1 // SPDX-License-Identifier: GPL-2.0
2 #include <linux/debugfs.h>
3 #include <linux/delay.h>
4 #include <linux/gpio/consumer.h>
5 #include <linux/hwmon.h>
6 #include <linux/i2c.h>
7 #include <linux/interrupt.h>
8 #include <linux/jiffies.h>
9 #include <linux/mdio/mdio-i2c.h>
10 #include <linux/module.h>
11 #include <linux/mutex.h>
12 #include <linux/of.h>
13 #include <linux/phy.h>
14 #include <linux/platform_device.h>
15 #include <linux/rtnetlink.h>
16 #include <linux/slab.h>
17 #include <linux/workqueue.h>
18
19 #include "sfp.h"
20 #include "swphy.h"
21
22 enum {
23 GPIO_MODDEF0,
24 GPIO_LOS,
25 GPIO_TX_FAULT,
26 GPIO_TX_DISABLE,
27 GPIO_RS0,
28 GPIO_RS1,
29 GPIO_MAX,
30
31 SFP_F_PRESENT = BIT(GPIO_MODDEF0),
32 SFP_F_LOS = BIT(GPIO_LOS),
33 SFP_F_TX_FAULT = BIT(GPIO_TX_FAULT),
34 SFP_F_TX_DISABLE = BIT(GPIO_TX_DISABLE),
35 SFP_F_RS0 = BIT(GPIO_RS0),
36 SFP_F_RS1 = BIT(GPIO_RS1),
37
38 SFP_F_OUTPUTS = SFP_F_TX_DISABLE | SFP_F_RS0 | SFP_F_RS1,
39
40 SFP_E_INSERT = 0,
41 SFP_E_REMOVE,
42 SFP_E_DEV_ATTACH,
43 SFP_E_DEV_DETACH,
44 SFP_E_DEV_DOWN,
45 SFP_E_DEV_UP,
46 SFP_E_TX_FAULT,
47 SFP_E_TX_CLEAR,
48 SFP_E_LOS_HIGH,
49 SFP_E_LOS_LOW,
50 SFP_E_TIMEOUT,
51
52 SFP_MOD_EMPTY = 0,
53 SFP_MOD_ERROR,
54 SFP_MOD_PROBE,
55 SFP_MOD_WAITDEV,
56 SFP_MOD_HPOWER,
57 SFP_MOD_WAITPWR,
58 SFP_MOD_PRESENT,
59
60 SFP_DEV_DETACHED = 0,
61 SFP_DEV_DOWN,
62 SFP_DEV_UP,
63
64 SFP_S_DOWN = 0,
65 SFP_S_FAIL,
66 SFP_S_WAIT,
67 SFP_S_INIT,
68 SFP_S_INIT_PHY,
69 SFP_S_INIT_TX_FAULT,
70 SFP_S_WAIT_LOS,
71 SFP_S_LINK_UP,
72 SFP_S_TX_FAULT,
73 SFP_S_REINIT,
74 SFP_S_TX_DISABLE,
75 };
76
77 static const char * const mod_state_strings[] = {
78 [SFP_MOD_EMPTY] = "empty",
79 [SFP_MOD_ERROR] = "error",
80 [SFP_MOD_PROBE] = "probe",
81 [SFP_MOD_WAITDEV] = "waitdev",
82 [SFP_MOD_HPOWER] = "hpower",
83 [SFP_MOD_WAITPWR] = "waitpwr",
84 [SFP_MOD_PRESENT] = "present",
85 };
86
mod_state_to_str(unsigned short mod_state)87 static const char *mod_state_to_str(unsigned short mod_state)
88 {
89 if (mod_state >= ARRAY_SIZE(mod_state_strings))
90 return "Unknown module state";
91 return mod_state_strings[mod_state];
92 }
93
94 static const char * const dev_state_strings[] = {
95 [SFP_DEV_DETACHED] = "detached",
96 [SFP_DEV_DOWN] = "down",
97 [SFP_DEV_UP] = "up",
98 };
99
dev_state_to_str(unsigned short dev_state)100 static const char *dev_state_to_str(unsigned short dev_state)
101 {
102 if (dev_state >= ARRAY_SIZE(dev_state_strings))
103 return "Unknown device state";
104 return dev_state_strings[dev_state];
105 }
106
107 static const char * const event_strings[] = {
108 [SFP_E_INSERT] = "insert",
109 [SFP_E_REMOVE] = "remove",
110 [SFP_E_DEV_ATTACH] = "dev_attach",
111 [SFP_E_DEV_DETACH] = "dev_detach",
112 [SFP_E_DEV_DOWN] = "dev_down",
113 [SFP_E_DEV_UP] = "dev_up",
114 [SFP_E_TX_FAULT] = "tx_fault",
115 [SFP_E_TX_CLEAR] = "tx_clear",
116 [SFP_E_LOS_HIGH] = "los_high",
117 [SFP_E_LOS_LOW] = "los_low",
118 [SFP_E_TIMEOUT] = "timeout",
119 };
120
event_to_str(unsigned short event)121 static const char *event_to_str(unsigned short event)
122 {
123 if (event >= ARRAY_SIZE(event_strings))
124 return "Unknown event";
125 return event_strings[event];
126 }
127
128 static const char * const sm_state_strings[] = {
129 [SFP_S_DOWN] = "down",
130 [SFP_S_FAIL] = "fail",
131 [SFP_S_WAIT] = "wait",
132 [SFP_S_INIT] = "init",
133 [SFP_S_INIT_PHY] = "init_phy",
134 [SFP_S_INIT_TX_FAULT] = "init_tx_fault",
135 [SFP_S_WAIT_LOS] = "wait_los",
136 [SFP_S_LINK_UP] = "link_up",
137 [SFP_S_TX_FAULT] = "tx_fault",
138 [SFP_S_REINIT] = "reinit",
139 [SFP_S_TX_DISABLE] = "tx_disable",
140 };
141
sm_state_to_str(unsigned short sm_state)142 static const char *sm_state_to_str(unsigned short sm_state)
143 {
144 if (sm_state >= ARRAY_SIZE(sm_state_strings))
145 return "Unknown state";
146 return sm_state_strings[sm_state];
147 }
148
149 static const char *gpio_names[] = {
150 "mod-def0",
151 "los",
152 "tx-fault",
153 "tx-disable",
154 "rate-select0",
155 "rate-select1",
156 };
157
158 static const enum gpiod_flags gpio_flags[] = {
159 GPIOD_IN,
160 GPIOD_IN,
161 GPIOD_IN,
162 GPIOD_ASIS,
163 GPIOD_ASIS,
164 GPIOD_ASIS,
165 };
166
167 /* t_start_up (SFF-8431) or t_init (SFF-8472) is the time required for a
168 * non-cooled module to initialise its laser safety circuitry. We wait
169 * an initial T_WAIT period before we check the tx fault to give any PHY
170 * on board (for a copper SFP) time to initialise.
171 */
172 #define T_WAIT msecs_to_jiffies(50)
173 #define T_START_UP msecs_to_jiffies(300)
174 #define T_START_UP_BAD_GPON msecs_to_jiffies(60000)
175
176 /* t_reset is the time required to assert the TX_DISABLE signal to reset
177 * an indicated TX_FAULT.
178 */
179 #define T_RESET_US 10
180 #define T_FAULT_RECOVER msecs_to_jiffies(1000)
181
182 /* N_FAULT_INIT is the number of recovery attempts at module initialisation
183 * time. If the TX_FAULT signal is not deasserted after this number of
184 * attempts at clearing it, we decide that the module is faulty.
185 * N_FAULT is the same but after the module has initialised.
186 */
187 #define N_FAULT_INIT 5
188 #define N_FAULT 5
189
190 /* T_PHY_RETRY is the time interval between attempts to probe the PHY.
191 * R_PHY_RETRY is the number of attempts.
192 */
193 #define T_PHY_RETRY msecs_to_jiffies(50)
194 #define R_PHY_RETRY 25
195
196 /* SFP module presence detection is poor: the three MOD DEF signals are
197 * the same length on the PCB, which means it's possible for MOD DEF 0 to
198 * connect before the I2C bus on MOD DEF 1/2.
199 *
200 * The SFF-8472 specifies t_serial ("Time from power on until module is
201 * ready for data transmission over the two wire serial bus.") as 300ms.
202 */
203 #define T_SERIAL msecs_to_jiffies(300)
204 #define T_HPOWER_LEVEL msecs_to_jiffies(300)
205 #define T_PROBE_RETRY_INIT msecs_to_jiffies(100)
206 #define R_PROBE_RETRY_INIT 10
207 #define T_PROBE_RETRY_SLOW msecs_to_jiffies(5000)
208 #define R_PROBE_RETRY_SLOW 12
209
210 /* SFP modules appear to always have their PHY configured for bus address
211 * 0x56 (which with mdio-i2c, translates to a PHY address of 22).
212 * RollBall SFPs access phy via SFP Enhanced Digital Diagnostic Interface
213 * via address 0x51 (mdio-i2c will use RollBall protocol on this address).
214 */
215 #define SFP_PHY_ADDR 22
216 #define SFP_PHY_ADDR_ROLLBALL 17
217
218 /* SFP_EEPROM_BLOCK_SIZE is the size of data chunk to read the EEPROM
219 * at a time. Some SFP modules and also some Linux I2C drivers do not like
220 * reads longer than 16 bytes.
221 */
222 #define SFP_EEPROM_BLOCK_SIZE 16
223
224 struct sff_data {
225 unsigned int gpios;
226 bool (*module_supported)(const struct sfp_eeprom_id *id);
227 };
228
229 struct sfp {
230 struct device *dev;
231 struct i2c_adapter *i2c;
232 struct mii_bus *i2c_mii;
233 struct sfp_bus *sfp_bus;
234 enum mdio_i2c_proto mdio_protocol;
235 struct phy_device *mod_phy;
236 const struct sff_data *type;
237 size_t i2c_block_size;
238 u32 max_power_mW;
239
240 unsigned int (*get_state)(struct sfp *);
241 void (*set_state)(struct sfp *, unsigned int);
242 int (*read)(struct sfp *, bool, u8, void *, size_t);
243 int (*write)(struct sfp *, bool, u8, void *, size_t);
244
245 struct gpio_desc *gpio[GPIO_MAX];
246 int gpio_irq[GPIO_MAX];
247
248 bool need_poll;
249
250 /* Access rules:
251 * state_hw_drive: st_mutex held
252 * state_hw_mask: st_mutex held
253 * state_soft_mask: st_mutex held
254 * state: st_mutex held unless reading input bits
255 */
256 struct mutex st_mutex; /* Protects state */
257 unsigned int state_hw_drive;
258 unsigned int state_hw_mask;
259 unsigned int state_soft_mask;
260 unsigned int state_ignore_mask;
261 unsigned int state;
262
263 struct delayed_work poll;
264 struct delayed_work timeout;
265 struct mutex sm_mutex; /* Protects state machine */
266 unsigned char sm_mod_state;
267 unsigned char sm_mod_tries_init;
268 unsigned char sm_mod_tries;
269 unsigned char sm_dev_state;
270 unsigned short sm_state;
271 unsigned char sm_fault_retries;
272 unsigned char sm_phy_retries;
273
274 struct sfp_eeprom_id id;
275 unsigned int module_power_mW;
276 unsigned int module_t_start_up;
277 unsigned int module_t_wait;
278 unsigned int phy_t_retry;
279
280 unsigned int rate_kbd;
281 unsigned int rs_threshold_kbd;
282 unsigned int rs_state_mask;
283
284 bool have_a2;
285
286 const struct sfp_quirk *quirk;
287
288 #if IS_ENABLED(CONFIG_HWMON)
289 struct sfp_diag diag;
290 struct delayed_work hwmon_probe;
291 unsigned int hwmon_tries;
292 struct device *hwmon_dev;
293 char *hwmon_name;
294 #endif
295
296 #if IS_ENABLED(CONFIG_DEBUG_FS)
297 struct dentry *debugfs_dir;
298 #endif
299 };
300
sff_module_supported(const struct sfp_eeprom_id * id)301 static bool sff_module_supported(const struct sfp_eeprom_id *id)
302 {
303 return id->base.phys_id == SFF8024_ID_SFF_8472 &&
304 id->base.phys_ext_id == SFP_PHYS_EXT_ID_SFP;
305 }
306
307 static const struct sff_data sff_data = {
308 .gpios = SFP_F_LOS | SFP_F_TX_FAULT | SFP_F_TX_DISABLE,
309 .module_supported = sff_module_supported,
310 };
311
sfp_module_supported(const struct sfp_eeprom_id * id)312 static bool sfp_module_supported(const struct sfp_eeprom_id *id)
313 {
314 if (id->base.phys_id == SFF8024_ID_SFP &&
315 id->base.phys_ext_id == SFP_PHYS_EXT_ID_SFP)
316 return true;
317
318 /* SFP GPON module Ubiquiti U-Fiber Instant has in its EEPROM stored
319 * phys id SFF instead of SFP. Therefore mark this module explicitly
320 * as supported based on vendor name and pn match.
321 */
322 if (id->base.phys_id == SFF8024_ID_SFF_8472 &&
323 id->base.phys_ext_id == SFP_PHYS_EXT_ID_SFP &&
324 !memcmp(id->base.vendor_name, "UBNT ", 16) &&
325 !memcmp(id->base.vendor_pn, "UF-INSTANT ", 16))
326 return true;
327
328 return false;
329 }
330
331 static const struct sff_data sfp_data = {
332 .gpios = SFP_F_PRESENT | SFP_F_LOS | SFP_F_TX_FAULT |
333 SFP_F_TX_DISABLE | SFP_F_RS0 | SFP_F_RS1,
334 .module_supported = sfp_module_supported,
335 };
336
337 static const struct of_device_id sfp_of_match[] = {
338 { .compatible = "sff,sff", .data = &sff_data, },
339 { .compatible = "sff,sfp", .data = &sfp_data, },
340 { },
341 };
342 MODULE_DEVICE_TABLE(of, sfp_of_match);
343
sfp_fixup_long_startup(struct sfp * sfp)344 static void sfp_fixup_long_startup(struct sfp *sfp)
345 {
346 sfp->module_t_start_up = T_START_UP_BAD_GPON;
347 }
348
sfp_fixup_ignore_los(struct sfp * sfp)349 static void sfp_fixup_ignore_los(struct sfp *sfp)
350 {
351 /* This forces LOS to zero, so we ignore transitions */
352 sfp->state_ignore_mask |= SFP_F_LOS;
353 /* Make sure that LOS options are clear */
354 sfp->id.ext.options &= ~cpu_to_be16(SFP_OPTIONS_LOS_INVERTED |
355 SFP_OPTIONS_LOS_NORMAL);
356 }
357
sfp_fixup_ignore_tx_fault(struct sfp * sfp)358 static void sfp_fixup_ignore_tx_fault(struct sfp *sfp)
359 {
360 sfp->state_ignore_mask |= SFP_F_TX_FAULT;
361 }
362
sfp_fixup_ignore_hw(struct sfp * sfp,unsigned int mask)363 static void sfp_fixup_ignore_hw(struct sfp *sfp, unsigned int mask)
364 {
365 sfp->state_hw_mask &= ~mask;
366 }
367
sfp_fixup_nokia(struct sfp * sfp)368 static void sfp_fixup_nokia(struct sfp *sfp)
369 {
370 sfp_fixup_long_startup(sfp);
371 sfp_fixup_ignore_los(sfp);
372 }
373
374 // For 10GBASE-T short-reach modules
sfp_fixup_10gbaset_30m(struct sfp * sfp)375 static void sfp_fixup_10gbaset_30m(struct sfp *sfp)
376 {
377 sfp->id.base.connector = SFF8024_CONNECTOR_RJ45;
378 sfp->id.base.extended_cc = SFF8024_ECC_10GBASE_T_SR;
379 }
380
sfp_fixup_rollball(struct sfp * sfp)381 static void sfp_fixup_rollball(struct sfp *sfp)
382 {
383 sfp->mdio_protocol = MDIO_I2C_ROLLBALL;
384
385 /* RollBall modules may disallow access to PHY registers for up to 25
386 * seconds, and the reads return 0xffff before that. Increase the time
387 * between PHY probe retries from 50ms to 1s so that we will wait for
388 * the PHY for a sufficient amount of time.
389 */
390 sfp->phy_t_retry = msecs_to_jiffies(1000);
391 }
392
sfp_fixup_rollball_wait4s(struct sfp * sfp)393 static void sfp_fixup_rollball_wait4s(struct sfp *sfp)
394 {
395 sfp_fixup_rollball(sfp);
396
397 /* The RollBall fixup is not enough for FS modules, the PHY chip inside
398 * them does not return 0xffff for PHY ID registers in all MMDs for the
399 * while initializing. They need a 4 second wait before accessing PHY.
400 */
401 sfp->module_t_wait = msecs_to_jiffies(4000);
402 }
403
sfp_fixup_fs_10gt(struct sfp * sfp)404 static void sfp_fixup_fs_10gt(struct sfp *sfp)
405 {
406 sfp_fixup_10gbaset_30m(sfp);
407 sfp_fixup_rollball_wait4s(sfp);
408 }
409
sfp_fixup_halny_gsfp(struct sfp * sfp)410 static void sfp_fixup_halny_gsfp(struct sfp *sfp)
411 {
412 /* Ignore the TX_FAULT and LOS signals on this module.
413 * these are possibly used for other purposes on this
414 * module, e.g. a serial port.
415 */
416 sfp_fixup_ignore_hw(sfp, SFP_F_TX_FAULT | SFP_F_LOS);
417 }
418
sfp_fixup_potron(struct sfp * sfp)419 static void sfp_fixup_potron(struct sfp *sfp)
420 {
421 /*
422 * The TX_FAULT and LOS pins on this device are used for serial
423 * communication, so ignore them. Additionally, provide extra
424 * time for this device to fully start up.
425 */
426
427 sfp_fixup_long_startup(sfp);
428 sfp_fixup_ignore_hw(sfp, SFP_F_TX_FAULT | SFP_F_LOS);
429 }
430
sfp_fixup_rollball_cc(struct sfp * sfp)431 static void sfp_fixup_rollball_cc(struct sfp *sfp)
432 {
433 sfp_fixup_rollball(sfp);
434
435 /* Some RollBall SFPs may have wrong (zero) extended compliance code
436 * burned in EEPROM. For PHY probing we need the correct one.
437 */
438 sfp->id.base.extended_cc = SFF8024_ECC_10GBASE_T_SFI;
439 }
440
sfp_quirk_2500basex(const struct sfp_eeprom_id * id,unsigned long * modes,unsigned long * interfaces)441 static void sfp_quirk_2500basex(const struct sfp_eeprom_id *id,
442 unsigned long *modes,
443 unsigned long *interfaces)
444 {
445 linkmode_set_bit(ETHTOOL_LINK_MODE_2500baseX_Full_BIT, modes);
446 __set_bit(PHY_INTERFACE_MODE_2500BASEX, interfaces);
447 }
448
sfp_quirk_disable_autoneg(const struct sfp_eeprom_id * id,unsigned long * modes,unsigned long * interfaces)449 static void sfp_quirk_disable_autoneg(const struct sfp_eeprom_id *id,
450 unsigned long *modes,
451 unsigned long *interfaces)
452 {
453 linkmode_clear_bit(ETHTOOL_LINK_MODE_Autoneg_BIT, modes);
454 }
455
sfp_quirk_oem_2_5g(const struct sfp_eeprom_id * id,unsigned long * modes,unsigned long * interfaces)456 static void sfp_quirk_oem_2_5g(const struct sfp_eeprom_id *id,
457 unsigned long *modes,
458 unsigned long *interfaces)
459 {
460 /* Copper 2.5G SFP */
461 linkmode_set_bit(ETHTOOL_LINK_MODE_2500baseT_Full_BIT, modes);
462 __set_bit(PHY_INTERFACE_MODE_2500BASEX, interfaces);
463 sfp_quirk_disable_autoneg(id, modes, interfaces);
464 }
465
sfp_quirk_ubnt_uf_instant(const struct sfp_eeprom_id * id,unsigned long * modes,unsigned long * interfaces)466 static void sfp_quirk_ubnt_uf_instant(const struct sfp_eeprom_id *id,
467 unsigned long *modes,
468 unsigned long *interfaces)
469 {
470 /* Ubiquiti U-Fiber Instant module claims that support all transceiver
471 * types including 10G Ethernet which is not truth. So clear all claimed
472 * modes and set only one mode which module supports: 1000baseX_Full.
473 */
474 linkmode_zero(modes);
475 linkmode_set_bit(ETHTOOL_LINK_MODE_1000baseX_Full_BIT, modes);
476 }
477
478 #define SFP_QUIRK(_v, _p, _m, _f) \
479 { .vendor = _v, .part = _p, .modes = _m, .fixup = _f, }
480 #define SFP_QUIRK_M(_v, _p, _m) SFP_QUIRK(_v, _p, _m, NULL)
481 #define SFP_QUIRK_F(_v, _p, _f) SFP_QUIRK(_v, _p, NULL, _f)
482
483 static const struct sfp_quirk sfp_quirks[] = {
484 // Alcatel Lucent G-010S-P can operate at 2500base-X, but incorrectly
485 // report 2500MBd NRZ in their EEPROM
486 SFP_QUIRK("ALCATELLUCENT", "G010SP", sfp_quirk_2500basex,
487 sfp_fixup_ignore_tx_fault),
488
489 // Alcatel Lucent G-010S-A can operate at 2500base-X, but report 3.2GBd
490 // NRZ in their EEPROM
491 SFP_QUIRK("ALCATELLUCENT", "3FE46541AA", sfp_quirk_2500basex,
492 sfp_fixup_nokia),
493
494 // FLYPRO SFP-10GT-CS-30M uses Rollball protocol to talk to the PHY.
495 SFP_QUIRK_F("FLYPRO", "SFP-10GT-CS-30M", sfp_fixup_rollball),
496
497 // Fiberstore SFP-10G-T doesn't identify as copper, uses the Rollball
498 // protocol to talk to the PHY and needs 4 sec wait before probing the
499 // PHY.
500 SFP_QUIRK_F("FS", "SFP-10G-T", sfp_fixup_fs_10gt),
501
502 // Fiberstore SFP-2.5G-T and SFP-10GM-T uses Rollball protocol to talk
503 // to the PHY and needs 4 sec wait before probing the PHY.
504 SFP_QUIRK_F("FS", "SFP-2.5G-T", sfp_fixup_rollball_wait4s),
505 SFP_QUIRK_F("FS", "SFP-10GM-T", sfp_fixup_rollball_wait4s),
506
507 // Fiberstore GPON-ONU-34-20BI can operate at 2500base-X, but report 1.2GBd
508 // NRZ in their EEPROM
509 SFP_QUIRK("FS", "GPON-ONU-34-20BI", sfp_quirk_2500basex,
510 sfp_fixup_ignore_tx_fault),
511
512 SFP_QUIRK_F("HALNy", "HL-GSFP", sfp_fixup_halny_gsfp),
513
514 // HG MXPD-483II-F 2.5G supports 2500Base-X, but incorrectly reports
515 // 2600MBd in their EERPOM
516 SFP_QUIRK_M("HG GENUINE", "MXPD-483II", sfp_quirk_2500basex),
517
518 // Huawei MA5671A can operate at 2500base-X, but report 1.2GBd NRZ in
519 // their EEPROM
520 SFP_QUIRK("HUAWEI", "MA5671A", sfp_quirk_2500basex,
521 sfp_fixup_ignore_tx_fault),
522
523 // Lantech 8330-262D-E can operate at 2500base-X, but incorrectly report
524 // 2500MBd NRZ in their EEPROM
525 SFP_QUIRK_M("Lantech", "8330-262D-E", sfp_quirk_2500basex),
526
527 SFP_QUIRK_M("UBNT", "UF-INSTANT", sfp_quirk_ubnt_uf_instant),
528
529 // Walsun HXSX-ATR[CI]-1 don't identify as copper, and use the
530 // Rollball protocol to talk to the PHY.
531 SFP_QUIRK_F("Walsun", "HXSX-ATRC-1", sfp_fixup_fs_10gt),
532 SFP_QUIRK_F("Walsun", "HXSX-ATRI-1", sfp_fixup_fs_10gt),
533
534 SFP_QUIRK_F("YV", "SFP+ONU-XGSPON", sfp_fixup_potron),
535
536 // OEM SFP-GE-T is a 1000Base-T module with broken TX_FAULT indicator
537 SFP_QUIRK_F("OEM", "SFP-GE-T", sfp_fixup_ignore_tx_fault),
538
539 SFP_QUIRK_F("OEM", "SFP-10G-T", sfp_fixup_rollball_cc),
540 SFP_QUIRK_M("OEM", "SFP-2.5G-T", sfp_quirk_oem_2_5g),
541 SFP_QUIRK_M("OEM", "SFP-2.5G-BX10-D", sfp_quirk_2500basex),
542 SFP_QUIRK_M("OEM", "SFP-2.5G-BX10-U", sfp_quirk_2500basex),
543 SFP_QUIRK_F("OEM", "RTSFP-10", sfp_fixup_rollball_cc),
544 SFP_QUIRK_F("OEM", "RTSFP-10G", sfp_fixup_rollball_cc),
545 SFP_QUIRK_F("Turris", "RTSFP-2.5G", sfp_fixup_rollball),
546 SFP_QUIRK_F("Turris", "RTSFP-10", sfp_fixup_rollball),
547 SFP_QUIRK_F("Turris", "RTSFP-10G", sfp_fixup_rollball),
548 };
549
sfp_strlen(const char * str,size_t maxlen)550 static size_t sfp_strlen(const char *str, size_t maxlen)
551 {
552 size_t size, i;
553
554 /* Trailing characters should be filled with space chars, but
555 * some manufacturers can't read SFF-8472 and use NUL.
556 */
557 for (i = 0, size = 0; i < maxlen; i++)
558 if (str[i] != ' ' && str[i] != '\0')
559 size = i + 1;
560
561 return size;
562 }
563
sfp_match(const char * qs,const char * str,size_t len)564 static bool sfp_match(const char *qs, const char *str, size_t len)
565 {
566 if (!qs)
567 return true;
568 if (strlen(qs) != len)
569 return false;
570 return !strncmp(qs, str, len);
571 }
572
sfp_lookup_quirk(const struct sfp_eeprom_id * id)573 static const struct sfp_quirk *sfp_lookup_quirk(const struct sfp_eeprom_id *id)
574 {
575 const struct sfp_quirk *q;
576 unsigned int i;
577 size_t vs, ps;
578
579 vs = sfp_strlen(id->base.vendor_name, ARRAY_SIZE(id->base.vendor_name));
580 ps = sfp_strlen(id->base.vendor_pn, ARRAY_SIZE(id->base.vendor_pn));
581
582 for (i = 0, q = sfp_quirks; i < ARRAY_SIZE(sfp_quirks); i++, q++)
583 if (sfp_match(q->vendor, id->base.vendor_name, vs) &&
584 sfp_match(q->part, id->base.vendor_pn, ps))
585 return q;
586
587 return NULL;
588 }
589
590 static unsigned long poll_jiffies;
591
sfp_gpio_get_state(struct sfp * sfp)592 static unsigned int sfp_gpio_get_state(struct sfp *sfp)
593 {
594 unsigned int i, state, v;
595
596 for (i = state = 0; i < GPIO_MAX; i++) {
597 if (gpio_flags[i] != GPIOD_IN || !sfp->gpio[i])
598 continue;
599
600 v = gpiod_get_value_cansleep(sfp->gpio[i]);
601 if (v)
602 state |= BIT(i);
603 }
604
605 return state;
606 }
607
sff_gpio_get_state(struct sfp * sfp)608 static unsigned int sff_gpio_get_state(struct sfp *sfp)
609 {
610 return sfp_gpio_get_state(sfp) | SFP_F_PRESENT;
611 }
612
sfp_gpio_set_state(struct sfp * sfp,unsigned int state)613 static void sfp_gpio_set_state(struct sfp *sfp, unsigned int state)
614 {
615 unsigned int drive;
616
617 if (state & SFP_F_PRESENT)
618 /* If the module is present, drive the requested signals */
619 drive = sfp->state_hw_drive;
620 else
621 /* Otherwise, let them float to the pull-ups */
622 drive = 0;
623
624 if (sfp->gpio[GPIO_TX_DISABLE]) {
625 if (drive & SFP_F_TX_DISABLE)
626 gpiod_direction_output(sfp->gpio[GPIO_TX_DISABLE],
627 state & SFP_F_TX_DISABLE);
628 else
629 gpiod_direction_input(sfp->gpio[GPIO_TX_DISABLE]);
630 }
631
632 if (sfp->gpio[GPIO_RS0]) {
633 if (drive & SFP_F_RS0)
634 gpiod_direction_output(sfp->gpio[GPIO_RS0],
635 state & SFP_F_RS0);
636 else
637 gpiod_direction_input(sfp->gpio[GPIO_RS0]);
638 }
639
640 if (sfp->gpio[GPIO_RS1]) {
641 if (drive & SFP_F_RS1)
642 gpiod_direction_output(sfp->gpio[GPIO_RS1],
643 state & SFP_F_RS1);
644 else
645 gpiod_direction_input(sfp->gpio[GPIO_RS1]);
646 }
647 }
648
sfp_i2c_read(struct sfp * sfp,bool a2,u8 dev_addr,void * buf,size_t len)649 static int sfp_i2c_read(struct sfp *sfp, bool a2, u8 dev_addr, void *buf,
650 size_t len)
651 {
652 struct i2c_msg msgs[2];
653 u8 bus_addr = a2 ? 0x51 : 0x50;
654 size_t block_size = sfp->i2c_block_size;
655 size_t this_len;
656 int ret;
657
658 msgs[0].addr = bus_addr;
659 msgs[0].flags = 0;
660 msgs[0].len = 1;
661 msgs[0].buf = &dev_addr;
662 msgs[1].addr = bus_addr;
663 msgs[1].flags = I2C_M_RD;
664 msgs[1].len = len;
665 msgs[1].buf = buf;
666
667 while (len) {
668 this_len = len;
669 if (this_len > block_size)
670 this_len = block_size;
671
672 msgs[1].len = this_len;
673
674 ret = i2c_transfer(sfp->i2c, msgs, ARRAY_SIZE(msgs));
675 if (ret < 0)
676 return ret;
677
678 if (ret != ARRAY_SIZE(msgs))
679 break;
680
681 msgs[1].buf += this_len;
682 dev_addr += this_len;
683 len -= this_len;
684 }
685
686 return msgs[1].buf - (u8 *)buf;
687 }
688
sfp_i2c_write(struct sfp * sfp,bool a2,u8 dev_addr,void * buf,size_t len)689 static int sfp_i2c_write(struct sfp *sfp, bool a2, u8 dev_addr, void *buf,
690 size_t len)
691 {
692 struct i2c_msg msgs[1];
693 u8 bus_addr = a2 ? 0x51 : 0x50;
694 int ret;
695
696 msgs[0].addr = bus_addr;
697 msgs[0].flags = 0;
698 msgs[0].len = 1 + len;
699 msgs[0].buf = kmalloc(1 + len, GFP_KERNEL);
700 if (!msgs[0].buf)
701 return -ENOMEM;
702
703 msgs[0].buf[0] = dev_addr;
704 memcpy(&msgs[0].buf[1], buf, len);
705
706 ret = i2c_transfer(sfp->i2c, msgs, ARRAY_SIZE(msgs));
707
708 kfree(msgs[0].buf);
709
710 if (ret < 0)
711 return ret;
712
713 return ret == ARRAY_SIZE(msgs) ? len : 0;
714 }
715
sfp_i2c_configure(struct sfp * sfp,struct i2c_adapter * i2c)716 static int sfp_i2c_configure(struct sfp *sfp, struct i2c_adapter *i2c)
717 {
718 if (!i2c_check_functionality(i2c, I2C_FUNC_I2C))
719 return -EINVAL;
720
721 sfp->i2c = i2c;
722 sfp->read = sfp_i2c_read;
723 sfp->write = sfp_i2c_write;
724
725 return 0;
726 }
727
sfp_i2c_mdiobus_create(struct sfp * sfp)728 static int sfp_i2c_mdiobus_create(struct sfp *sfp)
729 {
730 struct mii_bus *i2c_mii;
731 int ret;
732
733 i2c_mii = mdio_i2c_alloc(sfp->dev, sfp->i2c, sfp->mdio_protocol);
734 if (IS_ERR(i2c_mii))
735 return PTR_ERR(i2c_mii);
736
737 i2c_mii->name = "SFP I2C Bus";
738 i2c_mii->phy_mask = ~0;
739
740 ret = mdiobus_register(i2c_mii);
741 if (ret < 0) {
742 mdiobus_free(i2c_mii);
743 return ret;
744 }
745
746 sfp->i2c_mii = i2c_mii;
747
748 return 0;
749 }
750
sfp_i2c_mdiobus_destroy(struct sfp * sfp)751 static void sfp_i2c_mdiobus_destroy(struct sfp *sfp)
752 {
753 mdiobus_unregister(sfp->i2c_mii);
754 sfp->i2c_mii = NULL;
755 }
756
757 /* Interface */
sfp_read(struct sfp * sfp,bool a2,u8 addr,void * buf,size_t len)758 static int sfp_read(struct sfp *sfp, bool a2, u8 addr, void *buf, size_t len)
759 {
760 return sfp->read(sfp, a2, addr, buf, len);
761 }
762
sfp_write(struct sfp * sfp,bool a2,u8 addr,void * buf,size_t len)763 static int sfp_write(struct sfp *sfp, bool a2, u8 addr, void *buf, size_t len)
764 {
765 return sfp->write(sfp, a2, addr, buf, len);
766 }
767
sfp_modify_u8(struct sfp * sfp,bool a2,u8 addr,u8 mask,u8 val)768 static int sfp_modify_u8(struct sfp *sfp, bool a2, u8 addr, u8 mask, u8 val)
769 {
770 int ret;
771 u8 old, v;
772
773 ret = sfp_read(sfp, a2, addr, &old, sizeof(old));
774 if (ret != sizeof(old))
775 return ret;
776
777 v = (old & ~mask) | (val & mask);
778 if (v == old)
779 return sizeof(v);
780
781 return sfp_write(sfp, a2, addr, &v, sizeof(v));
782 }
783
sfp_soft_get_state(struct sfp * sfp)784 static unsigned int sfp_soft_get_state(struct sfp *sfp)
785 {
786 unsigned int state = 0;
787 u8 status;
788 int ret;
789
790 ret = sfp_read(sfp, true, SFP_STATUS, &status, sizeof(status));
791 if (ret == sizeof(status)) {
792 if (status & SFP_STATUS_RX_LOS)
793 state |= SFP_F_LOS;
794 if (status & SFP_STATUS_TX_FAULT)
795 state |= SFP_F_TX_FAULT;
796 } else {
797 dev_err_ratelimited(sfp->dev,
798 "failed to read SFP soft status: %pe\n",
799 ERR_PTR(ret));
800 /* Preserve the current state */
801 state = sfp->state;
802 }
803
804 return state & sfp->state_soft_mask;
805 }
806
sfp_soft_set_state(struct sfp * sfp,unsigned int state,unsigned int soft)807 static void sfp_soft_set_state(struct sfp *sfp, unsigned int state,
808 unsigned int soft)
809 {
810 u8 mask = 0;
811 u8 val = 0;
812
813 if (soft & SFP_F_TX_DISABLE)
814 mask |= SFP_STATUS_TX_DISABLE_FORCE;
815 if (state & SFP_F_TX_DISABLE)
816 val |= SFP_STATUS_TX_DISABLE_FORCE;
817
818 if (soft & SFP_F_RS0)
819 mask |= SFP_STATUS_RS0_SELECT;
820 if (state & SFP_F_RS0)
821 val |= SFP_STATUS_RS0_SELECT;
822
823 if (mask)
824 sfp_modify_u8(sfp, true, SFP_STATUS, mask, val);
825
826 val = mask = 0;
827 if (soft & SFP_F_RS1)
828 mask |= SFP_EXT_STATUS_RS1_SELECT;
829 if (state & SFP_F_RS1)
830 val |= SFP_EXT_STATUS_RS1_SELECT;
831
832 if (mask)
833 sfp_modify_u8(sfp, true, SFP_EXT_STATUS, mask, val);
834 }
835
sfp_soft_start_poll(struct sfp * sfp)836 static void sfp_soft_start_poll(struct sfp *sfp)
837 {
838 const struct sfp_eeprom_id *id = &sfp->id;
839 unsigned int mask = 0;
840
841 if (id->ext.enhopts & SFP_ENHOPTS_SOFT_TX_DISABLE)
842 mask |= SFP_F_TX_DISABLE;
843 if (id->ext.enhopts & SFP_ENHOPTS_SOFT_TX_FAULT)
844 mask |= SFP_F_TX_FAULT;
845 if (id->ext.enhopts & SFP_ENHOPTS_SOFT_RX_LOS)
846 mask |= SFP_F_LOS;
847 if (id->ext.enhopts & SFP_ENHOPTS_SOFT_RATE_SELECT)
848 mask |= sfp->rs_state_mask;
849
850 mutex_lock(&sfp->st_mutex);
851 // Poll the soft state for hardware pins we want to ignore
852 sfp->state_soft_mask = ~sfp->state_hw_mask & ~sfp->state_ignore_mask &
853 mask;
854
855 if (sfp->state_soft_mask & (SFP_F_LOS | SFP_F_TX_FAULT) &&
856 !sfp->need_poll)
857 mod_delayed_work(system_wq, &sfp->poll, poll_jiffies);
858 mutex_unlock(&sfp->st_mutex);
859 }
860
sfp_soft_stop_poll(struct sfp * sfp)861 static void sfp_soft_stop_poll(struct sfp *sfp)
862 {
863 mutex_lock(&sfp->st_mutex);
864 sfp->state_soft_mask = 0;
865 mutex_unlock(&sfp->st_mutex);
866 }
867
868 /* sfp_get_state() - must be called with st_mutex held, or in the
869 * initialisation path.
870 */
sfp_get_state(struct sfp * sfp)871 static unsigned int sfp_get_state(struct sfp *sfp)
872 {
873 unsigned int soft = sfp->state_soft_mask & (SFP_F_LOS | SFP_F_TX_FAULT);
874 unsigned int state;
875
876 state = sfp->get_state(sfp) & sfp->state_hw_mask;
877 if (state & SFP_F_PRESENT && soft)
878 state |= sfp_soft_get_state(sfp);
879
880 return state;
881 }
882
883 /* sfp_set_state() - must be called with st_mutex held, or in the
884 * initialisation path.
885 */
sfp_set_state(struct sfp * sfp,unsigned int state)886 static void sfp_set_state(struct sfp *sfp, unsigned int state)
887 {
888 unsigned int soft;
889
890 sfp->set_state(sfp, state);
891
892 soft = sfp->state_soft_mask & SFP_F_OUTPUTS;
893 if (state & SFP_F_PRESENT && soft)
894 sfp_soft_set_state(sfp, state, soft);
895 }
896
sfp_mod_state(struct sfp * sfp,unsigned int mask,unsigned int set)897 static void sfp_mod_state(struct sfp *sfp, unsigned int mask, unsigned int set)
898 {
899 mutex_lock(&sfp->st_mutex);
900 sfp->state = (sfp->state & ~mask) | set;
901 sfp_set_state(sfp, sfp->state);
902 mutex_unlock(&sfp->st_mutex);
903 }
904
sfp_check(void * buf,size_t len)905 static unsigned int sfp_check(void *buf, size_t len)
906 {
907 u8 *p, check;
908
909 for (p = buf, check = 0; len; p++, len--)
910 check += *p;
911
912 return check;
913 }
914
915 /* hwmon */
916 #if IS_ENABLED(CONFIG_HWMON)
sfp_hwmon_is_visible(const void * data,enum hwmon_sensor_types type,u32 attr,int channel)917 static umode_t sfp_hwmon_is_visible(const void *data,
918 enum hwmon_sensor_types type,
919 u32 attr, int channel)
920 {
921 const struct sfp *sfp = data;
922
923 switch (type) {
924 case hwmon_temp:
925 switch (attr) {
926 case hwmon_temp_min_alarm:
927 case hwmon_temp_max_alarm:
928 case hwmon_temp_lcrit_alarm:
929 case hwmon_temp_crit_alarm:
930 case hwmon_temp_min:
931 case hwmon_temp_max:
932 case hwmon_temp_lcrit:
933 case hwmon_temp_crit:
934 if (!(sfp->id.ext.enhopts & SFP_ENHOPTS_ALARMWARN))
935 return 0;
936 fallthrough;
937 case hwmon_temp_input:
938 case hwmon_temp_label:
939 return 0444;
940 default:
941 return 0;
942 }
943 case hwmon_in:
944 switch (attr) {
945 case hwmon_in_min_alarm:
946 case hwmon_in_max_alarm:
947 case hwmon_in_lcrit_alarm:
948 case hwmon_in_crit_alarm:
949 case hwmon_in_min:
950 case hwmon_in_max:
951 case hwmon_in_lcrit:
952 case hwmon_in_crit:
953 if (!(sfp->id.ext.enhopts & SFP_ENHOPTS_ALARMWARN))
954 return 0;
955 fallthrough;
956 case hwmon_in_input:
957 case hwmon_in_label:
958 return 0444;
959 default:
960 return 0;
961 }
962 case hwmon_curr:
963 switch (attr) {
964 case hwmon_curr_min_alarm:
965 case hwmon_curr_max_alarm:
966 case hwmon_curr_lcrit_alarm:
967 case hwmon_curr_crit_alarm:
968 case hwmon_curr_min:
969 case hwmon_curr_max:
970 case hwmon_curr_lcrit:
971 case hwmon_curr_crit:
972 if (!(sfp->id.ext.enhopts & SFP_ENHOPTS_ALARMWARN))
973 return 0;
974 fallthrough;
975 case hwmon_curr_input:
976 case hwmon_curr_label:
977 return 0444;
978 default:
979 return 0;
980 }
981 case hwmon_power:
982 /* External calibration of receive power requires
983 * floating point arithmetic. Doing that in the kernel
984 * is not easy, so just skip it. If the module does
985 * not require external calibration, we can however
986 * show receiver power, since FP is then not needed.
987 */
988 if (sfp->id.ext.diagmon & SFP_DIAGMON_EXT_CAL &&
989 channel == 1)
990 return 0;
991 switch (attr) {
992 case hwmon_power_min_alarm:
993 case hwmon_power_max_alarm:
994 case hwmon_power_lcrit_alarm:
995 case hwmon_power_crit_alarm:
996 case hwmon_power_min:
997 case hwmon_power_max:
998 case hwmon_power_lcrit:
999 case hwmon_power_crit:
1000 if (!(sfp->id.ext.enhopts & SFP_ENHOPTS_ALARMWARN))
1001 return 0;
1002 fallthrough;
1003 case hwmon_power_input:
1004 case hwmon_power_label:
1005 return 0444;
1006 default:
1007 return 0;
1008 }
1009 default:
1010 return 0;
1011 }
1012 }
1013
sfp_hwmon_read_sensor(struct sfp * sfp,int reg,long * value)1014 static int sfp_hwmon_read_sensor(struct sfp *sfp, int reg, long *value)
1015 {
1016 __be16 val;
1017 int err;
1018
1019 err = sfp_read(sfp, true, reg, &val, sizeof(val));
1020 if (err < 0)
1021 return err;
1022
1023 *value = be16_to_cpu(val);
1024
1025 return 0;
1026 }
1027
sfp_hwmon_to_rx_power(long * value)1028 static void sfp_hwmon_to_rx_power(long *value)
1029 {
1030 *value = DIV_ROUND_CLOSEST(*value, 10);
1031 }
1032
sfp_hwmon_calibrate(struct sfp * sfp,unsigned int slope,int offset,long * value)1033 static void sfp_hwmon_calibrate(struct sfp *sfp, unsigned int slope, int offset,
1034 long *value)
1035 {
1036 if (sfp->id.ext.diagmon & SFP_DIAGMON_EXT_CAL)
1037 *value = DIV_ROUND_CLOSEST(*value * slope, 256) + offset;
1038 }
1039
sfp_hwmon_calibrate_temp(struct sfp * sfp,long * value)1040 static void sfp_hwmon_calibrate_temp(struct sfp *sfp, long *value)
1041 {
1042 sfp_hwmon_calibrate(sfp, be16_to_cpu(sfp->diag.cal_t_slope),
1043 be16_to_cpu(sfp->diag.cal_t_offset), value);
1044
1045 if (*value >= 0x8000)
1046 *value -= 0x10000;
1047
1048 *value = DIV_ROUND_CLOSEST(*value * 1000, 256);
1049 }
1050
sfp_hwmon_calibrate_vcc(struct sfp * sfp,long * value)1051 static void sfp_hwmon_calibrate_vcc(struct sfp *sfp, long *value)
1052 {
1053 sfp_hwmon_calibrate(sfp, be16_to_cpu(sfp->diag.cal_v_slope),
1054 be16_to_cpu(sfp->diag.cal_v_offset), value);
1055
1056 *value = DIV_ROUND_CLOSEST(*value, 10);
1057 }
1058
sfp_hwmon_calibrate_bias(struct sfp * sfp,long * value)1059 static void sfp_hwmon_calibrate_bias(struct sfp *sfp, long *value)
1060 {
1061 sfp_hwmon_calibrate(sfp, be16_to_cpu(sfp->diag.cal_txi_slope),
1062 be16_to_cpu(sfp->diag.cal_txi_offset), value);
1063
1064 *value = DIV_ROUND_CLOSEST(*value, 500);
1065 }
1066
sfp_hwmon_calibrate_tx_power(struct sfp * sfp,long * value)1067 static void sfp_hwmon_calibrate_tx_power(struct sfp *sfp, long *value)
1068 {
1069 sfp_hwmon_calibrate(sfp, be16_to_cpu(sfp->diag.cal_txpwr_slope),
1070 be16_to_cpu(sfp->diag.cal_txpwr_offset), value);
1071
1072 *value = DIV_ROUND_CLOSEST(*value, 10);
1073 }
1074
sfp_hwmon_read_temp(struct sfp * sfp,int reg,long * value)1075 static int sfp_hwmon_read_temp(struct sfp *sfp, int reg, long *value)
1076 {
1077 int err;
1078
1079 err = sfp_hwmon_read_sensor(sfp, reg, value);
1080 if (err < 0)
1081 return err;
1082
1083 sfp_hwmon_calibrate_temp(sfp, value);
1084
1085 return 0;
1086 }
1087
sfp_hwmon_read_vcc(struct sfp * sfp,int reg,long * value)1088 static int sfp_hwmon_read_vcc(struct sfp *sfp, int reg, long *value)
1089 {
1090 int err;
1091
1092 err = sfp_hwmon_read_sensor(sfp, reg, value);
1093 if (err < 0)
1094 return err;
1095
1096 sfp_hwmon_calibrate_vcc(sfp, value);
1097
1098 return 0;
1099 }
1100
sfp_hwmon_read_bias(struct sfp * sfp,int reg,long * value)1101 static int sfp_hwmon_read_bias(struct sfp *sfp, int reg, long *value)
1102 {
1103 int err;
1104
1105 err = sfp_hwmon_read_sensor(sfp, reg, value);
1106 if (err < 0)
1107 return err;
1108
1109 sfp_hwmon_calibrate_bias(sfp, value);
1110
1111 return 0;
1112 }
1113
sfp_hwmon_read_tx_power(struct sfp * sfp,int reg,long * value)1114 static int sfp_hwmon_read_tx_power(struct sfp *sfp, int reg, long *value)
1115 {
1116 int err;
1117
1118 err = sfp_hwmon_read_sensor(sfp, reg, value);
1119 if (err < 0)
1120 return err;
1121
1122 sfp_hwmon_calibrate_tx_power(sfp, value);
1123
1124 return 0;
1125 }
1126
sfp_hwmon_read_rx_power(struct sfp * sfp,int reg,long * value)1127 static int sfp_hwmon_read_rx_power(struct sfp *sfp, int reg, long *value)
1128 {
1129 int err;
1130
1131 err = sfp_hwmon_read_sensor(sfp, reg, value);
1132 if (err < 0)
1133 return err;
1134
1135 sfp_hwmon_to_rx_power(value);
1136
1137 return 0;
1138 }
1139
sfp_hwmon_temp(struct sfp * sfp,u32 attr,long * value)1140 static int sfp_hwmon_temp(struct sfp *sfp, u32 attr, long *value)
1141 {
1142 u8 status;
1143 int err;
1144
1145 switch (attr) {
1146 case hwmon_temp_input:
1147 return sfp_hwmon_read_temp(sfp, SFP_TEMP, value);
1148
1149 case hwmon_temp_lcrit:
1150 *value = be16_to_cpu(sfp->diag.temp_low_alarm);
1151 sfp_hwmon_calibrate_temp(sfp, value);
1152 return 0;
1153
1154 case hwmon_temp_min:
1155 *value = be16_to_cpu(sfp->diag.temp_low_warn);
1156 sfp_hwmon_calibrate_temp(sfp, value);
1157 return 0;
1158 case hwmon_temp_max:
1159 *value = be16_to_cpu(sfp->diag.temp_high_warn);
1160 sfp_hwmon_calibrate_temp(sfp, value);
1161 return 0;
1162
1163 case hwmon_temp_crit:
1164 *value = be16_to_cpu(sfp->diag.temp_high_alarm);
1165 sfp_hwmon_calibrate_temp(sfp, value);
1166 return 0;
1167
1168 case hwmon_temp_lcrit_alarm:
1169 err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
1170 if (err < 0)
1171 return err;
1172
1173 *value = !!(status & SFP_ALARM0_TEMP_LOW);
1174 return 0;
1175
1176 case hwmon_temp_min_alarm:
1177 err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
1178 if (err < 0)
1179 return err;
1180
1181 *value = !!(status & SFP_WARN0_TEMP_LOW);
1182 return 0;
1183
1184 case hwmon_temp_max_alarm:
1185 err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
1186 if (err < 0)
1187 return err;
1188
1189 *value = !!(status & SFP_WARN0_TEMP_HIGH);
1190 return 0;
1191
1192 case hwmon_temp_crit_alarm:
1193 err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
1194 if (err < 0)
1195 return err;
1196
1197 *value = !!(status & SFP_ALARM0_TEMP_HIGH);
1198 return 0;
1199 default:
1200 return -EOPNOTSUPP;
1201 }
1202
1203 return -EOPNOTSUPP;
1204 }
1205
sfp_hwmon_vcc(struct sfp * sfp,u32 attr,long * value)1206 static int sfp_hwmon_vcc(struct sfp *sfp, u32 attr, long *value)
1207 {
1208 u8 status;
1209 int err;
1210
1211 switch (attr) {
1212 case hwmon_in_input:
1213 return sfp_hwmon_read_vcc(sfp, SFP_VCC, value);
1214
1215 case hwmon_in_lcrit:
1216 *value = be16_to_cpu(sfp->diag.volt_low_alarm);
1217 sfp_hwmon_calibrate_vcc(sfp, value);
1218 return 0;
1219
1220 case hwmon_in_min:
1221 *value = be16_to_cpu(sfp->diag.volt_low_warn);
1222 sfp_hwmon_calibrate_vcc(sfp, value);
1223 return 0;
1224
1225 case hwmon_in_max:
1226 *value = be16_to_cpu(sfp->diag.volt_high_warn);
1227 sfp_hwmon_calibrate_vcc(sfp, value);
1228 return 0;
1229
1230 case hwmon_in_crit:
1231 *value = be16_to_cpu(sfp->diag.volt_high_alarm);
1232 sfp_hwmon_calibrate_vcc(sfp, value);
1233 return 0;
1234
1235 case hwmon_in_lcrit_alarm:
1236 err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
1237 if (err < 0)
1238 return err;
1239
1240 *value = !!(status & SFP_ALARM0_VCC_LOW);
1241 return 0;
1242
1243 case hwmon_in_min_alarm:
1244 err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
1245 if (err < 0)
1246 return err;
1247
1248 *value = !!(status & SFP_WARN0_VCC_LOW);
1249 return 0;
1250
1251 case hwmon_in_max_alarm:
1252 err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
1253 if (err < 0)
1254 return err;
1255
1256 *value = !!(status & SFP_WARN0_VCC_HIGH);
1257 return 0;
1258
1259 case hwmon_in_crit_alarm:
1260 err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
1261 if (err < 0)
1262 return err;
1263
1264 *value = !!(status & SFP_ALARM0_VCC_HIGH);
1265 return 0;
1266 default:
1267 return -EOPNOTSUPP;
1268 }
1269
1270 return -EOPNOTSUPP;
1271 }
1272
sfp_hwmon_bias(struct sfp * sfp,u32 attr,long * value)1273 static int sfp_hwmon_bias(struct sfp *sfp, u32 attr, long *value)
1274 {
1275 u8 status;
1276 int err;
1277
1278 switch (attr) {
1279 case hwmon_curr_input:
1280 return sfp_hwmon_read_bias(sfp, SFP_TX_BIAS, value);
1281
1282 case hwmon_curr_lcrit:
1283 *value = be16_to_cpu(sfp->diag.bias_low_alarm);
1284 sfp_hwmon_calibrate_bias(sfp, value);
1285 return 0;
1286
1287 case hwmon_curr_min:
1288 *value = be16_to_cpu(sfp->diag.bias_low_warn);
1289 sfp_hwmon_calibrate_bias(sfp, value);
1290 return 0;
1291
1292 case hwmon_curr_max:
1293 *value = be16_to_cpu(sfp->diag.bias_high_warn);
1294 sfp_hwmon_calibrate_bias(sfp, value);
1295 return 0;
1296
1297 case hwmon_curr_crit:
1298 *value = be16_to_cpu(sfp->diag.bias_high_alarm);
1299 sfp_hwmon_calibrate_bias(sfp, value);
1300 return 0;
1301
1302 case hwmon_curr_lcrit_alarm:
1303 err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
1304 if (err < 0)
1305 return err;
1306
1307 *value = !!(status & SFP_ALARM0_TX_BIAS_LOW);
1308 return 0;
1309
1310 case hwmon_curr_min_alarm:
1311 err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
1312 if (err < 0)
1313 return err;
1314
1315 *value = !!(status & SFP_WARN0_TX_BIAS_LOW);
1316 return 0;
1317
1318 case hwmon_curr_max_alarm:
1319 err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
1320 if (err < 0)
1321 return err;
1322
1323 *value = !!(status & SFP_WARN0_TX_BIAS_HIGH);
1324 return 0;
1325
1326 case hwmon_curr_crit_alarm:
1327 err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
1328 if (err < 0)
1329 return err;
1330
1331 *value = !!(status & SFP_ALARM0_TX_BIAS_HIGH);
1332 return 0;
1333 default:
1334 return -EOPNOTSUPP;
1335 }
1336
1337 return -EOPNOTSUPP;
1338 }
1339
sfp_hwmon_tx_power(struct sfp * sfp,u32 attr,long * value)1340 static int sfp_hwmon_tx_power(struct sfp *sfp, u32 attr, long *value)
1341 {
1342 u8 status;
1343 int err;
1344
1345 switch (attr) {
1346 case hwmon_power_input:
1347 return sfp_hwmon_read_tx_power(sfp, SFP_TX_POWER, value);
1348
1349 case hwmon_power_lcrit:
1350 *value = be16_to_cpu(sfp->diag.txpwr_low_alarm);
1351 sfp_hwmon_calibrate_tx_power(sfp, value);
1352 return 0;
1353
1354 case hwmon_power_min:
1355 *value = be16_to_cpu(sfp->diag.txpwr_low_warn);
1356 sfp_hwmon_calibrate_tx_power(sfp, value);
1357 return 0;
1358
1359 case hwmon_power_max:
1360 *value = be16_to_cpu(sfp->diag.txpwr_high_warn);
1361 sfp_hwmon_calibrate_tx_power(sfp, value);
1362 return 0;
1363
1364 case hwmon_power_crit:
1365 *value = be16_to_cpu(sfp->diag.txpwr_high_alarm);
1366 sfp_hwmon_calibrate_tx_power(sfp, value);
1367 return 0;
1368
1369 case hwmon_power_lcrit_alarm:
1370 err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
1371 if (err < 0)
1372 return err;
1373
1374 *value = !!(status & SFP_ALARM0_TXPWR_LOW);
1375 return 0;
1376
1377 case hwmon_power_min_alarm:
1378 err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
1379 if (err < 0)
1380 return err;
1381
1382 *value = !!(status & SFP_WARN0_TXPWR_LOW);
1383 return 0;
1384
1385 case hwmon_power_max_alarm:
1386 err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
1387 if (err < 0)
1388 return err;
1389
1390 *value = !!(status & SFP_WARN0_TXPWR_HIGH);
1391 return 0;
1392
1393 case hwmon_power_crit_alarm:
1394 err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
1395 if (err < 0)
1396 return err;
1397
1398 *value = !!(status & SFP_ALARM0_TXPWR_HIGH);
1399 return 0;
1400 default:
1401 return -EOPNOTSUPP;
1402 }
1403
1404 return -EOPNOTSUPP;
1405 }
1406
sfp_hwmon_rx_power(struct sfp * sfp,u32 attr,long * value)1407 static int sfp_hwmon_rx_power(struct sfp *sfp, u32 attr, long *value)
1408 {
1409 u8 status;
1410 int err;
1411
1412 switch (attr) {
1413 case hwmon_power_input:
1414 return sfp_hwmon_read_rx_power(sfp, SFP_RX_POWER, value);
1415
1416 case hwmon_power_lcrit:
1417 *value = be16_to_cpu(sfp->diag.rxpwr_low_alarm);
1418 sfp_hwmon_to_rx_power(value);
1419 return 0;
1420
1421 case hwmon_power_min:
1422 *value = be16_to_cpu(sfp->diag.rxpwr_low_warn);
1423 sfp_hwmon_to_rx_power(value);
1424 return 0;
1425
1426 case hwmon_power_max:
1427 *value = be16_to_cpu(sfp->diag.rxpwr_high_warn);
1428 sfp_hwmon_to_rx_power(value);
1429 return 0;
1430
1431 case hwmon_power_crit:
1432 *value = be16_to_cpu(sfp->diag.rxpwr_high_alarm);
1433 sfp_hwmon_to_rx_power(value);
1434 return 0;
1435
1436 case hwmon_power_lcrit_alarm:
1437 err = sfp_read(sfp, true, SFP_ALARM1, &status, sizeof(status));
1438 if (err < 0)
1439 return err;
1440
1441 *value = !!(status & SFP_ALARM1_RXPWR_LOW);
1442 return 0;
1443
1444 case hwmon_power_min_alarm:
1445 err = sfp_read(sfp, true, SFP_WARN1, &status, sizeof(status));
1446 if (err < 0)
1447 return err;
1448
1449 *value = !!(status & SFP_WARN1_RXPWR_LOW);
1450 return 0;
1451
1452 case hwmon_power_max_alarm:
1453 err = sfp_read(sfp, true, SFP_WARN1, &status, sizeof(status));
1454 if (err < 0)
1455 return err;
1456
1457 *value = !!(status & SFP_WARN1_RXPWR_HIGH);
1458 return 0;
1459
1460 case hwmon_power_crit_alarm:
1461 err = sfp_read(sfp, true, SFP_ALARM1, &status, sizeof(status));
1462 if (err < 0)
1463 return err;
1464
1465 *value = !!(status & SFP_ALARM1_RXPWR_HIGH);
1466 return 0;
1467 default:
1468 return -EOPNOTSUPP;
1469 }
1470
1471 return -EOPNOTSUPP;
1472 }
1473
sfp_hwmon_read(struct device * dev,enum hwmon_sensor_types type,u32 attr,int channel,long * value)1474 static int sfp_hwmon_read(struct device *dev, enum hwmon_sensor_types type,
1475 u32 attr, int channel, long *value)
1476 {
1477 struct sfp *sfp = dev_get_drvdata(dev);
1478
1479 switch (type) {
1480 case hwmon_temp:
1481 return sfp_hwmon_temp(sfp, attr, value);
1482 case hwmon_in:
1483 return sfp_hwmon_vcc(sfp, attr, value);
1484 case hwmon_curr:
1485 return sfp_hwmon_bias(sfp, attr, value);
1486 case hwmon_power:
1487 switch (channel) {
1488 case 0:
1489 return sfp_hwmon_tx_power(sfp, attr, value);
1490 case 1:
1491 return sfp_hwmon_rx_power(sfp, attr, value);
1492 default:
1493 return -EOPNOTSUPP;
1494 }
1495 default:
1496 return -EOPNOTSUPP;
1497 }
1498 }
1499
1500 static const char *const sfp_hwmon_power_labels[] = {
1501 "TX_power",
1502 "RX_power",
1503 };
1504
sfp_hwmon_read_string(struct device * dev,enum hwmon_sensor_types type,u32 attr,int channel,const char ** str)1505 static int sfp_hwmon_read_string(struct device *dev,
1506 enum hwmon_sensor_types type,
1507 u32 attr, int channel, const char **str)
1508 {
1509 switch (type) {
1510 case hwmon_curr:
1511 switch (attr) {
1512 case hwmon_curr_label:
1513 *str = "bias";
1514 return 0;
1515 default:
1516 return -EOPNOTSUPP;
1517 }
1518 break;
1519 case hwmon_temp:
1520 switch (attr) {
1521 case hwmon_temp_label:
1522 *str = "temperature";
1523 return 0;
1524 default:
1525 return -EOPNOTSUPP;
1526 }
1527 break;
1528 case hwmon_in:
1529 switch (attr) {
1530 case hwmon_in_label:
1531 *str = "VCC";
1532 return 0;
1533 default:
1534 return -EOPNOTSUPP;
1535 }
1536 break;
1537 case hwmon_power:
1538 switch (attr) {
1539 case hwmon_power_label:
1540 *str = sfp_hwmon_power_labels[channel];
1541 return 0;
1542 default:
1543 return -EOPNOTSUPP;
1544 }
1545 break;
1546 default:
1547 return -EOPNOTSUPP;
1548 }
1549
1550 return -EOPNOTSUPP;
1551 }
1552
1553 static const struct hwmon_ops sfp_hwmon_ops = {
1554 .is_visible = sfp_hwmon_is_visible,
1555 .read = sfp_hwmon_read,
1556 .read_string = sfp_hwmon_read_string,
1557 };
1558
1559 static const struct hwmon_channel_info * const sfp_hwmon_info[] = {
1560 HWMON_CHANNEL_INFO(chip,
1561 HWMON_C_REGISTER_TZ),
1562 HWMON_CHANNEL_INFO(in,
1563 HWMON_I_INPUT |
1564 HWMON_I_MAX | HWMON_I_MIN |
1565 HWMON_I_MAX_ALARM | HWMON_I_MIN_ALARM |
1566 HWMON_I_CRIT | HWMON_I_LCRIT |
1567 HWMON_I_CRIT_ALARM | HWMON_I_LCRIT_ALARM |
1568 HWMON_I_LABEL),
1569 HWMON_CHANNEL_INFO(temp,
1570 HWMON_T_INPUT |
1571 HWMON_T_MAX | HWMON_T_MIN |
1572 HWMON_T_MAX_ALARM | HWMON_T_MIN_ALARM |
1573 HWMON_T_CRIT | HWMON_T_LCRIT |
1574 HWMON_T_CRIT_ALARM | HWMON_T_LCRIT_ALARM |
1575 HWMON_T_LABEL),
1576 HWMON_CHANNEL_INFO(curr,
1577 HWMON_C_INPUT |
1578 HWMON_C_MAX | HWMON_C_MIN |
1579 HWMON_C_MAX_ALARM | HWMON_C_MIN_ALARM |
1580 HWMON_C_CRIT | HWMON_C_LCRIT |
1581 HWMON_C_CRIT_ALARM | HWMON_C_LCRIT_ALARM |
1582 HWMON_C_LABEL),
1583 HWMON_CHANNEL_INFO(power,
1584 /* Transmit power */
1585 HWMON_P_INPUT |
1586 HWMON_P_MAX | HWMON_P_MIN |
1587 HWMON_P_MAX_ALARM | HWMON_P_MIN_ALARM |
1588 HWMON_P_CRIT | HWMON_P_LCRIT |
1589 HWMON_P_CRIT_ALARM | HWMON_P_LCRIT_ALARM |
1590 HWMON_P_LABEL,
1591 /* Receive power */
1592 HWMON_P_INPUT |
1593 HWMON_P_MAX | HWMON_P_MIN |
1594 HWMON_P_MAX_ALARM | HWMON_P_MIN_ALARM |
1595 HWMON_P_CRIT | HWMON_P_LCRIT |
1596 HWMON_P_CRIT_ALARM | HWMON_P_LCRIT_ALARM |
1597 HWMON_P_LABEL),
1598 NULL,
1599 };
1600
1601 static const struct hwmon_chip_info sfp_hwmon_chip_info = {
1602 .ops = &sfp_hwmon_ops,
1603 .info = sfp_hwmon_info,
1604 };
1605
sfp_hwmon_probe(struct work_struct * work)1606 static void sfp_hwmon_probe(struct work_struct *work)
1607 {
1608 struct sfp *sfp = container_of(work, struct sfp, hwmon_probe.work);
1609 int err;
1610
1611 /* hwmon interface needs to access 16bit registers in atomic way to
1612 * guarantee coherency of the diagnostic monitoring data. If it is not
1613 * possible to guarantee coherency because EEPROM is broken in such way
1614 * that does not support atomic 16bit read operation then we have to
1615 * skip registration of hwmon device.
1616 */
1617 if (sfp->i2c_block_size < 2) {
1618 dev_info(sfp->dev,
1619 "skipping hwmon device registration due to broken EEPROM\n");
1620 dev_info(sfp->dev,
1621 "diagnostic EEPROM area cannot be read atomically to guarantee data coherency\n");
1622 return;
1623 }
1624
1625 err = sfp_read(sfp, true, 0, &sfp->diag, sizeof(sfp->diag));
1626 if (err < 0) {
1627 if (sfp->hwmon_tries--) {
1628 mod_delayed_work(system_wq, &sfp->hwmon_probe,
1629 T_PROBE_RETRY_SLOW);
1630 } else {
1631 dev_warn(sfp->dev, "hwmon probe failed: %pe\n",
1632 ERR_PTR(err));
1633 }
1634 return;
1635 }
1636
1637 sfp->hwmon_name = hwmon_sanitize_name(dev_name(sfp->dev));
1638 if (IS_ERR(sfp->hwmon_name)) {
1639 dev_err(sfp->dev, "out of memory for hwmon name\n");
1640 return;
1641 }
1642
1643 sfp->hwmon_dev = hwmon_device_register_with_info(sfp->dev,
1644 sfp->hwmon_name, sfp,
1645 &sfp_hwmon_chip_info,
1646 NULL);
1647 if (IS_ERR(sfp->hwmon_dev))
1648 dev_err(sfp->dev, "failed to register hwmon device: %ld\n",
1649 PTR_ERR(sfp->hwmon_dev));
1650 }
1651
sfp_hwmon_insert(struct sfp * sfp)1652 static int sfp_hwmon_insert(struct sfp *sfp)
1653 {
1654 if (sfp->have_a2 && sfp->id.ext.diagmon & SFP_DIAGMON_DDM) {
1655 mod_delayed_work(system_wq, &sfp->hwmon_probe, 1);
1656 sfp->hwmon_tries = R_PROBE_RETRY_SLOW;
1657 }
1658
1659 return 0;
1660 }
1661
sfp_hwmon_remove(struct sfp * sfp)1662 static void sfp_hwmon_remove(struct sfp *sfp)
1663 {
1664 cancel_delayed_work_sync(&sfp->hwmon_probe);
1665 if (!IS_ERR_OR_NULL(sfp->hwmon_dev)) {
1666 hwmon_device_unregister(sfp->hwmon_dev);
1667 sfp->hwmon_dev = NULL;
1668 kfree(sfp->hwmon_name);
1669 }
1670 }
1671
sfp_hwmon_init(struct sfp * sfp)1672 static int sfp_hwmon_init(struct sfp *sfp)
1673 {
1674 INIT_DELAYED_WORK(&sfp->hwmon_probe, sfp_hwmon_probe);
1675
1676 return 0;
1677 }
1678
sfp_hwmon_exit(struct sfp * sfp)1679 static void sfp_hwmon_exit(struct sfp *sfp)
1680 {
1681 cancel_delayed_work_sync(&sfp->hwmon_probe);
1682 }
1683 #else
sfp_hwmon_insert(struct sfp * sfp)1684 static int sfp_hwmon_insert(struct sfp *sfp)
1685 {
1686 return 0;
1687 }
1688
sfp_hwmon_remove(struct sfp * sfp)1689 static void sfp_hwmon_remove(struct sfp *sfp)
1690 {
1691 }
1692
sfp_hwmon_init(struct sfp * sfp)1693 static int sfp_hwmon_init(struct sfp *sfp)
1694 {
1695 return 0;
1696 }
1697
sfp_hwmon_exit(struct sfp * sfp)1698 static void sfp_hwmon_exit(struct sfp *sfp)
1699 {
1700 }
1701 #endif
1702
1703 /* Helpers */
sfp_module_tx_disable(struct sfp * sfp)1704 static void sfp_module_tx_disable(struct sfp *sfp)
1705 {
1706 dev_dbg(sfp->dev, "tx disable %u -> %u\n",
1707 sfp->state & SFP_F_TX_DISABLE ? 1 : 0, 1);
1708 sfp_mod_state(sfp, SFP_F_TX_DISABLE, SFP_F_TX_DISABLE);
1709 }
1710
sfp_module_tx_enable(struct sfp * sfp)1711 static void sfp_module_tx_enable(struct sfp *sfp)
1712 {
1713 dev_dbg(sfp->dev, "tx disable %u -> %u\n",
1714 sfp->state & SFP_F_TX_DISABLE ? 1 : 0, 0);
1715 sfp_mod_state(sfp, SFP_F_TX_DISABLE, 0);
1716 }
1717
1718 #if IS_ENABLED(CONFIG_DEBUG_FS)
sfp_debug_state_show(struct seq_file * s,void * data)1719 static int sfp_debug_state_show(struct seq_file *s, void *data)
1720 {
1721 struct sfp *sfp = s->private;
1722
1723 seq_printf(s, "Module state: %s\n",
1724 mod_state_to_str(sfp->sm_mod_state));
1725 seq_printf(s, "Module probe attempts: %d %d\n",
1726 R_PROBE_RETRY_INIT - sfp->sm_mod_tries_init,
1727 R_PROBE_RETRY_SLOW - sfp->sm_mod_tries);
1728 seq_printf(s, "Device state: %s\n",
1729 dev_state_to_str(sfp->sm_dev_state));
1730 seq_printf(s, "Main state: %s\n",
1731 sm_state_to_str(sfp->sm_state));
1732 seq_printf(s, "Fault recovery remaining retries: %d\n",
1733 sfp->sm_fault_retries);
1734 seq_printf(s, "PHY probe remaining retries: %d\n",
1735 sfp->sm_phy_retries);
1736 seq_printf(s, "Signalling rate: %u kBd\n", sfp->rate_kbd);
1737 seq_printf(s, "Rate select threshold: %u kBd\n",
1738 sfp->rs_threshold_kbd);
1739 seq_printf(s, "moddef0: %d\n", !!(sfp->state & SFP_F_PRESENT));
1740 seq_printf(s, "rx_los: %d\n", !!(sfp->state & SFP_F_LOS));
1741 seq_printf(s, "tx_fault: %d\n", !!(sfp->state & SFP_F_TX_FAULT));
1742 seq_printf(s, "tx_disable: %d\n", !!(sfp->state & SFP_F_TX_DISABLE));
1743 seq_printf(s, "rs0: %d\n", !!(sfp->state & SFP_F_RS0));
1744 seq_printf(s, "rs1: %d\n", !!(sfp->state & SFP_F_RS1));
1745 return 0;
1746 }
1747 DEFINE_SHOW_ATTRIBUTE(sfp_debug_state);
1748
sfp_debugfs_init(struct sfp * sfp)1749 static void sfp_debugfs_init(struct sfp *sfp)
1750 {
1751 sfp->debugfs_dir = debugfs_create_dir(dev_name(sfp->dev), NULL);
1752
1753 debugfs_create_file("state", 0600, sfp->debugfs_dir, sfp,
1754 &sfp_debug_state_fops);
1755 }
1756
sfp_debugfs_exit(struct sfp * sfp)1757 static void sfp_debugfs_exit(struct sfp *sfp)
1758 {
1759 debugfs_remove_recursive(sfp->debugfs_dir);
1760 }
1761 #else
sfp_debugfs_init(struct sfp * sfp)1762 static void sfp_debugfs_init(struct sfp *sfp)
1763 {
1764 }
1765
sfp_debugfs_exit(struct sfp * sfp)1766 static void sfp_debugfs_exit(struct sfp *sfp)
1767 {
1768 }
1769 #endif
1770
sfp_module_tx_fault_reset(struct sfp * sfp)1771 static void sfp_module_tx_fault_reset(struct sfp *sfp)
1772 {
1773 unsigned int state;
1774
1775 mutex_lock(&sfp->st_mutex);
1776 state = sfp->state;
1777 if (!(state & SFP_F_TX_DISABLE)) {
1778 sfp_set_state(sfp, state | SFP_F_TX_DISABLE);
1779
1780 udelay(T_RESET_US);
1781
1782 sfp_set_state(sfp, state);
1783 }
1784 mutex_unlock(&sfp->st_mutex);
1785 }
1786
1787 /* SFP state machine */
sfp_sm_set_timer(struct sfp * sfp,unsigned int timeout)1788 static void sfp_sm_set_timer(struct sfp *sfp, unsigned int timeout)
1789 {
1790 if (timeout)
1791 mod_delayed_work(system_power_efficient_wq, &sfp->timeout,
1792 timeout);
1793 else
1794 cancel_delayed_work(&sfp->timeout);
1795 }
1796
sfp_sm_next(struct sfp * sfp,unsigned int state,unsigned int timeout)1797 static void sfp_sm_next(struct sfp *sfp, unsigned int state,
1798 unsigned int timeout)
1799 {
1800 sfp->sm_state = state;
1801 sfp_sm_set_timer(sfp, timeout);
1802 }
1803
sfp_sm_mod_next(struct sfp * sfp,unsigned int state,unsigned int timeout)1804 static void sfp_sm_mod_next(struct sfp *sfp, unsigned int state,
1805 unsigned int timeout)
1806 {
1807 sfp->sm_mod_state = state;
1808 sfp_sm_set_timer(sfp, timeout);
1809 }
1810
sfp_sm_phy_detach(struct sfp * sfp)1811 static void sfp_sm_phy_detach(struct sfp *sfp)
1812 {
1813 sfp_remove_phy(sfp->sfp_bus);
1814 phy_device_remove(sfp->mod_phy);
1815 phy_device_free(sfp->mod_phy);
1816 sfp->mod_phy = NULL;
1817 }
1818
sfp_sm_probe_phy(struct sfp * sfp,int addr,bool is_c45)1819 static int sfp_sm_probe_phy(struct sfp *sfp, int addr, bool is_c45)
1820 {
1821 struct phy_device *phy;
1822 int err;
1823
1824 phy = get_phy_device(sfp->i2c_mii, addr, is_c45);
1825 if (phy == ERR_PTR(-ENODEV))
1826 return PTR_ERR(phy);
1827 if (IS_ERR(phy)) {
1828 dev_err(sfp->dev, "mdiobus scan returned %pe\n", phy);
1829 return PTR_ERR(phy);
1830 }
1831
1832 /* Mark this PHY as being on a SFP module */
1833 phy->is_on_sfp_module = true;
1834
1835 err = phy_device_register(phy);
1836 if (err) {
1837 phy_device_free(phy);
1838 dev_err(sfp->dev, "phy_device_register failed: %pe\n",
1839 ERR_PTR(err));
1840 return err;
1841 }
1842
1843 err = sfp_add_phy(sfp->sfp_bus, phy);
1844 if (err) {
1845 phy_device_remove(phy);
1846 phy_device_free(phy);
1847 dev_err(sfp->dev, "sfp_add_phy failed: %pe\n", ERR_PTR(err));
1848 return err;
1849 }
1850
1851 sfp->mod_phy = phy;
1852
1853 return 0;
1854 }
1855
sfp_sm_link_up(struct sfp * sfp)1856 static void sfp_sm_link_up(struct sfp *sfp)
1857 {
1858 sfp_link_up(sfp->sfp_bus);
1859 sfp_sm_next(sfp, SFP_S_LINK_UP, 0);
1860 }
1861
sfp_sm_link_down(struct sfp * sfp)1862 static void sfp_sm_link_down(struct sfp *sfp)
1863 {
1864 sfp_link_down(sfp->sfp_bus);
1865 }
1866
sfp_sm_link_check_los(struct sfp * sfp)1867 static void sfp_sm_link_check_los(struct sfp *sfp)
1868 {
1869 const __be16 los_inverted = cpu_to_be16(SFP_OPTIONS_LOS_INVERTED);
1870 const __be16 los_normal = cpu_to_be16(SFP_OPTIONS_LOS_NORMAL);
1871 __be16 los_options = sfp->id.ext.options & (los_inverted | los_normal);
1872 bool los = false;
1873
1874 /* If neither SFP_OPTIONS_LOS_INVERTED nor SFP_OPTIONS_LOS_NORMAL
1875 * are set, we assume that no LOS signal is available. If both are
1876 * set, we assume LOS is not implemented (and is meaningless.)
1877 */
1878 if (los_options == los_inverted)
1879 los = !(sfp->state & SFP_F_LOS);
1880 else if (los_options == los_normal)
1881 los = !!(sfp->state & SFP_F_LOS);
1882
1883 if (los)
1884 sfp_sm_next(sfp, SFP_S_WAIT_LOS, 0);
1885 else
1886 sfp_sm_link_up(sfp);
1887 }
1888
sfp_los_event_active(struct sfp * sfp,unsigned int event)1889 static bool sfp_los_event_active(struct sfp *sfp, unsigned int event)
1890 {
1891 const __be16 los_inverted = cpu_to_be16(SFP_OPTIONS_LOS_INVERTED);
1892 const __be16 los_normal = cpu_to_be16(SFP_OPTIONS_LOS_NORMAL);
1893 __be16 los_options = sfp->id.ext.options & (los_inverted | los_normal);
1894
1895 return (los_options == los_inverted && event == SFP_E_LOS_LOW) ||
1896 (los_options == los_normal && event == SFP_E_LOS_HIGH);
1897 }
1898
sfp_los_event_inactive(struct sfp * sfp,unsigned int event)1899 static bool sfp_los_event_inactive(struct sfp *sfp, unsigned int event)
1900 {
1901 const __be16 los_inverted = cpu_to_be16(SFP_OPTIONS_LOS_INVERTED);
1902 const __be16 los_normal = cpu_to_be16(SFP_OPTIONS_LOS_NORMAL);
1903 __be16 los_options = sfp->id.ext.options & (los_inverted | los_normal);
1904
1905 return (los_options == los_inverted && event == SFP_E_LOS_HIGH) ||
1906 (los_options == los_normal && event == SFP_E_LOS_LOW);
1907 }
1908
sfp_sm_fault(struct sfp * sfp,unsigned int next_state,bool warn)1909 static void sfp_sm_fault(struct sfp *sfp, unsigned int next_state, bool warn)
1910 {
1911 if (sfp->sm_fault_retries && !--sfp->sm_fault_retries) {
1912 dev_err(sfp->dev,
1913 "module persistently indicates fault, disabling\n");
1914 sfp_sm_next(sfp, SFP_S_TX_DISABLE, 0);
1915 } else {
1916 if (warn)
1917 dev_err(sfp->dev, "module transmit fault indicated\n");
1918
1919 sfp_sm_next(sfp, next_state, T_FAULT_RECOVER);
1920 }
1921 }
1922
sfp_sm_add_mdio_bus(struct sfp * sfp)1923 static int sfp_sm_add_mdio_bus(struct sfp *sfp)
1924 {
1925 if (sfp->mdio_protocol != MDIO_I2C_NONE)
1926 return sfp_i2c_mdiobus_create(sfp);
1927
1928 return 0;
1929 }
1930
1931 /* Probe a SFP for a PHY device if the module supports copper - the PHY
1932 * normally sits at I2C bus address 0x56, and may either be a clause 22
1933 * or clause 45 PHY.
1934 *
1935 * Clause 22 copper SFP modules normally operate in Cisco SGMII mode with
1936 * negotiation enabled, but some may be in 1000base-X - which is for the
1937 * PHY driver to determine.
1938 *
1939 * Clause 45 copper SFP+ modules (10G) appear to switch their interface
1940 * mode according to the negotiated line speed.
1941 */
sfp_sm_probe_for_phy(struct sfp * sfp)1942 static int sfp_sm_probe_for_phy(struct sfp *sfp)
1943 {
1944 int err = 0;
1945
1946 switch (sfp->mdio_protocol) {
1947 case MDIO_I2C_NONE:
1948 break;
1949
1950 case MDIO_I2C_MARVELL_C22:
1951 err = sfp_sm_probe_phy(sfp, SFP_PHY_ADDR, false);
1952 break;
1953
1954 case MDIO_I2C_C45:
1955 err = sfp_sm_probe_phy(sfp, SFP_PHY_ADDR, true);
1956 break;
1957
1958 case MDIO_I2C_ROLLBALL:
1959 err = sfp_sm_probe_phy(sfp, SFP_PHY_ADDR_ROLLBALL, true);
1960 break;
1961 }
1962
1963 return err;
1964 }
1965
sfp_module_parse_power(struct sfp * sfp)1966 static int sfp_module_parse_power(struct sfp *sfp)
1967 {
1968 u32 power_mW = 1000;
1969 bool supports_a2;
1970
1971 if (sfp->id.ext.sff8472_compliance >= SFP_SFF8472_COMPLIANCE_REV10_2 &&
1972 sfp->id.ext.options & cpu_to_be16(SFP_OPTIONS_POWER_DECL))
1973 power_mW = 1500;
1974 /* Added in Rev 11.9, but there is no compliance code for this */
1975 if (sfp->id.ext.sff8472_compliance >= SFP_SFF8472_COMPLIANCE_REV11_4 &&
1976 sfp->id.ext.options & cpu_to_be16(SFP_OPTIONS_HIGH_POWER_LEVEL))
1977 power_mW = 2000;
1978
1979 /* Power level 1 modules (max. 1W) are always supported. */
1980 if (power_mW <= 1000) {
1981 sfp->module_power_mW = power_mW;
1982 return 0;
1983 }
1984
1985 supports_a2 = sfp->id.ext.sff8472_compliance !=
1986 SFP_SFF8472_COMPLIANCE_NONE ||
1987 sfp->id.ext.diagmon & SFP_DIAGMON_DDM;
1988
1989 if (power_mW > sfp->max_power_mW) {
1990 /* Module power specification exceeds the allowed maximum. */
1991 if (!supports_a2) {
1992 /* The module appears not to implement bus address
1993 * 0xa2, so assume that the module powers up in the
1994 * indicated mode.
1995 */
1996 dev_err(sfp->dev,
1997 "Host does not support %u.%uW modules\n",
1998 power_mW / 1000, (power_mW / 100) % 10);
1999 return -EINVAL;
2000 } else {
2001 dev_warn(sfp->dev,
2002 "Host does not support %u.%uW modules, module left in power mode 1\n",
2003 power_mW / 1000, (power_mW / 100) % 10);
2004 return 0;
2005 }
2006 }
2007
2008 if (!supports_a2) {
2009 /* The module power level is below the host maximum and the
2010 * module appears not to implement bus address 0xa2, so assume
2011 * that the module powers up in the indicated mode.
2012 */
2013 return 0;
2014 }
2015
2016 /* If the module requires a higher power mode, but also requires
2017 * an address change sequence, warn the user that the module may
2018 * not be functional.
2019 */
2020 if (sfp->id.ext.diagmon & SFP_DIAGMON_ADDRMODE) {
2021 dev_warn(sfp->dev,
2022 "Address Change Sequence not supported but module requires %u.%uW, module may not be functional\n",
2023 power_mW / 1000, (power_mW / 100) % 10);
2024 return 0;
2025 }
2026
2027 sfp->module_power_mW = power_mW;
2028
2029 return 0;
2030 }
2031
sfp_sm_mod_hpower(struct sfp * sfp,bool enable)2032 static int sfp_sm_mod_hpower(struct sfp *sfp, bool enable)
2033 {
2034 int err;
2035
2036 err = sfp_modify_u8(sfp, true, SFP_EXT_STATUS,
2037 SFP_EXT_STATUS_PWRLVL_SELECT,
2038 enable ? SFP_EXT_STATUS_PWRLVL_SELECT : 0);
2039 if (err != sizeof(u8)) {
2040 dev_err(sfp->dev, "failed to %sable high power: %pe\n",
2041 enable ? "en" : "dis", ERR_PTR(err));
2042 return -EAGAIN;
2043 }
2044
2045 if (enable)
2046 dev_info(sfp->dev, "Module switched to %u.%uW power level\n",
2047 sfp->module_power_mW / 1000,
2048 (sfp->module_power_mW / 100) % 10);
2049
2050 return 0;
2051 }
2052
sfp_module_parse_rate_select(struct sfp * sfp)2053 static void sfp_module_parse_rate_select(struct sfp *sfp)
2054 {
2055 u8 rate_id;
2056
2057 sfp->rs_threshold_kbd = 0;
2058 sfp->rs_state_mask = 0;
2059
2060 if (!(sfp->id.ext.options & cpu_to_be16(SFP_OPTIONS_RATE_SELECT)))
2061 /* No support for RateSelect */
2062 return;
2063
2064 /* Default to INF-8074 RateSelect operation. The signalling threshold
2065 * rate is not well specified, so always select "Full Bandwidth", but
2066 * SFF-8079 reveals that it is understood that RS0 will be low for
2067 * 1.0625Gb/s and high for 2.125Gb/s. Choose a value half-way between.
2068 * This method exists prior to SFF-8472.
2069 */
2070 sfp->rs_state_mask = SFP_F_RS0;
2071 sfp->rs_threshold_kbd = 1594;
2072
2073 /* Parse the rate identifier, which is complicated due to history:
2074 * SFF-8472 rev 9.5 marks this field as reserved.
2075 * SFF-8079 references SFF-8472 rev 9.5 and defines bit 0. SFF-8472
2076 * compliance is not required.
2077 * SFF-8472 rev 10.2 defines this field using values 0..4
2078 * SFF-8472 rev 11.0 redefines this field with bit 0 for SFF-8079
2079 * and even values.
2080 */
2081 rate_id = sfp->id.base.rate_id;
2082 if (rate_id == 0)
2083 /* Unspecified */
2084 return;
2085
2086 /* SFF-8472 rev 10.0..10.4 did not account for SFF-8079 using bit 0,
2087 * and allocated value 3 to SFF-8431 independent tx/rx rate select.
2088 * Convert this to a SFF-8472 rev 11.0 rate identifier.
2089 */
2090 if (sfp->id.ext.sff8472_compliance >= SFP_SFF8472_COMPLIANCE_REV10_2 &&
2091 sfp->id.ext.sff8472_compliance < SFP_SFF8472_COMPLIANCE_REV11_0 &&
2092 rate_id == 3)
2093 rate_id = SFF_RID_8431;
2094
2095 if (rate_id & SFF_RID_8079) {
2096 /* SFF-8079 RateSelect / Application Select in conjunction with
2097 * SFF-8472 rev 9.5. SFF-8079 defines rate_id as a bitfield
2098 * with only bit 0 used, which takes precedence over SFF-8472.
2099 */
2100 if (!(sfp->id.ext.enhopts & SFP_ENHOPTS_APP_SELECT_SFF8079)) {
2101 /* SFF-8079 Part 1 - rate selection between Fibre
2102 * Channel 1.0625/2.125/4.25 Gbd modes. Note that RS0
2103 * is high for 2125, so we have to subtract 1 to
2104 * include it.
2105 */
2106 sfp->rs_threshold_kbd = 2125 - 1;
2107 sfp->rs_state_mask = SFP_F_RS0;
2108 }
2109 return;
2110 }
2111
2112 /* SFF-8472 rev 9.5 does not define the rate identifier */
2113 if (sfp->id.ext.sff8472_compliance <= SFP_SFF8472_COMPLIANCE_REV9_5)
2114 return;
2115
2116 /* SFF-8472 rev 11.0 defines rate_id as a numerical value which will
2117 * always have bit 0 clear due to SFF-8079's bitfield usage of rate_id.
2118 */
2119 switch (rate_id) {
2120 case SFF_RID_8431_RX_ONLY:
2121 sfp->rs_threshold_kbd = 4250;
2122 sfp->rs_state_mask = SFP_F_RS0;
2123 break;
2124
2125 case SFF_RID_8431_TX_ONLY:
2126 sfp->rs_threshold_kbd = 4250;
2127 sfp->rs_state_mask = SFP_F_RS1;
2128 break;
2129
2130 case SFF_RID_8431:
2131 sfp->rs_threshold_kbd = 4250;
2132 sfp->rs_state_mask = SFP_F_RS0 | SFP_F_RS1;
2133 break;
2134
2135 case SFF_RID_10G8G:
2136 sfp->rs_threshold_kbd = 9000;
2137 sfp->rs_state_mask = SFP_F_RS0 | SFP_F_RS1;
2138 break;
2139 }
2140 }
2141
2142 /* GPON modules based on Realtek RTL8672 and RTL9601C chips (e.g. V-SOL
2143 * V2801F, CarlitoxxPro CPGOS03-0490, Ubiquiti U-Fiber Instant, ...) do
2144 * not support multibyte reads from the EEPROM. Each multi-byte read
2145 * operation returns just one byte of EEPROM followed by zeros. There is
2146 * no way to identify which modules are using Realtek RTL8672 and RTL9601C
2147 * chips. Moreover every OEM of V-SOL V2801F module puts its own vendor
2148 * name and vendor id into EEPROM, so there is even no way to detect if
2149 * module is V-SOL V2801F. Therefore check for those zeros in the read
2150 * data and then based on check switch to reading EEPROM to one byte
2151 * at a time.
2152 */
sfp_id_needs_byte_io(struct sfp * sfp,void * buf,size_t len)2153 static bool sfp_id_needs_byte_io(struct sfp *sfp, void *buf, size_t len)
2154 {
2155 size_t i, block_size = sfp->i2c_block_size;
2156
2157 /* Already using byte IO */
2158 if (block_size == 1)
2159 return false;
2160
2161 for (i = 1; i < len; i += block_size) {
2162 if (memchr_inv(buf + i, '\0', min(block_size - 1, len - i)))
2163 return false;
2164 }
2165 return true;
2166 }
2167
sfp_cotsworks_fixup_check(struct sfp * sfp,struct sfp_eeprom_id * id)2168 static int sfp_cotsworks_fixup_check(struct sfp *sfp, struct sfp_eeprom_id *id)
2169 {
2170 u8 check;
2171 int err;
2172
2173 if (id->base.phys_id != SFF8024_ID_SFF_8472 ||
2174 id->base.phys_ext_id != SFP_PHYS_EXT_ID_SFP ||
2175 id->base.connector != SFF8024_CONNECTOR_LC) {
2176 dev_warn(sfp->dev, "Rewriting fiber module EEPROM with corrected values\n");
2177 id->base.phys_id = SFF8024_ID_SFF_8472;
2178 id->base.phys_ext_id = SFP_PHYS_EXT_ID_SFP;
2179 id->base.connector = SFF8024_CONNECTOR_LC;
2180 err = sfp_write(sfp, false, SFP_PHYS_ID, &id->base, 3);
2181 if (err != 3) {
2182 dev_err(sfp->dev,
2183 "Failed to rewrite module EEPROM: %pe\n",
2184 ERR_PTR(err));
2185 return err;
2186 }
2187
2188 /* Cotsworks modules have been found to require a delay between write operations. */
2189 mdelay(50);
2190
2191 /* Update base structure checksum */
2192 check = sfp_check(&id->base, sizeof(id->base) - 1);
2193 err = sfp_write(sfp, false, SFP_CC_BASE, &check, 1);
2194 if (err != 1) {
2195 dev_err(sfp->dev,
2196 "Failed to update base structure checksum in fiber module EEPROM: %pe\n",
2197 ERR_PTR(err));
2198 return err;
2199 }
2200 }
2201 return 0;
2202 }
2203
sfp_module_parse_sff8472(struct sfp * sfp)2204 static int sfp_module_parse_sff8472(struct sfp *sfp)
2205 {
2206 /* If the module requires address swap mode, warn about it */
2207 if (sfp->id.ext.diagmon & SFP_DIAGMON_ADDRMODE)
2208 dev_warn(sfp->dev,
2209 "module address swap to access page 0xA2 is not supported.\n");
2210 else
2211 sfp->have_a2 = true;
2212
2213 return 0;
2214 }
2215
sfp_sm_mod_probe(struct sfp * sfp,bool report)2216 static int sfp_sm_mod_probe(struct sfp *sfp, bool report)
2217 {
2218 /* SFP module inserted - read I2C data */
2219 struct sfp_eeprom_id id;
2220 bool cotsworks_sfbg;
2221 unsigned int mask;
2222 bool cotsworks;
2223 u8 check;
2224 int ret;
2225
2226 sfp->i2c_block_size = SFP_EEPROM_BLOCK_SIZE;
2227
2228 ret = sfp_read(sfp, false, 0, &id.base, sizeof(id.base));
2229 if (ret < 0) {
2230 if (report)
2231 dev_err(sfp->dev, "failed to read EEPROM: %pe\n",
2232 ERR_PTR(ret));
2233 return -EAGAIN;
2234 }
2235
2236 if (ret != sizeof(id.base)) {
2237 dev_err(sfp->dev, "EEPROM short read: %pe\n", ERR_PTR(ret));
2238 return -EAGAIN;
2239 }
2240
2241 /* Some SFP modules (e.g. Nokia 3FE46541AA) lock up if read from
2242 * address 0x51 is just one byte at a time. Also SFF-8472 requires
2243 * that EEPROM supports atomic 16bit read operation for diagnostic
2244 * fields, so do not switch to one byte reading at a time unless it
2245 * is really required and we have no other option.
2246 */
2247 if (sfp_id_needs_byte_io(sfp, &id.base, sizeof(id.base))) {
2248 dev_info(sfp->dev,
2249 "Detected broken RTL8672/RTL9601C emulated EEPROM\n");
2250 dev_info(sfp->dev,
2251 "Switching to reading EEPROM to one byte at a time\n");
2252 sfp->i2c_block_size = 1;
2253
2254 ret = sfp_read(sfp, false, 0, &id.base, sizeof(id.base));
2255 if (ret < 0) {
2256 if (report)
2257 dev_err(sfp->dev,
2258 "failed to read EEPROM: %pe\n",
2259 ERR_PTR(ret));
2260 return -EAGAIN;
2261 }
2262
2263 if (ret != sizeof(id.base)) {
2264 dev_err(sfp->dev, "EEPROM short read: %pe\n",
2265 ERR_PTR(ret));
2266 return -EAGAIN;
2267 }
2268 }
2269
2270 /* Cotsworks do not seem to update the checksums when they
2271 * do the final programming with the final module part number,
2272 * serial number and date code.
2273 */
2274 cotsworks = !memcmp(id.base.vendor_name, "COTSWORKS ", 16);
2275 cotsworks_sfbg = !memcmp(id.base.vendor_pn, "SFBG", 4);
2276
2277 /* Cotsworks SFF module EEPROM do not always have valid phys_id,
2278 * phys_ext_id, and connector bytes. Rewrite SFF EEPROM bytes if
2279 * Cotsworks PN matches and bytes are not correct.
2280 */
2281 if (cotsworks && cotsworks_sfbg) {
2282 ret = sfp_cotsworks_fixup_check(sfp, &id);
2283 if (ret < 0)
2284 return ret;
2285 }
2286
2287 /* Validate the checksum over the base structure */
2288 check = sfp_check(&id.base, sizeof(id.base) - 1);
2289 if (check != id.base.cc_base) {
2290 if (cotsworks) {
2291 dev_warn(sfp->dev,
2292 "EEPROM base structure checksum failure (0x%02x != 0x%02x)\n",
2293 check, id.base.cc_base);
2294 } else {
2295 dev_err(sfp->dev,
2296 "EEPROM base structure checksum failure: 0x%02x != 0x%02x\n",
2297 check, id.base.cc_base);
2298 print_hex_dump(KERN_ERR, "sfp EE: ", DUMP_PREFIX_OFFSET,
2299 16, 1, &id, sizeof(id), true);
2300 return -EINVAL;
2301 }
2302 }
2303
2304 ret = sfp_read(sfp, false, SFP_CC_BASE + 1, &id.ext, sizeof(id.ext));
2305 if (ret < 0) {
2306 if (report)
2307 dev_err(sfp->dev, "failed to read EEPROM: %pe\n",
2308 ERR_PTR(ret));
2309 return -EAGAIN;
2310 }
2311
2312 if (ret != sizeof(id.ext)) {
2313 dev_err(sfp->dev, "EEPROM short read: %pe\n", ERR_PTR(ret));
2314 return -EAGAIN;
2315 }
2316
2317 check = sfp_check(&id.ext, sizeof(id.ext) - 1);
2318 if (check != id.ext.cc_ext) {
2319 if (cotsworks) {
2320 dev_warn(sfp->dev,
2321 "EEPROM extended structure checksum failure (0x%02x != 0x%02x)\n",
2322 check, id.ext.cc_ext);
2323 } else {
2324 dev_err(sfp->dev,
2325 "EEPROM extended structure checksum failure: 0x%02x != 0x%02x\n",
2326 check, id.ext.cc_ext);
2327 print_hex_dump(KERN_ERR, "sfp EE: ", DUMP_PREFIX_OFFSET,
2328 16, 1, &id, sizeof(id), true);
2329 memset(&id.ext, 0, sizeof(id.ext));
2330 }
2331 }
2332
2333 sfp->id = id;
2334
2335 dev_info(sfp->dev, "module %.*s %.*s rev %.*s sn %.*s dc %.*s\n",
2336 (int)sizeof(id.base.vendor_name), id.base.vendor_name,
2337 (int)sizeof(id.base.vendor_pn), id.base.vendor_pn,
2338 (int)sizeof(id.base.vendor_rev), id.base.vendor_rev,
2339 (int)sizeof(id.ext.vendor_sn), id.ext.vendor_sn,
2340 (int)sizeof(id.ext.datecode), id.ext.datecode);
2341
2342 /* Check whether we support this module */
2343 if (!sfp->type->module_supported(&id)) {
2344 dev_err(sfp->dev,
2345 "module is not supported - phys id 0x%02x 0x%02x\n",
2346 sfp->id.base.phys_id, sfp->id.base.phys_ext_id);
2347 return -EINVAL;
2348 }
2349
2350 if (sfp->id.ext.sff8472_compliance != SFP_SFF8472_COMPLIANCE_NONE) {
2351 ret = sfp_module_parse_sff8472(sfp);
2352 if (ret < 0)
2353 return ret;
2354 }
2355
2356 /* Parse the module power requirement */
2357 ret = sfp_module_parse_power(sfp);
2358 if (ret < 0)
2359 return ret;
2360
2361 sfp_module_parse_rate_select(sfp);
2362
2363 mask = SFP_F_PRESENT;
2364 if (sfp->gpio[GPIO_TX_DISABLE])
2365 mask |= SFP_F_TX_DISABLE;
2366 if (sfp->gpio[GPIO_TX_FAULT])
2367 mask |= SFP_F_TX_FAULT;
2368 if (sfp->gpio[GPIO_LOS])
2369 mask |= SFP_F_LOS;
2370 if (sfp->gpio[GPIO_RS0])
2371 mask |= SFP_F_RS0;
2372 if (sfp->gpio[GPIO_RS1])
2373 mask |= SFP_F_RS1;
2374
2375 sfp->module_t_start_up = T_START_UP;
2376 sfp->module_t_wait = T_WAIT;
2377 sfp->phy_t_retry = T_PHY_RETRY;
2378
2379 sfp->state_ignore_mask = 0;
2380
2381 if (sfp->id.base.extended_cc == SFF8024_ECC_10GBASE_T_SFI ||
2382 sfp->id.base.extended_cc == SFF8024_ECC_10GBASE_T_SR ||
2383 sfp->id.base.extended_cc == SFF8024_ECC_5GBASE_T ||
2384 sfp->id.base.extended_cc == SFF8024_ECC_2_5GBASE_T)
2385 sfp->mdio_protocol = MDIO_I2C_C45;
2386 else if (sfp->id.base.e1000_base_t)
2387 sfp->mdio_protocol = MDIO_I2C_MARVELL_C22;
2388 else
2389 sfp->mdio_protocol = MDIO_I2C_NONE;
2390
2391 sfp->quirk = sfp_lookup_quirk(&id);
2392
2393 mutex_lock(&sfp->st_mutex);
2394 /* Initialise state bits to use from hardware */
2395 sfp->state_hw_mask = mask;
2396
2397 /* We want to drive the rate select pins that the module is using */
2398 sfp->state_hw_drive |= sfp->rs_state_mask;
2399
2400 if (sfp->quirk && sfp->quirk->fixup)
2401 sfp->quirk->fixup(sfp);
2402
2403 sfp->state_hw_mask &= ~sfp->state_ignore_mask;
2404 mutex_unlock(&sfp->st_mutex);
2405
2406 return 0;
2407 }
2408
sfp_sm_mod_remove(struct sfp * sfp)2409 static void sfp_sm_mod_remove(struct sfp *sfp)
2410 {
2411 if (sfp->sm_mod_state > SFP_MOD_WAITDEV)
2412 sfp_module_remove(sfp->sfp_bus);
2413
2414 sfp_hwmon_remove(sfp);
2415
2416 memset(&sfp->id, 0, sizeof(sfp->id));
2417 sfp->module_power_mW = 0;
2418 sfp->state_hw_drive = SFP_F_TX_DISABLE;
2419 sfp->have_a2 = false;
2420
2421 dev_info(sfp->dev, "module removed\n");
2422 }
2423
2424 /* This state machine tracks the upstream's state */
sfp_sm_device(struct sfp * sfp,unsigned int event)2425 static void sfp_sm_device(struct sfp *sfp, unsigned int event)
2426 {
2427 switch (sfp->sm_dev_state) {
2428 default:
2429 if (event == SFP_E_DEV_ATTACH)
2430 sfp->sm_dev_state = SFP_DEV_DOWN;
2431 break;
2432
2433 case SFP_DEV_DOWN:
2434 if (event == SFP_E_DEV_DETACH)
2435 sfp->sm_dev_state = SFP_DEV_DETACHED;
2436 else if (event == SFP_E_DEV_UP)
2437 sfp->sm_dev_state = SFP_DEV_UP;
2438 break;
2439
2440 case SFP_DEV_UP:
2441 if (event == SFP_E_DEV_DETACH)
2442 sfp->sm_dev_state = SFP_DEV_DETACHED;
2443 else if (event == SFP_E_DEV_DOWN)
2444 sfp->sm_dev_state = SFP_DEV_DOWN;
2445 break;
2446 }
2447 }
2448
2449 /* This state machine tracks the insert/remove state of the module, probes
2450 * the on-board EEPROM, and sets up the power level.
2451 */
sfp_sm_module(struct sfp * sfp,unsigned int event)2452 static void sfp_sm_module(struct sfp *sfp, unsigned int event)
2453 {
2454 int err;
2455
2456 /* Handle remove event globally, it resets this state machine */
2457 if (event == SFP_E_REMOVE) {
2458 sfp_sm_mod_remove(sfp);
2459 sfp_sm_mod_next(sfp, SFP_MOD_EMPTY, 0);
2460 return;
2461 }
2462
2463 /* Handle device detach globally */
2464 if (sfp->sm_dev_state < SFP_DEV_DOWN &&
2465 sfp->sm_mod_state > SFP_MOD_WAITDEV) {
2466 if (sfp->module_power_mW > 1000 &&
2467 sfp->sm_mod_state > SFP_MOD_HPOWER)
2468 sfp_sm_mod_hpower(sfp, false);
2469 sfp_sm_mod_next(sfp, SFP_MOD_WAITDEV, 0);
2470 return;
2471 }
2472
2473 switch (sfp->sm_mod_state) {
2474 default:
2475 if (event == SFP_E_INSERT) {
2476 sfp_sm_mod_next(sfp, SFP_MOD_PROBE, T_SERIAL);
2477 sfp->sm_mod_tries_init = R_PROBE_RETRY_INIT;
2478 sfp->sm_mod_tries = R_PROBE_RETRY_SLOW;
2479 }
2480 break;
2481
2482 case SFP_MOD_PROBE:
2483 /* Wait for T_PROBE_INIT to time out */
2484 if (event != SFP_E_TIMEOUT)
2485 break;
2486
2487 err = sfp_sm_mod_probe(sfp, sfp->sm_mod_tries == 1);
2488 if (err == -EAGAIN) {
2489 if (sfp->sm_mod_tries_init &&
2490 --sfp->sm_mod_tries_init) {
2491 sfp_sm_set_timer(sfp, T_PROBE_RETRY_INIT);
2492 break;
2493 } else if (sfp->sm_mod_tries && --sfp->sm_mod_tries) {
2494 if (sfp->sm_mod_tries == R_PROBE_RETRY_SLOW - 1)
2495 dev_warn(sfp->dev,
2496 "please wait, module slow to respond\n");
2497 sfp_sm_set_timer(sfp, T_PROBE_RETRY_SLOW);
2498 break;
2499 }
2500 }
2501 if (err < 0) {
2502 sfp_sm_mod_next(sfp, SFP_MOD_ERROR, 0);
2503 break;
2504 }
2505
2506 /* Force a poll to re-read the hardware signal state after
2507 * sfp_sm_mod_probe() changed state_hw_mask.
2508 */
2509 mod_delayed_work(system_wq, &sfp->poll, 1);
2510
2511 err = sfp_hwmon_insert(sfp);
2512 if (err)
2513 dev_warn(sfp->dev, "hwmon probe failed: %pe\n",
2514 ERR_PTR(err));
2515
2516 sfp_sm_mod_next(sfp, SFP_MOD_WAITDEV, 0);
2517 fallthrough;
2518 case SFP_MOD_WAITDEV:
2519 /* Ensure that the device is attached before proceeding */
2520 if (sfp->sm_dev_state < SFP_DEV_DOWN)
2521 break;
2522
2523 /* Report the module insertion to the upstream device */
2524 err = sfp_module_insert(sfp->sfp_bus, &sfp->id,
2525 sfp->quirk);
2526 if (err < 0) {
2527 sfp_sm_mod_next(sfp, SFP_MOD_ERROR, 0);
2528 break;
2529 }
2530
2531 /* If this is a power level 1 module, we are done */
2532 if (sfp->module_power_mW <= 1000)
2533 goto insert;
2534
2535 sfp_sm_mod_next(sfp, SFP_MOD_HPOWER, 0);
2536 fallthrough;
2537 case SFP_MOD_HPOWER:
2538 /* Enable high power mode */
2539 err = sfp_sm_mod_hpower(sfp, true);
2540 if (err < 0) {
2541 if (err != -EAGAIN) {
2542 sfp_module_remove(sfp->sfp_bus);
2543 sfp_sm_mod_next(sfp, SFP_MOD_ERROR, 0);
2544 } else {
2545 sfp_sm_set_timer(sfp, T_PROBE_RETRY_INIT);
2546 }
2547 break;
2548 }
2549
2550 sfp_sm_mod_next(sfp, SFP_MOD_WAITPWR, T_HPOWER_LEVEL);
2551 break;
2552
2553 case SFP_MOD_WAITPWR:
2554 /* Wait for T_HPOWER_LEVEL to time out */
2555 if (event != SFP_E_TIMEOUT)
2556 break;
2557
2558 insert:
2559 sfp_sm_mod_next(sfp, SFP_MOD_PRESENT, 0);
2560 break;
2561
2562 case SFP_MOD_PRESENT:
2563 case SFP_MOD_ERROR:
2564 break;
2565 }
2566 }
2567
sfp_sm_main(struct sfp * sfp,unsigned int event)2568 static void sfp_sm_main(struct sfp *sfp, unsigned int event)
2569 {
2570 unsigned long timeout;
2571 int ret;
2572
2573 /* Some events are global */
2574 if (sfp->sm_state != SFP_S_DOWN &&
2575 (sfp->sm_mod_state != SFP_MOD_PRESENT ||
2576 sfp->sm_dev_state != SFP_DEV_UP)) {
2577 if (sfp->sm_state == SFP_S_LINK_UP &&
2578 sfp->sm_dev_state == SFP_DEV_UP)
2579 sfp_sm_link_down(sfp);
2580 if (sfp->sm_state > SFP_S_INIT)
2581 sfp_module_stop(sfp->sfp_bus);
2582 if (sfp->mod_phy)
2583 sfp_sm_phy_detach(sfp);
2584 if (sfp->i2c_mii)
2585 sfp_i2c_mdiobus_destroy(sfp);
2586 sfp_module_tx_disable(sfp);
2587 sfp_soft_stop_poll(sfp);
2588 sfp_sm_next(sfp, SFP_S_DOWN, 0);
2589 return;
2590 }
2591
2592 /* The main state machine */
2593 switch (sfp->sm_state) {
2594 case SFP_S_DOWN:
2595 if (sfp->sm_mod_state != SFP_MOD_PRESENT ||
2596 sfp->sm_dev_state != SFP_DEV_UP)
2597 break;
2598
2599 /* Only use the soft state bits if we have access to the A2h
2600 * memory, which implies that we have some level of SFF-8472
2601 * compliance.
2602 */
2603 if (sfp->have_a2)
2604 sfp_soft_start_poll(sfp);
2605
2606 sfp_module_tx_enable(sfp);
2607
2608 /* Initialise the fault clearance retries */
2609 sfp->sm_fault_retries = N_FAULT_INIT;
2610
2611 /* We need to check the TX_FAULT state, which is not defined
2612 * while TX_DISABLE is asserted. The earliest we want to do
2613 * anything (such as probe for a PHY) is 50ms (or more on
2614 * specific modules).
2615 */
2616 sfp_sm_next(sfp, SFP_S_WAIT, sfp->module_t_wait);
2617 break;
2618
2619 case SFP_S_WAIT:
2620 if (event != SFP_E_TIMEOUT)
2621 break;
2622
2623 if (sfp->state & SFP_F_TX_FAULT) {
2624 /* Wait up to t_init (SFF-8472) or t_start_up (SFF-8431)
2625 * from the TX_DISABLE deassertion for the module to
2626 * initialise, which is indicated by TX_FAULT
2627 * deasserting.
2628 */
2629 timeout = sfp->module_t_start_up;
2630 if (timeout > sfp->module_t_wait)
2631 timeout -= sfp->module_t_wait;
2632 else
2633 timeout = 1;
2634
2635 sfp_sm_next(sfp, SFP_S_INIT, timeout);
2636 } else {
2637 /* TX_FAULT is not asserted, assume the module has
2638 * finished initialising.
2639 */
2640 goto init_done;
2641 }
2642 break;
2643
2644 case SFP_S_INIT:
2645 if (event == SFP_E_TIMEOUT && sfp->state & SFP_F_TX_FAULT) {
2646 /* TX_FAULT is still asserted after t_init
2647 * or t_start_up, so assume there is a fault.
2648 */
2649 sfp_sm_fault(sfp, SFP_S_INIT_TX_FAULT,
2650 sfp->sm_fault_retries == N_FAULT_INIT);
2651 } else if (event == SFP_E_TIMEOUT || event == SFP_E_TX_CLEAR) {
2652 init_done:
2653 /* Create mdiobus and start trying for PHY */
2654 ret = sfp_sm_add_mdio_bus(sfp);
2655 if (ret < 0) {
2656 sfp_sm_next(sfp, SFP_S_FAIL, 0);
2657 break;
2658 }
2659 sfp->sm_phy_retries = R_PHY_RETRY;
2660 goto phy_probe;
2661 }
2662 break;
2663
2664 case SFP_S_INIT_PHY:
2665 if (event != SFP_E_TIMEOUT)
2666 break;
2667 phy_probe:
2668 /* TX_FAULT deasserted or we timed out with TX_FAULT
2669 * clear. Probe for the PHY and check the LOS state.
2670 */
2671 ret = sfp_sm_probe_for_phy(sfp);
2672 if (ret == -ENODEV) {
2673 if (--sfp->sm_phy_retries) {
2674 sfp_sm_next(sfp, SFP_S_INIT_PHY,
2675 sfp->phy_t_retry);
2676 dev_dbg(sfp->dev,
2677 "no PHY detected, %u tries left\n",
2678 sfp->sm_phy_retries);
2679 break;
2680 } else {
2681 dev_info(sfp->dev, "no PHY detected\n");
2682 }
2683 } else if (ret) {
2684 sfp_sm_next(sfp, SFP_S_FAIL, 0);
2685 break;
2686 }
2687 if (sfp_module_start(sfp->sfp_bus)) {
2688 sfp_sm_next(sfp, SFP_S_FAIL, 0);
2689 break;
2690 }
2691 sfp_sm_link_check_los(sfp);
2692
2693 /* Reset the fault retry count */
2694 sfp->sm_fault_retries = N_FAULT;
2695 break;
2696
2697 case SFP_S_INIT_TX_FAULT:
2698 if (event == SFP_E_TIMEOUT) {
2699 sfp_module_tx_fault_reset(sfp);
2700 sfp_sm_next(sfp, SFP_S_INIT, sfp->module_t_start_up);
2701 }
2702 break;
2703
2704 case SFP_S_WAIT_LOS:
2705 if (event == SFP_E_TX_FAULT)
2706 sfp_sm_fault(sfp, SFP_S_TX_FAULT, true);
2707 else if (sfp_los_event_inactive(sfp, event))
2708 sfp_sm_link_up(sfp);
2709 break;
2710
2711 case SFP_S_LINK_UP:
2712 if (event == SFP_E_TX_FAULT) {
2713 sfp_sm_link_down(sfp);
2714 sfp_sm_fault(sfp, SFP_S_TX_FAULT, true);
2715 } else if (sfp_los_event_active(sfp, event)) {
2716 sfp_sm_link_down(sfp);
2717 sfp_sm_next(sfp, SFP_S_WAIT_LOS, 0);
2718 }
2719 break;
2720
2721 case SFP_S_TX_FAULT:
2722 if (event == SFP_E_TIMEOUT) {
2723 sfp_module_tx_fault_reset(sfp);
2724 sfp_sm_next(sfp, SFP_S_REINIT, sfp->module_t_start_up);
2725 }
2726 break;
2727
2728 case SFP_S_REINIT:
2729 if (event == SFP_E_TIMEOUT && sfp->state & SFP_F_TX_FAULT) {
2730 sfp_sm_fault(sfp, SFP_S_TX_FAULT, false);
2731 } else if (event == SFP_E_TIMEOUT || event == SFP_E_TX_CLEAR) {
2732 dev_info(sfp->dev, "module transmit fault recovered\n");
2733 sfp_sm_link_check_los(sfp);
2734 }
2735 break;
2736
2737 case SFP_S_TX_DISABLE:
2738 break;
2739 }
2740 }
2741
__sfp_sm_event(struct sfp * sfp,unsigned int event)2742 static void __sfp_sm_event(struct sfp *sfp, unsigned int event)
2743 {
2744 dev_dbg(sfp->dev, "SM: enter %s:%s:%s event %s\n",
2745 mod_state_to_str(sfp->sm_mod_state),
2746 dev_state_to_str(sfp->sm_dev_state),
2747 sm_state_to_str(sfp->sm_state),
2748 event_to_str(event));
2749
2750 sfp_sm_device(sfp, event);
2751 sfp_sm_module(sfp, event);
2752 sfp_sm_main(sfp, event);
2753
2754 dev_dbg(sfp->dev, "SM: exit %s:%s:%s\n",
2755 mod_state_to_str(sfp->sm_mod_state),
2756 dev_state_to_str(sfp->sm_dev_state),
2757 sm_state_to_str(sfp->sm_state));
2758 }
2759
sfp_sm_event(struct sfp * sfp,unsigned int event)2760 static void sfp_sm_event(struct sfp *sfp, unsigned int event)
2761 {
2762 mutex_lock(&sfp->sm_mutex);
2763 __sfp_sm_event(sfp, event);
2764 mutex_unlock(&sfp->sm_mutex);
2765 }
2766
sfp_attach(struct sfp * sfp)2767 static void sfp_attach(struct sfp *sfp)
2768 {
2769 sfp_sm_event(sfp, SFP_E_DEV_ATTACH);
2770 }
2771
sfp_detach(struct sfp * sfp)2772 static void sfp_detach(struct sfp *sfp)
2773 {
2774 sfp_sm_event(sfp, SFP_E_DEV_DETACH);
2775 }
2776
sfp_start(struct sfp * sfp)2777 static void sfp_start(struct sfp *sfp)
2778 {
2779 sfp_sm_event(sfp, SFP_E_DEV_UP);
2780 }
2781
sfp_stop(struct sfp * sfp)2782 static void sfp_stop(struct sfp *sfp)
2783 {
2784 sfp_sm_event(sfp, SFP_E_DEV_DOWN);
2785 }
2786
sfp_set_signal_rate(struct sfp * sfp,unsigned int rate_kbd)2787 static void sfp_set_signal_rate(struct sfp *sfp, unsigned int rate_kbd)
2788 {
2789 unsigned int set;
2790
2791 sfp->rate_kbd = rate_kbd;
2792
2793 if (rate_kbd > sfp->rs_threshold_kbd)
2794 set = sfp->rs_state_mask;
2795 else
2796 set = 0;
2797
2798 sfp_mod_state(sfp, SFP_F_RS0 | SFP_F_RS1, set);
2799 }
2800
sfp_module_info(struct sfp * sfp,struct ethtool_modinfo * modinfo)2801 static int sfp_module_info(struct sfp *sfp, struct ethtool_modinfo *modinfo)
2802 {
2803 /* locking... and check module is present */
2804
2805 if (sfp->id.ext.sff8472_compliance &&
2806 !(sfp->id.ext.diagmon & SFP_DIAGMON_ADDRMODE)) {
2807 modinfo->type = ETH_MODULE_SFF_8472;
2808 modinfo->eeprom_len = ETH_MODULE_SFF_8472_LEN;
2809 } else {
2810 modinfo->type = ETH_MODULE_SFF_8079;
2811 modinfo->eeprom_len = ETH_MODULE_SFF_8079_LEN;
2812 }
2813 return 0;
2814 }
2815
sfp_module_eeprom(struct sfp * sfp,struct ethtool_eeprom * ee,u8 * data)2816 static int sfp_module_eeprom(struct sfp *sfp, struct ethtool_eeprom *ee,
2817 u8 *data)
2818 {
2819 unsigned int first, last, len;
2820 int ret;
2821
2822 if (!(sfp->state & SFP_F_PRESENT))
2823 return -ENODEV;
2824
2825 if (ee->len == 0)
2826 return -EINVAL;
2827
2828 first = ee->offset;
2829 last = ee->offset + ee->len;
2830 if (first < ETH_MODULE_SFF_8079_LEN) {
2831 len = min_t(unsigned int, last, ETH_MODULE_SFF_8079_LEN);
2832 len -= first;
2833
2834 ret = sfp_read(sfp, false, first, data, len);
2835 if (ret < 0)
2836 return ret;
2837
2838 first += len;
2839 data += len;
2840 }
2841 if (first < ETH_MODULE_SFF_8472_LEN && last > ETH_MODULE_SFF_8079_LEN) {
2842 len = min_t(unsigned int, last, ETH_MODULE_SFF_8472_LEN);
2843 len -= first;
2844 first -= ETH_MODULE_SFF_8079_LEN;
2845
2846 ret = sfp_read(sfp, true, first, data, len);
2847 if (ret < 0)
2848 return ret;
2849 }
2850 return 0;
2851 }
2852
sfp_module_eeprom_by_page(struct sfp * sfp,const struct ethtool_module_eeprom * page,struct netlink_ext_ack * extack)2853 static int sfp_module_eeprom_by_page(struct sfp *sfp,
2854 const struct ethtool_module_eeprom *page,
2855 struct netlink_ext_ack *extack)
2856 {
2857 if (!(sfp->state & SFP_F_PRESENT))
2858 return -ENODEV;
2859
2860 if (page->bank) {
2861 NL_SET_ERR_MSG(extack, "Banks not supported");
2862 return -EOPNOTSUPP;
2863 }
2864
2865 if (page->page) {
2866 NL_SET_ERR_MSG(extack, "Only page 0 supported");
2867 return -EOPNOTSUPP;
2868 }
2869
2870 if (page->i2c_address != 0x50 &&
2871 page->i2c_address != 0x51) {
2872 NL_SET_ERR_MSG(extack, "Only address 0x50 and 0x51 supported");
2873 return -EOPNOTSUPP;
2874 }
2875
2876 return sfp_read(sfp, page->i2c_address == 0x51, page->offset,
2877 page->data, page->length);
2878 };
2879
2880 static const struct sfp_socket_ops sfp_module_ops = {
2881 .attach = sfp_attach,
2882 .detach = sfp_detach,
2883 .start = sfp_start,
2884 .stop = sfp_stop,
2885 .set_signal_rate = sfp_set_signal_rate,
2886 .module_info = sfp_module_info,
2887 .module_eeprom = sfp_module_eeprom,
2888 .module_eeprom_by_page = sfp_module_eeprom_by_page,
2889 };
2890
sfp_timeout(struct work_struct * work)2891 static void sfp_timeout(struct work_struct *work)
2892 {
2893 struct sfp *sfp = container_of(work, struct sfp, timeout.work);
2894
2895 rtnl_lock();
2896 sfp_sm_event(sfp, SFP_E_TIMEOUT);
2897 rtnl_unlock();
2898 }
2899
sfp_check_state(struct sfp * sfp)2900 static void sfp_check_state(struct sfp *sfp)
2901 {
2902 unsigned int state, i, changed;
2903
2904 rtnl_lock();
2905 mutex_lock(&sfp->st_mutex);
2906 state = sfp_get_state(sfp);
2907 changed = state ^ sfp->state;
2908 changed &= SFP_F_PRESENT | SFP_F_LOS | SFP_F_TX_FAULT;
2909
2910 for (i = 0; i < GPIO_MAX; i++)
2911 if (changed & BIT(i))
2912 dev_dbg(sfp->dev, "%s %u -> %u\n", gpio_names[i],
2913 !!(sfp->state & BIT(i)), !!(state & BIT(i)));
2914
2915 state |= sfp->state & SFP_F_OUTPUTS;
2916 sfp->state = state;
2917 mutex_unlock(&sfp->st_mutex);
2918
2919 mutex_lock(&sfp->sm_mutex);
2920 if (changed & SFP_F_PRESENT)
2921 __sfp_sm_event(sfp, state & SFP_F_PRESENT ?
2922 SFP_E_INSERT : SFP_E_REMOVE);
2923
2924 if (changed & SFP_F_TX_FAULT)
2925 __sfp_sm_event(sfp, state & SFP_F_TX_FAULT ?
2926 SFP_E_TX_FAULT : SFP_E_TX_CLEAR);
2927
2928 if (changed & SFP_F_LOS)
2929 __sfp_sm_event(sfp, state & SFP_F_LOS ?
2930 SFP_E_LOS_HIGH : SFP_E_LOS_LOW);
2931 mutex_unlock(&sfp->sm_mutex);
2932 rtnl_unlock();
2933 }
2934
sfp_irq(int irq,void * data)2935 static irqreturn_t sfp_irq(int irq, void *data)
2936 {
2937 struct sfp *sfp = data;
2938
2939 sfp_check_state(sfp);
2940
2941 return IRQ_HANDLED;
2942 }
2943
sfp_poll(struct work_struct * work)2944 static void sfp_poll(struct work_struct *work)
2945 {
2946 struct sfp *sfp = container_of(work, struct sfp, poll.work);
2947
2948 sfp_check_state(sfp);
2949
2950 // st_mutex doesn't need to be held here for state_soft_mask,
2951 // it's unimportant if we race while reading this.
2952 if (sfp->state_soft_mask & (SFP_F_LOS | SFP_F_TX_FAULT) ||
2953 sfp->need_poll)
2954 mod_delayed_work(system_wq, &sfp->poll, poll_jiffies);
2955 }
2956
sfp_alloc(struct device * dev)2957 static struct sfp *sfp_alloc(struct device *dev)
2958 {
2959 struct sfp *sfp;
2960
2961 sfp = kzalloc(sizeof(*sfp), GFP_KERNEL);
2962 if (!sfp)
2963 return ERR_PTR(-ENOMEM);
2964
2965 sfp->dev = dev;
2966 sfp->i2c_block_size = SFP_EEPROM_BLOCK_SIZE;
2967
2968 mutex_init(&sfp->sm_mutex);
2969 mutex_init(&sfp->st_mutex);
2970 INIT_DELAYED_WORK(&sfp->poll, sfp_poll);
2971 INIT_DELAYED_WORK(&sfp->timeout, sfp_timeout);
2972
2973 sfp_hwmon_init(sfp);
2974
2975 return sfp;
2976 }
2977
sfp_cleanup(void * data)2978 static void sfp_cleanup(void *data)
2979 {
2980 struct sfp *sfp = data;
2981
2982 sfp_hwmon_exit(sfp);
2983
2984 cancel_delayed_work_sync(&sfp->poll);
2985 cancel_delayed_work_sync(&sfp->timeout);
2986 if (sfp->i2c_mii) {
2987 mdiobus_unregister(sfp->i2c_mii);
2988 mdiobus_free(sfp->i2c_mii);
2989 }
2990 if (sfp->i2c)
2991 i2c_put_adapter(sfp->i2c);
2992 kfree(sfp);
2993 }
2994
sfp_i2c_get(struct sfp * sfp)2995 static int sfp_i2c_get(struct sfp *sfp)
2996 {
2997 struct fwnode_handle *h;
2998 struct i2c_adapter *i2c;
2999 int err;
3000
3001 h = fwnode_find_reference(dev_fwnode(sfp->dev), "i2c-bus", 0);
3002 if (IS_ERR(h)) {
3003 dev_err(sfp->dev, "missing 'i2c-bus' property\n");
3004 return -ENODEV;
3005 }
3006
3007 i2c = i2c_get_adapter_by_fwnode(h);
3008 if (!i2c) {
3009 err = -EPROBE_DEFER;
3010 goto put;
3011 }
3012
3013 err = sfp_i2c_configure(sfp, i2c);
3014 if (err)
3015 i2c_put_adapter(i2c);
3016 put:
3017 fwnode_handle_put(h);
3018 return err;
3019 }
3020
sfp_probe(struct platform_device * pdev)3021 static int sfp_probe(struct platform_device *pdev)
3022 {
3023 const struct sff_data *sff;
3024 char *sfp_irq_name;
3025 struct sfp *sfp;
3026 int err, i;
3027
3028 sfp = sfp_alloc(&pdev->dev);
3029 if (IS_ERR(sfp))
3030 return PTR_ERR(sfp);
3031
3032 platform_set_drvdata(pdev, sfp);
3033
3034 err = devm_add_action_or_reset(sfp->dev, sfp_cleanup, sfp);
3035 if (err < 0)
3036 return err;
3037
3038 sff = device_get_match_data(sfp->dev);
3039 if (!sff)
3040 sff = &sfp_data;
3041
3042 sfp->type = sff;
3043
3044 err = sfp_i2c_get(sfp);
3045 if (err)
3046 return err;
3047
3048 for (i = 0; i < GPIO_MAX; i++)
3049 if (sff->gpios & BIT(i)) {
3050 sfp->gpio[i] = devm_gpiod_get_optional(sfp->dev,
3051 gpio_names[i], gpio_flags[i]);
3052 if (IS_ERR(sfp->gpio[i]))
3053 return PTR_ERR(sfp->gpio[i]);
3054 }
3055
3056 sfp->state_hw_mask = SFP_F_PRESENT;
3057 sfp->state_hw_drive = SFP_F_TX_DISABLE;
3058
3059 sfp->get_state = sfp_gpio_get_state;
3060 sfp->set_state = sfp_gpio_set_state;
3061
3062 /* Modules that have no detect signal are always present */
3063 if (!(sfp->gpio[GPIO_MODDEF0]))
3064 sfp->get_state = sff_gpio_get_state;
3065
3066 device_property_read_u32(&pdev->dev, "maximum-power-milliwatt",
3067 &sfp->max_power_mW);
3068 if (sfp->max_power_mW < 1000) {
3069 if (sfp->max_power_mW)
3070 dev_warn(sfp->dev,
3071 "Firmware bug: host maximum power should be at least 1W\n");
3072 sfp->max_power_mW = 1000;
3073 }
3074
3075 dev_info(sfp->dev, "Host maximum power %u.%uW\n",
3076 sfp->max_power_mW / 1000, (sfp->max_power_mW / 100) % 10);
3077
3078 /* Get the initial state, and always signal TX disable,
3079 * since the network interface will not be up.
3080 */
3081 sfp->state = sfp_get_state(sfp) | SFP_F_TX_DISABLE;
3082
3083 if (sfp->gpio[GPIO_RS0] &&
3084 gpiod_get_value_cansleep(sfp->gpio[GPIO_RS0]))
3085 sfp->state |= SFP_F_RS0;
3086 sfp_set_state(sfp, sfp->state);
3087 sfp_module_tx_disable(sfp);
3088 if (sfp->state & SFP_F_PRESENT) {
3089 rtnl_lock();
3090 sfp_sm_event(sfp, SFP_E_INSERT);
3091 rtnl_unlock();
3092 }
3093
3094 for (i = 0; i < GPIO_MAX; i++) {
3095 if (gpio_flags[i] != GPIOD_IN || !sfp->gpio[i])
3096 continue;
3097
3098 sfp->gpio_irq[i] = gpiod_to_irq(sfp->gpio[i]);
3099 if (sfp->gpio_irq[i] < 0) {
3100 sfp->gpio_irq[i] = 0;
3101 sfp->need_poll = true;
3102 continue;
3103 }
3104
3105 sfp_irq_name = devm_kasprintf(sfp->dev, GFP_KERNEL,
3106 "%s-%s", dev_name(sfp->dev),
3107 gpio_names[i]);
3108
3109 if (!sfp_irq_name)
3110 return -ENOMEM;
3111
3112 err = devm_request_threaded_irq(sfp->dev, sfp->gpio_irq[i],
3113 NULL, sfp_irq,
3114 IRQF_ONESHOT |
3115 IRQF_TRIGGER_RISING |
3116 IRQF_TRIGGER_FALLING,
3117 sfp_irq_name, sfp);
3118 if (err) {
3119 sfp->gpio_irq[i] = 0;
3120 sfp->need_poll = true;
3121 }
3122 }
3123
3124 if (sfp->need_poll)
3125 mod_delayed_work(system_wq, &sfp->poll, poll_jiffies);
3126
3127 /* We could have an issue in cases no Tx disable pin is available or
3128 * wired as modules using a laser as their light source will continue to
3129 * be active when the fiber is removed. This could be a safety issue and
3130 * we should at least warn the user about that.
3131 */
3132 if (!sfp->gpio[GPIO_TX_DISABLE])
3133 dev_warn(sfp->dev,
3134 "No tx_disable pin: SFP modules will always be emitting.\n");
3135
3136 sfp->sfp_bus = sfp_register_socket(sfp->dev, sfp, &sfp_module_ops);
3137 if (!sfp->sfp_bus)
3138 return -ENOMEM;
3139
3140 sfp_debugfs_init(sfp);
3141
3142 return 0;
3143 }
3144
sfp_remove(struct platform_device * pdev)3145 static void sfp_remove(struct platform_device *pdev)
3146 {
3147 struct sfp *sfp = platform_get_drvdata(pdev);
3148
3149 sfp_debugfs_exit(sfp);
3150 sfp_unregister_socket(sfp->sfp_bus);
3151
3152 rtnl_lock();
3153 sfp_sm_event(sfp, SFP_E_REMOVE);
3154 rtnl_unlock();
3155 }
3156
sfp_shutdown(struct platform_device * pdev)3157 static void sfp_shutdown(struct platform_device *pdev)
3158 {
3159 struct sfp *sfp = platform_get_drvdata(pdev);
3160 int i;
3161
3162 for (i = 0; i < GPIO_MAX; i++) {
3163 if (!sfp->gpio_irq[i])
3164 continue;
3165
3166 devm_free_irq(sfp->dev, sfp->gpio_irq[i], sfp);
3167 }
3168
3169 cancel_delayed_work_sync(&sfp->poll);
3170 cancel_delayed_work_sync(&sfp->timeout);
3171 }
3172
3173 static struct platform_driver sfp_driver = {
3174 .probe = sfp_probe,
3175 .remove_new = sfp_remove,
3176 .shutdown = sfp_shutdown,
3177 .driver = {
3178 .name = "sfp",
3179 .of_match_table = sfp_of_match,
3180 },
3181 };
3182
sfp_init(void)3183 static int sfp_init(void)
3184 {
3185 poll_jiffies = msecs_to_jiffies(100);
3186
3187 return platform_driver_register(&sfp_driver);
3188 }
3189 module_init(sfp_init);
3190
sfp_exit(void)3191 static void sfp_exit(void)
3192 {
3193 platform_driver_unregister(&sfp_driver);
3194 }
3195 module_exit(sfp_exit);
3196
3197 MODULE_ALIAS("platform:sfp");
3198 MODULE_AUTHOR("Russell King");
3199 MODULE_LICENSE("GPL v2");
3200 MODULE_DESCRIPTION("SFP cage support");
3201