• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * NVM Express device driver
4  * Copyright (c) 2011-2014, Intel Corporation.
5  */
6 
7 #include <linux/acpi.h>
8 #include <linux/async.h>
9 #include <linux/blkdev.h>
10 #include <linux/blk-mq.h>
11 #include <linux/blk-mq-pci.h>
12 #include <linux/blk-integrity.h>
13 #include <linux/dmi.h>
14 #include <linux/init.h>
15 #include <linux/interrupt.h>
16 #include <linux/io.h>
17 #include <linux/kstrtox.h>
18 #include <linux/memremap.h>
19 #include <linux/mm.h>
20 #include <linux/module.h>
21 #include <linux/mutex.h>
22 #include <linux/once.h>
23 #include <linux/pci.h>
24 #include <linux/suspend.h>
25 #include <linux/t10-pi.h>
26 #include <linux/types.h>
27 #include <linux/io-64-nonatomic-lo-hi.h>
28 #include <linux/io-64-nonatomic-hi-lo.h>
29 #include <linux/sed-opal.h>
30 #include <linux/pci-p2pdma.h>
31 
32 #include "trace.h"
33 #include "nvme.h"
34 
35 #define SQ_SIZE(q)	((q)->q_depth << (q)->sqes)
36 #define CQ_SIZE(q)	((q)->q_depth * sizeof(struct nvme_completion))
37 
38 #define SGES_PER_PAGE	(NVME_CTRL_PAGE_SIZE / sizeof(struct nvme_sgl_desc))
39 
40 /*
41  * These can be higher, but we need to ensure that any command doesn't
42  * require an sg allocation that needs more than a page of data.
43  */
44 #define NVME_MAX_KB_SZ	8192
45 #define NVME_MAX_SEGS	128
46 #define NVME_MAX_META_SEGS 15
47 #define NVME_MAX_NR_ALLOCATIONS	5
48 
49 static int use_threaded_interrupts;
50 module_param(use_threaded_interrupts, int, 0444);
51 
52 static bool use_cmb_sqes = true;
53 module_param(use_cmb_sqes, bool, 0444);
54 MODULE_PARM_DESC(use_cmb_sqes, "use controller's memory buffer for I/O SQes");
55 
56 static unsigned int max_host_mem_size_mb = 128;
57 module_param(max_host_mem_size_mb, uint, 0444);
58 MODULE_PARM_DESC(max_host_mem_size_mb,
59 	"Maximum Host Memory Buffer (HMB) size per controller (in MiB)");
60 
61 static unsigned int sgl_threshold = SZ_32K;
62 module_param(sgl_threshold, uint, 0644);
63 MODULE_PARM_DESC(sgl_threshold,
64 		"Use SGLs when average request segment size is larger or equal to "
65 		"this size. Use 0 to disable SGLs.");
66 
67 #define NVME_PCI_MIN_QUEUE_SIZE 2
68 #define NVME_PCI_MAX_QUEUE_SIZE 4095
69 static int io_queue_depth_set(const char *val, const struct kernel_param *kp);
70 static const struct kernel_param_ops io_queue_depth_ops = {
71 	.set = io_queue_depth_set,
72 	.get = param_get_uint,
73 };
74 
75 static unsigned int io_queue_depth = 1024;
76 module_param_cb(io_queue_depth, &io_queue_depth_ops, &io_queue_depth, 0644);
77 MODULE_PARM_DESC(io_queue_depth, "set io queue depth, should >= 2 and < 4096");
78 
io_queue_count_set(const char * val,const struct kernel_param * kp)79 static int io_queue_count_set(const char *val, const struct kernel_param *kp)
80 {
81 	unsigned int n;
82 	int ret;
83 
84 	ret = kstrtouint(val, 10, &n);
85 	if (ret != 0 || n > num_possible_cpus())
86 		return -EINVAL;
87 	return param_set_uint(val, kp);
88 }
89 
90 static const struct kernel_param_ops io_queue_count_ops = {
91 	.set = io_queue_count_set,
92 	.get = param_get_uint,
93 };
94 
95 static unsigned int write_queues;
96 module_param_cb(write_queues, &io_queue_count_ops, &write_queues, 0644);
97 MODULE_PARM_DESC(write_queues,
98 	"Number of queues to use for writes. If not set, reads and writes "
99 	"will share a queue set.");
100 
101 static unsigned int poll_queues;
102 module_param_cb(poll_queues, &io_queue_count_ops, &poll_queues, 0644);
103 MODULE_PARM_DESC(poll_queues, "Number of queues to use for polled IO.");
104 
105 static bool noacpi;
106 module_param(noacpi, bool, 0444);
107 MODULE_PARM_DESC(noacpi, "disable acpi bios quirks");
108 
109 struct nvme_dev;
110 struct nvme_queue;
111 
112 static void nvme_dev_disable(struct nvme_dev *dev, bool shutdown);
113 static void nvme_delete_io_queues(struct nvme_dev *dev);
114 static void nvme_update_attrs(struct nvme_dev *dev);
115 
116 /*
117  * Represents an NVM Express device.  Each nvme_dev is a PCI function.
118  */
119 struct nvme_dev {
120 	struct nvme_queue *queues;
121 	struct blk_mq_tag_set tagset;
122 	struct blk_mq_tag_set admin_tagset;
123 	u32 __iomem *dbs;
124 	struct device *dev;
125 	struct dma_pool *prp_page_pool;
126 	struct dma_pool *prp_small_pool;
127 	unsigned online_queues;
128 	unsigned max_qid;
129 	unsigned io_queues[HCTX_MAX_TYPES];
130 	unsigned int num_vecs;
131 	u32 q_depth;
132 	int io_sqes;
133 	u32 db_stride;
134 	void __iomem *bar;
135 	unsigned long bar_mapped_size;
136 	struct mutex shutdown_lock;
137 	bool subsystem;
138 	u64 cmb_size;
139 	bool cmb_use_sqes;
140 	u32 cmbsz;
141 	u32 cmbloc;
142 	struct nvme_ctrl ctrl;
143 	u32 last_ps;
144 	bool hmb;
145 
146 	mempool_t *iod_mempool;
147 	mempool_t *iod_meta_mempool;
148 
149 	/* shadow doorbell buffer support: */
150 	__le32 *dbbuf_dbs;
151 	dma_addr_t dbbuf_dbs_dma_addr;
152 	__le32 *dbbuf_eis;
153 	dma_addr_t dbbuf_eis_dma_addr;
154 
155 	/* host memory buffer support: */
156 	u64 host_mem_size;
157 	u32 nr_host_mem_descs;
158 	u32 host_mem_descs_size;
159 	dma_addr_t host_mem_descs_dma;
160 	struct nvme_host_mem_buf_desc *host_mem_descs;
161 	void **host_mem_desc_bufs;
162 	unsigned int nr_allocated_queues;
163 	unsigned int nr_write_queues;
164 	unsigned int nr_poll_queues;
165 };
166 
io_queue_depth_set(const char * val,const struct kernel_param * kp)167 static int io_queue_depth_set(const char *val, const struct kernel_param *kp)
168 {
169 	return param_set_uint_minmax(val, kp, NVME_PCI_MIN_QUEUE_SIZE,
170 			NVME_PCI_MAX_QUEUE_SIZE);
171 }
172 
sq_idx(unsigned int qid,u32 stride)173 static inline unsigned int sq_idx(unsigned int qid, u32 stride)
174 {
175 	return qid * 2 * stride;
176 }
177 
cq_idx(unsigned int qid,u32 stride)178 static inline unsigned int cq_idx(unsigned int qid, u32 stride)
179 {
180 	return (qid * 2 + 1) * stride;
181 }
182 
to_nvme_dev(struct nvme_ctrl * ctrl)183 static inline struct nvme_dev *to_nvme_dev(struct nvme_ctrl *ctrl)
184 {
185 	return container_of(ctrl, struct nvme_dev, ctrl);
186 }
187 
188 /*
189  * An NVM Express queue.  Each device has at least two (one for admin
190  * commands and one for I/O commands).
191  */
192 struct nvme_queue {
193 	struct nvme_dev *dev;
194 	spinlock_t sq_lock;
195 	void *sq_cmds;
196 	 /* only used for poll queues: */
197 	spinlock_t cq_poll_lock ____cacheline_aligned_in_smp;
198 	struct nvme_completion *cqes;
199 	dma_addr_t sq_dma_addr;
200 	dma_addr_t cq_dma_addr;
201 	u32 __iomem *q_db;
202 	u32 q_depth;
203 	u16 cq_vector;
204 	u16 sq_tail;
205 	u16 last_sq_tail;
206 	u16 cq_head;
207 	u16 qid;
208 	u8 cq_phase;
209 	u8 sqes;
210 	unsigned long flags;
211 #define NVMEQ_ENABLED		0
212 #define NVMEQ_SQ_CMB		1
213 #define NVMEQ_DELETE_ERROR	2
214 #define NVMEQ_POLLED		3
215 	__le32 *dbbuf_sq_db;
216 	__le32 *dbbuf_cq_db;
217 	__le32 *dbbuf_sq_ei;
218 	__le32 *dbbuf_cq_ei;
219 	struct completion delete_done;
220 };
221 
222 union nvme_descriptor {
223 	struct nvme_sgl_desc	*sg_list;
224 	__le64			*prp_list;
225 };
226 
227 /*
228  * The nvme_iod describes the data in an I/O.
229  *
230  * The sg pointer contains the list of PRP/SGL chunk allocations in addition
231  * to the actual struct scatterlist.
232  */
233 struct nvme_iod {
234 	struct nvme_request req;
235 	struct nvme_command cmd;
236 	bool aborted;
237 	s8 nr_allocations;	/* PRP list pool allocations. 0 means small
238 				   pool in use */
239 	unsigned int dma_len;	/* length of single DMA segment mapping */
240 	dma_addr_t first_dma;
241 	dma_addr_t meta_dma;
242 	struct sg_table sgt;
243 	struct sg_table meta_sgt;
244 	union nvme_descriptor meta_list;
245 	union nvme_descriptor list[NVME_MAX_NR_ALLOCATIONS];
246 };
247 
nvme_dbbuf_size(struct nvme_dev * dev)248 static inline unsigned int nvme_dbbuf_size(struct nvme_dev *dev)
249 {
250 	return dev->nr_allocated_queues * 8 * dev->db_stride;
251 }
252 
nvme_dbbuf_dma_alloc(struct nvme_dev * dev)253 static void nvme_dbbuf_dma_alloc(struct nvme_dev *dev)
254 {
255 	unsigned int mem_size = nvme_dbbuf_size(dev);
256 
257 	if (!(dev->ctrl.oacs & NVME_CTRL_OACS_DBBUF_SUPP))
258 		return;
259 
260 	if (dev->dbbuf_dbs) {
261 		/*
262 		 * Clear the dbbuf memory so the driver doesn't observe stale
263 		 * values from the previous instantiation.
264 		 */
265 		memset(dev->dbbuf_dbs, 0, mem_size);
266 		memset(dev->dbbuf_eis, 0, mem_size);
267 		return;
268 	}
269 
270 	dev->dbbuf_dbs = dma_alloc_coherent(dev->dev, mem_size,
271 					    &dev->dbbuf_dbs_dma_addr,
272 					    GFP_KERNEL);
273 	if (!dev->dbbuf_dbs)
274 		goto fail;
275 	dev->dbbuf_eis = dma_alloc_coherent(dev->dev, mem_size,
276 					    &dev->dbbuf_eis_dma_addr,
277 					    GFP_KERNEL);
278 	if (!dev->dbbuf_eis)
279 		goto fail_free_dbbuf_dbs;
280 	return;
281 
282 fail_free_dbbuf_dbs:
283 	dma_free_coherent(dev->dev, mem_size, dev->dbbuf_dbs,
284 			  dev->dbbuf_dbs_dma_addr);
285 	dev->dbbuf_dbs = NULL;
286 fail:
287 	dev_warn(dev->dev, "unable to allocate dma for dbbuf\n");
288 }
289 
nvme_dbbuf_dma_free(struct nvme_dev * dev)290 static void nvme_dbbuf_dma_free(struct nvme_dev *dev)
291 {
292 	unsigned int mem_size = nvme_dbbuf_size(dev);
293 
294 	if (dev->dbbuf_dbs) {
295 		dma_free_coherent(dev->dev, mem_size,
296 				  dev->dbbuf_dbs, dev->dbbuf_dbs_dma_addr);
297 		dev->dbbuf_dbs = NULL;
298 	}
299 	if (dev->dbbuf_eis) {
300 		dma_free_coherent(dev->dev, mem_size,
301 				  dev->dbbuf_eis, dev->dbbuf_eis_dma_addr);
302 		dev->dbbuf_eis = NULL;
303 	}
304 }
305 
nvme_dbbuf_init(struct nvme_dev * dev,struct nvme_queue * nvmeq,int qid)306 static void nvme_dbbuf_init(struct nvme_dev *dev,
307 			    struct nvme_queue *nvmeq, int qid)
308 {
309 	if (!dev->dbbuf_dbs || !qid)
310 		return;
311 
312 	nvmeq->dbbuf_sq_db = &dev->dbbuf_dbs[sq_idx(qid, dev->db_stride)];
313 	nvmeq->dbbuf_cq_db = &dev->dbbuf_dbs[cq_idx(qid, dev->db_stride)];
314 	nvmeq->dbbuf_sq_ei = &dev->dbbuf_eis[sq_idx(qid, dev->db_stride)];
315 	nvmeq->dbbuf_cq_ei = &dev->dbbuf_eis[cq_idx(qid, dev->db_stride)];
316 }
317 
nvme_dbbuf_free(struct nvme_queue * nvmeq)318 static void nvme_dbbuf_free(struct nvme_queue *nvmeq)
319 {
320 	if (!nvmeq->qid)
321 		return;
322 
323 	nvmeq->dbbuf_sq_db = NULL;
324 	nvmeq->dbbuf_cq_db = NULL;
325 	nvmeq->dbbuf_sq_ei = NULL;
326 	nvmeq->dbbuf_cq_ei = NULL;
327 }
328 
nvme_dbbuf_set(struct nvme_dev * dev)329 static void nvme_dbbuf_set(struct nvme_dev *dev)
330 {
331 	struct nvme_command c = { };
332 	unsigned int i;
333 
334 	if (!dev->dbbuf_dbs)
335 		return;
336 
337 	c.dbbuf.opcode = nvme_admin_dbbuf;
338 	c.dbbuf.prp1 = cpu_to_le64(dev->dbbuf_dbs_dma_addr);
339 	c.dbbuf.prp2 = cpu_to_le64(dev->dbbuf_eis_dma_addr);
340 
341 	if (nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0)) {
342 		dev_warn(dev->ctrl.device, "unable to set dbbuf\n");
343 		/* Free memory and continue on */
344 		nvme_dbbuf_dma_free(dev);
345 
346 		for (i = 1; i <= dev->online_queues; i++)
347 			nvme_dbbuf_free(&dev->queues[i]);
348 	}
349 }
350 
nvme_dbbuf_need_event(u16 event_idx,u16 new_idx,u16 old)351 static inline int nvme_dbbuf_need_event(u16 event_idx, u16 new_idx, u16 old)
352 {
353 	return (u16)(new_idx - event_idx - 1) < (u16)(new_idx - old);
354 }
355 
356 /* Update dbbuf and return true if an MMIO is required */
nvme_dbbuf_update_and_check_event(u16 value,__le32 * dbbuf_db,volatile __le32 * dbbuf_ei)357 static bool nvme_dbbuf_update_and_check_event(u16 value, __le32 *dbbuf_db,
358 					      volatile __le32 *dbbuf_ei)
359 {
360 	if (dbbuf_db) {
361 		u16 old_value, event_idx;
362 
363 		/*
364 		 * Ensure that the queue is written before updating
365 		 * the doorbell in memory
366 		 */
367 		wmb();
368 
369 		old_value = le32_to_cpu(*dbbuf_db);
370 		*dbbuf_db = cpu_to_le32(value);
371 
372 		/*
373 		 * Ensure that the doorbell is updated before reading the event
374 		 * index from memory.  The controller needs to provide similar
375 		 * ordering to ensure the envent index is updated before reading
376 		 * the doorbell.
377 		 */
378 		mb();
379 
380 		event_idx = le32_to_cpu(*dbbuf_ei);
381 		if (!nvme_dbbuf_need_event(event_idx, value, old_value))
382 			return false;
383 	}
384 
385 	return true;
386 }
387 
388 /*
389  * Will slightly overestimate the number of pages needed.  This is OK
390  * as it only leads to a small amount of wasted memory for the lifetime of
391  * the I/O.
392  */
nvme_pci_npages_prp(void)393 static __always_inline int nvme_pci_npages_prp(void)
394 {
395 	unsigned max_bytes = (NVME_MAX_KB_SZ * 1024) + NVME_CTRL_PAGE_SIZE;
396 	unsigned nprps = DIV_ROUND_UP(max_bytes, NVME_CTRL_PAGE_SIZE);
397 	return DIV_ROUND_UP(8 * nprps, NVME_CTRL_PAGE_SIZE - 8);
398 }
399 
nvme_admin_init_hctx(struct blk_mq_hw_ctx * hctx,void * data,unsigned int hctx_idx)400 static int nvme_admin_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
401 				unsigned int hctx_idx)
402 {
403 	struct nvme_dev *dev = to_nvme_dev(data);
404 	struct nvme_queue *nvmeq = &dev->queues[0];
405 
406 	WARN_ON(hctx_idx != 0);
407 	WARN_ON(dev->admin_tagset.tags[0] != hctx->tags);
408 
409 	hctx->driver_data = nvmeq;
410 	return 0;
411 }
412 
nvme_init_hctx(struct blk_mq_hw_ctx * hctx,void * data,unsigned int hctx_idx)413 static int nvme_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
414 			  unsigned int hctx_idx)
415 {
416 	struct nvme_dev *dev = to_nvme_dev(data);
417 	struct nvme_queue *nvmeq = &dev->queues[hctx_idx + 1];
418 
419 	WARN_ON(dev->tagset.tags[hctx_idx] != hctx->tags);
420 	hctx->driver_data = nvmeq;
421 	return 0;
422 }
423 
nvme_pci_init_request(struct blk_mq_tag_set * set,struct request * req,unsigned int hctx_idx,unsigned int numa_node)424 static int nvme_pci_init_request(struct blk_mq_tag_set *set,
425 		struct request *req, unsigned int hctx_idx,
426 		unsigned int numa_node)
427 {
428 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
429 
430 	nvme_req(req)->ctrl = set->driver_data;
431 	nvme_req(req)->cmd = &iod->cmd;
432 	return 0;
433 }
434 
queue_irq_offset(struct nvme_dev * dev)435 static int queue_irq_offset(struct nvme_dev *dev)
436 {
437 	/* if we have more than 1 vec, admin queue offsets us by 1 */
438 	if (dev->num_vecs > 1)
439 		return 1;
440 
441 	return 0;
442 }
443 
nvme_pci_map_queues(struct blk_mq_tag_set * set)444 static void nvme_pci_map_queues(struct blk_mq_tag_set *set)
445 {
446 	struct nvme_dev *dev = to_nvme_dev(set->driver_data);
447 	int i, qoff, offset;
448 
449 	offset = queue_irq_offset(dev);
450 	for (i = 0, qoff = 0; i < set->nr_maps; i++) {
451 		struct blk_mq_queue_map *map = &set->map[i];
452 
453 		map->nr_queues = dev->io_queues[i];
454 		if (!map->nr_queues) {
455 			BUG_ON(i == HCTX_TYPE_DEFAULT);
456 			continue;
457 		}
458 
459 		/*
460 		 * The poll queue(s) doesn't have an IRQ (and hence IRQ
461 		 * affinity), so use the regular blk-mq cpu mapping
462 		 */
463 		map->queue_offset = qoff;
464 		if (i != HCTX_TYPE_POLL && offset)
465 			blk_mq_pci_map_queues(map, to_pci_dev(dev->dev), offset);
466 		else
467 			blk_mq_map_queues(map);
468 		qoff += map->nr_queues;
469 		offset += map->nr_queues;
470 	}
471 }
472 
473 /*
474  * Write sq tail if we are asked to, or if the next command would wrap.
475  */
nvme_write_sq_db(struct nvme_queue * nvmeq,bool write_sq)476 static inline void nvme_write_sq_db(struct nvme_queue *nvmeq, bool write_sq)
477 {
478 	if (!write_sq) {
479 		u16 next_tail = nvmeq->sq_tail + 1;
480 
481 		if (next_tail == nvmeq->q_depth)
482 			next_tail = 0;
483 		if (next_tail != nvmeq->last_sq_tail)
484 			return;
485 	}
486 
487 	if (nvme_dbbuf_update_and_check_event(nvmeq->sq_tail,
488 			nvmeq->dbbuf_sq_db, nvmeq->dbbuf_sq_ei))
489 		writel(nvmeq->sq_tail, nvmeq->q_db);
490 	nvmeq->last_sq_tail = nvmeq->sq_tail;
491 }
492 
nvme_sq_copy_cmd(struct nvme_queue * nvmeq,struct nvme_command * cmd)493 static inline void nvme_sq_copy_cmd(struct nvme_queue *nvmeq,
494 				    struct nvme_command *cmd)
495 {
496 	memcpy(nvmeq->sq_cmds + (nvmeq->sq_tail << nvmeq->sqes),
497 		absolute_pointer(cmd), sizeof(*cmd));
498 	if (++nvmeq->sq_tail == nvmeq->q_depth)
499 		nvmeq->sq_tail = 0;
500 }
501 
nvme_commit_rqs(struct blk_mq_hw_ctx * hctx)502 static void nvme_commit_rqs(struct blk_mq_hw_ctx *hctx)
503 {
504 	struct nvme_queue *nvmeq = hctx->driver_data;
505 
506 	spin_lock(&nvmeq->sq_lock);
507 	if (nvmeq->sq_tail != nvmeq->last_sq_tail)
508 		nvme_write_sq_db(nvmeq, true);
509 	spin_unlock(&nvmeq->sq_lock);
510 }
511 
nvme_pci_metadata_use_sgls(struct nvme_dev * dev,struct request * req)512 static inline bool nvme_pci_metadata_use_sgls(struct nvme_dev *dev,
513 					      struct request *req)
514 {
515 	if (!nvme_ctrl_meta_sgl_supported(&dev->ctrl))
516 		return false;
517 	return req->nr_integrity_segments > 1 ||
518 		nvme_req(req)->flags & NVME_REQ_USERCMD;
519 }
520 
nvme_pci_use_sgls(struct nvme_dev * dev,struct request * req,int nseg)521 static inline bool nvme_pci_use_sgls(struct nvme_dev *dev, struct request *req,
522 				     int nseg)
523 {
524 	struct nvme_queue *nvmeq = req->mq_hctx->driver_data;
525 	unsigned int avg_seg_size;
526 
527 	avg_seg_size = DIV_ROUND_UP(blk_rq_payload_bytes(req), nseg);
528 
529 	if (!nvme_ctrl_sgl_supported(&dev->ctrl))
530 		return false;
531 	if (!nvmeq->qid)
532 		return false;
533 	if (nvme_pci_metadata_use_sgls(dev, req))
534 		return true;
535 	if (!sgl_threshold || avg_seg_size < sgl_threshold)
536 		return nvme_req(req)->flags & NVME_REQ_USERCMD;
537 	return true;
538 }
539 
nvme_free_prps(struct nvme_dev * dev,struct request * req)540 static void nvme_free_prps(struct nvme_dev *dev, struct request *req)
541 {
542 	const int last_prp = NVME_CTRL_PAGE_SIZE / sizeof(__le64) - 1;
543 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
544 	dma_addr_t dma_addr = iod->first_dma;
545 	int i;
546 
547 	for (i = 0; i < iod->nr_allocations; i++) {
548 		__le64 *prp_list = iod->list[i].prp_list;
549 		dma_addr_t next_dma_addr = le64_to_cpu(prp_list[last_prp]);
550 
551 		dma_pool_free(dev->prp_page_pool, prp_list, dma_addr);
552 		dma_addr = next_dma_addr;
553 	}
554 }
555 
nvme_unmap_data(struct nvme_dev * dev,struct request * req)556 static void nvme_unmap_data(struct nvme_dev *dev, struct request *req)
557 {
558 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
559 
560 	if (iod->dma_len) {
561 		dma_unmap_page(dev->dev, iod->first_dma, iod->dma_len,
562 			       rq_dma_dir(req));
563 		return;
564 	}
565 
566 	WARN_ON_ONCE(!iod->sgt.nents);
567 
568 	dma_unmap_sgtable(dev->dev, &iod->sgt, rq_dma_dir(req), 0);
569 
570 	if (iod->nr_allocations == 0)
571 		dma_pool_free(dev->prp_small_pool, iod->list[0].sg_list,
572 			      iod->first_dma);
573 	else if (iod->nr_allocations == 1)
574 		dma_pool_free(dev->prp_page_pool, iod->list[0].sg_list,
575 			      iod->first_dma);
576 	else
577 		nvme_free_prps(dev, req);
578 	mempool_free(iod->sgt.sgl, dev->iod_mempool);
579 }
580 
nvme_print_sgl(struct scatterlist * sgl,int nents)581 static void nvme_print_sgl(struct scatterlist *sgl, int nents)
582 {
583 	int i;
584 	struct scatterlist *sg;
585 
586 	for_each_sg(sgl, sg, nents, i) {
587 		dma_addr_t phys = sg_phys(sg);
588 		pr_warn("sg[%d] phys_addr:%pad offset:%d length:%d "
589 			"dma_address:%pad dma_length:%d\n",
590 			i, &phys, sg->offset, sg->length, &sg_dma_address(sg),
591 			sg_dma_len(sg));
592 	}
593 }
594 
nvme_pci_setup_prps(struct nvme_dev * dev,struct request * req,struct nvme_rw_command * cmnd)595 static blk_status_t nvme_pci_setup_prps(struct nvme_dev *dev,
596 		struct request *req, struct nvme_rw_command *cmnd)
597 {
598 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
599 	struct dma_pool *pool;
600 	int length = blk_rq_payload_bytes(req);
601 	struct scatterlist *sg = iod->sgt.sgl;
602 	int dma_len = sg_dma_len(sg);
603 	u64 dma_addr = sg_dma_address(sg);
604 	int offset = dma_addr & (NVME_CTRL_PAGE_SIZE - 1);
605 	__le64 *prp_list;
606 	dma_addr_t prp_dma;
607 	int nprps, i;
608 
609 	length -= (NVME_CTRL_PAGE_SIZE - offset);
610 	if (length <= 0) {
611 		iod->first_dma = 0;
612 		goto done;
613 	}
614 
615 	dma_len -= (NVME_CTRL_PAGE_SIZE - offset);
616 	if (dma_len) {
617 		dma_addr += (NVME_CTRL_PAGE_SIZE - offset);
618 	} else {
619 		sg = sg_next(sg);
620 		dma_addr = sg_dma_address(sg);
621 		dma_len = sg_dma_len(sg);
622 	}
623 
624 	if (length <= NVME_CTRL_PAGE_SIZE) {
625 		iod->first_dma = dma_addr;
626 		goto done;
627 	}
628 
629 	nprps = DIV_ROUND_UP(length, NVME_CTRL_PAGE_SIZE);
630 	if (nprps <= (256 / 8)) {
631 		pool = dev->prp_small_pool;
632 		iod->nr_allocations = 0;
633 	} else {
634 		pool = dev->prp_page_pool;
635 		iod->nr_allocations = 1;
636 	}
637 
638 	prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma);
639 	if (!prp_list) {
640 		iod->nr_allocations = -1;
641 		return BLK_STS_RESOURCE;
642 	}
643 	iod->list[0].prp_list = prp_list;
644 	iod->first_dma = prp_dma;
645 	i = 0;
646 	for (;;) {
647 		if (i == NVME_CTRL_PAGE_SIZE >> 3) {
648 			__le64 *old_prp_list = prp_list;
649 			prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma);
650 			if (!prp_list)
651 				goto free_prps;
652 			iod->list[iod->nr_allocations++].prp_list = prp_list;
653 			prp_list[0] = old_prp_list[i - 1];
654 			old_prp_list[i - 1] = cpu_to_le64(prp_dma);
655 			i = 1;
656 		}
657 		prp_list[i++] = cpu_to_le64(dma_addr);
658 		dma_len -= NVME_CTRL_PAGE_SIZE;
659 		dma_addr += NVME_CTRL_PAGE_SIZE;
660 		length -= NVME_CTRL_PAGE_SIZE;
661 		if (length <= 0)
662 			break;
663 		if (dma_len > 0)
664 			continue;
665 		if (unlikely(dma_len < 0))
666 			goto bad_sgl;
667 		sg = sg_next(sg);
668 		dma_addr = sg_dma_address(sg);
669 		dma_len = sg_dma_len(sg);
670 	}
671 done:
672 	cmnd->dptr.prp1 = cpu_to_le64(sg_dma_address(iod->sgt.sgl));
673 	cmnd->dptr.prp2 = cpu_to_le64(iod->first_dma);
674 	return BLK_STS_OK;
675 free_prps:
676 	nvme_free_prps(dev, req);
677 	return BLK_STS_RESOURCE;
678 bad_sgl:
679 	WARN(DO_ONCE(nvme_print_sgl, iod->sgt.sgl, iod->sgt.nents),
680 			"Invalid SGL for payload:%d nents:%d\n",
681 			blk_rq_payload_bytes(req), iod->sgt.nents);
682 	return BLK_STS_IOERR;
683 }
684 
nvme_pci_sgl_set_data(struct nvme_sgl_desc * sge,struct scatterlist * sg)685 static void nvme_pci_sgl_set_data(struct nvme_sgl_desc *sge,
686 		struct scatterlist *sg)
687 {
688 	sge->addr = cpu_to_le64(sg_dma_address(sg));
689 	sge->length = cpu_to_le32(sg_dma_len(sg));
690 	sge->type = NVME_SGL_FMT_DATA_DESC << 4;
691 }
692 
nvme_pci_sgl_set_seg(struct nvme_sgl_desc * sge,dma_addr_t dma_addr,int entries)693 static void nvme_pci_sgl_set_seg(struct nvme_sgl_desc *sge,
694 		dma_addr_t dma_addr, int entries)
695 {
696 	sge->addr = cpu_to_le64(dma_addr);
697 	sge->length = cpu_to_le32(entries * sizeof(*sge));
698 	sge->type = NVME_SGL_FMT_LAST_SEG_DESC << 4;
699 }
700 
nvme_pci_setup_sgls(struct nvme_dev * dev,struct request * req,struct nvme_rw_command * cmd)701 static blk_status_t nvme_pci_setup_sgls(struct nvme_dev *dev,
702 		struct request *req, struct nvme_rw_command *cmd)
703 {
704 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
705 	struct dma_pool *pool;
706 	struct nvme_sgl_desc *sg_list;
707 	struct scatterlist *sg = iod->sgt.sgl;
708 	unsigned int entries = iod->sgt.nents;
709 	dma_addr_t sgl_dma;
710 	int i = 0;
711 
712 	/* setting the transfer type as SGL */
713 	cmd->flags = NVME_CMD_SGL_METABUF;
714 
715 	if (entries == 1) {
716 		nvme_pci_sgl_set_data(&cmd->dptr.sgl, sg);
717 		return BLK_STS_OK;
718 	}
719 
720 	if (entries <= (256 / sizeof(struct nvme_sgl_desc))) {
721 		pool = dev->prp_small_pool;
722 		iod->nr_allocations = 0;
723 	} else {
724 		pool = dev->prp_page_pool;
725 		iod->nr_allocations = 1;
726 	}
727 
728 	sg_list = dma_pool_alloc(pool, GFP_ATOMIC, &sgl_dma);
729 	if (!sg_list) {
730 		iod->nr_allocations = -1;
731 		return BLK_STS_RESOURCE;
732 	}
733 
734 	iod->list[0].sg_list = sg_list;
735 	iod->first_dma = sgl_dma;
736 
737 	nvme_pci_sgl_set_seg(&cmd->dptr.sgl, sgl_dma, entries);
738 	do {
739 		nvme_pci_sgl_set_data(&sg_list[i++], sg);
740 		sg = sg_next(sg);
741 	} while (--entries > 0);
742 
743 	return BLK_STS_OK;
744 }
745 
nvme_setup_prp_simple(struct nvme_dev * dev,struct request * req,struct nvme_rw_command * cmnd,struct bio_vec * bv)746 static blk_status_t nvme_setup_prp_simple(struct nvme_dev *dev,
747 		struct request *req, struct nvme_rw_command *cmnd,
748 		struct bio_vec *bv)
749 {
750 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
751 	unsigned int offset = bv->bv_offset & (NVME_CTRL_PAGE_SIZE - 1);
752 	unsigned int first_prp_len = NVME_CTRL_PAGE_SIZE - offset;
753 
754 	iod->first_dma = dma_map_bvec(dev->dev, bv, rq_dma_dir(req), 0);
755 	if (dma_mapping_error(dev->dev, iod->first_dma))
756 		return BLK_STS_RESOURCE;
757 	iod->dma_len = bv->bv_len;
758 
759 	cmnd->dptr.prp1 = cpu_to_le64(iod->first_dma);
760 	if (bv->bv_len > first_prp_len)
761 		cmnd->dptr.prp2 = cpu_to_le64(iod->first_dma + first_prp_len);
762 	else
763 		cmnd->dptr.prp2 = 0;
764 	return BLK_STS_OK;
765 }
766 
nvme_setup_sgl_simple(struct nvme_dev * dev,struct request * req,struct nvme_rw_command * cmnd,struct bio_vec * bv)767 static blk_status_t nvme_setup_sgl_simple(struct nvme_dev *dev,
768 		struct request *req, struct nvme_rw_command *cmnd,
769 		struct bio_vec *bv)
770 {
771 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
772 
773 	iod->first_dma = dma_map_bvec(dev->dev, bv, rq_dma_dir(req), 0);
774 	if (dma_mapping_error(dev->dev, iod->first_dma))
775 		return BLK_STS_RESOURCE;
776 	iod->dma_len = bv->bv_len;
777 
778 	cmnd->flags = NVME_CMD_SGL_METABUF;
779 	cmnd->dptr.sgl.addr = cpu_to_le64(iod->first_dma);
780 	cmnd->dptr.sgl.length = cpu_to_le32(iod->dma_len);
781 	cmnd->dptr.sgl.type = NVME_SGL_FMT_DATA_DESC << 4;
782 	return BLK_STS_OK;
783 }
784 
nvme_map_data(struct nvme_dev * dev,struct request * req,struct nvme_command * cmnd)785 static blk_status_t nvme_map_data(struct nvme_dev *dev, struct request *req,
786 		struct nvme_command *cmnd)
787 {
788 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
789 	blk_status_t ret = BLK_STS_RESOURCE;
790 	int rc;
791 
792 	if (blk_rq_nr_phys_segments(req) == 1) {
793 		struct nvme_queue *nvmeq = req->mq_hctx->driver_data;
794 		struct bio_vec bv = req_bvec(req);
795 
796 		if (!is_pci_p2pdma_page(bv.bv_page)) {
797 			if (!nvme_pci_metadata_use_sgls(dev, req) &&
798 			    (bv.bv_offset & (NVME_CTRL_PAGE_SIZE - 1)) +
799 			     bv.bv_len <= NVME_CTRL_PAGE_SIZE * 2)
800 				return nvme_setup_prp_simple(dev, req,
801 							     &cmnd->rw, &bv);
802 
803 			if (nvmeq->qid && sgl_threshold &&
804 			    nvme_ctrl_sgl_supported(&dev->ctrl))
805 				return nvme_setup_sgl_simple(dev, req,
806 							     &cmnd->rw, &bv);
807 		}
808 	}
809 
810 	iod->dma_len = 0;
811 	iod->sgt.sgl = mempool_alloc(dev->iod_mempool, GFP_ATOMIC);
812 	if (!iod->sgt.sgl)
813 		return BLK_STS_RESOURCE;
814 	sg_init_table(iod->sgt.sgl, blk_rq_nr_phys_segments(req));
815 	iod->sgt.orig_nents = blk_rq_map_sg(req->q, req, iod->sgt.sgl);
816 	if (!iod->sgt.orig_nents)
817 		goto out_free_sg;
818 
819 	rc = dma_map_sgtable(dev->dev, &iod->sgt, rq_dma_dir(req),
820 			     DMA_ATTR_NO_WARN);
821 	if (rc) {
822 		if (rc == -EREMOTEIO)
823 			ret = BLK_STS_TARGET;
824 		goto out_free_sg;
825 	}
826 
827 	if (nvme_pci_use_sgls(dev, req, iod->sgt.nents))
828 		ret = nvme_pci_setup_sgls(dev, req, &cmnd->rw);
829 	else
830 		ret = nvme_pci_setup_prps(dev, req, &cmnd->rw);
831 	if (ret != BLK_STS_OK)
832 		goto out_unmap_sg;
833 	return BLK_STS_OK;
834 
835 out_unmap_sg:
836 	dma_unmap_sgtable(dev->dev, &iod->sgt, rq_dma_dir(req), 0);
837 out_free_sg:
838 	mempool_free(iod->sgt.sgl, dev->iod_mempool);
839 	return ret;
840 }
841 
nvme_pci_setup_meta_sgls(struct nvme_dev * dev,struct request * req)842 static blk_status_t nvme_pci_setup_meta_sgls(struct nvme_dev *dev,
843 					     struct request *req)
844 {
845 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
846 	struct nvme_rw_command *cmnd = &iod->cmd.rw;
847 	struct nvme_sgl_desc *sg_list;
848 	struct scatterlist *sgl, *sg;
849 	unsigned int entries;
850 	dma_addr_t sgl_dma;
851 	int rc, i;
852 
853 	iod->meta_sgt.sgl = mempool_alloc(dev->iod_meta_mempool, GFP_ATOMIC);
854 	if (!iod->meta_sgt.sgl)
855 		return BLK_STS_RESOURCE;
856 
857 	sg_init_table(iod->meta_sgt.sgl, req->nr_integrity_segments);
858 	iod->meta_sgt.orig_nents = blk_rq_map_integrity_sg(req,
859 							   iod->meta_sgt.sgl);
860 	if (!iod->meta_sgt.orig_nents)
861 		goto out_free_sg;
862 
863 	rc = dma_map_sgtable(dev->dev, &iod->meta_sgt, rq_dma_dir(req),
864 			     DMA_ATTR_NO_WARN);
865 	if (rc)
866 		goto out_free_sg;
867 
868 	sg_list = dma_pool_alloc(dev->prp_small_pool, GFP_ATOMIC, &sgl_dma);
869 	if (!sg_list)
870 		goto out_unmap_sg;
871 
872 	entries = iod->meta_sgt.nents;
873 	iod->meta_list.sg_list = sg_list;
874 	iod->meta_dma = sgl_dma;
875 
876 	cmnd->flags = NVME_CMD_SGL_METASEG;
877 	cmnd->metadata = cpu_to_le64(sgl_dma);
878 
879 	sgl = iod->meta_sgt.sgl;
880 	if (entries == 1) {
881 		nvme_pci_sgl_set_data(sg_list, sgl);
882 		return BLK_STS_OK;
883 	}
884 
885 	sgl_dma += sizeof(*sg_list);
886 	nvme_pci_sgl_set_seg(sg_list, sgl_dma, entries);
887 	for_each_sg(sgl, sg, entries, i)
888 		nvme_pci_sgl_set_data(&sg_list[i + 1], sg);
889 
890 	return BLK_STS_OK;
891 
892 out_unmap_sg:
893 	dma_unmap_sgtable(dev->dev, &iod->meta_sgt, rq_dma_dir(req), 0);
894 out_free_sg:
895 	mempool_free(iod->meta_sgt.sgl, dev->iod_meta_mempool);
896 	return BLK_STS_RESOURCE;
897 }
898 
nvme_pci_setup_meta_mptr(struct nvme_dev * dev,struct request * req)899 static blk_status_t nvme_pci_setup_meta_mptr(struct nvme_dev *dev,
900 					     struct request *req)
901 {
902 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
903 	struct bio_vec bv = rq_integrity_vec(req);
904 	struct nvme_command *cmnd = &iod->cmd;
905 
906 	iod->meta_dma = dma_map_bvec(dev->dev, &bv, rq_dma_dir(req), 0);
907 	if (dma_mapping_error(dev->dev, iod->meta_dma))
908 		return BLK_STS_IOERR;
909 	cmnd->rw.metadata = cpu_to_le64(iod->meta_dma);
910 	return BLK_STS_OK;
911 }
912 
nvme_map_metadata(struct nvme_dev * dev,struct request * req)913 static blk_status_t nvme_map_metadata(struct nvme_dev *dev, struct request *req)
914 {
915 	if (nvme_pci_metadata_use_sgls(dev, req))
916 		return nvme_pci_setup_meta_sgls(dev, req);
917 	return nvme_pci_setup_meta_mptr(dev, req);
918 }
919 
nvme_prep_rq(struct nvme_dev * dev,struct request * req)920 static blk_status_t nvme_prep_rq(struct nvme_dev *dev, struct request *req)
921 {
922 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
923 	blk_status_t ret;
924 
925 	iod->aborted = false;
926 	iod->nr_allocations = -1;
927 	iod->sgt.nents = 0;
928 	iod->meta_sgt.nents = 0;
929 
930 	ret = nvme_setup_cmd(req->q->queuedata, req);
931 	if (ret)
932 		return ret;
933 
934 	if (blk_rq_nr_phys_segments(req)) {
935 		ret = nvme_map_data(dev, req, &iod->cmd);
936 		if (ret)
937 			goto out_free_cmd;
938 	}
939 
940 	if (blk_integrity_rq(req)) {
941 		ret = nvme_map_metadata(dev, req);
942 		if (ret)
943 			goto out_unmap_data;
944 	}
945 
946 	nvme_start_request(req);
947 	return BLK_STS_OK;
948 out_unmap_data:
949 	if (blk_rq_nr_phys_segments(req))
950 		nvme_unmap_data(dev, req);
951 out_free_cmd:
952 	nvme_cleanup_cmd(req);
953 	return ret;
954 }
955 
956 /*
957  * NOTE: ns is NULL when called on the admin queue.
958  */
nvme_queue_rq(struct blk_mq_hw_ctx * hctx,const struct blk_mq_queue_data * bd)959 static blk_status_t nvme_queue_rq(struct blk_mq_hw_ctx *hctx,
960 			 const struct blk_mq_queue_data *bd)
961 {
962 	struct nvme_queue *nvmeq = hctx->driver_data;
963 	struct nvme_dev *dev = nvmeq->dev;
964 	struct request *req = bd->rq;
965 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
966 	blk_status_t ret;
967 
968 	/*
969 	 * We should not need to do this, but we're still using this to
970 	 * ensure we can drain requests on a dying queue.
971 	 */
972 	if (unlikely(!test_bit(NVMEQ_ENABLED, &nvmeq->flags)))
973 		return BLK_STS_IOERR;
974 
975 	if (unlikely(!nvme_check_ready(&dev->ctrl, req, true)))
976 		return nvme_fail_nonready_command(&dev->ctrl, req);
977 
978 	ret = nvme_prep_rq(dev, req);
979 	if (unlikely(ret))
980 		return ret;
981 	spin_lock(&nvmeq->sq_lock);
982 	nvme_sq_copy_cmd(nvmeq, &iod->cmd);
983 	nvme_write_sq_db(nvmeq, bd->last);
984 	spin_unlock(&nvmeq->sq_lock);
985 	return BLK_STS_OK;
986 }
987 
nvme_submit_cmds(struct nvme_queue * nvmeq,struct rq_list * rqlist)988 static void nvme_submit_cmds(struct nvme_queue *nvmeq, struct rq_list *rqlist)
989 {
990 	struct request *req;
991 
992 	if (rq_list_empty(rqlist))
993 		return;
994 
995 	spin_lock(&nvmeq->sq_lock);
996 	while ((req = rq_list_pop(rqlist))) {
997 		struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
998 
999 		nvme_sq_copy_cmd(nvmeq, &iod->cmd);
1000 	}
1001 	nvme_write_sq_db(nvmeq, true);
1002 	spin_unlock(&nvmeq->sq_lock);
1003 }
1004 
nvme_prep_rq_batch(struct nvme_queue * nvmeq,struct request * req)1005 static bool nvme_prep_rq_batch(struct nvme_queue *nvmeq, struct request *req)
1006 {
1007 	/*
1008 	 * We should not need to do this, but we're still using this to
1009 	 * ensure we can drain requests on a dying queue.
1010 	 */
1011 	if (unlikely(!test_bit(NVMEQ_ENABLED, &nvmeq->flags)))
1012 		return false;
1013 	if (unlikely(!nvme_check_ready(&nvmeq->dev->ctrl, req, true)))
1014 		return false;
1015 
1016 	return nvme_prep_rq(nvmeq->dev, req) == BLK_STS_OK;
1017 }
1018 
nvme_queue_rqs(struct rq_list * rqlist)1019 static void nvme_queue_rqs(struct rq_list *rqlist)
1020 {
1021 	struct rq_list submit_list = { };
1022 	struct rq_list requeue_list = { };
1023 	struct nvme_queue *nvmeq = NULL;
1024 	struct request *req;
1025 
1026 	while ((req = rq_list_pop(rqlist))) {
1027 		if (nvmeq && nvmeq != req->mq_hctx->driver_data)
1028 			nvme_submit_cmds(nvmeq, &submit_list);
1029 		nvmeq = req->mq_hctx->driver_data;
1030 
1031 		if (nvme_prep_rq_batch(nvmeq, req))
1032 			rq_list_add_tail(&submit_list, req);
1033 		else
1034 			rq_list_add_tail(&requeue_list, req);
1035 	}
1036 
1037 	if (nvmeq)
1038 		nvme_submit_cmds(nvmeq, &submit_list);
1039 	*rqlist = requeue_list;
1040 }
1041 
nvme_unmap_metadata(struct nvme_dev * dev,struct request * req)1042 static __always_inline void nvme_unmap_metadata(struct nvme_dev *dev,
1043 						struct request *req)
1044 {
1045 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
1046 
1047 	if (!iod->meta_sgt.nents) {
1048 		dma_unmap_page(dev->dev, iod->meta_dma,
1049 			       rq_integrity_vec(req).bv_len,
1050 			       rq_dma_dir(req));
1051 		return;
1052 	}
1053 
1054 	dma_pool_free(dev->prp_small_pool, iod->meta_list.sg_list,
1055 		      iod->meta_dma);
1056 	dma_unmap_sgtable(dev->dev, &iod->meta_sgt, rq_dma_dir(req), 0);
1057 	mempool_free(iod->meta_sgt.sgl, dev->iod_meta_mempool);
1058 }
1059 
nvme_pci_unmap_rq(struct request * req)1060 static __always_inline void nvme_pci_unmap_rq(struct request *req)
1061 {
1062 	struct nvme_queue *nvmeq = req->mq_hctx->driver_data;
1063 	struct nvme_dev *dev = nvmeq->dev;
1064 
1065 	if (blk_integrity_rq(req))
1066 		nvme_unmap_metadata(dev, req);
1067 
1068 	if (blk_rq_nr_phys_segments(req))
1069 		nvme_unmap_data(dev, req);
1070 }
1071 
nvme_pci_complete_rq(struct request * req)1072 static void nvme_pci_complete_rq(struct request *req)
1073 {
1074 	nvme_pci_unmap_rq(req);
1075 	nvme_complete_rq(req);
1076 }
1077 
nvme_pci_complete_batch(struct io_comp_batch * iob)1078 static void nvme_pci_complete_batch(struct io_comp_batch *iob)
1079 {
1080 	nvme_complete_batch(iob, nvme_pci_unmap_rq);
1081 }
1082 
1083 /* We read the CQE phase first to check if the rest of the entry is valid */
nvme_cqe_pending(struct nvme_queue * nvmeq)1084 static inline bool nvme_cqe_pending(struct nvme_queue *nvmeq)
1085 {
1086 	struct nvme_completion *hcqe = &nvmeq->cqes[nvmeq->cq_head];
1087 
1088 	return (le16_to_cpu(READ_ONCE(hcqe->status)) & 1) == nvmeq->cq_phase;
1089 }
1090 
nvme_ring_cq_doorbell(struct nvme_queue * nvmeq)1091 static inline void nvme_ring_cq_doorbell(struct nvme_queue *nvmeq)
1092 {
1093 	u16 head = nvmeq->cq_head;
1094 
1095 	if (nvme_dbbuf_update_and_check_event(head, nvmeq->dbbuf_cq_db,
1096 					      nvmeq->dbbuf_cq_ei))
1097 		writel(head, nvmeq->q_db + nvmeq->dev->db_stride);
1098 }
1099 
nvme_queue_tagset(struct nvme_queue * nvmeq)1100 static inline struct blk_mq_tags *nvme_queue_tagset(struct nvme_queue *nvmeq)
1101 {
1102 	if (!nvmeq->qid)
1103 		return nvmeq->dev->admin_tagset.tags[0];
1104 	return nvmeq->dev->tagset.tags[nvmeq->qid - 1];
1105 }
1106 
nvme_handle_cqe(struct nvme_queue * nvmeq,struct io_comp_batch * iob,u16 idx)1107 static inline void nvme_handle_cqe(struct nvme_queue *nvmeq,
1108 				   struct io_comp_batch *iob, u16 idx)
1109 {
1110 	struct nvme_completion *cqe = &nvmeq->cqes[idx];
1111 	__u16 command_id = READ_ONCE(cqe->command_id);
1112 	struct request *req;
1113 
1114 	/*
1115 	 * AEN requests are special as they don't time out and can
1116 	 * survive any kind of queue freeze and often don't respond to
1117 	 * aborts.  We don't even bother to allocate a struct request
1118 	 * for them but rather special case them here.
1119 	 */
1120 	if (unlikely(nvme_is_aen_req(nvmeq->qid, command_id))) {
1121 		nvme_complete_async_event(&nvmeq->dev->ctrl,
1122 				cqe->status, &cqe->result);
1123 		return;
1124 	}
1125 
1126 	req = nvme_find_rq(nvme_queue_tagset(nvmeq), command_id);
1127 	if (unlikely(!req)) {
1128 		dev_warn(nvmeq->dev->ctrl.device,
1129 			"invalid id %d completed on queue %d\n",
1130 			command_id, le16_to_cpu(cqe->sq_id));
1131 		return;
1132 	}
1133 
1134 	trace_nvme_sq(req, cqe->sq_head, nvmeq->sq_tail);
1135 	if (!nvme_try_complete_req(req, cqe->status, cqe->result) &&
1136 	    !blk_mq_add_to_batch(req, iob,
1137 				 nvme_req(req)->status != NVME_SC_SUCCESS,
1138 				 nvme_pci_complete_batch))
1139 		nvme_pci_complete_rq(req);
1140 }
1141 
nvme_update_cq_head(struct nvme_queue * nvmeq)1142 static inline void nvme_update_cq_head(struct nvme_queue *nvmeq)
1143 {
1144 	u32 tmp = nvmeq->cq_head + 1;
1145 
1146 	if (tmp == nvmeq->q_depth) {
1147 		nvmeq->cq_head = 0;
1148 		nvmeq->cq_phase ^= 1;
1149 	} else {
1150 		nvmeq->cq_head = tmp;
1151 	}
1152 }
1153 
nvme_poll_cq(struct nvme_queue * nvmeq,struct io_comp_batch * iob)1154 static inline int nvme_poll_cq(struct nvme_queue *nvmeq,
1155 			       struct io_comp_batch *iob)
1156 {
1157 	int found = 0;
1158 
1159 	while (nvme_cqe_pending(nvmeq)) {
1160 		found++;
1161 		/*
1162 		 * load-load control dependency between phase and the rest of
1163 		 * the cqe requires a full read memory barrier
1164 		 */
1165 		dma_rmb();
1166 		nvme_handle_cqe(nvmeq, iob, nvmeq->cq_head);
1167 		nvme_update_cq_head(nvmeq);
1168 	}
1169 
1170 	if (found)
1171 		nvme_ring_cq_doorbell(nvmeq);
1172 	return found;
1173 }
1174 
nvme_irq(int irq,void * data)1175 static irqreturn_t nvme_irq(int irq, void *data)
1176 {
1177 	struct nvme_queue *nvmeq = data;
1178 	DEFINE_IO_COMP_BATCH(iob);
1179 
1180 	if (nvme_poll_cq(nvmeq, &iob)) {
1181 		if (!rq_list_empty(&iob.req_list))
1182 			nvme_pci_complete_batch(&iob);
1183 		return IRQ_HANDLED;
1184 	}
1185 	return IRQ_NONE;
1186 }
1187 
nvme_irq_check(int irq,void * data)1188 static irqreturn_t nvme_irq_check(int irq, void *data)
1189 {
1190 	struct nvme_queue *nvmeq = data;
1191 
1192 	if (nvme_cqe_pending(nvmeq))
1193 		return IRQ_WAKE_THREAD;
1194 	return IRQ_NONE;
1195 }
1196 
1197 /*
1198  * Poll for completions for any interrupt driven queue
1199  * Can be called from any context.
1200  */
nvme_poll_irqdisable(struct nvme_queue * nvmeq)1201 static void nvme_poll_irqdisable(struct nvme_queue *nvmeq)
1202 {
1203 	struct pci_dev *pdev = to_pci_dev(nvmeq->dev->dev);
1204 
1205 	WARN_ON_ONCE(test_bit(NVMEQ_POLLED, &nvmeq->flags));
1206 
1207 	disable_irq(pci_irq_vector(pdev, nvmeq->cq_vector));
1208 	spin_lock(&nvmeq->cq_poll_lock);
1209 	nvme_poll_cq(nvmeq, NULL);
1210 	spin_unlock(&nvmeq->cq_poll_lock);
1211 	enable_irq(pci_irq_vector(pdev, nvmeq->cq_vector));
1212 }
1213 
nvme_poll(struct blk_mq_hw_ctx * hctx,struct io_comp_batch * iob)1214 static int nvme_poll(struct blk_mq_hw_ctx *hctx, struct io_comp_batch *iob)
1215 {
1216 	struct nvme_queue *nvmeq = hctx->driver_data;
1217 	bool found;
1218 
1219 	if (!nvme_cqe_pending(nvmeq))
1220 		return 0;
1221 
1222 	spin_lock(&nvmeq->cq_poll_lock);
1223 	found = nvme_poll_cq(nvmeq, iob);
1224 	spin_unlock(&nvmeq->cq_poll_lock);
1225 
1226 	return found;
1227 }
1228 
nvme_pci_submit_async_event(struct nvme_ctrl * ctrl)1229 static void nvme_pci_submit_async_event(struct nvme_ctrl *ctrl)
1230 {
1231 	struct nvme_dev *dev = to_nvme_dev(ctrl);
1232 	struct nvme_queue *nvmeq = &dev->queues[0];
1233 	struct nvme_command c = { };
1234 
1235 	c.common.opcode = nvme_admin_async_event;
1236 	c.common.command_id = NVME_AQ_BLK_MQ_DEPTH;
1237 
1238 	spin_lock(&nvmeq->sq_lock);
1239 	nvme_sq_copy_cmd(nvmeq, &c);
1240 	nvme_write_sq_db(nvmeq, true);
1241 	spin_unlock(&nvmeq->sq_lock);
1242 }
1243 
nvme_pci_subsystem_reset(struct nvme_ctrl * ctrl)1244 static int nvme_pci_subsystem_reset(struct nvme_ctrl *ctrl)
1245 {
1246 	struct nvme_dev *dev = to_nvme_dev(ctrl);
1247 	int ret = 0;
1248 
1249 	/*
1250 	 * Taking the shutdown_lock ensures the BAR mapping is not being
1251 	 * altered by reset_work. Holding this lock before the RESETTING state
1252 	 * change, if successful, also ensures nvme_remove won't be able to
1253 	 * proceed to iounmap until we're done.
1254 	 */
1255 	mutex_lock(&dev->shutdown_lock);
1256 	if (!dev->bar_mapped_size) {
1257 		ret = -ENODEV;
1258 		goto unlock;
1259 	}
1260 
1261 	if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING)) {
1262 		ret = -EBUSY;
1263 		goto unlock;
1264 	}
1265 
1266 	writel(NVME_SUBSYS_RESET, dev->bar + NVME_REG_NSSR);
1267 	nvme_change_ctrl_state(ctrl, NVME_CTRL_LIVE);
1268 
1269 	/*
1270 	 * Read controller status to flush the previous write and trigger a
1271 	 * pcie read error.
1272 	 */
1273 	readl(dev->bar + NVME_REG_CSTS);
1274 unlock:
1275 	mutex_unlock(&dev->shutdown_lock);
1276 	return ret;
1277 }
1278 
adapter_delete_queue(struct nvme_dev * dev,u8 opcode,u16 id)1279 static int adapter_delete_queue(struct nvme_dev *dev, u8 opcode, u16 id)
1280 {
1281 	struct nvme_command c = { };
1282 
1283 	c.delete_queue.opcode = opcode;
1284 	c.delete_queue.qid = cpu_to_le16(id);
1285 
1286 	return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
1287 }
1288 
adapter_alloc_cq(struct nvme_dev * dev,u16 qid,struct nvme_queue * nvmeq,s16 vector)1289 static int adapter_alloc_cq(struct nvme_dev *dev, u16 qid,
1290 		struct nvme_queue *nvmeq, s16 vector)
1291 {
1292 	struct nvme_command c = { };
1293 	int flags = NVME_QUEUE_PHYS_CONTIG;
1294 
1295 	if (!test_bit(NVMEQ_POLLED, &nvmeq->flags))
1296 		flags |= NVME_CQ_IRQ_ENABLED;
1297 
1298 	/*
1299 	 * Note: we (ab)use the fact that the prp fields survive if no data
1300 	 * is attached to the request.
1301 	 */
1302 	c.create_cq.opcode = nvme_admin_create_cq;
1303 	c.create_cq.prp1 = cpu_to_le64(nvmeq->cq_dma_addr);
1304 	c.create_cq.cqid = cpu_to_le16(qid);
1305 	c.create_cq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
1306 	c.create_cq.cq_flags = cpu_to_le16(flags);
1307 	c.create_cq.irq_vector = cpu_to_le16(vector);
1308 
1309 	return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
1310 }
1311 
adapter_alloc_sq(struct nvme_dev * dev,u16 qid,struct nvme_queue * nvmeq)1312 static int adapter_alloc_sq(struct nvme_dev *dev, u16 qid,
1313 						struct nvme_queue *nvmeq)
1314 {
1315 	struct nvme_ctrl *ctrl = &dev->ctrl;
1316 	struct nvme_command c = { };
1317 	int flags = NVME_QUEUE_PHYS_CONTIG;
1318 
1319 	/*
1320 	 * Some drives have a bug that auto-enables WRRU if MEDIUM isn't
1321 	 * set. Since URGENT priority is zeroes, it makes all queues
1322 	 * URGENT.
1323 	 */
1324 	if (ctrl->quirks & NVME_QUIRK_MEDIUM_PRIO_SQ)
1325 		flags |= NVME_SQ_PRIO_MEDIUM;
1326 
1327 	/*
1328 	 * Note: we (ab)use the fact that the prp fields survive if no data
1329 	 * is attached to the request.
1330 	 */
1331 	c.create_sq.opcode = nvme_admin_create_sq;
1332 	c.create_sq.prp1 = cpu_to_le64(nvmeq->sq_dma_addr);
1333 	c.create_sq.sqid = cpu_to_le16(qid);
1334 	c.create_sq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
1335 	c.create_sq.sq_flags = cpu_to_le16(flags);
1336 	c.create_sq.cqid = cpu_to_le16(qid);
1337 
1338 	return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
1339 }
1340 
adapter_delete_cq(struct nvme_dev * dev,u16 cqid)1341 static int adapter_delete_cq(struct nvme_dev *dev, u16 cqid)
1342 {
1343 	return adapter_delete_queue(dev, nvme_admin_delete_cq, cqid);
1344 }
1345 
adapter_delete_sq(struct nvme_dev * dev,u16 sqid)1346 static int adapter_delete_sq(struct nvme_dev *dev, u16 sqid)
1347 {
1348 	return adapter_delete_queue(dev, nvme_admin_delete_sq, sqid);
1349 }
1350 
abort_endio(struct request * req,blk_status_t error)1351 static enum rq_end_io_ret abort_endio(struct request *req, blk_status_t error)
1352 {
1353 	struct nvme_queue *nvmeq = req->mq_hctx->driver_data;
1354 
1355 	dev_warn(nvmeq->dev->ctrl.device,
1356 		 "Abort status: 0x%x", nvme_req(req)->status);
1357 	atomic_inc(&nvmeq->dev->ctrl.abort_limit);
1358 	blk_mq_free_request(req);
1359 	return RQ_END_IO_NONE;
1360 }
1361 
nvme_should_reset(struct nvme_dev * dev,u32 csts)1362 static bool nvme_should_reset(struct nvme_dev *dev, u32 csts)
1363 {
1364 	/* If true, indicates loss of adapter communication, possibly by a
1365 	 * NVMe Subsystem reset.
1366 	 */
1367 	bool nssro = dev->subsystem && (csts & NVME_CSTS_NSSRO);
1368 
1369 	/* If there is a reset/reinit ongoing, we shouldn't reset again. */
1370 	switch (nvme_ctrl_state(&dev->ctrl)) {
1371 	case NVME_CTRL_RESETTING:
1372 	case NVME_CTRL_CONNECTING:
1373 		return false;
1374 	default:
1375 		break;
1376 	}
1377 
1378 	/* We shouldn't reset unless the controller is on fatal error state
1379 	 * _or_ if we lost the communication with it.
1380 	 */
1381 	if (!(csts & NVME_CSTS_CFS) && !nssro)
1382 		return false;
1383 
1384 	return true;
1385 }
1386 
nvme_warn_reset(struct nvme_dev * dev,u32 csts)1387 static void nvme_warn_reset(struct nvme_dev *dev, u32 csts)
1388 {
1389 	/* Read a config register to help see what died. */
1390 	u16 pci_status;
1391 	int result;
1392 
1393 	result = pci_read_config_word(to_pci_dev(dev->dev), PCI_STATUS,
1394 				      &pci_status);
1395 	if (result == PCIBIOS_SUCCESSFUL)
1396 		dev_warn(dev->ctrl.device,
1397 			 "controller is down; will reset: CSTS=0x%x, PCI_STATUS=0x%hx\n",
1398 			 csts, pci_status);
1399 	else
1400 		dev_warn(dev->ctrl.device,
1401 			 "controller is down; will reset: CSTS=0x%x, PCI_STATUS read failed (%d)\n",
1402 			 csts, result);
1403 
1404 	if (csts != ~0)
1405 		return;
1406 
1407 	dev_warn(dev->ctrl.device,
1408 		 "Does your device have a faulty power saving mode enabled?\n");
1409 	dev_warn(dev->ctrl.device,
1410 		 "Try \"nvme_core.default_ps_max_latency_us=0 pcie_aspm=off pcie_port_pm=off\" and report a bug\n");
1411 }
1412 
nvme_timeout(struct request * req)1413 static enum blk_eh_timer_return nvme_timeout(struct request *req)
1414 {
1415 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
1416 	struct nvme_queue *nvmeq = req->mq_hctx->driver_data;
1417 	struct nvme_dev *dev = nvmeq->dev;
1418 	struct request *abort_req;
1419 	struct nvme_command cmd = { };
1420 	struct pci_dev *pdev = to_pci_dev(dev->dev);
1421 	u32 csts = readl(dev->bar + NVME_REG_CSTS);
1422 	u8 opcode;
1423 
1424 	/*
1425 	 * Shutdown the device immediately if we see it is disconnected. This
1426 	 * unblocks PCIe error handling if the nvme driver is waiting in
1427 	 * error_resume for a device that has been removed. We can't unbind the
1428 	 * driver while the driver's error callback is waiting to complete, so
1429 	 * we're relying on a timeout to break that deadlock if a removal
1430 	 * occurs while reset work is running.
1431 	 */
1432 	if (pci_dev_is_disconnected(pdev))
1433 		nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING);
1434 	if (nvme_state_terminal(&dev->ctrl))
1435 		goto disable;
1436 
1437 	/* If PCI error recovery process is happening, we cannot reset or
1438 	 * the recovery mechanism will surely fail.
1439 	 */
1440 	mb();
1441 	if (pci_channel_offline(pdev))
1442 		return BLK_EH_RESET_TIMER;
1443 
1444 	/*
1445 	 * Reset immediately if the controller is failed
1446 	 */
1447 	if (nvme_should_reset(dev, csts)) {
1448 		nvme_warn_reset(dev, csts);
1449 		goto disable;
1450 	}
1451 
1452 	/*
1453 	 * Did we miss an interrupt?
1454 	 */
1455 	if (test_bit(NVMEQ_POLLED, &nvmeq->flags))
1456 		nvme_poll(req->mq_hctx, NULL);
1457 	else
1458 		nvme_poll_irqdisable(nvmeq);
1459 
1460 	if (blk_mq_rq_state(req) != MQ_RQ_IN_FLIGHT) {
1461 		dev_warn(dev->ctrl.device,
1462 			 "I/O tag %d (%04x) QID %d timeout, completion polled\n",
1463 			 req->tag, nvme_cid(req), nvmeq->qid);
1464 		return BLK_EH_DONE;
1465 	}
1466 
1467 	/*
1468 	 * Shutdown immediately if controller times out while starting. The
1469 	 * reset work will see the pci device disabled when it gets the forced
1470 	 * cancellation error. All outstanding requests are completed on
1471 	 * shutdown, so we return BLK_EH_DONE.
1472 	 */
1473 	switch (nvme_ctrl_state(&dev->ctrl)) {
1474 	case NVME_CTRL_CONNECTING:
1475 		nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING);
1476 		fallthrough;
1477 	case NVME_CTRL_DELETING:
1478 		dev_warn_ratelimited(dev->ctrl.device,
1479 			 "I/O tag %d (%04x) QID %d timeout, disable controller\n",
1480 			 req->tag, nvme_cid(req), nvmeq->qid);
1481 		nvme_req(req)->flags |= NVME_REQ_CANCELLED;
1482 		nvme_dev_disable(dev, true);
1483 		return BLK_EH_DONE;
1484 	case NVME_CTRL_RESETTING:
1485 		return BLK_EH_RESET_TIMER;
1486 	default:
1487 		break;
1488 	}
1489 
1490 	/*
1491 	 * Shutdown the controller immediately and schedule a reset if the
1492 	 * command was already aborted once before and still hasn't been
1493 	 * returned to the driver, or if this is the admin queue.
1494 	 */
1495 	opcode = nvme_req(req)->cmd->common.opcode;
1496 	if (!nvmeq->qid || iod->aborted) {
1497 		dev_warn(dev->ctrl.device,
1498 			 "I/O tag %d (%04x) opcode %#x (%s) QID %d timeout, reset controller\n",
1499 			 req->tag, nvme_cid(req), opcode,
1500 			 nvme_opcode_str(nvmeq->qid, opcode), nvmeq->qid);
1501 		nvme_req(req)->flags |= NVME_REQ_CANCELLED;
1502 		goto disable;
1503 	}
1504 
1505 	if (atomic_dec_return(&dev->ctrl.abort_limit) < 0) {
1506 		atomic_inc(&dev->ctrl.abort_limit);
1507 		return BLK_EH_RESET_TIMER;
1508 	}
1509 	iod->aborted = true;
1510 
1511 	cmd.abort.opcode = nvme_admin_abort_cmd;
1512 	cmd.abort.cid = nvme_cid(req);
1513 	cmd.abort.sqid = cpu_to_le16(nvmeq->qid);
1514 
1515 	dev_warn(nvmeq->dev->ctrl.device,
1516 		 "I/O tag %d (%04x) opcode %#x (%s) QID %d timeout, aborting req_op:%s(%u) size:%u\n",
1517 		 req->tag, nvme_cid(req), opcode, nvme_get_opcode_str(opcode),
1518 		 nvmeq->qid, blk_op_str(req_op(req)), req_op(req),
1519 		 blk_rq_bytes(req));
1520 
1521 	abort_req = blk_mq_alloc_request(dev->ctrl.admin_q, nvme_req_op(&cmd),
1522 					 BLK_MQ_REQ_NOWAIT);
1523 	if (IS_ERR(abort_req)) {
1524 		atomic_inc(&dev->ctrl.abort_limit);
1525 		return BLK_EH_RESET_TIMER;
1526 	}
1527 	nvme_init_request(abort_req, &cmd);
1528 
1529 	abort_req->end_io = abort_endio;
1530 	abort_req->end_io_data = NULL;
1531 	blk_execute_rq_nowait(abort_req, false);
1532 
1533 	/*
1534 	 * The aborted req will be completed on receiving the abort req.
1535 	 * We enable the timer again. If hit twice, it'll cause a device reset,
1536 	 * as the device then is in a faulty state.
1537 	 */
1538 	return BLK_EH_RESET_TIMER;
1539 
1540 disable:
1541 	if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_RESETTING)) {
1542 		if (nvme_state_terminal(&dev->ctrl))
1543 			nvme_dev_disable(dev, true);
1544 		return BLK_EH_DONE;
1545 	}
1546 
1547 	nvme_dev_disable(dev, false);
1548 	if (nvme_try_sched_reset(&dev->ctrl))
1549 		nvme_unquiesce_io_queues(&dev->ctrl);
1550 	return BLK_EH_DONE;
1551 }
1552 
nvme_free_queue(struct nvme_queue * nvmeq)1553 static void nvme_free_queue(struct nvme_queue *nvmeq)
1554 {
1555 	dma_free_coherent(nvmeq->dev->dev, CQ_SIZE(nvmeq),
1556 				(void *)nvmeq->cqes, nvmeq->cq_dma_addr);
1557 	if (!nvmeq->sq_cmds)
1558 		return;
1559 
1560 	if (test_and_clear_bit(NVMEQ_SQ_CMB, &nvmeq->flags)) {
1561 		pci_free_p2pmem(to_pci_dev(nvmeq->dev->dev),
1562 				nvmeq->sq_cmds, SQ_SIZE(nvmeq));
1563 	} else {
1564 		dma_free_coherent(nvmeq->dev->dev, SQ_SIZE(nvmeq),
1565 				nvmeq->sq_cmds, nvmeq->sq_dma_addr);
1566 	}
1567 }
1568 
nvme_free_queues(struct nvme_dev * dev,int lowest)1569 static void nvme_free_queues(struct nvme_dev *dev, int lowest)
1570 {
1571 	int i;
1572 
1573 	for (i = dev->ctrl.queue_count - 1; i >= lowest; i--) {
1574 		dev->ctrl.queue_count--;
1575 		nvme_free_queue(&dev->queues[i]);
1576 	}
1577 }
1578 
nvme_suspend_queue(struct nvme_dev * dev,unsigned int qid)1579 static void nvme_suspend_queue(struct nvme_dev *dev, unsigned int qid)
1580 {
1581 	struct nvme_queue *nvmeq = &dev->queues[qid];
1582 
1583 	if (!test_and_clear_bit(NVMEQ_ENABLED, &nvmeq->flags))
1584 		return;
1585 
1586 	/* ensure that nvme_queue_rq() sees NVMEQ_ENABLED cleared */
1587 	mb();
1588 
1589 	nvmeq->dev->online_queues--;
1590 	if (!nvmeq->qid && nvmeq->dev->ctrl.admin_q)
1591 		nvme_quiesce_admin_queue(&nvmeq->dev->ctrl);
1592 	if (!test_and_clear_bit(NVMEQ_POLLED, &nvmeq->flags))
1593 		pci_free_irq(to_pci_dev(dev->dev), nvmeq->cq_vector, nvmeq);
1594 }
1595 
nvme_suspend_io_queues(struct nvme_dev * dev)1596 static void nvme_suspend_io_queues(struct nvme_dev *dev)
1597 {
1598 	int i;
1599 
1600 	for (i = dev->ctrl.queue_count - 1; i > 0; i--)
1601 		nvme_suspend_queue(dev, i);
1602 }
1603 
1604 /*
1605  * Called only on a device that has been disabled and after all other threads
1606  * that can check this device's completion queues have synced, except
1607  * nvme_poll(). This is the last chance for the driver to see a natural
1608  * completion before nvme_cancel_request() terminates all incomplete requests.
1609  */
nvme_reap_pending_cqes(struct nvme_dev * dev)1610 static void nvme_reap_pending_cqes(struct nvme_dev *dev)
1611 {
1612 	int i;
1613 
1614 	for (i = dev->ctrl.queue_count - 1; i > 0; i--) {
1615 		spin_lock(&dev->queues[i].cq_poll_lock);
1616 		nvme_poll_cq(&dev->queues[i], NULL);
1617 		spin_unlock(&dev->queues[i].cq_poll_lock);
1618 	}
1619 }
1620 
nvme_cmb_qdepth(struct nvme_dev * dev,int nr_io_queues,int entry_size)1621 static int nvme_cmb_qdepth(struct nvme_dev *dev, int nr_io_queues,
1622 				int entry_size)
1623 {
1624 	int q_depth = dev->q_depth;
1625 	unsigned q_size_aligned = roundup(q_depth * entry_size,
1626 					  NVME_CTRL_PAGE_SIZE);
1627 
1628 	if (q_size_aligned * nr_io_queues > dev->cmb_size) {
1629 		u64 mem_per_q = div_u64(dev->cmb_size, nr_io_queues);
1630 
1631 		mem_per_q = round_down(mem_per_q, NVME_CTRL_PAGE_SIZE);
1632 		q_depth = div_u64(mem_per_q, entry_size);
1633 
1634 		/*
1635 		 * Ensure the reduced q_depth is above some threshold where it
1636 		 * would be better to map queues in system memory with the
1637 		 * original depth
1638 		 */
1639 		if (q_depth < 64)
1640 			return -ENOMEM;
1641 	}
1642 
1643 	return q_depth;
1644 }
1645 
nvme_alloc_sq_cmds(struct nvme_dev * dev,struct nvme_queue * nvmeq,int qid)1646 static int nvme_alloc_sq_cmds(struct nvme_dev *dev, struct nvme_queue *nvmeq,
1647 				int qid)
1648 {
1649 	struct pci_dev *pdev = to_pci_dev(dev->dev);
1650 
1651 	if (qid && dev->cmb_use_sqes && (dev->cmbsz & NVME_CMBSZ_SQS)) {
1652 		nvmeq->sq_cmds = pci_alloc_p2pmem(pdev, SQ_SIZE(nvmeq));
1653 		if (nvmeq->sq_cmds) {
1654 			nvmeq->sq_dma_addr = pci_p2pmem_virt_to_bus(pdev,
1655 							nvmeq->sq_cmds);
1656 			if (nvmeq->sq_dma_addr) {
1657 				set_bit(NVMEQ_SQ_CMB, &nvmeq->flags);
1658 				return 0;
1659 			}
1660 
1661 			pci_free_p2pmem(pdev, nvmeq->sq_cmds, SQ_SIZE(nvmeq));
1662 		}
1663 	}
1664 
1665 	nvmeq->sq_cmds = dma_alloc_coherent(dev->dev, SQ_SIZE(nvmeq),
1666 				&nvmeq->sq_dma_addr, GFP_KERNEL);
1667 	if (!nvmeq->sq_cmds)
1668 		return -ENOMEM;
1669 	return 0;
1670 }
1671 
nvme_alloc_queue(struct nvme_dev * dev,int qid,int depth)1672 static int nvme_alloc_queue(struct nvme_dev *dev, int qid, int depth)
1673 {
1674 	struct nvme_queue *nvmeq = &dev->queues[qid];
1675 
1676 	if (dev->ctrl.queue_count > qid)
1677 		return 0;
1678 
1679 	nvmeq->sqes = qid ? dev->io_sqes : NVME_ADM_SQES;
1680 	nvmeq->q_depth = depth;
1681 	nvmeq->cqes = dma_alloc_coherent(dev->dev, CQ_SIZE(nvmeq),
1682 					 &nvmeq->cq_dma_addr, GFP_KERNEL);
1683 	if (!nvmeq->cqes)
1684 		goto free_nvmeq;
1685 
1686 	if (nvme_alloc_sq_cmds(dev, nvmeq, qid))
1687 		goto free_cqdma;
1688 
1689 	nvmeq->dev = dev;
1690 	spin_lock_init(&nvmeq->sq_lock);
1691 	spin_lock_init(&nvmeq->cq_poll_lock);
1692 	nvmeq->cq_head = 0;
1693 	nvmeq->cq_phase = 1;
1694 	nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
1695 	nvmeq->qid = qid;
1696 	dev->ctrl.queue_count++;
1697 
1698 	return 0;
1699 
1700  free_cqdma:
1701 	dma_free_coherent(dev->dev, CQ_SIZE(nvmeq), (void *)nvmeq->cqes,
1702 			  nvmeq->cq_dma_addr);
1703  free_nvmeq:
1704 	return -ENOMEM;
1705 }
1706 
queue_request_irq(struct nvme_queue * nvmeq)1707 static int queue_request_irq(struct nvme_queue *nvmeq)
1708 {
1709 	struct pci_dev *pdev = to_pci_dev(nvmeq->dev->dev);
1710 	int nr = nvmeq->dev->ctrl.instance;
1711 
1712 	if (use_threaded_interrupts) {
1713 		return pci_request_irq(pdev, nvmeq->cq_vector, nvme_irq_check,
1714 				nvme_irq, nvmeq, "nvme%dq%d", nr, nvmeq->qid);
1715 	} else {
1716 		return pci_request_irq(pdev, nvmeq->cq_vector, nvme_irq,
1717 				NULL, nvmeq, "nvme%dq%d", nr, nvmeq->qid);
1718 	}
1719 }
1720 
nvme_init_queue(struct nvme_queue * nvmeq,u16 qid)1721 static void nvme_init_queue(struct nvme_queue *nvmeq, u16 qid)
1722 {
1723 	struct nvme_dev *dev = nvmeq->dev;
1724 
1725 	nvmeq->sq_tail = 0;
1726 	nvmeq->last_sq_tail = 0;
1727 	nvmeq->cq_head = 0;
1728 	nvmeq->cq_phase = 1;
1729 	nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
1730 	memset((void *)nvmeq->cqes, 0, CQ_SIZE(nvmeq));
1731 	nvme_dbbuf_init(dev, nvmeq, qid);
1732 	dev->online_queues++;
1733 	wmb(); /* ensure the first interrupt sees the initialization */
1734 }
1735 
1736 /*
1737  * Try getting shutdown_lock while setting up IO queues.
1738  */
nvme_setup_io_queues_trylock(struct nvme_dev * dev)1739 static int nvme_setup_io_queues_trylock(struct nvme_dev *dev)
1740 {
1741 	/*
1742 	 * Give up if the lock is being held by nvme_dev_disable.
1743 	 */
1744 	if (!mutex_trylock(&dev->shutdown_lock))
1745 		return -ENODEV;
1746 
1747 	/*
1748 	 * Controller is in wrong state, fail early.
1749 	 */
1750 	if (nvme_ctrl_state(&dev->ctrl) != NVME_CTRL_CONNECTING) {
1751 		mutex_unlock(&dev->shutdown_lock);
1752 		return -ENODEV;
1753 	}
1754 
1755 	return 0;
1756 }
1757 
nvme_create_queue(struct nvme_queue * nvmeq,int qid,bool polled)1758 static int nvme_create_queue(struct nvme_queue *nvmeq, int qid, bool polled)
1759 {
1760 	struct nvme_dev *dev = nvmeq->dev;
1761 	int result;
1762 	u16 vector = 0;
1763 
1764 	clear_bit(NVMEQ_DELETE_ERROR, &nvmeq->flags);
1765 
1766 	/*
1767 	 * A queue's vector matches the queue identifier unless the controller
1768 	 * has only one vector available.
1769 	 */
1770 	if (!polled)
1771 		vector = dev->num_vecs == 1 ? 0 : qid;
1772 	else
1773 		set_bit(NVMEQ_POLLED, &nvmeq->flags);
1774 
1775 	result = adapter_alloc_cq(dev, qid, nvmeq, vector);
1776 	if (result)
1777 		return result;
1778 
1779 	result = adapter_alloc_sq(dev, qid, nvmeq);
1780 	if (result < 0)
1781 		return result;
1782 	if (result)
1783 		goto release_cq;
1784 
1785 	nvmeq->cq_vector = vector;
1786 
1787 	result = nvme_setup_io_queues_trylock(dev);
1788 	if (result)
1789 		return result;
1790 	nvme_init_queue(nvmeq, qid);
1791 	if (!polled) {
1792 		result = queue_request_irq(nvmeq);
1793 		if (result < 0)
1794 			goto release_sq;
1795 	}
1796 
1797 	set_bit(NVMEQ_ENABLED, &nvmeq->flags);
1798 	mutex_unlock(&dev->shutdown_lock);
1799 	return result;
1800 
1801 release_sq:
1802 	dev->online_queues--;
1803 	mutex_unlock(&dev->shutdown_lock);
1804 	adapter_delete_sq(dev, qid);
1805 release_cq:
1806 	adapter_delete_cq(dev, qid);
1807 	return result;
1808 }
1809 
1810 static const struct blk_mq_ops nvme_mq_admin_ops = {
1811 	.queue_rq	= nvme_queue_rq,
1812 	.complete	= nvme_pci_complete_rq,
1813 	.init_hctx	= nvme_admin_init_hctx,
1814 	.init_request	= nvme_pci_init_request,
1815 	.timeout	= nvme_timeout,
1816 };
1817 
1818 static const struct blk_mq_ops nvme_mq_ops = {
1819 	.queue_rq	= nvme_queue_rq,
1820 	.queue_rqs	= nvme_queue_rqs,
1821 	.complete	= nvme_pci_complete_rq,
1822 	.commit_rqs	= nvme_commit_rqs,
1823 	.init_hctx	= nvme_init_hctx,
1824 	.init_request	= nvme_pci_init_request,
1825 	.map_queues	= nvme_pci_map_queues,
1826 	.timeout	= nvme_timeout,
1827 	.poll		= nvme_poll,
1828 };
1829 
nvme_dev_remove_admin(struct nvme_dev * dev)1830 static void nvme_dev_remove_admin(struct nvme_dev *dev)
1831 {
1832 	if (dev->ctrl.admin_q && !blk_queue_dying(dev->ctrl.admin_q)) {
1833 		/*
1834 		 * If the controller was reset during removal, it's possible
1835 		 * user requests may be waiting on a stopped queue. Start the
1836 		 * queue to flush these to completion.
1837 		 */
1838 		nvme_unquiesce_admin_queue(&dev->ctrl);
1839 		nvme_remove_admin_tag_set(&dev->ctrl);
1840 	}
1841 }
1842 
db_bar_size(struct nvme_dev * dev,unsigned nr_io_queues)1843 static unsigned long db_bar_size(struct nvme_dev *dev, unsigned nr_io_queues)
1844 {
1845 	return NVME_REG_DBS + ((nr_io_queues + 1) * 8 * dev->db_stride);
1846 }
1847 
nvme_remap_bar(struct nvme_dev * dev,unsigned long size)1848 static int nvme_remap_bar(struct nvme_dev *dev, unsigned long size)
1849 {
1850 	struct pci_dev *pdev = to_pci_dev(dev->dev);
1851 
1852 	if (size <= dev->bar_mapped_size)
1853 		return 0;
1854 	if (size > pci_resource_len(pdev, 0))
1855 		return -ENOMEM;
1856 	if (dev->bar)
1857 		iounmap(dev->bar);
1858 	dev->bar = ioremap(pci_resource_start(pdev, 0), size);
1859 	if (!dev->bar) {
1860 		dev->bar_mapped_size = 0;
1861 		return -ENOMEM;
1862 	}
1863 	dev->bar_mapped_size = size;
1864 	dev->dbs = dev->bar + NVME_REG_DBS;
1865 
1866 	return 0;
1867 }
1868 
nvme_pci_configure_admin_queue(struct nvme_dev * dev)1869 static int nvme_pci_configure_admin_queue(struct nvme_dev *dev)
1870 {
1871 	int result;
1872 	u32 aqa;
1873 	struct nvme_queue *nvmeq;
1874 
1875 	result = nvme_remap_bar(dev, db_bar_size(dev, 0));
1876 	if (result < 0)
1877 		return result;
1878 
1879 	dev->subsystem = readl(dev->bar + NVME_REG_VS) >= NVME_VS(1, 1, 0) ?
1880 				NVME_CAP_NSSRC(dev->ctrl.cap) : 0;
1881 
1882 	if (dev->subsystem &&
1883 	    (readl(dev->bar + NVME_REG_CSTS) & NVME_CSTS_NSSRO))
1884 		writel(NVME_CSTS_NSSRO, dev->bar + NVME_REG_CSTS);
1885 
1886 	/*
1887 	 * If the device has been passed off to us in an enabled state, just
1888 	 * clear the enabled bit.  The spec says we should set the 'shutdown
1889 	 * notification bits', but doing so may cause the device to complete
1890 	 * commands to the admin queue ... and we don't know what memory that
1891 	 * might be pointing at!
1892 	 */
1893 	result = nvme_disable_ctrl(&dev->ctrl, false);
1894 	if (result < 0) {
1895 		struct pci_dev *pdev = to_pci_dev(dev->dev);
1896 
1897 		/*
1898 		 * The NVMe Controller Reset method did not get an expected
1899 		 * CSTS.RDY transition, so something with the device appears to
1900 		 * be stuck. Use the lower level and bigger hammer PCIe
1901 		 * Function Level Reset to attempt restoring the device to its
1902 		 * initial state, and try again.
1903 		 */
1904 		result = pcie_reset_flr(pdev, false);
1905 		if (result < 0)
1906 			return result;
1907 
1908 		pci_restore_state(pdev);
1909 		result = nvme_disable_ctrl(&dev->ctrl, false);
1910 		if (result < 0)
1911 			return result;
1912 
1913 		dev_info(dev->ctrl.device,
1914 			"controller reset completed after pcie flr\n");
1915 	}
1916 
1917 	result = nvme_alloc_queue(dev, 0, NVME_AQ_DEPTH);
1918 	if (result)
1919 		return result;
1920 
1921 	dev->ctrl.numa_node = dev_to_node(dev->dev);
1922 
1923 	nvmeq = &dev->queues[0];
1924 	aqa = nvmeq->q_depth - 1;
1925 	aqa |= aqa << 16;
1926 
1927 	writel(aqa, dev->bar + NVME_REG_AQA);
1928 	lo_hi_writeq(nvmeq->sq_dma_addr, dev->bar + NVME_REG_ASQ);
1929 	lo_hi_writeq(nvmeq->cq_dma_addr, dev->bar + NVME_REG_ACQ);
1930 
1931 	result = nvme_enable_ctrl(&dev->ctrl);
1932 	if (result)
1933 		return result;
1934 
1935 	nvmeq->cq_vector = 0;
1936 	nvme_init_queue(nvmeq, 0);
1937 	result = queue_request_irq(nvmeq);
1938 	if (result) {
1939 		dev->online_queues--;
1940 		return result;
1941 	}
1942 
1943 	set_bit(NVMEQ_ENABLED, &nvmeq->flags);
1944 	return result;
1945 }
1946 
nvme_create_io_queues(struct nvme_dev * dev)1947 static int nvme_create_io_queues(struct nvme_dev *dev)
1948 {
1949 	unsigned i, max, rw_queues;
1950 	int ret = 0;
1951 
1952 	for (i = dev->ctrl.queue_count; i <= dev->max_qid; i++) {
1953 		if (nvme_alloc_queue(dev, i, dev->q_depth)) {
1954 			ret = -ENOMEM;
1955 			break;
1956 		}
1957 	}
1958 
1959 	max = min(dev->max_qid, dev->ctrl.queue_count - 1);
1960 	if (max != 1 && dev->io_queues[HCTX_TYPE_POLL]) {
1961 		rw_queues = dev->io_queues[HCTX_TYPE_DEFAULT] +
1962 				dev->io_queues[HCTX_TYPE_READ];
1963 	} else {
1964 		rw_queues = max;
1965 	}
1966 
1967 	for (i = dev->online_queues; i <= max; i++) {
1968 		bool polled = i > rw_queues;
1969 
1970 		ret = nvme_create_queue(&dev->queues[i], i, polled);
1971 		if (ret)
1972 			break;
1973 	}
1974 
1975 	/*
1976 	 * Ignore failing Create SQ/CQ commands, we can continue with less
1977 	 * than the desired amount of queues, and even a controller without
1978 	 * I/O queues can still be used to issue admin commands.  This might
1979 	 * be useful to upgrade a buggy firmware for example.
1980 	 */
1981 	return ret >= 0 ? 0 : ret;
1982 }
1983 
nvme_cmb_size_unit(struct nvme_dev * dev)1984 static u64 nvme_cmb_size_unit(struct nvme_dev *dev)
1985 {
1986 	u8 szu = (dev->cmbsz >> NVME_CMBSZ_SZU_SHIFT) & NVME_CMBSZ_SZU_MASK;
1987 
1988 	return 1ULL << (12 + 4 * szu);
1989 }
1990 
nvme_cmb_size(struct nvme_dev * dev)1991 static u32 nvme_cmb_size(struct nvme_dev *dev)
1992 {
1993 	return (dev->cmbsz >> NVME_CMBSZ_SZ_SHIFT) & NVME_CMBSZ_SZ_MASK;
1994 }
1995 
nvme_map_cmb(struct nvme_dev * dev)1996 static void nvme_map_cmb(struct nvme_dev *dev)
1997 {
1998 	u64 size, offset;
1999 	resource_size_t bar_size;
2000 	struct pci_dev *pdev = to_pci_dev(dev->dev);
2001 	int bar;
2002 
2003 	if (dev->cmb_size)
2004 		return;
2005 
2006 	if (NVME_CAP_CMBS(dev->ctrl.cap))
2007 		writel(NVME_CMBMSC_CRE, dev->bar + NVME_REG_CMBMSC);
2008 
2009 	dev->cmbsz = readl(dev->bar + NVME_REG_CMBSZ);
2010 	if (!dev->cmbsz)
2011 		return;
2012 	dev->cmbloc = readl(dev->bar + NVME_REG_CMBLOC);
2013 
2014 	size = nvme_cmb_size_unit(dev) * nvme_cmb_size(dev);
2015 	offset = nvme_cmb_size_unit(dev) * NVME_CMB_OFST(dev->cmbloc);
2016 	bar = NVME_CMB_BIR(dev->cmbloc);
2017 	bar_size = pci_resource_len(pdev, bar);
2018 
2019 	if (offset > bar_size)
2020 		return;
2021 
2022 	/*
2023 	 * Controllers may support a CMB size larger than their BAR, for
2024 	 * example, due to being behind a bridge. Reduce the CMB to the
2025 	 * reported size of the BAR
2026 	 */
2027 	size = min(size, bar_size - offset);
2028 
2029 	if (!IS_ALIGNED(size, memremap_compat_align()) ||
2030 	    !IS_ALIGNED(pci_resource_start(pdev, bar),
2031 			memremap_compat_align()))
2032 		return;
2033 
2034 	/*
2035 	 * Tell the controller about the host side address mapping the CMB,
2036 	 * and enable CMB decoding for the NVMe 1.4+ scheme:
2037 	 */
2038 	if (NVME_CAP_CMBS(dev->ctrl.cap)) {
2039 		hi_lo_writeq(NVME_CMBMSC_CRE | NVME_CMBMSC_CMSE |
2040 			     (pci_bus_address(pdev, bar) + offset),
2041 			     dev->bar + NVME_REG_CMBMSC);
2042 	}
2043 
2044 	if (pci_p2pdma_add_resource(pdev, bar, size, offset)) {
2045 		dev_warn(dev->ctrl.device,
2046 			 "failed to register the CMB\n");
2047 		hi_lo_writeq(0, dev->bar + NVME_REG_CMBMSC);
2048 		return;
2049 	}
2050 
2051 	dev->cmb_size = size;
2052 	dev->cmb_use_sqes = use_cmb_sqes && (dev->cmbsz & NVME_CMBSZ_SQS);
2053 
2054 	if ((dev->cmbsz & (NVME_CMBSZ_WDS | NVME_CMBSZ_RDS)) ==
2055 			(NVME_CMBSZ_WDS | NVME_CMBSZ_RDS))
2056 		pci_p2pmem_publish(pdev, true);
2057 
2058 	nvme_update_attrs(dev);
2059 }
2060 
nvme_set_host_mem(struct nvme_dev * dev,u32 bits)2061 static int nvme_set_host_mem(struct nvme_dev *dev, u32 bits)
2062 {
2063 	u32 host_mem_size = dev->host_mem_size >> NVME_CTRL_PAGE_SHIFT;
2064 	u64 dma_addr = dev->host_mem_descs_dma;
2065 	struct nvme_command c = { };
2066 	int ret;
2067 
2068 	c.features.opcode	= nvme_admin_set_features;
2069 	c.features.fid		= cpu_to_le32(NVME_FEAT_HOST_MEM_BUF);
2070 	c.features.dword11	= cpu_to_le32(bits);
2071 	c.features.dword12	= cpu_to_le32(host_mem_size);
2072 	c.features.dword13	= cpu_to_le32(lower_32_bits(dma_addr));
2073 	c.features.dword14	= cpu_to_le32(upper_32_bits(dma_addr));
2074 	c.features.dword15	= cpu_to_le32(dev->nr_host_mem_descs);
2075 
2076 	ret = nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
2077 	if (ret) {
2078 		dev_warn(dev->ctrl.device,
2079 			 "failed to set host mem (err %d, flags %#x).\n",
2080 			 ret, bits);
2081 	} else
2082 		dev->hmb = bits & NVME_HOST_MEM_ENABLE;
2083 
2084 	return ret;
2085 }
2086 
nvme_free_host_mem(struct nvme_dev * dev)2087 static void nvme_free_host_mem(struct nvme_dev *dev)
2088 {
2089 	int i;
2090 
2091 	for (i = 0; i < dev->nr_host_mem_descs; i++) {
2092 		struct nvme_host_mem_buf_desc *desc = &dev->host_mem_descs[i];
2093 		size_t size = le32_to_cpu(desc->size) * NVME_CTRL_PAGE_SIZE;
2094 
2095 		dma_free_attrs(dev->dev, size, dev->host_mem_desc_bufs[i],
2096 			       le64_to_cpu(desc->addr),
2097 			       DMA_ATTR_NO_KERNEL_MAPPING | DMA_ATTR_NO_WARN);
2098 	}
2099 
2100 	kfree(dev->host_mem_desc_bufs);
2101 	dev->host_mem_desc_bufs = NULL;
2102 	dma_free_coherent(dev->dev, dev->host_mem_descs_size,
2103 			dev->host_mem_descs, dev->host_mem_descs_dma);
2104 	dev->host_mem_descs = NULL;
2105 	dev->host_mem_descs_size = 0;
2106 	dev->nr_host_mem_descs = 0;
2107 }
2108 
__nvme_alloc_host_mem(struct nvme_dev * dev,u64 preferred,u32 chunk_size)2109 static int __nvme_alloc_host_mem(struct nvme_dev *dev, u64 preferred,
2110 		u32 chunk_size)
2111 {
2112 	struct nvme_host_mem_buf_desc *descs;
2113 	u32 max_entries, len, descs_size;
2114 	dma_addr_t descs_dma;
2115 	int i = 0;
2116 	void **bufs;
2117 	u64 size, tmp;
2118 
2119 	tmp = (preferred + chunk_size - 1);
2120 	do_div(tmp, chunk_size);
2121 	max_entries = tmp;
2122 
2123 	if (dev->ctrl.hmmaxd && dev->ctrl.hmmaxd < max_entries)
2124 		max_entries = dev->ctrl.hmmaxd;
2125 
2126 	descs_size = max_entries * sizeof(*descs);
2127 	descs = dma_alloc_coherent(dev->dev, descs_size, &descs_dma,
2128 			GFP_KERNEL);
2129 	if (!descs)
2130 		goto out;
2131 
2132 	bufs = kcalloc(max_entries, sizeof(*bufs), GFP_KERNEL);
2133 	if (!bufs)
2134 		goto out_free_descs;
2135 
2136 	for (size = 0; size < preferred && i < max_entries; size += len) {
2137 		dma_addr_t dma_addr;
2138 
2139 		len = min_t(u64, chunk_size, preferred - size);
2140 		bufs[i] = dma_alloc_attrs(dev->dev, len, &dma_addr, GFP_KERNEL,
2141 				DMA_ATTR_NO_KERNEL_MAPPING | DMA_ATTR_NO_WARN);
2142 		if (!bufs[i])
2143 			break;
2144 
2145 		descs[i].addr = cpu_to_le64(dma_addr);
2146 		descs[i].size = cpu_to_le32(len / NVME_CTRL_PAGE_SIZE);
2147 		i++;
2148 	}
2149 
2150 	if (!size)
2151 		goto out_free_bufs;
2152 
2153 	dev->nr_host_mem_descs = i;
2154 	dev->host_mem_size = size;
2155 	dev->host_mem_descs = descs;
2156 	dev->host_mem_descs_dma = descs_dma;
2157 	dev->host_mem_descs_size = descs_size;
2158 	dev->host_mem_desc_bufs = bufs;
2159 	return 0;
2160 
2161 out_free_bufs:
2162 	while (--i >= 0) {
2163 		size_t size = le32_to_cpu(descs[i].size) * NVME_CTRL_PAGE_SIZE;
2164 
2165 		dma_free_attrs(dev->dev, size, bufs[i],
2166 			       le64_to_cpu(descs[i].addr),
2167 			       DMA_ATTR_NO_KERNEL_MAPPING | DMA_ATTR_NO_WARN);
2168 	}
2169 
2170 	kfree(bufs);
2171 out_free_descs:
2172 	dma_free_coherent(dev->dev, descs_size, descs, descs_dma);
2173 out:
2174 	dev->host_mem_descs = NULL;
2175 	return -ENOMEM;
2176 }
2177 
nvme_alloc_host_mem(struct nvme_dev * dev,u64 min,u64 preferred)2178 static int nvme_alloc_host_mem(struct nvme_dev *dev, u64 min, u64 preferred)
2179 {
2180 	u64 min_chunk = min_t(u64, preferred, PAGE_SIZE * MAX_ORDER_NR_PAGES);
2181 	u64 hmminds = max_t(u32, dev->ctrl.hmminds * 4096, PAGE_SIZE * 2);
2182 	u64 chunk_size;
2183 
2184 	/* start big and work our way down */
2185 	for (chunk_size = min_chunk; chunk_size >= hmminds; chunk_size /= 2) {
2186 		if (!__nvme_alloc_host_mem(dev, preferred, chunk_size)) {
2187 			if (!min || dev->host_mem_size >= min)
2188 				return 0;
2189 			nvme_free_host_mem(dev);
2190 		}
2191 	}
2192 
2193 	return -ENOMEM;
2194 }
2195 
nvme_setup_host_mem(struct nvme_dev * dev)2196 static int nvme_setup_host_mem(struct nvme_dev *dev)
2197 {
2198 	u64 max = (u64)max_host_mem_size_mb * SZ_1M;
2199 	u64 preferred = (u64)dev->ctrl.hmpre * 4096;
2200 	u64 min = (u64)dev->ctrl.hmmin * 4096;
2201 	u32 enable_bits = NVME_HOST_MEM_ENABLE;
2202 	int ret;
2203 
2204 	if (!dev->ctrl.hmpre)
2205 		return 0;
2206 
2207 	preferred = min(preferred, max);
2208 	if (min > max) {
2209 		dev_warn(dev->ctrl.device,
2210 			"min host memory (%lld MiB) above limit (%d MiB).\n",
2211 			min >> ilog2(SZ_1M), max_host_mem_size_mb);
2212 		nvme_free_host_mem(dev);
2213 		return 0;
2214 	}
2215 
2216 	/*
2217 	 * If we already have a buffer allocated check if we can reuse it.
2218 	 */
2219 	if (dev->host_mem_descs) {
2220 		if (dev->host_mem_size >= min)
2221 			enable_bits |= NVME_HOST_MEM_RETURN;
2222 		else
2223 			nvme_free_host_mem(dev);
2224 	}
2225 
2226 	if (!dev->host_mem_descs) {
2227 		if (nvme_alloc_host_mem(dev, min, preferred)) {
2228 			dev_warn(dev->ctrl.device,
2229 				"failed to allocate host memory buffer.\n");
2230 			return 0; /* controller must work without HMB */
2231 		}
2232 
2233 		dev_info(dev->ctrl.device,
2234 			"allocated %lld MiB host memory buffer.\n",
2235 			dev->host_mem_size >> ilog2(SZ_1M));
2236 	}
2237 
2238 	ret = nvme_set_host_mem(dev, enable_bits);
2239 	if (ret)
2240 		nvme_free_host_mem(dev);
2241 	return ret;
2242 }
2243 
cmb_show(struct device * dev,struct device_attribute * attr,char * buf)2244 static ssize_t cmb_show(struct device *dev, struct device_attribute *attr,
2245 		char *buf)
2246 {
2247 	struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev));
2248 
2249 	return sysfs_emit(buf, "cmbloc : x%08x\ncmbsz  : x%08x\n",
2250 		       ndev->cmbloc, ndev->cmbsz);
2251 }
2252 static DEVICE_ATTR_RO(cmb);
2253 
cmbloc_show(struct device * dev,struct device_attribute * attr,char * buf)2254 static ssize_t cmbloc_show(struct device *dev, struct device_attribute *attr,
2255 		char *buf)
2256 {
2257 	struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev));
2258 
2259 	return sysfs_emit(buf, "%u\n", ndev->cmbloc);
2260 }
2261 static DEVICE_ATTR_RO(cmbloc);
2262 
cmbsz_show(struct device * dev,struct device_attribute * attr,char * buf)2263 static ssize_t cmbsz_show(struct device *dev, struct device_attribute *attr,
2264 		char *buf)
2265 {
2266 	struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev));
2267 
2268 	return sysfs_emit(buf, "%u\n", ndev->cmbsz);
2269 }
2270 static DEVICE_ATTR_RO(cmbsz);
2271 
hmb_show(struct device * dev,struct device_attribute * attr,char * buf)2272 static ssize_t hmb_show(struct device *dev, struct device_attribute *attr,
2273 			char *buf)
2274 {
2275 	struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev));
2276 
2277 	return sysfs_emit(buf, "%d\n", ndev->hmb);
2278 }
2279 
hmb_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)2280 static ssize_t hmb_store(struct device *dev, struct device_attribute *attr,
2281 			 const char *buf, size_t count)
2282 {
2283 	struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev));
2284 	bool new;
2285 	int ret;
2286 
2287 	if (kstrtobool(buf, &new) < 0)
2288 		return -EINVAL;
2289 
2290 	if (new == ndev->hmb)
2291 		return count;
2292 
2293 	if (new) {
2294 		ret = nvme_setup_host_mem(ndev);
2295 	} else {
2296 		ret = nvme_set_host_mem(ndev, 0);
2297 		if (!ret)
2298 			nvme_free_host_mem(ndev);
2299 	}
2300 
2301 	if (ret < 0)
2302 		return ret;
2303 
2304 	return count;
2305 }
2306 static DEVICE_ATTR_RW(hmb);
2307 
nvme_pci_attrs_are_visible(struct kobject * kobj,struct attribute * a,int n)2308 static umode_t nvme_pci_attrs_are_visible(struct kobject *kobj,
2309 		struct attribute *a, int n)
2310 {
2311 	struct nvme_ctrl *ctrl =
2312 		dev_get_drvdata(container_of(kobj, struct device, kobj));
2313 	struct nvme_dev *dev = to_nvme_dev(ctrl);
2314 
2315 	if (a == &dev_attr_cmb.attr ||
2316 	    a == &dev_attr_cmbloc.attr ||
2317 	    a == &dev_attr_cmbsz.attr) {
2318 	    	if (!dev->cmbsz)
2319 			return 0;
2320 	}
2321 	if (a == &dev_attr_hmb.attr && !ctrl->hmpre)
2322 		return 0;
2323 
2324 	return a->mode;
2325 }
2326 
2327 static struct attribute *nvme_pci_attrs[] = {
2328 	&dev_attr_cmb.attr,
2329 	&dev_attr_cmbloc.attr,
2330 	&dev_attr_cmbsz.attr,
2331 	&dev_attr_hmb.attr,
2332 	NULL,
2333 };
2334 
2335 static const struct attribute_group nvme_pci_dev_attrs_group = {
2336 	.attrs		= nvme_pci_attrs,
2337 	.is_visible	= nvme_pci_attrs_are_visible,
2338 };
2339 
2340 static const struct attribute_group *nvme_pci_dev_attr_groups[] = {
2341 	&nvme_dev_attrs_group,
2342 	&nvme_pci_dev_attrs_group,
2343 	NULL,
2344 };
2345 
nvme_update_attrs(struct nvme_dev * dev)2346 static void nvme_update_attrs(struct nvme_dev *dev)
2347 {
2348 	sysfs_update_group(&dev->ctrl.device->kobj, &nvme_pci_dev_attrs_group);
2349 }
2350 
2351 /*
2352  * nirqs is the number of interrupts available for write and read
2353  * queues. The core already reserved an interrupt for the admin queue.
2354  */
nvme_calc_irq_sets(struct irq_affinity * affd,unsigned int nrirqs)2355 static void nvme_calc_irq_sets(struct irq_affinity *affd, unsigned int nrirqs)
2356 {
2357 	struct nvme_dev *dev = affd->priv;
2358 	unsigned int nr_read_queues, nr_write_queues = dev->nr_write_queues;
2359 
2360 	/*
2361 	 * If there is no interrupt available for queues, ensure that
2362 	 * the default queue is set to 1. The affinity set size is
2363 	 * also set to one, but the irq core ignores it for this case.
2364 	 *
2365 	 * If only one interrupt is available or 'write_queue' == 0, combine
2366 	 * write and read queues.
2367 	 *
2368 	 * If 'write_queues' > 0, ensure it leaves room for at least one read
2369 	 * queue.
2370 	 */
2371 	if (!nrirqs) {
2372 		nrirqs = 1;
2373 		nr_read_queues = 0;
2374 	} else if (nrirqs == 1 || !nr_write_queues) {
2375 		nr_read_queues = 0;
2376 	} else if (nr_write_queues >= nrirqs) {
2377 		nr_read_queues = 1;
2378 	} else {
2379 		nr_read_queues = nrirqs - nr_write_queues;
2380 	}
2381 
2382 	dev->io_queues[HCTX_TYPE_DEFAULT] = nrirqs - nr_read_queues;
2383 	affd->set_size[HCTX_TYPE_DEFAULT] = nrirqs - nr_read_queues;
2384 	dev->io_queues[HCTX_TYPE_READ] = nr_read_queues;
2385 	affd->set_size[HCTX_TYPE_READ] = nr_read_queues;
2386 	affd->nr_sets = nr_read_queues ? 2 : 1;
2387 }
2388 
nvme_setup_irqs(struct nvme_dev * dev,unsigned int nr_io_queues)2389 static int nvme_setup_irqs(struct nvme_dev *dev, unsigned int nr_io_queues)
2390 {
2391 	struct pci_dev *pdev = to_pci_dev(dev->dev);
2392 	struct irq_affinity affd = {
2393 		.pre_vectors	= 1,
2394 		.calc_sets	= nvme_calc_irq_sets,
2395 		.priv		= dev,
2396 	};
2397 	unsigned int irq_queues, poll_queues;
2398 	unsigned int flags = PCI_IRQ_ALL_TYPES | PCI_IRQ_AFFINITY;
2399 
2400 	/*
2401 	 * Poll queues don't need interrupts, but we need at least one I/O queue
2402 	 * left over for non-polled I/O.
2403 	 */
2404 	poll_queues = min(dev->nr_poll_queues, nr_io_queues - 1);
2405 	dev->io_queues[HCTX_TYPE_POLL] = poll_queues;
2406 
2407 	/*
2408 	 * Initialize for the single interrupt case, will be updated in
2409 	 * nvme_calc_irq_sets().
2410 	 */
2411 	dev->io_queues[HCTX_TYPE_DEFAULT] = 1;
2412 	dev->io_queues[HCTX_TYPE_READ] = 0;
2413 
2414 	/*
2415 	 * We need interrupts for the admin queue and each non-polled I/O queue,
2416 	 * but some Apple controllers require all queues to use the first
2417 	 * vector.
2418 	 */
2419 	irq_queues = 1;
2420 	if (!(dev->ctrl.quirks & NVME_QUIRK_SINGLE_VECTOR))
2421 		irq_queues += (nr_io_queues - poll_queues);
2422 	if (dev->ctrl.quirks & NVME_QUIRK_BROKEN_MSI)
2423 		flags &= ~PCI_IRQ_MSI;
2424 	return pci_alloc_irq_vectors_affinity(pdev, 1, irq_queues, flags,
2425 					      &affd);
2426 }
2427 
nvme_max_io_queues(struct nvme_dev * dev)2428 static unsigned int nvme_max_io_queues(struct nvme_dev *dev)
2429 {
2430 	/*
2431 	 * If tags are shared with admin queue (Apple bug), then
2432 	 * make sure we only use one IO queue.
2433 	 */
2434 	if (dev->ctrl.quirks & NVME_QUIRK_SHARED_TAGS)
2435 		return 1;
2436 	return num_possible_cpus() + dev->nr_write_queues + dev->nr_poll_queues;
2437 }
2438 
nvme_setup_io_queues(struct nvme_dev * dev)2439 static int nvme_setup_io_queues(struct nvme_dev *dev)
2440 {
2441 	struct nvme_queue *adminq = &dev->queues[0];
2442 	struct pci_dev *pdev = to_pci_dev(dev->dev);
2443 	unsigned int nr_io_queues;
2444 	unsigned long size;
2445 	int result;
2446 
2447 	/*
2448 	 * Sample the module parameters once at reset time so that we have
2449 	 * stable values to work with.
2450 	 */
2451 	dev->nr_write_queues = write_queues;
2452 	dev->nr_poll_queues = poll_queues;
2453 
2454 	nr_io_queues = dev->nr_allocated_queues - 1;
2455 	result = nvme_set_queue_count(&dev->ctrl, &nr_io_queues);
2456 	if (result < 0)
2457 		return result;
2458 
2459 	if (nr_io_queues == 0)
2460 		return 0;
2461 
2462 	/*
2463 	 * Free IRQ resources as soon as NVMEQ_ENABLED bit transitions
2464 	 * from set to unset. If there is a window to it is truely freed,
2465 	 * pci_free_irq_vectors() jumping into this window will crash.
2466 	 * And take lock to avoid racing with pci_free_irq_vectors() in
2467 	 * nvme_dev_disable() path.
2468 	 */
2469 	result = nvme_setup_io_queues_trylock(dev);
2470 	if (result)
2471 		return result;
2472 	if (test_and_clear_bit(NVMEQ_ENABLED, &adminq->flags))
2473 		pci_free_irq(pdev, 0, adminq);
2474 
2475 	if (dev->cmb_use_sqes) {
2476 		result = nvme_cmb_qdepth(dev, nr_io_queues,
2477 				sizeof(struct nvme_command));
2478 		if (result > 0) {
2479 			dev->q_depth = result;
2480 			dev->ctrl.sqsize = result - 1;
2481 		} else {
2482 			dev->cmb_use_sqes = false;
2483 		}
2484 	}
2485 
2486 	do {
2487 		size = db_bar_size(dev, nr_io_queues);
2488 		result = nvme_remap_bar(dev, size);
2489 		if (!result)
2490 			break;
2491 		if (!--nr_io_queues) {
2492 			result = -ENOMEM;
2493 			goto out_unlock;
2494 		}
2495 	} while (1);
2496 	adminq->q_db = dev->dbs;
2497 
2498  retry:
2499 	/* Deregister the admin queue's interrupt */
2500 	if (test_and_clear_bit(NVMEQ_ENABLED, &adminq->flags))
2501 		pci_free_irq(pdev, 0, adminq);
2502 
2503 	/*
2504 	 * If we enable msix early due to not intx, disable it again before
2505 	 * setting up the full range we need.
2506 	 */
2507 	pci_free_irq_vectors(pdev);
2508 
2509 	result = nvme_setup_irqs(dev, nr_io_queues);
2510 	if (result <= 0) {
2511 		result = -EIO;
2512 		goto out_unlock;
2513 	}
2514 
2515 	dev->num_vecs = result;
2516 	result = max(result - 1, 1);
2517 	dev->max_qid = result + dev->io_queues[HCTX_TYPE_POLL];
2518 
2519 	/*
2520 	 * Should investigate if there's a performance win from allocating
2521 	 * more queues than interrupt vectors; it might allow the submission
2522 	 * path to scale better, even if the receive path is limited by the
2523 	 * number of interrupts.
2524 	 */
2525 	result = queue_request_irq(adminq);
2526 	if (result)
2527 		goto out_unlock;
2528 	set_bit(NVMEQ_ENABLED, &adminq->flags);
2529 	mutex_unlock(&dev->shutdown_lock);
2530 
2531 	result = nvme_create_io_queues(dev);
2532 	if (result || dev->online_queues < 2)
2533 		return result;
2534 
2535 	if (dev->online_queues - 1 < dev->max_qid) {
2536 		nr_io_queues = dev->online_queues - 1;
2537 		nvme_delete_io_queues(dev);
2538 		result = nvme_setup_io_queues_trylock(dev);
2539 		if (result)
2540 			return result;
2541 		nvme_suspend_io_queues(dev);
2542 		goto retry;
2543 	}
2544 	dev_info(dev->ctrl.device, "%d/%d/%d default/read/poll queues\n",
2545 					dev->io_queues[HCTX_TYPE_DEFAULT],
2546 					dev->io_queues[HCTX_TYPE_READ],
2547 					dev->io_queues[HCTX_TYPE_POLL]);
2548 	return 0;
2549 out_unlock:
2550 	mutex_unlock(&dev->shutdown_lock);
2551 	return result;
2552 }
2553 
nvme_del_queue_end(struct request * req,blk_status_t error)2554 static enum rq_end_io_ret nvme_del_queue_end(struct request *req,
2555 					     blk_status_t error)
2556 {
2557 	struct nvme_queue *nvmeq = req->end_io_data;
2558 
2559 	blk_mq_free_request(req);
2560 	complete(&nvmeq->delete_done);
2561 	return RQ_END_IO_NONE;
2562 }
2563 
nvme_del_cq_end(struct request * req,blk_status_t error)2564 static enum rq_end_io_ret nvme_del_cq_end(struct request *req,
2565 					  blk_status_t error)
2566 {
2567 	struct nvme_queue *nvmeq = req->end_io_data;
2568 
2569 	if (error)
2570 		set_bit(NVMEQ_DELETE_ERROR, &nvmeq->flags);
2571 
2572 	return nvme_del_queue_end(req, error);
2573 }
2574 
nvme_delete_queue(struct nvme_queue * nvmeq,u8 opcode)2575 static int nvme_delete_queue(struct nvme_queue *nvmeq, u8 opcode)
2576 {
2577 	struct request_queue *q = nvmeq->dev->ctrl.admin_q;
2578 	struct request *req;
2579 	struct nvme_command cmd = { };
2580 
2581 	cmd.delete_queue.opcode = opcode;
2582 	cmd.delete_queue.qid = cpu_to_le16(nvmeq->qid);
2583 
2584 	req = blk_mq_alloc_request(q, nvme_req_op(&cmd), BLK_MQ_REQ_NOWAIT);
2585 	if (IS_ERR(req))
2586 		return PTR_ERR(req);
2587 	nvme_init_request(req, &cmd);
2588 
2589 	if (opcode == nvme_admin_delete_cq)
2590 		req->end_io = nvme_del_cq_end;
2591 	else
2592 		req->end_io = nvme_del_queue_end;
2593 	req->end_io_data = nvmeq;
2594 
2595 	init_completion(&nvmeq->delete_done);
2596 	blk_execute_rq_nowait(req, false);
2597 	return 0;
2598 }
2599 
__nvme_delete_io_queues(struct nvme_dev * dev,u8 opcode)2600 static bool __nvme_delete_io_queues(struct nvme_dev *dev, u8 opcode)
2601 {
2602 	int nr_queues = dev->online_queues - 1, sent = 0;
2603 	unsigned long timeout;
2604 
2605  retry:
2606 	timeout = NVME_ADMIN_TIMEOUT;
2607 	while (nr_queues > 0) {
2608 		if (nvme_delete_queue(&dev->queues[nr_queues], opcode))
2609 			break;
2610 		nr_queues--;
2611 		sent++;
2612 	}
2613 	while (sent) {
2614 		struct nvme_queue *nvmeq = &dev->queues[nr_queues + sent];
2615 
2616 		timeout = wait_for_completion_io_timeout(&nvmeq->delete_done,
2617 				timeout);
2618 		if (timeout == 0)
2619 			return false;
2620 
2621 		sent--;
2622 		if (nr_queues)
2623 			goto retry;
2624 	}
2625 	return true;
2626 }
2627 
nvme_delete_io_queues(struct nvme_dev * dev)2628 static void nvme_delete_io_queues(struct nvme_dev *dev)
2629 {
2630 	if (__nvme_delete_io_queues(dev, nvme_admin_delete_sq))
2631 		__nvme_delete_io_queues(dev, nvme_admin_delete_cq);
2632 }
2633 
nvme_pci_nr_maps(struct nvme_dev * dev)2634 static unsigned int nvme_pci_nr_maps(struct nvme_dev *dev)
2635 {
2636 	if (dev->io_queues[HCTX_TYPE_POLL])
2637 		return 3;
2638 	if (dev->io_queues[HCTX_TYPE_READ])
2639 		return 2;
2640 	return 1;
2641 }
2642 
nvme_pci_update_nr_queues(struct nvme_dev * dev)2643 static bool nvme_pci_update_nr_queues(struct nvme_dev *dev)
2644 {
2645 	if (!dev->ctrl.tagset) {
2646 		nvme_alloc_io_tag_set(&dev->ctrl, &dev->tagset, &nvme_mq_ops,
2647 				nvme_pci_nr_maps(dev), sizeof(struct nvme_iod));
2648 		return true;
2649 	}
2650 
2651 	/* Give up if we are racing with nvme_dev_disable() */
2652 	if (!mutex_trylock(&dev->shutdown_lock))
2653 		return false;
2654 
2655 	/* Check if nvme_dev_disable() has been executed already */
2656 	if (!dev->online_queues) {
2657 		mutex_unlock(&dev->shutdown_lock);
2658 		return false;
2659 	}
2660 
2661 	blk_mq_update_nr_hw_queues(&dev->tagset, dev->online_queues - 1);
2662 	/* free previously allocated queues that are no longer usable */
2663 	nvme_free_queues(dev, dev->online_queues);
2664 	mutex_unlock(&dev->shutdown_lock);
2665 	return true;
2666 }
2667 
nvme_pci_enable(struct nvme_dev * dev)2668 static int nvme_pci_enable(struct nvme_dev *dev)
2669 {
2670 	int result = -ENOMEM;
2671 	struct pci_dev *pdev = to_pci_dev(dev->dev);
2672 	unsigned int flags = PCI_IRQ_ALL_TYPES;
2673 
2674 	if (pci_enable_device_mem(pdev))
2675 		return result;
2676 
2677 	pci_set_master(pdev);
2678 
2679 	if (readl(dev->bar + NVME_REG_CSTS) == -1) {
2680 		result = -ENODEV;
2681 		goto disable;
2682 	}
2683 
2684 	/*
2685 	 * Some devices and/or platforms don't advertise or work with INTx
2686 	 * interrupts. Pre-enable a single MSIX or MSI vec for setup. We'll
2687 	 * adjust this later.
2688 	 */
2689 	if (dev->ctrl.quirks & NVME_QUIRK_BROKEN_MSI)
2690 		flags &= ~PCI_IRQ_MSI;
2691 	result = pci_alloc_irq_vectors(pdev, 1, 1, flags);
2692 	if (result < 0)
2693 		goto disable;
2694 
2695 	dev->ctrl.cap = lo_hi_readq(dev->bar + NVME_REG_CAP);
2696 
2697 	dev->q_depth = min_t(u32, NVME_CAP_MQES(dev->ctrl.cap) + 1,
2698 				io_queue_depth);
2699 	dev->db_stride = 1 << NVME_CAP_STRIDE(dev->ctrl.cap);
2700 	dev->dbs = dev->bar + 4096;
2701 
2702 	/*
2703 	 * Some Apple controllers require a non-standard SQE size.
2704 	 * Interestingly they also seem to ignore the CC:IOSQES register
2705 	 * so we don't bother updating it here.
2706 	 */
2707 	if (dev->ctrl.quirks & NVME_QUIRK_128_BYTES_SQES)
2708 		dev->io_sqes = 7;
2709 	else
2710 		dev->io_sqes = NVME_NVM_IOSQES;
2711 
2712 	if (dev->ctrl.quirks & NVME_QUIRK_QDEPTH_ONE) {
2713 		dev->q_depth = 2;
2714 	} else if (pdev->vendor == PCI_VENDOR_ID_SAMSUNG &&
2715 		   (pdev->device == 0xa821 || pdev->device == 0xa822) &&
2716 		   NVME_CAP_MQES(dev->ctrl.cap) == 0) {
2717 		dev->q_depth = 64;
2718 		dev_err(dev->ctrl.device, "detected PM1725 NVMe controller, "
2719                         "set queue depth=%u\n", dev->q_depth);
2720 	}
2721 
2722 	/*
2723 	 * Controllers with the shared tags quirk need the IO queue to be
2724 	 * big enough so that we get 32 tags for the admin queue
2725 	 */
2726 	if ((dev->ctrl.quirks & NVME_QUIRK_SHARED_TAGS) &&
2727 	    (dev->q_depth < (NVME_AQ_DEPTH + 2))) {
2728 		dev->q_depth = NVME_AQ_DEPTH + 2;
2729 		dev_warn(dev->ctrl.device, "IO queue depth clamped to %d\n",
2730 			 dev->q_depth);
2731 	}
2732 	dev->ctrl.sqsize = dev->q_depth - 1; /* 0's based queue depth */
2733 
2734 	nvme_map_cmb(dev);
2735 
2736 	pci_save_state(pdev);
2737 
2738 	result = nvme_pci_configure_admin_queue(dev);
2739 	if (result)
2740 		goto free_irq;
2741 	return result;
2742 
2743  free_irq:
2744 	pci_free_irq_vectors(pdev);
2745  disable:
2746 	pci_disable_device(pdev);
2747 	return result;
2748 }
2749 
nvme_dev_unmap(struct nvme_dev * dev)2750 static void nvme_dev_unmap(struct nvme_dev *dev)
2751 {
2752 	if (dev->bar)
2753 		iounmap(dev->bar);
2754 	pci_release_mem_regions(to_pci_dev(dev->dev));
2755 }
2756 
nvme_pci_ctrl_is_dead(struct nvme_dev * dev)2757 static bool nvme_pci_ctrl_is_dead(struct nvme_dev *dev)
2758 {
2759 	struct pci_dev *pdev = to_pci_dev(dev->dev);
2760 	u32 csts;
2761 
2762 	if (!pci_is_enabled(pdev) || !pci_device_is_present(pdev))
2763 		return true;
2764 	if (pdev->error_state != pci_channel_io_normal)
2765 		return true;
2766 
2767 	csts = readl(dev->bar + NVME_REG_CSTS);
2768 	return (csts & NVME_CSTS_CFS) || !(csts & NVME_CSTS_RDY);
2769 }
2770 
nvme_dev_disable(struct nvme_dev * dev,bool shutdown)2771 static void nvme_dev_disable(struct nvme_dev *dev, bool shutdown)
2772 {
2773 	enum nvme_ctrl_state state = nvme_ctrl_state(&dev->ctrl);
2774 	struct pci_dev *pdev = to_pci_dev(dev->dev);
2775 	bool dead;
2776 
2777 	mutex_lock(&dev->shutdown_lock);
2778 	dead = nvme_pci_ctrl_is_dead(dev);
2779 	if (state == NVME_CTRL_LIVE || state == NVME_CTRL_RESETTING) {
2780 		if (pci_is_enabled(pdev))
2781 			nvme_start_freeze(&dev->ctrl);
2782 		/*
2783 		 * Give the controller a chance to complete all entered requests
2784 		 * if doing a safe shutdown.
2785 		 */
2786 		if (!dead && shutdown)
2787 			nvme_wait_freeze_timeout(&dev->ctrl, NVME_IO_TIMEOUT);
2788 	}
2789 
2790 	nvme_quiesce_io_queues(&dev->ctrl);
2791 
2792 	if (!dead && dev->ctrl.queue_count > 0) {
2793 		nvme_delete_io_queues(dev);
2794 		nvme_disable_ctrl(&dev->ctrl, shutdown);
2795 		nvme_poll_irqdisable(&dev->queues[0]);
2796 	}
2797 	nvme_suspend_io_queues(dev);
2798 	nvme_suspend_queue(dev, 0);
2799 	pci_free_irq_vectors(pdev);
2800 	if (pci_is_enabled(pdev))
2801 		pci_disable_device(pdev);
2802 	nvme_reap_pending_cqes(dev);
2803 
2804 	nvme_cancel_tagset(&dev->ctrl);
2805 	nvme_cancel_admin_tagset(&dev->ctrl);
2806 
2807 	/*
2808 	 * The driver will not be starting up queues again if shutting down so
2809 	 * must flush all entered requests to their failed completion to avoid
2810 	 * deadlocking blk-mq hot-cpu notifier.
2811 	 */
2812 	if (shutdown) {
2813 		nvme_unquiesce_io_queues(&dev->ctrl);
2814 		if (dev->ctrl.admin_q && !blk_queue_dying(dev->ctrl.admin_q))
2815 			nvme_unquiesce_admin_queue(&dev->ctrl);
2816 	}
2817 	mutex_unlock(&dev->shutdown_lock);
2818 }
2819 
nvme_disable_prepare_reset(struct nvme_dev * dev,bool shutdown)2820 static int nvme_disable_prepare_reset(struct nvme_dev *dev, bool shutdown)
2821 {
2822 	if (!nvme_wait_reset(&dev->ctrl))
2823 		return -EBUSY;
2824 	nvme_dev_disable(dev, shutdown);
2825 	return 0;
2826 }
2827 
nvme_setup_prp_pools(struct nvme_dev * dev)2828 static int nvme_setup_prp_pools(struct nvme_dev *dev)
2829 {
2830 	size_t small_align = 256;
2831 
2832 	dev->prp_page_pool = dma_pool_create("prp list page", dev->dev,
2833 						NVME_CTRL_PAGE_SIZE,
2834 						NVME_CTRL_PAGE_SIZE, 0);
2835 	if (!dev->prp_page_pool)
2836 		return -ENOMEM;
2837 
2838 	if (dev->ctrl.quirks & NVME_QUIRK_DMAPOOL_ALIGN_512)
2839 		small_align = 512;
2840 
2841 	/* Optimisation for I/Os between 4k and 128k */
2842 	dev->prp_small_pool = dma_pool_create("prp list 256", dev->dev,
2843 						256, small_align, 0);
2844 	if (!dev->prp_small_pool) {
2845 		dma_pool_destroy(dev->prp_page_pool);
2846 		return -ENOMEM;
2847 	}
2848 	return 0;
2849 }
2850 
nvme_release_prp_pools(struct nvme_dev * dev)2851 static void nvme_release_prp_pools(struct nvme_dev *dev)
2852 {
2853 	dma_pool_destroy(dev->prp_page_pool);
2854 	dma_pool_destroy(dev->prp_small_pool);
2855 }
2856 
nvme_pci_alloc_iod_mempool(struct nvme_dev * dev)2857 static int nvme_pci_alloc_iod_mempool(struct nvme_dev *dev)
2858 {
2859 	size_t meta_size = sizeof(struct scatterlist) * (NVME_MAX_META_SEGS + 1);
2860 	size_t alloc_size = sizeof(struct scatterlist) * NVME_MAX_SEGS;
2861 
2862 	dev->iod_mempool = mempool_create_node(1,
2863 			mempool_kmalloc, mempool_kfree,
2864 			(void *)alloc_size, GFP_KERNEL,
2865 			dev_to_node(dev->dev));
2866 	if (!dev->iod_mempool)
2867 		return -ENOMEM;
2868 
2869 	dev->iod_meta_mempool = mempool_create_node(1,
2870 			mempool_kmalloc, mempool_kfree,
2871 			(void *)meta_size, GFP_KERNEL,
2872 			dev_to_node(dev->dev));
2873 	if (!dev->iod_meta_mempool)
2874 		goto free;
2875 
2876 	return 0;
2877 free:
2878 	mempool_destroy(dev->iod_mempool);
2879 	return -ENOMEM;
2880 }
2881 
nvme_free_tagset(struct nvme_dev * dev)2882 static void nvme_free_tagset(struct nvme_dev *dev)
2883 {
2884 	if (dev->tagset.tags)
2885 		nvme_remove_io_tag_set(&dev->ctrl);
2886 	dev->ctrl.tagset = NULL;
2887 }
2888 
2889 /* pairs with nvme_pci_alloc_dev */
nvme_pci_free_ctrl(struct nvme_ctrl * ctrl)2890 static void nvme_pci_free_ctrl(struct nvme_ctrl *ctrl)
2891 {
2892 	struct nvme_dev *dev = to_nvme_dev(ctrl);
2893 
2894 	nvme_free_tagset(dev);
2895 	put_device(dev->dev);
2896 	kfree(dev->queues);
2897 	kfree(dev);
2898 }
2899 
nvme_reset_work(struct work_struct * work)2900 static void nvme_reset_work(struct work_struct *work)
2901 {
2902 	struct nvme_dev *dev =
2903 		container_of(work, struct nvme_dev, ctrl.reset_work);
2904 	bool was_suspend = !!(dev->ctrl.ctrl_config & NVME_CC_SHN_NORMAL);
2905 	int result;
2906 
2907 	if (nvme_ctrl_state(&dev->ctrl) != NVME_CTRL_RESETTING) {
2908 		dev_warn(dev->ctrl.device, "ctrl state %d is not RESETTING\n",
2909 			 dev->ctrl.state);
2910 		result = -ENODEV;
2911 		goto out;
2912 	}
2913 
2914 	/*
2915 	 * If we're called to reset a live controller first shut it down before
2916 	 * moving on.
2917 	 */
2918 	if (dev->ctrl.ctrl_config & NVME_CC_ENABLE)
2919 		nvme_dev_disable(dev, false);
2920 	nvme_sync_queues(&dev->ctrl);
2921 
2922 	mutex_lock(&dev->shutdown_lock);
2923 	result = nvme_pci_enable(dev);
2924 	if (result)
2925 		goto out_unlock;
2926 	nvme_unquiesce_admin_queue(&dev->ctrl);
2927 	mutex_unlock(&dev->shutdown_lock);
2928 
2929 	/*
2930 	 * Introduce CONNECTING state from nvme-fc/rdma transports to mark the
2931 	 * initializing procedure here.
2932 	 */
2933 	if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_CONNECTING)) {
2934 		dev_warn(dev->ctrl.device,
2935 			"failed to mark controller CONNECTING\n");
2936 		result = -EBUSY;
2937 		goto out;
2938 	}
2939 
2940 	result = nvme_init_ctrl_finish(&dev->ctrl, was_suspend);
2941 	if (result)
2942 		goto out;
2943 
2944 	if (nvme_ctrl_meta_sgl_supported(&dev->ctrl))
2945 		dev->ctrl.max_integrity_segments = NVME_MAX_META_SEGS;
2946 	else
2947 		dev->ctrl.max_integrity_segments = 1;
2948 
2949 	nvme_dbbuf_dma_alloc(dev);
2950 
2951 	result = nvme_setup_host_mem(dev);
2952 	if (result < 0)
2953 		goto out;
2954 
2955 	result = nvme_setup_io_queues(dev);
2956 	if (result)
2957 		goto out;
2958 
2959 	/*
2960 	 * Freeze and update the number of I/O queues as thos might have
2961 	 * changed.  If there are no I/O queues left after this reset, keep the
2962 	 * controller around but remove all namespaces.
2963 	 */
2964 	if (dev->online_queues > 1) {
2965 		nvme_dbbuf_set(dev);
2966 		nvme_unquiesce_io_queues(&dev->ctrl);
2967 		nvme_wait_freeze(&dev->ctrl);
2968 		if (!nvme_pci_update_nr_queues(dev))
2969 			goto out;
2970 		nvme_unfreeze(&dev->ctrl);
2971 	} else {
2972 		dev_warn(dev->ctrl.device, "IO queues lost\n");
2973 		nvme_mark_namespaces_dead(&dev->ctrl);
2974 		nvme_unquiesce_io_queues(&dev->ctrl);
2975 		nvme_remove_namespaces(&dev->ctrl);
2976 		nvme_free_tagset(dev);
2977 	}
2978 
2979 	/*
2980 	 * If only admin queue live, keep it to do further investigation or
2981 	 * recovery.
2982 	 */
2983 	if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_LIVE)) {
2984 		dev_warn(dev->ctrl.device,
2985 			"failed to mark controller live state\n");
2986 		result = -ENODEV;
2987 		goto out;
2988 	}
2989 
2990 	nvme_start_ctrl(&dev->ctrl);
2991 	return;
2992 
2993  out_unlock:
2994 	mutex_unlock(&dev->shutdown_lock);
2995  out:
2996 	/*
2997 	 * Set state to deleting now to avoid blocking nvme_wait_reset(), which
2998 	 * may be holding this pci_dev's device lock.
2999 	 */
3000 	dev_warn(dev->ctrl.device, "Disabling device after reset failure: %d\n",
3001 		 result);
3002 	nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING);
3003 	nvme_dev_disable(dev, true);
3004 	nvme_sync_queues(&dev->ctrl);
3005 	nvme_mark_namespaces_dead(&dev->ctrl);
3006 	nvme_unquiesce_io_queues(&dev->ctrl);
3007 	nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DEAD);
3008 }
3009 
nvme_pci_reg_read32(struct nvme_ctrl * ctrl,u32 off,u32 * val)3010 static int nvme_pci_reg_read32(struct nvme_ctrl *ctrl, u32 off, u32 *val)
3011 {
3012 	*val = readl(to_nvme_dev(ctrl)->bar + off);
3013 	return 0;
3014 }
3015 
nvme_pci_reg_write32(struct nvme_ctrl * ctrl,u32 off,u32 val)3016 static int nvme_pci_reg_write32(struct nvme_ctrl *ctrl, u32 off, u32 val)
3017 {
3018 	writel(val, to_nvme_dev(ctrl)->bar + off);
3019 	return 0;
3020 }
3021 
nvme_pci_reg_read64(struct nvme_ctrl * ctrl,u32 off,u64 * val)3022 static int nvme_pci_reg_read64(struct nvme_ctrl *ctrl, u32 off, u64 *val)
3023 {
3024 	*val = lo_hi_readq(to_nvme_dev(ctrl)->bar + off);
3025 	return 0;
3026 }
3027 
nvme_pci_get_address(struct nvme_ctrl * ctrl,char * buf,int size)3028 static int nvme_pci_get_address(struct nvme_ctrl *ctrl, char *buf, int size)
3029 {
3030 	struct pci_dev *pdev = to_pci_dev(to_nvme_dev(ctrl)->dev);
3031 
3032 	return snprintf(buf, size, "%s\n", dev_name(&pdev->dev));
3033 }
3034 
nvme_pci_print_device_info(struct nvme_ctrl * ctrl)3035 static void nvme_pci_print_device_info(struct nvme_ctrl *ctrl)
3036 {
3037 	struct pci_dev *pdev = to_pci_dev(to_nvme_dev(ctrl)->dev);
3038 	struct nvme_subsystem *subsys = ctrl->subsys;
3039 
3040 	dev_err(ctrl->device,
3041 		"VID:DID %04x:%04x model:%.*s firmware:%.*s\n",
3042 		pdev->vendor, pdev->device,
3043 		nvme_strlen(subsys->model, sizeof(subsys->model)),
3044 		subsys->model, nvme_strlen(subsys->firmware_rev,
3045 					   sizeof(subsys->firmware_rev)),
3046 		subsys->firmware_rev);
3047 }
3048 
nvme_pci_supports_pci_p2pdma(struct nvme_ctrl * ctrl)3049 static bool nvme_pci_supports_pci_p2pdma(struct nvme_ctrl *ctrl)
3050 {
3051 	struct nvme_dev *dev = to_nvme_dev(ctrl);
3052 
3053 	return dma_pci_p2pdma_supported(dev->dev);
3054 }
3055 
3056 static const struct nvme_ctrl_ops nvme_pci_ctrl_ops = {
3057 	.name			= "pcie",
3058 	.module			= THIS_MODULE,
3059 	.flags			= NVME_F_METADATA_SUPPORTED,
3060 	.dev_attr_groups	= nvme_pci_dev_attr_groups,
3061 	.reg_read32		= nvme_pci_reg_read32,
3062 	.reg_write32		= nvme_pci_reg_write32,
3063 	.reg_read64		= nvme_pci_reg_read64,
3064 	.free_ctrl		= nvme_pci_free_ctrl,
3065 	.submit_async_event	= nvme_pci_submit_async_event,
3066 	.subsystem_reset	= nvme_pci_subsystem_reset,
3067 	.get_address		= nvme_pci_get_address,
3068 	.print_device_info	= nvme_pci_print_device_info,
3069 	.supports_pci_p2pdma	= nvme_pci_supports_pci_p2pdma,
3070 };
3071 
nvme_dev_map(struct nvme_dev * dev)3072 static int nvme_dev_map(struct nvme_dev *dev)
3073 {
3074 	struct pci_dev *pdev = to_pci_dev(dev->dev);
3075 
3076 	if (pci_request_mem_regions(pdev, "nvme"))
3077 		return -ENODEV;
3078 
3079 	if (nvme_remap_bar(dev, NVME_REG_DBS + 4096))
3080 		goto release;
3081 
3082 	return 0;
3083   release:
3084 	pci_release_mem_regions(pdev);
3085 	return -ENODEV;
3086 }
3087 
check_vendor_combination_bug(struct pci_dev * pdev)3088 static unsigned long check_vendor_combination_bug(struct pci_dev *pdev)
3089 {
3090 	if (pdev->vendor == 0x144d && pdev->device == 0xa802) {
3091 		/*
3092 		 * Several Samsung devices seem to drop off the PCIe bus
3093 		 * randomly when APST is on and uses the deepest sleep state.
3094 		 * This has been observed on a Samsung "SM951 NVMe SAMSUNG
3095 		 * 256GB", a "PM951 NVMe SAMSUNG 512GB", and a "Samsung SSD
3096 		 * 950 PRO 256GB", but it seems to be restricted to two Dell
3097 		 * laptops.
3098 		 */
3099 		if (dmi_match(DMI_SYS_VENDOR, "Dell Inc.") &&
3100 		    (dmi_match(DMI_PRODUCT_NAME, "XPS 15 9550") ||
3101 		     dmi_match(DMI_PRODUCT_NAME, "Precision 5510")))
3102 			return NVME_QUIRK_NO_DEEPEST_PS;
3103 	} else if (pdev->vendor == 0x144d && pdev->device == 0xa804) {
3104 		/*
3105 		 * Samsung SSD 960 EVO drops off the PCIe bus after system
3106 		 * suspend on a Ryzen board, ASUS PRIME B350M-A, as well as
3107 		 * within few minutes after bootup on a Coffee Lake board -
3108 		 * ASUS PRIME Z370-A
3109 		 */
3110 		if (dmi_match(DMI_BOARD_VENDOR, "ASUSTeK COMPUTER INC.") &&
3111 		    (dmi_match(DMI_BOARD_NAME, "PRIME B350M-A") ||
3112 		     dmi_match(DMI_BOARD_NAME, "PRIME Z370-A")))
3113 			return NVME_QUIRK_NO_APST;
3114 	} else if ((pdev->vendor == 0x144d && (pdev->device == 0xa801 ||
3115 		    pdev->device == 0xa808 || pdev->device == 0xa809)) ||
3116 		   (pdev->vendor == 0x1e0f && pdev->device == 0x0001)) {
3117 		/*
3118 		 * Forcing to use host managed nvme power settings for
3119 		 * lowest idle power with quick resume latency on
3120 		 * Samsung and Toshiba SSDs based on suspend behavior
3121 		 * on Coffee Lake board for LENOVO C640
3122 		 */
3123 		if ((dmi_match(DMI_BOARD_VENDOR, "LENOVO")) &&
3124 		     dmi_match(DMI_BOARD_NAME, "LNVNB161216"))
3125 			return NVME_QUIRK_SIMPLE_SUSPEND;
3126 	} else if (pdev->vendor == 0x2646 && (pdev->device == 0x2263 ||
3127 		   pdev->device == 0x500f)) {
3128 		/*
3129 		 * Exclude some Kingston NV1 and A2000 devices from
3130 		 * NVME_QUIRK_SIMPLE_SUSPEND. Do a full suspend to save a
3131 		 * lot fo energy with s2idle sleep on some TUXEDO platforms.
3132 		 */
3133 		if (dmi_match(DMI_BOARD_NAME, "NS5X_NS7XAU") ||
3134 		    dmi_match(DMI_BOARD_NAME, "NS5x_7xAU") ||
3135 		    dmi_match(DMI_BOARD_NAME, "NS5x_7xPU") ||
3136 		    dmi_match(DMI_BOARD_NAME, "PH4PRX1_PH6PRX1"))
3137 			return NVME_QUIRK_FORCE_NO_SIMPLE_SUSPEND;
3138 	} else if (pdev->vendor == 0x144d && pdev->device == 0xa80d) {
3139 		/*
3140 		 * Exclude Samsung 990 Evo from NVME_QUIRK_SIMPLE_SUSPEND
3141 		 * because of high power consumption (> 2 Watt) in s2idle
3142 		 * sleep. Only some boards with Intel CPU are affected.
3143 		 */
3144 		if (dmi_match(DMI_BOARD_NAME, "DN50Z-140HC-YD") ||
3145 		    dmi_match(DMI_BOARD_NAME, "GMxPXxx") ||
3146 		    dmi_match(DMI_BOARD_NAME, "GXxMRXx") ||
3147 		    dmi_match(DMI_BOARD_NAME, "PH4PG31") ||
3148 		    dmi_match(DMI_BOARD_NAME, "PH4PRX1_PH6PRX1") ||
3149 		    dmi_match(DMI_BOARD_NAME, "PH6PG01_PH6PG71"))
3150 			return NVME_QUIRK_FORCE_NO_SIMPLE_SUSPEND;
3151 	}
3152 
3153 	/*
3154 	 * NVMe SSD drops off the PCIe bus after system idle
3155 	 * for 10 hours on a Lenovo N60z board.
3156 	 */
3157 	if (dmi_match(DMI_BOARD_NAME, "LXKT-ZXEG-N6"))
3158 		return NVME_QUIRK_NO_APST;
3159 
3160 	return 0;
3161 }
3162 
nvme_pci_alloc_dev(struct pci_dev * pdev,const struct pci_device_id * id)3163 static struct nvme_dev *nvme_pci_alloc_dev(struct pci_dev *pdev,
3164 		const struct pci_device_id *id)
3165 {
3166 	unsigned long quirks = id->driver_data;
3167 	int node = dev_to_node(&pdev->dev);
3168 	struct nvme_dev *dev;
3169 	int ret = -ENOMEM;
3170 
3171 	dev = kzalloc_node(sizeof(*dev), GFP_KERNEL, node);
3172 	if (!dev)
3173 		return ERR_PTR(-ENOMEM);
3174 	INIT_WORK(&dev->ctrl.reset_work, nvme_reset_work);
3175 	mutex_init(&dev->shutdown_lock);
3176 
3177 	dev->nr_write_queues = write_queues;
3178 	dev->nr_poll_queues = poll_queues;
3179 	dev->nr_allocated_queues = nvme_max_io_queues(dev) + 1;
3180 	dev->queues = kcalloc_node(dev->nr_allocated_queues,
3181 			sizeof(struct nvme_queue), GFP_KERNEL, node);
3182 	if (!dev->queues)
3183 		goto out_free_dev;
3184 
3185 	dev->dev = get_device(&pdev->dev);
3186 
3187 	quirks |= check_vendor_combination_bug(pdev);
3188 	if (!noacpi &&
3189 	    !(quirks & NVME_QUIRK_FORCE_NO_SIMPLE_SUSPEND) &&
3190 	    acpi_storage_d3(&pdev->dev)) {
3191 		/*
3192 		 * Some systems use a bios work around to ask for D3 on
3193 		 * platforms that support kernel managed suspend.
3194 		 */
3195 		dev_info(&pdev->dev,
3196 			 "platform quirk: setting simple suspend\n");
3197 		quirks |= NVME_QUIRK_SIMPLE_SUSPEND;
3198 	}
3199 	ret = nvme_init_ctrl(&dev->ctrl, &pdev->dev, &nvme_pci_ctrl_ops,
3200 			     quirks);
3201 	if (ret)
3202 		goto out_put_device;
3203 
3204 	if (dev->ctrl.quirks & NVME_QUIRK_DMA_ADDRESS_BITS_48)
3205 		dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(48));
3206 	else
3207 		dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
3208 	dma_set_min_align_mask(&pdev->dev, NVME_CTRL_PAGE_SIZE - 1);
3209 	dma_set_max_seg_size(&pdev->dev, 0xffffffff);
3210 
3211 	/*
3212 	 * Limit the max command size to prevent iod->sg allocations going
3213 	 * over a single page.
3214 	 */
3215 	dev->ctrl.max_hw_sectors = min_t(u32,
3216 		NVME_MAX_KB_SZ << 1, dma_opt_mapping_size(&pdev->dev) >> 9);
3217 	dev->ctrl.max_segments = NVME_MAX_SEGS;
3218 	dev->ctrl.max_integrity_segments = 1;
3219 	return dev;
3220 
3221 out_put_device:
3222 	put_device(dev->dev);
3223 	kfree(dev->queues);
3224 out_free_dev:
3225 	kfree(dev);
3226 	return ERR_PTR(ret);
3227 }
3228 
nvme_probe(struct pci_dev * pdev,const struct pci_device_id * id)3229 static int nvme_probe(struct pci_dev *pdev, const struct pci_device_id *id)
3230 {
3231 	struct nvme_dev *dev;
3232 	int result = -ENOMEM;
3233 
3234 	dev = nvme_pci_alloc_dev(pdev, id);
3235 	if (IS_ERR(dev))
3236 		return PTR_ERR(dev);
3237 
3238 	result = nvme_add_ctrl(&dev->ctrl);
3239 	if (result)
3240 		goto out_put_ctrl;
3241 
3242 	result = nvme_dev_map(dev);
3243 	if (result)
3244 		goto out_uninit_ctrl;
3245 
3246 	result = nvme_setup_prp_pools(dev);
3247 	if (result)
3248 		goto out_dev_unmap;
3249 
3250 	result = nvme_pci_alloc_iod_mempool(dev);
3251 	if (result)
3252 		goto out_release_prp_pools;
3253 
3254 	dev_info(dev->ctrl.device, "pci function %s\n", dev_name(&pdev->dev));
3255 
3256 	result = nvme_pci_enable(dev);
3257 	if (result)
3258 		goto out_release_iod_mempool;
3259 
3260 	result = nvme_alloc_admin_tag_set(&dev->ctrl, &dev->admin_tagset,
3261 				&nvme_mq_admin_ops, sizeof(struct nvme_iod));
3262 	if (result)
3263 		goto out_disable;
3264 
3265 	/*
3266 	 * Mark the controller as connecting before sending admin commands to
3267 	 * allow the timeout handler to do the right thing.
3268 	 */
3269 	if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_CONNECTING)) {
3270 		dev_warn(dev->ctrl.device,
3271 			"failed to mark controller CONNECTING\n");
3272 		result = -EBUSY;
3273 		goto out_disable;
3274 	}
3275 
3276 	result = nvme_init_ctrl_finish(&dev->ctrl, false);
3277 	if (result)
3278 		goto out_disable;
3279 
3280 	if (nvme_ctrl_meta_sgl_supported(&dev->ctrl))
3281 		dev->ctrl.max_integrity_segments = NVME_MAX_META_SEGS;
3282 	else
3283 		dev->ctrl.max_integrity_segments = 1;
3284 
3285 	nvme_dbbuf_dma_alloc(dev);
3286 
3287 	result = nvme_setup_host_mem(dev);
3288 	if (result < 0)
3289 		goto out_disable;
3290 
3291 	result = nvme_setup_io_queues(dev);
3292 	if (result)
3293 		goto out_disable;
3294 
3295 	if (dev->online_queues > 1) {
3296 		nvme_alloc_io_tag_set(&dev->ctrl, &dev->tagset, &nvme_mq_ops,
3297 				nvme_pci_nr_maps(dev), sizeof(struct nvme_iod));
3298 		nvme_dbbuf_set(dev);
3299 	}
3300 
3301 	if (!dev->ctrl.tagset)
3302 		dev_warn(dev->ctrl.device, "IO queues not created\n");
3303 
3304 	if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_LIVE)) {
3305 		dev_warn(dev->ctrl.device,
3306 			"failed to mark controller live state\n");
3307 		result = -ENODEV;
3308 		goto out_disable;
3309 	}
3310 
3311 	pci_set_drvdata(pdev, dev);
3312 
3313 	nvme_start_ctrl(&dev->ctrl);
3314 	nvme_put_ctrl(&dev->ctrl);
3315 	flush_work(&dev->ctrl.scan_work);
3316 	return 0;
3317 
3318 out_disable:
3319 	nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING);
3320 	nvme_dev_disable(dev, true);
3321 	nvme_free_host_mem(dev);
3322 	nvme_dev_remove_admin(dev);
3323 	nvme_dbbuf_dma_free(dev);
3324 	nvme_free_queues(dev, 0);
3325 out_release_iod_mempool:
3326 	mempool_destroy(dev->iod_mempool);
3327 	mempool_destroy(dev->iod_meta_mempool);
3328 out_release_prp_pools:
3329 	nvme_release_prp_pools(dev);
3330 out_dev_unmap:
3331 	nvme_dev_unmap(dev);
3332 out_uninit_ctrl:
3333 	nvme_uninit_ctrl(&dev->ctrl);
3334 out_put_ctrl:
3335 	nvme_put_ctrl(&dev->ctrl);
3336 	return result;
3337 }
3338 
nvme_reset_prepare(struct pci_dev * pdev)3339 static void nvme_reset_prepare(struct pci_dev *pdev)
3340 {
3341 	struct nvme_dev *dev = pci_get_drvdata(pdev);
3342 
3343 	/*
3344 	 * We don't need to check the return value from waiting for the reset
3345 	 * state as pci_dev device lock is held, making it impossible to race
3346 	 * with ->remove().
3347 	 */
3348 	nvme_disable_prepare_reset(dev, false);
3349 	nvme_sync_queues(&dev->ctrl);
3350 }
3351 
nvme_reset_done(struct pci_dev * pdev)3352 static void nvme_reset_done(struct pci_dev *pdev)
3353 {
3354 	struct nvme_dev *dev = pci_get_drvdata(pdev);
3355 
3356 	if (!nvme_try_sched_reset(&dev->ctrl))
3357 		flush_work(&dev->ctrl.reset_work);
3358 }
3359 
nvme_shutdown(struct pci_dev * pdev)3360 static void nvme_shutdown(struct pci_dev *pdev)
3361 {
3362 	struct nvme_dev *dev = pci_get_drvdata(pdev);
3363 
3364 	nvme_disable_prepare_reset(dev, true);
3365 }
3366 
3367 /*
3368  * The driver's remove may be called on a device in a partially initialized
3369  * state. This function must not have any dependencies on the device state in
3370  * order to proceed.
3371  */
nvme_remove(struct pci_dev * pdev)3372 static void nvme_remove(struct pci_dev *pdev)
3373 {
3374 	struct nvme_dev *dev = pci_get_drvdata(pdev);
3375 
3376 	nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING);
3377 	pci_set_drvdata(pdev, NULL);
3378 
3379 	if (!pci_device_is_present(pdev)) {
3380 		nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DEAD);
3381 		nvme_dev_disable(dev, true);
3382 	}
3383 
3384 	flush_work(&dev->ctrl.reset_work);
3385 	nvme_stop_ctrl(&dev->ctrl);
3386 	nvme_remove_namespaces(&dev->ctrl);
3387 	nvme_dev_disable(dev, true);
3388 	nvme_free_host_mem(dev);
3389 	nvme_dev_remove_admin(dev);
3390 	nvme_dbbuf_dma_free(dev);
3391 	nvme_free_queues(dev, 0);
3392 	mempool_destroy(dev->iod_mempool);
3393 	mempool_destroy(dev->iod_meta_mempool);
3394 	nvme_release_prp_pools(dev);
3395 	nvme_dev_unmap(dev);
3396 	nvme_uninit_ctrl(&dev->ctrl);
3397 }
3398 
3399 #ifdef CONFIG_PM_SLEEP
nvme_get_power_state(struct nvme_ctrl * ctrl,u32 * ps)3400 static int nvme_get_power_state(struct nvme_ctrl *ctrl, u32 *ps)
3401 {
3402 	return nvme_get_features(ctrl, NVME_FEAT_POWER_MGMT, 0, NULL, 0, ps);
3403 }
3404 
nvme_set_power_state(struct nvme_ctrl * ctrl,u32 ps)3405 static int nvme_set_power_state(struct nvme_ctrl *ctrl, u32 ps)
3406 {
3407 	return nvme_set_features(ctrl, NVME_FEAT_POWER_MGMT, ps, NULL, 0, NULL);
3408 }
3409 
nvme_resume(struct device * dev)3410 static int nvme_resume(struct device *dev)
3411 {
3412 	struct nvme_dev *ndev = pci_get_drvdata(to_pci_dev(dev));
3413 	struct nvme_ctrl *ctrl = &ndev->ctrl;
3414 
3415 	if (ndev->last_ps == U32_MAX ||
3416 	    nvme_set_power_state(ctrl, ndev->last_ps) != 0)
3417 		goto reset;
3418 	if (ctrl->hmpre && nvme_setup_host_mem(ndev))
3419 		goto reset;
3420 
3421 	return 0;
3422 reset:
3423 	return nvme_try_sched_reset(ctrl);
3424 }
3425 
nvme_suspend(struct device * dev)3426 static int nvme_suspend(struct device *dev)
3427 {
3428 	struct pci_dev *pdev = to_pci_dev(dev);
3429 	struct nvme_dev *ndev = pci_get_drvdata(pdev);
3430 	struct nvme_ctrl *ctrl = &ndev->ctrl;
3431 	int ret = -EBUSY;
3432 
3433 	ndev->last_ps = U32_MAX;
3434 
3435 	/*
3436 	 * The platform does not remove power for a kernel managed suspend so
3437 	 * use host managed nvme power settings for lowest idle power if
3438 	 * possible. This should have quicker resume latency than a full device
3439 	 * shutdown.  But if the firmware is involved after the suspend or the
3440 	 * device does not support any non-default power states, shut down the
3441 	 * device fully.
3442 	 *
3443 	 * If ASPM is not enabled for the device, shut down the device and allow
3444 	 * the PCI bus layer to put it into D3 in order to take the PCIe link
3445 	 * down, so as to allow the platform to achieve its minimum low-power
3446 	 * state (which may not be possible if the link is up).
3447 	 */
3448 	if (pm_suspend_via_firmware() || !ctrl->npss ||
3449 	    !pcie_aspm_enabled(pdev) ||
3450 	    (ndev->ctrl.quirks & NVME_QUIRK_SIMPLE_SUSPEND))
3451 		return nvme_disable_prepare_reset(ndev, true);
3452 
3453 	nvme_start_freeze(ctrl);
3454 	nvme_wait_freeze(ctrl);
3455 	nvme_sync_queues(ctrl);
3456 
3457 	if (nvme_ctrl_state(ctrl) != NVME_CTRL_LIVE)
3458 		goto unfreeze;
3459 
3460 	/*
3461 	 * Host memory access may not be successful in a system suspend state,
3462 	 * but the specification allows the controller to access memory in a
3463 	 * non-operational power state.
3464 	 */
3465 	if (ndev->hmb) {
3466 		ret = nvme_set_host_mem(ndev, 0);
3467 		if (ret < 0)
3468 			goto unfreeze;
3469 	}
3470 
3471 	ret = nvme_get_power_state(ctrl, &ndev->last_ps);
3472 	if (ret < 0)
3473 		goto unfreeze;
3474 
3475 	/*
3476 	 * A saved state prevents pci pm from generically controlling the
3477 	 * device's power. If we're using protocol specific settings, we don't
3478 	 * want pci interfering.
3479 	 */
3480 	pci_save_state(pdev);
3481 
3482 	ret = nvme_set_power_state(ctrl, ctrl->npss);
3483 	if (ret < 0)
3484 		goto unfreeze;
3485 
3486 	if (ret) {
3487 		/* discard the saved state */
3488 		pci_load_saved_state(pdev, NULL);
3489 
3490 		/*
3491 		 * Clearing npss forces a controller reset on resume. The
3492 		 * correct value will be rediscovered then.
3493 		 */
3494 		ret = nvme_disable_prepare_reset(ndev, true);
3495 		ctrl->npss = 0;
3496 	}
3497 unfreeze:
3498 	nvme_unfreeze(ctrl);
3499 	return ret;
3500 }
3501 
nvme_simple_suspend(struct device * dev)3502 static int nvme_simple_suspend(struct device *dev)
3503 {
3504 	struct nvme_dev *ndev = pci_get_drvdata(to_pci_dev(dev));
3505 
3506 	return nvme_disable_prepare_reset(ndev, true);
3507 }
3508 
nvme_simple_resume(struct device * dev)3509 static int nvme_simple_resume(struct device *dev)
3510 {
3511 	struct pci_dev *pdev = to_pci_dev(dev);
3512 	struct nvme_dev *ndev = pci_get_drvdata(pdev);
3513 
3514 	return nvme_try_sched_reset(&ndev->ctrl);
3515 }
3516 
3517 static const struct dev_pm_ops nvme_dev_pm_ops = {
3518 	.suspend	= nvme_suspend,
3519 	.resume		= nvme_resume,
3520 	.freeze		= nvme_simple_suspend,
3521 	.thaw		= nvme_simple_resume,
3522 	.poweroff	= nvme_simple_suspend,
3523 	.restore	= nvme_simple_resume,
3524 };
3525 #endif /* CONFIG_PM_SLEEP */
3526 
nvme_error_detected(struct pci_dev * pdev,pci_channel_state_t state)3527 static pci_ers_result_t nvme_error_detected(struct pci_dev *pdev,
3528 						pci_channel_state_t state)
3529 {
3530 	struct nvme_dev *dev = pci_get_drvdata(pdev);
3531 
3532 	/*
3533 	 * A frozen channel requires a reset. When detected, this method will
3534 	 * shutdown the controller to quiesce. The controller will be restarted
3535 	 * after the slot reset through driver's slot_reset callback.
3536 	 */
3537 	switch (state) {
3538 	case pci_channel_io_normal:
3539 		return PCI_ERS_RESULT_CAN_RECOVER;
3540 	case pci_channel_io_frozen:
3541 		dev_warn(dev->ctrl.device,
3542 			"frozen state error detected, reset controller\n");
3543 		if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_RESETTING)) {
3544 			nvme_dev_disable(dev, true);
3545 			return PCI_ERS_RESULT_DISCONNECT;
3546 		}
3547 		nvme_dev_disable(dev, false);
3548 		return PCI_ERS_RESULT_NEED_RESET;
3549 	case pci_channel_io_perm_failure:
3550 		dev_warn(dev->ctrl.device,
3551 			"failure state error detected, request disconnect\n");
3552 		return PCI_ERS_RESULT_DISCONNECT;
3553 	}
3554 	return PCI_ERS_RESULT_NEED_RESET;
3555 }
3556 
nvme_slot_reset(struct pci_dev * pdev)3557 static pci_ers_result_t nvme_slot_reset(struct pci_dev *pdev)
3558 {
3559 	struct nvme_dev *dev = pci_get_drvdata(pdev);
3560 
3561 	dev_info(dev->ctrl.device, "restart after slot reset\n");
3562 	pci_restore_state(pdev);
3563 	if (nvme_try_sched_reset(&dev->ctrl))
3564 		nvme_unquiesce_io_queues(&dev->ctrl);
3565 	return PCI_ERS_RESULT_RECOVERED;
3566 }
3567 
nvme_error_resume(struct pci_dev * pdev)3568 static void nvme_error_resume(struct pci_dev *pdev)
3569 {
3570 	struct nvme_dev *dev = pci_get_drvdata(pdev);
3571 
3572 	flush_work(&dev->ctrl.reset_work);
3573 }
3574 
3575 static const struct pci_error_handlers nvme_err_handler = {
3576 	.error_detected	= nvme_error_detected,
3577 	.slot_reset	= nvme_slot_reset,
3578 	.resume		= nvme_error_resume,
3579 	.reset_prepare	= nvme_reset_prepare,
3580 	.reset_done	= nvme_reset_done,
3581 };
3582 
3583 static const struct pci_device_id nvme_id_table[] = {
3584 	{ PCI_VDEVICE(INTEL, 0x0953),	/* Intel 750/P3500/P3600/P3700 */
3585 		.driver_data = NVME_QUIRK_STRIPE_SIZE |
3586 				NVME_QUIRK_DEALLOCATE_ZEROES, },
3587 	{ PCI_VDEVICE(INTEL, 0x0a53),	/* Intel P3520 */
3588 		.driver_data = NVME_QUIRK_STRIPE_SIZE |
3589 				NVME_QUIRK_DEALLOCATE_ZEROES, },
3590 	{ PCI_VDEVICE(INTEL, 0x0a54),	/* Intel P4500/P4600 */
3591 		.driver_data = NVME_QUIRK_STRIPE_SIZE |
3592 				NVME_QUIRK_DEALLOCATE_ZEROES |
3593 				NVME_QUIRK_IGNORE_DEV_SUBNQN |
3594 				NVME_QUIRK_BOGUS_NID, },
3595 	{ PCI_VDEVICE(INTEL, 0x0a55),	/* Dell Express Flash P4600 */
3596 		.driver_data = NVME_QUIRK_STRIPE_SIZE |
3597 				NVME_QUIRK_DEALLOCATE_ZEROES, },
3598 	{ PCI_VDEVICE(INTEL, 0xf1a5),	/* Intel 600P/P3100 */
3599 		.driver_data = NVME_QUIRK_NO_DEEPEST_PS |
3600 				NVME_QUIRK_MEDIUM_PRIO_SQ |
3601 				NVME_QUIRK_NO_TEMP_THRESH_CHANGE |
3602 				NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3603 	{ PCI_VDEVICE(INTEL, 0xf1a6),	/* Intel 760p/Pro 7600p */
3604 		.driver_data = NVME_QUIRK_IGNORE_DEV_SUBNQN, },
3605 	{ PCI_VDEVICE(INTEL, 0x5845),	/* Qemu emulated controller */
3606 		.driver_data = NVME_QUIRK_IDENTIFY_CNS |
3607 				NVME_QUIRK_DISABLE_WRITE_ZEROES |
3608 				NVME_QUIRK_BOGUS_NID, },
3609 	{ PCI_VDEVICE(REDHAT, 0x0010),	/* Qemu emulated controller */
3610 		.driver_data = NVME_QUIRK_BOGUS_NID, },
3611 	{ PCI_DEVICE(0x1217, 0x8760), /* O2 Micro 64GB Steam Deck */
3612 		.driver_data = NVME_QUIRK_DMAPOOL_ALIGN_512, },
3613 	{ PCI_DEVICE(0x126f, 0x1001),	/* Silicon Motion generic */
3614 		.driver_data = NVME_QUIRK_NO_DEEPEST_PS |
3615 				NVME_QUIRK_IGNORE_DEV_SUBNQN, },
3616 	{ PCI_DEVICE(0x126f, 0x2262),	/* Silicon Motion generic */
3617 		.driver_data = NVME_QUIRK_NO_DEEPEST_PS |
3618 				NVME_QUIRK_BOGUS_NID, },
3619 	{ PCI_DEVICE(0x126f, 0x2263),	/* Silicon Motion unidentified */
3620 		.driver_data = NVME_QUIRK_NO_NS_DESC_LIST |
3621 				NVME_QUIRK_BOGUS_NID, },
3622 	{ PCI_DEVICE(0x1bb1, 0x0100),   /* Seagate Nytro Flash Storage */
3623 		.driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY |
3624 				NVME_QUIRK_NO_NS_DESC_LIST, },
3625 	{ PCI_DEVICE(0x1c58, 0x0003),	/* HGST adapter */
3626 		.driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
3627 	{ PCI_DEVICE(0x1c58, 0x0023),	/* WDC SN200 adapter */
3628 		.driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
3629 	{ PCI_DEVICE(0x1c5f, 0x0540),	/* Memblaze Pblaze4 adapter */
3630 		.driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
3631 	{ PCI_DEVICE(0x144d, 0xa821),   /* Samsung PM1725 */
3632 		.driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
3633 	{ PCI_DEVICE(0x144d, 0xa822),   /* Samsung PM1725a */
3634 		.driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY |
3635 				NVME_QUIRK_DISABLE_WRITE_ZEROES|
3636 				NVME_QUIRK_IGNORE_DEV_SUBNQN, },
3637 	{ PCI_DEVICE(0x15b7, 0x5008),   /* Sandisk SN530 */
3638 		.driver_data = NVME_QUIRK_BROKEN_MSI },
3639 	{ PCI_DEVICE(0x15b7, 0x5009),   /* Sandisk SN550 */
3640 		.driver_data = NVME_QUIRK_BROKEN_MSI |
3641 				NVME_QUIRK_NO_DEEPEST_PS },
3642 	{ PCI_DEVICE(0x1987, 0x5012),	/* Phison E12 */
3643 		.driver_data = NVME_QUIRK_BOGUS_NID, },
3644 	{ PCI_DEVICE(0x1987, 0x5016),	/* Phison E16 */
3645 		.driver_data = NVME_QUIRK_IGNORE_DEV_SUBNQN |
3646 				NVME_QUIRK_BOGUS_NID, },
3647 	{ PCI_DEVICE(0x1987, 0x5019),  /* phison E19 */
3648 		.driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3649 	{ PCI_DEVICE(0x1987, 0x5021),   /* Phison E21 */
3650 		.driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3651 	{ PCI_DEVICE(0x1b4b, 0x1092),	/* Lexar 256 GB SSD */
3652 		.driver_data = NVME_QUIRK_NO_NS_DESC_LIST |
3653 				NVME_QUIRK_IGNORE_DEV_SUBNQN, },
3654 	{ PCI_DEVICE(0x1cc1, 0x33f8),   /* ADATA IM2P33F8ABR1 1 TB */
3655 		.driver_data = NVME_QUIRK_BOGUS_NID, },
3656 	{ PCI_DEVICE(0x10ec, 0x5762),   /* ADATA SX6000LNP */
3657 		.driver_data = NVME_QUIRK_IGNORE_DEV_SUBNQN |
3658 				NVME_QUIRK_BOGUS_NID, },
3659 	{ PCI_DEVICE(0x10ec, 0x5763),  /* ADATA SX6000PNP */
3660 		.driver_data = NVME_QUIRK_BOGUS_NID, },
3661 	{ PCI_DEVICE(0x1cc1, 0x8201),   /* ADATA SX8200PNP 512GB */
3662 		.driver_data = NVME_QUIRK_NO_DEEPEST_PS |
3663 				NVME_QUIRK_IGNORE_DEV_SUBNQN, },
3664 	 { PCI_DEVICE(0x1344, 0x5407), /* Micron Technology Inc NVMe SSD */
3665 		.driver_data = NVME_QUIRK_IGNORE_DEV_SUBNQN },
3666 	 { PCI_DEVICE(0x1344, 0x6001),   /* Micron Nitro NVMe */
3667 		 .driver_data = NVME_QUIRK_BOGUS_NID, },
3668 	{ PCI_DEVICE(0x1c5c, 0x1504),   /* SK Hynix PC400 */
3669 		.driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3670 	{ PCI_DEVICE(0x1c5c, 0x174a),   /* SK Hynix P31 SSD */
3671 		.driver_data = NVME_QUIRK_BOGUS_NID, },
3672 	{ PCI_DEVICE(0x1c5c, 0x1D59),   /* SK Hynix BC901 */
3673 		.driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3674 	{ PCI_DEVICE(0x15b7, 0x2001),   /*  Sandisk Skyhawk */
3675 		.driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3676 	{ PCI_DEVICE(0x1d97, 0x2263),   /* SPCC */
3677 		.driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3678 	{ PCI_DEVICE(0x144d, 0xa80b),   /* Samsung PM9B1 256G and 512G */
3679 		.driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES |
3680 				NVME_QUIRK_BOGUS_NID, },
3681 	{ PCI_DEVICE(0x144d, 0xa809),   /* Samsung MZALQ256HBJD 256G */
3682 		.driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3683 	{ PCI_DEVICE(0x144d, 0xa802),   /* Samsung SM953 */
3684 		.driver_data = NVME_QUIRK_BOGUS_NID, },
3685 	{ PCI_DEVICE(0x1cc4, 0x6303),   /* UMIS RPJTJ512MGE1QDY 512G */
3686 		.driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3687 	{ PCI_DEVICE(0x1cc4, 0x6302),   /* UMIS RPJTJ256MGE1QDY 256G */
3688 		.driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3689 	{ PCI_DEVICE(0x2646, 0x2262),   /* KINGSTON SKC2000 NVMe SSD */
3690 		.driver_data = NVME_QUIRK_NO_DEEPEST_PS, },
3691 	{ PCI_DEVICE(0x2646, 0x2263),   /* KINGSTON A2000 NVMe SSD  */
3692 		.driver_data = NVME_QUIRK_NO_DEEPEST_PS, },
3693 	{ PCI_DEVICE(0x2646, 0x5013),   /* Kingston KC3000, Kingston FURY Renegade */
3694 		.driver_data = NVME_QUIRK_NO_SECONDARY_TEMP_THRESH, },
3695 	{ PCI_DEVICE(0x2646, 0x5018),   /* KINGSTON OM8SFP4xxxxP OS21012 NVMe SSD */
3696 		.driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3697 	{ PCI_DEVICE(0x2646, 0x5016),   /* KINGSTON OM3PGP4xxxxP OS21011 NVMe SSD */
3698 		.driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3699 	{ PCI_DEVICE(0x2646, 0x501A),   /* KINGSTON OM8PGP4xxxxP OS21005 NVMe SSD */
3700 		.driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3701 	{ PCI_DEVICE(0x2646, 0x501B),   /* KINGSTON OM8PGP4xxxxQ OS21005 NVMe SSD */
3702 		.driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3703 	{ PCI_DEVICE(0x2646, 0x501E),   /* KINGSTON OM3PGP4xxxxQ OS21011 NVMe SSD */
3704 		.driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3705 	{ PCI_DEVICE(0x1f40, 0x1202),   /* Netac Technologies Co. NV3000 NVMe SSD */
3706 		.driver_data = NVME_QUIRK_BOGUS_NID, },
3707 	{ PCI_DEVICE(0x1f40, 0x5236),   /* Netac Technologies Co. NV7000 NVMe SSD */
3708 		.driver_data = NVME_QUIRK_BOGUS_NID, },
3709 	{ PCI_DEVICE(0x1e4B, 0x1001),   /* MAXIO MAP1001 */
3710 		.driver_data = NVME_QUIRK_BOGUS_NID, },
3711 	{ PCI_DEVICE(0x1e4B, 0x1002),   /* MAXIO MAP1002 */
3712 		.driver_data = NVME_QUIRK_BOGUS_NID, },
3713 	{ PCI_DEVICE(0x1e4B, 0x1202),   /* MAXIO MAP1202 */
3714 		.driver_data = NVME_QUIRK_BOGUS_NID, },
3715 	{ PCI_DEVICE(0x1e4B, 0x1602),   /* MAXIO MAP1602 */
3716 		.driver_data = NVME_QUIRK_BOGUS_NID, },
3717 	{ PCI_DEVICE(0x1cc1, 0x5350),   /* ADATA XPG GAMMIX S50 */
3718 		.driver_data = NVME_QUIRK_BOGUS_NID, },
3719 	{ PCI_DEVICE(0x1dbe, 0x5216),   /* Acer/INNOGRIT FA100/5216 NVMe SSD */
3720 		.driver_data = NVME_QUIRK_BOGUS_NID, },
3721 	{ PCI_DEVICE(0x1dbe, 0x5236),   /* ADATA XPG GAMMIX S70 */
3722 		.driver_data = NVME_QUIRK_BOGUS_NID, },
3723 	{ PCI_DEVICE(0x1e49, 0x0021),   /* ZHITAI TiPro5000 NVMe SSD */
3724 		.driver_data = NVME_QUIRK_NO_DEEPEST_PS, },
3725 	{ PCI_DEVICE(0x1e49, 0x0041),   /* ZHITAI TiPro7000 NVMe SSD */
3726 		.driver_data = NVME_QUIRK_NO_DEEPEST_PS, },
3727 	{ PCI_DEVICE(0x025e, 0xf1ac),   /* SOLIDIGM  P44 pro SSDPFKKW020X7  */
3728 		.driver_data = NVME_QUIRK_NO_DEEPEST_PS, },
3729 	{ PCI_DEVICE(0xc0a9, 0x540a),   /* Crucial P2 */
3730 		.driver_data = NVME_QUIRK_BOGUS_NID, },
3731 	{ PCI_DEVICE(0x1d97, 0x2263), /* Lexar NM610 */
3732 		.driver_data = NVME_QUIRK_BOGUS_NID, },
3733 	{ PCI_DEVICE(0x1d97, 0x1d97), /* Lexar NM620 */
3734 		.driver_data = NVME_QUIRK_BOGUS_NID, },
3735 	{ PCI_DEVICE(0x1d97, 0x2269), /* Lexar NM760 */
3736 		.driver_data = NVME_QUIRK_BOGUS_NID |
3737 				NVME_QUIRK_IGNORE_DEV_SUBNQN, },
3738 	{ PCI_DEVICE(0x10ec, 0x5763), /* TEAMGROUP T-FORCE CARDEA ZERO Z330 SSD */
3739 		.driver_data = NVME_QUIRK_BOGUS_NID, },
3740 	{ PCI_DEVICE(0x1e4b, 0x1602), /* HS-SSD-FUTURE 2048G  */
3741 		.driver_data = NVME_QUIRK_BOGUS_NID, },
3742 	{ PCI_DEVICE(0x10ec, 0x5765), /* TEAMGROUP MP33 2TB SSD */
3743 		.driver_data = NVME_QUIRK_BOGUS_NID, },
3744 	{ PCI_DEVICE(PCI_VENDOR_ID_AMAZON, 0x0061),
3745 		.driver_data = NVME_QUIRK_DMA_ADDRESS_BITS_48, },
3746 	{ PCI_DEVICE(PCI_VENDOR_ID_AMAZON, 0x0065),
3747 		.driver_data = NVME_QUIRK_DMA_ADDRESS_BITS_48, },
3748 	{ PCI_DEVICE(PCI_VENDOR_ID_AMAZON, 0x8061),
3749 		.driver_data = NVME_QUIRK_DMA_ADDRESS_BITS_48, },
3750 	{ PCI_DEVICE(PCI_VENDOR_ID_AMAZON, 0xcd00),
3751 		.driver_data = NVME_QUIRK_DMA_ADDRESS_BITS_48, },
3752 	{ PCI_DEVICE(PCI_VENDOR_ID_AMAZON, 0xcd01),
3753 		.driver_data = NVME_QUIRK_DMA_ADDRESS_BITS_48, },
3754 	{ PCI_DEVICE(PCI_VENDOR_ID_AMAZON, 0xcd02),
3755 		.driver_data = NVME_QUIRK_DMA_ADDRESS_BITS_48, },
3756 	{ PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2001),
3757 		/*
3758 		 * Fix for the Apple controller found in the MacBook8,1 and
3759 		 * some MacBook7,1 to avoid controller resets and data loss.
3760 		 */
3761 		.driver_data = NVME_QUIRK_SINGLE_VECTOR |
3762 				NVME_QUIRK_QDEPTH_ONE },
3763 	{ PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2003) },
3764 	{ PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2005),
3765 		.driver_data = NVME_QUIRK_SINGLE_VECTOR |
3766 				NVME_QUIRK_128_BYTES_SQES |
3767 				NVME_QUIRK_SHARED_TAGS |
3768 				NVME_QUIRK_SKIP_CID_GEN |
3769 				NVME_QUIRK_IDENTIFY_CNS },
3770 	{ PCI_DEVICE_CLASS(PCI_CLASS_STORAGE_EXPRESS, 0xffffff) },
3771 	{ 0, }
3772 };
3773 MODULE_DEVICE_TABLE(pci, nvme_id_table);
3774 
3775 static struct pci_driver nvme_driver = {
3776 	.name		= "nvme",
3777 	.id_table	= nvme_id_table,
3778 	.probe		= nvme_probe,
3779 	.remove		= nvme_remove,
3780 	.shutdown	= nvme_shutdown,
3781 	.driver		= {
3782 		.probe_type	= PROBE_PREFER_ASYNCHRONOUS,
3783 #ifdef CONFIG_PM_SLEEP
3784 		.pm		= &nvme_dev_pm_ops,
3785 #endif
3786 	},
3787 	.sriov_configure = pci_sriov_configure_simple,
3788 	.err_handler	= &nvme_err_handler,
3789 };
3790 
nvme_init(void)3791 static int __init nvme_init(void)
3792 {
3793 	BUILD_BUG_ON(sizeof(struct nvme_create_cq) != 64);
3794 	BUILD_BUG_ON(sizeof(struct nvme_create_sq) != 64);
3795 	BUILD_BUG_ON(sizeof(struct nvme_delete_queue) != 64);
3796 	BUILD_BUG_ON(IRQ_AFFINITY_MAX_SETS < 2);
3797 	BUILD_BUG_ON(NVME_MAX_SEGS > SGES_PER_PAGE);
3798 	BUILD_BUG_ON(sizeof(struct scatterlist) * NVME_MAX_SEGS > PAGE_SIZE);
3799 	BUILD_BUG_ON(nvme_pci_npages_prp() > NVME_MAX_NR_ALLOCATIONS);
3800 
3801 	return pci_register_driver(&nvme_driver);
3802 }
3803 
nvme_exit(void)3804 static void __exit nvme_exit(void)
3805 {
3806 	pci_unregister_driver(&nvme_driver);
3807 	flush_workqueue(nvme_wq);
3808 }
3809 
3810 MODULE_AUTHOR("Matthew Wilcox <willy@linux.intel.com>");
3811 MODULE_LICENSE("GPL");
3812 MODULE_VERSION("1.0");
3813 MODULE_DESCRIPTION("NVMe host PCIe transport driver");
3814 module_init(nvme_init);
3815 module_exit(nvme_exit);
3816