• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: ISC
2 /*
3  * Copyright (C) 2022 MediaTek Inc.
4  */
5 
6 #include <linux/etherdevice.h>
7 #include <linux/of.h>
8 #include <linux/hwmon.h>
9 #include <linux/hwmon-sysfs.h>
10 #include <linux/thermal.h>
11 #include "mt7996.h"
12 #include "mac.h"
13 #include "mcu.h"
14 #include "coredump.h"
15 #include "eeprom.h"
16 
17 static const struct ieee80211_iface_limit if_limits[] = {
18 	{
19 		.max = 16,
20 		.types = BIT(NL80211_IFTYPE_AP)
21 #ifdef CONFIG_MAC80211_MESH
22 			 | BIT(NL80211_IFTYPE_MESH_POINT)
23 #endif
24 	}, {
25 		.max = MT7996_MAX_INTERFACES,
26 		.types = BIT(NL80211_IFTYPE_STATION)
27 	}
28 };
29 
30 static const struct ieee80211_iface_combination if_comb[] = {
31 	{
32 		.limits = if_limits,
33 		.n_limits = ARRAY_SIZE(if_limits),
34 		.max_interfaces = MT7996_MAX_INTERFACES,
35 		.num_different_channels = 1,
36 		.beacon_int_infra_match = true,
37 		.radar_detect_widths = BIT(NL80211_CHAN_WIDTH_20_NOHT) |
38 				       BIT(NL80211_CHAN_WIDTH_20) |
39 				       BIT(NL80211_CHAN_WIDTH_40) |
40 				       BIT(NL80211_CHAN_WIDTH_80) |
41 				       BIT(NL80211_CHAN_WIDTH_160),
42 		.beacon_int_min_gcd = 100,
43 	}
44 };
45 
mt7996_thermal_temp_show(struct device * dev,struct device_attribute * attr,char * buf)46 static ssize_t mt7996_thermal_temp_show(struct device *dev,
47 					struct device_attribute *attr,
48 					char *buf)
49 {
50 	struct mt7996_phy *phy = dev_get_drvdata(dev);
51 	int i = to_sensor_dev_attr(attr)->index;
52 	int temperature;
53 
54 	switch (i) {
55 	case 0:
56 		temperature = mt7996_mcu_get_temperature(phy);
57 		if (temperature < 0)
58 			return temperature;
59 		/* display in millidegree celcius */
60 		return sprintf(buf, "%u\n", temperature * 1000);
61 	case 1:
62 	case 2:
63 		return sprintf(buf, "%u\n",
64 			       phy->throttle_temp[i - 1] * 1000);
65 	case 3:
66 		return sprintf(buf, "%hhu\n", phy->throttle_state);
67 	default:
68 		return -EINVAL;
69 	}
70 }
71 
mt7996_thermal_temp_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)72 static ssize_t mt7996_thermal_temp_store(struct device *dev,
73 					 struct device_attribute *attr,
74 					 const char *buf, size_t count)
75 {
76 	struct mt7996_phy *phy = dev_get_drvdata(dev);
77 	int ret, i = to_sensor_dev_attr(attr)->index;
78 	long val;
79 
80 	ret = kstrtol(buf, 10, &val);
81 	if (ret < 0)
82 		return ret;
83 
84 	mutex_lock(&phy->dev->mt76.mutex);
85 	val = DIV_ROUND_CLOSEST(clamp_val(val, 40 * 1000, 130 * 1000), 1000);
86 
87 	/* add a safety margin ~10 */
88 	if ((i - 1 == MT7996_CRIT_TEMP_IDX &&
89 	     val > phy->throttle_temp[MT7996_MAX_TEMP_IDX] - 10) ||
90 	    (i - 1 == MT7996_MAX_TEMP_IDX &&
91 	     val - 10 < phy->throttle_temp[MT7996_CRIT_TEMP_IDX])) {
92 		dev_err(phy->dev->mt76.dev,
93 			"temp1_max shall be 10 degrees higher than temp1_crit.");
94 		mutex_unlock(&phy->dev->mt76.mutex);
95 		return -EINVAL;
96 	}
97 
98 	phy->throttle_temp[i - 1] = val;
99 	mutex_unlock(&phy->dev->mt76.mutex);
100 
101 	ret = mt7996_mcu_set_thermal_protect(phy, true);
102 	if (ret)
103 		return ret;
104 
105 	return count;
106 }
107 
108 static SENSOR_DEVICE_ATTR_RO(temp1_input, mt7996_thermal_temp, 0);
109 static SENSOR_DEVICE_ATTR_RW(temp1_crit, mt7996_thermal_temp, 1);
110 static SENSOR_DEVICE_ATTR_RW(temp1_max, mt7996_thermal_temp, 2);
111 static SENSOR_DEVICE_ATTR_RO(throttle1, mt7996_thermal_temp, 3);
112 
113 static struct attribute *mt7996_hwmon_attrs[] = {
114 	&sensor_dev_attr_temp1_input.dev_attr.attr,
115 	&sensor_dev_attr_temp1_crit.dev_attr.attr,
116 	&sensor_dev_attr_temp1_max.dev_attr.attr,
117 	&sensor_dev_attr_throttle1.dev_attr.attr,
118 	NULL,
119 };
120 ATTRIBUTE_GROUPS(mt7996_hwmon);
121 
122 static int
mt7996_thermal_get_max_throttle_state(struct thermal_cooling_device * cdev,unsigned long * state)123 mt7996_thermal_get_max_throttle_state(struct thermal_cooling_device *cdev,
124 				      unsigned long *state)
125 {
126 	*state = MT7996_CDEV_THROTTLE_MAX;
127 
128 	return 0;
129 }
130 
131 static int
mt7996_thermal_get_cur_throttle_state(struct thermal_cooling_device * cdev,unsigned long * state)132 mt7996_thermal_get_cur_throttle_state(struct thermal_cooling_device *cdev,
133 				      unsigned long *state)
134 {
135 	struct mt7996_phy *phy = cdev->devdata;
136 
137 	*state = phy->cdev_state;
138 
139 	return 0;
140 }
141 
142 static int
mt7996_thermal_set_cur_throttle_state(struct thermal_cooling_device * cdev,unsigned long state)143 mt7996_thermal_set_cur_throttle_state(struct thermal_cooling_device *cdev,
144 				      unsigned long state)
145 {
146 	struct mt7996_phy *phy = cdev->devdata;
147 	u8 throttling = MT7996_THERMAL_THROTTLE_MAX - state;
148 	int ret;
149 
150 	if (state > MT7996_CDEV_THROTTLE_MAX) {
151 		dev_err(phy->dev->mt76.dev,
152 			"please specify a valid throttling state\n");
153 		return -EINVAL;
154 	}
155 
156 	if (state == phy->cdev_state)
157 		return 0;
158 
159 	/* cooling_device convention: 0 = no cooling, more = more cooling
160 	 * mcu convention: 1 = max cooling, more = less cooling
161 	 */
162 	ret = mt7996_mcu_set_thermal_throttling(phy, throttling);
163 	if (ret)
164 		return ret;
165 
166 	phy->cdev_state = state;
167 
168 	return 0;
169 }
170 
171 static const struct thermal_cooling_device_ops mt7996_thermal_ops = {
172 	.get_max_state = mt7996_thermal_get_max_throttle_state,
173 	.get_cur_state = mt7996_thermal_get_cur_throttle_state,
174 	.set_cur_state = mt7996_thermal_set_cur_throttle_state,
175 };
176 
mt7996_unregister_thermal(struct mt7996_phy * phy)177 static void mt7996_unregister_thermal(struct mt7996_phy *phy)
178 {
179 	struct wiphy *wiphy = phy->mt76->hw->wiphy;
180 
181 	if (!phy->cdev)
182 		return;
183 
184 	sysfs_remove_link(&wiphy->dev.kobj, "cooling_device");
185 	thermal_cooling_device_unregister(phy->cdev);
186 }
187 
mt7996_thermal_init(struct mt7996_phy * phy)188 static int mt7996_thermal_init(struct mt7996_phy *phy)
189 {
190 	struct wiphy *wiphy = phy->mt76->hw->wiphy;
191 	struct thermal_cooling_device *cdev;
192 	struct device *hwmon;
193 	const char *name;
194 
195 	name = devm_kasprintf(&wiphy->dev, GFP_KERNEL, "mt7996_%s",
196 			      wiphy_name(wiphy));
197 
198 	cdev = thermal_cooling_device_register(name, phy, &mt7996_thermal_ops);
199 	if (!IS_ERR(cdev)) {
200 		if (sysfs_create_link(&wiphy->dev.kobj, &cdev->device.kobj,
201 				      "cooling_device") < 0)
202 			thermal_cooling_device_unregister(cdev);
203 		else
204 			phy->cdev = cdev;
205 	}
206 
207 	/* initialize critical/maximum high temperature */
208 	phy->throttle_temp[MT7996_CRIT_TEMP_IDX] = MT7996_CRIT_TEMP;
209 	phy->throttle_temp[MT7996_MAX_TEMP_IDX] = MT7996_MAX_TEMP;
210 
211 	if (!IS_REACHABLE(CONFIG_HWMON))
212 		return 0;
213 
214 	hwmon = devm_hwmon_device_register_with_groups(&wiphy->dev, name, phy,
215 						       mt7996_hwmon_groups);
216 
217 	if (IS_ERR(hwmon))
218 		return PTR_ERR(hwmon);
219 
220 	return 0;
221 }
222 
mt7996_led_set_config(struct led_classdev * led_cdev,u8 delay_on,u8 delay_off)223 static void mt7996_led_set_config(struct led_classdev *led_cdev,
224 				  u8 delay_on, u8 delay_off)
225 {
226 	struct mt7996_dev *dev;
227 	struct mt76_phy *mphy;
228 	u32 val;
229 
230 	mphy = container_of(led_cdev, struct mt76_phy, leds.cdev);
231 	dev = container_of(mphy->dev, struct mt7996_dev, mt76);
232 
233 	/* select TX blink mode, 2: only data frames */
234 	mt76_rmw_field(dev, MT_TMAC_TCR0(mphy->band_idx), MT_TMAC_TCR0_TX_BLINK, 2);
235 
236 	/* enable LED */
237 	mt76_wr(dev, MT_LED_EN(mphy->band_idx), 1);
238 
239 	/* set LED Tx blink on/off time */
240 	val = FIELD_PREP(MT_LED_TX_BLINK_ON_MASK, delay_on) |
241 	      FIELD_PREP(MT_LED_TX_BLINK_OFF_MASK, delay_off);
242 	mt76_wr(dev, MT_LED_TX_BLINK(mphy->band_idx), val);
243 
244 	/* turn LED off */
245 	if (delay_off == 0xff && delay_on == 0x0) {
246 		val = MT_LED_CTRL_POLARITY | MT_LED_CTRL_KICK;
247 	} else {
248 		/* control LED */
249 		val = MT_LED_CTRL_BLINK_MODE | MT_LED_CTRL_KICK;
250 		if (mphy->band_idx == MT_BAND1)
251 			val |= MT_LED_CTRL_BLINK_BAND_SEL;
252 	}
253 
254 	if (mphy->leds.al)
255 		val |= MT_LED_CTRL_POLARITY;
256 
257 	mt76_wr(dev, MT_LED_CTRL(mphy->band_idx), val);
258 	mt76_clear(dev, MT_LED_CTRL(mphy->band_idx), MT_LED_CTRL_KICK);
259 }
260 
mt7996_led_set_blink(struct led_classdev * led_cdev,unsigned long * delay_on,unsigned long * delay_off)261 static int mt7996_led_set_blink(struct led_classdev *led_cdev,
262 				unsigned long *delay_on,
263 				unsigned long *delay_off)
264 {
265 	u16 delta_on = 0, delta_off = 0;
266 
267 #define HW_TICK		10
268 #define TO_HW_TICK(_t)	(((_t) > HW_TICK) ? ((_t) / HW_TICK) : HW_TICK)
269 
270 	if (*delay_on)
271 		delta_on = TO_HW_TICK(*delay_on);
272 	if (*delay_off)
273 		delta_off = TO_HW_TICK(*delay_off);
274 
275 	mt7996_led_set_config(led_cdev, delta_on, delta_off);
276 
277 	return 0;
278 }
279 
mt7996_led_set_brightness(struct led_classdev * led_cdev,enum led_brightness brightness)280 static void mt7996_led_set_brightness(struct led_classdev *led_cdev,
281 				      enum led_brightness brightness)
282 {
283 	if (!brightness)
284 		mt7996_led_set_config(led_cdev, 0, 0xff);
285 	else
286 		mt7996_led_set_config(led_cdev, 0xff, 0);
287 }
288 
__mt7996_init_txpower(struct mt7996_phy * phy,struct ieee80211_supported_band * sband)289 static void __mt7996_init_txpower(struct mt7996_phy *phy,
290 				  struct ieee80211_supported_band *sband)
291 {
292 	struct mt7996_dev *dev = phy->dev;
293 	int i, nss = hweight16(phy->mt76->chainmask);
294 	int nss_delta = mt76_tx_power_nss_delta(nss);
295 	int pwr_delta = mt7996_eeprom_get_power_delta(dev, sband->band);
296 	struct mt76_power_limits limits;
297 
298 	for (i = 0; i < sband->n_channels; i++) {
299 		struct ieee80211_channel *chan = &sband->channels[i];
300 		int target_power = mt7996_eeprom_get_target_power(dev, chan);
301 
302 		target_power += pwr_delta;
303 		target_power = mt76_get_rate_power_limits(phy->mt76, chan,
304 							  &limits,
305 							  target_power);
306 		target_power += nss_delta;
307 		target_power = DIV_ROUND_UP(target_power, 2);
308 		chan->max_power = min_t(int, chan->max_reg_power,
309 					target_power);
310 		chan->orig_mpwr = target_power;
311 	}
312 }
313 
mt7996_init_txpower(struct mt7996_phy * phy)314 void mt7996_init_txpower(struct mt7996_phy *phy)
315 {
316 	if (!phy)
317 		return;
318 
319 	if (phy->mt76->cap.has_2ghz)
320 		__mt7996_init_txpower(phy, &phy->mt76->sband_2g.sband);
321 	if (phy->mt76->cap.has_5ghz)
322 		__mt7996_init_txpower(phy, &phy->mt76->sband_5g.sband);
323 	if (phy->mt76->cap.has_6ghz)
324 		__mt7996_init_txpower(phy, &phy->mt76->sband_6g.sband);
325 }
326 
327 static void
mt7996_regd_notifier(struct wiphy * wiphy,struct regulatory_request * request)328 mt7996_regd_notifier(struct wiphy *wiphy,
329 		     struct regulatory_request *request)
330 {
331 	struct ieee80211_hw *hw = wiphy_to_ieee80211_hw(wiphy);
332 	struct mt7996_dev *dev = mt7996_hw_dev(hw);
333 	struct mt7996_phy *phy = mt7996_hw_phy(hw);
334 
335 	memcpy(dev->mt76.alpha2, request->alpha2, sizeof(dev->mt76.alpha2));
336 	dev->mt76.region = request->dfs_region;
337 
338 	if (dev->mt76.region == NL80211_DFS_UNSET)
339 		mt7996_mcu_rdd_background_enable(phy, NULL);
340 
341 	mt7996_init_txpower(phy);
342 
343 	phy->mt76->dfs_state = MT_DFS_STATE_UNKNOWN;
344 	mt7996_dfs_init_radar_detector(phy);
345 }
346 
347 static void
mt7996_init_wiphy(struct ieee80211_hw * hw,struct mtk_wed_device * wed)348 mt7996_init_wiphy(struct ieee80211_hw *hw, struct mtk_wed_device *wed)
349 {
350 	struct mt7996_phy *phy = mt7996_hw_phy(hw);
351 	struct mt76_dev *mdev = &phy->dev->mt76;
352 	struct wiphy *wiphy = hw->wiphy;
353 	u16 max_subframes = phy->dev->has_eht ? IEEE80211_MAX_AMPDU_BUF_EHT :
354 						IEEE80211_MAX_AMPDU_BUF_HE;
355 
356 	hw->queues = 4;
357 	hw->max_rx_aggregation_subframes = max_subframes;
358 	hw->max_tx_aggregation_subframes = max_subframes;
359 	hw->netdev_features = NETIF_F_RXCSUM;
360 	if (mtk_wed_device_active(wed))
361 		hw->netdev_features |= NETIF_F_HW_TC;
362 
363 	hw->radiotap_timestamp.units_pos =
364 		IEEE80211_RADIOTAP_TIMESTAMP_UNIT_US;
365 
366 	phy->slottime = 9;
367 	phy->beacon_rate = -1;
368 
369 	hw->sta_data_size = sizeof(struct mt7996_sta);
370 	hw->vif_data_size = sizeof(struct mt7996_vif);
371 
372 	wiphy->iface_combinations = if_comb;
373 	wiphy->n_iface_combinations = ARRAY_SIZE(if_comb);
374 	wiphy->reg_notifier = mt7996_regd_notifier;
375 	wiphy->flags |= WIPHY_FLAG_HAS_CHANNEL_SWITCH;
376 	wiphy->mbssid_max_interfaces = 16;
377 
378 	wiphy_ext_feature_set(wiphy, NL80211_EXT_FEATURE_BSS_COLOR);
379 	wiphy_ext_feature_set(wiphy, NL80211_EXT_FEATURE_VHT_IBSS);
380 	wiphy_ext_feature_set(wiphy, NL80211_EXT_FEATURE_BEACON_RATE_LEGACY);
381 	wiphy_ext_feature_set(wiphy, NL80211_EXT_FEATURE_BEACON_RATE_HT);
382 	wiphy_ext_feature_set(wiphy, NL80211_EXT_FEATURE_BEACON_RATE_VHT);
383 	wiphy_ext_feature_set(wiphy, NL80211_EXT_FEATURE_BEACON_RATE_HE);
384 	wiphy_ext_feature_set(wiphy, NL80211_EXT_FEATURE_UNSOL_BCAST_PROBE_RESP);
385 	wiphy_ext_feature_set(wiphy, NL80211_EXT_FEATURE_FILS_DISCOVERY);
386 	wiphy_ext_feature_set(wiphy, NL80211_EXT_FEATURE_ACK_SIGNAL_SUPPORT);
387 	wiphy_ext_feature_set(wiphy, NL80211_EXT_FEATURE_CAN_REPLACE_PTK0);
388 	wiphy_ext_feature_set(wiphy, NL80211_EXT_FEATURE_MU_MIMO_AIR_SNIFFER);
389 
390 	if (!mdev->dev->of_node ||
391 	    !of_property_read_bool(mdev->dev->of_node,
392 				   "mediatek,disable-radar-background"))
393 		wiphy_ext_feature_set(wiphy,
394 				      NL80211_EXT_FEATURE_RADAR_BACKGROUND);
395 
396 	ieee80211_hw_set(hw, HAS_RATE_CONTROL);
397 	ieee80211_hw_set(hw, SUPPORTS_TX_ENCAP_OFFLOAD);
398 	ieee80211_hw_set(hw, SUPPORTS_RX_DECAP_OFFLOAD);
399 	ieee80211_hw_set(hw, WANT_MONITOR_VIF);
400 	ieee80211_hw_set(hw, SUPPORTS_MULTI_BSSID);
401 
402 	hw->max_tx_fragments = 4;
403 
404 	if (phy->mt76->cap.has_2ghz) {
405 		phy->mt76->sband_2g.sband.ht_cap.cap |=
406 			IEEE80211_HT_CAP_LDPC_CODING |
407 			IEEE80211_HT_CAP_MAX_AMSDU;
408 		phy->mt76->sband_2g.sband.ht_cap.ampdu_density =
409 			IEEE80211_HT_MPDU_DENSITY_2;
410 	}
411 
412 	if (phy->mt76->cap.has_5ghz) {
413 		phy->mt76->sband_5g.sband.ht_cap.cap |=
414 			IEEE80211_HT_CAP_LDPC_CODING |
415 			IEEE80211_HT_CAP_MAX_AMSDU;
416 
417 		phy->mt76->sband_5g.sband.vht_cap.cap |=
418 			IEEE80211_VHT_CAP_MAX_MPDU_LENGTH_11454 |
419 			IEEE80211_VHT_CAP_MAX_A_MPDU_LENGTH_EXPONENT_MASK |
420 			IEEE80211_VHT_CAP_SHORT_GI_160 |
421 			IEEE80211_VHT_CAP_SUPP_CHAN_WIDTH_160MHZ;
422 		phy->mt76->sband_5g.sband.ht_cap.ampdu_density =
423 			IEEE80211_HT_MPDU_DENSITY_1;
424 
425 		ieee80211_hw_set(hw, SUPPORTS_VHT_EXT_NSS_BW);
426 	}
427 
428 	/* init led callbacks */
429 	if (IS_ENABLED(CONFIG_MT76_LEDS)) {
430 		phy->mt76->leds.cdev.brightness_set = mt7996_led_set_brightness;
431 		phy->mt76->leds.cdev.blink_set = mt7996_led_set_blink;
432 	}
433 
434 	mt76_set_stream_caps(phy->mt76, true);
435 	mt7996_set_stream_vht_txbf_caps(phy);
436 	mt7996_set_stream_he_eht_caps(phy);
437 	mt7996_init_txpower(phy);
438 
439 	wiphy->available_antennas_rx = phy->mt76->antenna_mask;
440 	wiphy->available_antennas_tx = phy->mt76->antenna_mask;
441 }
442 
443 static void
mt7996_mac_init_band(struct mt7996_dev * dev,u8 band)444 mt7996_mac_init_band(struct mt7996_dev *dev, u8 band)
445 {
446 	u32 mask, set;
447 
448 	/* clear estimated value of EIFS for Rx duration & OBSS time */
449 	mt76_wr(dev, MT_WF_RMAC_RSVD0(band), MT_WF_RMAC_RSVD0_EIFS_CLR);
450 
451 	/* clear backoff time for Rx duration  */
452 	mt76_clear(dev, MT_WF_RMAC_MIB_AIRTIME1(band),
453 		   MT_WF_RMAC_MIB_NONQOSD_BACKOFF);
454 	mt76_clear(dev, MT_WF_RMAC_MIB_AIRTIME3(band),
455 		   MT_WF_RMAC_MIB_QOS01_BACKOFF);
456 	mt76_clear(dev, MT_WF_RMAC_MIB_AIRTIME4(band),
457 		   MT_WF_RMAC_MIB_QOS23_BACKOFF);
458 
459 	/* clear backoff time and set software compensation for OBSS time */
460 	mask = MT_WF_RMAC_MIB_OBSS_BACKOFF | MT_WF_RMAC_MIB_ED_OFFSET;
461 	set = FIELD_PREP(MT_WF_RMAC_MIB_OBSS_BACKOFF, 0) |
462 	      FIELD_PREP(MT_WF_RMAC_MIB_ED_OFFSET, 4);
463 	mt76_rmw(dev, MT_WF_RMAC_MIB_AIRTIME0(band), mask, set);
464 
465 	/* filter out non-resp frames and get instanstaeous signal reporting */
466 	mask = MT_WTBLOFF_RSCR_RCPI_MODE | MT_WTBLOFF_RSCR_RCPI_PARAM;
467 	set = FIELD_PREP(MT_WTBLOFF_RSCR_RCPI_MODE, 0) |
468 	      FIELD_PREP(MT_WTBLOFF_RSCR_RCPI_PARAM, 0x3);
469 	mt76_rmw(dev, MT_WTBLOFF_RSCR(band), mask, set);
470 
471 	/* MT_TXD5_TX_STATUS_HOST (MPDU format) has higher priority than
472 	 * MT_AGG_ACR_PPDU_TXS2H (PPDU format) even though ACR bit is set.
473 	 */
474 	mt76_set(dev, MT_AGG_ACR4(band), MT_AGG_ACR_PPDU_TXS2H);
475 }
476 
mt7996_mac_init_basic_rates(struct mt7996_dev * dev)477 static void mt7996_mac_init_basic_rates(struct mt7996_dev *dev)
478 {
479 	int i;
480 
481 	for (i = 0; i < ARRAY_SIZE(mt76_rates); i++) {
482 		u16 rate = mt76_rates[i].hw_value;
483 		/* odd index for driver, even index for firmware */
484 		u16 idx = MT7996_BASIC_RATES_TBL + 2 * i;
485 
486 		rate = FIELD_PREP(MT_TX_RATE_MODE, rate >> 8) |
487 		       FIELD_PREP(MT_TX_RATE_IDX, rate & GENMASK(7, 0));
488 		mt7996_mcu_set_fixed_rate_table(&dev->phy, idx, rate, false);
489 	}
490 }
491 
mt7996_mac_init(struct mt7996_dev * dev)492 void mt7996_mac_init(struct mt7996_dev *dev)
493 {
494 #define HIF_TXD_V2_1	0x21
495 	int i;
496 
497 	mt76_clear(dev, MT_MDP_DCR2, MT_MDP_DCR2_RX_TRANS_SHORT);
498 
499 	for (i = 0; i < mt7996_wtbl_size(dev); i++)
500 		mt7996_mac_wtbl_update(dev, i,
501 				       MT_WTBL_UPDATE_ADM_COUNT_CLEAR);
502 
503 	if (IS_ENABLED(CONFIG_MT76_LEDS)) {
504 		i = dev->mphy.leds.pin ? MT_LED_GPIO_MUX3 : MT_LED_GPIO_MUX2;
505 		mt76_rmw_field(dev, i, MT_LED_GPIO_SEL_MASK, 4);
506 	}
507 
508 	/* rro module init */
509 	if (is_mt7996(&dev->mt76))
510 		mt7996_mcu_set_rro(dev, UNI_RRO_SET_PLATFORM_TYPE, 2);
511 	else
512 		mt7996_mcu_set_rro(dev, UNI_RRO_SET_PLATFORM_TYPE,
513 				   dev->hif2 ? 7 : 0);
514 
515 	if (dev->has_rro) {
516 		u16 timeout;
517 
518 		timeout = mt76_rr(dev, MT_HW_REV) == MT_HW_REV1 ? 512 : 128;
519 		mt7996_mcu_set_rro(dev, UNI_RRO_SET_FLUSH_TIMEOUT, timeout);
520 		mt7996_mcu_set_rro(dev, UNI_RRO_SET_BYPASS_MODE, 1);
521 		mt7996_mcu_set_rro(dev, UNI_RRO_SET_TXFREE_PATH, 0);
522 	} else {
523 		mt7996_mcu_set_rro(dev, UNI_RRO_SET_BYPASS_MODE, 3);
524 		mt7996_mcu_set_rro(dev, UNI_RRO_SET_TXFREE_PATH, 1);
525 	}
526 
527 	mt7996_mcu_wa_cmd(dev, MCU_WA_PARAM_CMD(SET),
528 			  MCU_WA_PARAM_HW_PATH_HIF_VER,
529 			  HIF_TXD_V2_1, 0);
530 
531 	for (i = MT_BAND0; i <= MT_BAND2; i++)
532 		mt7996_mac_init_band(dev, i);
533 
534 	mt7996_mac_init_basic_rates(dev);
535 }
536 
mt7996_txbf_init(struct mt7996_dev * dev)537 int mt7996_txbf_init(struct mt7996_dev *dev)
538 {
539 	int ret;
540 
541 	if (mt7996_band_valid(dev, MT_BAND1) ||
542 	    mt7996_band_valid(dev, MT_BAND2)) {
543 		ret = mt7996_mcu_set_txbf(dev, BF_MOD_EN_CTRL);
544 		if (ret)
545 			return ret;
546 	}
547 
548 	/* trigger sounding packets */
549 	ret = mt7996_mcu_set_txbf(dev, BF_SOUNDING_ON);
550 	if (ret)
551 		return ret;
552 
553 	/* enable eBF */
554 	return mt7996_mcu_set_txbf(dev, BF_HW_EN_UPDATE);
555 }
556 
mt7996_register_phy(struct mt7996_dev * dev,struct mt7996_phy * phy,enum mt76_band_id band)557 static int mt7996_register_phy(struct mt7996_dev *dev, struct mt7996_phy *phy,
558 			       enum mt76_band_id band)
559 {
560 	struct mt76_phy *mphy;
561 	u32 mac_ofs, hif1_ofs = 0;
562 	int ret;
563 	struct mtk_wed_device *wed = &dev->mt76.mmio.wed;
564 
565 	if (!mt7996_band_valid(dev, band) || band == MT_BAND0)
566 		return 0;
567 
568 	if (phy)
569 		return 0;
570 
571 	if (is_mt7996(&dev->mt76) && band == MT_BAND2 && dev->hif2) {
572 		hif1_ofs = MT_WFDMA0_PCIE1(0) - MT_WFDMA0(0);
573 		wed = &dev->mt76.mmio.wed_hif2;
574 	}
575 
576 	mphy = mt76_alloc_phy(&dev->mt76, sizeof(*phy), &mt7996_ops, band);
577 	if (!mphy)
578 		return -ENOMEM;
579 
580 	phy = mphy->priv;
581 	phy->dev = dev;
582 	phy->mt76 = mphy;
583 	mphy->dev->phys[band] = mphy;
584 
585 	INIT_DELAYED_WORK(&mphy->mac_work, mt7996_mac_work);
586 
587 	ret = mt7996_eeprom_parse_hw_cap(dev, phy);
588 	if (ret)
589 		goto error;
590 
591 	mac_ofs = band == MT_BAND2 ? MT_EE_MAC_ADDR3 : MT_EE_MAC_ADDR2;
592 	memcpy(mphy->macaddr, dev->mt76.eeprom.data + mac_ofs, ETH_ALEN);
593 	/* Make the extra PHY MAC address local without overlapping with
594 	 * the usual MAC address allocation scheme on multiple virtual interfaces
595 	 */
596 	if (!is_valid_ether_addr(mphy->macaddr)) {
597 		memcpy(mphy->macaddr, dev->mt76.eeprom.data + MT_EE_MAC_ADDR,
598 		       ETH_ALEN);
599 		mphy->macaddr[0] |= 2;
600 		mphy->macaddr[0] ^= BIT(7);
601 		if (band == MT_BAND2)
602 			mphy->macaddr[0] ^= BIT(6);
603 	}
604 	mt76_eeprom_override(mphy);
605 
606 	/* init wiphy according to mphy and phy */
607 	mt7996_init_wiphy(mphy->hw, wed);
608 	ret = mt7996_init_tx_queues(mphy->priv,
609 				    MT_TXQ_ID(band),
610 				    MT7996_TX_RING_SIZE,
611 				    MT_TXQ_RING_BASE(band) + hif1_ofs,
612 				    wed);
613 	if (ret)
614 		goto error;
615 
616 	ret = mt76_register_phy(mphy, true, mt76_rates,
617 				ARRAY_SIZE(mt76_rates));
618 	if (ret)
619 		goto error;
620 
621 	ret = mt7996_thermal_init(phy);
622 	if (ret)
623 		goto error;
624 
625 	ret = mt7996_init_debugfs(phy);
626 	if (ret)
627 		goto error;
628 
629 	if (wed == &dev->mt76.mmio.wed_hif2 && mtk_wed_device_active(wed)) {
630 		u32 irq_mask = dev->mt76.mmio.irqmask | MT_INT_TX_DONE_BAND2;
631 
632 		mt76_wr(dev, MT_INT1_MASK_CSR, irq_mask);
633 		mtk_wed_device_start(&dev->mt76.mmio.wed_hif2, irq_mask);
634 	}
635 
636 	return 0;
637 
638 error:
639 	mphy->dev->phys[band] = NULL;
640 	ieee80211_free_hw(mphy->hw);
641 	return ret;
642 }
643 
644 static void
mt7996_unregister_phy(struct mt7996_phy * phy,enum mt76_band_id band)645 mt7996_unregister_phy(struct mt7996_phy *phy, enum mt76_band_id band)
646 {
647 	struct mt76_phy *mphy;
648 
649 	if (!phy)
650 		return;
651 
652 	mt7996_unregister_thermal(phy);
653 
654 	mphy = phy->dev->mt76.phys[band];
655 	mt76_unregister_phy(mphy);
656 	ieee80211_free_hw(mphy->hw);
657 	phy->dev->mt76.phys[band] = NULL;
658 }
659 
mt7996_init_work(struct work_struct * work)660 static void mt7996_init_work(struct work_struct *work)
661 {
662 	struct mt7996_dev *dev = container_of(work, struct mt7996_dev,
663 				 init_work);
664 
665 	mt7996_mcu_set_eeprom(dev);
666 	mt7996_mac_init(dev);
667 	mt7996_txbf_init(dev);
668 }
669 
mt7996_wfsys_reset(struct mt7996_dev * dev)670 void mt7996_wfsys_reset(struct mt7996_dev *dev)
671 {
672 	mt76_set(dev, MT_WF_SUBSYS_RST, 0x1);
673 	msleep(20);
674 
675 	mt76_clear(dev, MT_WF_SUBSYS_RST, 0x1);
676 	msleep(20);
677 }
678 
mt7996_wed_rro_init(struct mt7996_dev * dev)679 static int mt7996_wed_rro_init(struct mt7996_dev *dev)
680 {
681 #ifdef CONFIG_NET_MEDIATEK_SOC_WED
682 	struct mtk_wed_device *wed = &dev->mt76.mmio.wed;
683 	u32 reg = MT_RRO_ADDR_ELEM_SEG_ADDR0;
684 	struct mt7996_wed_rro_addr *addr;
685 	void *ptr;
686 	int i;
687 
688 	if (!dev->has_rro)
689 		return 0;
690 
691 	if (!mtk_wed_device_active(wed))
692 		return 0;
693 
694 	for (i = 0; i < ARRAY_SIZE(dev->wed_rro.ba_bitmap); i++) {
695 		ptr = dmam_alloc_coherent(dev->mt76.dma_dev,
696 					  MT7996_RRO_BA_BITMAP_CR_SIZE,
697 					  &dev->wed_rro.ba_bitmap[i].phy_addr,
698 					  GFP_KERNEL);
699 		if (!ptr)
700 			return -ENOMEM;
701 
702 		dev->wed_rro.ba_bitmap[i].ptr = ptr;
703 	}
704 
705 	for (i = 0; i < ARRAY_SIZE(dev->wed_rro.addr_elem); i++) {
706 		int j;
707 
708 		ptr = dmam_alloc_coherent(dev->mt76.dma_dev,
709 				MT7996_RRO_WINDOW_MAX_SIZE * sizeof(*addr),
710 				&dev->wed_rro.addr_elem[i].phy_addr,
711 				GFP_KERNEL);
712 		if (!ptr)
713 			return -ENOMEM;
714 
715 		dev->wed_rro.addr_elem[i].ptr = ptr;
716 		memset(dev->wed_rro.addr_elem[i].ptr, 0,
717 		       MT7996_RRO_WINDOW_MAX_SIZE * sizeof(*addr));
718 
719 		addr = dev->wed_rro.addr_elem[i].ptr;
720 		for (j = 0; j < MT7996_RRO_WINDOW_MAX_SIZE; j++) {
721 			addr->signature = 0xff;
722 			addr++;
723 		}
724 
725 		wed->wlan.ind_cmd.addr_elem_phys[i] =
726 			dev->wed_rro.addr_elem[i].phy_addr;
727 	}
728 
729 	ptr = dmam_alloc_coherent(dev->mt76.dma_dev,
730 				  MT7996_RRO_WINDOW_MAX_LEN * sizeof(*addr),
731 				  &dev->wed_rro.session.phy_addr,
732 				  GFP_KERNEL);
733 	if (!ptr)
734 		return -ENOMEM;
735 
736 	dev->wed_rro.session.ptr = ptr;
737 	addr = dev->wed_rro.session.ptr;
738 	for (i = 0; i < MT7996_RRO_WINDOW_MAX_LEN; i++) {
739 		addr->signature = 0xff;
740 		addr++;
741 	}
742 
743 	/* rro hw init */
744 	/* TODO: remove line after WM has set */
745 	mt76_clear(dev, WF_RRO_AXI_MST_CFG, WF_RRO_AXI_MST_CFG_DIDX_OK);
746 
747 	/* setup BA bitmap cache address */
748 	mt76_wr(dev, MT_RRO_BA_BITMAP_BASE0,
749 		dev->wed_rro.ba_bitmap[0].phy_addr);
750 	mt76_wr(dev, MT_RRO_BA_BITMAP_BASE1, 0);
751 	mt76_wr(dev, MT_RRO_BA_BITMAP_BASE_EXT0,
752 		dev->wed_rro.ba_bitmap[1].phy_addr);
753 	mt76_wr(dev, MT_RRO_BA_BITMAP_BASE_EXT1, 0);
754 
755 	/* setup Address element address */
756 	for (i = 0; i < ARRAY_SIZE(dev->wed_rro.addr_elem); i++) {
757 		mt76_wr(dev, reg, dev->wed_rro.addr_elem[i].phy_addr >> 4);
758 		reg += 4;
759 	}
760 
761 	/* setup Address element address - separate address segment mode */
762 	mt76_wr(dev, MT_RRO_ADDR_ARRAY_BASE1,
763 		MT_RRO_ADDR_ARRAY_ELEM_ADDR_SEG_MODE);
764 
765 	wed->wlan.ind_cmd.win_size = ffs(MT7996_RRO_WINDOW_MAX_LEN) - 6;
766 	wed->wlan.ind_cmd.particular_sid = MT7996_RRO_MAX_SESSION;
767 	wed->wlan.ind_cmd.particular_se_phys = dev->wed_rro.session.phy_addr;
768 	wed->wlan.ind_cmd.se_group_nums = MT7996_RRO_ADDR_ELEM_LEN;
769 	wed->wlan.ind_cmd.ack_sn_addr = MT_RRO_ACK_SN_CTRL;
770 
771 	mt76_wr(dev, MT_RRO_IND_CMD_SIGNATURE_BASE0, 0x15010e00);
772 	mt76_set(dev, MT_RRO_IND_CMD_SIGNATURE_BASE1,
773 		 MT_RRO_IND_CMD_SIGNATURE_BASE1_EN);
774 
775 	/* particular session configure */
776 	/* use max session idx + 1 as particular session id */
777 	mt76_wr(dev, MT_RRO_PARTICULAR_CFG0, dev->wed_rro.session.phy_addr);
778 	mt76_wr(dev, MT_RRO_PARTICULAR_CFG1,
779 		MT_RRO_PARTICULAR_CONFG_EN |
780 		FIELD_PREP(MT_RRO_PARTICULAR_SID, MT7996_RRO_MAX_SESSION));
781 
782 	/* interrupt enable */
783 	mt76_wr(dev, MT_RRO_HOST_INT_ENA,
784 		MT_RRO_HOST_INT_ENA_HOST_RRO_DONE_ENA);
785 
786 	/* rro ind cmd queue init */
787 	return mt7996_dma_rro_init(dev);
788 #else
789 	return 0;
790 #endif
791 }
792 
mt7996_wed_rro_free(struct mt7996_dev * dev)793 static void mt7996_wed_rro_free(struct mt7996_dev *dev)
794 {
795 #ifdef CONFIG_NET_MEDIATEK_SOC_WED
796 	int i;
797 
798 	if (!dev->has_rro)
799 		return;
800 
801 	if (!mtk_wed_device_active(&dev->mt76.mmio.wed))
802 		return;
803 
804 	for (i = 0; i < ARRAY_SIZE(dev->wed_rro.ba_bitmap); i++) {
805 		if (!dev->wed_rro.ba_bitmap[i].ptr)
806 			continue;
807 
808 		dmam_free_coherent(dev->mt76.dma_dev,
809 				   MT7996_RRO_BA_BITMAP_CR_SIZE,
810 				   dev->wed_rro.ba_bitmap[i].ptr,
811 				   dev->wed_rro.ba_bitmap[i].phy_addr);
812 	}
813 
814 	for (i = 0; i < ARRAY_SIZE(dev->wed_rro.addr_elem); i++) {
815 		if (!dev->wed_rro.addr_elem[i].ptr)
816 			continue;
817 
818 		dmam_free_coherent(dev->mt76.dma_dev,
819 				   MT7996_RRO_WINDOW_MAX_SIZE *
820 				   sizeof(struct mt7996_wed_rro_addr),
821 				   dev->wed_rro.addr_elem[i].ptr,
822 				   dev->wed_rro.addr_elem[i].phy_addr);
823 	}
824 
825 	if (!dev->wed_rro.session.ptr)
826 		return;
827 
828 	dmam_free_coherent(dev->mt76.dma_dev,
829 			   MT7996_RRO_WINDOW_MAX_LEN *
830 			   sizeof(struct mt7996_wed_rro_addr),
831 			   dev->wed_rro.session.ptr,
832 			   dev->wed_rro.session.phy_addr);
833 #endif
834 }
835 
mt7996_wed_rro_work(struct work_struct * work)836 static void mt7996_wed_rro_work(struct work_struct *work)
837 {
838 #ifdef CONFIG_NET_MEDIATEK_SOC_WED
839 	struct mt7996_dev *dev;
840 	LIST_HEAD(list);
841 
842 	dev = (struct mt7996_dev *)container_of(work, struct mt7996_dev,
843 						wed_rro.work);
844 
845 	spin_lock_bh(&dev->wed_rro.lock);
846 	list_splice_init(&dev->wed_rro.poll_list, &list);
847 	spin_unlock_bh(&dev->wed_rro.lock);
848 
849 	while (!list_empty(&list)) {
850 		struct mt7996_wed_rro_session_id *e;
851 		int i;
852 
853 		e = list_first_entry(&list, struct mt7996_wed_rro_session_id,
854 				     list);
855 		list_del_init(&e->list);
856 
857 		for (i = 0; i < MT7996_RRO_WINDOW_MAX_LEN; i++) {
858 			void *ptr = dev->wed_rro.session.ptr;
859 			struct mt7996_wed_rro_addr *elem;
860 			u32 idx, elem_id = i;
861 
862 			if (e->id == MT7996_RRO_MAX_SESSION)
863 				goto reset;
864 
865 			idx = e->id / MT7996_RRO_BA_BITMAP_SESSION_SIZE;
866 			if (idx >= ARRAY_SIZE(dev->wed_rro.addr_elem))
867 				goto out;
868 
869 			ptr = dev->wed_rro.addr_elem[idx].ptr;
870 			elem_id +=
871 				(e->id % MT7996_RRO_BA_BITMAP_SESSION_SIZE) *
872 				MT7996_RRO_WINDOW_MAX_LEN;
873 reset:
874 			elem = ptr + elem_id * sizeof(*elem);
875 			elem->signature = 0xff;
876 		}
877 		mt7996_mcu_wed_rro_reset_sessions(dev, e->id);
878 out:
879 		kfree(e);
880 	}
881 #endif
882 }
883 
mt7996_init_hardware(struct mt7996_dev * dev)884 static int mt7996_init_hardware(struct mt7996_dev *dev)
885 {
886 	int ret, idx;
887 
888 	mt76_wr(dev, MT_INT_SOURCE_CSR, ~0);
889 	if (is_mt7992(&dev->mt76)) {
890 		mt76_rmw(dev, MT_AFE_CTL_BAND_PLL_03(MT_BAND0), MT_AFE_CTL_BAND_PLL_03_MSB_EN, 0);
891 		mt76_rmw(dev, MT_AFE_CTL_BAND_PLL_03(MT_BAND1), MT_AFE_CTL_BAND_PLL_03_MSB_EN, 0);
892 	}
893 
894 	INIT_WORK(&dev->init_work, mt7996_init_work);
895 	INIT_WORK(&dev->wed_rro.work, mt7996_wed_rro_work);
896 	INIT_LIST_HEAD(&dev->wed_rro.poll_list);
897 	spin_lock_init(&dev->wed_rro.lock);
898 
899 	ret = mt7996_dma_init(dev);
900 	if (ret)
901 		return ret;
902 
903 	set_bit(MT76_STATE_INITIALIZED, &dev->mphy.state);
904 
905 	ret = mt7996_mcu_init(dev);
906 	if (ret)
907 		return ret;
908 
909 	ret = mt7996_wed_rro_init(dev);
910 	if (ret)
911 		return ret;
912 
913 	ret = mt7996_eeprom_init(dev);
914 	if (ret < 0)
915 		return ret;
916 
917 	/* Beacon and mgmt frames should occupy wcid 0 */
918 	idx = mt76_wcid_alloc(dev->mt76.wcid_mask, MT7996_WTBL_STA);
919 	if (idx)
920 		return -ENOSPC;
921 
922 	dev->mt76.global_wcid.idx = idx;
923 	dev->mt76.global_wcid.hw_key_idx = -1;
924 	dev->mt76.global_wcid.tx_info |= MT_WCID_TX_INFO_SET;
925 	rcu_assign_pointer(dev->mt76.wcid[idx], &dev->mt76.global_wcid);
926 
927 	return 0;
928 }
929 
mt7996_set_stream_vht_txbf_caps(struct mt7996_phy * phy)930 void mt7996_set_stream_vht_txbf_caps(struct mt7996_phy *phy)
931 {
932 	int sts;
933 	u32 *cap;
934 
935 	if (!phy->mt76->cap.has_5ghz)
936 		return;
937 
938 	sts = hweight16(phy->mt76->chainmask);
939 	cap = &phy->mt76->sband_5g.sband.vht_cap.cap;
940 
941 	*cap |= IEEE80211_VHT_CAP_SU_BEAMFORMEE_CAPABLE |
942 		IEEE80211_VHT_CAP_MU_BEAMFORMEE_CAPABLE;
943 
944 	if (is_mt7996(phy->mt76->dev))
945 		*cap |= FIELD_PREP(IEEE80211_VHT_CAP_BEAMFORMEE_STS_MASK, 3);
946 	else
947 		*cap |= FIELD_PREP(IEEE80211_VHT_CAP_BEAMFORMEE_STS_MASK, 4);
948 
949 	*cap &= ~(IEEE80211_VHT_CAP_SOUNDING_DIMENSIONS_MASK |
950 		  IEEE80211_VHT_CAP_SU_BEAMFORMER_CAPABLE |
951 		  IEEE80211_VHT_CAP_MU_BEAMFORMER_CAPABLE);
952 
953 	if (sts < 2)
954 		return;
955 
956 	*cap |= IEEE80211_VHT_CAP_SU_BEAMFORMER_CAPABLE |
957 		IEEE80211_VHT_CAP_MU_BEAMFORMER_CAPABLE |
958 		FIELD_PREP(IEEE80211_VHT_CAP_SOUNDING_DIMENSIONS_MASK, sts - 1);
959 }
960 
961 static void
mt7996_set_stream_he_txbf_caps(struct mt7996_phy * phy,struct ieee80211_sta_he_cap * he_cap,int vif)962 mt7996_set_stream_he_txbf_caps(struct mt7996_phy *phy,
963 			       struct ieee80211_sta_he_cap *he_cap, int vif)
964 {
965 	struct ieee80211_he_cap_elem *elem = &he_cap->he_cap_elem;
966 	int sts = hweight16(phy->mt76->chainmask);
967 	u8 c;
968 
969 #ifdef CONFIG_MAC80211_MESH
970 	if (vif == NL80211_IFTYPE_MESH_POINT)
971 		return;
972 #endif
973 
974 	elem->phy_cap_info[3] &= ~IEEE80211_HE_PHY_CAP3_SU_BEAMFORMER;
975 	elem->phy_cap_info[4] &= ~IEEE80211_HE_PHY_CAP4_MU_BEAMFORMER;
976 
977 	c = IEEE80211_HE_PHY_CAP5_BEAMFORMEE_NUM_SND_DIM_UNDER_80MHZ_MASK |
978 	    IEEE80211_HE_PHY_CAP5_BEAMFORMEE_NUM_SND_DIM_ABOVE_80MHZ_MASK;
979 	elem->phy_cap_info[5] &= ~c;
980 
981 	c = IEEE80211_HE_PHY_CAP6_TRIG_SU_BEAMFORMING_FB |
982 	    IEEE80211_HE_PHY_CAP6_TRIG_MU_BEAMFORMING_PARTIAL_BW_FB;
983 	elem->phy_cap_info[6] &= ~c;
984 
985 	elem->phy_cap_info[7] &= ~IEEE80211_HE_PHY_CAP7_MAX_NC_MASK;
986 
987 	c = IEEE80211_HE_PHY_CAP2_NDP_4x_LTF_AND_3_2US |
988 	    IEEE80211_HE_PHY_CAP2_UL_MU_FULL_MU_MIMO |
989 	    IEEE80211_HE_PHY_CAP2_UL_MU_PARTIAL_MU_MIMO;
990 	elem->phy_cap_info[2] |= c;
991 
992 	c = IEEE80211_HE_PHY_CAP4_SU_BEAMFORMEE;
993 
994 	if (is_mt7996(phy->mt76->dev))
995 		c |= IEEE80211_HE_PHY_CAP4_BEAMFORMEE_MAX_STS_UNDER_80MHZ_4 |
996 		     IEEE80211_HE_PHY_CAP4_BEAMFORMEE_MAX_STS_ABOVE_80MHZ_4;
997 	else
998 		c |= IEEE80211_HE_PHY_CAP4_BEAMFORMEE_MAX_STS_UNDER_80MHZ_5 |
999 		     IEEE80211_HE_PHY_CAP4_BEAMFORMEE_MAX_STS_ABOVE_80MHZ_5;
1000 
1001 	elem->phy_cap_info[4] |= c;
1002 
1003 	/* do not support NG16 due to spec D4.0 changes subcarrier idx */
1004 	c = IEEE80211_HE_PHY_CAP6_CODEBOOK_SIZE_42_SU |
1005 	    IEEE80211_HE_PHY_CAP6_CODEBOOK_SIZE_75_MU;
1006 
1007 	if (vif == NL80211_IFTYPE_STATION)
1008 		c |= IEEE80211_HE_PHY_CAP6_PARTIAL_BANDWIDTH_DL_MUMIMO;
1009 
1010 	elem->phy_cap_info[6] |= c;
1011 
1012 	if (sts < 2)
1013 		return;
1014 
1015 	/* the maximum cap is 4 x 3, (Nr, Nc) = (3, 2) */
1016 	elem->phy_cap_info[7] |= min_t(int, sts - 1, 2) << 3;
1017 
1018 	if (!(vif == NL80211_IFTYPE_AP || vif == NL80211_IFTYPE_STATION))
1019 		return;
1020 
1021 	elem->phy_cap_info[3] |= IEEE80211_HE_PHY_CAP3_SU_BEAMFORMER;
1022 
1023 	c = FIELD_PREP(IEEE80211_HE_PHY_CAP5_BEAMFORMEE_NUM_SND_DIM_UNDER_80MHZ_MASK,
1024 		       sts - 1) |
1025 	    FIELD_PREP(IEEE80211_HE_PHY_CAP5_BEAMFORMEE_NUM_SND_DIM_ABOVE_80MHZ_MASK,
1026 		       sts - 1);
1027 	elem->phy_cap_info[5] |= c;
1028 
1029 	if (vif != NL80211_IFTYPE_AP)
1030 		return;
1031 
1032 	elem->phy_cap_info[4] |= IEEE80211_HE_PHY_CAP4_MU_BEAMFORMER;
1033 
1034 	c = IEEE80211_HE_PHY_CAP6_TRIG_SU_BEAMFORMING_FB |
1035 	    IEEE80211_HE_PHY_CAP6_TRIG_MU_BEAMFORMING_PARTIAL_BW_FB;
1036 	elem->phy_cap_info[6] |= c;
1037 
1038 	c = IEEE80211_HE_PHY_CAP7_STBC_TX_ABOVE_80MHZ |
1039 	    IEEE80211_HE_PHY_CAP7_STBC_RX_ABOVE_80MHZ;
1040 	elem->phy_cap_info[7] |= c;
1041 }
1042 
1043 static void
mt7996_init_he_caps(struct mt7996_phy * phy,enum nl80211_band band,struct ieee80211_sband_iftype_data * data,enum nl80211_iftype iftype)1044 mt7996_init_he_caps(struct mt7996_phy *phy, enum nl80211_band band,
1045 		    struct ieee80211_sband_iftype_data *data,
1046 		    enum nl80211_iftype iftype)
1047 {
1048 	struct ieee80211_sta_he_cap *he_cap = &data->he_cap;
1049 	struct ieee80211_he_cap_elem *he_cap_elem = &he_cap->he_cap_elem;
1050 	struct ieee80211_he_mcs_nss_supp *he_mcs = &he_cap->he_mcs_nss_supp;
1051 	int i, nss = hweight8(phy->mt76->antenna_mask);
1052 	u16 mcs_map = 0;
1053 
1054 	for (i = 0; i < 8; i++) {
1055 		if (i < nss)
1056 			mcs_map |= (IEEE80211_HE_MCS_SUPPORT_0_11 << (i * 2));
1057 		else
1058 			mcs_map |= (IEEE80211_HE_MCS_NOT_SUPPORTED << (i * 2));
1059 	}
1060 
1061 	he_cap->has_he = true;
1062 
1063 	he_cap_elem->mac_cap_info[0] = IEEE80211_HE_MAC_CAP0_HTC_HE;
1064 	he_cap_elem->mac_cap_info[3] = IEEE80211_HE_MAC_CAP3_OMI_CONTROL |
1065 				       IEEE80211_HE_MAC_CAP3_MAX_AMPDU_LEN_EXP_EXT_3;
1066 	he_cap_elem->mac_cap_info[4] = IEEE80211_HE_MAC_CAP4_AMSDU_IN_AMPDU;
1067 
1068 	if (band == NL80211_BAND_2GHZ)
1069 		he_cap_elem->phy_cap_info[0] =
1070 			IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_40MHZ_IN_2G;
1071 	else
1072 		he_cap_elem->phy_cap_info[0] =
1073 			IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_40MHZ_80MHZ_IN_5G |
1074 			IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_160MHZ_IN_5G;
1075 
1076 	he_cap_elem->phy_cap_info[1] = IEEE80211_HE_PHY_CAP1_LDPC_CODING_IN_PAYLOAD;
1077 	he_cap_elem->phy_cap_info[2] = IEEE80211_HE_PHY_CAP2_STBC_TX_UNDER_80MHZ |
1078 				       IEEE80211_HE_PHY_CAP2_STBC_RX_UNDER_80MHZ;
1079 
1080 	he_cap_elem->phy_cap_info[7] =
1081 			IEEE80211_HE_PHY_CAP7_HE_SU_MU_PPDU_4XLTF_AND_08_US_GI;
1082 
1083 	switch (iftype) {
1084 	case NL80211_IFTYPE_AP:
1085 		he_cap_elem->mac_cap_info[0] |= IEEE80211_HE_MAC_CAP0_TWT_RES;
1086 		he_cap_elem->mac_cap_info[2] |= IEEE80211_HE_MAC_CAP2_BSR;
1087 		he_cap_elem->mac_cap_info[4] |= IEEE80211_HE_MAC_CAP4_BQR;
1088 		he_cap_elem->mac_cap_info[5] |=
1089 			IEEE80211_HE_MAC_CAP5_OM_CTRL_UL_MU_DATA_DIS_RX;
1090 		he_cap_elem->phy_cap_info[3] |=
1091 			IEEE80211_HE_PHY_CAP3_DCM_MAX_CONST_TX_QPSK |
1092 			IEEE80211_HE_PHY_CAP3_DCM_MAX_CONST_RX_QPSK;
1093 		he_cap_elem->phy_cap_info[6] |=
1094 			IEEE80211_HE_PHY_CAP6_PARTIAL_BW_EXT_RANGE |
1095 			IEEE80211_HE_PHY_CAP6_PPE_THRESHOLD_PRESENT;
1096 		he_cap_elem->phy_cap_info[9] |=
1097 			IEEE80211_HE_PHY_CAP9_TX_1024_QAM_LESS_THAN_242_TONE_RU |
1098 			IEEE80211_HE_PHY_CAP9_RX_1024_QAM_LESS_THAN_242_TONE_RU;
1099 		break;
1100 	case NL80211_IFTYPE_STATION:
1101 		he_cap_elem->mac_cap_info[1] |=
1102 			IEEE80211_HE_MAC_CAP1_TF_MAC_PAD_DUR_16US;
1103 
1104 		if (band == NL80211_BAND_2GHZ)
1105 			he_cap_elem->phy_cap_info[0] |=
1106 			IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_RU_MAPPING_IN_2G;
1107 		else
1108 			he_cap_elem->phy_cap_info[0] |=
1109 			IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_RU_MAPPING_IN_5G;
1110 
1111 		he_cap_elem->phy_cap_info[1] |=
1112 			IEEE80211_HE_PHY_CAP1_DEVICE_CLASS_A |
1113 			IEEE80211_HE_PHY_CAP1_HE_LTF_AND_GI_FOR_HE_PPDUS_0_8US;
1114 		he_cap_elem->phy_cap_info[3] |=
1115 			IEEE80211_HE_PHY_CAP3_DCM_MAX_CONST_TX_QPSK |
1116 			IEEE80211_HE_PHY_CAP3_DCM_MAX_CONST_RX_QPSK;
1117 		he_cap_elem->phy_cap_info[6] |=
1118 			IEEE80211_HE_PHY_CAP6_TRIG_CQI_FB |
1119 			IEEE80211_HE_PHY_CAP6_PARTIAL_BW_EXT_RANGE |
1120 			IEEE80211_HE_PHY_CAP6_PPE_THRESHOLD_PRESENT;
1121 		he_cap_elem->phy_cap_info[7] |=
1122 			IEEE80211_HE_PHY_CAP7_POWER_BOOST_FACTOR_SUPP;
1123 		he_cap_elem->phy_cap_info[8] |=
1124 			IEEE80211_HE_PHY_CAP8_20MHZ_IN_40MHZ_HE_PPDU_IN_2G |
1125 			IEEE80211_HE_PHY_CAP8_20MHZ_IN_160MHZ_HE_PPDU |
1126 			IEEE80211_HE_PHY_CAP8_80MHZ_IN_160MHZ_HE_PPDU |
1127 			IEEE80211_HE_PHY_CAP8_DCM_MAX_RU_484;
1128 		he_cap_elem->phy_cap_info[9] |=
1129 			IEEE80211_HE_PHY_CAP9_LONGER_THAN_16_SIGB_OFDM_SYM |
1130 			IEEE80211_HE_PHY_CAP9_NON_TRIGGERED_CQI_FEEDBACK |
1131 			IEEE80211_HE_PHY_CAP9_TX_1024_QAM_LESS_THAN_242_TONE_RU |
1132 			IEEE80211_HE_PHY_CAP9_RX_1024_QAM_LESS_THAN_242_TONE_RU |
1133 			IEEE80211_HE_PHY_CAP9_RX_FULL_BW_SU_USING_MU_WITH_COMP_SIGB |
1134 			IEEE80211_HE_PHY_CAP9_RX_FULL_BW_SU_USING_MU_WITH_NON_COMP_SIGB;
1135 		break;
1136 	default:
1137 		break;
1138 	}
1139 
1140 	he_mcs->rx_mcs_80 = cpu_to_le16(mcs_map);
1141 	he_mcs->tx_mcs_80 = cpu_to_le16(mcs_map);
1142 	he_mcs->rx_mcs_160 = cpu_to_le16(mcs_map);
1143 	he_mcs->tx_mcs_160 = cpu_to_le16(mcs_map);
1144 
1145 	mt7996_set_stream_he_txbf_caps(phy, he_cap, iftype);
1146 
1147 	memset(he_cap->ppe_thres, 0, sizeof(he_cap->ppe_thres));
1148 	if (he_cap_elem->phy_cap_info[6] &
1149 	    IEEE80211_HE_PHY_CAP6_PPE_THRESHOLD_PRESENT) {
1150 		mt76_connac_gen_ppe_thresh(he_cap->ppe_thres, nss);
1151 	} else {
1152 		he_cap_elem->phy_cap_info[9] |=
1153 			u8_encode_bits(IEEE80211_HE_PHY_CAP9_NOMINAL_PKT_PADDING_16US,
1154 				       IEEE80211_HE_PHY_CAP9_NOMINAL_PKT_PADDING_MASK);
1155 	}
1156 
1157 	if (band == NL80211_BAND_6GHZ) {
1158 		u16 cap = IEEE80211_HE_6GHZ_CAP_TX_ANTPAT_CONS |
1159 			  IEEE80211_HE_6GHZ_CAP_RX_ANTPAT_CONS;
1160 
1161 		cap |= u16_encode_bits(IEEE80211_HT_MPDU_DENSITY_0_5,
1162 				       IEEE80211_HE_6GHZ_CAP_MIN_MPDU_START) |
1163 		       u16_encode_bits(IEEE80211_VHT_MAX_AMPDU_1024K,
1164 				       IEEE80211_HE_6GHZ_CAP_MAX_AMPDU_LEN_EXP) |
1165 		       u16_encode_bits(IEEE80211_VHT_CAP_MAX_MPDU_LENGTH_11454,
1166 				       IEEE80211_HE_6GHZ_CAP_MAX_MPDU_LEN);
1167 
1168 		data->he_6ghz_capa.capa = cpu_to_le16(cap);
1169 	}
1170 }
1171 
1172 static void
mt7996_init_eht_caps(struct mt7996_phy * phy,enum nl80211_band band,struct ieee80211_sband_iftype_data * data,enum nl80211_iftype iftype)1173 mt7996_init_eht_caps(struct mt7996_phy *phy, enum nl80211_band band,
1174 		     struct ieee80211_sband_iftype_data *data,
1175 		     enum nl80211_iftype iftype)
1176 {
1177 	struct ieee80211_sta_eht_cap *eht_cap = &data->eht_cap;
1178 	struct ieee80211_eht_cap_elem_fixed *eht_cap_elem = &eht_cap->eht_cap_elem;
1179 	struct ieee80211_eht_mcs_nss_supp *eht_nss = &eht_cap->eht_mcs_nss_supp;
1180 	enum nl80211_chan_width width = phy->mt76->chandef.width;
1181 	int nss = hweight8(phy->mt76->antenna_mask);
1182 	int sts = hweight16(phy->mt76->chainmask);
1183 	u8 val;
1184 
1185 	if (!phy->dev->has_eht)
1186 		return;
1187 
1188 	eht_cap->has_eht = true;
1189 
1190 	eht_cap_elem->mac_cap_info[0] =
1191 		IEEE80211_EHT_MAC_CAP0_EPCS_PRIO_ACCESS |
1192 		IEEE80211_EHT_MAC_CAP0_OM_CONTROL |
1193 		u8_encode_bits(IEEE80211_EHT_MAC_CAP0_MAX_MPDU_LEN_11454,
1194 			       IEEE80211_EHT_MAC_CAP0_MAX_MPDU_LEN_MASK);
1195 
1196 	eht_cap_elem->mac_cap_info[1] |=
1197 		IEEE80211_EHT_MAC_CAP1_MAX_AMPDU_LEN_MASK;
1198 
1199 	eht_cap_elem->phy_cap_info[0] =
1200 		IEEE80211_EHT_PHY_CAP0_NDP_4_EHT_LFT_32_GI |
1201 		IEEE80211_EHT_PHY_CAP0_SU_BEAMFORMER |
1202 		IEEE80211_EHT_PHY_CAP0_SU_BEAMFORMEE;
1203 
1204 	/* Set the maximum capability regardless of the antenna configuration. */
1205 	val = is_mt7992(phy->mt76->dev) ? 4 : 3;
1206 	eht_cap_elem->phy_cap_info[0] |=
1207 		u8_encode_bits(u8_get_bits(val, BIT(0)),
1208 			       IEEE80211_EHT_PHY_CAP0_BEAMFORMEE_SS_80MHZ_MASK);
1209 
1210 	eht_cap_elem->phy_cap_info[1] =
1211 		u8_encode_bits(u8_get_bits(val, GENMASK(2, 1)),
1212 			       IEEE80211_EHT_PHY_CAP1_BEAMFORMEE_SS_80MHZ_MASK) |
1213 		u8_encode_bits(val,
1214 			       IEEE80211_EHT_PHY_CAP1_BEAMFORMEE_SS_160MHZ_MASK);
1215 
1216 	eht_cap_elem->phy_cap_info[2] =
1217 		u8_encode_bits(sts - 1, IEEE80211_EHT_PHY_CAP2_SOUNDING_DIM_80MHZ_MASK) |
1218 		u8_encode_bits(sts - 1, IEEE80211_EHT_PHY_CAP2_SOUNDING_DIM_160MHZ_MASK);
1219 
1220 	if (band == NL80211_BAND_6GHZ) {
1221 		eht_cap_elem->phy_cap_info[0] |=
1222 			IEEE80211_EHT_PHY_CAP0_320MHZ_IN_6GHZ;
1223 
1224 		eht_cap_elem->phy_cap_info[1] |=
1225 			u8_encode_bits(val,
1226 				       IEEE80211_EHT_PHY_CAP1_BEAMFORMEE_SS_320MHZ_MASK);
1227 
1228 		eht_cap_elem->phy_cap_info[2] |=
1229 			u8_encode_bits(sts - 1,
1230 				       IEEE80211_EHT_PHY_CAP2_SOUNDING_DIM_320MHZ_MASK);
1231 	}
1232 
1233 	eht_cap_elem->phy_cap_info[3] =
1234 		IEEE80211_EHT_PHY_CAP3_NG_16_SU_FEEDBACK |
1235 		IEEE80211_EHT_PHY_CAP3_NG_16_MU_FEEDBACK |
1236 		IEEE80211_EHT_PHY_CAP3_CODEBOOK_4_2_SU_FDBK |
1237 		IEEE80211_EHT_PHY_CAP3_CODEBOOK_7_5_MU_FDBK;
1238 
1239 	eht_cap_elem->phy_cap_info[4] =
1240 		IEEE80211_EHT_PHY_CAP4_EHT_MU_PPDU_4_EHT_LTF_08_GI |
1241 		u8_encode_bits(min_t(int, sts - 1, 2),
1242 			       IEEE80211_EHT_PHY_CAP4_MAX_NC_MASK);
1243 
1244 	eht_cap_elem->phy_cap_info[5] =
1245 		u8_encode_bits(IEEE80211_EHT_PHY_CAP5_COMMON_NOMINAL_PKT_PAD_16US,
1246 			       IEEE80211_EHT_PHY_CAP5_COMMON_NOMINAL_PKT_PAD_MASK) |
1247 		u8_encode_bits(u8_get_bits(1, GENMASK(1, 0)),
1248 			       IEEE80211_EHT_PHY_CAP5_MAX_NUM_SUPP_EHT_LTF_MASK);
1249 
1250 	val = width == NL80211_CHAN_WIDTH_320 ? 0xf :
1251 	      width == NL80211_CHAN_WIDTH_160 ? 0x7 :
1252 	      width == NL80211_CHAN_WIDTH_80 ? 0x3 : 0x1;
1253 	eht_cap_elem->phy_cap_info[6] =
1254 		u8_encode_bits(val, IEEE80211_EHT_PHY_CAP6_MCS15_SUPP_MASK);
1255 
1256 	val = u8_encode_bits(nss, IEEE80211_EHT_MCS_NSS_RX) |
1257 	      u8_encode_bits(nss, IEEE80211_EHT_MCS_NSS_TX);
1258 #define SET_EHT_MAX_NSS(_bw, _val) do {				\
1259 		eht_nss->bw._##_bw.rx_tx_mcs9_max_nss = _val;	\
1260 		eht_nss->bw._##_bw.rx_tx_mcs11_max_nss = _val;	\
1261 		eht_nss->bw._##_bw.rx_tx_mcs13_max_nss = _val;	\
1262 	} while (0)
1263 
1264 	SET_EHT_MAX_NSS(80, val);
1265 	SET_EHT_MAX_NSS(160, val);
1266 	if (band == NL80211_BAND_6GHZ)
1267 		SET_EHT_MAX_NSS(320, val);
1268 #undef SET_EHT_MAX_NSS
1269 
1270 	if (iftype != NL80211_IFTYPE_AP)
1271 		return;
1272 
1273 	eht_cap_elem->phy_cap_info[3] |=
1274 		IEEE80211_EHT_PHY_CAP3_TRIG_SU_BF_FDBK |
1275 		IEEE80211_EHT_PHY_CAP3_TRIG_MU_BF_PART_BW_FDBK;
1276 
1277 	eht_cap_elem->phy_cap_info[7] =
1278 		IEEE80211_EHT_PHY_CAP7_NON_OFDMA_UL_MU_MIMO_80MHZ |
1279 		IEEE80211_EHT_PHY_CAP7_NON_OFDMA_UL_MU_MIMO_160MHZ |
1280 		IEEE80211_EHT_PHY_CAP7_MU_BEAMFORMER_80MHZ |
1281 		IEEE80211_EHT_PHY_CAP7_MU_BEAMFORMER_160MHZ;
1282 
1283 	if (band != NL80211_BAND_6GHZ)
1284 		return;
1285 
1286 	eht_cap_elem->phy_cap_info[7] |=
1287 		IEEE80211_EHT_PHY_CAP7_NON_OFDMA_UL_MU_MIMO_320MHZ |
1288 		IEEE80211_EHT_PHY_CAP7_MU_BEAMFORMER_320MHZ;
1289 }
1290 
1291 static void
__mt7996_set_stream_he_eht_caps(struct mt7996_phy * phy,struct ieee80211_supported_band * sband,enum nl80211_band band)1292 __mt7996_set_stream_he_eht_caps(struct mt7996_phy *phy,
1293 				struct ieee80211_supported_band *sband,
1294 				enum nl80211_band band)
1295 {
1296 	struct ieee80211_sband_iftype_data *data = phy->iftype[band];
1297 	int i, n = 0;
1298 
1299 	for (i = 0; i < NUM_NL80211_IFTYPES; i++) {
1300 		switch (i) {
1301 		case NL80211_IFTYPE_STATION:
1302 		case NL80211_IFTYPE_AP:
1303 #ifdef CONFIG_MAC80211_MESH
1304 		case NL80211_IFTYPE_MESH_POINT:
1305 #endif
1306 			break;
1307 		default:
1308 			continue;
1309 		}
1310 
1311 		data[n].types_mask = BIT(i);
1312 		mt7996_init_he_caps(phy, band, &data[n], i);
1313 		mt7996_init_eht_caps(phy, band, &data[n], i);
1314 
1315 		n++;
1316 	}
1317 
1318 	_ieee80211_set_sband_iftype_data(sband, data, n);
1319 }
1320 
mt7996_set_stream_he_eht_caps(struct mt7996_phy * phy)1321 void mt7996_set_stream_he_eht_caps(struct mt7996_phy *phy)
1322 {
1323 	if (phy->mt76->cap.has_2ghz)
1324 		__mt7996_set_stream_he_eht_caps(phy, &phy->mt76->sband_2g.sband,
1325 						NL80211_BAND_2GHZ);
1326 
1327 	if (phy->mt76->cap.has_5ghz)
1328 		__mt7996_set_stream_he_eht_caps(phy, &phy->mt76->sband_5g.sband,
1329 						NL80211_BAND_5GHZ);
1330 
1331 	if (phy->mt76->cap.has_6ghz)
1332 		__mt7996_set_stream_he_eht_caps(phy, &phy->mt76->sband_6g.sband,
1333 						NL80211_BAND_6GHZ);
1334 }
1335 
mt7996_register_device(struct mt7996_dev * dev)1336 int mt7996_register_device(struct mt7996_dev *dev)
1337 {
1338 	struct ieee80211_hw *hw = mt76_hw(dev);
1339 	int ret;
1340 
1341 	dev->phy.dev = dev;
1342 	dev->phy.mt76 = &dev->mt76.phy;
1343 	dev->mt76.phy.priv = &dev->phy;
1344 	INIT_WORK(&dev->rc_work, mt7996_mac_sta_rc_work);
1345 	INIT_DELAYED_WORK(&dev->mphy.mac_work, mt7996_mac_work);
1346 	INIT_LIST_HEAD(&dev->sta_rc_list);
1347 	INIT_LIST_HEAD(&dev->twt_list);
1348 
1349 	init_waitqueue_head(&dev->reset_wait);
1350 	INIT_WORK(&dev->reset_work, mt7996_mac_reset_work);
1351 	INIT_WORK(&dev->dump_work, mt7996_mac_dump_work);
1352 	mutex_init(&dev->dump_mutex);
1353 
1354 	ret = mt7996_init_hardware(dev);
1355 	if (ret)
1356 		return ret;
1357 
1358 	mt7996_init_wiphy(hw, &dev->mt76.mmio.wed);
1359 
1360 	ret = mt76_register_device(&dev->mt76, true, mt76_rates,
1361 				   ARRAY_SIZE(mt76_rates));
1362 	if (ret)
1363 		return ret;
1364 
1365 	ret = mt7996_thermal_init(&dev->phy);
1366 	if (ret)
1367 		return ret;
1368 
1369 	ret = mt7996_register_phy(dev, mt7996_phy2(dev), MT_BAND1);
1370 	if (ret)
1371 		return ret;
1372 
1373 	ret = mt7996_register_phy(dev, mt7996_phy3(dev), MT_BAND2);
1374 	if (ret)
1375 		return ret;
1376 
1377 	ieee80211_queue_work(mt76_hw(dev), &dev->init_work);
1378 
1379 	dev->recovery.hw_init_done = true;
1380 
1381 	ret = mt7996_init_debugfs(&dev->phy);
1382 	if (ret)
1383 		goto error;
1384 
1385 	ret = mt7996_coredump_register(dev);
1386 	if (ret)
1387 		goto error;
1388 
1389 	return 0;
1390 
1391 error:
1392 	cancel_work_sync(&dev->init_work);
1393 
1394 	return ret;
1395 }
1396 
mt7996_unregister_device(struct mt7996_dev * dev)1397 void mt7996_unregister_device(struct mt7996_dev *dev)
1398 {
1399 	cancel_work_sync(&dev->wed_rro.work);
1400 	mt7996_unregister_phy(mt7996_phy3(dev), MT_BAND2);
1401 	mt7996_unregister_phy(mt7996_phy2(dev), MT_BAND1);
1402 	mt7996_unregister_thermal(&dev->phy);
1403 	mt7996_coredump_unregister(dev);
1404 	mt76_unregister_device(&dev->mt76);
1405 	mt7996_wed_rro_free(dev);
1406 	mt7996_mcu_exit(dev);
1407 	mt7996_tx_token_put(dev);
1408 	mt7996_dma_cleanup(dev);
1409 	tasklet_disable(&dev->mt76.irq_tasklet);
1410 
1411 	mt76_free_device(&dev->mt76);
1412 }
1413