ring[i])
316 			igc_clean_tx_ring(adapter->tx_ring[i]);
317 }
318 
igc_disable_tx_ring_hw(struct igc_ring * ring)319 static void igc_disable_tx_ring_hw(struct igc_ring *ring)
320 {
321 	struct igc_hw *hw = &ring->q_vector->adapter->hw;
322 	u8 idx = ring->reg_idx;
323 	u32 txdctl;
324 
325 	txdctl = rd32(IGC_TXDCTL(idx));
326 	txdctl &= ~IGC_TXDCTL_QUEUE_ENABLE;
327 	txdctl |= IGC_TXDCTL_SWFLUSH;
328 	wr32(IGC_TXDCTL(idx), txdctl);
329 }
330 
331 /**
332  * igc_disable_all_tx_rings_hw - Disable all transmit queue operation
333  * @adapter: board private structure
334  */
igc_disable_all_tx_rings_hw(struct igc_adapter * adapter)335 static void igc_disable_all_tx_rings_hw(struct igc_adapter *adapter)
336 {
337 	int i;
338 
339 	for (i = 0; i < adapter->num_tx_queues; i++) {
340 		struct igc_ring *tx_ring = adapter->tx_ring[i];
341 
342 		igc_disable_tx_ring_hw(tx_ring);
343 	}
344 }
345 
346 /**
347  * igc_setup_tx_resources - allocate Tx resources (Descriptors)
348  * @tx_ring: tx descriptor ring (for a specific queue) to setup
349  *
350  * Return 0 on success, negative on failure
351  */
igc_setup_tx_resources(struct igc_ring * tx_ring)352 int igc_setup_tx_resources(struct igc_ring *tx_ring)
353 {
354 	struct net_device *ndev = tx_ring->netdev;
355 	struct device *dev = tx_ring->dev;
356 	int size = 0;
357 
358 	size = sizeof(struct igc_tx_buffer) * tx_ring->count;
359 	tx_ring->tx_buffer_info = vzalloc(size);
360 	if (!tx_ring->tx_buffer_info)
361 		goto err;
362 
363 	/* round up to nearest 4K */
364 	tx_ring->size = tx_ring->count * sizeof(union igc_adv_tx_desc);
365 	tx_ring->size = ALIGN(tx_ring->size, 4096);
366 
367 	tx_ring->desc = dma_alloc_coherent(dev, tx_ring->size,
368 					   &tx_ring->dma, GFP_KERNEL);
369 
370 	if (!tx_ring->desc)
371 		goto err;
372 
373 	tx_ring->next_to_use = 0;
374 	tx_ring->next_to_clean = 0;
375 
376 	return 0;
377 
378 err:
379 	vfree(tx_ring->tx_buffer_info);
380 	netdev_err(ndev, "Unable to allocate memory for Tx descriptor ring\n");
381 	return -ENOMEM;
382 }
383 
384 /**
385  * igc_setup_all_tx_resources - wrapper to allocate Tx resources for all queues
386  * @adapter: board private structure
387  *
388  * Return 0 on success, negative on failure
389  */
igc_setup_all_tx_resources(struct igc_adapter * adapter)390 static int igc_setup_all_tx_resources(struct igc_adapter *adapter)
391 {
392 	struct net_device *dev = adapter->netdev;
393 	int i, err = 0;
394 
395 	for (i = 0; i < adapter->num_tx_queues; i++) {
396 		err = igc_setup_tx_resources(adapter->tx_ring[i]);
397 		if (err) {
398 			netdev_err(dev, "Error on Tx queue %u setup\n", i);
399 			for (i--; i >= 0; i--)
400 				igc_free_tx_resources(adapter->tx_ring[i]);
401 			break;
402 		}
403 	}
404 
405 	return err;
406 }
407 
igc_clean_rx_ring_page_shared(struct igc_ring * rx_ring)408 static void igc_clean_rx_ring_page_shared(struct igc_ring *rx_ring)
409 {
410 	u16 i = rx_ring->next_to_clean;
411 
412 	dev_kfree_skb(rx_ring->skb);
413 	rx_ring->skb = NULL;
414 
415 	/* Free all the Rx ring sk_buffs */
416 	while (i != rx_ring->next_to_alloc) {
417 		struct igc_rx_buffer *buffer_info = &rx_ring->rx_buffer_info[i];
418 
419 		/* Invalidate cache lines that may have been written to by
420 		 * device so that we avoid corrupting memory.
421 		 */
422 		dma_sync_single_range_for_cpu(rx_ring->dev,
423 					      buffer_info->dma,
424 					      buffer_info->page_offset,
425 					      igc_rx_bufsz(rx_ring),
426 					      DMA_FROM_DEVICE);
427 
428 		/* free resources associated with mapping */
429 		dma_unmap_page_attrs(rx_ring->dev,
430 				     buffer_info->dma,
431 				     igc_rx_pg_size(rx_ring),
432 				     DMA_FROM_DEVICE,
433 				     IGC_RX_DMA_ATTR);
434 		__page_frag_cache_drain(buffer_info->page,
435 					buffer_info->pagecnt_bias);
436 
437 		i++;
438 		if (i == rx_ring->count)
439 			i = 0;
440 	}
441 }
442 
igc_clean_rx_ring_xsk_pool(struct igc_ring * ring)443 static void igc_clean_rx_ring_xsk_pool(struct igc_ring *ring)
444 {
445 	struct igc_rx_buffer *bi;
446 	u16 i;
447 
448 	for (i = 0; i < ring->count; i++) {
449 		bi = &ring->rx_buffer_info[i];
450 		if (!bi->xdp)
451 			continue;
452 
453 		xsk_buff_free(bi->xdp);
454 		bi->xdp = NULL;
455 	}
456 }
457 
458 /**
459  * igc_clean_rx_ring - Free Rx Buffers per Queue
460  * @ring: ring to free buffers from
461  */
igc_clean_rx_ring(struct igc_ring * ring)462 static void igc_clean_rx_ring(struct igc_ring *ring)
463 {
464 	if (ring->xsk_pool)
465 		igc_clean_rx_ring_xsk_pool(ring);
466 	else
467 		igc_clean_rx_ring_page_shared(ring);
468 
469 	clear_ring_uses_large_buffer(ring);
470 
471 	ring->next_to_alloc = 0;
472 	ring->next_to_clean = 0;
473 	ring->next_to_use = 0;
474 }
475 
476 /**
477  * igc_clean_all_rx_rings - Free Rx Buffers for all queues
478  * @adapter: board private structure
479  */
igc_clean_all_rx_rings(struct igc_adapter * adapter)480 static void igc_clean_all_rx_rings(struct igc_adapter *adapter)
481 {
482 	int i;
483 
484 	for (i = 0; i < adapter->num_rx_queues; i++)
485 		if (adapter->rx_ring[i])
486 			igc_clean_rx_ring(adapter->rx_ring[i]);
487 }
488 
489 /**
490  * igc_free_rx_resources - Free Rx Resources
491  * @rx_ring: ring to clean the resources from
492  *
493  * Free all receive software resources
494  */
igc_free_rx_resources(struct igc_ring * rx_ring)495 void igc_free_rx_resources(struct igc_ring *rx_ring)
496 {
497 	igc_clean_rx_ring(rx_ring);
498 
499 	xdp_rxq_info_unreg(&rx_ring->xdp_rxq);
500 
501 	vfree(rx_ring->rx_buffer_info);
502 	rx_ring->rx_buffer_info = NULL;
503 
504 	/* if not set, then don't free */
505 	if (!rx_ring->desc)
506 		return;
507 
508 	dma_free_coherent(rx_ring->dev, rx_ring->size,
509 			  rx_ring->desc, rx_ring->dma);
510 
511 	rx_ring->desc = NULL;
512 }
513 
514 /**
515  * igc_free_all_rx_resources - Free Rx Resources for All Queues
516  * @adapter: board private structure
517  *
518  * Free all receive software resources
519  */
igc_free_all_rx_resources(struct igc_adapter * adapter)520 static void igc_free_all_rx_resources(struct igc_adapter *adapter)
521 {
522 	int i;
523 
524 	for (i = 0; i < adapter->num_rx_queues; i++)
525 		igc_free_rx_resources(adapter->rx_ring[i]);
526 }
527 
528 /**
529  * igc_setup_rx_resources - allocate Rx resources (Descriptors)
530  * @rx_ring:    rx descriptor ring (for a specific queue) to setup
531  *
532  * Returns 0 on success, negative on failure
533  */
igc_setup_rx_resources(struct igc_ring * rx_ring)534 int igc_setup_rx_resources(struct igc_ring *rx_ring)
535 {
536 	struct net_device *ndev = rx_ring->netdev;
537 	struct device *dev = rx_ring->dev;
538 	u8 index = rx_ring->queue_index;
539 	int size, desc_len, res;
540 
541 	/* XDP RX-queue info */
542 	if (xdp_rxq_info_is_reg(&rx_ring->xdp_rxq))
543 		xdp_rxq_info_unreg(&rx_ring->xdp_rxq);
544 	res = xdp_rxq_info_reg(&rx_ring->xdp_rxq, ndev, index,
545 			       rx_ring->q_vector->napi.napi_id);
546 	if (res < 0) {
547 		netdev_err(ndev, "Failed to register xdp_rxq index %u\n",
548 			   index);
549 		return res;
550 	}
551 
552 	size = sizeof(struct igc_rx_buffer) * rx_ring->count;
553 	rx_ring->rx_buffer_info = vzalloc(size);
554 	if (!rx_ring->rx_buffer_info)
555 		goto err;
556 
557 	desc_len = sizeof(union igc_adv_rx_desc);
558 
559 	/* Round up to nearest 4K */
560 	rx_ring->size = rx_ring->count * desc_len;
561 	rx_ring->size = ALIGN(rx_ring->size, 4096);
562 
563 	rx_ring->desc = dma_alloc_coherent(dev, rx_ring->size,
564 					   &rx_ring->dma, GFP_KERNEL);
565 
566 	if (!rx_ring->desc)
567 		goto err;
568 
569 	rx_ring->next_to_alloc = 0;
570 	rx_ring->next_to_clean = 0;
571 	rx_ring->next_to_use = 0;
572 
573 	return 0;
574 
575 err:
576 	xdp_rxq_info_unreg(&rx_ring->xdp_rxq);
577 	vfree(rx_ring->rx_buffer_info);
578 	rx_ring->rx_buffer_info = NULL;
579 	netdev_err(ndev, "Unable to allocate memory for Rx descriptor ring\n");
580 	return -ENOMEM;
581 }
582 
583 /**
584  * igc_setup_all_rx_resources - wrapper to allocate Rx resources
585  *                                (Descriptors) for all queues
586  * @adapter: board private structure
587  *
588  * Return 0 on success, negative on failure
589  */
igc_setup_all_rx_resources(struct igc_adapter * adapter)590 static int igc_setup_all_rx_resources(struct igc_adapter *adapter)
591 {
592 	struct net_device *dev = adapter->netdev;
593 	int i, err = 0;
594 
595 	for (i = 0; i < adapter->num_rx_queues; i++) {
596 		err = igc_setup_rx_resources(adapter->rx_ring[i]);
597 		if (err) {
598 			netdev_err(dev, "Error on Rx queue %u setup\n", i);
599 			for (i--; i >= 0; i--)
600 				igc_free_rx_resources(adapter->rx_ring[i]);
601 			break;
602 		}
603 	}
604 
605 	return err;
606 }
607 
igc_get_xsk_pool(struct igc_adapter * adapter,struct igc_ring * ring)608 static struct xsk_buff_pool *igc_get_xsk_pool(struct igc_adapter *adapter,
609 					      struct igc_ring *ring)
610 {
611 	if (!igc_xdp_is_enabled(adapter) ||
612 	    !test_bit(IGC_RING_FLAG_AF_XDP_ZC, &ring->flags))
613 		return NULL;
614 
615 	return xsk_get_pool_from_qid(ring->netdev, ring->queue_index);
616 }
617 
618 /**
619  * igc_configure_rx_ring - Configure a receive ring after Reset
620  * @adapter: board private structure
621  * @ring: receive ring to be configured
622  *
623  * Configure the Rx unit of the MAC after a reset.
624  */
igc_configure_rx_ring(struct igc_adapter * adapter,struct igc_ring * ring)625 static void igc_configure_rx_ring(struct igc_adapter *adapter,
626 				  struct igc_ring *ring)
627 {
628 	struct igc_hw *hw = &adapter->hw;
629 	union igc_adv_rx_desc *rx_desc;
630 	int reg_idx = ring->reg_idx;
631 	u32 srrctl = 0, rxdctl = 0;
632 	u64 rdba = ring->dma;
633 	u32 buf_size;
634 
635 	xdp_rxq_info_unreg_mem_model(&ring->xdp_rxq);
636 	ring->xsk_pool = igc_get_xsk_pool(adapter, ring);
637 	if (ring->xsk_pool) {
638 		WARN_ON(xdp_rxq_info_reg_mem_model(&ring->xdp_rxq,
639 						   MEM_TYPE_XSK_BUFF_POOL,
640 						   NULL));
641 		xsk_pool_set_rxq_info(ring->xsk_pool, &ring->xdp_rxq);
642 	} else {
643 		WARN_ON(xdp_rxq_info_reg_mem_model(&ring->xdp_rxq,
644 						   MEM_TYPE_PAGE_SHARED,
645 						   NULL));
646 	}
647 
648 	if (igc_xdp_is_enabled(adapter))
649 		set_ring_uses_large_buffer(ring);
650 
651 	/* disable the queue */
652 	wr32(IGC_RXDCTL(reg_idx), 0);
653 
654 	/* Set DMA base address registers */
655 	wr32(IGC_RDBAL(reg_idx),
656 	     rdba & 0x00000000ffffffffULL);
657 	wr32(IGC_RDBAH(reg_idx), rdba >> 32);
658 	wr32(IGC_RDLEN(reg_idx),
659 	     ring->count * sizeof(union igc_adv_rx_desc));
660 
661 	/* initialize head and tail */
662 	ring->tail = adapter->io_addr + IGC_RDT(reg_idx);
663 	wr32(IGC_RDH(reg_idx), 0);
664 	writel(0, ring->tail);
665 
666 	/* reset next-to- use/clean to place SW in sync with hardware */
667 	ring->next_to_clean = 0;
668 	ring->next_to_use = 0;
669 
670 	if (ring->xsk_pool)
671 		buf_size = xsk_pool_get_rx_frame_size(ring->xsk_pool);
672 	else if (ring_uses_large_buffer(ring))
673 		buf_size = IGC_RXBUFFER_3072;
674 	else
675 		buf_size = IGC_RXBUFFER_2048;
676 
677 	srrctl = rd32(IGC_SRRCTL(reg_idx));
678 	srrctl &= ~(IGC_SRRCTL_BSIZEPKT_MASK | IGC_SRRCTL_BSIZEHDR_MASK |
679 		    IGC_SRRCTL_DESCTYPE_MASK);
680 	srrctl |= IGC_SRRCTL_BSIZEHDR(IGC_RX_HDR_LEN);
681 	srrctl |= IGC_SRRCTL_BSIZEPKT(buf_size);
682 	srrctl |= IGC_SRRCTL_DESCTYPE_ADV_ONEBUF;
683 
684 	wr32(IGC_SRRCTL(reg_idx), srrctl);
685 
686 	rxdctl |= IGC_RX_PTHRESH;
687 	rxdctl |= IGC_RX_HTHRESH << 8;
688 	rxdctl |= IGC_RX_WTHRESH << 16;
689 
690 	/* initialize rx_buffer_info */
691 	memset(ring->rx_buffer_info, 0,
692 	       sizeof(struct igc_rx_buffer) * ring->count);
693 
694 	/* initialize Rx descriptor 0 */
695 	rx_desc = IGC_RX_DESC(ring, 0);
696 	rx_desc->wb.upper.length = 0;
697 
698 	/* enable receive descriptor fetching */
699 	rxdctl |= IGC_RXDCTL_QUEUE_ENABLE;
700 
701 	wr32(IGC_RXDCTL(reg_idx), rxdctl);
702 }
703 
704 /**
705  * igc_configure_rx - Configure receive Unit after Reset
706  * @adapter: board private structure
707  *
708  * Configure the Rx unit of the MAC after a reset.
709  */
igc_configure_rx(struct igc_adapter * adapter)710 static void igc_configure_rx(struct igc_adapter *adapter)
711 {
712 	int i;
713 
714 	/* Setup the HW Rx Head and Tail Descriptor Pointers and
715 	 * the Base and Length of the Rx Descriptor Ring
716 	 */
717 	for (i = 0; i < adapter->num_rx_queues; i++)
718 		igc_configure_rx_ring(adapter, adapter->rx_ring[i]);
719 }
720 
721 /**
722  * igc_configure_tx_ring - Configure transmit ring after Reset
723  * @adapter: board private structure
724  * @ring: tx ring to configure
725  *
726  * Configure a transmit ring after a reset.
727  */
igc_configure_tx_ring(struct igc_adapter * adapter,struct igc_ring * ring)728 static void igc_configure_tx_ring(struct igc_adapter *adapter,
729 				  struct igc_ring *ring)
730 {
731 	struct igc_hw *hw = &adapter->hw;
732 	int reg_idx = ring->reg_idx;
733 	u64 tdba = ring->dma;
734 	u32 txdctl = 0;
735 
736 	ring->xsk_pool = igc_get_xsk_pool(adapter, ring);
737 
738 	/* disable the queue */
739 	wr32(IGC_TXDCTL(reg_idx), 0);
740 	wrfl();
741 
742 	wr32(IGC_TDLEN(reg_idx),
743 	     ring->count * sizeof(union igc_adv_tx_desc));
744 	wr32(IGC_TDBAL(reg_idx),
745 	     tdba & 0x00000000ffffffffULL);
746 	wr32(IGC_TDBAH(reg_idx), tdba >> 32);
747 
748 	ring->tail = adapter->io_addr + IGC_TDT(reg_idx);
749 	wr32(IGC_TDH(reg_idx), 0);
750 	writel(0, ring->tail);
751 
752 	txdctl |= IGC_TX_PTHRESH;
753 	txdctl |= IGC_TX_HTHRESH << 8;
754 	txdctl |= IGC_TX_WTHRESH << 16;
755 
756 	txdctl |= IGC_TXDCTL_QUEUE_ENABLE;
757 	wr32(IGC_TXDCTL(reg_idx), txdctl);
758 }
759 
760 /**
761  * igc_configure_tx - Configure transmit Unit after Reset
762  * @adapter: board private structure
763  *
764  * Configure the Tx unit of the MAC after a reset.
765  */
igc_configure_tx(struct igc_adapter * adapter)766 static void igc_configure_tx(struct igc_adapter *adapter)
767 {
768 	int i;
769 
770 	for (i = 0; i < adapter->num_tx_queues; i++)
771 		igc_configure_tx_ring(adapter, adapter->tx_ring[i]);
772 }
773 
774 /**
775  * igc_setup_mrqc - configure the multiple receive queue control registers
776  * @adapter: Board private structure
777  */
igc_setup_mrqc(struct igc_adapter * adapter)778 static void igc_setup_mrqc(struct igc_adapter *adapter)
779 {
780 	struct igc_hw *hw = &adapter->hw;
781 	u32 j, num_rx_queues;
782 	u32 mrqc, rxcsum;
783 	u32 rss_key[10];
784 
785 	netdev_rss_key_fill(rss_key, sizeof(rss_key));
786 	for (j = 0; j < 10; j++)
787 		wr32(IGC_RSSRK(j), rss_key[j]);
788 
789 	num_rx_queues = adapter->rss_queues;
790 
791 	if (adapter->rss_indir_tbl_init != num_rx_queues) {
792 		for (j = 0; j < IGC_RETA_SIZE; j++)
793 			adapter->rss_indir_tbl[j] =
794 			(j * num_rx_queues) / IGC_RETA_SIZE;
795 		adapter->rss_indir_tbl_init = num_rx_queues;
796 	}
797 	igc_write_rss_indir_tbl(adapter);
798 
799 	/* Disable raw packet checksumming so that RSS hash is placed in
800 	 * descriptor on writeback.  No need to enable TCP/UDP/IP checksum
801 	 * offloads as they are enabled by default
802 	 */
803 	rxcsum = rd32(IGC_RXCSUM);
804 	rxcsum |= IGC_RXCSUM_PCSD;
805 
806 	/* Enable Receive Checksum Offload for SCTP */
807 	rxcsum |= IGC_RXCSUM_CRCOFL;
808 
809 	/* Don't need to set TUOFL or IPOFL, they default to 1 */
810 	wr32(IGC_RXCSUM, rxcsum);
811 
812 	/* Generate RSS hash based on packet types, TCP/UDP
813 	 * port numbers and/or IPv4/v6 src and dst addresses
814 	 */
815 	mrqc = IGC_MRQC_RSS_FIELD_IPV4 |
816 	       IGC_MRQC_RSS_FIELD_IPV4_TCP |
817 	       IGC_MRQC_RSS_FIELD_IPV6 |
818 	       IGC_MRQC_RSS_FIELD_IPV6_TCP |
819 	       IGC_MRQC_RSS_FIELD_IPV6_TCP_EX;
820 
821 	if (adapter->flags & IGC_FLAG_RSS_FIELD_IPV4_UDP)
822 		mrqc |= IGC_MRQC_RSS_FIELD_IPV4_UDP;
823 	if (adapter->flags & IGC_FLAG_RSS_FIELD_IPV6_UDP)
824 		mrqc |= IGC_MRQC_RSS_FIELD_IPV6_UDP;
825 
826 	mrqc |= IGC_MRQC_ENABLE_RSS_MQ;
827 
828 	wr32(IGC_MRQC, mrqc);
829 }
830 
831 /**
832  * igc_setup_rctl - configure the receive control registers
833  * @adapter: Board private structure
834  */
igc_setup_rctl(struct igc_adapter * adapter)835 static void igc_setup_rctl(struct igc_adapter *adapter)
836 {
837 	struct igc_hw *hw = &adapter->hw;
838 	u32 rctl;
839 
840 	rctl = rd32(IGC_RCTL);
841 
842 	rctl &= ~(3 << IGC_RCTL_MO_SHIFT);
843 	rctl &= ~(IGC_RCTL_LBM_TCVR | IGC_RCTL_LBM_MAC);
844 
845 	rctl |= IGC_RCTL_EN | IGC_RCTL_BAM | IGC_RCTL_RDMTS_HALF |
846 		(hw->mac.mc_filter_type << IGC_RCTL_MO_SHIFT);
847 
848 	/* enable stripping of CRC. Newer features require
849 	 * that the HW strips the CRC.
850 	 */
851 	rctl |= IGC_RCTL_SECRC;
852 
853 	/* disable store bad packets and clear size bits. */
854 	rctl &= ~(IGC_RCTL_SBP | IGC_RCTL_SZ_256);
855 
856 	/* enable LPE to allow for reception of jumbo frames */
857 	rctl |= IGC_RCTL_LPE;
858 
859 	/* disable queue 0 to prevent tail write w/o re-config */
860 	wr32(IGC_RXDCTL(0), 0);
861 
862 	/* This is useful for sniffing bad packets. */
863 	if (adapter->netdev->features & NETIF_F_RXALL) {
864 		/* UPE and MPE will be handled by normal PROMISC logic
865 		 * in set_rx_mode
866 		 */
867 		rctl |= (IGC_RCTL_SBP | /* Receive bad packets */
868 			 IGC_RCTL_BAM | /* RX All Bcast Pkts */
869 			 IGC_RCTL_PMCF); /* RX All MAC Ctrl Pkts */
870 
871 		rctl &= ~(IGC_RCTL_DPF | /* Allow filtered pause */
872 			  IGC_RCTL_CFIEN); /* Disable VLAN CFIEN Filter */
873 	}
874 
875 	wr32(IGC_RCTL, rctl);
876 }
877 
878 /**
879  * igc_setup_tctl - configure the transmit control registers
880  * @adapter: Board private structure
881  */
igc_setup_tctl(struct igc_adapter * adapter)882 static void igc_setup_tctl(struct igc_adapter *adapter)
883 {
884 	struct igc_hw *hw = &adapter->hw;
885 	u32 tctl;
886 
887 	/* disable queue 0 which icould be enabled by default */
888 	wr32(IGC_TXDCTL(0), 0);
889 
890 	/* Program the Transmit Control Register */
891 	tctl = rd32(IGC_TCTL);
892 	tctl &= ~IGC_TCTL_CT;
893 	tctl |= IGC_TCTL_PSP | IGC_TCTL_RTLC |
894 		(IGC_COLLISION_THRESHOLD << IGC_CT_SHIFT);
895 
896 	/* Enable transmits */
897 	tctl |= IGC_TCTL_EN;
898 
899 	wr32(IGC_TCTL, tctl);
900 }
901 
902 /**
903  * igc_set_mac_filter_hw() - Set MAC address filter in hardware
904  * @adapter: Pointer to adapter where the filter should be set
905  * @index: Filter index
906  * @type: MAC address filter type (source or destination)
907  * @addr: MAC address
908  * @queue: If non-negative, queue assignment feature is enabled and frames
909  *         matching the filter are enqueued onto 'queue'. Otherwise, queue
910  *         assignment is disabled.
911  */
igc_set_mac_filter_hw(struct igc_adapter * adapter,int index,enum igc_mac_filter_type type,const u8 * addr,int queue)912 static void igc_set_mac_filter_hw(struct igc_adapter *adapter, int index,
913 				  enum igc_mac_filter_type type,
914 				  const u8 *addr, int queue)
915 {
916 	struct net_device *dev = adapter->netdev;
917 	struct igc_hw *hw = &adapter->hw;
918 	u32 ral, rah;
919 
920 	if (WARN_ON(index >= hw->mac.rar_entry_count))
921 		return;
922 
923 	ral = le32_to_cpup((__le32 *)(addr));
924 	rah = le16_to_cpup((__le16 *)(addr + 4));
925 
926 	if (type == IGC_MAC_FILTER_TYPE_SRC) {
927 		rah &= ~IGC_RAH_ASEL_MASK;
928 		rah |= IGC_RAH_ASEL_SRC_ADDR;
929 	}
930 
931 	if (queue >= 0) {
932 		rah &= ~IGC_RAH_QSEL_MASK;
933 		rah |= (queue << IGC_RAH_QSEL_SHIFT);
934 		rah |= IGC_RAH_QSEL_ENABLE;
935 	}
936 
937 	rah |= IGC_RAH_AV;
938 
939 	wr32(IGC_RAL(index), ral);
940 	wr32(IGC_RAH(index), rah);
941 
942 	netdev_dbg(dev, "MAC address filter set in HW: index %d", index);
943 }
944 
945 /**
946  * igc_clear_mac_filter_hw() - Clear MAC address filter in hardware
947  * @adapter: Pointer to adapter where the filter should be cleared
948  * @index: Filter index
949  */
igc_clear_mac_filter_hw(struct igc_adapter * adapter,int index)950 static void igc_clear_mac_filter_hw(struct igc_adapter *adapter, int index)
951 {
952 	struct net_device *dev = adapter->netdev;
953 	struct igc_hw *hw = &adapter->hw;
954 
955 	if (WARN_ON(index >= hw->mac.rar_entry_count))
956 		return;
957 
958 	wr32(IGC_RAL(index), 0);
959 	wr32(IGC_RAH(index), 0);
960 
961 	netdev_dbg(dev, "MAC address filter cleared in HW: index %d", index);
962 }
963 
964 /* Set default MAC address for the PF in the first RAR entry */
igc_set_default_mac_filter(struct igc_adapter * adapter)965 static void igc_set_default_mac_filter(struct igc_adapter *adapter)
966 {
967 	struct net_device *dev = adapter->netdev;
968 	u8 *addr = adapter->hw.mac.addr;
969 
970 	netdev_dbg(dev, "Set default MAC address filter: address %pM", addr);
971 
972 	igc_set_mac_filter_hw(adapter, 0, IGC_MAC_FILTER_TYPE_DST, addr, -1);
973 }
974 
975 /**
976  * igc_set_mac - Change the Ethernet Address of the NIC
977  * @netdev: network interface device structure
978  * @p: pointer to an address structure
979  *
980  * Returns 0 on success, negative on failure
981  */
igc_set_mac(struct net_device * netdev,void * p)982 static int igc_set_mac(struct net_device *netdev, void *p)
983 {
984 	struct igc_adapter *adapter = netdev_priv(netdev);
985 	struct igc_hw *hw = &adapter->hw;
986 	struct sockaddr *addr = p;
987 
988 	if (!is_valid_ether_addr(addr->sa_data))
989 		return -EADDRNOTAVAIL;
990 
991 	eth_hw_addr_set(netdev, addr->sa_data);
992 	memcpy(hw->mac.addr, addr->sa_data, netdev->addr_len);
993 
994 	/* set the correct pool for the new PF MAC address in entry 0 */
995 	igc_set_default_mac_filter(adapter);
996 
997 	return 0;
998 }
999 
1000 /**
1001  *  igc_write_mc_addr_list - write multicast addresses to MTA
1002  *  @netdev: network interface device structure
1003  *
1004  *  Writes multicast address list to the MTA hash table.
1005  *  Returns: -ENOMEM on failure
1006  *           0 on no addresses written
1007  *           X on writing X addresses to MTA
1008  **/
igc_write_mc_addr_list(struct net_device * netdev)1009 static int igc_write_mc_addr_list(struct net_device *netdev)
1010 {
1011 	struct igc_adapter *adapter = netdev_priv(netdev);
1012 	struct igc_hw *hw = &adapter->hw;
1013 	struct netdev_hw_addr *ha;
1014 	u8  *mta_list;
1015 	int i;
1016 
1017 	if (netdev_mc_empty(netdev)) {
1018 		/* nothing to program, so clear mc list */
1019 		igc_update_mc_addr_list(hw, NULL, 0);
1020 		return 0;
1021 	}
1022 
1023 	mta_list = kcalloc(netdev_mc_count(netdev), 6, GFP_ATOMIC);
1024 	if (!mta_list)
1025 		return -ENOMEM;
1026 
1027 	/* The shared function expects a packed array of only addresses. */
1028 	i = 0;
1029 	netdev_for_each_mc_addr(ha, netdev)
1030 		memcpy(mta_list + (i++ * ETH_ALEN), ha->addr, ETH_ALEN);
1031 
1032 	igc_update_mc_addr_list(hw, mta_list, i);
1033 	kfree(mta_list);
1034 
1035 	return netdev_mc_count(netdev);
1036 }
1037 
igc_tx_launchtime(struct igc_ring * ring,ktime_t txtime,bool * first_flag,bool * insert_empty)1038 static __le32 igc_tx_launchtime(struct igc_ring *ring, ktime_t txtime,
1039 				bool *first_flag, bool *insert_empty)
1040 {
1041 	struct igc_adapter *adapter = netdev_priv(ring->netdev);
1042 	ktime_t cycle_time = adapter->cycle_time;
1043 	ktime_t base_time = adapter->base_time;
1044 	ktime_t now = ktime_get_clocktai();
1045 	ktime_t baset_est, end_of_cycle;
1046 	s32 launchtime;
1047 	s64 n;
1048 
1049 	n = div64_s64(ktime_sub_ns(now, base_time), cycle_time);
1050 
1051 	baset_est = ktime_add_ns(base_time, cycle_time * (n));
1052 	end_of_cycle = ktime_add_ns(baset_est, cycle_time);
1053 
1054 	if (ktime_compare(txtime, end_of_cycle) >= 0) {
1055 		if (baset_est != ring->last_ff_cycle) {
1056 			*first_flag = true;
1057 			ring->last_ff_cycle = baset_est;
1058 
1059 			if (ktime_compare(end_of_cycle, ring->last_tx_cycle) > 0)
1060 				*insert_empty = true;
1061 		}
1062 	}
1063 
1064 	/* Introducing a window at end of cycle on which packets
1065 	 * potentially not honor launchtime. Window of 5us chosen
1066 	 * considering software update the tail pointer and packets
1067 	 * are dma'ed to packet buffer.
1068 	 */
1069 	if ((ktime_sub_ns(end_of_cycle, now) < 5 * NSEC_PER_USEC))
1070 		netdev_warn(ring->netdev, "Packet with txtime=%llu may not be honoured\n",
1071 			    txtime);
1072 
1073 	ring->last_tx_cycle = end_of_cycle;
1074 
1075 	launchtime = ktime_sub_ns(txtime, baset_est);
1076 	if (launchtime > 0)
1077 		div_s64_rem(launchtime, cycle_time, &launchtime);
1078 	else
1079 		launchtime = 0;
1080 
1081 	return cpu_to_le32(launchtime);
1082 }
1083 
igc_init_empty_frame(struct igc_ring * ring,struct igc_tx_buffer * buffer,struct sk_buff * skb)1084 static int igc_init_empty_frame(struct igc_ring *ring,
1085 				struct igc_tx_buffer *buffer,
1086 				struct sk_buff *skb)
1087 {
1088 	unsigned int size;
1089 	dma_addr_t dma;
1090 
1091 	size = skb_headlen(skb);
1092 
1093 	dma = dma_map_single(ring->dev, skb->data, size, DMA_TO_DEVICE);
1094 	if (dma_mapping_error(ring->dev, dma)) {
1095 		netdev_err_once(ring->netdev, "Failed to map DMA for TX\n");
1096 		return -ENOMEM;
1097 	}
1098 
1099 	buffer->type = IGC_TX_BUFFER_TYPE_SKB;
1100 	buffer->skb = skb;
1101 	buffer->protocol = 0;
1102 	buffer->bytecount = skb->len;
1103 	buffer->gso_segs = 1;
1104 	buffer->time_stamp = jiffies;
1105 	dma_unmap_len_set(buffer, len, skb->len);
1106 	dma_unmap_addr_set(buffer, dma, dma);
1107 
1108 	return 0;
1109 }
1110 
igc_init_tx_empty_descriptor(struct igc_ring * ring,struct sk_buff * skb,struct igc_tx_buffer * first)1111 static int igc_init_tx_empty_descriptor(struct igc_ring *ring,
1112 					struct sk_buff *skb,
1113 					struct igc_tx_buffer *first)
1114 {
1115 	union igc_adv_tx_desc *desc;
1116 	u32 cmd_type, olinfo_status;
1117 	int err;
1118 
1119 	if (!igc_desc_unused(ring))
1120 		return -EBUSY;
1121 
1122 	err = igc_init_empty_frame(ring, first, skb);
1123 	if (err)
1124 		return err;
1125 
1126 	cmd_type = IGC_ADVTXD_DTYP_DATA | IGC_ADVTXD_DCMD_DEXT |
1127 		   IGC_ADVTXD_DCMD_IFCS | IGC_TXD_DCMD |
1128 		   first->bytecount;
1129 	olinfo_status = first->bytecount << IGC_ADVTXD_PAYLEN_SHIFT;
1130 
1131 	desc = IGC_TX_DESC(ring, ring->next_to_use);
1132 	desc->read.cmd_type_len = cpu_to_le32(cmd_type);
1133 	desc->read.olinfo_status = cpu_to_le32(olinfo_status);
1134 	desc->read.buffer_addr = cpu_to_le64(dma_unmap_addr(first, dma));
1135 
1136 	netdev_tx_sent_queue(txring_txq(ring), skb->len);
1137 
1138 	first->next_to_watch = desc;
1139 
1140 	ring->next_to_use++;
1141 	if (ring->next_to_use == ring->count)
1142 		ring->next_to_use = 0;
1143 
1144 	return 0;
1145 }
1146 
1147 #define IGC_EMPTY_FRAME_SIZE 60
1148 
igc_tx_ctxtdesc(struct igc_ring * tx_ring,__le32 launch_time,bool first_flag,u32 vlan_macip_lens,u32 type_tucmd,u32 mss_l4len_idx)1149 static void igc_tx_ctxtdesc(struct igc_ring *tx_ring,
1150 			    __le32 launch_time, bool first_flag,
1151 			    u32 vlan_macip_lens, u32 type_tucmd,
1152 			    u32 mss_l4len_idx)
1153 {
1154 	struct igc_adv_tx_context_desc *context_desc;
1155 	u16 i = tx_ring->next_to_use;
1156 
1157 	context_desc = IGC_TX_CTXTDESC(tx_ring, i);
1158 
1159 	i++;
1160 	tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
1161 
1162 	/* set bits to identify this as an advanced context descriptor */
1163 	type_tucmd |= IGC_TXD_CMD_DEXT | IGC_ADVTXD_DTYP_CTXT;
1164 
1165 	/* For i225, context index must be unique per ring. */
1166 	if (test_bit(IGC_RING_FLAG_TX_CTX_IDX, &tx_ring->flags))
1167 		mss_l4len_idx |= tx_ring->reg_idx << 4;
1168 
1169 	if (first_flag)
1170 		mss_l4len_idx |= IGC_ADVTXD_TSN_CNTX_FIRST;
1171 
1172 	context_desc->vlan_macip_lens	= cpu_to_le32(vlan_macip_lens);
1173 	context_desc->type_tucmd_mlhl	= cpu_to_le32(type_tucmd);
1174 	context_desc->mss_l4len_idx	= cpu_to_le32(mss_l4len_idx);
1175 	context_desc->launch_time	= launch_time;
1176 }
1177 
igc_tx_csum(struct igc_ring * tx_ring,struct igc_tx_buffer * first,__le32 launch_time,bool first_flag)1178 static void igc_tx_csum(struct igc_ring *tx_ring, struct igc_tx_buffer *first,
1179 			__le32 launch_time, bool first_flag)
1180 {
1181 	struct sk_buff *skb = first->skb;
1182 	u32 vlan_macip_lens = 0;
1183 	u32 type_tucmd = 0;
1184 
1185 	if (skb->ip_summed != CHECKSUM_PARTIAL) {
1186 csum_failed:
1187 		if (!(first->tx_flags & IGC_TX_FLAGS_VLAN) &&
1188 		    !tx_ring->launchtime_enable)
1189 			return;
1190 		goto no_csum;
1191 	}
1192 
1193 	switch (skb->csum_offset) {
1194 	case offsetof(struct tcphdr, check):
1195 		type_tucmd = IGC_ADVTXD_TUCMD_L4T_TCP;
1196 		fallthrough;
1197 	case offsetof(struct udphdr, check):
1198 		break;
1199 	case offsetof(struct sctphdr, checksum):
1200 		/* validate that this is actually an SCTP request */
1201 		if (skb_csum_is_sctp(skb)) {
1202 			type_tucmd = IGC_ADVTXD_TUCMD_L4T_SCTP;
1203 			break;
1204 		}
1205 		fallthrough;
1206 	default:
1207 		skb_checksum_help(skb);
1208 		goto csum_failed;
1209 	}
1210 
1211 	/* update TX checksum flag */
1212 	first->tx_flags |= IGC_TX_FLAGS_CSUM;
1213 	vlan_macip_lens = skb_checksum_start_offset(skb) -
1214 			  skb_network_offset(skb);
1215 no_csum:
1216 	vlan_macip_lens |= skb_network_offset(skb) << IGC_ADVTXD_MACLEN_SHIFT;
1217 	vlan_macip_lens |= first->tx_flags & IGC_TX_FLAGS_VLAN_MASK;
1218 
1219 	igc_tx_ctxtdesc(tx_ring, launch_time, first_flag,
1220 			vlan_macip_lens, type_tucmd, 0);
1221 }
1222 
__igc_maybe_stop_tx(struct igc_ring * tx_ring,const u16 size)1223 static int __igc_maybe_stop_tx(struct igc_ring *tx_ring, const u16 size)
1224 {
1225 	struct net_device *netdev = tx_ring->netdev;
1226 
1227 	netif_stop_subqueue(netdev, tx_ring->queue_index);
1228 
1229 	/* memory barriier comment */
1230 	smp_mb();
1231 
1232 	/* We need to check again in a case another CPU has just
1233 	 * made room available.
1234 	 */
1235 	if (igc_desc_unused(tx_ring) < size)
1236 		return -EBUSY;
1237 
1238 	/* A reprieve! */
1239 	netif_wake_subqueue(netdev, tx_ring->queue_index);
1240 
1241 	u64_stats_update_begin(&tx_ring->tx_syncp2);
1242 	tx_ring->tx_stats.restart_queue2++;
1243 	u64_stats_update_end(&tx_ring->tx_syncp2);
1244 
1245 	return 0;
1246 }
1247 
igc_maybe_stop_tx(struct igc_ring * tx_ring,const u16 size)1248 static inline int igc_maybe_stop_tx(struct igc_ring *tx_ring, const u16 size)
1249 {
1250 	if (igc_desc_unused(tx_ring) >= size)
1251 		return 0;
1252 	return __igc_maybe_stop_tx(tx_ring, size);
1253 }
1254 
1255 #define IGC_SET_FLAG(_input, _flag, _result) \
1256 	(((_flag) <= (_result)) ?				\
1257 	 ((u32)((_input) & (_flag)) * ((_result) / (_flag))) :	\
1258 	 ((u32)((_input) & (_flag)) / ((_flag) / (_result))))
1259 
igc_tx_cmd_type(struct sk_buff * skb,u32 tx_flags)1260 static u32 igc_tx_cmd_type(struct sk_buff *skb, u32 tx_flags)
1261 {
1262 	/* set type for advanced descriptor with frame checksum insertion */
1263 	u32 cmd_type = IGC_ADVTXD_DTYP_DATA |
1264 		       IGC_ADVTXD_DCMD_DEXT |
1265 		       IGC_ADVTXD_DCMD_IFCS;
1266 
1267 	/* set HW vlan bit if vlan is present */
1268 	cmd_type |= IGC_SET_FLAG(tx_flags, IGC_TX_FLAGS_VLAN,
1269 				 IGC_ADVTXD_DCMD_VLE);
1270 
1271 	/* set segmentation bits for TSO */
1272 	cmd_type |= IGC_SET_FLAG(tx_flags, IGC_TX_FLAGS_TSO,
1273 				 (IGC_ADVTXD_DCMD_TSE));
1274 
1275 	/* set timestamp bit if present, will select the register set
1276 	 * based on the _TSTAMP(_X) bit.
1277 	 */
1278 	cmd_type |= IGC_SET_FLAG(tx_flags, IGC_TX_FLAGS_TSTAMP,
1279 				 (IGC_ADVTXD_MAC_TSTAMP));
1280 
1281 	cmd_type |= IGC_SET_FLAG(tx_flags, IGC_TX_FLAGS_TSTAMP_1,
1282 				 (IGC_ADVTXD_TSTAMP_REG_1));
1283 
1284 	cmd_type |= IGC_SET_FLAG(tx_flags, IGC_TX_FLAGS_TSTAMP_2,
1285 				 (IGC_ADVTXD_TSTAMP_REG_2));
1286 
1287 	cmd_type |= IGC_SET_FLAG(tx_flags, IGC_TX_FLAGS_TSTAMP_3,
1288 				 (IGC_ADVTXD_TSTAMP_REG_3));
1289 
1290 	/* insert frame checksum */
1291 	cmd_type ^= IGC_SET_FLAG(skb->no_fcs, 1, IGC_ADVTXD_DCMD_IFCS);
1292 
1293 	return cmd_type;
1294 }
1295 
igc_tx_olinfo_status(struct igc_ring * tx_ring,union igc_adv_tx_desc * tx_desc,u32 tx_flags,unsigned int paylen)1296 static void igc_tx_olinfo_status(struct igc_ring *tx_ring,
1297 				 union igc_adv_tx_desc *tx_desc,
1298 				 u32 tx_flags, unsigned int paylen)
1299 {
1300 	u32 olinfo_status = paylen << IGC_ADVTXD_PAYLEN_SHIFT;
1301 
1302 	/* insert L4 checksum */
1303 	olinfo_status |= IGC_SET_FLAG(tx_flags, IGC_TX_FLAGS_CSUM,
1304 				      (IGC_TXD_POPTS_TXSM << 8));
1305 
1306 	/* insert IPv4 checksum */
1307 	olinfo_status |= IGC_SET_FLAG(tx_flags, IGC_TX_FLAGS_IPV4,
1308 				      (IGC_TXD_POPTS_IXSM << 8));
1309 
1310 	/* Use the second timer (free running, in general) for the timestamp */
1311 	olinfo_status |= IGC_SET_FLAG(tx_flags, IGC_TX_FLAGS_TSTAMP_TIMER_1,
1312 				      IGC_TXD_PTP2_TIMER_1);
1313 
1314 	tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status);
1315 }
1316 
igc_tx_map(struct igc_ring * tx_ring,struct igc_tx_buffer * first,const u8 hdr_len)1317 static int igc_tx_map(struct igc_ring *tx_ring,
1318 		      struct igc_tx_buffer *first,
1319 		      const u8 hdr_len)
1320 {
1321 	struct sk_buff *skb = first->skb;
1322 	struct igc_tx_buffer *tx_buffer;
1323 	union igc_adv_tx_desc *tx_desc;
1324 	u32 tx_flags = first->tx_flags;
1325 	skb_frag_t *frag;
1326 	u16 i = tx_ring->next_to_use;
1327 	unsigned int data_len, size;
1328 	dma_addr_t dma;
1329 	u32 cmd_type;
1330 
1331 	cmd_type = igc_tx_cmd_type(skb, tx_flags);
1332 	tx_desc = IGC_TX_DESC(tx_ring, i);
1333 
1334 	igc_tx_olinfo_status(tx_ring, tx_desc, tx_flags, skb->len - hdr_len);
1335 
1336 	size = skb_headlen(skb);
1337 	data_len = skb->data_len;
1338 
1339 	dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE);
1340 
1341 	tx_buffer = first;
1342 
1343 	for (frag = &skb_shinfo(skb)->frags[0];; frag++) {
1344 		if (dma_mapping_error(tx_ring->dev, dma))
1345 			goto dma_error;
1346 
1347 		/* record length, and DMA address */
1348 		dma_unmap_len_set(tx_buffer, len, size);
1349 		dma_unmap_addr_set(tx_buffer, dma, dma);
1350 
1351 		tx_desc->read.buffer_addr = cpu_to_le64(dma);
1352 
1353 		while (unlikely(size > IGC_MAX_DATA_PER_TXD)) {
1354 			tx_desc->read.cmd_type_len =
1355 				cpu_to_le32(cmd_type ^ IGC_MAX_DATA_PER_TXD);
1356 
1357 			i++;
1358 			tx_desc++;
1359 			if (i == tx_ring->count) {
1360 				tx_desc = IGC_TX_DESC(tx_ring, 0);
1361 				i = 0;
1362 			}
1363 			tx_desc->read.olinfo_status = 0;
1364 
1365 			dma += IGC_MAX_DATA_PER_TXD;
1366 			size -= IGC_MAX_DATA_PER_TXD;
1367 
1368 			tx_desc->read.buffer_addr = cpu_to_le64(dma);
1369 		}
1370 
1371 		if (likely(!data_len))
1372 			break;
1373 
1374 		tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type ^ size);
1375 
1376 		i++;
1377 		tx_desc++;
1378 		if (i == tx_ring->count) {
1379 			tx_desc = IGC_TX_DESC(tx_ring, 0);
1380 			i = 0;
1381 		}
1382 		tx_desc->read.olinfo_status = 0;
1383 
1384 		size = skb_frag_size(frag);
1385 		data_len -= size;
1386 
1387 		dma = skb_frag_dma_map(tx_ring->dev, frag, 0,
1388 				       size, DMA_TO_DEVICE);
1389 
1390 		tx_buffer = &tx_ring->tx_buffer_info[i];
1391 	}
1392 
1393 	/* write last descriptor with RS and EOP bits */
1394 	cmd_type |= size | IGC_TXD_DCMD;
1395 	tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type);
1396 
1397 	netdev_tx_sent_queue(txring_txq(tx_ring), first->bytecount);
1398 
1399 	/* set the timestamp */
1400 	first->time_stamp = jiffies;
1401 
1402 	skb_tx_timestamp(skb);
1403 
1404 	/* Force memory writes to complete before letting h/w know there
1405 	 * are new descriptors to fetch.  (Only applicable for weak-ordered
1406 	 * memory model archs, such as IA-64).
1407 	 *
1408 	 * We also need this memory barrier to make certain all of the
1409 	 * status bits have been updated before next_to_watch is written.
1410 	 */
1411 	wmb();
1412 
1413 	/* set next_to_watch value indicating a packet is present */
1414 	first->next_to_watch = tx_desc;
1415 
1416 	i++;
1417 	if (i == tx_ring->count)
1418 		i = 0;
1419 
1420 	tx_ring->next_to_use = i;
1421 
1422 	/* Make sure there is space in the ring for the next send. */
1423 	igc_maybe_stop_tx(tx_ring, DESC_NEEDED);
1424 
1425 	if (netif_xmit_stopped(txring_txq(tx_ring)) || !netdev_xmit_more()) {
1426 		writel(i, tx_ring->tail);
1427 	}
1428 
1429 	return 0;
1430 dma_error:
1431 	netdev_err(tx_ring->netdev, "TX DMA map failed\n");
1432 	tx_buffer = &tx_ring->tx_buffer_info[i];
1433 
1434 	/* clear dma mappings for failed tx_buffer_info map */
1435 	while (tx_buffer != first) {
1436 		if (dma_unmap_len(tx_buffer, len))
1437 			igc_unmap_tx_buffer(tx_ring->dev, tx_buffer);
1438 
1439 		if (i-- == 0)
1440 			i += tx_ring->count;
1441 		tx_buffer = &tx_ring->tx_buffer_info[i];
1442 	}
1443 
1444 	if (dma_unmap_len(tx_buffer, len))
1445 		igc_unmap_tx_buffer(tx_ring->dev, tx_buffer);
1446 
1447 	dev_kfree_skb_any(tx_buffer->skb);
1448 	tx_buffer->skb = NULL;
1449 
1450 	tx_ring->next_to_use = i;
1451 
1452 	return -1;
1453 }
1454 
igc_tso(struct igc_ring * tx_ring,struct igc_tx_buffer * first,__le32 launch_time,bool first_flag,u8 * hdr_len)1455 static int igc_tso(struct igc_ring *tx_ring,
1456 		   struct igc_tx_buffer *first,
1457 		   __le32 launch_time, bool first_flag,
1458 		   u8 *hdr_len)
1459 {
1460 	u32 vlan_macip_lens, type_tucmd, mss_l4len_idx;
1461 	struct sk_buff *skb = first->skb;
1462 	union {
1463 		struct iphdr *v4;
1464 		struct ipv6hdr *v6;
1465 		unsigned char *hdr;
1466 	} ip;
1467 	union {
1468 		struct tcphdr *tcp;
1469 		struct udphdr *udp;
1470 		unsigned char *hdr;
1471 	} l4;
1472 	u32 paylen, l4_offset;
1473 	int err;
1474 
1475 	if (skb->ip_summed != CHECKSUM_PARTIAL)
1476 		return 0;
1477 
1478 	if (!skb_is_gso(skb))
1479 		return 0;
1480 
1481 	err = skb_cow_head(skb, 0);
1482 	if (err < 0)
1483 		return err;
1484 
1485 	ip.hdr = skb_network_header(skb);
1486 	l4.hdr = skb_checksum_start(skb);
1487 
1488 	/* ADV DTYP TUCMD MKRLOC/ISCSIHEDLEN */
1489 	type_tucmd = IGC_ADVTXD_TUCMD_L4T_TCP;
1490 
1491 	/* initialize outer IP header fields */
1492 	if (ip.v4->version == 4) {
1493 		unsigned char *csum_start = skb_checksum_start(skb);
1494 		unsigned char *trans_start = ip.hdr + (ip.v4->ihl * 4);
1495 
1496 		/* IP header will have to cancel out any data that
1497 		 * is not a part of the outer IP header
1498 		 */
1499 		ip.v4->check = csum_fold(csum_partial(trans_start,
1500 						      csum_start - trans_start,
1501 						      0));
1502 		type_tucmd |= IGC_ADVTXD_TUCMD_IPV4;
1503 
1504 		ip.v4->tot_len = 0;
1505 		first->tx_flags |= IGC_TX_FLAGS_TSO |
1506 				   IGC_TX_FLAGS_CSUM |
1507 				   IGC_TX_FLAGS_IPV4;
1508 	} else {
1509 		ip.v6->payload_len = 0;
1510 		first->tx_flags |= IGC_TX_FLAGS_TSO |
1511 				   IGC_TX_FLAGS_CSUM;
1512 	}
1513 
1514 	/* determine offset of inner transport header */
1515 	l4_offset = l4.hdr - skb->data;
1516 
1517 	/* remove payload length from inner checksum */
1518 	paylen = skb->len - l4_offset;
1519 	if (type_tucmd & IGC_ADVTXD_TUCMD_L4T_TCP) {
1520 		/* compute length of segmentation header */
1521 		*hdr_len = (l4.tcp->doff * 4) + l4_offset;
1522 		csum_replace_by_diff(&l4.tcp->check,
1523 				     (__force __wsum)htonl(paylen));
1524 	} else {
1525 		/* compute length of segmentation header */
1526 		*hdr_len = sizeof(*l4.udp) + l4_offset;
1527 		csum_replace_by_diff(&l4.udp->check,
1528 				     (__force __wsum)htonl(paylen));
1529 	}
1530 
1531 	/* update gso size and bytecount with header size */
1532 	first->gso_segs = skb_shinfo(skb)->gso_segs;
1533 	first->bytecount += (first->gso_segs - 1) * *hdr_len;
1534 
1535 	/* MSS L4LEN IDX */
1536 	mss_l4len_idx = (*hdr_len - l4_offset) << IGC_ADVTXD_L4LEN_SHIFT;
1537 	mss_l4len_idx |= skb_shinfo(skb)->gso_size << IGC_ADVTXD_MSS_SHIFT;
1538 
1539 	/* VLAN MACLEN IPLEN */
1540 	vlan_macip_lens = l4.hdr - ip.hdr;
1541 	vlan_macip_lens |= (ip.hdr - skb->data) << IGC_ADVTXD_MACLEN_SHIFT;
1542 	vlan_macip_lens |= first->tx_flags & IGC_TX_FLAGS_VLAN_MASK;
1543 
1544 	igc_tx_ctxtdesc(tx_ring, launch_time, first_flag,
1545 			vlan_macip_lens, type_tucmd, mss_l4len_idx);
1546 
1547 	return 1;
1548 }
1549 
igc_request_tx_tstamp(struct igc_adapter * adapter,struct sk_buff * skb,u32 * flags)1550 static bool igc_request_tx_tstamp(struct igc_adapter *adapter, struct sk_buff *skb, u32 *flags)
1551 {
1552 	int i;
1553 
1554 	for (i = 0; i < IGC_MAX_TX_TSTAMP_REGS; i++) {
1555 		struct igc_tx_timestamp_request *tstamp = &adapter->tx_tstamp[i];
1556 
1557 		if (tstamp->skb)
1558 			continue;
1559 
1560 		tstamp->skb = skb_get(skb);
1561 		tstamp->start = jiffies;
1562 		*flags = tstamp->flags;
1563 
1564 		return true;
1565 	}
1566 
1567 	return false;
1568 }
1569 
igc_xmit_frame_ring(struct sk_buff * skb,struct igc_ring * tx_ring)1570 static netdev_tx_t igc_xmit_frame_ring(struct sk_buff *skb,
1571 				       struct igc_ring *tx_ring)
1572 {
1573 	struct igc_adapter *adapter = netdev_priv(tx_ring->netdev);
1574 	bool first_flag = false, insert_empty = false;
1575 	u16 count = TXD_USE_COUNT(skb_headlen(skb));
1576 	__be16 protocol = vlan_get_protocol(skb);
1577 	struct igc_tx_buffer *first;
1578 	__le32 launch_time = 0;
1579 	u32 tx_flags = 0;
1580 	unsigned short f;
1581 	ktime_t txtime;
1582 	u8 hdr_len = 0;
1583 	int tso = 0;
1584 
1585 	/* need: 1 descriptor per page * PAGE_SIZE/IGC_MAX_DATA_PER_TXD,
1586 	 *	+ 1 desc for skb_headlen/IGC_MAX_DATA_PER_TXD,
1587 	 *	+ 2 desc gap to keep tail from touching head,
1588 	 *	+ 1 desc for context descriptor,
1589 	 * otherwise try next time
1590 	 */
1591 	for (f = 0; f < skb_shinfo(skb)->nr_frags; f++)
1592 		count += TXD_USE_COUNT(skb_frag_size(
1593 						&skb_shinfo(skb)->frags[f]));
1594 
1595 	if (igc_maybe_stop_tx(tx_ring, count + 5)) {
1596 		/* this is a hard error */
1597 		return NETDEV_TX_BUSY;
1598 	}
1599 
1600 	if (!tx_ring->launchtime_enable)
1601 		goto done;
1602 
1603 	txtime = skb->tstamp;
1604 	skb->tstamp = ktime_set(0, 0);
1605 	launch_time = igc_tx_launchtime(tx_ring, txtime, &first_flag, &insert_empty);
1606 
1607 	if (insert_empty) {
1608 		struct igc_tx_buffer *empty_info;
1609 		struct sk_buff *empty;
1610 		void *data;
1611 
1612 		empty_info = &tx_ring->tx_buffer_info[tx_ring->next_to_use];
1613 		empty = alloc_skb(IGC_EMPTY_FRAME_SIZE, GFP_ATOMIC);
1614 		if (!empty)
1615 			goto done;
1616 
1617 		data = skb_put(empty, IGC_EMPTY_FRAME_SIZE);
1618 		memset(data, 0, IGC_EMPTY_FRAME_SIZE);
1619 
1620 		igc_tx_ctxtdesc(tx_ring, 0, false, 0, 0, 0);
1621 
1622 		if (igc_init_tx_empty_descriptor(tx_ring,
1623 						 empty,
1624 						 empty_info) < 0)
1625 			dev_kfree_skb_any(empty);
1626 	}
1627 
1628 done:
1629 	/* record the location of the first descriptor for this packet */
1630 	first = &tx_ring->tx_buffer_info[tx_ring->next_to_use];
1631 	first->type = IGC_TX_BUFFER_TYPE_SKB;
1632 	first->skb = skb;
1633 	first->bytecount = skb->len;
1634 	first->gso_segs = 1;
1635 
1636 	if (adapter->qbv_transition || tx_ring->oper_gate_closed)
1637 		goto out_drop;
1638 
1639 	if (tx_ring->max_sdu > 0 && first->bytecount > tx_ring->max_sdu) {
1640 		adapter->stats.txdrop++;
1641 		goto out_drop;
1642 	}
1643 
1644 	if (unlikely(test_bit(IGC_RING_FLAG_TX_HWTSTAMP, &tx_ring->flags) &&
1645 		     skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP)) {
1646 		unsigned long flags;
1647 		u32 tstamp_flags;
1648 
1649 		spin_lock_irqsave(&adapter->ptp_tx_lock, flags);
1650 		if (igc_request_tx_tstamp(adapter, skb, &tstamp_flags)) {
1651 			skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
1652 			tx_flags |= IGC_TX_FLAGS_TSTAMP | tstamp_flags;
1653 			if (skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP_USE_CYCLES)
1654 				tx_flags |= IGC_TX_FLAGS_TSTAMP_TIMER_1;
1655 		} else {
1656 			adapter->tx_hwtstamp_skipped++;
1657 		}
1658 
1659 		spin_unlock_irqrestore(&adapter->ptp_tx_lock, flags);
1660 	}
1661 
1662 	if (skb_vlan_tag_present(skb)) {
1663 		tx_flags |= IGC_TX_FLAGS_VLAN;
1664 		tx_flags |= (skb_vlan_tag_get(skb) << IGC_TX_FLAGS_VLAN_SHIFT);
1665 	}
1666 
1667 	/* record initial flags and protocol */
1668 	first->tx_flags = tx_flags;
1669 	first->protocol = protocol;
1670 
1671 	tso = igc_tso(tx_ring, first, launch_time, first_flag, &hdr_len);
1672 	if (tso < 0)
1673 		goto out_drop;
1674 	else if (!tso)
1675 		igc_tx_csum(tx_ring, first, launch_time, first_flag);
1676 
1677 	igc_tx_map(tx_ring, first, hdr_len);
1678 
1679 	return NETDEV_TX_OK;
1680 
1681 out_drop:
1682 	dev_kfree_skb_any(first->skb);
1683 	first->skb = NULL;
1684 
1685 	return NETDEV_TX_OK;
1686 }
1687 
igc_tx_queue_mapping(struct igc_adapter * adapter,struct sk_buff * skb)1688 static inline struct igc_ring *igc_tx_queue_mapping(struct igc_adapter *adapter,
1689 						    struct sk_buff *skb)
1690 {
1691 	unsigned int r_idx = skb->queue_mapping;
1692 
1693 	if (r_idx >= adapter->num_tx_queues)
1694 		r_idx = r_idx % adapter->num_tx_queues;
1695 
1696 	return adapter->tx_ring[r_idx];
1697 }
1698 
igc_xmit_frame(struct sk_buff * skb,struct net_device * netdev)1699 static netdev_tx_t igc_xmit_frame(struct sk_buff *skb,
1700 				  struct net_device *netdev)
1701 {
1702 	struct igc_adapter *adapter = netdev_priv(netdev);
1703 
1704 	/* The minimum packet size with TCTL.PSP set is 17 so pad the skb
1705 	 * in order to meet this minimum size requirement.
1706 	 */
1707 	if (skb->len < 17) {
1708 		if (skb_padto(skb, 17))
1709 			return NETDEV_TX_OK;
1710 		skb->len = 17;
1711 	}
1712 
1713 	return igc_xmit_frame_ring(skb, igc_tx_queue_mapping(adapter, skb));
1714 }
1715 
igc_rx_checksum(struct igc_ring * ring,union igc_adv_rx_desc * rx_desc,struct sk_buff * skb)1716 static void igc_rx_checksum(struct igc_ring *ring,
1717 			    union igc_adv_rx_desc *rx_desc,
1718 			    struct sk_buff *skb)
1719 {
1720 	skb_checksum_none_assert(skb);
1721 
1722 	/* Ignore Checksum bit is set */
1723 	if (igc_test_staterr(rx_desc, IGC_RXD_STAT_IXSM))
1724 		return;
1725 
1726 	/* Rx checksum disabled via ethtool */
1727 	if (!(ring->netdev->features & NETIF_F_RXCSUM))
1728 		return;
1729 
1730 	/* TCP/UDP checksum error bit is set */
1731 	if (igc_test_staterr(rx_desc,
1732 			     IGC_RXDEXT_STATERR_L4E |
1733 			     IGC_RXDEXT_STATERR_IPE)) {
1734 		/* work around errata with sctp packets where the TCPE aka
1735 		 * L4E bit is set incorrectly on 64 byte (60 byte w/o crc)
1736 		 * packets (aka let the stack check the crc32c)
1737 		 */
1738 		if (!(skb->len == 60 &&
1739 		      test_bit(IGC_RING_FLAG_RX_SCTP_CSUM, &ring->flags))) {
1740 			u64_stats_update_begin(&ring->rx_syncp);
1741 			ring->rx_stats.csum_err++;
1742 			u64_stats_update_end(&ring->rx_syncp);
1743 		}
1744 		/* let the stack verify checksum errors */
1745 		return;
1746 	}
1747 	/* It must be a TCP or UDP packet with a valid checksum */
1748 	if (igc_test_staterr(rx_desc, IGC_RXD_STAT_TCPCS |
1749 				      IGC_RXD_STAT_UDPCS))
1750 		skb->ip_summed = CHECKSUM_UNNECESSARY;
1751 
1752 	netdev_dbg(ring->netdev, "cksum success: bits %08X\n",
1753 		   le32_to_cpu(rx_desc->wb.upper.status_error));
1754 }
1755 
1756 /* Mapping HW RSS Type to enum pkt_hash_types */
1757 static const enum pkt_hash_types igc_rss_type_table[IGC_RSS_TYPE_MAX_TABLE] = {
1758 	[IGC_RSS_TYPE_NO_HASH]		= PKT_HASH_TYPE_L2,
1759 	[IGC_RSS_TYPE_HASH_TCP_IPV4]	= PKT_HASH_TYPE_L4,
1760 	[IGC_RSS_TYPE_HASH_IPV4]	= PKT_HASH_TYPE_L3,
1761 	[IGC_RSS_TYPE_HASH_TCP_IPV6]	= PKT_HASH_TYPE_L4,
1762 	[IGC_RSS_TYPE_HASH_IPV6_EX]	= PKT_HASH_TYPE_L3,
1763 	[IGC_RSS_TYPE_HASH_IPV6]	= PKT_HASH_TYPE_L3,
1764 	[IGC_RSS_TYPE_HASH_TCP_IPV6_EX] = PKT_HASH_TYPE_L4,
1765 	[IGC_RSS_TYPE_HASH_UDP_IPV4]	= PKT_HASH_TYPE_L4,
1766 	[IGC_RSS_TYPE_HASH_UDP_IPV6]	= PKT_HASH_TYPE_L4,
1767 	[IGC_RSS_TYPE_HASH_UDP_IPV6_EX] = PKT_HASH_TYPE_L4,
1768 	[10] = PKT_HASH_TYPE_NONE, /* RSS Type above 9 "Reserved" by HW  */
1769 	[11] = PKT_HASH_TYPE_NONE, /* keep array sized for SW bit-mask   */
1770 	[12] = PKT_HASH_TYPE_NONE, /* to handle future HW revisons       */
1771 	[13] = PKT_HASH_TYPE_NONE,
1772 	[14] = PKT_HASH_TYPE_NONE,
1773 	[15] = PKT_HASH_TYPE_NONE,
1774 };
1775 
igc_rx_hash(struct igc_ring * ring,union igc_adv_rx_desc * rx_desc,struct sk_buff * skb)1776 static inline void igc_rx_hash(struct igc_ring *ring,
1777 			       union igc_adv_rx_desc *rx_desc,
1778 			       struct sk_buff *skb)
1779 {
1780 	if (ring->netdev->features & NETIF_F_RXHASH) {
1781 		u32 rss_hash = le32_to_cpu(rx_desc->wb.lower.hi_dword.rss);
1782 		u32 rss_type = igc_rss_type(rx_desc);
1783 
1784 		skb_set_hash(skb, rss_hash, igc_rss_type_table[rss_type]);
1785 	}
1786 }
1787 
igc_rx_vlan(struct igc_ring * rx_ring,union igc_adv_rx_desc * rx_desc,struct sk_buff * skb)1788 static void igc_rx_vlan(struct igc_ring *rx_ring,
1789 			union igc_adv_rx_desc *rx_desc,
1790 			struct sk_buff *skb)
1791 {
1792 	struct net_device *dev = rx_ring->netdev;
1793 	u16 vid;
1794 
1795 	if ((dev->features & NETIF_F_HW_VLAN_CTAG_RX) &&
1796 	    igc_test_staterr(rx_desc, IGC_RXD_STAT_VP)) {
1797 		if (igc_test_staterr(rx_desc, IGC_RXDEXT_STATERR_LB) &&
1798 		    test_bit(IGC_RING_FLAG_RX_LB_VLAN_BSWAP, &rx_ring->flags))
1799 			vid = be16_to_cpu((__force __be16)rx_desc->wb.upper.vlan);
1800 		else
1801 			vid = le16_to_cpu(rx_desc->wb.upper.vlan);
1802 
1803 		__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid);
1804 	}
1805 }
1806 
1807 /**
1808  * igc_process_skb_fields - Populate skb header fields from Rx descriptor
1809  * @rx_ring: rx descriptor ring packet is being transacted on
1810  * @rx_desc: pointer to the EOP Rx descriptor
1811  * @skb: pointer to current skb being populated
1812  *
1813  * This function checks the ring, descriptor, and packet information in order
1814  * to populate the hash, checksum, VLAN, protocol, and other fields within the
1815  * skb.
1816  */
igc_process_skb_fields(struct igc_ring * rx_ring,union igc_adv_rx_desc * rx_desc,struct sk_buff * skb)1817 static void igc_process_skb_fields(struct igc_ring *rx_ring,
1818 				   union igc_adv_rx_desc *rx_desc,
1819 				   struct sk_buff *skb)
1820 {
1821 	igc_rx_hash(rx_ring, rx_desc, skb);
1822 
1823 	igc_rx_checksum(rx_ring, rx_desc, skb);
1824 
1825 	igc_rx_vlan(rx_ring, rx_desc, skb);
1826 
1827 	skb_record_rx_queue(skb, rx_ring->queue_index);
1828 
1829 	skb->protocol = eth_type_trans(skb, rx_ring->netdev);
1830 }
1831 
igc_vlan_mode(struct net_device * netdev,netdev_features_t features)1832 static void igc_vlan_mode(struct net_device *netdev, netdev_features_t features)
1833 {
1834 	bool enable = !!(features & NETIF_F_HW_VLAN_CTAG_RX);
1835 	struct igc_adapter *adapter = netdev_priv(netdev);
1836 	struct igc_hw *hw = &adapter->hw;
1837 	u32 ctrl;
1838 
1839 	ctrl = rd32(IGC_CTRL);
1840 
1841 	if (enable) {
1842 		/* enable VLAN tag insert/strip */
1843 		ctrl |= IGC_CTRL_VME;
1844 	} else {
1845 		/* disable VLAN tag insert/strip */
1846 		ctrl &= ~IGC_CTRL_VME;
1847 	}
1848 	wr32(IGC_CTRL, ctrl);
1849 }
1850 
igc_restore_vlan(struct igc_adapter * adapter)1851 static void igc_restore_vlan(struct igc_adapter *adapter)
1852 {
1853 	igc_vlan_mode(adapter->netdev, adapter->netdev->features);
1854 }
1855 
igc_get_rx_buffer(struct igc_ring * rx_ring,const unsigned int size,int * rx_buffer_pgcnt)1856 static struct igc_rx_buffer *igc_get_rx_buffer(struct igc_ring *rx_ring,
1857 					       const unsigned int size,
1858 					       int *rx_buffer_pgcnt)
1859 {
1860 	struct igc_rx_buffer *rx_buffer;
1861 
1862 	rx_buffer = &rx_ring->rx_buffer_info[rx_ring->next_to_clean];
1863 	*rx_buffer_pgcnt =
1864 #if (PAGE_SIZE < 8192)
1865 		page_count(rx_buffer->page);
1866 #else
1867 		0;
1868 #endif
1869 	prefetchw(rx_buffer->page);
1870 
1871 	/* we are reusing so sync this buffer for CPU use */
1872 	dma_sync_single_range_for_cpu(rx_ring->dev,
1873 				      rx_buffer->dma,
1874 				      rx_buffer->page_offset,
1875 				      size,
1876 				      DMA_FROM_DEVICE);
1877 
1878 	rx_buffer->pagecnt_bias--;
1879 
1880 	return rx_buffer;
1881 }
1882 
igc_rx_buffer_flip(struct igc_rx_buffer * buffer,unsigned int truesize)1883 static void igc_rx_buffer_flip(struct igc_rx_buffer *buffer,
1884 			       unsigned int truesize)
1885 {
1886 #if (PAGE_SIZE < 8192)
1887 	buffer->page_offset ^= truesize;
1888 #else
1889 	buffer->page_offset += truesize;
1890 #endif
1891 }
1892 
igc_get_rx_frame_truesize(struct igc_ring * ring,unsigned int size)1893 static unsigned int igc_get_rx_frame_truesize(struct igc_ring *ring,
1894 					      unsigned int size)
1895 {
1896 	unsigned int truesize;
1897 
1898 #if (PAGE_SIZE < 8192)
1899 	truesize = igc_rx_pg_size(ring) / 2;
1900 #else
1901 	truesize = ring_uses_build_skb(ring) ?
1902 		   SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) +
1903 		   SKB_DATA_ALIGN(IGC_SKB_PAD + size) :
1904 		   SKB_DATA_ALIGN(size);
1905 #endif
1906 	return truesize;
1907 }
1908 
1909 /**
1910  * igc_add_rx_frag - Add contents of Rx buffer to sk_buff
1911  * @rx_ring: rx descriptor ring to transact packets on
1912  * @rx_buffer: buffer containing page to add
1913  * @skb: sk_buff to place the data into
1914  * @size: size of buffer to be added
1915  *
1916  * This function will add the data contained in rx_buffer->page to the skb.
1917  */
igc_add_rx_frag(struct igc_ring * rx_ring,struct igc_rx_buffer * rx_buffer,struct sk_buff * skb,unsigned int size)1918 static void igc_add_rx_frag(struct igc_ring *rx_ring,
1919 			    struct igc_rx_buffer *rx_buffer,
1920 			    struct sk_buff *skb,
1921 			    unsigned int size)
1922 {
1923 	unsigned int truesize;
1924 
1925 #if (PAGE_SIZE < 8192)
1926 	truesize = igc_rx_pg_size(rx_ring) / 2;
1927 #else
1928 	truesize = ring_uses_build_skb(rx_ring) ?
1929 		   SKB_DATA_ALIGN(IGC_SKB_PAD + size) :
1930 		   SKB_DATA_ALIGN(size);
1931 #endif
1932 	skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, rx_buffer->page,
1933 			rx_buffer->page_offset, size, truesize);
1934 
1935 	igc_rx_buffer_flip(rx_buffer, truesize);
1936 }
1937 
igc_build_skb(struct igc_ring * rx_ring,struct igc_rx_buffer * rx_buffer,struct xdp_buff * xdp)1938 static struct sk_buff *igc_build_skb(struct igc_ring *rx_ring,
1939 				     struct igc_rx_buffer *rx_buffer,
1940 				     struct xdp_buff *xdp)
1941 {
1942 	unsigned int size = xdp->data_end - xdp->data;
1943 	unsigned int truesize = igc_get_rx_frame_truesize(rx_ring, size);
1944 	unsigned int metasize = xdp->data - xdp->data_meta;
1945 	struct sk_buff *skb;
1946 
1947 	/* prefetch first cache line of first page */
1948 	net_prefetch(xdp->data_meta);
1949 
1950 	/* build an skb around the page buffer */
1951 	skb = napi_build_skb(xdp->data_hard_start, truesize);
1952 	if (unlikely(!skb))
1953 		return NULL;
1954 
1955 	/* update pointers within the skb to store the data */
1956 	skb_reserve(skb, xdp->data - xdp->data_hard_start);
1957 	__skb_put(skb, size);
1958 	if (metasize)
1959 		skb_metadata_set(skb, metasize);
1960 
1961 	igc_rx_buffer_flip(rx_buffer, truesize);
1962 	return skb;
1963 }
1964 
igc_construct_skb(struct igc_ring * rx_ring,struct igc_rx_buffer * rx_buffer,struct igc_xdp_buff * ctx)1965 static struct sk_buff *igc_construct_skb(struct igc_ring *rx_ring,
1966 					 struct igc_rx_buffer *rx_buffer,
1967 					 struct igc_xdp_buff *ctx)
1968 {
1969 	struct xdp_buff *xdp = &ctx->xdp;
1970 	unsigned int metasize = xdp->data - xdp->data_meta;
1971 	unsigned int size = xdp->data_end - xdp->data;
1972 	unsigned int truesize = igc_get_rx_frame_truesize(rx_ring, size);
1973 	void *va = xdp->data;
1974 	unsigned int headlen;
1975 	struct sk_buff *skb;
1976 
1977 	/* prefetch first cache line of first page */
1978 	net_prefetch(xdp->data_meta);
1979 
1980 	/* allocate a skb to store the frags */
1981 	skb = napi_alloc_skb(&rx_ring->q_vector->napi,
1982 			     IGC_RX_HDR_LEN + metasize);
1983 	if (unlikely(!skb))
1984 		return NULL;
1985 
1986 	if (ctx->rx_ts) {
1987 		skb_shinfo(skb)->tx_flags |= SKBTX_HW_TSTAMP_NETDEV;
1988 		skb_hwtstamps(skb)->netdev_data = ctx->rx_ts;
1989 	}
1990 
1991 	/* Determine available headroom for copy */
1992 	headlen = size;
1993 	if (headlen > IGC_RX_HDR_LEN)
1994 		headlen = eth_get_headlen(skb->dev, va, IGC_RX_HDR_LEN);
1995 
1996 	/* align pull length to size of long to optimize memcpy performance */
1997 	memcpy(__skb_put(skb, headlen + metasize), xdp->data_meta,
1998 	       ALIGN(headlen + metasize, sizeof(long)));
1999 
2000 	if (metasize) {
2001 		skb_metadata_set(skb, metasize);
2002 		__skb_pull(skb, metasize);
2003 	}
2004 
2005 	/* update all of the pointers */
2006 	size -= headlen;
2007 	if (size) {
2008 		skb_add_rx_frag(skb, 0, rx_buffer->page,
2009 				(va + headlen) - page_address(rx_buffer->page),
2010 				size, truesize);
2011 		igc_rx_buffer_flip(rx_buffer, truesize);
2012 	} else {
2013 		rx_buffer->pagecnt_bias++;
2014 	}
2015 
2016 	return skb;
2017 }
2018 
2019 /**
2020  * igc_reuse_rx_page - page flip buffer and store it back on the ring
2021  * @rx_ring: rx descriptor ring to store buffers on
2022  * @old_buff: donor buffer to have page reused
2023  *
2024  * Synchronizes page for reuse by the adapter
2025  */
igc_reuse_rx_page(struct igc_ring * rx_ring,struct igc_rx_buffer * old_buff)2026 static void igc_reuse_rx_page(struct igc_ring *rx_ring,
2027 			      struct igc_rx_buffer *old_buff)
2028 {
2029 	u16 nta = rx_ring->next_to_alloc;
2030 	struct igc_rx_buffer *new_buff;
2031 
2032 	new_buff = &rx_ring->rx_buffer_info[nta];
2033 
2034 	/* update, and store next to alloc */
2035 	nta++;
2036 	rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0;
2037 
2038 	/* Transfer page from old buffer to new buffer.
2039 	 * Move each member individually to avoid possible store
2040 	 * forwarding stalls.
2041 	 */
2042 	new_buff->dma		= old_buff->dma;
2043 	new_buff->page		= old_buff->page;
2044 	new_buff->page_offset	= old_buff->page_offset;
2045 	new_buff->pagecnt_bias	= old_buff->pagecnt_bias;
2046 }
2047 
igc_can_reuse_rx_page(struct igc_rx_buffer * rx_buffer,int rx_buffer_pgcnt)2048 static bool igc_can_reuse_rx_page(struct igc_rx_buffer *rx_buffer,
2049 				  int rx_buffer_pgcnt)
2050 {
2051 	unsigned int pagecnt_bias = rx_buffer->pagecnt_bias;
2052 	struct page *page = rx_buffer->page;
2053 
2054 	/* avoid re-using remote and pfmemalloc pages */
2055 	if (!dev_page_is_reusable(page))
2056 		return false;
2057 
2058 #if (PAGE_SIZE < 8192)
2059 	/* if we are only owner of page we can reuse it */
2060 	if (unlikely((rx_buffer_pgcnt - pagecnt_bias) > 1))
2061 		return false;
2062 #else
2063 #define IGC_LAST_OFFSET \
2064 	(SKB_WITH_OVERHEAD(PAGE_SIZE) - IGC_RXBUFFER_2048)
2065 
2066 	if (rx_buffer->page_offset > IGC_LAST_OFFSET)
2067 		return false;
2068 #endif
2069 
2070 	/* If we have drained the page fragment pool we need to update
2071 	 * the pagecnt_bias and page count so that we fully restock the
2072 	 * number of references the driver holds.
2073 	 */
2074 	if (unlikely(pagecnt_bias == 1)) {
2075 		page_ref_add(page, USHRT_MAX - 1);
2076 		rx_buffer->pagecnt_bias = USHRT_MAX;
2077 	}
2078 
2079 	return true;
2080 }
2081 
2082 /**
2083  * igc_is_non_eop - process handling of non-EOP buffers
2084  * @rx_ring: Rx ring being processed
2085  * @rx_desc: Rx descriptor for current buffer
2086  *
2087  * This function updates next to clean.  If the buffer is an EOP buffer
2088  * this function exits returning false, otherwise it will place the
2089  * sk_buff in the next buffer to be chained and return true indicating
2090  * that this is in fact a non-EOP buffer.
2091  */
igc_is_non_eop(struct igc_ring * rx_ring,union igc_adv_rx_desc * rx_desc)2092 static bool igc_is_non_eop(struct igc_ring *rx_ring,
2093 			   union igc_adv_rx_desc *rx_desc)
2094 {
2095 	u32 ntc = rx_ring->next_to_clean + 1;
2096 
2097 	/* fetch, update, and store next to clean */
2098 	ntc = (ntc < rx_ring->count) ? ntc : 0;
2099 	rx_ring->next_to_clean = ntc;
2100 
2101 	prefetch(IGC_RX_DESC(rx_ring, ntc));
2102 
2103 	if (likely(igc_test_staterr(rx_desc, IGC_RXD_STAT_EOP)))
2104 		return false;
2105 
2106 	return true;
2107 }
2108 
2109 /**
2110  * igc_cleanup_headers - Correct corrupted or empty headers
2111  * @rx_ring: rx descriptor ring packet is being transacted on
2112  * @rx_desc: pointer to the EOP Rx descriptor
2113  * @skb: pointer to current skb being fixed
2114  *
2115  * Address the case where we are pulling data in on pages only
2116  * and as such no data is present in the skb header.
2117  *
2118  * In addition if skb is not at least 60 bytes we need to pad it so that
2119  * it is large enough to qualify as a valid Ethernet frame.
2120  *
2121  * Returns true if an error was encountered and skb was freed.
2122  */
igc_cleanup_headers(struct igc_ring * rx_ring,union igc_adv_rx_desc * rx_desc,struct sk_buff * skb)2123 static bool igc_cleanup_headers(struct igc_ring *rx_ring,
2124 				union igc_adv_rx_desc *rx_desc,
2125 				struct sk_buff *skb)
2126 {
2127 	/* XDP packets use error pointer so abort at this point */
2128 	if (IS_ERR(skb))
2129 		return true;
2130 
2131 	if (unlikely(igc_test_staterr(rx_desc, IGC_RXDEXT_STATERR_RXE))) {
2132 		struct net_device *netdev = rx_ring->netdev;
2133 
2134 		if (!(netdev->features & NETIF_F_RXALL)) {
2135 			dev_kfree_skb_any(skb);
2136 			return true;
2137 		}
2138 	}
2139 
2140 	/* if eth_skb_pad returns an error the skb was freed */
2141 	if (eth_skb_pad(skb))
2142 		return true;
2143 
2144 	return false;
2145 }
2146 
igc_put_rx_buffer(struct igc_ring * rx_ring,struct igc_rx_buffer * rx_buffer,int rx_buffer_pgcnt)2147 static void igc_put_rx_buffer(struct igc_ring *rx_ring,
2148 			      struct igc_rx_buffer *rx_buffer,
2149 			      int rx_buffer_pgcnt)
2150 {
2151 	if (igc_can_reuse_rx_page(rx_buffer, rx_buffer_pgcnt)) {
2152 		/* hand second half of page back to the ring */
2153 		igc_reuse_rx_page(rx_ring, rx_buffer);
2154 	} else {
2155 		/* We are not reusing the buffer so unmap it and free
2156 		 * any references we are holding to it
2157 		 */
2158 		dma_unmap_page_attrs(rx_ring->dev, rx_buffer->dma,
2159 				     igc_rx_pg_size(rx_ring), DMA_FROM_DEVICE,
2160 				     IGC_RX_DMA_ATTR);
2161 		__page_frag_cache_drain(rx_buffer->page,
2162 					rx_buffer->pagecnt_bias);
2163 	}
2164 
2165 	/* clear contents of rx_buffer */
2166 	rx_buffer->page = NULL;
2167 }
2168 
igc_rx_offset(struct igc_ring * rx_ring)2169 static inline unsigned int igc_rx_offset(struct igc_ring *rx_ring)
2170 {
2171 	struct igc_adapter *adapter = rx_ring->q_vector->adapter;
2172 
2173 	if (ring_uses_build_skb(rx_ring))
2174 		return IGC_SKB_PAD;
2175 	if (igc_xdp_is_enabled(adapter))
2176 		return XDP_PACKET_HEADROOM;
2177 
2178 	return 0;
2179 }
2180 
igc_alloc_mapped_page(struct igc_ring * rx_ring,struct igc_rx_buffer * bi)2181 static bool igc_alloc_mapped_page(struct igc_ring *rx_ring,
2182 				  struct igc_rx_buffer *bi)
2183 {
2184 	struct page *page = bi->page;
2185 	dma_addr_t dma;
2186 
2187 	/* since we are recycling buffers we should seldom need to alloc */
2188 	if (likely(page))
2189 		return true;
2190 
2191 	/* alloc new page for storage */
2192 	page = dev_alloc_pages(igc_rx_pg_order(rx_ring));
2193 	if (unlikely(!page)) {
2194 		rx_ring->rx_stats.alloc_failed++;
2195 		set_bit(IGC_RING_FLAG_RX_ALLOC_FAILED, &rx_ring->flags);
2196 		return false;
2197 	}
2198 
2199 	/* map page for use */
2200 	dma = dma_map_page_attrs(rx_ring->dev, page, 0,
2201 				 igc_rx_pg_size(rx_ring),
2202 				 DMA_FROM_DEVICE,
2203 				 IGC_RX_DMA_ATTR);
2204 
2205 	/* if mapping failed free memory back to system since
2206 	 * there isn't much point in holding memory we can't use
2207 	 */
2208 	if (dma_mapping_error(rx_ring->dev, dma)) {
2209 		__free_page(page);
2210 
2211 		rx_ring->rx_stats.alloc_failed++;
2212 		set_bit(IGC_RING_FLAG_RX_ALLOC_FAILED, &rx_ring->flags);
2213 		return false;
2214 	}
2215 
2216 	bi->dma = dma;
2217 	bi->page = page;
2218 	bi->page_offset = igc_rx_offset(rx_ring);
2219 	page_ref_add(page, USHRT_MAX - 1);
2220 	bi->pagecnt_bias = USHRT_MAX;
2221 
2222 	return true;
2223 }
2224 
2225 /**
2226  * igc_alloc_rx_buffers - Replace used receive buffers; packet split
2227  * @rx_ring: rx descriptor ring
2228  * @cleaned_count: number of buffers to clean
2229  */
igc_alloc_rx_buffers(struct igc_ring * rx_ring,u16 cleaned_count)2230 static void igc_alloc_rx_buffers(struct igc_ring *rx_ring, u16 cleaned_count)
2231 {
2232 	union igc_adv_rx_desc *rx_desc;
2233 	u16 i = rx_ring->next_to_use;
2234 	struct igc_rx_buffer *bi;
2235 	u16 bufsz;
2236 
2237 	/* nothing to do */
2238 	if (!cleaned_count)
2239 		return;
2240 
2241 	rx_desc = IGC_RX_DESC(rx_ring, i);
2242 	bi = &rx_ring->rx_buffer_info[i];
2243 	i -= rx_ring->count;
2244 
2245 	bufsz = igc_rx_bufsz(rx_ring);
2246 
2247 	do {
2248 		if (!igc_alloc_mapped_page(rx_ring, bi))
2249 			break;
2250 
2251 		/* sync the buffer for use by the device */
2252 		dma_sync_single_range_for_device(rx_ring->dev, bi->dma,
2253 						 bi->page_offset, bufsz,
2254 						 DMA_FROM_DEVICE);
2255 
2256 		/* Refresh the desc even if buffer_addrs didn't change
2257 		 * because each write-back erases this info.
2258 		 */
2259 		rx_desc->read.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset);
2260 
2261 		rx_desc++;
2262 		bi++;
2263 		i++;
2264 		if (unlikely(!i)) {
2265 			rx_desc = IGC_RX_DESC(rx_ring, 0);
2266 			bi = rx_ring->rx_buffer_info;
2267 			i -= rx_ring->count;
2268 		}
2269 
2270 		/* clear the length for the next_to_use descriptor */
2271 		rx_desc->wb.upper.length = 0;
2272 
2273 		cleaned_count--;
2274 	} while (cleaned_count);
2275 
2276 	i += rx_ring->count;
2277 
2278 	if (rx_ring->next_to_use != i) {
2279 		/* record the next descriptor to use */
2280 		rx_ring->next_to_use = i;
2281 
2282 		/* update next to alloc since we have filled the ring */
2283 		rx_ring->next_to_alloc = i;
2284 
2285 		/* Force memory writes to complete before letting h/w
2286 		 * know there are new descriptors to fetch.  (Only
2287 		 * applicable for weak-ordered memory model archs,
2288 		 * such as IA-64).
2289 		 */
2290 		wmb();
2291 		writel(i, rx_ring->tail);
2292 	}
2293 }
2294 
igc_alloc_rx_buffers_zc(struct igc_ring * ring,u16 count)2295 static bool igc_alloc_rx_buffers_zc(struct igc_ring *ring, u16 count)
2296 {
2297 	union igc_adv_rx_desc *desc;
2298 	u16 i = ring->next_to_use;
2299 	struct igc_rx_buffer *bi;
2300 	dma_addr_t dma;
2301 	bool ok = true;
2302 
2303 	if (!count)
2304 		return ok;
2305 
2306 	XSK_CHECK_PRIV_TYPE(struct igc_xdp_buff);
2307 
2308 	desc = IGC_RX_DESC(ring, i);
2309 	bi = &ring->rx_buffer_info[i];
2310 	i -= ring->count;
2311 
2312 	do {
2313 		bi->xdp = xsk_buff_alloc(ring->xsk_pool);
2314 		if (!bi->xdp) {
2315 			ok = false;
2316 			break;
2317 		}
2318 
2319 		dma = xsk_buff_xdp_get_dma(bi->xdp);
2320 		desc->read.pkt_addr = cpu_to_le64(dma);
2321 
2322 		desc++;
2323 		bi++;
2324 		i++;
2325 		if (unlikely(!i)) {
2326 			desc = IGC_RX_DESC(ring, 0);
2327 			bi = ring->rx_buffer_info;
2328 			i -= ring->count;
2329 		}
2330 
2331 		/* Clear the length for the next_to_use descriptor. */
2332 		desc->wb.upper.length = 0;
2333 
2334 		count--;
2335 	} while (count);
2336 
2337 	i += ring->count;
2338 
2339 	if (ring->next_to_use != i) {
2340 		ring->next_to_use = i;
2341 
2342 		/* Force memory writes to complete before letting h/w
2343 		 * know there are new descriptors to fetch.  (Only
2344 		 * applicable for weak-ordered memory model archs,
2345 		 * such as IA-64).
2346 		 */
2347 		wmb();
2348 		writel(i, ring->tail);
2349 	}
2350 
2351 	return ok;
2352 }
2353 
2354 /* This function requires __netif_tx_lock is held by the caller. */
igc_xdp_init_tx_descriptor(struct igc_ring * ring,struct xdp_frame * xdpf)2355 static int igc_xdp_init_tx_descriptor(struct igc_ring *ring,
2356 				      struct xdp_frame *xdpf)
2357 {
2358 	struct skb_shared_info *sinfo = xdp_get_shared_info_from_frame(xdpf);
2359 	u8 nr_frags = unlikely(xdp_frame_has_frags(xdpf)) ? sinfo->nr_frags : 0;
2360 	u16 count, index = ring->next_to_use;
2361 	struct igc_tx_buffer *head = &ring->tx_buffer_info[index];
2362 	struct igc_tx_buffer *buffer = head;
2363 	union igc_adv_tx_desc *desc = IGC_TX_DESC(ring, index);
2364 	u32 olinfo_status, len = xdpf->len, cmd_type;
2365 	void *data = xdpf->data;
2366 	u16 i;
2367 
2368 	count = TXD_USE_COUNT(len);
2369 	for (i = 0; i < nr_frags; i++)
2370 		count += TXD_USE_COUNT(skb_frag_size(&sinfo->frags[i]));
2371 
2372 	if (igc_maybe_stop_tx(ring, count + 3)) {
2373 		/* this is a hard error */
2374 		return -EBUSY;
2375 	}
2376 
2377 	i = 0;
2378 	head->bytecount = xdp_get_frame_len(xdpf);
2379 	head->type = IGC_TX_BUFFER_TYPE_XDP;
2380 	head->gso_segs = 1;
2381 	head->xdpf = xdpf;
2382 
2383 	olinfo_status = head->bytecount << IGC_ADVTXD_PAYLEN_SHIFT;
2384 	desc->read.olinfo_status = cpu_to_le32(olinfo_status);
2385 
2386 	for (;;) {
2387 		dma_addr_t dma;
2388 
2389 		dma = dma_map_single(ring->dev, data, len, DMA_TO_DEVICE);
2390 		if (dma_mapping_error(ring->dev, dma)) {
2391 			netdev_err_once(ring->netdev,
2392 					"Failed to map DMA for TX\n");
2393 			goto unmap;
2394 		}
2395 
2396 		dma_unmap_len_set(buffer, len, len);
2397 		dma_unmap_addr_set(buffer, dma, dma);
2398 
2399 		cmd_type = IGC_ADVTXD_DTYP_DATA | IGC_ADVTXD_DCMD_DEXT |
2400 			   IGC_ADVTXD_DCMD_IFCS | len;
2401 
2402 		desc->read.cmd_type_len = cpu_to_le32(cmd_type);
2403 		desc->read.buffer_addr = cpu_to_le64(dma);
2404 
2405 		buffer->protocol = 0;
2406 
2407 		if (++index == ring->count)
2408 			index = 0;
2409 
2410 		if (i == nr_frags)
2411 			break;
2412 
2413 		buffer = &ring->tx_buffer_info[index];
2414 		desc = IGC_TX_DESC(ring, index);
2415 		desc->read.olinfo_status = 0;
2416 
2417 		data = skb_frag_address(&sinfo->frags[i]);
2418 		len = skb_frag_size(&sinfo->frags[i]);
2419 		i++;
2420 	}
2421 	desc->read.cmd_type_len |= cpu_to_le32(IGC_TXD_DCMD);
2422 
2423 	netdev_tx_sent_queue(txring_txq(ring), head->bytecount);
2424 	/* set the timestamp */
2425 	head->time_stamp = jiffies;
2426 	/* set next_to_watch value indicating a packet is present */
2427 	head->next_to_watch = desc;
2428 	ring->next_to_use = index;
2429 
2430 	return 0;
2431 
2432 unmap:
2433 	for (;;) {
2434 		buffer = &ring->tx_buffer_info[index];
2435 		if (dma_unmap_len(buffer, len))
2436 			dma_unmap_page(ring->dev,
2437 				       dma_unmap_addr(buffer, dma),
2438 				       dma_unmap_len(buffer, len),
2439 				       DMA_TO_DEVICE);
2440 		dma_unmap_len_set(buffer, len, 0);
2441 		if (buffer == head)
2442 			break;
2443 
2444 		if (!index)
2445 			index += ring->count;
2446 		index--;
2447 	}
2448 
2449 	return -ENOMEM;
2450 }
2451 
igc_xdp_get_tx_ring(struct igc_adapter * adapter,int cpu)2452 static struct igc_ring *igc_xdp_get_tx_ring(struct igc_adapter *adapter,
2453 					    int cpu)
2454 {
2455 	int index = cpu;
2456 
2457 	if (unlikely(index < 0))
2458 		index = 0;
2459 
2460 	while (index >= adapter->num_tx_queues)
2461 		index -= adapter->num_tx_queues;
2462 
2463 	return adapter->tx_ring[index];
2464 }
2465 
igc_xdp_xmit_back(struct igc_adapter * adapter,struct xdp_buff * xdp)2466 static int igc_xdp_xmit_back(struct igc_adapter *adapter, struct xdp_buff *xdp)
2467 {
2468 	struct xdp_frame *xdpf = xdp_convert_buff_to_frame(xdp);
2469 	int cpu = smp_processor_id();
2470 	struct netdev_queue *nq;
2471 	struct igc_ring *ring;
2472 	int res;
2473 
2474 	if (unlikely(!xdpf))
2475 		return -EFAULT;
2476 
2477 	ring = igc_xdp_get_tx_ring(adapter, cpu);
2478 	nq = txring_txq(ring);
2479 
2480 	__netif_tx_lock(nq, cpu);
2481 	/* Avoid transmit queue timeout since we share it with the slow path */
2482 	txq_trans_cond_update(nq);
2483 	res = igc_xdp_init_tx_descriptor(ring, xdpf);
2484 	__netif_tx_unlock(nq);
2485 	return res;
2486 }
2487 
2488 /* This function assumes rcu_read_lock() is held by the caller. */
__igc_xdp_run_prog(struct igc_adapter * adapter,struct bpf_prog * prog,struct xdp_buff * xdp)2489 static int __igc_xdp_run_prog(struct igc_adapter *adapter,
2490 			      struct bpf_prog *prog,
2491 			      struct xdp_buff *xdp)
2492 {
2493 	u32 act = bpf_prog_run_xdp(prog, xdp);
2494 
2495 	switch (act) {
2496 	case XDP_PASS:
2497 		return IGC_XDP_PASS;
2498 	case XDP_TX:
2499 		if (igc_xdp_xmit_back(adapter, xdp) < 0)
2500 			goto out_failure;
2501 		return IGC_XDP_TX;
2502 	case XDP_REDIRECT:
2503 		if (xdp_do_redirect(adapter->netdev, xdp, prog) < 0)
2504 			goto out_failure;
2505 		return IGC_XDP_REDIRECT;
2506 		break;
2507 	default:
2508 		bpf_warn_invalid_xdp_action(adapter->netdev, prog, act);
2509 		fallthrough;
2510 	case XDP_ABORTED:
2511 out_failure:
2512 		trace_xdp_exception(adapter->netdev, prog, act);
2513 		fallthrough;
2514 	case XDP_DROP:
2515 		return IGC_XDP_CONSUMED;
2516 	}
2517 }
2518 
igc_xdp_run_prog(struct igc_adapter * adapter,struct xdp_buff * xdp)2519 static struct sk_buff *igc_xdp_run_prog(struct igc_adapter *adapter,
2520 					struct xdp_buff *xdp)
2521 {
2522 	struct bpf_prog *prog;
2523 	int res;
2524 
2525 	prog = READ_ONCE(adapter->xdp_prog);
2526 	if (!prog) {
2527 		res = IGC_XDP_PASS;
2528 		goto out;
2529 	}
2530 
2531 	res = __igc_xdp_run_prog(adapter, prog, xdp);
2532 
2533 out:
2534 	return ERR_PTR(-res);
2535 }
2536 
2537 /* This function assumes __netif_tx_lock is held by the caller. */
igc_flush_tx_descriptors(struct igc_ring * ring)2538 static void igc_flush_tx_descriptors(struct igc_ring *ring)
2539 {
2540 	/* Once tail pointer is updated, hardware can fetch the descriptors
2541 	 * any time so we issue a write membar here to ensure all memory
2542 	 * writes are complete before the tail pointer is updated.
2543 	 */
2544 	wmb();
2545 	writel(ring->next_to_use, ring->tail);
2546 }
2547 
igc_finalize_xdp(struct igc_adapter * adapter,int status)2548 static void igc_finalize_xdp(struct igc_adapter *adapter, int status)
2549 {
2550 	int cpu = smp_processor_id();
2551 	struct netdev_queue *nq;
2552 	struct igc_ring *ring;
2553 
2554 	if (status & IGC_XDP_TX) {
2555 		ring = igc_xdp_get_tx_ring(adapter, cpu);
2556 		nq = txring_txq(ring);
2557 
2558 		__netif_tx_lock(nq, cpu);
2559 		igc_flush_tx_descriptors(ring);
2560 		__netif_tx_unlock(nq);
2561 	}
2562 
2563 	if (status & IGC_XDP_REDIRECT)
2564 		xdp_do_flush();
2565 }
2566 
igc_update_rx_stats(struct igc_q_vector * q_vector,unsigned int packets,unsigned int bytes)2567 static void igc_update_rx_stats(struct igc_q_vector *q_vector,
2568 				unsigned int packets, unsigned int bytes)
2569 {
2570 	struct igc_ring *ring = q_vector->rx.ring;
2571 
2572 	u64_stats_update_begin(&ring->rx_syncp);
2573 	ring->rx_stats.packets += packets;
2574 	ring->rx_stats.bytes += bytes;
2575 	u64_stats_update_end(&ring->rx_syncp);
2576 
2577 	q_vector->rx.total_packets += packets;
2578 	q_vector->rx.total_bytes += bytes;
2579 }
2580 
igc_clean_rx_irq(struct igc_q_vector * q_vector,const int budget)2581 static int igc_clean_rx_irq(struct igc_q_vector *q_vector, const int budget)
2582 {
2583 	unsigned int total_bytes = 0, total_packets = 0;
2584 	struct igc_adapter *adapter = q_vector->adapter;
2585 	struct igc_ring *rx_ring = q_vector->rx.ring;
2586 	struct sk_buff *skb = rx_ring->skb;
2587 	u16 cleaned_count = igc_desc_unused(rx_ring);
2588 	int xdp_status = 0, rx_buffer_pgcnt;
2589 
2590 	while (likely(total_packets < budget)) {
2591 		struct igc_xdp_buff ctx = { .rx_ts = NULL };
2592 		struct igc_rx_buffer *rx_buffer;
2593 		union igc_adv_rx_desc *rx_desc;
2594 		unsigned int size, truesize;
2595 		int pkt_offset = 0;
2596 		void *pktbuf;
2597 
2598 		/* return some buffers to hardware, one at a time is too slow */
2599 		if (cleaned_count >= IGC_RX_BUFFER_WRITE) {
2600 			igc_alloc_rx_buffers(rx_ring, cleaned_count);
2601 			cleaned_count = 0;
2602 		}
2603 
2604 		rx_desc = IGC_RX_DESC(rx_ring, rx_ring->next_to_clean);
2605 		size = le16_to_cpu(rx_desc->wb.upper.length);
2606 		if (!size)
2607 			break;
2608 
2609 		/* This memory barrier is needed to keep us from reading
2610 		 * any other fields out of the rx_desc until we know the
2611 		 * descriptor has been written back
2612 		 */
2613 		dma_rmb();
2614 
2615 		rx_buffer = igc_get_rx_buffer(rx_ring, size, &rx_buffer_pgcnt);
2616 		truesize = igc_get_rx_frame_truesize(rx_ring, size);
2617 
2618 		pktbuf = page_address(rx_buffer->page) + rx_buffer->page_offset;
2619 
2620 		if (igc_test_staterr(rx_desc, IGC_RXDADV_STAT_TSIP)) {
2621 			ctx.rx_ts = pktbuf;
2622 			pkt_offset = IGC_TS_HDR_LEN;
2623 			size -= IGC_TS_HDR_LEN;
2624 		}
2625 
2626 		if (!skb) {
2627 			xdp_init_buff(&ctx.xdp, truesize, &rx_ring->xdp_rxq);
2628 			xdp_prepare_buff(&ctx.xdp, pktbuf - igc_rx_offset(rx_ring),
2629 					 igc_rx_offset(rx_ring) + pkt_offset,
2630 					 size, true);
2631 			xdp_buff_clear_frags_flag(&ctx.xdp);
2632 			ctx.rx_desc = rx_desc;
2633 
2634 			skb = igc_xdp_run_prog(adapter, &ctx.xdp);
2635 		}
2636 
2637 		if (IS_ERR(skb)) {
2638 			unsigned int xdp_res = -PTR_ERR(skb);
2639 
2640 			switch (xdp_res) {
2641 			case IGC_XDP_CONSUMED:
2642 				rx_buffer->pagecnt_bias++;
2643 				break;
2644 			case IGC_XDP_TX:
2645 			case IGC_XDP_REDIRECT:
2646 				igc_rx_buffer_flip(rx_buffer, truesize);
2647 				xdp_status |= xdp_res;
2648 				break;
2649 			}
2650 
2651 			total_packets++;
2652 			total_bytes += size;
2653 		} else if (skb)
2654 			igc_add_rx_frag(rx_ring, rx_buffer, skb, size);
2655 		else if (ring_uses_build_skb(rx_ring))
2656 			skb = igc_build_skb(rx_ring, rx_buffer, &ctx.xdp);
2657 		else
2658 			skb = igc_construct_skb(rx_ring, rx_buffer, &ctx);
2659 
2660 		/* exit if we failed to retrieve a buffer */
2661 		if (!skb) {
2662 			rx_ring->rx_stats.alloc_failed++;
2663 			rx_buffer->pagecnt_bias++;
2664 			set_bit(IGC_RING_FLAG_RX_ALLOC_FAILED, &rx_ring->flags);
2665 			break;
2666 		}
2667 
2668 		igc_put_rx_buffer(rx_ring, rx_buffer, rx_buffer_pgcnt);
2669 		cleaned_count++;
2670 
2671 		/* fetch next buffer in frame if non-eop */
2672 		if (igc_is_non_eop(rx_ring, rx_desc))
2673 			continue;
2674 
2675 		/* verify the packet layout is correct */
2676 		if (igc_cleanup_headers(rx_ring, rx_desc, skb)) {
2677 			skb = NULL;
2678 			continue;
2679 		}
2680 
2681 		/* probably a little skewed due to removing CRC */
2682 		total_bytes += skb->len;
2683 
2684 		/* populate checksum, VLAN, and protocol */
2685 		igc_process_skb_fields(rx_ring, rx_desc, skb);
2686 
2687 		napi_gro_receive(&q_vector->napi, skb);
2688 
2689 		/* reset skb pointer */
2690 		skb = NULL;
2691 
2692 		/* update budget accounting */
2693 		total_packets++;
2694 	}
2695 
2696 	if (xdp_status)
2697 		igc_finalize_xdp(adapter, xdp_status);
2698 
2699 	/* place incomplete frames back on ring for completion */
2700 	rx_ring->skb = skb;
2701 
2702 	igc_update_rx_stats(q_vector, total_packets, total_bytes);
2703 
2704 	if (cleaned_count)
2705 		igc_alloc_rx_buffers(rx_ring, cleaned_count);
2706 
2707 	return total_packets;
2708 }
2709 
igc_construct_skb_zc(struct igc_ring * ring,struct igc_xdp_buff * ctx)2710 static struct sk_buff *igc_construct_skb_zc(struct igc_ring *ring,
2711 					    struct igc_xdp_buff *ctx)
2712 {
2713 	struct xdp_buff *xdp = &ctx->xdp;
2714 	unsigned int totalsize = xdp->data_end - xdp->data_meta;
2715 	unsigned int metasize = xdp->data - xdp->data_meta;
2716 	struct sk_buff *skb;
2717 
2718 	net_prefetch(xdp->data_meta);
2719 
2720 	skb = napi_alloc_skb(&ring->q_vector->napi, totalsize);
2721 	if (unlikely(!skb))
2722 		return NULL;
2723 
2724 	memcpy(__skb_put(skb, totalsize), xdp->data_meta,
2725 	       ALIGN(totalsize, sizeof(long)));
2726 
2727 	if (metasize) {
2728 		skb_metadata_set(skb, metasize);
2729 		__skb_pull(skb, metasize);
2730 	}
2731 
2732 	if (ctx->rx_ts) {
2733 		skb_shinfo(skb)->tx_flags |= SKBTX_HW_TSTAMP_NETDEV;
2734 		skb_hwtstamps(skb)->netdev_data = ctx->rx_ts;
2735 	}
2736 
2737 	return skb;
2738 }
2739 
igc_dispatch_skb_zc(struct igc_q_vector * q_vector,union igc_adv_rx_desc * desc,struct igc_xdp_buff * ctx)2740 static void igc_dispatch_skb_zc(struct igc_q_vector *q_vector,
2741 				union igc_adv_rx_desc *desc,
2742 				struct igc_xdp_buff *ctx)
2743 {
2744 	struct igc_ring *ring = q_vector->rx.ring;
2745 	struct sk_buff *skb;
2746 
2747 	skb = igc_construct_skb_zc(ring, ctx);
2748 	if (!skb) {
2749 		ring->rx_stats.alloc_failed++;
2750 		set_bit(IGC_RING_FLAG_RX_ALLOC_FAILED, &ring->flags);
2751 		return;
2752 	}
2753 
2754 	if (igc_cleanup_headers(ring, desc, skb))
2755 		return;
2756 
2757 	igc_process_skb_fields(ring, desc, skb);
2758 	napi_gro_receive(&q_vector->napi, skb);
2759 }
2760 
xsk_buff_to_igc_ctx(struct xdp_buff * xdp)2761 static struct igc_xdp_buff *xsk_buff_to_igc_ctx(struct xdp_buff *xdp)
2762 {
2763 	/* xdp_buff pointer used by ZC code path is alloc as xdp_buff_xsk. The
2764 	 * igc_xdp_buff shares its layout with xdp_buff_xsk and private
2765 	 * igc_xdp_buff fields fall into xdp_buff_xsk->cb
2766 	 */
2767        return (struct igc_xdp_buff *)xdp;
2768 }
2769 
igc_clean_rx_irq_zc(struct igc_q_vector * q_vector,const int budget)2770 static int igc_clean_rx_irq_zc(struct igc_q_vector *q_vector, const int budget)
2771 {
2772 	struct igc_adapter *adapter = q_vector->adapter;
2773 	struct igc_ring *ring = q_vector->rx.ring;
2774 	u16 cleaned_count = igc_desc_unused(ring);
2775 	int total_bytes = 0, total_packets = 0;
2776 	u16 ntc = ring->next_to_clean;
2777 	struct bpf_prog *prog;
2778 	bool failure = false;
2779 	int xdp_status = 0;
2780 
2781 	rcu_read_lock();
2782 
2783 	prog = READ_ONCE(adapter->xdp_prog);
2784 
2785 	while (likely(total_packets < budget)) {
2786 		union igc_adv_rx_desc *desc;
2787 		struct igc_rx_buffer *bi;
2788 		struct igc_xdp_buff *ctx;
2789 		unsigned int size;
2790 		int res;
2791 
2792 		desc = IGC_RX_DESC(ring, ntc);
2793 		size = le16_to_cpu(desc->wb.upper.length);
2794 		if (!size)
2795 			break;
2796 
2797 		/* This memory barrier is needed to keep us from reading
2798 		 * any other fields out of the rx_desc until we know the
2799 		 * descriptor has been written back
2800 		 */
2801 		dma_rmb();
2802 
2803 		bi = &ring->rx_buffer_info[ntc];
2804 
2805 		ctx = xsk_buff_to_igc_ctx(bi->xdp);
2806 		ctx->rx_desc = desc;
2807 
2808 		if (igc_test_staterr(desc, IGC_RXDADV_STAT_TSIP)) {
2809 			ctx->rx_ts = bi->xdp->data;
2810 
2811 			bi->xdp->data += IGC_TS_HDR_LEN;
2812 
2813 			/* HW timestamp has been copied into local variable. Metadata
2814 			 * length when XDP program is called should be 0.
2815 			 */
2816 			bi->xdp->data_meta += IGC_TS_HDR_LEN;
2817 			size -= IGC_TS_HDR_LEN;
2818 		} else {
2819 			ctx->rx_ts = NULL;
2820 		}
2821 
2822 		bi->xdp->data_end = bi->xdp->data + size;
2823 		xsk_buff_dma_sync_for_cpu(bi->xdp);
2824 
2825 		res = __igc_xdp_run_prog(adapter, prog, bi->xdp);
2826 		switch (res) {
2827 		case IGC_XDP_PASS:
2828 			igc_dispatch_skb_zc(q_vector, desc, ctx);
2829 			fallthrough;
2830 		case IGC_XDP_CONSUMED:
2831 			xsk_buff_free(bi->xdp);
2832 			break;
2833 		case IGC_XDP_TX:
2834 		case IGC_XDP_REDIRECT:
2835 			xdp_status |= res;
2836 			break;
2837 		}
2838 
2839 		bi->xdp = NULL;
2840 		total_bytes += size;
2841 		total_packets++;
2842 		cleaned_count++;
2843 		ntc++;
2844 		if (ntc == ring->count)
2845 			ntc = 0;
2846 	}
2847 
2848 	ring->next_to_clean = ntc;
2849 	rcu_read_unlock();
2850 
2851 	if (cleaned_count >= IGC_RX_BUFFER_WRITE)
2852 		failure = !igc_alloc_rx_buffers_zc(ring, cleaned_count);
2853 
2854 	if (xdp_status)
2855 		igc_finalize_xdp(adapter, xdp_status);
2856 
2857 	igc_update_rx_stats(q_vector, total_packets, total_bytes);
2858 
2859 	if (xsk_uses_need_wakeup(ring->xsk_pool)) {
2860 		if (failure || ring->next_to_clean == ring->next_to_use)
2861 			xsk_set_rx_need_wakeup(ring->xsk_pool);
2862 		else
2863 			xsk_clear_rx_need_wakeup(ring->xsk_pool);
2864 		return total_packets;
2865 	}
2866 
2867 	return failure ? budget : total_packets;
2868 }
2869 
igc_update_tx_stats(struct igc_q_vector * q_vector,unsigned int packets,unsigned int bytes)2870 static void igc_update_tx_stats(struct igc_q_vector *q_vector,
2871 				unsigned int packets, unsigned int bytes)
2872 {
2873 	struct igc_ring *ring = q_vector->tx.ring;
2874 
2875 	u64_stats_update_begin(&ring->tx_syncp);
2876 	ring->tx_stats.bytes += bytes;
2877 	ring->tx_stats.packets += packets;
2878 	u64_stats_update_end(&ring->tx_syncp);
2879 
2880 	q_vector->tx.total_bytes += bytes;
2881 	q_vector->tx.total_packets += packets;
2882 }
2883 
igc_xsk_request_timestamp(void * _priv)2884 static void igc_xsk_request_timestamp(void *_priv)
2885 {
2886 	struct igc_metadata_request *meta_req = _priv;
2887 	struct igc_ring *tx_ring = meta_req->tx_ring;
2888 	struct igc_tx_timestamp_request *tstamp;
2889 	u32 tx_flags = IGC_TX_FLAGS_TSTAMP;
2890 	struct igc_adapter *adapter;
2891 	unsigned long lock_flags;
2892 	bool found = false;
2893 	int i;
2894 
2895 	if (test_bit(IGC_RING_FLAG_TX_HWTSTAMP, &tx_ring->flags)) {
2896 		adapter = netdev_priv(tx_ring->netdev);
2897 
2898 		spin_lock_irqsave(&adapter->ptp_tx_lock, lock_flags);
2899 
2900 		/* Search for available tstamp regs */
2901 		for (i = 0; i < IGC_MAX_TX_TSTAMP_REGS; i++) {
2902 			tstamp = &adapter->tx_tstamp[i];
2903 
2904 			/* tstamp->skb and tstamp->xsk_tx_buffer are in union.
2905 			 * When tstamp->skb is equal to NULL,
2906 			 * tstamp->xsk_tx_buffer is equal to NULL as well.
2907 			 * This condition means that the particular tstamp reg
2908 			 * is not occupied by other packet.
2909 			 */
2910 			if (!tstamp->skb) {
2911 				found = true;
2912 				break;
2913 			}
2914 		}
2915 
2916 		/* Return if no available tstamp regs */
2917 		if (!found) {
2918 			adapter->tx_hwtstamp_skipped++;
2919 			spin_unlock_irqrestore(&adapter->ptp_tx_lock,
2920 					       lock_flags);
2921 			return;
2922 		}
2923 
2924 		tstamp->start = jiffies;
2925 		tstamp->xsk_queue_index = tx_ring->queue_index;
2926 		tstamp->xsk_tx_buffer = meta_req->tx_buffer;
2927 		tstamp->buffer_type = IGC_TX_BUFFER_TYPE_XSK;
2928 
2929 		/* Hold the transmit completion until timestamp is ready */
2930 		meta_req->tx_buffer->xsk_pending_ts = true;
2931 
2932 		/* Keep the pointer to tx_timestamp, which is located in XDP
2933 		 * metadata area. It is the location to store the value of
2934 		 * tx hardware timestamp.
2935 		 */
2936 		xsk_tx_metadata_to_compl(meta_req->meta, &tstamp->xsk_meta);
2937 
2938 		/* Set timestamp bit based on the _TSTAMP(_X) bit. */
2939 		tx_flags |= tstamp->flags;
2940 		meta_req->cmd_type |= IGC_SET_FLAG(tx_flags,
2941 						   IGC_TX_FLAGS_TSTAMP,
2942 						   (IGC_ADVTXD_MAC_TSTAMP));
2943 		meta_req->cmd_type |= IGC_SET_FLAG(tx_flags,
2944 						   IGC_TX_FLAGS_TSTAMP_1,
2945 						   (IGC_ADVTXD_TSTAMP_REG_1));
2946 		meta_req->cmd_type |= IGC_SET_FLAG(tx_flags,
2947 						   IGC_TX_FLAGS_TSTAMP_2,
2948 						   (IGC_ADVTXD_TSTAMP_REG_2));
2949 		meta_req->cmd_type |= IGC_SET_FLAG(tx_flags,
2950 						   IGC_TX_FLAGS_TSTAMP_3,
2951 						   (IGC_ADVTXD_TSTAMP_REG_3));
2952 
2953 		spin_unlock_irqrestore(&adapter->ptp_tx_lock, lock_flags);
2954 	}
2955 }
2956 
igc_xsk_fill_timestamp(void * _priv)2957 static u64 igc_xsk_fill_timestamp(void *_priv)
2958 {
2959 	return *(u64 *)_priv;
2960 }
2961 
2962 const struct xsk_tx_metadata_ops igc_xsk_tx_metadata_ops = {
2963 	.tmo_request_timestamp		= igc_xsk_request_timestamp,
2964 	.tmo_fill_timestamp		= igc_xsk_fill_timestamp,
2965 };
2966 
igc_xdp_xmit_zc(struct igc_ring * ring)2967 static void igc_xdp_xmit_zc(struct igc_ring *ring)
2968 {
2969 	struct xsk_buff_pool *pool = ring->xsk_pool;
2970 	struct netdev_queue *nq = txring_txq(ring);
2971 	union igc_adv_tx_desc *tx_desc = NULL;
2972 	int cpu = smp_processor_id();
2973 	struct xdp_desc xdp_desc;
2974 	u16 budget, ntu;
2975 
2976 	if (!netif_carrier_ok(ring->netdev))
2977 		return;
2978 
2979 	__netif_tx_lock(nq, cpu);
2980 
2981 	/* Avoid transmit queue timeout since we share it with the slow path */
2982 	txq_trans_cond_update(nq);
2983 
2984 	ntu = ring->next_to_use;
2985 	budget = igc_desc_unused(ring);
2986 
2987 	while (xsk_tx_peek_desc(pool, &xdp_desc) && budget--) {
2988 		struct igc_metadata_request meta_req;
2989 		struct xsk_tx_metadata *meta = NULL;
2990 		struct igc_tx_buffer *bi;
2991 		u32 olinfo_status;
2992 		dma_addr_t dma;
2993 
2994 		meta_req.cmd_type = IGC_ADVTXD_DTYP_DATA |
2995 				    IGC_ADVTXD_DCMD_DEXT |
2996 				    IGC_ADVTXD_DCMD_IFCS |
2997 				    IGC_TXD_DCMD | xdp_desc.len;
2998 		olinfo_status = xdp_desc.len << IGC_ADVTXD_PAYLEN_SHIFT;
2999 
3000 		dma = xsk_buff_raw_get_dma(pool, xdp_desc.addr);
3001 		meta = xsk_buff_get_metadata(pool, xdp_desc.addr);
3002 		xsk_buff_raw_dma_sync_for_device(pool, dma, xdp_desc.len);
3003 		bi = &ring->tx_buffer_info[ntu];
3004 
3005 		meta_req.tx_ring = ring;
3006 		meta_req.tx_buffer = bi;
3007 		meta_req.meta = meta;
3008 		xsk_tx_metadata_request(meta, &igc_xsk_tx_metadata_ops,
3009 					&meta_req);
3010 
3011 		tx_desc = IGC_TX_DESC(ring, ntu);
3012 		tx_desc->read.cmd_type_len = cpu_to_le32(meta_req.cmd_type);
3013 		tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status);
3014 		tx_desc->read.buffer_addr = cpu_to_le64(dma);
3015 
3016 		bi->type = IGC_TX_BUFFER_TYPE_XSK;
3017 		bi->protocol = 0;
3018 		bi->bytecount = xdp_desc.len;
3019 		bi->gso_segs = 1;
3020 		bi->time_stamp = jiffies;
3021 		bi->next_to_watch = tx_desc;
3022 
3023 		netdev_tx_sent_queue(txring_txq(ring), xdp_desc.len);
3024 
3025 		ntu++;
3026 		if (ntu == ring->count)
3027 			ntu = 0;
3028 	}
3029 
3030 	ring->next_to_use = ntu;
3031 	if (tx_desc) {
3032 		igc_flush_tx_descriptors(ring);
3033 		xsk_tx_release(pool);
3034 	}
3035 
3036 	__netif_tx_unlock(nq);
3037 }
3038 
3039 /**
3040  * igc_clean_tx_irq - Reclaim resources after transmit completes
3041  * @q_vector: pointer to q_vector containing needed info
3042  * @napi_budget: Used to determine if we are in netpoll
3043  *
3044  * returns true if ring is completely cleaned
3045  */
igc_clean_tx_irq(struct igc_q_vector * q_vector,int napi_budget)3046 static bool igc_clean_tx_irq(struct igc_q_vector *q_vector, int napi_budget)
3047 {
3048 	struct igc_adapter *adapter = q_vector->adapter;
3049 	unsigned int total_bytes = 0, total_packets = 0;
3050 	unsigned int budget = q_vector->tx.work_limit;
3051 	struct igc_ring *tx_ring = q_vector->tx.ring;
3052 	unsigned int i = tx_ring->next_to_clean;
3053 	struct igc_tx_buffer *tx_buffer;
3054 	union igc_adv_tx_desc *tx_desc;
3055 	u32 xsk_frames = 0;
3056 
3057 	if (test_bit(__IGC_DOWN, &adapter->state))
3058 		return true;
3059 
3060 	tx_buffer = &tx_ring->tx_buffer_info[i];
3061 	tx_desc = IGC_TX_DESC(tx_ring, i);
3062 	i -= tx_ring->count;
3063 
3064 	do {
3065 		union igc_adv_tx_desc *eop_desc = tx_buffer->next_to_watch;
3066 
3067 		/* if next_to_watch is not set then there is no work pending */
3068 		if (!eop_desc)
3069 			break;
3070 
3071 		/* prevent any other reads prior to eop_desc */
3072 		smp_rmb();
3073 
3074 		/* if DD is not set pending work has not been completed */
3075 		if (!(eop_desc->wb.status & cpu_to_le32(IGC_TXD_STAT_DD)))
3076 			break;
3077 
3078 		/* Hold the completions while there's a pending tx hardware
3079 		 * timestamp request from XDP Tx metadata.
3080 		 */
3081 		if (tx_buffer->type == IGC_TX_BUFFER_TYPE_XSK &&
3082 		    tx_buffer->xsk_pending_ts)
3083 			break;
3084 
3085 		/* clear next_to_watch to prevent false hangs */
3086 		tx_buffer->next_to_watch = NULL;
3087 
3088 		/* update the statistics for this packet */
3089 		total_bytes += tx_buffer->bytecount;
3090 		total_packets += tx_buffer->gso_segs;
3091 
3092 		switch (tx_buffer->type) {
3093 		case IGC_TX_BUFFER_TYPE_XSK:
3094 			xsk_frames++;
3095 			break;
3096 		case IGC_TX_BUFFER_TYPE_XDP:
3097 			xdp_return_frame(tx_buffer->xdpf);
3098 			igc_unmap_tx_buffer(tx_ring->dev, tx_buffer);
3099 			break;
3100 		case IGC_TX_BUFFER_TYPE_SKB:
3101 			napi_consume_skb(tx_buffer->skb, napi_budget);
3102 			igc_unmap_tx_buffer(tx_ring->dev, tx_buffer);
3103 			break;
3104 		default:
3105 			netdev_warn_once(tx_ring->netdev, "Unknown Tx buffer type\n");
3106 			break;
3107 		}
3108 
3109 		/* clear last DMA location and unmap remaining buffers */
3110 		while (tx_desc != eop_desc) {
3111 			tx_buffer++;
3112 			tx_desc++;
3113 			i++;
3114 			if (unlikely(!i)) {
3115 				i -= tx_ring->count;
3116 				tx_buffer = tx_ring->tx_buffer_info;
3117 				tx_desc = IGC_TX_DESC(tx_ring, 0);
3118 			}
3119 
3120 			/* unmap any remaining paged data */
3121 			if (dma_unmap_len(tx_buffer, len))
3122 				igc_unmap_tx_buffer(tx_ring->dev, tx_buffer);
3123 		}
3124 
3125 		/* move us one more past the eop_desc for start of next pkt */
3126 		tx_buffer++;
3127 		tx_desc++;
3128 		i++;
3129 		if (unlikely(!i)) {
3130 			i -= tx_ring->count;
3131 			tx_buffer = tx_ring->tx_buffer_info;
3132 			tx_desc = IGC_TX_DESC(tx_ring, 0);
3133 		}
3134 
3135 		/* issue prefetch for next Tx descriptor */
3136 		prefetch(tx_desc);
3137 
3138 		/* update budget accounting */
3139 		budget--;
3140 	} while (likely(budget));
3141 
3142 	netdev_tx_completed_queue(txring_txq(tx_ring),
3143 				  total_packets, total_bytes);
3144 
3145 	i += tx_ring->count;
3146 	tx_ring->next_to_clean = i;
3147 
3148 	igc_update_tx_stats(q_vector, total_packets, total_bytes);
3149 
3150 	if (tx_ring->xsk_pool) {
3151 		if (xsk_frames)
3152 			xsk_tx_completed(tx_ring->xsk_pool, xsk_frames);
3153 		if (xsk_uses_need_wakeup(tx_ring->xsk_pool))
3154 			xsk_set_tx_need_wakeup(tx_ring->xsk_pool);
3155 		igc_xdp_xmit_zc(tx_ring);
3156 	}
3157 
3158 	if (test_bit(IGC_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags)) {
3159 		struct igc_hw *hw = &adapter->hw;
3160 
3161 		/* Detect a transmit hang in hardware, this serializes the
3162 		 * check with the clearing of time_stamp and movement of i
3163 		 */
3164 		clear_bit(IGC_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags);
3165 		if (tx_buffer->next_to_watch &&
3166 		    time_after(jiffies, tx_buffer->time_stamp +
3167 		    (adapter->tx_timeout_factor * HZ)) &&
3168 		    !(rd32(IGC_STATUS) & IGC_STATUS_TXOFF) &&
3169 		    (rd32(IGC_TDH(tx_ring->reg_idx)) != readl(tx_ring->tail)) &&
3170 		    !tx_ring->oper_gate_closed) {
3171 			/* detected Tx unit hang */
3172 			netdev_err(tx_ring->netdev,
3173 				   "Detected Tx Unit Hang\n"
3174 				   "  Tx Queue             <%d>\n"
3175 				   "  TDH                  <%x>\n"
3176 				   "  TDT                  <%x>\n"
3177 				   "  next_to_use          <%x>\n"
3178 				   "  next_to_clean        <%x>\n"
3179 				   "buffer_info[next_to_clean]\n"
3180 				   "  time_stamp           <%lx>\n"
3181 				   "  next_to_watch        <%p>\n"
3182 				   "  jiffies              <%lx>\n"
3183 				   "  desc.status          <%x>\n",
3184 				   tx_ring->queue_index,
3185 				   rd32(IGC_TDH(tx_ring->reg_idx)),
3186 				   readl(tx_ring->tail),
3187 				   tx_ring->next_to_use,
3188 				   tx_ring->next_to_clean,
3189 				   tx_buffer->time_stamp,
3190 				   tx_buffer->next_to_watch,
3191 				   jiffies,
3192 				   tx_buffer->next_to_watch->wb.status);
3193 			netif_stop_subqueue(tx_ring->netdev,
3194 					    tx_ring->queue_index);
3195 
3196 			/* we are about to reset, no point in enabling stuff */
3197 			return true;
3198 		}
3199 	}
3200 
3201 #define TX_WAKE_THRESHOLD (DESC_NEEDED * 2)
3202 	if (unlikely(total_packets &&
3203 		     netif_carrier_ok(tx_ring->netdev) &&
3204 		     igc_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD)) {
3205 		/* Make sure that anybody stopping the queue after this
3206 		 * sees the new next_to_clean.
3207 		 */
3208 		smp_mb();
3209 		if (__netif_subqueue_stopped(tx_ring->netdev,
3210 					     tx_ring->queue_index) &&
3211 		    !(test_bit(__IGC_DOWN, &adapter->state))) {
3212 			netif_wake_subqueue(tx_ring->netdev,
3213 					    tx_ring->queue_index);
3214 
3215 			u64_stats_update_begin(&tx_ring->tx_syncp);
3216 			tx_ring->tx_stats.restart_queue++;
3217 			u64_stats_update_end(&tx_ring->tx_syncp);
3218 		}
3219 	}
3220 
3221 	return !!budget;
3222 }
3223 
igc_find_mac_filter(struct igc_adapter * adapter,enum igc_mac_filter_type type,const u8 * addr)3224 static int igc_find_mac_filter(struct igc_adapter *adapter,
3225 			       enum igc_mac_filter_type type, const u8 *addr)
3226 {
3227 	struct igc_hw *hw = &adapter->hw;
3228 	int max_entries = hw->mac.rar_entry_count;
3229 	u32 ral, rah;
3230 	int i;
3231 
3232 	for (i = 0; i < max_entries; i++) {
3233 		ral = rd32(IGC_RAL(i));
3234 		rah = rd32(IGC_RAH(i));
3235 
3236 		if (!(rah & IGC_RAH_AV))
3237 			continue;
3238 		if (!!(rah & IGC_RAH_ASEL_SRC_ADDR) != type)
3239 			continue;
3240 		if ((rah & IGC_RAH_RAH_MASK) !=
3241 		    le16_to_cpup((__le16 *)(addr + 4)))
3242 			continue;
3243 		if (ral != le32_to_cpup((__le32 *)(addr)))
3244 			continue;
3245 
3246 		return i;
3247 	}
3248 
3249 	return -1;
3250 }
3251 
igc_get_avail_mac_filter_slot(struct igc_adapter * adapter)3252 static int igc_get_avail_mac_filter_slot(struct igc_adapter *adapter)
3253 {
3254 	struct igc_hw *hw = &adapter->hw;
3255 	int max_entries = hw->mac.rar_entry_count;
3256 	u32 rah;
3257 	int i;
3258 
3259 	for (i = 0; i < max_entries; i++) {
3260 		rah = rd32(IGC_RAH(i));
3261 
3262 		if (!(rah & IGC_RAH_AV))
3263 			return i;
3264 	}
3265 
3266 	return -1;
3267 }
3268 
3269 /**
3270  * igc_add_mac_filter() - Add MAC address filter
3271  * @adapter: Pointer to adapter where the filter should be added
3272  * @type: MAC address filter type (source or destination)
3273  * @addr: MAC address
3274  * @queue: If non-negative, queue assignment feature is enabled and frames
3275  *         matching the filter are enqueued onto 'queue'. Otherwise, queue
3276  *         assignment is disabled.
3277  *
3278  * Return: 0 in case of success, negative errno code otherwise.
3279  */
igc_add_mac_filter(struct igc_adapter * adapter,enum igc_mac_filter_type type,const u8 * addr,int queue)3280 static int igc_add_mac_filter(struct igc_adapter *adapter,
3281 			      enum igc_mac_filter_type type, const u8 *addr,
3282 			      int queue)
3283 {
3284 	struct net_device *dev = adapter->netdev;
3285 	int index;
3286 
3287 	index = igc_find_mac_filter(adapter, type, addr);
3288 	if (index >= 0)
3289 		goto update_filter;
3290 
3291 	index = igc_get_avail_mac_filter_slot(adapter);
3292 	if (index < 0)
3293 		return -ENOSPC;
3294 
3295 	netdev_dbg(dev, "Add MAC address filter: index %d type %s address %pM queue %d\n",
3296 		   index, type == IGC_MAC_FILTER_TYPE_DST ? "dst" : "src",
3297 		   addr, queue);
3298 
3299 update_filter:
3300 	igc_set_mac_filter_hw(adapter, index, type, addr, queue);
3301 	return 0;
3302 }
3303 
3304 /**
3305  * igc_del_mac_filter() - Delete MAC address filter
3306  * @adapter: Pointer to adapter where the filter should be deleted from
3307  * @type: MAC address filter type (source or destination)
3308  * @addr: MAC address
3309  */
igc_del_mac_filter(struct igc_adapter * adapter,enum igc_mac_filter_type type,const u8 * addr)3310 static void igc_del_mac_filter(struct igc_adapter *adapter,
3311 			       enum igc_mac_filter_type type, const u8 *addr)
3312 {
3313 	struct net_device *dev = adapter->netdev;
3314 	int index;
3315 
3316 	index = igc_find_mac_filter(adapter, type, addr);
3317 	if (index < 0)
3318 		return;
3319 
3320 	if (index == 0) {
3321 		/* If this is the default filter, we don't actually delete it.
3322 		 * We just reset to its default value i.e. disable queue
3323 		 * assignment.
3324 		 */
3325 		netdev_dbg(dev, "Disable default MAC filter queue assignment");
3326 
3327 		igc_set_mac_filter_hw(adapter, 0, type, addr, -1);
3328 	} else {
3329 		netdev_dbg(dev, "Delete MAC address filter: index %d type %s address %pM\n",
3330 			   index,
3331 			   type == IGC_MAC_FILTER_TYPE_DST ? "dst" : "src",
3332 			   addr);
3333 
3334 		igc_clear_mac_filter_hw(adapter, index);
3335 	}
3336 }
3337 
3338 /**
3339  * igc_add_vlan_prio_filter() - Add VLAN priority filter
3340  * @adapter: Pointer to adapter where the filter should be added
3341  * @prio: VLAN priority value
3342  * @queue: Queue number which matching frames are assigned to
3343  *
3344  * Return: 0 in case of success, negative errno code otherwise.
3345  */
igc_add_vlan_prio_filter(struct igc_adapter * adapter,int prio,int queue)3346 static int igc_add_vlan_prio_filter(struct igc_adapter *adapter, int prio,
3347 				    int queue)
3348 {
3349 	struct net_device *dev = adapter->netdev;
3350 	struct igc_hw *hw = &adapter->hw;
3351 	u32 vlanpqf;
3352 
3353 	vlanpqf = rd32(IGC_VLANPQF);
3354 
3355 	if (vlanpqf & IGC_VLANPQF_VALID(prio)) {
3356 		netdev_dbg(dev, "VLAN priority filter already in use\n");
3357 		return -EEXIST;
3358 	}
3359 
3360 	vlanpqf |= IGC_VLANPQF_QSEL(prio, queue);
3361 	vlanpqf |= IGC_VLANPQF_VALID(prio);
3362 
3363 	wr32(IGC_VLANPQF, vlanpqf);
3364 
3365 	netdev_dbg(dev, "Add VLAN priority filter: prio %d queue %d\n",
3366 		   prio, queue);
3367 	return 0;
3368 }
3369 
3370 /**
3371  * igc_del_vlan_prio_filter() - Delete VLAN priority filter
3372  * @adapter: Pointer to adapter where the filter should be deleted from
3373  * @prio: VLAN priority value
3374  */
igc_del_vlan_prio_filter(struct igc_adapter * adapter,int prio)3375 static void igc_del_vlan_prio_filter(struct igc_adapter *adapter, int prio)
3376 {
3377 	struct igc_hw *hw = &adapter->hw;
3378 	u32 vlanpqf;
3379 
3380 	vlanpqf = rd32(IGC_VLANPQF);
3381 
3382 	vlanpqf &= ~IGC_VLANPQF_VALID(prio);
3383 	vlanpqf &= ~IGC_VLANPQF_QSEL(prio, IGC_VLANPQF_QUEUE_MASK);
3384 
3385 	wr32(IGC_VLANPQF, vlanpqf);
3386 
3387 	netdev_dbg(adapter->netdev, "Delete VLAN priority filter: prio %d\n",
3388 		   prio);
3389 }
3390 
igc_get_avail_etype_filter_slot(struct igc_adapter * adapter)3391 static int igc_get_avail_etype_filter_slot(struct igc_adapter *adapter)
3392 {
3393 	struct igc_hw *hw = &adapter->hw;
3394 	int i;
3395 
3396 	for (i = 0; i < MAX_ETYPE_FILTER; i++) {
3397 		u32 etqf = rd32(IGC_ETQF(i));
3398 
3399 		if (!(etqf & IGC_ETQF_FILTER_ENABLE))
3400 			return i;
3401 	}
3402 
3403 	return -1;
3404 }
3405 
3406 /**
3407  * igc_add_etype_filter() - Add ethertype filter
3408  * @adapter: Pointer to adapter where the filter should be added
3409  * @etype: Ethertype value
3410  * @queue: If non-negative, queue assignment feature is enabled and frames
3411  *         matching the filter are enqueued onto 'queue'. Otherwise, queue
3412  *         assignment is disabled.
3413  *
3414  * Return: 0 in case of success, negative errno code otherwise.
3415  */
igc_add_etype_filter(struct igc_adapter * adapter,u16 etype,int queue)3416 static int igc_add_etype_filter(struct igc_adapter *adapter, u16 etype,
3417 				int queue)
3418 {
3419 	struct igc_hw *hw = &adapter->hw;
3420 	int index;
3421 	u32 etqf;
3422 
3423 	index = igc_get_avail_etype_filter_slot(adapter);
3424 	if (index < 0)
3425 		return -ENOSPC;
3426 
3427 	etqf = rd32(IGC_ETQF(index));
3428 
3429 	etqf &= ~IGC_ETQF_ETYPE_MASK;
3430 	etqf |= etype;
3431 
3432 	if (queue >= 0) {
3433 		etqf &= ~IGC_ETQF_QUEUE_MASK;
3434 		etqf |= (queue << IGC_ETQF_QUEUE_SHIFT);
3435 		etqf |= IGC_ETQF_QUEUE_ENABLE;
3436 	}
3437 
3438 	etqf |= IGC_ETQF_FILTER_ENABLE;
3439 
3440 	wr32(IGC_ETQF(index), etqf);
3441 
3442 	netdev_dbg(adapter->netdev, "Add ethertype filter: etype %04x queue %d\n",
3443 		   etype, queue);
3444 	return 0;
3445 }
3446 
igc_find_etype_filter(struct igc_adapter * adapter,u16 etype)3447 static int igc_find_etype_filter(struct igc_adapter *adapter, u16 etype)
3448 {
3449 	struct igc_hw *hw = &adapter->hw;
3450 	int i;
3451 
3452 	for (i = 0; i < MAX_ETYPE_FILTER; i++) {
3453 		u32 etqf = rd32(IGC_ETQF(i));
3454 
3455 		if ((etqf & IGC_ETQF_ETYPE_MASK) == etype)
3456 			return i;
3457 	}
3458 
3459 	return -1;
3460 }
3461 
3462 /**
3463  * igc_del_etype_filter() - Delete ethertype filter
3464  * @adapter: Pointer to adapter where the filter should be deleted from
3465  * @etype: Ethertype value
3466  */
igc_del_etype_filter(struct igc_adapter * adapter,u16 etype)3467 static void igc_del_etype_filter(struct igc_adapter *adapter, u16 etype)
3468 {
3469 	struct igc_hw *hw = &adapter->hw;
3470 	int index;
3471 
3472 	index = igc_find_etype_filter(adapter, etype);
3473 	if (index < 0)
3474 		return;
3475 
3476 	wr32(IGC_ETQF(index), 0);
3477 
3478 	netdev_dbg(adapter->netdev, "Delete ethertype filter: etype %04x\n",
3479 		   etype);
3480 }
3481 
igc_flex_filter_select(struct igc_adapter * adapter,struct igc_flex_filter * input,u32 * fhft)3482 static int igc_flex_filter_select(struct igc_adapter *adapter,
3483 				  struct igc_flex_filter *input,
3484 				  u32 *fhft)
3485 {
3486 	struct igc_hw *hw = &adapter->hw;
3487 	u8 fhft_index;
3488 	u32 fhftsl;
3489 
3490 	if (input->index >= MAX_FLEX_FILTER) {
3491 		netdev_err(adapter->netdev, "Wrong Flex Filter index selected!\n");
3492 		return -EINVAL;
3493 	}
3494 
3495 	/* Indirect table select register */
3496 	fhftsl = rd32(IGC_FHFTSL);
3497 	fhftsl &= ~IGC_FHFTSL_FTSL_MASK;
3498 	switch (input->index) {
3499 	case 0 ... 7:
3500 		fhftsl |= 0x00;
3501 		break;
3502 	case 8 ... 15:
3503 		fhftsl |= 0x01;
3504 		break;
3505 	case 16 ... 23:
3506 		fhftsl |= 0x02;
3507 		break;
3508 	case 24 ... 31:
3509 		fhftsl |= 0x03;
3510 		break;
3511 	}
3512 	wr32(IGC_FHFTSL, fhftsl);
3513 
3514 	/* Normalize index down to host table register */
3515 	fhft_index = input->index % 8;
3516 
3517 	*fhft = (fhft_index < 4) ? IGC_FHFT(fhft_index) :
3518 		IGC_FHFT_EXT(fhft_index - 4);
3519 
3520 	return 0;
3521 }
3522 
igc_write_flex_filter_ll(struct igc_adapter * adapter,struct igc_flex_filter * input)3523 static int igc_write_flex_filter_ll(struct igc_adapter *adapter,
3524 				    struct igc_flex_filter *input)
3525 {
3526 	struct igc_hw *hw = &adapter->hw;
3527 	u8 *data = input->data;
3528 	u8 *mask = input->mask;
3529 	u32 queuing;
3530 	u32 fhft;
3531 	u32 wufc;
3532 	int ret;
3533 	int i;
3534 
3535 	/* Length has to be aligned to 8. Otherwise the filter will fail. Bail
3536 	 * out early to avoid surprises later.
3537 	 */
3538 	if (input->length % 8 != 0) {
3539 		netdev_err(adapter->netdev, "The length of a flex filter has to be 8 byte aligned!\n");
3540 		return -EINVAL;
3541 	}
3542 
3543 	/* Select corresponding flex filter register and get base for host table. */
3544 	ret = igc_flex_filter_select(adapter, input, &fhft);
3545 	if (ret)
3546 		return ret;
3547 
3548 	/* When adding a filter globally disable flex filter feature. That is
3549 	 * recommended within the datasheet.
3550 	 */
3551 	wufc = rd32(IGC_WUFC);
3552 	wufc &= ~IGC_WUFC_FLEX_HQ;
3553 	wr32(IGC_WUFC, wufc);
3554 
3555 	/* Configure filter */
3556 	queuing = input->length & IGC_FHFT_LENGTH_MASK;
3557 	queuing |= FIELD_PREP(IGC_FHFT_QUEUE_MASK, input->rx_queue);
3558 	queuing |= FIELD_PREP(IGC_FHFT_PRIO_MASK, input->prio);
3559 
3560 	if (input->immediate_irq)
3561 		queuing |= IGC_FHFT_IMM_INT;
3562 
3563 	if (input->drop)
3564 		queuing |= IGC_FHFT_DROP;
3565 
3566 	wr32(fhft + 0xFC, queuing);
3567 
3568 	/* Write data (128 byte) and mask (128 bit) */
3569 	for (i = 0; i < 16; ++i) {
3570 		const size_t data_idx = i * 8;
3571 		const size_t row_idx = i * 16;
3572 		u32 dw0 =
3573 			(data[data_idx + 0] << 0) |
3574 			(data[data_idx + 1] << 8) |
3575 			(data[data_idx + 2] << 16) |
3576 			(data[data_idx + 3] << 24);
3577 		u32 dw1 =
3578 			(data[data_idx + 4] << 0) |
3579 			(data[data_idx + 5] << 8) |
3580 			(data[data_idx + 6] << 16) |
3581 			(data[data_idx + 7] << 24);
3582 		u32 tmp;
3583 
3584 		/* Write row: dw0, dw1 and mask */
3585 		wr32(fhft + row_idx, dw0);
3586 		wr32(fhft + row_idx + 4, dw1);
3587 
3588 		/* mask is only valid for MASK(7, 0) */
3589 		tmp = rd32(fhft + row_idx + 8);
3590 		tmp &= ~GENMASK(7, 0);
3591 		tmp |= mask[i];
3592 		wr32(fhft + row_idx + 8, tmp);
3593 	}
3594 
3595 	/* Enable filter. */
3596 	wufc |= IGC_WUFC_FLEX_HQ;
3597 	if (input->index > 8) {
3598 		/* Filter 0-7 are enabled via WUFC. The other 24 filters are not. */
3599 		u32 wufc_ext = rd32(IGC_WUFC_EXT);
3600 
3601 		wufc_ext |= (IGC_WUFC_EXT_FLX8 << (input->index - 8));
3602 
3603 		wr32(IGC_WUFC_EXT, wufc_ext);
3604 	} else {
3605 		wufc |= (IGC_WUFC_FLX0 << input->index);
3606 	}
3607 	wr32(IGC_WUFC, wufc);
3608 
3609 	netdev_dbg(adapter->netdev, "Added flex filter %u to HW.\n",
3610 		   input->index);
3611 
3612 	return 0;
3613 }
3614 
igc_flex_filter_add_field(struct igc_flex_filter * flex,const void * src,unsigned int offset,size_t len,const void * mask)3615 static void igc_flex_filter_add_field(struct igc_flex_filter *flex,
3616 				      const void *src, unsigned int offset,
3617 				      size_t len, const void *mask)
3618 {
3619 	int i;
3620 
3621 	/* data */
3622 	memcpy(&flex->data[offset], src, len);
3623 
3624 	/* mask */
3625 	for (i = 0; i < len; ++i) {
3626 		const unsigned int idx = i + offset;
3627 		const u8 *ptr = mask;
3628 
3629 		if (mask) {
3630 			if (ptr[i] & 0xff)
3631 				flex->mask[idx / 8] |= BIT(idx % 8);
3632 
3633 			continue;
3634 		}
3635 
3636 		flex->mask[idx / 8] |= BIT(idx % 8);
3637 	}
3638 }
3639 
igc_find_avail_flex_filter_slot(struct igc_adapter * adapter)3640 static int igc_find_avail_flex_filter_slot(struct igc_adapter *adapter)
3641 {
3642 	struct igc_hw *hw = &adapter->hw;
3643 	u32 wufc, wufc_ext;
3644 	int i;
3645 
3646 	wufc = rd32(IGC_WUFC);
3647 	wufc_ext = rd32(IGC_WUFC_EXT);
3648 
3649 	for (i = 0; i < MAX_FLEX_FILTER; i++) {
3650 		if (i < 8) {
3651 			if (!(wufc & (IGC_WUFC_FLX0 << i)))
3652 				return i;
3653 		} else {
3654 			if (!(wufc_ext & (IGC_WUFC_EXT_FLX8 << (i - 8))))
3655 				return i;
3656 		}
3657 	}
3658 
3659 	return -ENOSPC;
3660 }
3661 
igc_flex_filter_in_use(struct igc_adapter * adapter)3662 static bool igc_flex_filter_in_use(struct igc_adapter *adapter)
3663 {
3664 	struct igc_hw *hw = &adapter->hw;
3665 	u32 wufc, wufc_ext;
3666 
3667 	wufc = rd32(IGC_WUFC);
3668 	wufc_ext = rd32(IGC_WUFC_EXT);
3669 
3670 	if (wufc & IGC_WUFC_FILTER_MASK)
3671 		return true;
3672 
3673 	if (wufc_ext & IGC_WUFC_EXT_FILTER_MASK)
3674 		return true;
3675 
3676 	return false;
3677 }
3678 
igc_add_flex_filter(struct igc_adapter * adapter,struct igc_nfc_rule * rule)3679 static int igc_add_flex_filter(struct igc_adapter *adapter,
3680 			       struct igc_nfc_rule *rule)
3681 {
3682 	struct igc_nfc_filter *filter = &rule->filter;
3683 	unsigned int eth_offset, user_offset;
3684 	struct igc_flex_filter flex = { };
3685 	int ret, index;
3686 	bool vlan;
3687 
3688 	index = igc_find_avail_flex_filter_slot(adapter);
3689 	if (index < 0)
3690 		return -ENOSPC;
3691 
3692 	/* Construct the flex filter:
3693 	 *  -> dest_mac [6]
3694 	 *  -> src_mac [6]
3695 	 *  -> tpid [2]
3696 	 *  -> vlan tci [2]
3697 	 *  -> ether type [2]
3698 	 *  -> user data [8]
3699 	 *  -> = 26 bytes => 32 length
3700 	 */
3701 	flex.index    = index;
3702 	flex.length   = 32;
3703 	flex.rx_queue = rule->action;
3704 
3705 	vlan = rule->filter.vlan_tci || rule->filter.vlan_etype;
3706 	eth_offset = vlan ? 16 : 12;
3707 	user_offset = vlan ? 18 : 14;
3708 
3709 	/* Add destination MAC  */
3710 	if (rule->filter.match_flags & IGC_FILTER_FLAG_DST_MAC_ADDR)
3711 		igc_flex_filter_add_field(&flex, &filter->dst_addr, 0,
3712 					  ETH_ALEN, NULL);
3713 
3714 	/* Add source MAC */
3715 	if (rule->filter.match_flags & IGC_FILTER_FLAG_SRC_MAC_ADDR)
3716 		igc_flex_filter_add_field(&flex, &filter->src_addr, 6,
3717 					  ETH_ALEN, NULL);
3718 
3719 	/* Add VLAN etype */
3720 	if (rule->filter.match_flags & IGC_FILTER_FLAG_VLAN_ETYPE) {
3721 		__be16 vlan_etype = cpu_to_be16(filter->vlan_etype);
3722 
3723 		igc_flex_filter_add_field(&flex, &vlan_etype, 12,
3724 					  sizeof(vlan_etype), NULL);
3725 	}
3726 
3727 	/* Add VLAN TCI */
3728 	if (rule->filter.match_flags & IGC_FILTER_FLAG_VLAN_TCI)
3729 		igc_flex_filter_add_field(&flex, &filter->vlan_tci, 14,
3730 					  sizeof(filter->vlan_tci), NULL);
3731 
3732 	/* Add Ether type */
3733 	if (rule->filter.match_flags & IGC_FILTER_FLAG_ETHER_TYPE) {
3734 		__be16 etype = cpu_to_be16(filter->etype);
3735 
3736 		igc_flex_filter_add_field(&flex, &etype, eth_offset,
3737 					  sizeof(etype), NULL);
3738 	}
3739 
3740 	/* Add user data */
3741 	if (rule->filter.match_flags & IGC_FILTER_FLAG_USER_DATA)
3742 		igc_flex_filter_add_field(&flex, &filter->user_data,
3743 					  user_offset,
3744 					  sizeof(filter->user_data),
3745 					  filter->user_mask);
3746 
3747 	/* Add it down to the hardware and enable it. */
3748 	ret = igc_write_flex_filter_ll(adapter, &flex);
3749 	if (ret)
3750 		return ret;
3751 
3752 	filter->flex_index = index;
3753 
3754 	return 0;
3755 }
3756 
igc_del_flex_filter(struct igc_adapter * adapter,u16 reg_index)3757 static void igc_del_flex_filter(struct igc_adapter *adapter,
3758 				u16 reg_index)
3759 {
3760 	struct igc_hw *hw = &adapter->hw;
3761 	u32 wufc;
3762 
3763 	/* Just disable the filter. The filter table itself is kept
3764 	 * intact. Another flex_filter_add() should override the "old" data
3765 	 * then.
3766 	 */
3767 	if (reg_index > 8) {
3768 		u32 wufc_ext = rd32(IGC_WUFC_EXT);
3769 
3770 		wufc_ext &= ~(IGC_WUFC_EXT_FLX8 << (reg_index - 8));
3771 		wr32(IGC_WUFC_EXT, wufc_ext);
3772 	} else {
3773 		wufc = rd32(IGC_WUFC);
3774 
3775 		wufc &= ~(IGC_WUFC_FLX0 << reg_index);
3776 		wr32(IGC_WUFC, wufc);
3777 	}
3778 
3779 	if (igc_flex_filter_in_use(adapter))
3780 		return;
3781 
3782 	/* No filters are in use, we may disable flex filters */
3783 	wufc = rd32(IGC_WUFC);
3784 	wufc &= ~IGC_WUFC_FLEX_HQ;
3785 	wr32(IGC_WUFC, wufc);
3786 }
3787 
igc_enable_nfc_rule(struct igc_adapter * adapter,struct igc_nfc_rule * rule)3788 static int igc_enable_nfc_rule(struct igc_adapter *adapter,
3789 			       struct igc_nfc_rule *rule)
3790 {
3791 	int err;
3792 
3793 	if (rule->flex) {
3794 		return igc_add_flex_filter(adapter, rule);
3795 	}
3796 
3797 	if (rule->filter.match_flags & IGC_FILTER_FLAG_ETHER_TYPE) {
3798 		err = igc_add_etype_filter(adapter, rule->filter.etype,
3799 					   rule->action);
3800 		if (err)
3801 			return err;
3802 	}
3803 
3804 	if (rule->filter.match_flags & IGC_FILTER_FLAG_SRC_MAC_ADDR) {
3805 		err = igc_add_mac_filter(adapter, IGC_MAC_FILTER_TYPE_SRC,
3806 					 rule->filter.src_addr, rule->action);
3807 		if (err)
3808 			return err;
3809 	}
3810 
3811 	if (rule->filter.match_flags & IGC_FILTER_FLAG_DST_MAC_ADDR) {
3812 		err = igc_add_mac_filter(adapter, IGC_MAC_FILTER_TYPE_DST,
3813 					 rule->filter.dst_addr, rule->action);
3814 		if (err)
3815 			return err;
3816 	}
3817 
3818 	if (rule->filter.match_flags & IGC_FILTER_FLAG_VLAN_TCI) {
3819 		int prio = FIELD_GET(VLAN_PRIO_MASK, rule->filter.vlan_tci);
3820 
3821 		err = igc_add_vlan_prio_filter(adapter, prio, rule->action);
3822 		if (err)
3823 			return err;
3824 	}
3825 
3826 	return 0;
3827 }
3828 
igc_disable_nfc_rule(struct igc_adapter * adapter,const struct igc_nfc_rule * rule)3829 static void igc_disable_nfc_rule(struct igc_adapter *adapter,
3830 				 const struct igc_nfc_rule *rule)
3831 {
3832 	if (rule->flex) {
3833 		igc_del_flex_filter(adapter, rule->filter.flex_index);
3834 		return;
3835 	}
3836 
3837 	if (rule->filter.match_flags & IGC_FILTER_FLAG_ETHER_TYPE)
3838 		igc_del_etype_filter(adapter, rule->filter.etype);
3839 
3840 	if (rule->filter.match_flags & IGC_FILTER_FLAG_VLAN_TCI) {
3841 		int prio = FIELD_GET(VLAN_PRIO_MASK, rule->filter.vlan_tci);
3842 
3843 		igc_del_vlan_prio_filter(adapter, prio);
3844 	}
3845 
3846 	if (rule->filter.match_flags & IGC_FILTER_FLAG_SRC_MAC_ADDR)
3847 		igc_del_mac_filter(adapter, IGC_MAC_FILTER_TYPE_SRC,
3848 				   rule->filter.src_addr);
3849 
3850 	if (rule->filter.match_flags & IGC_FILTER_FLAG_DST_MAC_ADDR)
3851 		igc_del_mac_filter(adapter, IGC_MAC_FILTER_TYPE_DST,
3852 				   rule->filter.dst_addr);
3853 }
3854 
3855 /**
3856  * igc_get_nfc_rule() - Get NFC rule
3857  * @adapter: Pointer to adapter
3858  * @location: Rule location
3859  *
3860  * Context: Expects adapter->nfc_rule_lock to be held by caller.
3861  *
3862  * Return: Pointer to NFC rule at @location. If not found, NULL.
3863  */
igc_get_nfc_rule(struct igc_adapter * adapter,u32 location)3864 struct igc_nfc_rule *igc_get_nfc_rule(struct igc_adapter *adapter,
3865 				      u32 location)
3866 {
3867 	struct igc_nfc_rule *rule;
3868 
3869 	list_for_each_entry(rule, &adapter->nfc_rule_list, list) {
3870 		if (rule->location == location)
3871 			return rule;
3872 		if (rule->location > location)
3873 			break;
3874 	}
3875 
3876 	return NULL;
3877 }
3878 
3879 /**
3880  * igc_del_nfc_rule() - Delete NFC rule
3881  * @adapter: Pointer to adapter
3882  * @rule: Pointer to rule to be deleted
3883  *
3884  * Disable NFC rule in hardware and delete it from adapter.
3885  *
3886  * Context: Expects adapter->nfc_rule_lock to be held by caller.
3887  */
igc_del_nfc_rule(struct igc_adapter * adapter,struct igc_nfc_rule * rule)3888 void igc_del_nfc_rule(struct igc_adapter *adapter, struct igc_nfc_rule *rule)
3889 {
3890 	igc_disable_nfc_rule(adapter, rule);
3891 
3892 	list_del(&rule->list);
3893 	adapter->nfc_rule_count--;
3894 
3895 	kfree(rule);
3896 }
3897 
igc_flush_nfc_rules(struct igc_adapter * adapter)3898 static void igc_flush_nfc_rules(struct igc_adapter *adapter)
3899 {
3900 	struct igc_nfc_rule *rule, *tmp;
3901 
3902 	mutex_lock(&adapter->nfc_rule_lock);
3903 
3904 	list_for_each_entry_safe(rule, tmp, &adapter->nfc_rule_list, list)
3905 		igc_del_nfc_rule(adapter, rule);
3906 
3907 	mutex_unlock(&adapter->nfc_rule_lock);
3908 }
3909 
3910 /**
3911  * igc_add_nfc_rule() - Add NFC rule
3912  * @adapter: Pointer to adapter
3913  * @rule: Pointer to rule to be added
3914  *
3915  * Enable NFC rule in hardware and add it to adapter.
3916  *
3917  * Context: Expects adapter->nfc_rule_lock to be held by caller.
3918  *
3919  * Return: 0 on success, negative errno on failure.
3920  */
igc_add_nfc_rule(struct igc_adapter * adapter,struct igc_nfc_rule * rule)3921 int igc_add_nfc_rule(struct igc_adapter *adapter, struct igc_nfc_rule *rule)
3922 {
3923 	struct igc_nfc_rule *pred, *cur;
3924 	int err;
3925 
3926 	err = igc_enable_nfc_rule(adapter, rule);
3927 	if (err)
3928 		return err;
3929 
3930 	pred = NULL;
3931 	list_for_each_entry(cur, &adapter->nfc_rule_list, list) {
3932 		if (cur->location >= rule->location)
3933 			break;
3934 		pred = cur;
3935 	}
3936 
3937 	list_add(&rule->list, pred ? &pred->list : &adapter->nfc_rule_list);
3938 	adapter->nfc_rule_count++;
3939 	return 0;
3940 }
3941 
igc_restore_nfc_rules(struct igc_adapter * adapter)3942 static void igc_restore_nfc_rules(struct igc_adapter *adapter)
3943 {
3944 	struct igc_nfc_rule *rule;
3945 
3946 	mutex_lock(&adapter->nfc_rule_lock);
3947 
3948 	list_for_each_entry_reverse(rule, &adapter->nfc_rule_list, list)
3949 		igc_enable_nfc_rule(adapter, rule);
3950 
3951 	mutex_unlock(&adapter->nfc_rule_lock);
3952 }
3953 
igc_uc_sync(struct net_device * netdev,const unsigned char * addr)3954 static int igc_uc_sync(struct net_device *netdev, const unsigned char *addr)
3955 {
3956 	struct igc_adapter *adapter = netdev_priv(netdev);
3957 
3958 	return igc_add_mac_filter(adapter, IGC_MAC_FILTER_TYPE_DST, addr, -1);
3959 }
3960 
igc_uc_unsync(struct net_device * netdev,const unsigned char * addr)3961 static int igc_uc_unsync(struct net_device *netdev, const unsigned char *addr)
3962 {
3963 	struct igc_adapter *adapter = netdev_priv(netdev);
3964 
3965 	igc_del_mac_filter(adapter, IGC_MAC_FILTER_TYPE_DST, addr);
3966 	return 0;
3967 }
3968 
3969 /**
3970  * igc_set_rx_mode - Secondary Unicast, Multicast and Promiscuous mode set
3971  * @netdev: network interface device structure
3972  *
3973  * The set_rx_mode entry point is called whenever the unicast or multicast
3974  * address lists or the network interface flags are updated.  This routine is
3975  * responsible for configuring the hardware for proper unicast, multicast,
3976  * promiscuous mode, and all-multi behavior.
3977  */
igc_set_rx_mode(struct net_device * netdev)3978 static void igc_set_rx_mode(struct net_device *netdev)
3979 {
3980 	struct igc_adapter *adapter = netdev_priv(netdev);
3981 	struct igc_hw *hw = &adapter->hw;
3982 	u32 rctl = 0, rlpml = MAX_JUMBO_FRAME_SIZE;
3983 	int count;
3984 
3985 	/* Check for Promiscuous and All Multicast modes */
3986 	if (netdev->flags & IFF_PROMISC) {
3987 		rctl |= IGC_RCTL_UPE | IGC_RCTL_MPE;
3988 	} else {
3989 		if (netdev->flags & IFF_ALLMULTI) {
3990 			rctl |= IGC_RCTL_MPE;
3991 		} else {
3992 			/* Write addresses to the MTA, if the attempt fails
3993 			 * then we should just turn on promiscuous mode so
3994 			 * that we can at least receive multicast traffic
3995 			 */
3996 			count = igc_write_mc_addr_list(netdev);
3997 			if (count < 0)
3998 				rctl |= IGC_RCTL_MPE;
3999 		}
4000 	}
4001 
4002 	/* Write addresses to available RAR registers, if there is not
4003 	 * sufficient space to store all the addresses then enable
4004 	 * unicast promiscuous mode
4005 	 */
4006 	if (__dev_uc_sync(netdev, igc_uc_sync, igc_uc_unsync))
4007 		rctl |= IGC_RCTL_UPE;
4008 
4009 	/* update state of unicast and multicast */
4010 	rctl |= rd32(IGC_RCTL) & ~(IGC_RCTL_UPE | IGC_RCTL_MPE);
4011 	wr32(IGC_RCTL, rctl);
4012 
4013 #if (PAGE_SIZE < 8192)
4014 	if (adapter->max_frame_size <= IGC_MAX_FRAME_BUILD_SKB)
4015 		rlpml = IGC_MAX_FRAME_BUILD_SKB;
4016 #endif
4017 	wr32(IGC_RLPML, rlpml);
4018 }
4019 
4020 /**
4021  * igc_configure - configure the hardware for RX and TX
4022  * @adapter: private board structure
4023  */
igc_configure(struct igc_adapter * adapter)4024 static void igc_configure(struct igc_adapter *adapter)
4025 {
4026 	struct net_device *netdev = adapter->netdev;
4027 	int i = 0;
4028 
4029 	igc_get_hw_control(adapter);
4030 	igc_set_rx_mode(netdev);
4031 
4032 	igc_restore_vlan(adapter);
4033 
4034 	igc_setup_tctl(adapter);
4035 	igc_setup_mrqc(adapter);
4036 	igc_setup_rctl(adapter);
4037 
4038 	igc_set_default_mac_filter(adapter);
4039 	igc_restore_nfc_rules(adapter);
4040 
4041 	igc_configure_tx(adapter);
4042 	igc_configure_rx(adapter);
4043 
4044 	igc_rx_fifo_flush_base(&adapter->hw);
4045 
4046 	/* call igc_desc_unused which always leaves
4047 	 * at least 1 descriptor unused to make sure
4048 	 * next_to_use != next_to_clean
4049 	 */
4050 	for (i = 0; i < adapter->num_rx_queues; i++) {
4051 		struct igc_ring *ring = adapter->rx_ring[i];
4052 
4053 		if (ring->xsk_pool)
4054 			igc_alloc_rx_buffers_zc(ring, igc_desc_unused(ring));
4055 		else
4056 			igc_alloc_rx_buffers(ring, igc_desc_unused(ring));
4057 	}
4058 }
4059 
4060 /**
4061  * igc_write_ivar - configure ivar for given MSI-X vector
4062  * @hw: pointer to the HW structure
4063  * @msix_vector: vector number we are allocating to a given ring
4064  * @index: row index of IVAR register to write within IVAR table
4065  * @offset: column offset of in IVAR, should be multiple of 8
4066  *
4067  * The IVAR table consists of 2 columns,
4068  * each containing an cause allocation for an Rx and Tx ring, and a
4069  * variable number of rows depending on the number of queues supported.
4070  */
igc_write_ivar(struct igc_hw * hw,int msix_vector,int index,int offset)4071 static void igc_write_ivar(struct igc_hw *hw, int msix_vector,
4072 			   int index, int offset)
4073 {
4074 	u32 ivar = array_rd32(IGC_IVAR0, index);
4075 
4076 	/* clear any bits that are currently set */
4077 	ivar &= ~((u32)0xFF << offset);
4078 
4079 	/* write vector and valid bit */
4080 	ivar |= (msix_vector | IGC_IVAR_VALID) << offset;
4081 
4082 	array_wr32(IGC_IVAR0, index, ivar);
4083 }
4084 
igc_assign_vector(struct igc_q_vector * q_vector,int msix_vector)4085 static void igc_assign_vector(struct igc_q_vector *q_vector, int msix_vector)
4086 {
4087 	struct igc_adapter *adapter = q_vector->adapter;
4088 	struct igc_hw *hw = &adapter->hw;
4089 	int rx_queue = IGC_N0_QUEUE;
4090 	int tx_queue = IGC_N0_QUEUE;
4091 
4092 	if (q_vector->rx.ring)
4093 		rx_queue = q_vector->rx.ring->reg_idx;
4094 	if (q_vector->tx.ring)
4095 		tx_queue = q_vector->tx.ring->reg_idx;
4096 
4097 	switch (hw->mac.type) {
4098 	case igc_i225:
4099 		if (rx_queue > IGC_N0_QUEUE)
4100 			igc_write_ivar(hw, msix_vector,
4101 				       rx_queue >> 1,
4102 				       (rx_queue & 0x1) << 4);
4103 		if (tx_queue > IGC_N0_QUEUE)
4104 			igc_write_ivar(hw, msix_vector,
4105 				       tx_queue >> 1,
4106 				       ((tx_queue & 0x1) << 4) + 8);
4107 		q_vector->eims_value = BIT(msix_vector);
4108 		break;
4109 	default:
4110 		WARN_ONCE(hw->mac.type != igc_i225, "Wrong MAC type\n");
4111 		break;
4112 	}
4113 
4114 	/* add q_vector eims value to global eims_enable_mask */
4115 	adapter->eims_enable_mask |= q_vector->eims_value;
4116 
4117 	/* configure q_vector to set itr on first interrupt */
4118 	q_vector->set_itr = 1;
4119 }
4120 
4121 /**
4122  * igc_configure_msix - Configure MSI-X hardware
4123  * @adapter: Pointer to adapter structure
4124  *
4125  * igc_configure_msix sets up the hardware to properly
4126  * generate MSI-X interrupts.
4127  */
igc_configure_msix(struct igc_adapter * adapter)4128 static void igc_configure_msix(struct igc_adapter *adapter)
4129 {
4130 	struct igc_hw *hw = &adapter->hw;
4131 	int i, vector = 0;
4132 	u32 tmp;
4133 
4134 	adapter->eims_enable_mask = 0;
4135 
4136 	/* set vector for other causes, i.e. link changes */
4137 	switch (hw->mac.type) {
4138 	case igc_i225:
4139 		/* Turn on MSI-X capability first, or our settings
4140 		 * won't stick.  And it will take days to debug.
4141 		 */
4142 		wr32(IGC_GPIE, IGC_GPIE_MSIX_MODE |
4143 		     IGC_GPIE_PBA | IGC_GPIE_EIAME |
4144 		     IGC_GPIE_NSICR);
4145 
4146 		/* enable msix_other interrupt */
4147 		adapter->eims_other = BIT(vector);
4148 		tmp = (vector++ | IGC_IVAR_VALID) << 8;
4149 
4150 		wr32(IGC_IVAR_MISC, tmp);
4151 		break;
4152 	default:
4153 		/* do nothing, since nothing else supports MSI-X */
4154 		break;
4155 	} /* switch (hw->mac.type) */
4156 
4157 	adapter->eims_enable_mask |= adapter->eims_other;
4158 
4159 	for (i = 0; i < adapter->num_q_vectors; i++)
4160 		igc_assign_vector(adapter->q_vector[i], vector++);
4161 
4162 	wrfl();
4163 }
4164 
4165 /**
4166  * igc_irq_enable - Enable default interrupt generation settings
4167  * @adapter: board private structure
4168  */
igc_irq_enable(struct igc_adapter * adapter)4169 static void igc_irq_enable(struct igc_adapter *adapter)
4170 {
4171 	struct igc_hw *hw = &adapter->hw;
4172 
4173 	if (adapter->msix_entries) {
4174 		u32 ims = IGC_IMS_LSC | IGC_IMS_DOUTSYNC | IGC_IMS_DRSTA;
4175 		u32 regval = rd32(IGC_EIAC);
4176 
4177 		wr32(IGC_EIAC, regval | adapter->eims_enable_mask);
4178 		regval = rd32(IGC_EIAM);
4179 		wr32(IGC_EIAM, regval | adapter->eims_enable_mask);
4180 		wr32(IGC_EIMS, adapter->eims_enable_mask);
4181 		wr32(IGC_IMS, ims);
4182 	} else {
4183 		wr32(IGC_IMS, IMS_ENABLE_MASK | IGC_IMS_DRSTA);
4184 		wr32(IGC_IAM, IMS_ENABLE_MASK | IGC_IMS_DRSTA);
4185 	}
4186 }
4187 
4188 /**
4189  * igc_irq_disable - Mask off interrupt generation on the NIC
4190  * @adapter: board private structure
4191  */
igc_irq_disable(struct igc_adapter * adapter)4192 static void igc_irq_disable(struct igc_adapter *adapter)
4193 {
4194 	struct igc_hw *hw = &adapter->hw;
4195 
4196 	if (adapter->msix_entries) {
4197 		u32 regval = rd32(IGC_EIAM);
4198 
4199 		wr32(IGC_EIAM, regval & ~adapter->eims_enable_mask);
4200 		wr32(IGC_EIMC, adapter->eims_enable_mask);
4201 		regval = rd32(IGC_EIAC);
4202 		wr32(IGC_EIAC, regval & ~adapter->eims_enable_mask);
4203 	}
4204 
4205 	wr32(IGC_IAM, 0);
4206 	wr32(IGC_IMC, ~0);
4207 	wrfl();
4208 
4209 	if (adapter->msix_entries) {
4210 		int vector = 0, i;
4211 
4212 		synchronize_irq(adapter->msix_entries[vector++].vector);
4213 
4214 		for (i = 0; i < adapter->num_q_vectors; i++)
4215 			synchronize_irq(adapter->msix_entries[vector++].vector);
4216 	} else {
4217 		synchronize_irq(adapter->pdev->irq);
4218 	}
4219 }
4220 
igc_set_flag_queue_pairs(struct igc_adapter * adapter,const u32 max_rss_queues)4221 void igc_set_flag_queue_pairs(struct igc_adapter *adapter,
4222 			      const u32 max_rss_queues)
4223 {
4224 	/* Determine if we need to pair queues. */
4225 	/* If rss_queues > half of max_rss_queues, pair the queues in
4226 	 * order to conserve interrupts due to limited supply.
4227 	 */
4228 	if (adapter->rss_queues > (max_rss_queues / 2))
4229 		adapter->flags |= IGC_FLAG_QUEUE_PAIRS;
4230 	else
4231 		adapter->flags &= ~IGC_FLAG_QUEUE_PAIRS;
4232 }
4233 
igc_get_max_rss_queues(struct igc_adapter * adapter)4234 unsigned int igc_get_max_rss_queues(struct igc_adapter *adapter)
4235 {
4236 	return IGC_MAX_RX_QUEUES;
4237 }
4238 
igc_init_queue_configuration(struct igc_adapter * adapter)4239 static void igc_init_queue_configuration(struct igc_adapter *adapter)
4240 {
4241 	u32 max_rss_queues;
4242 
4243 	max_rss_queues = igc_get_max_rss_queues(adapter);
4244 	adapter->rss_queues = min_t(u32, max_rss_queues, num_online_cpus());
4245 
4246 	igc_set_flag_queue_pairs(adapter, max_rss_queues);
4247 }
4248 
4249 /**
4250  * igc_reset_q_vector - Reset config for interrupt vector
4251  * @adapter: board private structure to initialize
4252  * @v_idx: Index of vector to be reset
4253  *
4254  * If NAPI is enabled it will delete any references to the
4255  * NAPI struct. This is preparation for igc_free_q_vector.
4256  */
igc_reset_q_vector(struct igc_adapter * adapter,int v_idx)4257 static void igc_reset_q_vector(struct igc_adapter *adapter, int v_idx)
4258 {
4259 	struct igc_q_vector *q_vector = adapter->q_vector[v_idx];
4260 
4261 	/* if we're coming from igc_set_interrupt_capability, the vectors are
4262 	 * not yet allocated
4263 	 */
4264 	if (!q_vector)
4265 		return;
4266 
4267 	if (q_vector->tx.ring)
4268 		adapter->tx_ring[q_vector->tx.ring->queue_index] = NULL;
4269 
4270 	if (q_vector->rx.ring)
4271 		adapter->rx_ring[q_vector->rx.ring->queue_index] = NULL;
4272 
4273 	netif_napi_del(&q_vector->napi);
4274 }
4275 
4276 /**
4277  * igc_free_q_vector - Free memory allocated for specific interrupt vector
4278  * @adapter: board private structure to initialize
4279  * @v_idx: Index of vector to be freed
4280  *
4281  * This function frees the memory allocated to the q_vector.
4282  */
igc_free_q_vector(struct igc_adapter * adapter,int v_idx)4283 static void igc_free_q_vector(struct igc_adapter *adapter, int v_idx)
4284 {
4285 	struct igc_q_vector *q_vector = adapter->q_vector[v_idx];
4286 
4287 	adapter->q_vector[v_idx] = NULL;
4288 
4289 	/* igc_get_stats64() might access the rings on this vector,
4290 	 * we must wait a grace period before freeing it.
4291 	 */
4292 	if (q_vector)
4293 		kfree_rcu(q_vector, rcu);
4294 }
4295 
4296 /**
4297  * igc_free_q_vectors - Free memory allocated for interrupt vectors
4298  * @adapter: board private structure to initialize
4299  *
4300  * This function frees the memory allocated to the q_vectors.  In addition if
4301  * NAPI is enabled it will delete any references to the NAPI struct prior
4302  * to freeing the q_vector.
4303  */
igc_free_q_vectors(struct igc_adapter * adapter)4304 static void igc_free_q_vectors(struct igc_adapter *adapter)
4305 {
4306 	int v_idx = adapter->num_q_vectors;
4307 
4308 	adapter->num_tx_queues = 0;
4309 	adapter->num_rx_queues = 0;
4310 	adapter->num_q_vectors = 0;
4311 
4312 	while (v_idx--) {
4313 		igc_reset_q_vector(adapter, v_idx);
4314 		igc_free_q_vector(adapter, v_idx);
4315 	}
4316 }
4317 
4318 /**
4319  * igc_update_itr - update the dynamic ITR value based on statistics
4320  * @q_vector: pointer to q_vector
4321  * @ring_container: ring info to update the itr for
4322  *
4323  * Stores a new ITR value based on packets and byte
4324  * counts during the last interrupt.  The advantage of per interrupt
4325  * computation is faster updates and more accurate ITR for the current
4326  * traffic pattern.  Constants in this function were computed
4327  * based on theoretical maximum wire speed and thresholds were set based
4328  * on testing data as well as attempting to minimize response time
4329  * while increasing bulk throughput.
4330  * NOTE: These calculations are only valid when operating in a single-
4331  * queue environment.
4332  */
igc_update_itr(struct igc_q_vector * q_vector,struct igc_ring_container * ring_container)4333 static void igc_update_itr(struct igc_q_vector *q_vector,
4334 			   struct igc_ring_container *ring_container)
4335 {
4336 	unsigned int packets = ring_container->total_packets;
4337 	unsigned int bytes = ring_container->total_bytes;
4338 	u8 itrval = ring_container->itr;
4339 
4340 	/* no packets, exit with status unchanged */
4341 	if (packets == 0)
4342 		return;
4343 
4344 	switch (itrval) {
4345 	case lowest_latency:
4346 		/* handle TSO and jumbo frames */
4347 		if (bytes / packets > 8000)
4348 			itrval = bulk_latency;
4349 		else if ((packets < 5) && (bytes > 512))
4350 			itrval = low_latency;
4351 		break;
4352 	case low_latency:  /* 50 usec aka 20000 ints/s */
4353 		if (bytes > 10000) {
4354 			/* this if handles the TSO accounting */
4355 			if (bytes / packets > 8000)
4356 				itrval = bulk_latency;
4357 			else if ((packets < 10) || ((bytes / packets) > 1200))
4358 				itrval = bulk_latency;
4359 			else if ((packets > 35))
4360 				itrval = lowest_latency;
4361 		} else if (bytes / packets > 2000) {
4362 			itrval = bulk_latency;
4363 		} else if (packets <= 2 && bytes < 512) {
4364 			itrval = lowest_latency;
4365 		}
4366 		break;
4367 	case bulk_latency: /* 250 usec aka 4000 ints/s */
4368 		if (bytes > 25000) {
4369 			if (packets > 35)
4370 				itrval = low_latency;
4371 		} else if (bytes < 1500) {
4372 			itrval = low_latency;
4373 		}
4374 		break;
4375 	}
4376 
4377 	/* clear work counters since we have the values we need */
4378 	ring_container->total_bytes = 0;
4379 	ring_container->total_packets = 0;
4380 
4381 	/* write updated itr to ring container */
4382 	ring_container->itr = itrval;
4383 }
4384 
igc_set_itr(struct igc_q_vector * q_vector)4385 static void igc_set_itr(struct igc_q_vector *q_vector)
4386 {
4387 	struct igc_adapter *adapter = q_vector->adapter;
4388 	u32 new_itr = q_vector->itr_val;
4389 	u8 current_itr = 0;
4390 
4391 	/* for non-gigabit speeds, just fix the interrupt rate at 4000 */
4392 	switch (adapter->link_speed) {
4393 	case SPEED_10:
4394 	case SPEED_100:
4395 		current_itr = 0;
4396 		new_itr = IGC_4K_ITR;
4397 		goto set_itr_now;
4398 	default:
4399 		break;
4400 	}
4401 
4402 	igc_update_itr(q_vector, &q_vector->tx);
4403 	igc_update_itr(q_vector, &q_vector->rx);
4404 
4405 	current_itr = max(q_vector->rx.itr, q_vector->tx.itr);
4406 
4407 	/* conservative mode (itr 3) eliminates the lowest_latency setting */
4408 	if (current_itr == lowest_latency &&
4409 	    ((q_vector->rx.ring && adapter->rx_itr_setting == 3) ||
4410 	    (!q_vector->rx.ring && adapter->tx_itr_setting == 3)))
4411 		current_itr = low_latency;
4412 
4413 	switch (current_itr) {
4414 	/* counts and packets in update_itr are dependent on these numbers */
4415 	case lowest_latency:
4416 		new_itr = IGC_70K_ITR; /* 70,000 ints/sec */
4417 		break;
4418 	case low_latency:
4419 		new_itr = IGC_20K_ITR; /* 20,000 ints/sec */
4420 		break;
4421 	case bulk_latency:
4422 		new_itr = IGC_4K_ITR;  /* 4,000 ints/sec */
4423 		break;
4424 	default:
4425 		break;
4426 	}
4427 
4428 set_itr_now:
4429 	if (new_itr != q_vector->itr_val) {
4430 		/* this attempts to bias the interrupt rate towards Bulk
4431 		 * by adding intermediate steps when interrupt rate is
4432 		 * increasing
4433 		 */
4434 		new_itr = new_itr > q_vector->itr_val ?
4435 			  max((new_itr * q_vector->itr_val) /
4436 			  (new_itr + (q_vector->itr_val >> 2)),
4437 			  new_itr) : new_itr;
4438 		/* Don't write the value here; it resets the adapter's
4439 		 * internal timer, and causes us to delay far longer than
4440 		 * we should between interrupts.  Instead, we write the ITR
4441 		 * value at the beginning of the next interrupt so the timing
4442 		 * ends up being correct.
4443 		 */
4444 		q_vector->itr_val = new_itr;
4445 		q_vector->set_itr = 1;
4446 	}
4447 }
4448 
igc_reset_interrupt_capability(struct igc_adapter * adapter)4449 static void igc_reset_interrupt_capability(struct igc_adapter *adapter)
4450 {
4451 	int v_idx = adapter->num_q_vectors;
4452 
4453 	if (adapter->msix_entries) {
4454 		pci_disable_msix(adapter->pdev);
4455 		kfree(adapter->msix_entries);
4456 		adapter->msix_entries = NULL;
4457 	} else if (adapter->flags & IGC_FLAG_HAS_MSI) {
4458 		pci_disable_msi(adapter->pdev);
4459 	}
4460 
4461 	while (v_idx--)
4462 		igc_reset_q_vector(adapter, v_idx);
4463 }
4464 
4465 /**
4466  * igc_set_interrupt_capability - set MSI or MSI-X if supported
4467  * @adapter: Pointer to adapter structure
4468  * @msix: boolean value for MSI-X capability
4469  *
4470  * Attempt to configure interrupts using the best available
4471  * capabilities of the hardware and kernel.
4472  */
igc_set_interrupt_capability(struct igc_adapter * adapter,bool msix)4473 static void igc_set_interrupt_capability(struct igc_adapter *adapter,
4474 					 bool msix)
4475 {
4476 	int numvecs, i;
4477 	int err;
4478 
4479 	if (!msix)
4480 		goto msi_only;
4481 	adapter->flags |= IGC_FLAG_HAS_MSIX;
4482 
4483 	/* Number of supported queues. */
4484 	adapter->num_rx_queues = adapter->rss_queues;
4485 
4486 	adapter->num_tx_queues = adapter->rss_queues;
4487 
4488 	/* start with one vector for every Rx queue */
4489 	numvecs = adapter->num_rx_queues;
4490 
4491 	/* if Tx handler is separate add 1 for every Tx queue */
4492 	if (!(adapter->flags & IGC_FLAG_QUEUE_PAIRS))
4493 		numvecs += adapter->num_tx_queues;
4494 
4495 	/* store the number of vectors reserved for queues */
4496 	adapter->num_q_vectors = numvecs;
4497 
4498 	/* add 1 vector for link status interrupts */
4499 	numvecs++;
4500 
4501 	adapter->msix_entries = kcalloc(numvecs, sizeof(struct msix_entry),
4502 					GFP_KERNEL);
4503 
4504 	if (!adapter->msix_entries)
4505 		return;
4506 
4507 	/* populate entry values */
4508 	for (i = 0; i < numvecs; i++)
4509 		adapter->msix_entries[i].entry = i;
4510 
4511 	err = pci_enable_msix_range(adapter->pdev,
4512 				    adapter->msix_entries,
4513 				    numvecs,
4514 				    numvecs);
4515 	if (err > 0)
4516 		return;
4517 
4518 	kfree(adapter->msix_entries);
4519 	adapter->msix_entries = NULL;
4520 
4521 	igc_reset_interrupt_capability(adapter);
4522 
4523 msi_only:
4524 	adapter->flags &= ~IGC_FLAG_HAS_MSIX;
4525 
4526 	adapter->rss_queues = 1;
4527 	adapter->flags |= IGC_FLAG_QUEUE_PAIRS;
4528 	adapter->num_rx_queues = 1;
4529 	adapter->num_tx_queues = 1;
4530 	adapter->num_q_vectors = 1;
4531 	if (!pci_enable_msi(adapter->pdev))
4532 		adapter->flags |= IGC_FLAG_HAS_MSI;
4533 }
4534 
4535 /**
4536  * igc_update_ring_itr - update the dynamic ITR value based on packet size
4537  * @q_vector: pointer to q_vector
4538  *
4539  * Stores a new ITR value based on strictly on packet size.  This
4540  * algorithm is less sophisticated than that used in igc_update_itr,
4541  * due to the difficulty of synchronizing statistics across multiple
4542  * receive rings.  The divisors and thresholds used by this function
4543  * were determined based on theoretical maximum wire speed and testing
4544  * data, in order to minimize response time while increasing bulk
4545  * throughput.
4546  * NOTE: This function is called only when operating in a multiqueue
4547  * receive environment.
4548  */
igc_update_ring_itr(struct igc_q_vector * q_vector)4549 static void igc_update_ring_itr(struct igc_q_vector *q_vector)
4550 {
4551 	struct igc_adapter *adapter = q_vector->adapter;
4552 	int new_val = q_vector->itr_val;
4553 	int avg_wire_size = 0;
4554 	unsigned int packets;
4555 
4556 	/* For non-gigabit speeds, just fix the interrupt rate at 4000
4557 	 * ints/sec - ITR timer value of 120 ticks.
4558 	 */
4559 	switch (adapter->link_speed) {
4560 	case SPEED_10:
4561 	case SPEED_100:
4562 		new_val = IGC_4K_ITR;
4563 		goto set_itr_val;
4564 	default:
4565 		break;
4566 	}
4567 
4568 	packets = q_vector->rx.total_packets;
4569 	if (packets)
4570 		avg_wire_size = q_vector->rx.total_bytes / packets;
4571 
4572 	packets = q_vector->tx.total_packets;
4573 	if (packets)
4574 		avg_wire_size = max_t(u32, avg_wire_size,
4575 				      q_vector->tx.total_bytes / packets);
4576 
4577 	/* if avg_wire_size isn't set no work was done */
4578 	if (!avg_wire_size)
4579 		goto clear_counts;
4580 
4581 	/* Add 24 bytes to size to account for CRC, preamble, and gap */
4582 	avg_wire_size += 24;
4583 
4584 	/* Don't starve jumbo frames */
4585 	avg_wire_size = min(avg_wire_size, 3000);
4586 
4587 	/* Give a little boost to mid-size frames */
4588 	if (avg_wire_size > 300 && avg_wire_size < 1200)
4589 		new_val = avg_wire_size / 3;
4590 	else
4591 		new_val = avg_wire_size / 2;
4592 
4593 	/* conservative mode (itr 3) eliminates the lowest_latency setting */
4594 	if (new_val < IGC_20K_ITR &&
4595 	    ((q_vector->rx.ring && adapter->rx_itr_setting == 3) ||
4596 	    (!q_vector->rx.ring && adapter->tx_itr_setting == 3)))
4597 		new_val = IGC_20K_ITR;
4598 
4599 set_itr_val:
4600 	if (new_val != q_vector->itr_val) {
4601 		q_vector->itr_val = new_val;
4602 		q_vector->set_itr = 1;
4603 	}
4604 clear_counts:
4605 	q_vector->rx.total_bytes = 0;
4606 	q_vector->rx.total_packets = 0;
4607 	q_vector->tx.total_bytes = 0;
4608 	q_vector->tx.total_packets = 0;
4609 }
4610 
igc_ring_irq_enable(struct igc_q_vector * q_vector)4611 static void igc_ring_irq_enable(struct igc_q_vector *q_vector)
4612 {
4613 	struct igc_adapter *adapter = q_vector->adapter;
4614 	struct igc_hw *hw = &adapter->hw;
4615 
4616 	if ((q_vector->rx.ring && (adapter->rx_itr_setting & 3)) ||
4617 	    (!q_vector->rx.ring && (adapter->tx_itr_setting & 3))) {
4618 		if (adapter->num_q_vectors == 1)
4619 			igc_set_itr(q_vector);
4620 		else
4621 			igc_update_ring_itr(q_vector);
4622 	}
4623 
4624 	if (!test_bit(__IGC_DOWN, &adapter->state)) {
4625 		if (adapter->msix_entries)
4626 			wr32(IGC_EIMS, q_vector->eims_value);
4627 		else
4628 			igc_irq_enable(adapter);
4629 	}
4630 }
4631 
igc_add_ring(struct igc_ring * ring,struct igc_ring_container * head)4632 static void igc_add_ring(struct igc_ring *ring,
4633 			 struct igc_ring_container *head)
4634 {
4635 	head->ring = ring;
4636 	head->count++;
4637 }
4638 
4639 /**
4640  * igc_cache_ring_register - Descriptor ring to register mapping
4641  * @adapter: board private structure to initialize
4642  *
4643  * Once we know the feature-set enabled for the device, we'll cache
4644  * the register offset the descriptor ring is assigned to.
4645  */
igc_cache_ring_register(struct igc_adapter * adapter)4646 static void igc_cache_ring_register(struct igc_adapter *adapter)
4647 {
4648 	int i = 0, j = 0;
4649 
4650 	switch (adapter->hw.mac.type) {
4651 	case igc_i225:
4652 	default:
4653 		for (; i < adapter->num_rx_queues; i++)
4654 			adapter->rx_ring[i]->reg_idx = i;
4655 		for (; j < adapter->num_tx_queues; j++)
4656 			adapter->tx_ring[j]->reg_idx = j;
4657 		break;
4658 	}
4659 }
4660 
4661 /**
4662  * igc_poll - NAPI Rx polling callback
4663  * @napi: napi polling structure
4664  * @budget: count of how many packets we should handle
4665  */
igc_poll(struct napi_struct * napi,int budget)4666 static int igc_poll(struct napi_struct *napi, int budget)
4667 {
4668 	struct igc_q_vector *q_vector = container_of(napi,
4669 						     struct igc_q_vector,
4670 						     napi);
4671 	struct igc_ring *rx_ring = q_vector->rx.ring;
4672 	bool clean_complete = true;
4673 	int work_done = 0;
4674 
4675 	if (q_vector->tx.ring)
4676 		clean_complete = igc_clean_tx_irq(q_vector, budget);
4677 
4678 	if (rx_ring) {
4679 		int cleaned = rx_ring->xsk_pool ?
4680 			      igc_clean_rx_irq_zc(q_vector, budget) :
4681 			      igc_clean_rx_irq(q_vector, budget);
4682 
4683 		work_done += cleaned;
4684 		if (cleaned >= budget)
4685 			clean_complete = false;
4686 	}
4687 
4688 	/* If all work not completed, return budget and keep polling */
4689 	if (!clean_complete)
4690 		return budget;
4691 
4692 	/* Exit the polling mode, but don't re-enable interrupts if stack might
4693 	 * poll us due to busy-polling
4694 	 */
4695 	if (likely(napi_complete_done(napi, work_done)))
4696 		igc_ring_irq_enable(q_vector);
4697 
4698 	return min(work_done, budget - 1);
4699 }
4700 
4701 /**
4702  * igc_alloc_q_vector - Allocate memory for a single interrupt vector
4703  * @adapter: board private structure to initialize
4704  * @v_count: q_vectors allocated on adapter, used for ring interleaving
4705  * @v_idx: index of vector in adapter struct
4706  * @txr_count: total number of Tx rings to allocate
4707  * @txr_idx: index of first Tx ring to allocate
4708  * @rxr_count: total number of Rx rings to allocate
4709  * @rxr_idx: index of first Rx ring to allocate
4710  *
4711  * We allocate one q_vector.  If allocation fails we return -ENOMEM.
4712  */
igc_alloc_q_vector(struct igc_adapter * adapter,unsigned int v_count,unsigned int v_idx,unsigned int txr_count,unsigned int txr_idx,unsigned int rxr_count,unsigned int rxr_idx)4713 static int igc_alloc_q_vector(struct igc_adapter *adapter,
4714 			      unsigned int v_count, unsigned int v_idx,
4715 			      unsigned int txr_count, unsigned int txr_idx,
4716 			      unsigned int rxr_count, unsigned int rxr_idx)
4717 {
4718 	struct igc_q_vector *q_vector;
4719 	struct igc_ring *ring;
4720 	int ring_count;
4721 
4722 	/* igc only supports 1 Tx and/or 1 Rx queue per vector */
4723 	if (txr_count > 1 || rxr_count > 1)
4724 		return -ENOMEM;
4725 
4726 	ring_count = txr_count + rxr_count;
4727 
4728 	/* allocate q_vector and rings */
4729 	q_vector = adapter->q_vector[v_idx];
4730 	if (!q_vector)
4731 		q_vector = kzalloc(struct_size(q_vector, ring, ring_count),
4732 				   GFP_KERNEL);
4733 	else
4734 		memset(q_vector, 0, struct_size(q_vector, ring, ring_count));
4735 	if (!q_vector)
4736 		return -ENOMEM;
4737 
4738 	/* initialize NAPI */
4739 	netif_napi_add(adapter->netdev, &q_vector->napi, igc_poll);
4740 
4741 	/* tie q_vector and adapter together */
4742 	adapter->q_vector[v_idx] = q_vector;
4743 	q_vector->adapter = adapter;
4744 
4745 	/* initialize work limits */
4746 	q_vector->tx.work_limit = adapter->tx_work_limit;
4747 
4748 	/* initialize ITR configuration */
4749 	q_vector->itr_register = adapter->io_addr + IGC_EITR(0);
4750 	q_vector->itr_val = IGC_START_ITR;
4751 
4752 	/* initialize pointer to rings */
4753 	ring = q_vector->ring;
4754 
4755 	/* initialize ITR */
4756 	if (rxr_count) {
4757 		/* rx or rx/tx vector */
4758 		if (!adapter->rx_itr_setting || adapter->rx_itr_setting > 3)
4759 			q_vector->itr_val = adapter->rx_itr_setting;
4760 	} else {
4761 		/* tx only vector */
4762 		if (!adapter->tx_itr_setting || adapter->tx_itr_setting > 3)
4763 			q_vector->itr_val = adapter->tx_itr_setting;
4764 	}
4765 
4766 	if (txr_count) {
4767 		/* assign generic ring traits */
4768 		ring->dev = &adapter->pdev->dev;
4769 		ring->netdev = adapter->netdev;
4770 
4771 		/* configure backlink on ring */
4772 		ring->q_vector = q_vector;
4773 
4774 		/* update q_vector Tx values */
4775 		igc_add_ring(ring, &q_vector->tx);
4776 
4777 		/* apply Tx specific ring traits */
4778 		ring->count = adapter->tx_ring_count;
4779 		ring->queue_index = txr_idx;
4780 
4781 		/* assign ring to adapter */
4782 		adapter->tx_ring[txr_idx] = ring;
4783 
4784 		/* push pointer to next ring */
4785 		ring++;
4786 	}
4787 
4788 	if (rxr_count) {
4789 		/* assign generic ring traits */
4790 		ring->dev = &adapter->pdev->dev;
4791 		ring->netdev = adapter->netdev;
4792 
4793 		/* configure backlink on ring */
4794 		ring->q_vector = q_vector;
4795 
4796 		/* update q_vector Rx values */
4797 		igc_add_ring(ring, &q_vector->rx);
4798 
4799 		/* apply Rx specific ring traits */
4800 		ring->count = adapter->rx_ring_count;
4801 		ring->queue_index = rxr_idx;
4802 
4803 		/* assign ring to adapter */
4804 		adapter->rx_ring[rxr_idx] = ring;
4805 	}
4806 
4807 	return 0;
4808 }
4809 
4810 /**
4811  * igc_alloc_q_vectors - Allocate memory for interrupt vectors
4812  * @adapter: board private structure to initialize
4813  *
4814  * We allocate one q_vector per queue interrupt.  If allocation fails we
4815  * return -ENOMEM.
4816  */
igc_alloc_q_vectors(struct igc_adapter * adapter)4817 static int igc_alloc_q_vectors(struct igc_adapter *adapter)
4818 {
4819 	int rxr_remaining = adapter->num_rx_queues;
4820 	int txr_remaining = adapter->num_tx_queues;
4821 	int rxr_idx = 0, txr_idx = 0, v_idx = 0;
4822 	int q_vectors = adapter->num_q_vectors;
4823 	int err;
4824 
4825 	if (q_vectors >= (rxr_remaining + txr_remaining)) {
4826 		for (; rxr_remaining; v_idx++) {
4827 			err = igc_alloc_q_vector(adapter, q_vectors, v_idx,
4828 						 0, 0, 1, rxr_idx);
4829 
4830 			if (err)
4831 				goto err_out;
4832 
4833 			/* update counts and index */
4834 			rxr_remaining--;
4835 			rxr_idx++;
4836 		}
4837 	}
4838 
4839 	for (; v_idx < q_vectors; v_idx++) {
4840 		int rqpv = DIV_ROUND_UP(rxr_remaining, q_vectors - v_idx);
4841 		int tqpv = DIV_ROUND_UP(txr_remaining, q_vectors - v_idx);
4842 
4843 		err = igc_alloc_q_vector(adapter, q_vectors, v_idx,
4844 					 tqpv, txr_idx, rqpv, rxr_idx);
4845 
4846 		if (err)
4847 			goto err_out;
4848 
4849 		/* update counts and index */
4850 		rxr_remaining -= rqpv;
4851 		txr_remaining -= tqpv;
4852 		rxr_idx++;
4853 		txr_idx++;
4854 	}
4855 
4856 	return 0;
4857 
4858 err_out:
4859 	adapter->num_tx_queues = 0;
4860 	adapter->num_rx_queues = 0;
4861 	adapter->num_q_vectors = 0;
4862 
4863 	while (v_idx--)
4864 		igc_free_q_vector(adapter, v_idx);
4865 
4866 	return -ENOMEM;
4867 }
4868 
4869 /**
4870  * igc_init_interrupt_scheme - initialize interrupts, allocate queues/vectors
4871  * @adapter: Pointer to adapter structure
4872  * @msix: boolean for MSI-X capability
4873  *
4874  * This function initializes the interrupts and allocates all of the queues.
4875  */
igc_init_interrupt_scheme(struct igc_adapter * adapter,bool msix)4876 static int igc_init_interrupt_scheme(struct igc_adapter *adapter, bool msix)
4877 {
4878 	struct net_device *dev = adapter->netdev;
4879 	int err = 0;
4880 
4881 	igc_set_interrupt_capability(adapter, msix);
4882 
4883 	err = igc_alloc_q_vectors(adapter);
4884 	if (err) {
4885 		netdev_err(dev, "Unable to allocate memory for vectors\n");
4886 		goto err_alloc_q_vectors;
4887 	}
4888 
4889 	igc_cache_ring_register(adapter);
4890 
4891 	return 0;
4892 
4893 err_alloc_q_vectors:
4894 	igc_reset_interrupt_capability(adapter);
4895 	return err;
4896 }
4897 
4898 /**
4899  * igc_sw_init - Initialize general software structures (struct igc_adapter)
4900  * @adapter: board private structure to initialize
4901  *
4902  * igc_sw_init initializes the Adapter private data structure.
4903  * Fields are initialized based on PCI device information and
4904  * OS network device settings (MTU size).
4905  */
igc_sw_init(struct igc_adapter * adapter)4906 static int igc_sw_init(struct igc_adapter *adapter)
4907 {
4908 	struct net_device *netdev = adapter->netdev;
4909 	struct pci_dev *pdev = adapter->pdev;
4910 	struct igc_hw *hw = &adapter->hw;
4911 
4912 	pci_read_config_word(pdev, PCI_COMMAND, &hw->bus.pci_cmd_word);
4913 
4914 	/* set default ring sizes */
4915 	adapter->tx_ring_count = IGC_DEFAULT_TXD;
4916 	adapter->rx_ring_count = IGC_DEFAULT_RXD;
4917 
4918 	/* set default ITR values */
4919 	adapter->rx_itr_setting = IGC_DEFAULT_ITR;
4920 	adapter->tx_itr_setting = IGC_DEFAULT_ITR;
4921 
4922 	/* set default work limits */
4923 	adapter->tx_work_limit = IGC_DEFAULT_TX_WORK;
4924 
4925 	/* adjust max frame to be at least the size of a standard frame */
4926 	adapter->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN +
4927 				VLAN_HLEN;
4928 	adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
4929 
4930 	mutex_init(&adapter->nfc_rule_lock);
4931 	INIT_LIST_HEAD(&adapter->nfc_rule_list);
4932 	adapter->nfc_rule_count = 0;
4933 
4934 	spin_lock_init(&adapter->stats64_lock);
4935 	spin_lock_init(&adapter->qbv_tx_lock);
4936 	/* Assume MSI-X interrupts, will be checked during IRQ allocation */
4937 	adapter->flags |= IGC_FLAG_HAS_MSIX;
4938 
4939 	igc_init_queue_configuration(adapter);
4940 
4941 	/* This call may decrease the number of queues */
4942 	if (igc_init_interrupt_scheme(adapter, true)) {
4943 		netdev_err(netdev, "Unable to allocate memory for queues\n");
4944 		return -ENOMEM;
4945 	}
4946 
4947 	/* Explicitly disable IRQ since the NIC can be in any state. */
4948 	igc_irq_disable(adapter);
4949 
4950 	set_bit(__IGC_DOWN, &adapter->state);
4951 
4952 	return 0;
4953 }
4954 
4955 /**
4956  * igc_up - Open the interface and prepare it to handle traffic
4957  * @adapter: board private structure
4958  */
igc_up(struct igc_adapter * adapter)4959 void igc_up(struct igc_adapter *adapter)
4960 {
4961 	struct igc_hw *hw = &adapter->hw;
4962 	int i = 0;
4963 
4964 	/* hardware has been reset, we need to reload some things */
4965 	igc_configure(adapter);
4966 
4967 	clear_bit(__IGC_DOWN, &adapter->state);
4968 
4969 	for (i = 0; i < adapter->num_q_vectors; i++)
4970 		napi_enable(&adapter->q_vector[i]->napi);
4971 
4972 	if (adapter->msix_entries)
4973 		igc_configure_msix(adapter);
4974 	else
4975 		igc_assign_vector(adapter->q_vector[0], 0);
4976 
4977 	/* Clear any pending interrupts. */
4978 	rd32(IGC_ICR);
4979 	igc_irq_enable(adapter);
4980 
4981 	netif_tx_start_all_queues(adapter->netdev);
4982 
4983 	/* start the watchdog. */
4984 	hw->mac.get_link_status = true;
4985 	schedule_work(&adapter->watchdog_task);
4986 }
4987 
4988 /**
4989  * igc_update_stats - Update the board statistics counters
4990  * @adapter: board private structure
4991  */
igc_update_stats(struct igc_adapter * adapter)4992 void igc_update_stats(struct igc_adapter *adapter)
4993 {
4994 	struct rtnl_link_stats64 *net_stats = &adapter->stats64;
4995 	struct pci_dev *pdev = adapter->pdev;
4996 	struct igc_hw *hw = &adapter->hw;
4997 	u64 _bytes, _packets;
4998 	u64 bytes, packets;
4999 	unsigned int start;
5000 	u32 mpc;
5001 	int i;
5002 
5003 	/* Prevent stats update while adapter is being reset, or if the pci
5004 	 * connection is down.
5005 	 */
5006 	if (adapter->link_speed == 0)
5007 		return;
5008 	if (pci_channel_offline(pdev))
5009 		return;
5010 
5011 	packets = 0;
5012 	bytes = 0;
5013 
5014 	rcu_read_lock();
5015 	for (i = 0; i < adapter->num_rx_queues; i++) {
5016 		struct igc_ring *ring = adapter->rx_ring[i];
5017 		u32 rqdpc = rd32(IGC_RQDPC(i));
5018 
5019 		if (hw->mac.type >= igc_i225)
5020 			wr32(IGC_RQDPC(i), 0);
5021 
5022 		if (rqdpc) {
5023 			ring->rx_stats.drops += rqdpc;
5024 			net_stats->rx_fifo_errors += rqdpc;
5025 		}
5026 
5027 		do {
5028 			start = u64_stats_fetch_begin(&ring->rx_syncp);
5029 			_bytes = ring->rx_stats.bytes;
5030 			_packets = ring->rx_stats.packets;
5031 		} while (u64_stats_fetch_retry(&ring->rx_syncp, start));
5032 		bytes += _bytes;
5033 		packets += _packets;
5034 	}
5035 
5036 	net_stats->rx_bytes = bytes;
5037 	net_stats->rx_packets = packets;
5038 
5039 	packets = 0;
5040 	bytes = 0;
5041 	for (i = 0; i < adapter->num_tx_queues; i++) {
5042 		struct igc_ring *ring = adapter->tx_ring[i];
5043 
5044 		do {
5045 			start = u64_stats_fetch_begin(&ring->tx_syncp);
5046 			_bytes = ring->tx_stats.bytes;
5047 			_packets = ring->tx_stats.packets;
5048 		} while (u64_stats_fetch_retry(&ring->tx_syncp, start));
5049 		bytes += _bytes;
5050 		packets += _packets;
5051 	}
5052 	net_stats->tx_bytes = bytes;
5053 	net_stats->tx_packets = packets;
5054 	rcu_read_unlock();
5055 
5056 	/* read stats registers */
5057 	adapter->stats.crcerrs += rd32(IGC_CRCERRS);
5058 	adapter->stats.gprc += rd32(IGC_GPRC);
5059 	adapter->stats.gorc += rd32(IGC_GORCL);
5060 	rd32(IGC_GORCH); /* clear GORCL */
5061 	adapter->stats.bprc += rd32(IGC_BPRC);
5062 	adapter->stats.mprc += rd32(IGC_MPRC);
5063 	adapter->stats.roc += rd32(IGC_ROC);
5064 
5065 	adapter->stats.prc64 += rd32(IGC_PRC64);
5066 	adapter->stats.prc127 += rd32(IGC_PRC127);
5067 	adapter->stats.prc255 += rd32(IGC_PRC255);
5068 	adapter->stats.prc511 += rd32(IGC_PRC511);
5069 	adapter->stats.prc1023 += rd32(IGC_PRC1023);
5070 	adapter->stats.prc1522 += rd32(IGC_PRC1522);
5071 	adapter->stats.tlpic += rd32(IGC_TLPIC);
5072 	adapter->stats.rlpic += rd32(IGC_RLPIC);
5073 	adapter->stats.hgptc += rd32(IGC_HGPTC);
5074 
5075 	mpc = rd32(IGC_MPC);
5076 	adapter->stats.mpc += mpc;
5077 	net_stats->rx_fifo_errors += mpc;
5078 	adapter->stats.scc += rd32(IGC_SCC);
5079 	adapter->stats.ecol += rd32(IGC_ECOL);
5080 	adapter->stats.mcc += rd32(IGC_MCC);
5081 	adapter->stats.latecol += rd32(IGC_LATECOL);
5082 	adapter->stats.dc += rd32(IGC_DC);
5083 	adapter->stats.rlec += rd32(IGC_RLEC);
5084 	adapter->stats.xonrxc += rd32(IGC_XONRXC);
5085 	adapter->stats.xontxc += rd32(IGC_XONTXC);
5086 	adapter->stats.xoffrxc += rd32(IGC_XOFFRXC);
5087 	adapter->stats.xofftxc += rd32(IGC_XOFFTXC);
5088 	adapter->stats.fcruc += rd32(IGC_FCRUC);
5089 	adapter->stats.gptc += rd32(IGC_GPTC);
5090 	adapter->stats.gotc += rd32(IGC_GOTCL);
5091 	rd32(IGC_GOTCH); /* clear GOTCL */
5092 	adapter->stats.rnbc += rd32(IGC_RNBC);
5093 	adapter->stats.ruc += rd32(IGC_RUC);
5094 	adapter->stats.rfc += rd32(IGC_RFC);
5095 	adapter->stats.rjc += rd32(IGC_RJC);
5096 	adapter->stats.tor += rd32(IGC_TORH);
5097 	adapter->stats.tot += rd32(IGC_TOTH);
5098 	adapter->stats.tpr += rd32(IGC_TPR);
5099 
5100 	adapter->stats.ptc64 += rd32(IGC_PTC64);
5101 	adapter->stats.ptc127 += rd32(IGC_PTC127);
5102 	adapter->stats.ptc255 += rd32(IGC_PTC255);
5103 	adapter->stats.ptc511 += rd32(IGC_PTC511);
5104 	adapter->stats.ptc1023 += rd32(IGC_PTC1023);
5105 	adapter->stats.ptc1522 += rd32(IGC_PTC1522);
5106 
5107 	adapter->stats.mptc += rd32(IGC_MPTC);
5108 	adapter->stats.bptc += rd32(IGC_BPTC);
5109 
5110 	adapter->stats.tpt += rd32(IGC_TPT);
5111 	adapter->stats.colc += rd32(IGC_COLC);
5112 	adapter->stats.colc += rd32(IGC_RERC);
5113 
5114 	adapter->stats.algnerrc += rd32(IGC_ALGNERRC);
5115 
5116 	adapter->stats.tsctc += rd32(IGC_TSCTC);
5117 
5118 	adapter->stats.iac += rd32(IGC_IAC);
5119 
5120 	/* Fill out the OS statistics structure */
5121 	net_stats->multicast = adapter->stats.mprc;
5122 	net_stats->collisions = adapter->stats.colc;
5123 
5124 	/* Rx Errors */
5125 
5126 	/* RLEC on some newer hardware can be incorrect so build
5127 	 * our own version based on RUC and ROC
5128 	 */
5129 	net_stats->rx_errors = adapter->stats.rxerrc +
5130 		adapter->stats.crcerrs + adapter->stats.algnerrc +
5131 		adapter->stats.ruc + adapter->stats.roc +
5132 		adapter->stats.cexterr;
5133 	net_stats->rx_length_errors = adapter->stats.ruc +
5134 				      adapter->stats.roc;
5135 	net_stats->rx_crc_errors = adapter->stats.crcerrs;
5136 	net_stats->rx_frame_errors = adapter->stats.algnerrc;
5137 	net_stats->rx_missed_errors = adapter->stats.mpc;
5138 
5139 	/* Tx Errors */
5140 	net_stats->tx_errors = adapter->stats.ecol +
5141 			       adapter->stats.latecol;
5142 	net_stats->tx_aborted_errors = adapter->stats.ecol;
5143 	net_stats->tx_window_errors = adapter->stats.latecol;
5144 	net_stats->tx_carrier_errors = adapter->stats.tncrs;
5145 
5146 	/* Tx Dropped */
5147 	net_stats->tx_dropped = adapter->stats.txdrop;
5148 
5149 	/* Management Stats */
5150 	adapter->stats.mgptc += rd32(IGC_MGTPTC);
5151 	adapter->stats.mgprc += rd32(IGC_MGTPRC);
5152 	adapter->stats.mgpdc += rd32(IGC_MGTPDC);
5153 }
5154 
5155 /**
5156  * igc_down - Close the interface
5157  * @adapter: board private structure
5158  */
igc_down(struct igc_adapter * adapter)5159 void igc_down(struct igc_adapter *adapter)
5160 {
5161 	struct net_device *netdev = adapter->netdev;
5162 	struct igc_hw *hw = &adapter->hw;
5163 	u32 tctl, rctl;
5164 	int i = 0;
5165 
5166 	set_bit(__IGC_DOWN, &adapter->state);
5167 
5168 	igc_ptp_suspend(adapter);
5169 
5170 	if (pci_device_is_present(adapter->pdev)) {
5171 		/* disable receives in the hardware */
5172 		rctl = rd32(IGC_RCTL);
5173 		wr32(IGC_RCTL, rctl & ~IGC_RCTL_EN);
5174 		/* flush and sleep below */
5175 	}
5176 	/* set trans_start so we don't get spurious watchdogs during reset */
5177 	netif_trans_update(netdev);
5178 
5179 	netif_carrier_off(netdev);
5180 	netif_tx_stop_all_queues(netdev);
5181 
5182 	if (pci_device_is_present(adapter->pdev)) {
5183 		/* disable transmits in the hardware */
5184 		tctl = rd32(IGC_TCTL);
5185 		tctl &= ~IGC_TCTL_EN;
5186 		wr32(IGC_TCTL, tctl);
5187 		/* flush both disables and wait for them to finish */
5188 		wrfl();
5189 		usleep_range(10000, 20000);
5190 
5191 		igc_irq_disable(adapter);
5192 	}
5193 
5194 	adapter->flags &= ~IGC_FLAG_NEED_LINK_UPDATE;
5195 
5196 	for (i = 0; i < adapter->num_q_vectors; i++) {
5197 		if (adapter->q_vector[i]) {
5198 			napi_synchronize(&adapter->q_vector[i]->napi);
5199 			napi_disable(&adapter->q_vector[i]->napi);
5200 		}
5201 	}
5202 
5203 	del_timer_sync(&adapter->watchdog_timer);
5204 	del_timer_sync(&adapter->phy_info_timer);
5205 
5206 	/* record the stats before reset*/
5207 	spin_lock(&adapter->stats64_lock);
5208 	igc_update_stats(adapter);
5209 	spin_unlock(&adapter->stats64_lock);
5210 
5211 	adapter->link_speed = 0;
5212 	adapter->link_duplex = 0;
5213 
5214 	if (!pci_channel_offline(adapter->pdev))
5215 		igc_reset(adapter);
5216 
5217 	/* clear VLAN promisc flag so VFTA will be updated if necessary */
5218 	adapter->flags &= ~IGC_FLAG_VLAN_PROMISC;
5219 
5220 	igc_disable_all_tx_rings_hw(adapter);
5221 	igc_clean_all_tx_rings(adapter);
5222 	igc_clean_all_rx_rings(adapter);
5223 }
5224 
igc_reinit_locked(struct igc_adapter * adapter)5225 void igc_reinit_locked(struct igc_adapter *adapter)
5226 {
5227 	while (test_and_set_bit(__IGC_RESETTING, &adapter->state))
5228 		usleep_range(1000, 2000);
5229 	igc_down(adapter);
5230 	igc_up(adapter);
5231 	clear_bit(__IGC_RESETTING, &adapter->state);
5232 }
5233 
igc_reset_task(struct work_struct * work)5234 static void igc_reset_task(struct work_struct *work)
5235 {
5236 	struct igc_adapter *adapter;
5237 
5238 	adapter = container_of(work, struct igc_adapter, reset_task);
5239 
5240 	rtnl_lock();
5241 	/* If we're already down or resetting, just bail */
5242 	if (test_bit(__IGC_DOWN, &adapter->state) ||
5243 	    test_bit(__IGC_RESETTING, &adapter->state)) {
5244 		rtnl_unlock();
5245 		return;
5246 	}
5247 
5248 	igc_rings_dump(adapter);
5249 	igc_regs_dump(adapter);
5250 	netdev_err(adapter->netdev, "Reset adapter\n");
5251 	igc_reinit_locked(adapter);
5252 	rtnl_unlock();
5253 }
5254 
5255 /**
5256  * igc_change_mtu - Change the Maximum Transfer Unit
5257  * @netdev: network interface device structure
5258  * @new_mtu: new value for maximum frame size
5259  *
5260  * Returns 0 on success, negative on failure
5261  */
igc_change_mtu(struct net_device * netdev,int new_mtu)5262 static int igc_change_mtu(struct net_device *netdev, int new_mtu)
5263 {
5264 	int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN;
5265 	struct igc_adapter *adapter = netdev_priv(netdev);
5266 
5267 	if (igc_xdp_is_enabled(adapter) && new_mtu > ETH_DATA_LEN) {
5268 		netdev_dbg(netdev, "Jumbo frames not supported with XDP");
5269 		return -EINVAL;
5270 	}
5271 
5272 	/* adjust max frame to be at least the size of a standard frame */
5273 	if (max_frame < (ETH_FRAME_LEN + ETH_FCS_LEN))
5274 		max_frame = ETH_FRAME_LEN + ETH_FCS_LEN;
5275 
5276 	while (test_and_set_bit(__IGC_RESETTING, &adapter->state))
5277 		usleep_range(1000, 2000);
5278 
5279 	/* igc_down has a dependency on max_frame_size */
5280 	adapter->max_frame_size = max_frame;
5281 
5282 	if (netif_running(netdev))
5283 		igc_down(adapter);
5284 
5285 	netdev_dbg(netdev, "changing MTU from %d to %d\n", netdev->mtu, new_mtu);
5286 	WRITE_ONCE(netdev->mtu, new_mtu);
5287 
5288 	if (netif_running(netdev))
5289 		igc_up(adapter);
5290 	else
5291 		igc_reset(adapter);
5292 
5293 	clear_bit(__IGC_RESETTING, &adapter->state);
5294 
5295 	return 0;
5296 }
5297 
5298 /**
5299  * igc_tx_timeout - Respond to a Tx Hang
5300  * @netdev: network interface device structure
5301  * @txqueue: queue number that timed out
5302  **/
igc_tx_timeout(struct net_device * netdev,unsigned int __always_unused txqueue)5303 static void igc_tx_timeout(struct net_device *netdev,
5304 			   unsigned int __always_unused txqueue)
5305 {
5306 	struct igc_adapter *adapter = netdev_priv(netdev);
5307 	struct igc_hw *hw = &adapter->hw;
5308 
5309 	/* Do the reset outside of interrupt context */
5310 	adapter->tx_timeout_count++;
5311 	schedule_work(&adapter->reset_task);
5312 	wr32(IGC_EICS,
5313 	     (adapter->eims_enable_mask & ~adapter->eims_other));
5314 }
5315 
5316 /**
5317  * igc_get_stats64 - Get System Network Statistics
5318  * @netdev: network interface device structure
5319  * @stats: rtnl_link_stats64 pointer
5320  *
5321  * Returns the address of the device statistics structure.
5322  * The statistics are updated here and also from the timer callback.
5323  */
igc_get_stats64(struct net_device * netdev,struct rtnl_link_stats64 * stats)5324 static void igc_get_stats64(struct net_device *netdev,
5325 			    struct rtnl_link_stats64 *stats)
5326 {
5327 	struct igc_adapter *adapter = netdev_priv(netdev);
5328 
5329 	spin_lock(&adapter->stats64_lock);
5330 	if (!test_bit(__IGC_RESETTING, &adapter->state))
5331 		igc_update_stats(adapter);
5332 	memcpy(stats, &adapter->stats64, sizeof(*stats));
5333 	spin_unlock(&adapter->stats64_lock);
5334 }
5335 
igc_fix_features(struct net_device * netdev,netdev_features_t features)5336 static netdev_features_t igc_fix_features(struct net_device *netdev,
5337 					  netdev_features_t features)
5338 {
5339 	/* Since there is no support for separate Rx/Tx vlan accel
5340 	 * enable/disable make sure Tx flag is always in same state as Rx.
5341 	 */
5342 	if (features & NETIF_F_HW_VLAN_CTAG_RX)
5343 		features |= NETIF_F_HW_VLAN_CTAG_TX;
5344 	else
5345 		features &= ~NETIF_F_HW_VLAN_CTAG_TX;
5346 
5347 	return features;
5348 }
5349 
igc_set_features(struct net_device * netdev,netdev_features_t features)5350 static int igc_set_features(struct net_device *netdev,
5351 			    netdev_features_t features)
5352 {
5353 	netdev_features_t changed = netdev->features ^ features;
5354 	struct igc_adapter *adapter = netdev_priv(netdev);
5355 
5356 	if (changed & NETIF_F_HW_VLAN_CTAG_RX)
5357 		igc_vlan_mode(netdev, features);
5358 
5359 	/* Add VLAN support */
5360 	if (!(changed & (NETIF_F_RXALL | NETIF_F_NTUPLE)))
5361 		return 0;
5362 
5363 	if (!(features & NETIF_F_NTUPLE))
5364 		igc_flush_nfc_rules(adapter);
5365 
5366 	netdev->features = features;
5367 
5368 	if (netif_running(netdev))
5369 		igc_reinit_locked(adapter);
5370 	else
5371 		igc_reset(adapter);
5372 
5373 	return 1;
5374 }
5375 
5376 static netdev_features_t
igc_features_check(struct sk_buff * skb,struct net_device * dev,netdev_features_t features)5377 igc_features_check(struct sk_buff *skb, struct net_device *dev,
5378 		   netdev_features_t features)
5379 {
5380 	unsigned int network_hdr_len, mac_hdr_len;
5381 
5382 	/* Make certain the headers can be described by a context descriptor */
5383 	mac_hdr_len = skb_network_offset(skb);
5384 	if (unlikely(mac_hdr_len > IGC_MAX_MAC_HDR_LEN))
5385 		return features & ~(NETIF_F_HW_CSUM |
5386 				    NETIF_F_SCTP_CRC |
5387 				    NETIF_F_HW_VLAN_CTAG_TX |
5388 				    NETIF_F_TSO |
5389 				    NETIF_F_TSO6);
5390 
5391 	network_hdr_len = skb_checksum_start(skb) - skb_network_header(skb);
5392 	if (unlikely(network_hdr_len >  IGC_MAX_NETWORK_HDR_LEN))
5393 		return features & ~(NETIF_F_HW_CSUM |
5394 				    NETIF_F_SCTP_CRC |
5395 				    NETIF_F_TSO |
5396 				    NETIF_F_TSO6);
5397 
5398 	/* We can only support IPv4 TSO in tunnels if we can mangle the
5399 	 * inner IP ID field, so strip TSO if MANGLEID is not supported.
5400 	 */
5401 	if (skb->encapsulation && !(features & NETIF_F_TSO_MANGLEID))
5402 		features &= ~NETIF_F_TSO;
5403 
5404 	return features;
5405 }
5406 
igc_tsync_interrupt(struct igc_adapter * adapter)5407 static void igc_tsync_interrupt(struct igc_adapter *adapter)
5408 {
5409 	struct igc_hw *hw = &adapter->hw;
5410 	u32 tsauxc, sec, nsec, tsicr;
5411 	struct ptp_clock_event event;
5412 	struct timespec64 ts;
5413 
5414 	tsicr = rd32(IGC_TSICR);
5415 
5416 	if (tsicr & IGC_TSICR_SYS_WRAP) {
5417 		event.type = PTP_CLOCK_PPS;
5418 		if (adapter->ptp_caps.pps)
5419 			ptp_clock_event(adapter->ptp_clock, &event);
5420 	}
5421 
5422 	if (tsicr & IGC_TSICR_TXTS) {
5423 		/* retrieve hardware timestamp */
5424 		igc_ptp_tx_tstamp_event(adapter);
5425 	}
5426 
5427 	if (tsicr & IGC_TSICR_TT0) {
5428 		spin_lock(&adapter->tmreg_lock);
5429 		ts = timespec64_add(adapter->perout[0].start,
5430 				    adapter->perout[0].period);
5431 		wr32(IGC_TRGTTIML0, ts.tv_nsec | IGC_TT_IO_TIMER_SEL_SYSTIM0);
5432 		wr32(IGC_TRGTTIMH0, (u32)ts.tv_sec);
5433 		tsauxc = rd32(IGC_TSAUXC);
5434 		tsauxc |= IGC_TSAUXC_EN_TT0;
5435 		wr32(IGC_TSAUXC, tsauxc);
5436 		adapter->perout[0].start = ts;
5437 		spin_unlock(&adapter->tmreg_lock);
5438 	}
5439 
5440 	if (tsicr & IGC_TSICR_TT1) {
5441 		spin_lock(&adapter->tmreg_lock);
5442 		ts = timespec64_add(adapter->perout[1].start,
5443 				    adapter->perout[1].period);
5444 		wr32(IGC_TRGTTIML1, ts.tv_nsec | IGC_TT_IO_TIMER_SEL_SYSTIM0);
5445 		wr32(IGC_TRGTTIMH1, (u32)ts.tv_sec);
5446 		tsauxc = rd32(IGC_TSAUXC);
5447 		tsauxc |= IGC_TSAUXC_EN_TT1;
5448 		wr32(IGC_TSAUXC, tsauxc);
5449 		adapter->perout[1].start = ts;
5450 		spin_unlock(&adapter->tmreg_lock);
5451 	}
5452 
5453 	if (tsicr & IGC_TSICR_AUTT0) {
5454 		nsec = rd32(IGC_AUXSTMPL0);
5455 		sec  = rd32(IGC_AUXSTMPH0);
5456 		event.type = PTP_CLOCK_EXTTS;
5457 		event.index = 0;
5458 		event.timestamp = sec * NSEC_PER_SEC + nsec;
5459 		ptp_clock_event(adapter->ptp_clock, &event);
5460 	}
5461 
5462 	if (tsicr & IGC_TSICR_AUTT1) {
5463 		nsec = rd32(IGC_AUXSTMPL1);
5464 		sec  = rd32(IGC_AUXSTMPH1);
5465 		event.type = PTP_CLOCK_EXTTS;
5466 		event.index = 1;
5467 		event.timestamp = sec * NSEC_PER_SEC + nsec;
5468 		ptp_clock_event(adapter->ptp_clock, &event);
5469 	}
5470 }
5471 
5472 /**
5473  * igc_msix_other - msix other interrupt handler
5474  * @irq: interrupt number
5475  * @data: pointer to a q_vector
5476  */
igc_msix_other(int irq,void * data)5477 static irqreturn_t igc_msix_other(int irq, void *data)
5478 {
5479 	struct igc_adapter *adapter = data;
5480 	struct igc_hw *hw = &adapter->hw;
5481 	u32 icr = rd32(IGC_ICR);
5482 
5483 	/* reading ICR causes bit 31 of EICR to be cleared */
5484 	if (icr & IGC_ICR_DRSTA)
5485 		schedule_work(&adapter->reset_task);
5486 
5487 	if (icr & IGC_ICR_DOUTSYNC) {
5488 		/* HW is reporting DMA is out of sync */
5489 		adapter->stats.doosync++;
5490 	}
5491 
5492 	if (icr & IGC_ICR_LSC) {
5493 		hw->mac.get_link_status = true;
5494 		/* guard against interrupt when we're going down */
5495 		if (!test_bit(__IGC_DOWN, &adapter->state))
5496 			mod_timer(&adapter->watchdog_timer, jiffies + 1);
5497 	}
5498 
5499 	if (icr & IGC_ICR_TS)
5500 		igc_tsync_interrupt(adapter);
5501 
5502 	wr32(IGC_EIMS, adapter->eims_other);
5503 
5504 	return IRQ_HANDLED;
5505 }
5506 
igc_write_itr(struct igc_q_vector * q_vector)5507 static void igc_write_itr(struct igc_q_vector *q_vector)
5508 {
5509 	u32 itr_val = q_vector->itr_val & IGC_QVECTOR_MASK;
5510 
5511 	if (!q_vector->set_itr)
5512 		return;
5513 
5514 	if (!itr_val)
5515 		itr_val = IGC_ITR_VAL_MASK;
5516 
5517 	itr_val |= IGC_EITR_CNT_IGNR;
5518 
5519 	writel(itr_val, q_vector->itr_register);
5520 	q_vector->set_itr = 0;
5521 }
5522 
igc_msix_ring(int irq,void * data)5523 static irqreturn_t igc_msix_ring(int irq, void *data)
5524 {
5525 	struct igc_q_vector *q_vector = data;
5526 
5527 	/* Write the ITR value calculated from the previous interrupt. */
5528 	igc_write_itr(q_vector);
5529 
5530 	napi_schedule(&q_vector->napi);
5531 
5532 	return IRQ_HANDLED;
5533 }
5534 
5535 /**
5536  * igc_request_msix - Initialize MSI-X interrupts
5537  * @adapter: Pointer to adapter structure
5538  *
5539  * igc_request_msix allocates MSI-X vectors and requests interrupts from the
5540  * kernel.
5541  */
igc_request_msix(struct igc_adapter * adapter)5542 static int igc_request_msix(struct igc_adapter *adapter)
5543 {
5544 	unsigned int num_q_vectors = adapter->num_q_vectors;
5545 	int i = 0, err = 0, vector = 0, free_vector = 0;
5546 	struct net_device *netdev = adapter->netdev;
5547 
5548 	err = request_irq(adapter->msix_entries[vector].vector,
5549 			  &igc_msix_other, 0, netdev->name, adapter);
5550 	if (err)
5551 		goto err_out;
5552 
5553 	if (num_q_vectors > MAX_Q_VECTORS) {
5554 		num_q_vectors = MAX_Q_VECTORS;
5555 		dev_warn(&adapter->pdev->dev,
5556 			 "The number of queue vectors (%d) is higher than max allowed (%d)\n",
5557 			 adapter->num_q_vectors, MAX_Q_VECTORS);
5558 	}
5559 	for (i = 0; i < num_q_vectors; i++) {
5560 		struct igc_q_vector *q_vector = adapter->q_vector[i];
5561 
5562 		vector++;
5563 
5564 		q_vector->itr_register = adapter->io_addr + IGC_EITR(vector);
5565 
5566 		if (q_vector->rx.ring && q_vector->tx.ring)
5567 			sprintf(q_vector->name, "%s-TxRx-%u", netdev->name,
5568 				q_vector->rx.ring->queue_index);
5569 		else if (q_vector->tx.ring)
5570 			sprintf(q_vector->name, "%s-tx-%u", netdev->name,
5571 				q_vector->tx.ring->queue_index);
5572 		else if (q_vector->rx.ring)
5573 			sprintf(q_vector->name, "%s-rx-%u", netdev->name,
5574 				q_vector->rx.ring->queue_index);
5575 		else
5576 			sprintf(q_vector->name, "%s-unused", netdev->name);
5577 
5578 		err = request_irq(adapter->msix_entries[vector].vector,
5579 				  igc_msix_ring, 0, q_vector->name,
5580 				  q_vector);
5581 		if (err)
5582 			goto err_free;
5583 	}
5584 
5585 	igc_configure_msix(adapter);
5586 	return 0;
5587 
5588 err_free:
5589 	/* free already assigned IRQs */
5590 	free_irq(adapter->msix_entries[free_vector++].vector, adapter);
5591 
5592 	vector--;
5593 	for (i = 0; i < vector; i++) {
5594 		free_irq(adapter->msix_entries[free_vector++].vector,
5595 			 adapter->q_vector[i]);
5596 	}
5597 err_out:
5598 	return err;
5599 }
5600 
5601 /**
5602  * igc_clear_interrupt_scheme - reset the device to a state of no interrupts
5603  * @adapter: Pointer to adapter structure
5604  *
5605  * This function resets the device so that it has 0 rx queues, tx queues, and
5606  * MSI-X interrupts allocated.
5607  */
igc_clear_interrupt_scheme(struct igc_adapter * adapter)5608 static void igc_clear_interrupt_scheme(struct igc_adapter *adapter)
5609 {
5610 	igc_free_q_vectors(adapter);
5611 	igc_reset_interrupt_capability(adapter);
5612 }
5613 
5614 /* Need to wait a few seconds after link up to get diagnostic information from
5615  * the phy
5616  */
igc_update_phy_info(struct timer_list * t)5617 static void igc_update_phy_info(struct timer_list *t)
5618 {
5619 	struct igc_adapter *adapter = from_timer(adapter, t, phy_info_timer);
5620 
5621 	igc_get_phy_info(&adapter->hw);
5622 }
5623 
5624 /**
5625  * igc_has_link - check shared code for link and determine up/down
5626  * @adapter: pointer to driver private info
5627  */
igc_has_link(struct igc_adapter * adapter)5628 bool igc_has_link(struct igc_adapter *adapter)
5629 {
5630 	struct igc_hw *hw = &adapter->hw;
5631 	bool link_active = false;
5632 
5633 	/* get_link_status is set on LSC (link status) interrupt or
5634 	 * rx sequence error interrupt.  get_link_status will stay
5635 	 * false until the igc_check_for_link establishes link
5636 	 * for copper adapters ONLY
5637 	 */
5638 	if (!hw->mac.get_link_status)
5639 		return true;
5640 	hw->mac.ops.check_for_link(hw);
5641 	link_active = !hw->mac.get_link_status;
5642 
5643 	if (hw->mac.type == igc_i225) {
5644 		if (!netif_carrier_ok(adapter->netdev)) {
5645 			adapter->flags &= ~IGC_FLAG_NEED_LINK_UPDATE;
5646 		} else if (!(adapter->flags & IGC_FLAG_NEED_LINK_UPDATE)) {
5647 			adapter->flags |= IGC_FLAG_NEED_LINK_UPDATE;
5648 			adapter->link_check_timeout = jiffies;
5649 		}
5650 	}
5651 
5652 	return link_active;
5653 }
5654 
5655 /**
5656  * igc_watchdog - Timer Call-back
5657  * @t: timer for the watchdog
5658  */
igc_watchdog(struct timer_list * t)5659 static void igc_watchdog(struct timer_list *t)
5660 {
5661 	struct igc_adapter *adapter = from_timer(adapter, t, watchdog_timer);
5662 	/* Do the rest outside of interrupt context */
5663 	schedule_work(&adapter->watchdog_task);
5664 }
5665 
igc_watchdog_task(struct work_struct * work)5666 static void igc_watchdog_task(struct work_struct *work)
5667 {
5668 	struct igc_adapter *adapter = container_of(work,
5669 						   struct igc_adapter,
5670 						   watchdog_task);
5671 	struct net_device *netdev = adapter->netdev;
5672 	struct igc_hw *hw = &adapter->hw;
5673 	struct igc_phy_info *phy = &hw->phy;
5674 	u16 phy_data, retry_count = 20;
5675 	u32 link;
5676 	int i;
5677 
5678 	link = igc_has_link(adapter);
5679 
5680 	if (adapter->flags & IGC_FLAG_NEED_LINK_UPDATE) {
5681 		if (time_after(jiffies, (adapter->link_check_timeout + HZ)))
5682 			adapter->flags &= ~IGC_FLAG_NEED_LINK_UPDATE;
5683 		else
5684 			link = false;
5685 	}
5686 
5687 	if (link) {
5688 		/* Cancel scheduled suspend requests. */
5689 		pm_runtime_resume(netdev->dev.parent);
5690 
5691 		if (!netif_carrier_ok(netdev)) {
5692 			u32 ctrl;
5693 
5694 			hw->mac.ops.get_speed_and_duplex(hw,
5695 							 &adapter->link_speed,
5696 							 &adapter->link_duplex);
5697 
5698 			ctrl = rd32(IGC_CTRL);
5699 			/* Link status message must follow this format */
5700 			netdev_info(netdev,
5701 				    "NIC Link is Up %d Mbps %s Duplex, Flow Control: %s\n",
5702 				    adapter->link_speed,
5703 				    adapter->link_duplex == FULL_DUPLEX ?
5704 				    "Full" : "Half",
5705 				    (ctrl & IGC_CTRL_TFCE) &&
5706 				    (ctrl & IGC_CTRL_RFCE) ? "RX/TX" :
5707 				    (ctrl & IGC_CTRL_RFCE) ?  "RX" :
5708 				    (ctrl & IGC_CTRL_TFCE) ?  "TX" : "None");
5709 
5710 			/* disable EEE if enabled */
5711 			if ((adapter->flags & IGC_FLAG_EEE) &&
5712 			    adapter->link_duplex == HALF_DUPLEX) {
5713 				netdev_info(netdev,
5714 					    "EEE Disabled: unsupported at half duplex. Re-enable using ethtool when at full duplex\n");
5715 				adapter->hw.dev_spec._base.eee_enable = false;
5716 				adapter->flags &= ~IGC_FLAG_EEE;
5717 			}
5718 
5719 			/* check if SmartSpeed worked */
5720 			igc_check_downshift(hw);
5721 			if (phy->speed_downgraded)
5722 				netdev_warn(netdev, "Link Speed was downgraded by SmartSpeed\n");
5723 
5724 			/* adjust timeout factor according to speed/duplex */
5725 			adapter->tx_timeout_factor = 1;
5726 			switch (adapter->link_speed) {
5727 			case SPEED_10:
5728 				adapter->tx_timeout_factor = 14;
5729 				break;
5730 			case SPEED_100:
5731 			case SPEED_1000:
5732 			case SPEED_2500:
5733 				adapter->tx_timeout_factor = 1;
5734 				break;
5735 			}
5736 
5737 			/* Once the launch time has been set on the wire, there
5738 			 * is a delay before the link speed can be determined
5739 			 * based on link-up activity. Write into the register
5740 			 * as soon as we know the correct link speed.
5741 			 */
5742 			igc_tsn_adjust_txtime_offset(adapter);
5743 
5744 			if (adapter->link_speed != SPEED_1000)
5745 				goto no_wait;
5746 
5747 			/* wait for Remote receiver status OK */
5748 retry_read_status:
5749 			if (!igc_read_phy_reg(hw, PHY_1000T_STATUS,
5750 					      &phy_data)) {
5751 				if (!(phy_data & SR_1000T_REMOTE_RX_STATUS) &&
5752 				    retry_count) {
5753 					msleep(100);
5754 					retry_count--;
5755 					goto retry_read_status;
5756 				} else if (!retry_count) {
5757 					netdev_err(netdev, "exceed max 2 second\n");
5758 				}
5759 			} else {
5760 				netdev_err(netdev, "read 1000Base-T Status Reg\n");
5761 			}
5762 no_wait:
5763 			netif_carrier_on(netdev);
5764 
5765 			/* link state has changed, schedule phy info update */
5766 			if (!test_bit(__IGC_DOWN, &adapter->state))
5767 				mod_timer(&adapter->phy_info_timer,
5768 					  round_jiffies(jiffies + 2 * HZ));
5769 		}
5770 	} else {
5771 		if (netif_carrier_ok(netdev)) {
5772 			adapter->link_speed = 0;
5773 			adapter->link_duplex = 0;
5774 
5775 			/* Links status message must follow this format */
5776 			netdev_info(netdev, "NIC Link is Down\n");
5777 			netif_carrier_off(netdev);
5778 
5779 			/* link state has changed, schedule phy info update */
5780 			if (!test_bit(__IGC_DOWN, &adapter->state))
5781 				mod_timer(&adapter->phy_info_timer,
5782 					  round_jiffies(jiffies + 2 * HZ));
5783 
5784 			pm_schedule_suspend(netdev->dev.parent,
5785 					    MSEC_PER_SEC * 5);
5786 		}
5787 	}
5788 
5789 	spin_lock(&adapter->stats64_lock);
5790 	igc_update_stats(adapter);
5791 	spin_unlock(&adapter->stats64_lock);
5792 
5793 	for (i = 0; i < adapter->num_tx_queues; i++) {
5794 		struct igc_ring *tx_ring = adapter->tx_ring[i];
5795 
5796 		if (!netif_carrier_ok(netdev)) {
5797 			/* We've lost link, so the controller stops DMA,
5798 			 * but we've got queued Tx work that's never going
5799 			 * to get done, so reset controller to flush Tx.
5800 			 * (Do the reset outside of interrupt context).
5801 			 */
5802 			if (igc_desc_unused(tx_ring) + 1 < tx_ring->count) {
5803 				adapter->tx_timeout_count++;
5804 				schedule_work(&adapter->reset_task);
5805 				/* return immediately since reset is imminent */
5806 				return;
5807 			}
5808 		}
5809 
5810 		/* Force detection of hung controller every watchdog period */
5811 		set_bit(IGC_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags);
5812 	}
5813 
5814 	/* Cause software interrupt to ensure Rx ring is cleaned */
5815 	if (adapter->flags & IGC_FLAG_HAS_MSIX) {
5816 		u32 eics = 0;
5817 
5818 		for (i = 0; i < adapter->num_q_vectors; i++) {
5819 			struct igc_q_vector *q_vector = adapter->q_vector[i];
5820 			struct igc_ring *rx_ring;
5821 
5822 			if (!q_vector->rx.ring)
5823 				continue;
5824 
5825 			rx_ring = adapter->rx_ring[q_vector->rx.ring->queue_index];
5826 
5827 			if (test_bit(IGC_RING_FLAG_RX_ALLOC_FAILED, &rx_ring->flags)) {
5828 				eics |= q_vector->eims_value;
5829 				clear_bit(IGC_RING_FLAG_RX_ALLOC_FAILED, &rx_ring->flags);
5830 			}
5831 		}
5832 		if (eics)
5833 			wr32(IGC_EICS, eics);
5834 	} else {
5835 		struct igc_ring *rx_ring = adapter->rx_ring[0];
5836 
5837 		if (test_bit(IGC_RING_FLAG_RX_ALLOC_FAILED, &rx_ring->flags)) {
5838 			clear_bit(IGC_RING_FLAG_RX_ALLOC_FAILED, &rx_ring->flags);
5839 			wr32(IGC_ICS, IGC_ICS_RXDMT0);
5840 		}
5841 	}
5842 
5843 	igc_ptp_tx_hang(adapter);
5844 
5845 	/* Reset the timer */
5846 	if (!test_bit(__IGC_DOWN, &adapter->state)) {
5847 		if (adapter->flags & IGC_FLAG_NEED_LINK_UPDATE)
5848 			mod_timer(&adapter->watchdog_timer,
5849 				  round_jiffies(jiffies +  HZ));
5850 		else
5851 			mod_timer(&adapter->watchdog_timer,
5852 				  round_jiffies(jiffies + 2 * HZ));
5853 	}
5854 }
5855 
5856 /**
5857  * igc_intr_msi - Interrupt Handler
5858  * @irq: interrupt number
5859  * @data: pointer to a network interface device structure
5860  */
igc_intr_msi(int irq,void * data)5861 static irqreturn_t igc_intr_msi(int irq, void *data)
5862 {
5863 	struct igc_adapter *adapter = data;
5864 	struct igc_q_vector *q_vector = adapter->q_vector[0];
5865 	struct igc_hw *hw = &adapter->hw;
5866 	/* read ICR disables interrupts using IAM */
5867 	u32 icr = rd32(IGC_ICR);
5868 
5869 	igc_write_itr(q_vector);
5870 
5871 	if (icr & IGC_ICR_DRSTA)
5872 		schedule_work(&adapter->reset_task);
5873 
5874 	if (icr & IGC_ICR_DOUTSYNC) {
5875 		/* HW is reporting DMA is out of sync */
5876 		adapter->stats.doosync++;
5877 	}
5878 
5879 	if (icr & (IGC_ICR_RXSEQ | IGC_ICR_LSC)) {
5880 		hw->mac.get_link_status = true;
5881 		if (!test_bit(__IGC_DOWN, &adapter->state))
5882 			mod_timer(&adapter->watchdog_timer, jiffies + 1);
5883 	}
5884 
5885 	if (icr & IGC_ICR_TS)
5886 		igc_tsync_interrupt(adapter);
5887 
5888 	napi_schedule(&q_vector->napi);
5889 
5890 	return IRQ_HANDLED;
5891 }
5892 
5893 /**
5894  * igc_intr - Legacy Interrupt Handler
5895  * @irq: interrupt number
5896  * @data: pointer to a network interface device structure
5897  */
igc_intr(int irq,void * data)5898 static irqreturn_t igc_intr(int irq, void *data)
5899 {
5900 	struct igc_adapter *adapter = data;
5901 	struct igc_q_vector *q_vector = adapter->q_vector[0];
5902 	struct igc_hw *hw = &adapter->hw;
5903 	/* Interrupt Auto-Mask...upon reading ICR, interrupts are masked.  No
5904 	 * need for the IMC write
5905 	 */
5906 	u32 icr = rd32(IGC_ICR);
5907 
5908 	/* IMS will not auto-mask if INT_ASSERTED is not set, and if it is
5909 	 * not set, then the adapter didn't send an interrupt
5910 	 */
5911 	if (!(icr & IGC_ICR_INT_ASSERTED))
5912 		return IRQ_NONE;
5913 
5914 	igc_write_itr(q_vector);
5915 
5916 	if (icr & IGC_ICR_DRSTA)
5917 		schedule_work(&adapter->reset_task);
5918 
5919 	if (icr & IGC_ICR_DOUTSYNC) {
5920 		/* HW is reporting DMA is out of sync */
5921 		adapter->stats.doosync++;
5922 	}
5923 
5924 	if (icr & (IGC_ICR_RXSEQ | IGC_ICR_LSC)) {
5925 		hw->mac.get_link_status = true;
5926 		/* guard against interrupt when we're going down */
5927 		if (!test_bit(__IGC_DOWN, &adapter->state))
5928 			mod_timer(&adapter->watchdog_timer, jiffies + 1);
5929 	}
5930 
5931 	if (icr & IGC_ICR_TS)
5932 		igc_tsync_interrupt(adapter);
5933 
5934 	napi_schedule(&q_vector->napi);
5935 
5936 	return IRQ_HANDLED;
5937 }
5938 
igc_free_irq(struct igc_adapter * adapter)5939 static void igc_free_irq(struct igc_adapter *adapter)
5940 {
5941 	if (adapter->msix_entries) {
5942 		int vector = 0, i;
5943 
5944 		free_irq(adapter->msix_entries[vector++].vector, adapter);
5945 
5946 		for (i = 0; i < adapter->num_q_vectors; i++)
5947 			free_irq(adapter->msix_entries[vector++].vector,
5948 				 adapter->q_vector[i]);
5949 	} else {
5950 		free_irq(adapter->pdev->irq, adapter);
5951 	}
5952 }
5953 
5954 /**
5955  * igc_request_irq - initialize interrupts
5956  * @adapter: Pointer to adapter structure
5957  *
5958  * Attempts to configure interrupts using the best available
5959  * capabilities of the hardware and kernel.
5960  */
igc_request_irq(struct igc_adapter * adapter)5961 static int igc_request_irq(struct igc_adapter *adapter)
5962 {
5963 	struct net_device *netdev = adapter->netdev;
5964 	struct pci_dev *pdev = adapter->pdev;
5965 	int err = 0;
5966 
5967 	if (adapter->flags & IGC_FLAG_HAS_MSIX) {
5968 		err = igc_request_msix(adapter);
5969 		if (!err)
5970 			goto request_done;
5971 		/* fall back to MSI */
5972 		igc_free_all_tx_resources(adapter);
5973 		igc_free_all_rx_resources(adapter);
5974 
5975 		igc_clear_interrupt_scheme(adapter);
5976 		err = igc_init_interrupt_scheme(adapter, false);
5977 		if (err)
5978 			goto request_done;
5979 		igc_setup_all_tx_resources(adapter);
5980 		igc_setup_all_rx_resources(adapter);
5981 		igc_configure(adapter);
5982 	}
5983 
5984 	igc_assign_vector(adapter->q_vector[0], 0);
5985 
5986 	if (adapter->flags & IGC_FLAG_HAS_MSI) {
5987 		err = request_irq(pdev->irq, &igc_intr_msi, 0,
5988 				  netdev->name, adapter);
5989 		if (!err)
5990 			goto request_done;
5991 
5992 		/* fall back to legacy interrupts */
5993 		igc_reset_interrupt_capability(adapter);
5994 		adapter->flags &= ~IGC_FLAG_HAS_MSI;
5995 	}
5996 
5997 	err = request_irq(pdev->irq, &igc_intr, IRQF_SHARED,
5998 			  netdev->name, adapter);
5999 
6000 	if (err)
6001 		netdev_err(netdev, "Error %d getting interrupt\n", err);
6002 
6003 request_done:
6004 	return err;
6005 }
6006 
6007 /**
6008  * __igc_open - Called when a network interface is made active
6009  * @netdev: network interface device structure
6010  * @resuming: boolean indicating if the device is resuming
6011  *
6012  * Returns 0 on success, negative value on failure
6013  *
6014  * The open entry point is called when a network interface is made
6015  * active by the system (IFF_UP).  At this point all resources needed
6016  * for transmit and receive operations are allocated, the interrupt
6017  * handler is registered with the OS, the watchdog timer is started,
6018  * and the stack is notified that the interface is ready.
6019  */
__igc_open(struct net_device * netdev,bool resuming)6020 static int __igc_open(struct net_device *netdev, bool resuming)
6021 {
6022 	struct igc_adapter *adapter = netdev_priv(netdev);
6023 	struct pci_dev *pdev = adapter->pdev;
6024 	struct igc_hw *hw = &adapter->hw;
6025 	int err = 0;
6026 	int i = 0;
6027 
6028 	/* disallow open during test */
6029 
6030 	if (test_bit(__IGC_TESTING, &adapter->state)) {
6031 		WARN_ON(resuming);
6032 		return -EBUSY;
6033 	}
6034 
6035 	if (!resuming)
6036 		pm_runtime_get_sync(&pdev->dev);
6037 
6038 	netif_carrier_off(netdev);
6039 
6040 	/* allocate transmit descriptors */
6041 	err = igc_setup_all_tx_resources(adapter);
6042 	if (err)
6043 		goto err_setup_tx;
6044 
6045 	/* allocate receive descriptors */
6046 	err = igc_setup_all_rx_resources(adapter);
6047 	if (err)
6048 		goto err_setup_rx;
6049 
6050 	igc_power_up_link(adapter);
6051 
6052 	igc_configure(adapter);
6053 
6054 	err = igc_request_irq(adapter);
6055 	if (err)
6056 		goto err_req_irq;
6057 
6058 	clear_bit(__IGC_DOWN, &adapter->state);
6059 
6060 	for (i = 0; i < adapter->num_q_vectors; i++)
6061 		napi_enable(&adapter->q_vector[i]->napi);
6062 
6063 	/* Clear any pending interrupts. */
6064 	rd32(IGC_ICR);
6065 	igc_irq_enable(adapter);
6066 
6067 	if (!resuming)
6068 		pm_runtime_put(&pdev->dev);
6069 
6070 	netif_tx_start_all_queues(netdev);
6071 
6072 	/* start the watchdog. */
6073 	hw->mac.get_link_status = true;
6074 	schedule_work(&adapter->watchdog_task);
6075 
6076 	return IGC_SUCCESS;
6077 
6078 err_req_irq:
6079 	igc_release_hw_control(adapter);
6080 	igc_power_down_phy_copper_base(&adapter->hw);
6081 	igc_free_all_rx_resources(adapter);
6082 err_setup_rx:
6083 	igc_free_all_tx_resources(adapter);
6084 err_setup_tx:
6085 	igc_reset(adapter);
6086 	if (!resuming)
6087 		pm_runtime_put(&pdev->dev);
6088 
6089 	return err;
6090 }
6091 
igc_open(struct net_device * netdev)6092 int igc_open(struct net_device *netdev)
6093 {
6094 	struct igc_adapter *adapter = netdev_priv(netdev);
6095 	int err;
6096 
6097 	/* Notify the stack of the actual queue counts. */
6098 	err = netif_set_real_num_queues(netdev, adapter->num_tx_queues,
6099 					adapter->num_rx_queues);
6100 	if (err) {
6101 		netdev_err(netdev, "error setting real queue count\n");
6102 		return err;
6103 	}
6104 
6105 	return __igc_open(netdev, false);
6106 }
6107 
6108 /**
6109  * __igc_close - Disables a network interface
6110  * @netdev: network interface device structure
6111  * @suspending: boolean indicating the device is suspending
6112  *
6113  * Returns 0, this is not allowed to fail
6114  *
6115  * The close entry point is called when an interface is de-activated
6116  * by the OS.  The hardware is still under the driver's control, but
6117  * needs to be disabled.  A global MAC reset is issued to stop the
6118  * hardware, and all transmit and receive resources are freed.
6119  */
__igc_close(struct net_device * netdev,bool suspending)6120 static int __igc_close(struct net_device *netdev, bool suspending)
6121 {
6122 	struct igc_adapter *adapter = netdev_priv(netdev);
6123 	struct pci_dev *pdev = adapter->pdev;
6124 
6125 	WARN_ON(test_bit(__IGC_RESETTING, &adapter->state));
6126 
6127 	if (!suspending)
6128 		pm_runtime_get_sync(&pdev->dev);
6129 
6130 	igc_down(adapter);
6131 
6132 	igc_release_hw_control(adapter);
6133 
6134 	igc_free_irq(adapter);
6135 
6136 	igc_free_all_tx_resources(adapter);
6137 	igc_free_all_rx_resources(adapter);
6138 
6139 	if (!suspending)
6140 		pm_runtime_put_sync(&pdev->dev);
6141 
6142 	return 0;
6143 }
6144 
igc_close(struct net_device * netdev)6145 int igc_close(struct net_device *netdev)
6146 {
6147 	if (netif_device_present(netdev) || netdev->dismantle)
6148 		return __igc_close(netdev, false);
6149 	return 0;
6150 }
6151 
6152 /**
6153  * igc_ioctl - Access the hwtstamp interface
6154  * @netdev: network interface device structure
6155  * @ifr: interface request data
6156  * @cmd: ioctl command
6157  **/
igc_ioctl(struct net_device * netdev,struct ifreq * ifr,int cmd)6158 static int igc_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
6159 {
6160 	switch (cmd) {
6161 	case SIOCGHWTSTAMP:
6162 		return igc_ptp_get_ts_config(netdev, ifr);
6163 	case SIOCSHWTSTAMP:
6164 		return igc_ptp_set_ts_config(netdev, ifr);
6165 	default:
6166 		return -EOPNOTSUPP;
6167 	}
6168 }
6169 
igc_save_launchtime_params(struct igc_adapter * adapter,int queue,bool enable)6170 static int igc_save_launchtime_params(struct igc_adapter *adapter, int queue,
6171 				      bool enable)
6172 {
6173 	struct igc_ring *ring;
6174 
6175 	if (queue < 0 || queue >= adapter->num_tx_queues)
6176 		return -EINVAL;
6177 
6178 	ring = adapter->tx_ring[queue];
6179 	ring->launchtime_enable = enable;
6180 
6181 	return 0;
6182 }
6183 
is_base_time_past(ktime_t base_time,const struct timespec64 * now)6184 static bool is_base_time_past(ktime_t base_time, const struct timespec64 *now)
6185 {
6186 	struct timespec64 b;
6187 
6188 	b = ktime_to_timespec64(base_time);
6189 
6190 	return timespec64_compare(now, &b) > 0;
6191 }
6192 
validate_schedule(struct igc_adapter * adapter,const struct tc_taprio_qopt_offload * qopt)6193 static bool validate_schedule(struct igc_adapter *adapter,
6194 			      const struct tc_taprio_qopt_offload *qopt)
6195 {
6196 	int queue_uses[IGC_MAX_TX_QUEUES] = { };
6197 	struct igc_hw *hw = &adapter->hw;
6198 	struct timespec64 now;
6199 	size_t n;
6200 
6201 	if (qopt->cycle_time_extension)
6202 		return false;
6203 
6204 	igc_ptp_read(adapter, &now);
6205 
6206 	/* If we program the controller's BASET registers with a time
6207 	 * in the future, it will hold all the packets until that
6208 	 * time, causing a lot of TX Hangs, so to avoid that, we
6209 	 * reject schedules that would start in the future.
6210 	 * Note: Limitation above is no longer in i226.
6211 	 */
6212 	if (!is_base_time_past(qopt->base_time, &now) &&
6213 	    igc_is_device_id_i225(hw))
6214 		return false;
6215 
6216 	for (n = 0; n < qopt->num_entries; n++) {
6217 		const struct tc_taprio_sched_entry *e, *prev;
6218 		int i;
6219 
6220 		prev = n ? &qopt->entries[n - 1] : NULL;
6221 		e = &qopt->entries[n];
6222 
6223 		/* i225 only supports "global" frame preemption
6224 		 * settings.
6225 		 */
6226 		if (e->command != TC_TAPRIO_CMD_SET_GATES)
6227 			return false;
6228 
6229 		for (i = 0; i < adapter->num_tx_queues; i++)
6230 			if (e->gate_mask & BIT(i)) {
6231 				queue_uses[i]++;
6232 
6233 				/* There are limitations: A single queue cannot
6234 				 * be opened and closed multiple times per cycle
6235 				 * unless the gate stays open. Check for it.
6236 				 */
6237 				if (queue_uses[i] > 1 &&
6238 				    !(prev->gate_mask & BIT(i)))
6239 					return false;
6240 			}
6241 	}
6242 
6243 	return true;
6244 }
6245 
igc_tsn_enable_launchtime(struct igc_adapter * adapter,struct tc_etf_qopt_offload * qopt)6246 static int igc_tsn_enable_launchtime(struct igc_adapter *adapter,
6247 				     struct tc_etf_qopt_offload *qopt)
6248 {
6249 	struct igc_hw *hw = &adapter->hw;
6250 	int err;
6251 
6252 	if (hw->mac.type != igc_i225)
6253 		return -EOPNOTSUPP;
6254 
6255 	err = igc_save_launchtime_params(adapter, qopt->queue, qopt->enable);
6256 	if (err)
6257 		return err;
6258 
6259 	return igc_tsn_offload_apply(adapter);
6260 }
6261 
igc_qbv_clear_schedule(struct igc_adapter * adapter)6262 static int igc_qbv_clear_schedule(struct igc_adapter *adapter)
6263 {
6264 	unsigned long flags;
6265 	int i;
6266 
6267 	adapter->base_time = 0;
6268 	adapter->cycle_time = NSEC_PER_SEC;
6269 	adapter->taprio_offload_enable = false;
6270 	adapter->qbv_config_change_errors = 0;
6271 	adapter->qbv_count = 0;
6272 
6273 	for (i = 0; i < adapter->num_tx_queues; i++) {
6274 		struct igc_ring *ring = adapter->tx_ring[i];
6275 
6276 		ring->start_time = 0;
6277 		ring->end_time = NSEC_PER_SEC;
6278 		ring->max_sdu = 0;
6279 	}
6280 
6281 	spin_lock_irqsave(&adapter->qbv_tx_lock, flags);
6282 
6283 	adapter->qbv_transition = false;
6284 
6285 	for (i = 0; i < adapter->num_tx_queues; i++) {
6286 		struct igc_ring *ring = adapter->tx_ring[i];
6287 
6288 		ring->oper_gate_closed = false;
6289 		ring->admin_gate_closed = false;
6290 	}
6291 
6292 	spin_unlock_irqrestore(&adapter->qbv_tx_lock, flags);
6293 
6294 	return 0;
6295 }
6296 
igc_tsn_clear_schedule(struct igc_adapter * adapter)6297 static int igc_tsn_clear_schedule(struct igc_adapter *adapter)
6298 {
6299 	igc_qbv_clear_schedule(adapter);
6300 
6301 	return 0;
6302 }
6303 
igc_taprio_stats(struct net_device * dev,struct tc_taprio_qopt_stats * stats)6304 static void igc_taprio_stats(struct net_device *dev,
6305 			     struct tc_taprio_qopt_stats *stats)
6306 {
6307 	/* When Strict_End is enabled, the tx_overruns counter
6308 	 * will always be zero.
6309 	 */
6310 	stats->tx_overruns = 0;
6311 }
6312 
igc_taprio_queue_stats(struct net_device * dev,struct tc_taprio_qopt_queue_stats * queue_stats)6313 static void igc_taprio_queue_stats(struct net_device *dev,
6314 				   struct tc_taprio_qopt_queue_stats *queue_stats)
6315 {
6316 	struct tc_taprio_qopt_stats *stats = &queue_stats->stats;
6317 
6318 	/* When Strict_End is enabled, the tx_overruns counter
6319 	 * will always be zero.
6320 	 */
6321 	stats->tx_overruns = 0;
6322 }
6323 
igc_save_qbv_schedule(struct igc_adapter * adapter,struct tc_taprio_qopt_offload * qopt)6324 static int igc_save_qbv_schedule(struct igc_adapter *adapter,
6325 				 struct tc_taprio_qopt_offload *qopt)
6326 {
6327 	bool queue_configured[IGC_MAX_TX_QUEUES] = { };
6328 	struct igc_hw *hw = &adapter->hw;
6329 	u32 start_time = 0, end_time = 0;
6330 	struct timespec64 now;
6331 	unsigned long flags;
6332 	size_t n;
6333 	int i;
6334 
6335 	if (qopt->base_time < 0)
6336 		return -ERANGE;
6337 
6338 	if (igc_is_device_id_i225(hw) && adapter->taprio_offload_enable)
6339 		return -EALREADY;
6340 
6341 	if (!validate_schedule(adapter, qopt))
6342 		return -EINVAL;
6343 
6344 	igc_ptp_read(adapter, &now);
6345 
6346 	if (igc_tsn_is_taprio_activated_by_user(adapter) &&
6347 	    is_base_time_past(qopt->base_time, &now))
6348 		adapter->qbv_config_change_errors++;
6349 
6350 	adapter->cycle_time = qopt->cycle_time;
6351 	adapter->base_time = qopt->base_time;
6352 	adapter->taprio_offload_enable = true;
6353 
6354 	for (n = 0; n < qopt->num_entries; n++) {
6355 		struct tc_taprio_sched_entry *e = &qopt->entries[n];
6356 
6357 		end_time += e->interval;
6358 
6359 		/* If any of the conditions below are true, we need to manually
6360 		 * control the end time of the cycle.
6361 		 * 1. Qbv users can specify a cycle time that is not equal
6362 		 * to the total GCL intervals. Hence, recalculation is
6363 		 * necessary here to exclude the time interval that
6364 		 * exceeds the cycle time.
6365 		 * 2. According to IEEE Std. 802.1Q-2018 section 8.6.9.2,
6366 		 * once the end of the list is reached, it will switch
6367 		 * to the END_OF_CYCLE state and leave the gates in the
6368 		 * same state until the next cycle is started.
6369 		 */
6370 		if (end_time > adapter->cycle_time ||
6371 		    n + 1 == qopt->num_entries)
6372 			end_time = adapter->cycle_time;
6373 
6374 		for (i = 0; i < adapter->num_tx_queues; i++) {
6375 			struct igc_ring *ring = adapter->tx_ring[i];
6376 
6377 			if (!(e->gate_mask & BIT(i)))
6378 				continue;
6379 
6380 			/* Check whether a queue stays open for more than one
6381 			 * entry. If so, keep the start and advance the end
6382 			 * time.
6383 			 */
6384 			if (!queue_configured[i])
6385 				ring->start_time = start_time;
6386 			ring->end_time = end_time;
6387 
6388 			if (ring->start_time >= adapter->cycle_time)
6389 				queue_configured[i] = false;
6390 			else
6391 				queue_configured[i] = true;
6392 		}
6393 
6394 		start_time += e->interval;
6395 	}
6396 
6397 	spin_lock_irqsave(&adapter->qbv_tx_lock, flags);
6398 
6399 	/* Check whether a queue gets configured.
6400 	 * If not, set the start and end time to be end time.
6401 	 */
6402 	for (i = 0; i < adapter->num_tx_queues; i++) {
6403 		struct igc_ring *ring = adapter->tx_ring[i];
6404 
6405 		if (!is_base_time_past(qopt->base_time, &now)) {
6406 			ring->admin_gate_closed = false;
6407 		} else {
6408 			ring->oper_gate_closed = false;
6409 			ring->admin_gate_closed = false;
6410 		}
6411 
6412 		if (!queue_configured[i]) {
6413 			if (!is_base_time_past(qopt->base_time, &now))
6414 				ring->admin_gate_closed = true;
6415 			else
6416 				ring->oper_gate_closed = true;
6417 
6418 			ring->start_time = end_time;
6419 			ring->end_time = end_time;
6420 		}
6421 	}
6422 
6423 	spin_unlock_irqrestore(&adapter->qbv_tx_lock, flags);
6424 
6425 	for (i = 0; i < adapter->num_tx_queues; i++) {
6426 		struct igc_ring *ring = adapter->tx_ring[i];
6427 		struct net_device *dev = adapter->netdev;
6428 
6429 		if (qopt->max_sdu[i])
6430 			ring->max_sdu = qopt->max_sdu[i] + dev->hard_header_len - ETH_TLEN;
6431 		else
6432 			ring->max_sdu = 0;
6433 	}
6434 
6435 	return 0;
6436 }
6437 
igc_tsn_enable_qbv_scheduling(struct igc_adapter * adapter,struct tc_taprio_qopt_offload * qopt)6438 static int igc_tsn_enable_qbv_scheduling(struct igc_adapter *adapter,
6439 					 struct tc_taprio_qopt_offload *qopt)
6440 {
6441 	struct igc_hw *hw = &adapter->hw;
6442 	int err;
6443 
6444 	if (hw->mac.type != igc_i225)
6445 		return -EOPNOTSUPP;
6446 
6447 	switch (qopt->cmd) {
6448 	case TAPRIO_CMD_REPLACE:
6449 		err = igc_save_qbv_schedule(adapter, qopt);
6450 		break;
6451 	case TAPRIO_CMD_DESTROY:
6452 		err = igc_tsn_clear_schedule(adapter);
6453 		break;
6454 	case TAPRIO_CMD_STATS:
6455 		igc_taprio_stats(adapter->netdev, &qopt->stats);
6456 		return 0;
6457 	case TAPRIO_CMD_QUEUE_STATS:
6458 		igc_taprio_queue_stats(adapter->netdev, &qopt->queue_stats);
6459 		return 0;
6460 	default:
6461 		return -EOPNOTSUPP;
6462 	}
6463 
6464 	if (err)
6465 		return err;
6466 
6467 	return igc_tsn_offload_apply(adapter);
6468 }
6469 
igc_save_cbs_params(struct igc_adapter * adapter,int queue,bool enable,int idleslope,int sendslope,int hicredit,int locredit)6470 static int igc_save_cbs_params(struct igc_adapter *adapter, int queue,
6471 			       bool enable, int idleslope, int sendslope,
6472 			       int hicredit, int locredit)
6473 {
6474 	bool cbs_status[IGC_MAX_SR_QUEUES] = { false };
6475 	struct net_device *netdev = adapter->netdev;
6476 	struct igc_ring *ring;
6477 	int i;
6478 
6479 	/* i225 has two sets of credit-based shaper logic.
6480 	 * Supporting it only on the top two priority queues
6481 	 */
6482 	if (queue < 0 || queue > 1)
6483 		return -EINVAL;
6484 
6485 	ring = adapter->tx_ring[queue];
6486 
6487 	for (i = 0; i < IGC_MAX_SR_QUEUES; i++)
6488 		if (adapter->tx_ring[i])
6489 			cbs_status[i] = adapter->tx_ring[i]->cbs_enable;
6490 
6491 	/* CBS should be enabled on the highest priority queue first in order
6492 	 * for the CBS algorithm to operate as intended.
6493 	 */
6494 	if (enable) {
6495 		if (queue == 1 && !cbs_status[0]) {
6496 			netdev_err(netdev,
6497 				   "Enabling CBS on queue1 before queue0\n");
6498 			return -EINVAL;
6499 		}
6500 	} else {
6501 		if (queue == 0 && cbs_status[1]) {
6502 			netdev_err(netdev,
6503 				   "Disabling CBS on queue0 before queue1\n");
6504 			return -EINVAL;
6505 		}
6506 	}
6507 
6508 	ring->cbs_enable = enable;
6509 	ring->idleslope = idleslope;
6510 	ring->sendslope = sendslope;
6511 	ring->hicredit = hicredit;
6512 	ring->locredit = locredit;
6513 
6514 	return 0;
6515 }
6516 
igc_tsn_enable_cbs(struct igc_adapter * adapter,struct tc_cbs_qopt_offload * qopt)6517 static int igc_tsn_enable_cbs(struct igc_adapter *adapter,
6518 			      struct tc_cbs_qopt_offload *qopt)
6519 {
6520 	struct igc_hw *hw = &adapter->hw;
6521 	int err;
6522 
6523 	if (hw->mac.type != igc_i225)
6524 		return -EOPNOTSUPP;
6525 
6526 	if (qopt->queue < 0 || qopt->queue > 1)
6527 		return -EINVAL;
6528 
6529 	err = igc_save_cbs_params(adapter, qopt->queue, qopt->enable,
6530 				  qopt->idleslope, qopt->sendslope,
6531 				  qopt->hicredit, qopt->locredit);
6532 	if (err)
6533 		return err;
6534 
6535 	return igc_tsn_offload_apply(adapter);
6536 }
6537 
igc_tc_query_caps(struct igc_adapter * adapter,struct tc_query_caps_base * base)6538 static int igc_tc_query_caps(struct igc_adapter *adapter,
6539 			     struct tc_query_caps_base *base)
6540 {
6541 	struct igc_hw *hw = &adapter->hw;
6542 
6543 	switch (base->type) {
6544 	case TC_SETUP_QDISC_MQPRIO: {
6545 		struct tc_mqprio_caps *caps = base->caps;
6546 
6547 		caps->validate_queue_counts = true;
6548 
6549 		return 0;
6550 	}
6551 	case TC_SETUP_QDISC_TAPRIO: {
6552 		struct tc_taprio_caps *caps = base->caps;
6553 
6554 		caps->broken_mqprio = true;
6555 
6556 		if (hw->mac.type == igc_i225) {
6557 			caps->supports_queue_max_sdu = true;
6558 			caps->gate_mask_per_txq = true;
6559 		}
6560 
6561 		return 0;
6562 	}
6563 	default:
6564 		return -EOPNOTSUPP;
6565 	}
6566 }
6567 
igc_save_mqprio_params(struct igc_adapter * adapter,u8 num_tc,u16 * offset)6568 static void igc_save_mqprio_params(struct igc_adapter *adapter, u8 num_tc,
6569 				   u16 *offset)
6570 {
6571 	int i;
6572 
6573 	adapter->strict_priority_enable = true;
6574 	adapter->num_tc = num_tc;
6575 
6576 	for (i = 0; i < num_tc; i++)
6577 		adapter->queue_per_tc[i] = offset[i];
6578 }
6579 
igc_tsn_enable_mqprio(struct igc_adapter * adapter,struct tc_mqprio_qopt_offload * mqprio)6580 static int igc_tsn_enable_mqprio(struct igc_adapter *adapter,
6581 				 struct tc_mqprio_qopt_offload *mqprio)
6582 {
6583 	struct igc_hw *hw = &adapter->hw;
6584 	int i;
6585 
6586 	if (hw->mac.type != igc_i225)
6587 		return -EOPNOTSUPP;
6588 
6589 	if (!mqprio->qopt.num_tc) {
6590 		adapter->strict_priority_enable = false;
6591 		goto apply;
6592 	}
6593 
6594 	/* There are as many TCs as Tx queues. */
6595 	if (mqprio->qopt.num_tc != adapter->num_tx_queues) {
6596 		NL_SET_ERR_MSG_FMT_MOD(mqprio->extack,
6597 				       "Only %d traffic classes supported",
6598 				       adapter->num_tx_queues);
6599 		return -EOPNOTSUPP;
6600 	}
6601 
6602 	/* Only one queue per TC is supported. */
6603 	for (i = 0; i < mqprio->qopt.num_tc; i++) {
6604 		if (mqprio->qopt.count[i] != 1) {
6605 			NL_SET_ERR_MSG_MOD(mqprio->extack,
6606 					   "Only one queue per TC supported");
6607 			return -EOPNOTSUPP;
6608 		}
6609 	}
6610 
6611 	/* Preemption is not supported yet. */
6612 	if (mqprio->preemptible_tcs) {
6613 		NL_SET_ERR_MSG_MOD(mqprio->extack,
6614 				   "Preemption is not supported yet");
6615 		return -EOPNOTSUPP;
6616 	}
6617 
6618 	igc_save_mqprio_params(adapter, mqprio->qopt.num_tc,
6619 			       mqprio->qopt.offset);
6620 
6621 	mqprio->qopt.hw = TC_MQPRIO_HW_OFFLOAD_TCS;
6622 
6623 apply:
6624 	return igc_tsn_offload_apply(adapter);
6625 }
6626 
igc_setup_tc(struct net_device * dev,enum tc_setup_type type,void * type_data)6627 static int igc_setup_tc(struct net_device *dev, enum tc_setup_type type,
6628 			void *type_data)
6629 {
6630 	struct igc_adapter *adapter = netdev_priv(dev);
6631 
6632 	adapter->tc_setup_type = type;
6633 
6634 	switch (type) {
6635 	case TC_QUERY_CAPS:
6636 		return igc_tc_query_caps(adapter, type_data);
6637 	case TC_SETUP_QDISC_TAPRIO:
6638 		return igc_tsn_enable_qbv_scheduling(adapter, type_data);
6639 
6640 	case TC_SETUP_QDISC_ETF:
6641 		return igc_tsn_enable_launchtime(adapter, type_data);
6642 
6643 	case TC_SETUP_QDISC_CBS:
6644 		return igc_tsn_enable_cbs(adapter, type_data);
6645 
6646 	case TC_SETUP_QDISC_MQPRIO:
6647 		return igc_tsn_enable_mqprio(adapter, type_data);
6648 
6649 	default:
6650 		return -EOPNOTSUPP;
6651 	}
6652 }
6653 
igc_bpf(struct net_device * dev,struct netdev_bpf * bpf)6654 static int igc_bpf(struct net_device *dev, struct netdev_bpf *bpf)
6655 {
6656 	struct igc_adapter *adapter = netdev_priv(dev);
6657 
6658 	switch (bpf->command) {
6659 	case XDP_SETUP_PROG:
6660 		return igc_xdp_set_prog(adapter, bpf->prog, bpf->extack);
6661 	case XDP_SETUP_XSK_POOL:
6662 		return igc_xdp_setup_pool(adapter, bpf->xsk.pool,
6663 					  bpf->xsk.queue_id);
6664 	default:
6665 		return -EOPNOTSUPP;
6666 	}
6667 }
6668 
igc_xdp_xmit(struct net_device * dev,int num_frames,struct xdp_frame ** frames,u32 flags)6669 static int igc_xdp_xmit(struct net_device *dev, int num_frames,
6670 			struct xdp_frame **frames, u32 flags)
6671 {
6672 	struct igc_adapter *adapter = netdev_priv(dev);
6673 	int cpu = smp_processor_id();
6674 	struct netdev_queue *nq;
6675 	struct igc_ring *ring;
6676 	int i, nxmit;
6677 
6678 	if (unlikely(!netif_carrier_ok(dev)))
6679 		return -ENETDOWN;
6680 
6681 	if (unlikely(flags & ~XDP_XMIT_FLAGS_MASK))
6682 		return -EINVAL;
6683 
6684 	ring = igc_xdp_get_tx_ring(adapter, cpu);
6685 	nq = txring_txq(ring);
6686 
6687 	__netif_tx_lock(nq, cpu);
6688 
6689 	/* Avoid transmit queue timeout since we share it with the slow path */
6690 	txq_trans_cond_update(nq);
6691 
6692 	nxmit = 0;
6693 	for (i = 0; i < num_frames; i++) {
6694 		int err;
6695 		struct xdp_frame *xdpf = frames[i];
6696 
6697 		err = igc_xdp_init_tx_descriptor(ring, xdpf);
6698 		if (err)
6699 			break;
6700 		nxmit++;
6701 	}
6702 
6703 	if (flags & XDP_XMIT_FLUSH)
6704 		igc_flush_tx_descriptors(ring);
6705 
6706 	__netif_tx_unlock(nq);
6707 
6708 	return nxmit;
6709 }
6710 
igc_trigger_rxtxq_interrupt(struct igc_adapter * adapter,struct igc_q_vector * q_vector)6711 static void igc_trigger_rxtxq_interrupt(struct igc_adapter *adapter,
6712 					struct igc_q_vector *q_vector)
6713 {
6714 	struct igc_hw *hw = &adapter->hw;
6715 	u32 eics = 0;
6716 
6717 	eics |= q_vector->eims_value;
6718 	wr32(IGC_EICS, eics);
6719 }
6720 
igc_xsk_wakeup(struct net_device * dev,u32 queue_id,u32 flags)6721 int igc_xsk_wakeup(struct net_device *dev, u32 queue_id, u32 flags)
6722 {
6723 	struct igc_adapter *adapter = netdev_priv(dev);
6724 	struct igc_q_vector *q_vector;
6725 	struct igc_ring *ring;
6726 
6727 	if (test_bit(__IGC_DOWN, &adapter->state))
6728 		return -ENETDOWN;
6729 
6730 	if (!igc_xdp_is_enabled(adapter))
6731 		return -ENXIO;
6732 
6733 	if (queue_id >= adapter->num_rx_queues)
6734 		return -EINVAL;
6735 
6736 	ring = adapter->rx_ring[queue_id];
6737 
6738 	if (!ring->xsk_pool)
6739 		return -ENXIO;
6740 
6741 	q_vector = adapter->q_vector[queue_id];
6742 	if (!napi_if_scheduled_mark_missed(&q_vector->napi))
6743 		igc_trigger_rxtxq_interrupt(adapter, q_vector);
6744 
6745 	return 0;
6746 }
6747 
igc_get_tstamp(struct net_device * dev,const struct skb_shared_hwtstamps * hwtstamps,bool cycles)6748 static ktime_t igc_get_tstamp(struct net_device *dev,
6749 			      const struct skb_shared_hwtstamps *hwtstamps,
6750 			      bool cycles)
6751 {
6752 	struct igc_adapter *adapter = netdev_priv(dev);
6753 	struct igc_inline_rx_tstamps *tstamp;
6754 	ktime_t timestamp;
6755 
6756 	tstamp = hwtstamps->netdev_data;
6757 
6758 	if (cycles)
6759 		timestamp = igc_ptp_rx_pktstamp(adapter, tstamp->timer1);
6760 	else
6761 		timestamp = igc_ptp_rx_pktstamp(adapter, tstamp->timer0);
6762 
6763 	return timestamp;
6764 }
6765 
6766 static const struct net_device_ops igc_netdev_ops = {
6767 	.ndo_open		= igc_open,
6768 	.ndo_stop		= igc_close,
6769 	.ndo_start_xmit		= igc_xmit_frame,
6770 	.ndo_set_rx_mode	= igc_set_rx_mode,
6771 	.ndo_set_mac_address	= igc_set_mac,
6772 	.ndo_change_mtu		= igc_change_mtu,
6773 	.ndo_tx_timeout		= igc_tx_timeout,
6774 	.ndo_get_stats64	= igc_get_stats64,
6775 	.ndo_fix_features	= igc_fix_features,
6776 	.ndo_set_features	= igc_set_features,
6777 	.ndo_features_check	= igc_features_check,
6778 	.ndo_eth_ioctl		= igc_ioctl,
6779 	.ndo_setup_tc		= igc_setup_tc,
6780 	.ndo_bpf		= igc_bpf,
6781 	.ndo_xdp_xmit		= igc_xdp_xmit,
6782 	.ndo_xsk_wakeup		= igc_xsk_wakeup,
6783 	.ndo_get_tstamp		= igc_get_tstamp,
6784 };
6785 
6786 /* PCIe configuration access */
igc_read_pci_cfg(struct igc_hw * hw,u32 reg,u16 * value)6787 void igc_read_pci_cfg(struct igc_hw *hw, u32 reg, u16 *value)
6788 {
6789 	struct igc_adapter *adapter = hw->back;
6790 
6791 	pci_read_config_word(adapter->pdev, reg, value);
6792 }
6793 
igc_write_pci_cfg(struct igc_hw * hw,u32 reg,u16 * value)6794 void igc_write_pci_cfg(struct igc_hw *hw, u32 reg, u16 *value)
6795 {
6796 	struct igc_adapter *adapter = hw->back;
6797 
6798 	pci_write_config_word(adapter->pdev, reg, *value);
6799 }
6800 
igc_read_pcie_cap_reg(struct igc_hw * hw,u32 reg,u16 * value)6801 s32 igc_read_pcie_cap_reg(struct igc_hw *hw, u32 reg, u16 *value)
6802 {
6803 	struct igc_adapter *adapter = hw->back;
6804 
6805 	if (!pci_is_pcie(adapter->pdev))
6806 		return -IGC_ERR_CONFIG;
6807 
6808 	pcie_capability_read_word(adapter->pdev, reg, value);
6809 
6810 	return IGC_SUCCESS;
6811 }
6812 
igc_write_pcie_cap_reg(struct igc_hw * hw,u32 reg,u16 * value)6813 s32 igc_write_pcie_cap_reg(struct igc_hw *hw, u32 reg, u16 *value)
6814 {
6815 	struct igc_adapter *adapter = hw->back;
6816 
6817 	if (!pci_is_pcie(adapter->pdev))
6818 		return -IGC_ERR_CONFIG;
6819 
6820 	pcie_capability_write_word(adapter->pdev, reg, *value);
6821 
6822 	return IGC_SUCCESS;
6823 }
6824 
igc_rd32(struct igc_hw * hw,u32 reg)6825 u32 igc_rd32(struct igc_hw *hw, u32 reg)
6826 {
6827 	struct igc_adapter *igc = container_of(hw, struct igc_adapter, hw);
6828 	u8 __iomem *hw_addr = READ_ONCE(hw->hw_addr);
6829 	u32 value = 0;
6830 
6831 	if (IGC_REMOVED(hw_addr))
6832 		return ~value;
6833 
6834 	value = readl(&hw_addr[reg]);
6835 
6836 	/* reads should not return all F's */
6837 	if (!(~value) && (!reg || !(~readl(hw_addr)))) {
6838 		struct net_device *netdev = igc->netdev;
6839 
6840 		hw->hw_addr = NULL;
6841 		netif_device_detach(netdev);
6842 		netdev_err(netdev, "PCIe link lost, device now detached\n");
6843 		WARN(pci_device_is_present(igc->pdev),
6844 		     "igc: Failed to read reg 0x%x!\n", reg);
6845 	}
6846 
6847 	return value;
6848 }
6849 
6850 /* Mapping HW RSS Type to enum xdp_rss_hash_type */
6851 static enum xdp_rss_hash_type igc_xdp_rss_type[IGC_RSS_TYPE_MAX_TABLE] = {
6852 	[IGC_RSS_TYPE_NO_HASH]		= XDP_RSS_TYPE_L2,
6853 	[IGC_RSS_TYPE_HASH_TCP_IPV4]	= XDP_RSS_TYPE_L4_IPV4_TCP,
6854 	[IGC_RSS_TYPE_HASH_IPV4]	= XDP_RSS_TYPE_L3_IPV4,
6855 	[IGC_RSS_TYPE_HASH_TCP_IPV6]	= XDP_RSS_TYPE_L4_IPV6_TCP,
6856 	[IGC_RSS_TYPE_HASH_IPV6_EX]	= XDP_RSS_TYPE_L3_IPV6_EX,
6857 	[IGC_RSS_TYPE_HASH_IPV6]	= XDP_RSS_TYPE_L3_IPV6,
6858 	[IGC_RSS_TYPE_HASH_TCP_IPV6_EX] = XDP_RSS_TYPE_L4_IPV6_TCP_EX,
6859 	[IGC_RSS_TYPE_HASH_UDP_IPV4]	= XDP_RSS_TYPE_L4_IPV4_UDP,
6860 	[IGC_RSS_TYPE_HASH_UDP_IPV6]	= XDP_RSS_TYPE_L4_IPV6_UDP,
6861 	[IGC_RSS_TYPE_HASH_UDP_IPV6_EX] = XDP_RSS_TYPE_L4_IPV6_UDP_EX,
6862 	[10] = XDP_RSS_TYPE_NONE, /* RSS Type above 9 "Reserved" by HW  */
6863 	[11] = XDP_RSS_TYPE_NONE, /* keep array sized for SW bit-mask   */
6864 	[12] = XDP_RSS_TYPE_NONE, /* to handle future HW revisons       */
6865 	[13] = XDP_RSS_TYPE_NONE,
6866 	[14] = XDP_RSS_TYPE_NONE,
6867 	[15] = XDP_RSS_TYPE_NONE,
6868 };
6869 
igc_xdp_rx_hash(const struct xdp_md * _ctx,u32 * hash,enum xdp_rss_hash_type * rss_type)6870 static int igc_xdp_rx_hash(const struct xdp_md *_ctx, u32 *hash,
6871 			   enum xdp_rss_hash_type *rss_type)
6872 {
6873 	const struct igc_xdp_buff *ctx = (void *)_ctx;
6874 
6875 	if (!(ctx->xdp.rxq->dev->features & NETIF_F_RXHASH))
6876 		return -ENODATA;
6877 
6878 	*hash = le32_to_cpu(ctx->rx_desc->wb.lower.hi_dword.rss);
6879 	*rss_type = igc_xdp_rss_type[igc_rss_type(ctx->rx_desc)];
6880 
6881 	return 0;
6882 }
6883 
igc_xdp_rx_timestamp(const struct xdp_md * _ctx,u64 * timestamp)6884 static int igc_xdp_rx_timestamp(const struct xdp_md *_ctx, u64 *timestamp)
6885 {
6886 	const struct igc_xdp_buff *ctx = (void *)_ctx;
6887 	struct igc_adapter *adapter = netdev_priv(ctx->xdp.rxq->dev);
6888 	struct igc_inline_rx_tstamps *tstamp = ctx->rx_ts;
6889 
6890 	if (igc_test_staterr(ctx->rx_desc, IGC_RXDADV_STAT_TSIP)) {
6891 		*timestamp = igc_ptp_rx_pktstamp(adapter, tstamp->timer0);
6892 
6893 		return 0;
6894 	}
6895 
6896 	return -ENODATA;
6897 }
6898 
6899 static const struct xdp_metadata_ops igc_xdp_metadata_ops = {
6900 	.xmo_rx_hash			= igc_xdp_rx_hash,
6901 	.xmo_rx_timestamp		= igc_xdp_rx_timestamp,
6902 };
6903 
igc_qbv_scheduling_timer(struct hrtimer * timer)6904 static enum hrtimer_restart igc_qbv_scheduling_timer(struct hrtimer *timer)
6905 {
6906 	struct igc_adapter *adapter = container_of(timer, struct igc_adapter,
6907 						   hrtimer);
6908 	unsigned long flags;
6909 	unsigned int i;
6910 
6911 	spin_lock_irqsave(&adapter->qbv_tx_lock, flags);
6912 
6913 	adapter->qbv_transition = true;
6914 	for (i = 0; i < adapter->num_tx_queues; i++) {
6915 		struct igc_ring *tx_ring = adapter->tx_ring[i];
6916 
6917 		if (tx_ring->admin_gate_closed) {
6918 			tx_ring->admin_gate_closed = false;
6919 			tx_ring->oper_gate_closed = true;
6920 		} else {
6921 			tx_ring->oper_gate_closed = false;
6922 		}
6923 	}
6924 	adapter->qbv_transition = false;
6925 
6926 	spin_unlock_irqrestore(&adapter->qbv_tx_lock, flags);
6927 
6928 	return HRTIMER_NORESTART;
6929 }
6930 
6931 /**
6932  * igc_probe - Device Initialization Routine
6933  * @pdev: PCI device information struct
6934  * @ent: entry in igc_pci_tbl
6935  *
6936  * Returns 0 on success, negative on failure
6937  *
6938  * igc_probe initializes an adapter identified by a pci_dev structure.
6939  * The OS initialization, configuring the adapter private structure,
6940  * and a hardware reset occur.
6941  */
igc_probe(struct pci_dev * pdev,const struct pci_device_id * ent)6942 static int igc_probe(struct pci_dev *pdev,
6943 		     const struct pci_device_id *ent)
6944 {
6945 	struct igc_adapter *adapter;
6946 	struct net_device *netdev;
6947 	struct igc_hw *hw;
6948 	const struct igc_info *ei = igc_info_tbl[ent->driver_data];
6949 	int err;
6950 
6951 	err = pci_enable_device_mem(pdev);
6952 	if (err)
6953 		return err;
6954 
6955 	err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
6956 	if (err) {
6957 		dev_err(&pdev->dev,
6958 			"No usable DMA configuration, aborting\n");
6959 		goto err_dma;
6960 	}
6961 
6962 	err = pci_request_mem_regions(pdev, igc_driver_name);
6963 	if (err)
6964 		goto err_pci_reg;
6965 
6966 	err = pci_enable_ptm(pdev, NULL);
6967 	if (err < 0)
6968 		dev_info(&pdev->dev, "PCIe PTM not supported by PCIe bus/controller\n");
6969 
6970 	pci_set_master(pdev);
6971 
6972 	err = -ENOMEM;
6973 	netdev = alloc_etherdev_mq(sizeof(struct igc_adapter),
6974 				   IGC_MAX_TX_QUEUES);
6975 
6976 	if (!netdev)
6977 		goto err_alloc_etherdev;
6978 
6979 	SET_NETDEV_DEV(netdev, &pdev->dev);
6980 
6981 	pci_set_drvdata(pdev, netdev);
6982 	adapter = netdev_priv(netdev);
6983 	adapter->netdev = netdev;
6984 	adapter->pdev = pdev;
6985 	hw = &adapter->hw;
6986 	hw->back = adapter;
6987 	adapter->port_num = hw->bus.func;
6988 	adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE);
6989 
6990 	/* PCI config space info */
6991 	hw->vendor_id = pdev->vendor;
6992 	hw->device_id = pdev->device;
6993 	hw->revision_id = pdev->revision;
6994 	hw->subsystem_vendor_id = pdev->subsystem_vendor;
6995 	hw->subsystem_device_id = pdev->subsystem_device;
6996 
6997 	/* Disable ASPM L1.2 on I226 devices to avoid packet loss */
6998 	if (igc_is_device_id_i226(hw))
6999 		pci_disable_link_state(pdev, PCIE_LINK_STATE_L1_2);
7000 
7001 	err = pci_save_state(pdev);
7002 	if (err)
7003 		goto err_ioremap;
7004 
7005 	err = -EIO;
7006 	adapter->io_addr = ioremap(pci_resource_start(pdev, 0),
7007 				   pci_resource_len(pdev, 0));
7008 	if (!adapter->io_addr)
7009 		goto err_ioremap;
7010 
7011 	/* hw->hw_addr can be zeroed, so use adapter->io_addr for unmap */
7012 	hw->hw_addr = adapter->io_addr;
7013 
7014 	netdev->netdev_ops = &igc_netdev_ops;
7015 	netdev->xdp_metadata_ops = &igc_xdp_metadata_ops;
7016 	netdev->xsk_tx_metadata_ops = &igc_xsk_tx_metadata_ops;
7017 	igc_ethtool_set_ops(netdev);
7018 	netdev->watchdog_timeo = 5 * HZ;
7019 
7020 	netdev->mem_start = pci_resource_start(pdev, 0);
7021 	netdev->mem_end = pci_resource_end(pdev, 0);
7022 
7023 	/* Copy the default MAC and PHY function pointers */
7024 	memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops));
7025 	memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops));
7026 
7027 	/* Initialize skew-specific constants */
7028 	err = ei->get_invariants(hw);
7029 	if (err)
7030 		goto err_sw_init;
7031 
7032 	/* Add supported features to the features list*/
7033 	netdev->features |= NETIF_F_SG;
7034 	netdev->features |= NETIF_F_TSO;
7035 	netdev->features |= NETIF_F_TSO6;
7036 	netdev->features |= NETIF_F_TSO_ECN;
7037 	netdev->features |= NETIF_F_RXHASH;
7038 	netdev->features |= NETIF_F_RXCSUM;
7039 	netdev->features |= NETIF_F_HW_CSUM;
7040 	netdev->features |= NETIF_F_SCTP_CRC;
7041 	netdev->features |= NETIF_F_HW_TC;
7042 
7043 #define IGC_GSO_PARTIAL_FEATURES (NETIF_F_GSO_GRE | \
7044 				  NETIF_F_GSO_GRE_CSUM | \
7045 				  NETIF_F_GSO_IPXIP4 | \
7046 				  NETIF_F_GSO_IPXIP6 | \
7047 				  NETIF_F_GSO_UDP_TUNNEL | \
7048 				  NETIF_F_GSO_UDP_TUNNEL_CSUM)
7049 
7050 	netdev->gso_partial_features = IGC_GSO_PARTIAL_FEATURES;
7051 	netdev->features |= NETIF_F_GSO_PARTIAL | IGC_GSO_PARTIAL_FEATURES;
7052 
7053 	/* setup the private structure */
7054 	err = igc_sw_init(adapter);
7055 	if (err)
7056 		goto err_sw_init;
7057 
7058 	/* copy netdev features into list of user selectable features */
7059 	netdev->hw_features |= NETIF_F_NTUPLE;
7060 	netdev->hw_features |= NETIF_F_HW_VLAN_CTAG_TX;
7061 	netdev->hw_features |= NETIF_F_HW_VLAN_CTAG_RX;
7062 	netdev->hw_features |= netdev->features;
7063 
7064 	netdev->features |= NETIF_F_HIGHDMA;
7065 
7066 	netdev->vlan_features |= netdev->features | NETIF_F_TSO_MANGLEID;
7067 	netdev->mpls_features |= NETIF_F_HW_CSUM;
7068 	netdev->hw_enc_features |= netdev->vlan_features;
7069 
7070 	netdev->xdp_features = NETDEV_XDP_ACT_BASIC | NETDEV_XDP_ACT_REDIRECT |
7071 			       NETDEV_XDP_ACT_XSK_ZEROCOPY;
7072 
7073 	/* MTU range: 68 - 9216 */
7074 	netdev->min_mtu = ETH_MIN_MTU;
7075 	netdev->max_mtu = MAX_STD_JUMBO_FRAME_SIZE;
7076 
7077 	/* before reading the NVM, reset the controller to put the device in a
7078 	 * known good starting state
7079 	 */
7080 	hw->mac.ops.reset_hw(hw);
7081 
7082 	if (igc_get_flash_presence_i225(hw)) {
7083 		if (hw->nvm.ops.validate(hw) < 0) {
7084 			dev_err(&pdev->dev, "The NVM Checksum Is Not Valid\n");
7085 			err = -EIO;
7086 			goto err_eeprom;
7087 		}
7088 	}
7089 
7090 	if (eth_platform_get_mac_address(&pdev->dev, hw->mac.addr)) {
7091 		/* copy the MAC address out of the NVM */
7092 		if (hw->mac.ops.read_mac_addr(hw))
7093 			dev_err(&pdev->dev, "NVM Read Error\n");
7094 	}
7095 
7096 	eth_hw_addr_set(netdev, hw->mac.addr);
7097 
7098 	if (!is_valid_ether_addr(netdev->dev_addr)) {
7099 		dev_err(&pdev->dev, "Invalid MAC Address\n");
7100 		err = -EIO;
7101 		goto err_eeprom;
7102 	}
7103 
7104 	/* configure RXPBSIZE and TXPBSIZE */
7105 	wr32(IGC_RXPBS, I225_RXPBSIZE_DEFAULT);
7106 	wr32(IGC_TXPBS, I225_TXPBSIZE_DEFAULT);
7107 
7108 	timer_setup(&adapter->watchdog_timer, igc_watchdog, 0);
7109 	timer_setup(&adapter->phy_info_timer, igc_update_phy_info, 0);
7110 
7111 	INIT_WORK(&adapter->reset_task, igc_reset_task);
7112 	INIT_WORK(&adapter->watchdog_task, igc_watchdog_task);
7113 
7114 	hrtimer_init(&adapter->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
7115 	adapter->hrtimer.function = &igc_qbv_scheduling_timer;
7116 
7117 	/* Initialize link properties that are user-changeable */
7118 	adapter->fc_autoneg = true;
7119 	hw->mac.autoneg = true;
7120 	hw->phy.autoneg_advertised = 0xaf;
7121 
7122 	hw->fc.requested_mode = igc_fc_default;
7123 	hw->fc.current_mode = igc_fc_default;
7124 
7125 	/* By default, support wake on port A */
7126 	adapter->flags |= IGC_FLAG_WOL_SUPPORTED;
7127 
7128 	/* initialize the wol settings based on the eeprom settings */
7129 	if (adapter->flags & IGC_FLAG_WOL_SUPPORTED)
7130 		adapter->wol |= IGC_WUFC_MAG;
7131 
7132 	device_set_wakeup_enable(&adapter->pdev->dev,
7133 				 adapter->flags & IGC_FLAG_WOL_SUPPORTED);
7134 
7135 	igc_ptp_init(adapter);
7136 
7137 	igc_tsn_clear_schedule(adapter);
7138 
7139 	/* reset the hardware with the new settings */
7140 	igc_reset(adapter);
7141 
7142 	/* let the f/w know that the h/w is now under the control of the
7143 	 * driver.
7144 	 */
7145 	igc_get_hw_control(adapter);
7146 
7147 	strscpy(netdev->name, "eth%d", sizeof(netdev->name));
7148 	err = register_netdev(netdev);
7149 	if (err)
7150 		goto err_register;
7151 
7152 	 /* carrier off reporting is important to ethtool even BEFORE open */
7153 	netif_carrier_off(netdev);
7154 
7155 	/* Check if Media Autosense is enabled */
7156 	adapter->ei = *ei;
7157 
7158 	/* print pcie link status and MAC address */
7159 	pcie_print_link_status(pdev);
7160 	netdev_info(netdev, "MAC: %pM\n", netdev->dev_addr);
7161 
7162 	dev_pm_set_driver_flags(&pdev->dev, DPM_FLAG_NO_DIRECT_COMPLETE);
7163 	/* Disable EEE for internal PHY devices */
7164 	hw->dev_spec._base.eee_enable = false;
7165 	adapter->flags &= ~IGC_FLAG_EEE;
7166 	igc_set_eee_i225(hw, false, false, false);
7167 
7168 	pm_runtime_put_noidle(&pdev->dev);
7169 
7170 	if (IS_ENABLED(CONFIG_IGC_LEDS)) {
7171 		err = igc_led_setup(adapter);
7172 		if (err) {
7173 			netdev_warn_once(netdev,
7174 					 "LED init failed (%d); continuing without LED support\n",
7175 					 err);
7176 			adapter->leds_available = false;
7177 		} else {
7178 			adapter->leds_available = true;
7179 		}
7180 	}
7181 
7182 	return 0;
7183 
7184 err_register:
7185 	igc_release_hw_control(adapter);
7186 	igc_ptp_stop(adapter);
7187 err_eeprom:
7188 	if (!igc_check_reset_block(hw))
7189 		igc_reset_phy(hw);
7190 err_sw_init:
7191 	igc_clear_interrupt_scheme(adapter);
7192 	iounmap(adapter->io_addr);
7193 err_ioremap:
7194 	free_netdev(netdev);
7195 err_alloc_etherdev:
7196 	pci_release_mem_regions(pdev);
7197 err_pci_reg:
7198 err_dma:
7199 	pci_disable_device(pdev);
7200 	return err;
7201 }
7202 
7203 /**
7204  * igc_remove - Device Removal Routine
7205  * @pdev: PCI device information struct
7206  *
7207  * igc_remove is called by the PCI subsystem to alert the driver
7208  * that it should release a PCI device.  This could be caused by a
7209  * Hot-Plug event, or because the driver is going to be removed from
7210  * memory.
7211  */
igc_remove(struct pci_dev * pdev)7212 static void igc_remove(struct pci_dev *pdev)
7213 {
7214 	struct net_device *netdev = pci_get_drvdata(pdev);
7215 	struct igc_adapter *adapter = netdev_priv(netdev);
7216 
7217 	pm_runtime_get_noresume(&pdev->dev);
7218 
7219 	igc_flush_nfc_rules(adapter);
7220 
7221 	igc_ptp_stop(adapter);
7222 
7223 	pci_disable_ptm(pdev);
7224 	pci_clear_master(pdev);
7225 
7226 	set_bit(__IGC_DOWN, &adapter->state);
7227 
7228 	del_timer_sync(&adapter->watchdog_timer);
7229 	del_timer_sync(&adapter->phy_info_timer);
7230 
7231 	cancel_work_sync(&adapter->reset_task);
7232 	cancel_work_sync(&adapter->watchdog_task);
7233 	hrtimer_cancel(&adapter->hrtimer);
7234 
7235 	if (IS_ENABLED(CONFIG_IGC_LEDS) && adapter->leds_available)
7236 		igc_led_free(adapter);
7237 
7238 	/* Release control of h/w to f/w.  If f/w is AMT enabled, this
7239 	 * would have already happened in close and is redundant.
7240 	 */
7241 	igc_release_hw_control(adapter);
7242 	unregister_netdev(netdev);
7243 
7244 	igc_clear_interrupt_scheme(adapter);
7245 	pci_iounmap(pdev, adapter->io_addr);
7246 	pci_release_mem_regions(pdev);
7247 
7248 	free_netdev(netdev);
7249 
7250 	pci_disable_device(pdev);
7251 }
7252 
__igc_shutdown(struct pci_dev * pdev,bool * enable_wake,bool runtime)7253 static int __igc_shutdown(struct pci_dev *pdev, bool *enable_wake,
7254 			  bool runtime)
7255 {
7256 	struct net_device *netdev = pci_get_drvdata(pdev);
7257 	struct igc_adapter *adapter = netdev_priv(netdev);
7258 	u32 wufc = runtime ? IGC_WUFC_LNKC : adapter->wol;
7259 	struct igc_hw *hw = &adapter->hw;
7260 	u32 ctrl, rctl, status;
7261 	bool wake;
7262 
7263 	rtnl_lock();
7264 	netif_device_detach(netdev);
7265 
7266 	if (netif_running(netdev))
7267 		__igc_close(netdev, true);
7268 
7269 	igc_ptp_suspend(adapter);
7270 
7271 	igc_clear_interrupt_scheme(adapter);
7272 	rtnl_unlock();
7273 
7274 	status = rd32(IGC_STATUS);
7275 	if (status & IGC_STATUS_LU)
7276 		wufc &= ~IGC_WUFC_LNKC;
7277 
7278 	if (wufc) {
7279 		igc_setup_rctl(adapter);
7280 		igc_set_rx_mode(netdev);
7281 
7282 		/* turn on all-multi mode if wake on multicast is enabled */
7283 		if (wufc & IGC_WUFC_MC) {
7284 			rctl = rd32(IGC_RCTL);
7285 			rctl |= IGC_RCTL_MPE;
7286 			wr32(IGC_RCTL, rctl);
7287 		}
7288 
7289 		ctrl = rd32(IGC_CTRL);
7290 		ctrl |= IGC_CTRL_ADVD3WUC;
7291 		wr32(IGC_CTRL, ctrl);
7292 
7293 		/* Allow time for pending master requests to run */
7294 		igc_disable_pcie_master(hw);
7295 
7296 		wr32(IGC_WUC, IGC_WUC_PME_EN);
7297 		wr32(IGC_WUFC, wufc);
7298 	} else {
7299 		wr32(IGC_WUC, 0);
7300 		wr32(IGC_WUFC, 0);
7301 	}
7302 
7303 	wake = wufc || adapter->en_mng_pt;
7304 	if (!wake)
7305 		igc_power_down_phy_copper_base(&adapter->hw);
7306 	else
7307 		igc_power_up_link(adapter);
7308 
7309 	if (enable_wake)
7310 		*enable_wake = wake;
7311 
7312 	/* Release control of h/w to f/w.  If f/w is AMT enabled, this
7313 	 * would have already happened in close and is redundant.
7314 	 */
7315 	igc_release_hw_control(adapter);
7316 
7317 	pci_disable_device(pdev);
7318 
7319 	return 0;
7320 }
7321 
igc_runtime_suspend(struct device * dev)7322 static int igc_runtime_suspend(struct device *dev)
7323 {
7324 	return __igc_shutdown(to_pci_dev(dev), NULL, 1);
7325 }
7326 
igc_deliver_wake_packet(struct net_device * netdev)7327 static void igc_deliver_wake_packet(struct net_device *netdev)
7328 {
7329 	struct igc_adapter *adapter = netdev_priv(netdev);
7330 	struct igc_hw *hw = &adapter->hw;
7331 	struct sk_buff *skb;
7332 	u32 wupl;
7333 
7334 	wupl = rd32(IGC_WUPL) & IGC_WUPL_MASK;
7335 
7336 	/* WUPM stores only the first 128 bytes of the wake packet.
7337 	 * Read the packet only if we have the whole thing.
7338 	 */
7339 	if (wupl == 0 || wupl > IGC_WUPM_BYTES)
7340 		return;
7341 
7342 	skb = netdev_alloc_skb_ip_align(netdev, IGC_WUPM_BYTES);
7343 	if (!skb)
7344 		return;
7345 
7346 	skb_put(skb, wupl);
7347 
7348 	/* Ensure reads are 32-bit aligned */
7349 	wupl = roundup(wupl, 4);
7350 
7351 	memcpy_fromio(skb->data, hw->hw_addr + IGC_WUPM_REG(0), wupl);
7352 
7353 	skb->protocol = eth_type_trans(skb, netdev);
7354 	netif_rx(skb);
7355 }
7356 
igc_resume(struct device * dev)7357 static int igc_resume(struct device *dev)
7358 {
7359 	struct pci_dev *pdev = to_pci_dev(dev);
7360 	struct net_device *netdev = pci_get_drvdata(pdev);
7361 	struct igc_adapter *adapter = netdev_priv(netdev);
7362 	struct igc_hw *hw = &adapter->hw;
7363 	u32 err, val;
7364 
7365 	pci_set_power_state(pdev, PCI_D0);
7366 	pci_restore_state(pdev);
7367 	pci_save_state(pdev);
7368 
7369 	if (!pci_device_is_present(pdev))
7370 		return -ENODEV;
7371 	err = pci_enable_device_mem(pdev);
7372 	if (err) {
7373 		netdev_err(netdev, "Cannot enable PCI device from suspend\n");
7374 		return err;
7375 	}
7376 	pci_set_master(pdev);
7377 
7378 	pci_enable_wake(pdev, PCI_D3hot, 0);
7379 	pci_enable_wake(pdev, PCI_D3cold, 0);
7380 
7381 	if (igc_is_device_id_i226(hw))
7382 		pci_disable_link_state(pdev, PCIE_LINK_STATE_L1_2);
7383 
7384 	if (igc_init_interrupt_scheme(adapter, true)) {
7385 		netdev_err(netdev, "Unable to allocate memory for queues\n");
7386 		return -ENOMEM;
7387 	}
7388 
7389 	igc_reset(adapter);
7390 
7391 	/* let the f/w know that the h/w is now under the control of the
7392 	 * driver.
7393 	 */
7394 	igc_get_hw_control(adapter);
7395 
7396 	val = rd32(IGC_WUS);
7397 	if (val & WAKE_PKT_WUS)
7398 		igc_deliver_wake_packet(netdev);
7399 
7400 	wr32(IGC_WUS, ~0);
7401 
7402 	if (netif_running(netdev)) {
7403 		err = __igc_open(netdev, true);
7404 		if (!err)
7405 			netif_device_attach(netdev);
7406 	}
7407 
7408 	return err;
7409 }
7410 
igc_runtime_resume(struct device * dev)7411 static int igc_runtime_resume(struct device *dev)
7412 {
7413 	return igc_resume(dev);
7414 }
7415 
igc_suspend(struct device * dev)7416 static int igc_suspend(struct device *dev)
7417 {
7418 	return __igc_shutdown(to_pci_dev(dev), NULL, 0);
7419 }
7420 
igc_runtime_idle(struct device * dev)7421 static int __maybe_unused igc_runtime_idle(struct device *dev)
7422 {
7423 	struct net_device *netdev = dev_get_drvdata(dev);
7424 	struct igc_adapter *adapter = netdev_priv(netdev);
7425 
7426 	if (!igc_has_link(adapter))
7427 		pm_schedule_suspend(dev, MSEC_PER_SEC * 5);
7428 
7429 	return -EBUSY;
7430 }
7431 
igc_shutdown(struct pci_dev * pdev)7432 static void igc_shutdown(struct pci_dev *pdev)
7433 {
7434 	bool wake;
7435 
7436 	__igc_shutdown(pdev, &wake, 0);
7437 
7438 	if (system_state == SYSTEM_POWER_OFF) {
7439 		pci_wake_from_d3(pdev, wake);
7440 		pci_set_power_state(pdev, PCI_D3hot);
7441 	}
7442 }
7443 
7444 /**
7445  *  igc_io_error_detected - called when PCI error is detected
7446  *  @pdev: Pointer to PCI device
7447  *  @state: The current PCI connection state
7448  *
7449  *  This function is called after a PCI bus error affecting
7450  *  this device has been detected.
7451  **/
igc_io_error_detected(struct pci_dev * pdev,pci_channel_state_t state)7452 static pci_ers_result_t igc_io_error_detected(struct pci_dev *pdev,
7453 					      pci_channel_state_t state)
7454 {
7455 	struct net_device *netdev = pci_get_drvdata(pdev);
7456 	struct igc_adapter *adapter = netdev_priv(netdev);
7457 
7458 	netif_device_detach(netdev);
7459 
7460 	if (state == pci_channel_io_perm_failure)
7461 		return PCI_ERS_RESULT_DISCONNECT;
7462 
7463 	if (netif_running(netdev))
7464 		igc_down(adapter);
7465 	pci_disable_device(pdev);
7466 
7467 	/* Request a slot reset. */
7468 	return PCI_ERS_RESULT_NEED_RESET;
7469 }
7470 
7471 /**
7472  *  igc_io_slot_reset - called after the PCI bus has been reset.
7473  *  @pdev: Pointer to PCI device
7474  *
7475  *  Restart the card from scratch, as if from a cold-boot. Implementation
7476  *  resembles the first-half of the igc_resume routine.
7477  **/
igc_io_slot_reset(struct pci_dev * pdev)7478 static pci_ers_result_t igc_io_slot_reset(struct pci_dev *pdev)
7479 {
7480 	struct net_device *netdev = pci_get_drvdata(pdev);
7481 	struct igc_adapter *adapter = netdev_priv(netdev);
7482 	struct igc_hw *hw = &adapter->hw;
7483 	pci_ers_result_t result;
7484 
7485 	if (pci_enable_device_mem(pdev)) {
7486 		netdev_err(netdev, "Could not re-enable PCI device after reset\n");
7487 		result = PCI_ERS_RESULT_DISCONNECT;
7488 	} else {
7489 		pci_set_master(pdev);
7490 		pci_restore_state(pdev);
7491 		pci_save_state(pdev);
7492 
7493 		pci_enable_wake(pdev, PCI_D3hot, 0);
7494 		pci_enable_wake(pdev, PCI_D3cold, 0);
7495 
7496 		if (igc_is_device_id_i226(hw))
7497 			pci_disable_link_state_locked(pdev, PCIE_LINK_STATE_L1_2);
7498 
7499 		/* In case of PCI error, adapter loses its HW address
7500 		 * so we should re-assign it here.
7501 		 */
7502 		hw->hw_addr = adapter->io_addr;
7503 
7504 		igc_reset(adapter);
7505 		wr32(IGC_WUS, ~0);
7506 		result = PCI_ERS_RESULT_RECOVERED;
7507 	}
7508 
7509 	return result;
7510 }
7511 
7512 /**
7513  *  igc_io_resume - called when traffic can start to flow again.
7514  *  @pdev: Pointer to PCI device
7515  *
7516  *  This callback is called when the error recovery driver tells us that
7517  *  its OK to resume normal operation. Implementation resembles the
7518  *  second-half of the igc_resume routine.
7519  */
igc_io_resume(struct pci_dev * pdev)7520 static void igc_io_resume(struct pci_dev *pdev)
7521 {
7522 	struct net_device *netdev = pci_get_drvdata(pdev);
7523 	struct igc_adapter *adapter = netdev_priv(netdev);
7524 
7525 	rtnl_lock();
7526 	if (netif_running(netdev)) {
7527 		if (igc_open(netdev)) {
7528 			rtnl_unlock();
7529 			netdev_err(netdev, "igc_open failed after reset\n");
7530 			return;
7531 		}
7532 	}
7533 
7534 	netif_device_attach(netdev);
7535 
7536 	/* let the f/w know that the h/w is now under the control of the
7537 	 * driver.
7538 	 */
7539 	igc_get_hw_control(adapter);
7540 	rtnl_unlock();
7541 }
7542 
7543 static const struct pci_error_handlers igc_err_handler = {
7544 	.error_detected = igc_io_error_detected,
7545 	.slot_reset = igc_io_slot_reset,
7546 	.resume = igc_io_resume,
7547 };
7548 
7549 static _DEFINE_DEV_PM_OPS(igc_pm_ops, igc_suspend, igc_resume,
7550 			  igc_runtime_suspend, igc_runtime_resume,
7551 			  igc_runtime_idle);
7552 
7553 static struct pci_driver igc_driver = {
7554 	.name     = igc_driver_name,
7555 	.id_table = igc_pci_tbl,
7556 	.probe    = igc_probe,
7557 	.remove   = igc_remove,
7558 	.driver.pm = pm_ptr(&igc_pm_ops),
7559 	.shutdown = igc_shutdown,
7560 	.err_handler = &igc_err_handler,
7561 };
7562 
7563 /**
7564  * igc_reinit_queues - return error
7565  * @adapter: pointer to adapter structure
7566  */
igc_reinit_queues(struct igc_adapter * adapter)7567 int igc_reinit_queues(struct igc_adapter *adapter)
7568 {
7569 	struct net_device *netdev = adapter->netdev;
7570 	int err = 0;
7571 
7572 	if (netif_running(netdev))
7573 		igc_close(netdev);
7574 
7575 	igc_reset_interrupt_capability(adapter);
7576 
7577 	if (igc_init_interrupt_scheme(adapter, true)) {
7578 		netdev_err(netdev, "Unable to allocate memory for queues\n");
7579 		return -ENOMEM;
7580 	}
7581 
7582 	if (netif_running(netdev))
7583 		err = igc_open(netdev);
7584 
7585 	return err;
7586 }
7587 
7588 /**
7589  * igc_get_hw_dev - return device
7590  * @hw: pointer to hardware structure
7591  *
7592  * used by hardware layer to print debugging information
7593  */
igc_get_hw_dev(struct igc_hw * hw)7594 struct net_device *igc_get_hw_dev(struct igc_hw *hw)
7595 {
7596 	struct igc_adapter *adapter = hw->back;
7597 
7598 	return adapter->netdev;
7599 }
7600 
igc_disable_rx_ring_hw(struct igc_ring * ring)7601 static void igc_disable_rx_ring_hw(struct igc_ring *ring)
7602 {
7603 	struct igc_hw *hw = &ring->q_vector->adapter->hw;
7604 	u8 idx = ring->reg_idx;
7605 	u32 rxdctl;
7606 
7607 	rxdctl = rd32(IGC_RXDCTL(idx));
7608 	rxdctl &= ~IGC_RXDCTL_QUEUE_ENABLE;
7609 	rxdctl |= IGC_RXDCTL_SWFLUSH;
7610 	wr32(IGC_RXDCTL(idx), rxdctl);
7611 }
7612 
igc_disable_rx_ring(struct igc_ring * ring)7613 void igc_disable_rx_ring(struct igc_ring *ring)
7614 {
7615 	igc_disable_rx_ring_hw(ring);
7616 	igc_clean_rx_ring(ring);
7617 }
7618 
igc_enable_rx_ring(struct igc_ring * ring)7619 void igc_enable_rx_ring(struct igc_ring *ring)
7620 {
7621 	struct igc_adapter *adapter = ring->q_vector->adapter;
7622 
7623 	igc_configure_rx_ring(adapter, ring);
7624 
7625 	if (ring->xsk_pool)
7626 		igc_alloc_rx_buffers_zc(ring, igc_desc_unused(ring));
7627 	else
7628 		igc_alloc_rx_buffers(ring, igc_desc_unused(ring));
7629 }
7630 
igc_disable_tx_ring(struct igc_ring * ring)7631 void igc_disable_tx_ring(struct igc_ring *ring)
7632 {
7633 	igc_disable_tx_ring_hw(ring);
7634 	igc_clean_tx_ring(ring);
7635 }
7636 
igc_enable_tx_ring(struct igc_ring * ring)7637 void igc_enable_tx_ring(struct igc_ring *ring)
7638 {
7639 	struct igc_adapter *adapter = ring->q_vector->adapter;
7640 
7641 	igc_configure_tx_ring(adapter, ring);
7642 }
7643 
7644 /**
7645  * igc_init_module - Driver Registration Routine
7646  *
7647  * igc_init_module is the first routine called when the driver is
7648  * loaded. All it does is register with the PCI subsystem.
7649  */
igc_init_module(void)7650 static int __init igc_init_module(void)
7651 {
7652 	int ret;
7653 
7654 	pr_info("%s\n", igc_driver_string);
7655 	pr_info("%s\n", igc_copyright);
7656 
7657 	ret = pci_register_driver(&igc_driver);
7658 	return ret;
7659 }
7660 
7661 module_init(igc_init_module);
7662 
7663 /**
7664  * igc_exit_module - Driver Exit Cleanup Routine
7665  *
7666  * igc_exit_module is called just before the driver is removed
7667  * from memory.
7668  */
igc_exit_module(void)7669 static void __exit igc_exit_module(void)
7670 {
7671 	pci_unregister_driver(&igc_driver);
7672 }
7673 
7674 module_exit(igc_exit_module);
7675 /* igc_main.c */
7676