1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * NVMe over Fabrics TCP host.
4 * Copyright (c) 2018 Lightbits Labs. All rights reserved.
5 */
6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
7 #include <linux/module.h>
8 #include <linux/init.h>
9 #include <linux/slab.h>
10 #include <linux/err.h>
11 #include <linux/key.h>
12 #include <linux/nvme-tcp.h>
13 #include <linux/nvme-keyring.h>
14 #include <net/sock.h>
15 #include <net/tcp.h>
16 #include <net/tls.h>
17 #include <net/tls_prot.h>
18 #include <net/handshake.h>
19 #include <linux/blk-mq.h>
20 #include <crypto/hash.h>
21 #include <net/busy_poll.h>
22 #include <trace/events/sock.h>
23
24 #include "nvme.h"
25 #include "fabrics.h"
26
27 struct nvme_tcp_queue;
28
29 /* Define the socket priority to use for connections were it is desirable
30 * that the NIC consider performing optimized packet processing or filtering.
31 * A non-zero value being sufficient to indicate general consideration of any
32 * possible optimization. Making it a module param allows for alternative
33 * values that may be unique for some NIC implementations.
34 */
35 static int so_priority;
36 module_param(so_priority, int, 0644);
37 MODULE_PARM_DESC(so_priority, "nvme tcp socket optimize priority");
38
39 /*
40 * Use the unbound workqueue for nvme_tcp_wq, then we can set the cpu affinity
41 * from sysfs.
42 */
43 static bool wq_unbound;
44 module_param(wq_unbound, bool, 0644);
45 MODULE_PARM_DESC(wq_unbound, "Use unbound workqueue for nvme-tcp IO context (default false)");
46
47 /*
48 * TLS handshake timeout
49 */
50 static int tls_handshake_timeout = 10;
51 #ifdef CONFIG_NVME_TCP_TLS
52 module_param(tls_handshake_timeout, int, 0644);
53 MODULE_PARM_DESC(tls_handshake_timeout,
54 "nvme TLS handshake timeout in seconds (default 10)");
55 #endif
56
57 static atomic_t nvme_tcp_cpu_queues[NR_CPUS];
58
59 #ifdef CONFIG_DEBUG_LOCK_ALLOC
60 /* lockdep can detect a circular dependency of the form
61 * sk_lock -> mmap_lock (page fault) -> fs locks -> sk_lock
62 * because dependencies are tracked for both nvme-tcp and user contexts. Using
63 * a separate class prevents lockdep from conflating nvme-tcp socket use with
64 * user-space socket API use.
65 */
66 static struct lock_class_key nvme_tcp_sk_key[2];
67 static struct lock_class_key nvme_tcp_slock_key[2];
68
nvme_tcp_reclassify_socket(struct socket * sock)69 static void nvme_tcp_reclassify_socket(struct socket *sock)
70 {
71 struct sock *sk = sock->sk;
72
73 if (WARN_ON_ONCE(!sock_allow_reclassification(sk)))
74 return;
75
76 switch (sk->sk_family) {
77 case AF_INET:
78 sock_lock_init_class_and_name(sk, "slock-AF_INET-NVME",
79 &nvme_tcp_slock_key[0],
80 "sk_lock-AF_INET-NVME",
81 &nvme_tcp_sk_key[0]);
82 break;
83 case AF_INET6:
84 sock_lock_init_class_and_name(sk, "slock-AF_INET6-NVME",
85 &nvme_tcp_slock_key[1],
86 "sk_lock-AF_INET6-NVME",
87 &nvme_tcp_sk_key[1]);
88 break;
89 default:
90 WARN_ON_ONCE(1);
91 }
92 }
93 #else
nvme_tcp_reclassify_socket(struct socket * sock)94 static void nvme_tcp_reclassify_socket(struct socket *sock) { }
95 #endif
96
97 enum nvme_tcp_send_state {
98 NVME_TCP_SEND_CMD_PDU = 0,
99 NVME_TCP_SEND_H2C_PDU,
100 NVME_TCP_SEND_DATA,
101 NVME_TCP_SEND_DDGST,
102 };
103
104 struct nvme_tcp_request {
105 struct nvme_request req;
106 void *pdu;
107 struct nvme_tcp_queue *queue;
108 u32 data_len;
109 u32 pdu_len;
110 u32 pdu_sent;
111 u32 h2cdata_left;
112 u32 h2cdata_offset;
113 u16 ttag;
114 __le16 status;
115 struct list_head entry;
116 struct llist_node lentry;
117 __le32 ddgst;
118
119 struct bio *curr_bio;
120 struct iov_iter iter;
121
122 /* send state */
123 size_t offset;
124 size_t data_sent;
125 enum nvme_tcp_send_state state;
126 };
127
128 enum nvme_tcp_queue_flags {
129 NVME_TCP_Q_ALLOCATED = 0,
130 NVME_TCP_Q_LIVE = 1,
131 NVME_TCP_Q_POLLING = 2,
132 NVME_TCP_Q_IO_CPU_SET = 3,
133 };
134
135 enum nvme_tcp_recv_state {
136 NVME_TCP_RECV_PDU = 0,
137 NVME_TCP_RECV_DATA,
138 NVME_TCP_RECV_DDGST,
139 };
140
141 struct nvme_tcp_ctrl;
142 struct nvme_tcp_queue {
143 struct socket *sock;
144 struct work_struct io_work;
145 int io_cpu;
146
147 struct mutex queue_lock;
148 struct mutex send_mutex;
149 struct llist_head req_list;
150 struct list_head send_list;
151
152 /* recv state */
153 void *pdu;
154 int pdu_remaining;
155 int pdu_offset;
156 size_t data_remaining;
157 size_t ddgst_remaining;
158 unsigned int nr_cqe;
159
160 /* send state */
161 struct nvme_tcp_request *request;
162
163 u32 maxh2cdata;
164 size_t cmnd_capsule_len;
165 struct nvme_tcp_ctrl *ctrl;
166 unsigned long flags;
167 bool rd_enabled;
168
169 bool hdr_digest;
170 bool data_digest;
171 bool tls_enabled;
172 struct ahash_request *rcv_hash;
173 struct ahash_request *snd_hash;
174 __le32 exp_ddgst;
175 __le32 recv_ddgst;
176 struct completion tls_complete;
177 int tls_err;
178 struct page_frag_cache pf_cache;
179
180 void (*state_change)(struct sock *);
181 void (*data_ready)(struct sock *);
182 void (*write_space)(struct sock *);
183 };
184
185 struct nvme_tcp_ctrl {
186 /* read only in the hot path */
187 struct nvme_tcp_queue *queues;
188 struct blk_mq_tag_set tag_set;
189
190 /* other member variables */
191 struct list_head list;
192 struct blk_mq_tag_set admin_tag_set;
193 struct sockaddr_storage addr;
194 struct sockaddr_storage src_addr;
195 struct nvme_ctrl ctrl;
196
197 struct work_struct err_work;
198 struct delayed_work connect_work;
199 struct nvme_tcp_request async_req;
200 u32 io_queues[HCTX_MAX_TYPES];
201 };
202
203 static LIST_HEAD(nvme_tcp_ctrl_list);
204 static DEFINE_MUTEX(nvme_tcp_ctrl_mutex);
205 static struct workqueue_struct *nvme_tcp_wq;
206 static const struct blk_mq_ops nvme_tcp_mq_ops;
207 static const struct blk_mq_ops nvme_tcp_admin_mq_ops;
208 static int nvme_tcp_try_send(struct nvme_tcp_queue *queue);
209
to_tcp_ctrl(struct nvme_ctrl * ctrl)210 static inline struct nvme_tcp_ctrl *to_tcp_ctrl(struct nvme_ctrl *ctrl)
211 {
212 return container_of(ctrl, struct nvme_tcp_ctrl, ctrl);
213 }
214
nvme_tcp_queue_id(struct nvme_tcp_queue * queue)215 static inline int nvme_tcp_queue_id(struct nvme_tcp_queue *queue)
216 {
217 return queue - queue->ctrl->queues;
218 }
219
nvme_tcp_recv_pdu_supported(enum nvme_tcp_pdu_type type)220 static inline bool nvme_tcp_recv_pdu_supported(enum nvme_tcp_pdu_type type)
221 {
222 switch (type) {
223 case nvme_tcp_c2h_term:
224 case nvme_tcp_c2h_data:
225 case nvme_tcp_r2t:
226 case nvme_tcp_rsp:
227 return true;
228 default:
229 return false;
230 }
231 }
232
233 /*
234 * Check if the queue is TLS encrypted
235 */
nvme_tcp_queue_tls(struct nvme_tcp_queue * queue)236 static inline bool nvme_tcp_queue_tls(struct nvme_tcp_queue *queue)
237 {
238 if (!IS_ENABLED(CONFIG_NVME_TCP_TLS))
239 return 0;
240
241 return queue->tls_enabled;
242 }
243
244 /*
245 * Check if TLS is configured for the controller.
246 */
nvme_tcp_tls_configured(struct nvme_ctrl * ctrl)247 static inline bool nvme_tcp_tls_configured(struct nvme_ctrl *ctrl)
248 {
249 if (!IS_ENABLED(CONFIG_NVME_TCP_TLS))
250 return 0;
251
252 return ctrl->opts->tls;
253 }
254
nvme_tcp_tagset(struct nvme_tcp_queue * queue)255 static inline struct blk_mq_tags *nvme_tcp_tagset(struct nvme_tcp_queue *queue)
256 {
257 u32 queue_idx = nvme_tcp_queue_id(queue);
258
259 if (queue_idx == 0)
260 return queue->ctrl->admin_tag_set.tags[queue_idx];
261 return queue->ctrl->tag_set.tags[queue_idx - 1];
262 }
263
nvme_tcp_hdgst_len(struct nvme_tcp_queue * queue)264 static inline u8 nvme_tcp_hdgst_len(struct nvme_tcp_queue *queue)
265 {
266 return queue->hdr_digest ? NVME_TCP_DIGEST_LENGTH : 0;
267 }
268
nvme_tcp_ddgst_len(struct nvme_tcp_queue * queue)269 static inline u8 nvme_tcp_ddgst_len(struct nvme_tcp_queue *queue)
270 {
271 return queue->data_digest ? NVME_TCP_DIGEST_LENGTH : 0;
272 }
273
nvme_tcp_req_cmd_pdu(struct nvme_tcp_request * req)274 static inline void *nvme_tcp_req_cmd_pdu(struct nvme_tcp_request *req)
275 {
276 return req->pdu;
277 }
278
nvme_tcp_req_data_pdu(struct nvme_tcp_request * req)279 static inline void *nvme_tcp_req_data_pdu(struct nvme_tcp_request *req)
280 {
281 /* use the pdu space in the back for the data pdu */
282 return req->pdu + sizeof(struct nvme_tcp_cmd_pdu) -
283 sizeof(struct nvme_tcp_data_pdu);
284 }
285
nvme_tcp_inline_data_size(struct nvme_tcp_request * req)286 static inline size_t nvme_tcp_inline_data_size(struct nvme_tcp_request *req)
287 {
288 if (nvme_is_fabrics(req->req.cmd))
289 return NVME_TCP_ADMIN_CCSZ;
290 return req->queue->cmnd_capsule_len - sizeof(struct nvme_command);
291 }
292
nvme_tcp_async_req(struct nvme_tcp_request * req)293 static inline bool nvme_tcp_async_req(struct nvme_tcp_request *req)
294 {
295 return req == &req->queue->ctrl->async_req;
296 }
297
nvme_tcp_has_inline_data(struct nvme_tcp_request * req)298 static inline bool nvme_tcp_has_inline_data(struct nvme_tcp_request *req)
299 {
300 struct request *rq;
301
302 if (unlikely(nvme_tcp_async_req(req)))
303 return false; /* async events don't have a request */
304
305 rq = blk_mq_rq_from_pdu(req);
306
307 return rq_data_dir(rq) == WRITE && req->data_len &&
308 req->data_len <= nvme_tcp_inline_data_size(req);
309 }
310
nvme_tcp_req_cur_page(struct nvme_tcp_request * req)311 static inline struct page *nvme_tcp_req_cur_page(struct nvme_tcp_request *req)
312 {
313 return req->iter.bvec->bv_page;
314 }
315
nvme_tcp_req_cur_offset(struct nvme_tcp_request * req)316 static inline size_t nvme_tcp_req_cur_offset(struct nvme_tcp_request *req)
317 {
318 return req->iter.bvec->bv_offset + req->iter.iov_offset;
319 }
320
nvme_tcp_req_cur_length(struct nvme_tcp_request * req)321 static inline size_t nvme_tcp_req_cur_length(struct nvme_tcp_request *req)
322 {
323 return min_t(size_t, iov_iter_single_seg_count(&req->iter),
324 req->pdu_len - req->pdu_sent);
325 }
326
nvme_tcp_pdu_data_left(struct nvme_tcp_request * req)327 static inline size_t nvme_tcp_pdu_data_left(struct nvme_tcp_request *req)
328 {
329 return rq_data_dir(blk_mq_rq_from_pdu(req)) == WRITE ?
330 req->pdu_len - req->pdu_sent : 0;
331 }
332
nvme_tcp_pdu_last_send(struct nvme_tcp_request * req,int len)333 static inline size_t nvme_tcp_pdu_last_send(struct nvme_tcp_request *req,
334 int len)
335 {
336 return nvme_tcp_pdu_data_left(req) <= len;
337 }
338
nvme_tcp_init_iter(struct nvme_tcp_request * req,unsigned int dir)339 static void nvme_tcp_init_iter(struct nvme_tcp_request *req,
340 unsigned int dir)
341 {
342 struct request *rq = blk_mq_rq_from_pdu(req);
343 struct bio_vec *vec;
344 unsigned int size;
345 int nr_bvec;
346 size_t offset;
347
348 if (rq->rq_flags & RQF_SPECIAL_PAYLOAD) {
349 vec = &rq->special_vec;
350 nr_bvec = 1;
351 size = blk_rq_payload_bytes(rq);
352 offset = 0;
353 } else {
354 struct bio *bio = req->curr_bio;
355 struct bvec_iter bi;
356 struct bio_vec bv;
357
358 vec = __bvec_iter_bvec(bio->bi_io_vec, bio->bi_iter);
359 nr_bvec = 0;
360 bio_for_each_bvec(bv, bio, bi) {
361 nr_bvec++;
362 }
363 size = bio->bi_iter.bi_size;
364 offset = bio->bi_iter.bi_bvec_done;
365 }
366
367 iov_iter_bvec(&req->iter, dir, vec, nr_bvec, size);
368 req->iter.iov_offset = offset;
369 }
370
nvme_tcp_advance_req(struct nvme_tcp_request * req,int len)371 static inline void nvme_tcp_advance_req(struct nvme_tcp_request *req,
372 int len)
373 {
374 req->data_sent += len;
375 req->pdu_sent += len;
376 iov_iter_advance(&req->iter, len);
377 if (!iov_iter_count(&req->iter) &&
378 req->data_sent < req->data_len) {
379 req->curr_bio = req->curr_bio->bi_next;
380 nvme_tcp_init_iter(req, ITER_SOURCE);
381 }
382 }
383
nvme_tcp_send_all(struct nvme_tcp_queue * queue)384 static inline void nvme_tcp_send_all(struct nvme_tcp_queue *queue)
385 {
386 int ret;
387
388 /* drain the send queue as much as we can... */
389 do {
390 ret = nvme_tcp_try_send(queue);
391 } while (ret > 0);
392 }
393
nvme_tcp_queue_has_pending(struct nvme_tcp_queue * queue)394 static inline bool nvme_tcp_queue_has_pending(struct nvme_tcp_queue *queue)
395 {
396 return !list_empty(&queue->send_list) ||
397 !llist_empty(&queue->req_list);
398 }
399
nvme_tcp_queue_more(struct nvme_tcp_queue * queue)400 static inline bool nvme_tcp_queue_more(struct nvme_tcp_queue *queue)
401 {
402 return !nvme_tcp_queue_tls(queue) &&
403 nvme_tcp_queue_has_pending(queue);
404 }
405
nvme_tcp_queue_request(struct nvme_tcp_request * req,bool sync,bool last)406 static inline void nvme_tcp_queue_request(struct nvme_tcp_request *req,
407 bool sync, bool last)
408 {
409 struct nvme_tcp_queue *queue = req->queue;
410 bool empty;
411
412 empty = llist_add(&req->lentry, &queue->req_list) &&
413 list_empty(&queue->send_list) && !queue->request;
414
415 /*
416 * if we're the first on the send_list and we can try to send
417 * directly, otherwise queue io_work. Also, only do that if we
418 * are on the same cpu, so we don't introduce contention.
419 */
420 if (queue->io_cpu == raw_smp_processor_id() &&
421 sync && empty && mutex_trylock(&queue->send_mutex)) {
422 nvme_tcp_send_all(queue);
423 mutex_unlock(&queue->send_mutex);
424 }
425
426 if (last && nvme_tcp_queue_has_pending(queue))
427 queue_work_on(queue->io_cpu, nvme_tcp_wq, &queue->io_work);
428 }
429
nvme_tcp_process_req_list(struct nvme_tcp_queue * queue)430 static void nvme_tcp_process_req_list(struct nvme_tcp_queue *queue)
431 {
432 struct nvme_tcp_request *req;
433 struct llist_node *node;
434
435 for (node = llist_del_all(&queue->req_list); node; node = node->next) {
436 req = llist_entry(node, struct nvme_tcp_request, lentry);
437 list_add(&req->entry, &queue->send_list);
438 }
439 }
440
441 static inline struct nvme_tcp_request *
nvme_tcp_fetch_request(struct nvme_tcp_queue * queue)442 nvme_tcp_fetch_request(struct nvme_tcp_queue *queue)
443 {
444 struct nvme_tcp_request *req;
445
446 req = list_first_entry_or_null(&queue->send_list,
447 struct nvme_tcp_request, entry);
448 if (!req) {
449 nvme_tcp_process_req_list(queue);
450 req = list_first_entry_or_null(&queue->send_list,
451 struct nvme_tcp_request, entry);
452 if (unlikely(!req))
453 return NULL;
454 }
455
456 list_del_init(&req->entry);
457 init_llist_node(&req->lentry);
458 return req;
459 }
460
nvme_tcp_ddgst_final(struct ahash_request * hash,__le32 * dgst)461 static inline void nvme_tcp_ddgst_final(struct ahash_request *hash,
462 __le32 *dgst)
463 {
464 ahash_request_set_crypt(hash, NULL, (u8 *)dgst, 0);
465 crypto_ahash_final(hash);
466 }
467
nvme_tcp_ddgst_update(struct ahash_request * hash,struct page * page,off_t off,size_t len)468 static inline void nvme_tcp_ddgst_update(struct ahash_request *hash,
469 struct page *page, off_t off, size_t len)
470 {
471 struct scatterlist sg;
472
473 sg_init_table(&sg, 1);
474 sg_set_page(&sg, page, len, off);
475 ahash_request_set_crypt(hash, &sg, NULL, len);
476 crypto_ahash_update(hash);
477 }
478
nvme_tcp_hdgst(struct ahash_request * hash,void * pdu,size_t len)479 static inline void nvme_tcp_hdgst(struct ahash_request *hash,
480 void *pdu, size_t len)
481 {
482 struct scatterlist sg;
483
484 sg_init_one(&sg, pdu, len);
485 ahash_request_set_crypt(hash, &sg, pdu + len, len);
486 crypto_ahash_digest(hash);
487 }
488
nvme_tcp_verify_hdgst(struct nvme_tcp_queue * queue,void * pdu,size_t pdu_len)489 static int nvme_tcp_verify_hdgst(struct nvme_tcp_queue *queue,
490 void *pdu, size_t pdu_len)
491 {
492 struct nvme_tcp_hdr *hdr = pdu;
493 __le32 recv_digest;
494 __le32 exp_digest;
495
496 if (unlikely(!(hdr->flags & NVME_TCP_F_HDGST))) {
497 dev_err(queue->ctrl->ctrl.device,
498 "queue %d: header digest flag is cleared\n",
499 nvme_tcp_queue_id(queue));
500 return -EPROTO;
501 }
502
503 recv_digest = *(__le32 *)(pdu + hdr->hlen);
504 nvme_tcp_hdgst(queue->rcv_hash, pdu, pdu_len);
505 exp_digest = *(__le32 *)(pdu + hdr->hlen);
506 if (recv_digest != exp_digest) {
507 dev_err(queue->ctrl->ctrl.device,
508 "header digest error: recv %#x expected %#x\n",
509 le32_to_cpu(recv_digest), le32_to_cpu(exp_digest));
510 return -EIO;
511 }
512
513 return 0;
514 }
515
nvme_tcp_check_ddgst(struct nvme_tcp_queue * queue,void * pdu)516 static int nvme_tcp_check_ddgst(struct nvme_tcp_queue *queue, void *pdu)
517 {
518 struct nvme_tcp_hdr *hdr = pdu;
519 u8 digest_len = nvme_tcp_hdgst_len(queue);
520 u32 len;
521
522 len = le32_to_cpu(hdr->plen) - hdr->hlen -
523 ((hdr->flags & NVME_TCP_F_HDGST) ? digest_len : 0);
524
525 if (unlikely(len && !(hdr->flags & NVME_TCP_F_DDGST))) {
526 dev_err(queue->ctrl->ctrl.device,
527 "queue %d: data digest flag is cleared\n",
528 nvme_tcp_queue_id(queue));
529 return -EPROTO;
530 }
531 crypto_ahash_init(queue->rcv_hash);
532
533 return 0;
534 }
535
nvme_tcp_exit_request(struct blk_mq_tag_set * set,struct request * rq,unsigned int hctx_idx)536 static void nvme_tcp_exit_request(struct blk_mq_tag_set *set,
537 struct request *rq, unsigned int hctx_idx)
538 {
539 struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq);
540
541 page_frag_free(req->pdu);
542 }
543
nvme_tcp_init_request(struct blk_mq_tag_set * set,struct request * rq,unsigned int hctx_idx,unsigned int numa_node)544 static int nvme_tcp_init_request(struct blk_mq_tag_set *set,
545 struct request *rq, unsigned int hctx_idx,
546 unsigned int numa_node)
547 {
548 struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(set->driver_data);
549 struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq);
550 struct nvme_tcp_cmd_pdu *pdu;
551 int queue_idx = (set == &ctrl->tag_set) ? hctx_idx + 1 : 0;
552 struct nvme_tcp_queue *queue = &ctrl->queues[queue_idx];
553 u8 hdgst = nvme_tcp_hdgst_len(queue);
554
555 req->pdu = page_frag_alloc(&queue->pf_cache,
556 sizeof(struct nvme_tcp_cmd_pdu) + hdgst,
557 GFP_KERNEL | __GFP_ZERO);
558 if (!req->pdu)
559 return -ENOMEM;
560
561 pdu = req->pdu;
562 req->queue = queue;
563 nvme_req(rq)->ctrl = &ctrl->ctrl;
564 nvme_req(rq)->cmd = &pdu->cmd;
565 init_llist_node(&req->lentry);
566 INIT_LIST_HEAD(&req->entry);
567
568 return 0;
569 }
570
nvme_tcp_init_hctx(struct blk_mq_hw_ctx * hctx,void * data,unsigned int hctx_idx)571 static int nvme_tcp_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
572 unsigned int hctx_idx)
573 {
574 struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(data);
575 struct nvme_tcp_queue *queue = &ctrl->queues[hctx_idx + 1];
576
577 hctx->driver_data = queue;
578 return 0;
579 }
580
nvme_tcp_init_admin_hctx(struct blk_mq_hw_ctx * hctx,void * data,unsigned int hctx_idx)581 static int nvme_tcp_init_admin_hctx(struct blk_mq_hw_ctx *hctx, void *data,
582 unsigned int hctx_idx)
583 {
584 struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(data);
585 struct nvme_tcp_queue *queue = &ctrl->queues[0];
586
587 hctx->driver_data = queue;
588 return 0;
589 }
590
591 static enum nvme_tcp_recv_state
nvme_tcp_recv_state(struct nvme_tcp_queue * queue)592 nvme_tcp_recv_state(struct nvme_tcp_queue *queue)
593 {
594 return (queue->pdu_remaining) ? NVME_TCP_RECV_PDU :
595 (queue->ddgst_remaining) ? NVME_TCP_RECV_DDGST :
596 NVME_TCP_RECV_DATA;
597 }
598
nvme_tcp_init_recv_ctx(struct nvme_tcp_queue * queue)599 static void nvme_tcp_init_recv_ctx(struct nvme_tcp_queue *queue)
600 {
601 queue->pdu_remaining = sizeof(struct nvme_tcp_rsp_pdu) +
602 nvme_tcp_hdgst_len(queue);
603 queue->pdu_offset = 0;
604 queue->data_remaining = -1;
605 queue->ddgst_remaining = 0;
606 }
607
nvme_tcp_error_recovery(struct nvme_ctrl * ctrl)608 static void nvme_tcp_error_recovery(struct nvme_ctrl *ctrl)
609 {
610 if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING))
611 return;
612
613 dev_warn(ctrl->device, "starting error recovery\n");
614 queue_work(nvme_reset_wq, &to_tcp_ctrl(ctrl)->err_work);
615 }
616
nvme_tcp_process_nvme_cqe(struct nvme_tcp_queue * queue,struct nvme_completion * cqe)617 static int nvme_tcp_process_nvme_cqe(struct nvme_tcp_queue *queue,
618 struct nvme_completion *cqe)
619 {
620 struct nvme_tcp_request *req;
621 struct request *rq;
622
623 rq = nvme_find_rq(nvme_tcp_tagset(queue), cqe->command_id);
624 if (!rq) {
625 dev_err(queue->ctrl->ctrl.device,
626 "got bad cqe.command_id %#x on queue %d\n",
627 cqe->command_id, nvme_tcp_queue_id(queue));
628 nvme_tcp_error_recovery(&queue->ctrl->ctrl);
629 return -EINVAL;
630 }
631
632 req = blk_mq_rq_to_pdu(rq);
633 if (req->status == cpu_to_le16(NVME_SC_SUCCESS))
634 req->status = cqe->status;
635
636 if (!nvme_try_complete_req(rq, req->status, cqe->result))
637 nvme_complete_rq(rq);
638 queue->nr_cqe++;
639
640 return 0;
641 }
642
nvme_tcp_handle_c2h_data(struct nvme_tcp_queue * queue,struct nvme_tcp_data_pdu * pdu)643 static int nvme_tcp_handle_c2h_data(struct nvme_tcp_queue *queue,
644 struct nvme_tcp_data_pdu *pdu)
645 {
646 struct request *rq;
647
648 rq = nvme_find_rq(nvme_tcp_tagset(queue), pdu->command_id);
649 if (!rq) {
650 dev_err(queue->ctrl->ctrl.device,
651 "got bad c2hdata.command_id %#x on queue %d\n",
652 pdu->command_id, nvme_tcp_queue_id(queue));
653 return -ENOENT;
654 }
655
656 if (!blk_rq_payload_bytes(rq)) {
657 dev_err(queue->ctrl->ctrl.device,
658 "queue %d tag %#x unexpected data\n",
659 nvme_tcp_queue_id(queue), rq->tag);
660 return -EIO;
661 }
662
663 queue->data_remaining = le32_to_cpu(pdu->data_length);
664
665 if (pdu->hdr.flags & NVME_TCP_F_DATA_SUCCESS &&
666 unlikely(!(pdu->hdr.flags & NVME_TCP_F_DATA_LAST))) {
667 dev_err(queue->ctrl->ctrl.device,
668 "queue %d tag %#x SUCCESS set but not last PDU\n",
669 nvme_tcp_queue_id(queue), rq->tag);
670 nvme_tcp_error_recovery(&queue->ctrl->ctrl);
671 return -EPROTO;
672 }
673
674 return 0;
675 }
676
nvme_tcp_handle_comp(struct nvme_tcp_queue * queue,struct nvme_tcp_rsp_pdu * pdu)677 static int nvme_tcp_handle_comp(struct nvme_tcp_queue *queue,
678 struct nvme_tcp_rsp_pdu *pdu)
679 {
680 struct nvme_completion *cqe = &pdu->cqe;
681 int ret = 0;
682
683 /*
684 * AEN requests are special as they don't time out and can
685 * survive any kind of queue freeze and often don't respond to
686 * aborts. We don't even bother to allocate a struct request
687 * for them but rather special case them here.
688 */
689 if (unlikely(nvme_is_aen_req(nvme_tcp_queue_id(queue),
690 cqe->command_id)))
691 nvme_complete_async_event(&queue->ctrl->ctrl, cqe->status,
692 &cqe->result);
693 else
694 ret = nvme_tcp_process_nvme_cqe(queue, cqe);
695
696 return ret;
697 }
698
nvme_tcp_setup_h2c_data_pdu(struct nvme_tcp_request * req)699 static void nvme_tcp_setup_h2c_data_pdu(struct nvme_tcp_request *req)
700 {
701 struct nvme_tcp_data_pdu *data = nvme_tcp_req_data_pdu(req);
702 struct nvme_tcp_queue *queue = req->queue;
703 struct request *rq = blk_mq_rq_from_pdu(req);
704 u32 h2cdata_sent = req->pdu_len;
705 u8 hdgst = nvme_tcp_hdgst_len(queue);
706 u8 ddgst = nvme_tcp_ddgst_len(queue);
707
708 req->state = NVME_TCP_SEND_H2C_PDU;
709 req->offset = 0;
710 req->pdu_len = min(req->h2cdata_left, queue->maxh2cdata);
711 req->pdu_sent = 0;
712 req->h2cdata_left -= req->pdu_len;
713 req->h2cdata_offset += h2cdata_sent;
714
715 memset(data, 0, sizeof(*data));
716 data->hdr.type = nvme_tcp_h2c_data;
717 if (!req->h2cdata_left)
718 data->hdr.flags = NVME_TCP_F_DATA_LAST;
719 if (queue->hdr_digest)
720 data->hdr.flags |= NVME_TCP_F_HDGST;
721 if (queue->data_digest)
722 data->hdr.flags |= NVME_TCP_F_DDGST;
723 data->hdr.hlen = sizeof(*data);
724 data->hdr.pdo = data->hdr.hlen + hdgst;
725 data->hdr.plen =
726 cpu_to_le32(data->hdr.hlen + hdgst + req->pdu_len + ddgst);
727 data->ttag = req->ttag;
728 data->command_id = nvme_cid(rq);
729 data->data_offset = cpu_to_le32(req->h2cdata_offset);
730 data->data_length = cpu_to_le32(req->pdu_len);
731 }
732
nvme_tcp_handle_r2t(struct nvme_tcp_queue * queue,struct nvme_tcp_r2t_pdu * pdu)733 static int nvme_tcp_handle_r2t(struct nvme_tcp_queue *queue,
734 struct nvme_tcp_r2t_pdu *pdu)
735 {
736 struct nvme_tcp_request *req;
737 struct request *rq;
738 u32 r2t_length = le32_to_cpu(pdu->r2t_length);
739 u32 r2t_offset = le32_to_cpu(pdu->r2t_offset);
740
741 rq = nvme_find_rq(nvme_tcp_tagset(queue), pdu->command_id);
742 if (!rq) {
743 dev_err(queue->ctrl->ctrl.device,
744 "got bad r2t.command_id %#x on queue %d\n",
745 pdu->command_id, nvme_tcp_queue_id(queue));
746 return -ENOENT;
747 }
748 req = blk_mq_rq_to_pdu(rq);
749
750 if (unlikely(!r2t_length)) {
751 dev_err(queue->ctrl->ctrl.device,
752 "req %d r2t len is %u, probably a bug...\n",
753 rq->tag, r2t_length);
754 return -EPROTO;
755 }
756
757 if (unlikely(req->data_sent + r2t_length > req->data_len)) {
758 dev_err(queue->ctrl->ctrl.device,
759 "req %d r2t len %u exceeded data len %u (%zu sent)\n",
760 rq->tag, r2t_length, req->data_len, req->data_sent);
761 return -EPROTO;
762 }
763
764 if (unlikely(r2t_offset < req->data_sent)) {
765 dev_err(queue->ctrl->ctrl.device,
766 "req %d unexpected r2t offset %u (expected %zu)\n",
767 rq->tag, r2t_offset, req->data_sent);
768 return -EPROTO;
769 }
770
771 if (llist_on_list(&req->lentry) ||
772 !list_empty(&req->entry)) {
773 dev_err(queue->ctrl->ctrl.device,
774 "req %d unexpected r2t while processing request\n",
775 rq->tag);
776 return -EPROTO;
777 }
778
779 req->pdu_len = 0;
780 req->h2cdata_left = r2t_length;
781 req->h2cdata_offset = r2t_offset;
782 req->ttag = pdu->ttag;
783
784 nvme_tcp_setup_h2c_data_pdu(req);
785 nvme_tcp_queue_request(req, false, true);
786
787 return 0;
788 }
789
nvme_tcp_handle_c2h_term(struct nvme_tcp_queue * queue,struct nvme_tcp_term_pdu * pdu)790 static void nvme_tcp_handle_c2h_term(struct nvme_tcp_queue *queue,
791 struct nvme_tcp_term_pdu *pdu)
792 {
793 u16 fes;
794 const char *msg;
795 u32 plen = le32_to_cpu(pdu->hdr.plen);
796
797 static const char * const msg_table[] = {
798 [NVME_TCP_FES_INVALID_PDU_HDR] = "Invalid PDU Header Field",
799 [NVME_TCP_FES_PDU_SEQ_ERR] = "PDU Sequence Error",
800 [NVME_TCP_FES_HDR_DIGEST_ERR] = "Header Digest Error",
801 [NVME_TCP_FES_DATA_OUT_OF_RANGE] = "Data Transfer Out Of Range",
802 [NVME_TCP_FES_DATA_LIMIT_EXCEEDED] = "Data Transfer Limit Exceeded",
803 [NVME_TCP_FES_UNSUPPORTED_PARAM] = "Unsupported Parameter",
804 };
805
806 if (plen < NVME_TCP_MIN_C2HTERM_PLEN ||
807 plen > NVME_TCP_MAX_C2HTERM_PLEN) {
808 dev_err(queue->ctrl->ctrl.device,
809 "Received a malformed C2HTermReq PDU (plen = %u)\n",
810 plen);
811 return;
812 }
813
814 fes = le16_to_cpu(pdu->fes);
815 if (fes && fes < ARRAY_SIZE(msg_table))
816 msg = msg_table[fes];
817 else
818 msg = "Unknown";
819
820 dev_err(queue->ctrl->ctrl.device,
821 "Received C2HTermReq (FES = %s)\n", msg);
822 }
823
nvme_tcp_recv_pdu(struct nvme_tcp_queue * queue,struct sk_buff * skb,unsigned int * offset,size_t * len)824 static int nvme_tcp_recv_pdu(struct nvme_tcp_queue *queue, struct sk_buff *skb,
825 unsigned int *offset, size_t *len)
826 {
827 struct nvme_tcp_hdr *hdr;
828 char *pdu = queue->pdu;
829 size_t rcv_len = min_t(size_t, *len, queue->pdu_remaining);
830 int ret;
831
832 ret = skb_copy_bits(skb, *offset,
833 &pdu[queue->pdu_offset], rcv_len);
834 if (unlikely(ret))
835 return ret;
836
837 queue->pdu_remaining -= rcv_len;
838 queue->pdu_offset += rcv_len;
839 *offset += rcv_len;
840 *len -= rcv_len;
841 if (queue->pdu_remaining)
842 return 0;
843
844 hdr = queue->pdu;
845 if (unlikely(hdr->hlen != sizeof(struct nvme_tcp_rsp_pdu))) {
846 if (!nvme_tcp_recv_pdu_supported(hdr->type))
847 goto unsupported_pdu;
848
849 dev_err(queue->ctrl->ctrl.device,
850 "pdu type %d has unexpected header length (%d)\n",
851 hdr->type, hdr->hlen);
852 return -EPROTO;
853 }
854
855 if (unlikely(hdr->type == nvme_tcp_c2h_term)) {
856 /*
857 * C2HTermReq never includes Header or Data digests.
858 * Skip the checks.
859 */
860 nvme_tcp_handle_c2h_term(queue, (void *)queue->pdu);
861 return -EINVAL;
862 }
863
864 if (queue->hdr_digest) {
865 ret = nvme_tcp_verify_hdgst(queue, queue->pdu, hdr->hlen);
866 if (unlikely(ret))
867 return ret;
868 }
869
870
871 if (queue->data_digest) {
872 ret = nvme_tcp_check_ddgst(queue, queue->pdu);
873 if (unlikely(ret))
874 return ret;
875 }
876
877 switch (hdr->type) {
878 case nvme_tcp_c2h_data:
879 return nvme_tcp_handle_c2h_data(queue, (void *)queue->pdu);
880 case nvme_tcp_rsp:
881 nvme_tcp_init_recv_ctx(queue);
882 return nvme_tcp_handle_comp(queue, (void *)queue->pdu);
883 case nvme_tcp_r2t:
884 nvme_tcp_init_recv_ctx(queue);
885 return nvme_tcp_handle_r2t(queue, (void *)queue->pdu);
886 default:
887 goto unsupported_pdu;
888 }
889
890 unsupported_pdu:
891 dev_err(queue->ctrl->ctrl.device,
892 "unsupported pdu type (%d)\n", hdr->type);
893 return -EINVAL;
894 }
895
nvme_tcp_end_request(struct request * rq,u16 status)896 static inline void nvme_tcp_end_request(struct request *rq, u16 status)
897 {
898 union nvme_result res = {};
899
900 if (!nvme_try_complete_req(rq, cpu_to_le16(status << 1), res))
901 nvme_complete_rq(rq);
902 }
903
nvme_tcp_recv_data(struct nvme_tcp_queue * queue,struct sk_buff * skb,unsigned int * offset,size_t * len)904 static int nvme_tcp_recv_data(struct nvme_tcp_queue *queue, struct sk_buff *skb,
905 unsigned int *offset, size_t *len)
906 {
907 struct nvme_tcp_data_pdu *pdu = (void *)queue->pdu;
908 struct request *rq =
909 nvme_cid_to_rq(nvme_tcp_tagset(queue), pdu->command_id);
910 struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq);
911
912 while (true) {
913 int recv_len, ret;
914
915 recv_len = min_t(size_t, *len, queue->data_remaining);
916 if (!recv_len)
917 break;
918
919 if (!iov_iter_count(&req->iter)) {
920 req->curr_bio = req->curr_bio->bi_next;
921
922 /*
923 * If we don`t have any bios it means that controller
924 * sent more data than we requested, hence error
925 */
926 if (!req->curr_bio) {
927 dev_err(queue->ctrl->ctrl.device,
928 "queue %d no space in request %#x",
929 nvme_tcp_queue_id(queue), rq->tag);
930 nvme_tcp_init_recv_ctx(queue);
931 return -EIO;
932 }
933 nvme_tcp_init_iter(req, ITER_DEST);
934 }
935
936 /* we can read only from what is left in this bio */
937 recv_len = min_t(size_t, recv_len,
938 iov_iter_count(&req->iter));
939
940 if (queue->data_digest)
941 ret = skb_copy_and_hash_datagram_iter(skb, *offset,
942 &req->iter, recv_len, queue->rcv_hash);
943 else
944 ret = skb_copy_datagram_iter(skb, *offset,
945 &req->iter, recv_len);
946 if (ret) {
947 dev_err(queue->ctrl->ctrl.device,
948 "queue %d failed to copy request %#x data",
949 nvme_tcp_queue_id(queue), rq->tag);
950 return ret;
951 }
952
953 *len -= recv_len;
954 *offset += recv_len;
955 queue->data_remaining -= recv_len;
956 }
957
958 if (!queue->data_remaining) {
959 if (queue->data_digest) {
960 nvme_tcp_ddgst_final(queue->rcv_hash, &queue->exp_ddgst);
961 queue->ddgst_remaining = NVME_TCP_DIGEST_LENGTH;
962 } else {
963 if (pdu->hdr.flags & NVME_TCP_F_DATA_SUCCESS) {
964 nvme_tcp_end_request(rq,
965 le16_to_cpu(req->status));
966 queue->nr_cqe++;
967 }
968 nvme_tcp_init_recv_ctx(queue);
969 }
970 }
971
972 return 0;
973 }
974
nvme_tcp_recv_ddgst(struct nvme_tcp_queue * queue,struct sk_buff * skb,unsigned int * offset,size_t * len)975 static int nvme_tcp_recv_ddgst(struct nvme_tcp_queue *queue,
976 struct sk_buff *skb, unsigned int *offset, size_t *len)
977 {
978 struct nvme_tcp_data_pdu *pdu = (void *)queue->pdu;
979 char *ddgst = (char *)&queue->recv_ddgst;
980 size_t recv_len = min_t(size_t, *len, queue->ddgst_remaining);
981 off_t off = NVME_TCP_DIGEST_LENGTH - queue->ddgst_remaining;
982 int ret;
983
984 ret = skb_copy_bits(skb, *offset, &ddgst[off], recv_len);
985 if (unlikely(ret))
986 return ret;
987
988 queue->ddgst_remaining -= recv_len;
989 *offset += recv_len;
990 *len -= recv_len;
991 if (queue->ddgst_remaining)
992 return 0;
993
994 if (queue->recv_ddgst != queue->exp_ddgst) {
995 struct request *rq = nvme_cid_to_rq(nvme_tcp_tagset(queue),
996 pdu->command_id);
997 struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq);
998
999 req->status = cpu_to_le16(NVME_SC_DATA_XFER_ERROR);
1000
1001 dev_err(queue->ctrl->ctrl.device,
1002 "data digest error: recv %#x expected %#x\n",
1003 le32_to_cpu(queue->recv_ddgst),
1004 le32_to_cpu(queue->exp_ddgst));
1005 }
1006
1007 if (pdu->hdr.flags & NVME_TCP_F_DATA_SUCCESS) {
1008 struct request *rq = nvme_cid_to_rq(nvme_tcp_tagset(queue),
1009 pdu->command_id);
1010 struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq);
1011
1012 nvme_tcp_end_request(rq, le16_to_cpu(req->status));
1013 queue->nr_cqe++;
1014 }
1015
1016 nvme_tcp_init_recv_ctx(queue);
1017 return 0;
1018 }
1019
nvme_tcp_recv_skb(read_descriptor_t * desc,struct sk_buff * skb,unsigned int offset,size_t len)1020 static int nvme_tcp_recv_skb(read_descriptor_t *desc, struct sk_buff *skb,
1021 unsigned int offset, size_t len)
1022 {
1023 struct nvme_tcp_queue *queue = desc->arg.data;
1024 size_t consumed = len;
1025 int result;
1026
1027 if (unlikely(!queue->rd_enabled))
1028 return -EFAULT;
1029
1030 while (len) {
1031 switch (nvme_tcp_recv_state(queue)) {
1032 case NVME_TCP_RECV_PDU:
1033 result = nvme_tcp_recv_pdu(queue, skb, &offset, &len);
1034 break;
1035 case NVME_TCP_RECV_DATA:
1036 result = nvme_tcp_recv_data(queue, skb, &offset, &len);
1037 break;
1038 case NVME_TCP_RECV_DDGST:
1039 result = nvme_tcp_recv_ddgst(queue, skb, &offset, &len);
1040 break;
1041 default:
1042 result = -EFAULT;
1043 }
1044 if (result) {
1045 dev_err(queue->ctrl->ctrl.device,
1046 "receive failed: %d\n", result);
1047 queue->rd_enabled = false;
1048 nvme_tcp_error_recovery(&queue->ctrl->ctrl);
1049 return result;
1050 }
1051 }
1052
1053 return consumed;
1054 }
1055
nvme_tcp_data_ready(struct sock * sk)1056 static void nvme_tcp_data_ready(struct sock *sk)
1057 {
1058 struct nvme_tcp_queue *queue;
1059
1060 trace_sk_data_ready(sk);
1061
1062 read_lock_bh(&sk->sk_callback_lock);
1063 queue = sk->sk_user_data;
1064 if (likely(queue && queue->rd_enabled) &&
1065 !test_bit(NVME_TCP_Q_POLLING, &queue->flags))
1066 queue_work_on(queue->io_cpu, nvme_tcp_wq, &queue->io_work);
1067 read_unlock_bh(&sk->sk_callback_lock);
1068 }
1069
nvme_tcp_write_space(struct sock * sk)1070 static void nvme_tcp_write_space(struct sock *sk)
1071 {
1072 struct nvme_tcp_queue *queue;
1073
1074 read_lock_bh(&sk->sk_callback_lock);
1075 queue = sk->sk_user_data;
1076 if (likely(queue && sk_stream_is_writeable(sk))) {
1077 clear_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1078 queue_work_on(queue->io_cpu, nvme_tcp_wq, &queue->io_work);
1079 }
1080 read_unlock_bh(&sk->sk_callback_lock);
1081 }
1082
nvme_tcp_state_change(struct sock * sk)1083 static void nvme_tcp_state_change(struct sock *sk)
1084 {
1085 struct nvme_tcp_queue *queue;
1086
1087 read_lock_bh(&sk->sk_callback_lock);
1088 queue = sk->sk_user_data;
1089 if (!queue)
1090 goto done;
1091
1092 switch (sk->sk_state) {
1093 case TCP_CLOSE:
1094 case TCP_CLOSE_WAIT:
1095 case TCP_LAST_ACK:
1096 case TCP_FIN_WAIT1:
1097 case TCP_FIN_WAIT2:
1098 nvme_tcp_error_recovery(&queue->ctrl->ctrl);
1099 break;
1100 default:
1101 dev_info(queue->ctrl->ctrl.device,
1102 "queue %d socket state %d\n",
1103 nvme_tcp_queue_id(queue), sk->sk_state);
1104 }
1105
1106 queue->state_change(sk);
1107 done:
1108 read_unlock_bh(&sk->sk_callback_lock);
1109 }
1110
nvme_tcp_done_send_req(struct nvme_tcp_queue * queue)1111 static inline void nvme_tcp_done_send_req(struct nvme_tcp_queue *queue)
1112 {
1113 queue->request = NULL;
1114 }
1115
nvme_tcp_fail_request(struct nvme_tcp_request * req)1116 static void nvme_tcp_fail_request(struct nvme_tcp_request *req)
1117 {
1118 if (nvme_tcp_async_req(req)) {
1119 union nvme_result res = {};
1120
1121 nvme_complete_async_event(&req->queue->ctrl->ctrl,
1122 cpu_to_le16(NVME_SC_HOST_PATH_ERROR), &res);
1123 } else {
1124 nvme_tcp_end_request(blk_mq_rq_from_pdu(req),
1125 NVME_SC_HOST_PATH_ERROR);
1126 }
1127 }
1128
nvme_tcp_try_send_data(struct nvme_tcp_request * req)1129 static int nvme_tcp_try_send_data(struct nvme_tcp_request *req)
1130 {
1131 struct nvme_tcp_queue *queue = req->queue;
1132 int req_data_len = req->data_len;
1133 u32 h2cdata_left = req->h2cdata_left;
1134
1135 while (true) {
1136 struct bio_vec bvec;
1137 struct msghdr msg = {
1138 .msg_flags = MSG_DONTWAIT | MSG_SPLICE_PAGES,
1139 };
1140 struct page *page = nvme_tcp_req_cur_page(req);
1141 size_t offset = nvme_tcp_req_cur_offset(req);
1142 size_t len = nvme_tcp_req_cur_length(req);
1143 bool last = nvme_tcp_pdu_last_send(req, len);
1144 int req_data_sent = req->data_sent;
1145 int ret;
1146
1147 if (last && !queue->data_digest && !nvme_tcp_queue_more(queue))
1148 msg.msg_flags |= MSG_EOR;
1149 else
1150 msg.msg_flags |= MSG_MORE;
1151
1152 if (!sendpages_ok(page, len, offset))
1153 msg.msg_flags &= ~MSG_SPLICE_PAGES;
1154
1155 bvec_set_page(&bvec, page, len, offset);
1156 iov_iter_bvec(&msg.msg_iter, ITER_SOURCE, &bvec, 1, len);
1157 ret = sock_sendmsg(queue->sock, &msg);
1158 if (ret <= 0)
1159 return ret;
1160
1161 if (queue->data_digest)
1162 nvme_tcp_ddgst_update(queue->snd_hash, page,
1163 offset, ret);
1164
1165 /*
1166 * update the request iterator except for the last payload send
1167 * in the request where we don't want to modify it as we may
1168 * compete with the RX path completing the request.
1169 */
1170 if (req_data_sent + ret < req_data_len)
1171 nvme_tcp_advance_req(req, ret);
1172
1173 /* fully successful last send in current PDU */
1174 if (last && ret == len) {
1175 if (queue->data_digest) {
1176 nvme_tcp_ddgst_final(queue->snd_hash,
1177 &req->ddgst);
1178 req->state = NVME_TCP_SEND_DDGST;
1179 req->offset = 0;
1180 } else {
1181 if (h2cdata_left)
1182 nvme_tcp_setup_h2c_data_pdu(req);
1183 else
1184 nvme_tcp_done_send_req(queue);
1185 }
1186 return 1;
1187 }
1188 }
1189 return -EAGAIN;
1190 }
1191
nvme_tcp_try_send_cmd_pdu(struct nvme_tcp_request * req)1192 static int nvme_tcp_try_send_cmd_pdu(struct nvme_tcp_request *req)
1193 {
1194 struct nvme_tcp_queue *queue = req->queue;
1195 struct nvme_tcp_cmd_pdu *pdu = nvme_tcp_req_cmd_pdu(req);
1196 struct bio_vec bvec;
1197 struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_SPLICE_PAGES, };
1198 bool inline_data = nvme_tcp_has_inline_data(req);
1199 u8 hdgst = nvme_tcp_hdgst_len(queue);
1200 int len = sizeof(*pdu) + hdgst - req->offset;
1201 int ret;
1202
1203 if (inline_data || nvme_tcp_queue_more(queue))
1204 msg.msg_flags |= MSG_MORE;
1205 else
1206 msg.msg_flags |= MSG_EOR;
1207
1208 if (queue->hdr_digest && !req->offset)
1209 nvme_tcp_hdgst(queue->snd_hash, pdu, sizeof(*pdu));
1210
1211 bvec_set_virt(&bvec, (void *)pdu + req->offset, len);
1212 iov_iter_bvec(&msg.msg_iter, ITER_SOURCE, &bvec, 1, len);
1213 ret = sock_sendmsg(queue->sock, &msg);
1214 if (unlikely(ret <= 0))
1215 return ret;
1216
1217 len -= ret;
1218 if (!len) {
1219 if (inline_data) {
1220 req->state = NVME_TCP_SEND_DATA;
1221 if (queue->data_digest)
1222 crypto_ahash_init(queue->snd_hash);
1223 } else {
1224 nvme_tcp_done_send_req(queue);
1225 }
1226 return 1;
1227 }
1228 req->offset += ret;
1229
1230 return -EAGAIN;
1231 }
1232
nvme_tcp_try_send_data_pdu(struct nvme_tcp_request * req)1233 static int nvme_tcp_try_send_data_pdu(struct nvme_tcp_request *req)
1234 {
1235 struct nvme_tcp_queue *queue = req->queue;
1236 struct nvme_tcp_data_pdu *pdu = nvme_tcp_req_data_pdu(req);
1237 struct bio_vec bvec;
1238 struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_MORE, };
1239 u8 hdgst = nvme_tcp_hdgst_len(queue);
1240 int len = sizeof(*pdu) - req->offset + hdgst;
1241 int ret;
1242
1243 if (queue->hdr_digest && !req->offset)
1244 nvme_tcp_hdgst(queue->snd_hash, pdu, sizeof(*pdu));
1245
1246 if (!req->h2cdata_left)
1247 msg.msg_flags |= MSG_SPLICE_PAGES;
1248
1249 bvec_set_virt(&bvec, (void *)pdu + req->offset, len);
1250 iov_iter_bvec(&msg.msg_iter, ITER_SOURCE, &bvec, 1, len);
1251 ret = sock_sendmsg(queue->sock, &msg);
1252 if (unlikely(ret <= 0))
1253 return ret;
1254
1255 len -= ret;
1256 if (!len) {
1257 req->state = NVME_TCP_SEND_DATA;
1258 if (queue->data_digest)
1259 crypto_ahash_init(queue->snd_hash);
1260 return 1;
1261 }
1262 req->offset += ret;
1263
1264 return -EAGAIN;
1265 }
1266
nvme_tcp_try_send_ddgst(struct nvme_tcp_request * req)1267 static int nvme_tcp_try_send_ddgst(struct nvme_tcp_request *req)
1268 {
1269 struct nvme_tcp_queue *queue = req->queue;
1270 size_t offset = req->offset;
1271 u32 h2cdata_left = req->h2cdata_left;
1272 int ret;
1273 struct msghdr msg = { .msg_flags = MSG_DONTWAIT };
1274 struct kvec iov = {
1275 .iov_base = (u8 *)&req->ddgst + req->offset,
1276 .iov_len = NVME_TCP_DIGEST_LENGTH - req->offset
1277 };
1278
1279 if (nvme_tcp_queue_more(queue))
1280 msg.msg_flags |= MSG_MORE;
1281 else
1282 msg.msg_flags |= MSG_EOR;
1283
1284 ret = kernel_sendmsg(queue->sock, &msg, &iov, 1, iov.iov_len);
1285 if (unlikely(ret <= 0))
1286 return ret;
1287
1288 if (offset + ret == NVME_TCP_DIGEST_LENGTH) {
1289 if (h2cdata_left)
1290 nvme_tcp_setup_h2c_data_pdu(req);
1291 else
1292 nvme_tcp_done_send_req(queue);
1293 return 1;
1294 }
1295
1296 req->offset += ret;
1297 return -EAGAIN;
1298 }
1299
nvme_tcp_try_send(struct nvme_tcp_queue * queue)1300 static int nvme_tcp_try_send(struct nvme_tcp_queue *queue)
1301 {
1302 struct nvme_tcp_request *req;
1303 unsigned int noreclaim_flag;
1304 int ret = 1;
1305
1306 if (!queue->request) {
1307 queue->request = nvme_tcp_fetch_request(queue);
1308 if (!queue->request)
1309 return 0;
1310 }
1311 req = queue->request;
1312
1313 noreclaim_flag = memalloc_noreclaim_save();
1314 if (req->state == NVME_TCP_SEND_CMD_PDU) {
1315 ret = nvme_tcp_try_send_cmd_pdu(req);
1316 if (ret <= 0)
1317 goto done;
1318 if (!nvme_tcp_has_inline_data(req))
1319 goto out;
1320 }
1321
1322 if (req->state == NVME_TCP_SEND_H2C_PDU) {
1323 ret = nvme_tcp_try_send_data_pdu(req);
1324 if (ret <= 0)
1325 goto done;
1326 }
1327
1328 if (req->state == NVME_TCP_SEND_DATA) {
1329 ret = nvme_tcp_try_send_data(req);
1330 if (ret <= 0)
1331 goto done;
1332 }
1333
1334 if (req->state == NVME_TCP_SEND_DDGST)
1335 ret = nvme_tcp_try_send_ddgst(req);
1336 done:
1337 if (ret == -EAGAIN) {
1338 ret = 0;
1339 } else if (ret < 0) {
1340 dev_err(queue->ctrl->ctrl.device,
1341 "failed to send request %d\n", ret);
1342 nvme_tcp_fail_request(queue->request);
1343 nvme_tcp_done_send_req(queue);
1344 }
1345 out:
1346 memalloc_noreclaim_restore(noreclaim_flag);
1347 return ret;
1348 }
1349
nvme_tcp_try_recv(struct nvme_tcp_queue * queue)1350 static int nvme_tcp_try_recv(struct nvme_tcp_queue *queue)
1351 {
1352 struct socket *sock = queue->sock;
1353 struct sock *sk = sock->sk;
1354 read_descriptor_t rd_desc;
1355 int consumed;
1356
1357 rd_desc.arg.data = queue;
1358 rd_desc.count = 1;
1359 lock_sock(sk);
1360 queue->nr_cqe = 0;
1361 consumed = sock->ops->read_sock(sk, &rd_desc, nvme_tcp_recv_skb);
1362 release_sock(sk);
1363 return consumed == -EAGAIN ? 0 : consumed;
1364 }
1365
nvme_tcp_io_work(struct work_struct * w)1366 static void nvme_tcp_io_work(struct work_struct *w)
1367 {
1368 struct nvme_tcp_queue *queue =
1369 container_of(w, struct nvme_tcp_queue, io_work);
1370 unsigned long deadline = jiffies + msecs_to_jiffies(1);
1371
1372 do {
1373 bool pending = false;
1374 int result;
1375
1376 if (mutex_trylock(&queue->send_mutex)) {
1377 result = nvme_tcp_try_send(queue);
1378 mutex_unlock(&queue->send_mutex);
1379 if (result > 0)
1380 pending = true;
1381 else if (unlikely(result < 0))
1382 break;
1383 }
1384
1385 result = nvme_tcp_try_recv(queue);
1386 if (result > 0)
1387 pending = true;
1388 else if (unlikely(result < 0))
1389 return;
1390
1391 /* did we get some space after spending time in recv? */
1392 if (nvme_tcp_queue_has_pending(queue) &&
1393 sk_stream_is_writeable(queue->sock->sk))
1394 pending = true;
1395
1396 if (!pending || !queue->rd_enabled)
1397 return;
1398
1399 } while (!time_after(jiffies, deadline)); /* quota is exhausted */
1400
1401 queue_work_on(queue->io_cpu, nvme_tcp_wq, &queue->io_work);
1402 }
1403
nvme_tcp_free_crypto(struct nvme_tcp_queue * queue)1404 static void nvme_tcp_free_crypto(struct nvme_tcp_queue *queue)
1405 {
1406 struct crypto_ahash *tfm = crypto_ahash_reqtfm(queue->rcv_hash);
1407
1408 ahash_request_free(queue->rcv_hash);
1409 ahash_request_free(queue->snd_hash);
1410 crypto_free_ahash(tfm);
1411 }
1412
nvme_tcp_alloc_crypto(struct nvme_tcp_queue * queue)1413 static int nvme_tcp_alloc_crypto(struct nvme_tcp_queue *queue)
1414 {
1415 struct crypto_ahash *tfm;
1416
1417 tfm = crypto_alloc_ahash("crc32c", 0, CRYPTO_ALG_ASYNC);
1418 if (IS_ERR(tfm))
1419 return PTR_ERR(tfm);
1420
1421 queue->snd_hash = ahash_request_alloc(tfm, GFP_KERNEL);
1422 if (!queue->snd_hash)
1423 goto free_tfm;
1424 ahash_request_set_callback(queue->snd_hash, 0, NULL, NULL);
1425
1426 queue->rcv_hash = ahash_request_alloc(tfm, GFP_KERNEL);
1427 if (!queue->rcv_hash)
1428 goto free_snd_hash;
1429 ahash_request_set_callback(queue->rcv_hash, 0, NULL, NULL);
1430
1431 return 0;
1432 free_snd_hash:
1433 ahash_request_free(queue->snd_hash);
1434 free_tfm:
1435 crypto_free_ahash(tfm);
1436 return -ENOMEM;
1437 }
1438
nvme_tcp_free_async_req(struct nvme_tcp_ctrl * ctrl)1439 static void nvme_tcp_free_async_req(struct nvme_tcp_ctrl *ctrl)
1440 {
1441 struct nvme_tcp_request *async = &ctrl->async_req;
1442
1443 page_frag_free(async->pdu);
1444 }
1445
nvme_tcp_alloc_async_req(struct nvme_tcp_ctrl * ctrl)1446 static int nvme_tcp_alloc_async_req(struct nvme_tcp_ctrl *ctrl)
1447 {
1448 struct nvme_tcp_queue *queue = &ctrl->queues[0];
1449 struct nvme_tcp_request *async = &ctrl->async_req;
1450 u8 hdgst = nvme_tcp_hdgst_len(queue);
1451
1452 async->pdu = page_frag_alloc(&queue->pf_cache,
1453 sizeof(struct nvme_tcp_cmd_pdu) + hdgst,
1454 GFP_KERNEL | __GFP_ZERO);
1455 if (!async->pdu)
1456 return -ENOMEM;
1457
1458 async->queue = &ctrl->queues[0];
1459 return 0;
1460 }
1461
nvme_tcp_free_queue(struct nvme_ctrl * nctrl,int qid)1462 static void nvme_tcp_free_queue(struct nvme_ctrl *nctrl, int qid)
1463 {
1464 struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl);
1465 struct nvme_tcp_queue *queue = &ctrl->queues[qid];
1466 unsigned int noreclaim_flag;
1467
1468 if (!test_and_clear_bit(NVME_TCP_Q_ALLOCATED, &queue->flags))
1469 return;
1470
1471 if (queue->hdr_digest || queue->data_digest)
1472 nvme_tcp_free_crypto(queue);
1473
1474 page_frag_cache_drain(&queue->pf_cache);
1475
1476 noreclaim_flag = memalloc_noreclaim_save();
1477 /* ->sock will be released by fput() */
1478 fput(queue->sock->file);
1479 queue->sock = NULL;
1480 memalloc_noreclaim_restore(noreclaim_flag);
1481
1482 kfree(queue->pdu);
1483 mutex_destroy(&queue->send_mutex);
1484 mutex_destroy(&queue->queue_lock);
1485 }
1486
nvme_tcp_init_connection(struct nvme_tcp_queue * queue)1487 static int nvme_tcp_init_connection(struct nvme_tcp_queue *queue)
1488 {
1489 struct nvme_tcp_icreq_pdu *icreq;
1490 struct nvme_tcp_icresp_pdu *icresp;
1491 char cbuf[CMSG_LEN(sizeof(char))] = {};
1492 u8 ctype;
1493 struct msghdr msg = {};
1494 struct kvec iov;
1495 bool ctrl_hdgst, ctrl_ddgst;
1496 u32 maxh2cdata;
1497 int ret;
1498
1499 icreq = kzalloc(sizeof(*icreq), GFP_KERNEL);
1500 if (!icreq)
1501 return -ENOMEM;
1502
1503 icresp = kzalloc(sizeof(*icresp), GFP_KERNEL);
1504 if (!icresp) {
1505 ret = -ENOMEM;
1506 goto free_icreq;
1507 }
1508
1509 icreq->hdr.type = nvme_tcp_icreq;
1510 icreq->hdr.hlen = sizeof(*icreq);
1511 icreq->hdr.pdo = 0;
1512 icreq->hdr.plen = cpu_to_le32(icreq->hdr.hlen);
1513 icreq->pfv = cpu_to_le16(NVME_TCP_PFV_1_0);
1514 icreq->maxr2t = 0; /* single inflight r2t supported */
1515 icreq->hpda = 0; /* no alignment constraint */
1516 if (queue->hdr_digest)
1517 icreq->digest |= NVME_TCP_HDR_DIGEST_ENABLE;
1518 if (queue->data_digest)
1519 icreq->digest |= NVME_TCP_DATA_DIGEST_ENABLE;
1520
1521 iov.iov_base = icreq;
1522 iov.iov_len = sizeof(*icreq);
1523 ret = kernel_sendmsg(queue->sock, &msg, &iov, 1, iov.iov_len);
1524 if (ret < 0) {
1525 pr_warn("queue %d: failed to send icreq, error %d\n",
1526 nvme_tcp_queue_id(queue), ret);
1527 goto free_icresp;
1528 }
1529
1530 memset(&msg, 0, sizeof(msg));
1531 iov.iov_base = icresp;
1532 iov.iov_len = sizeof(*icresp);
1533 if (nvme_tcp_queue_tls(queue)) {
1534 msg.msg_control = cbuf;
1535 msg.msg_controllen = sizeof(cbuf);
1536 }
1537 msg.msg_flags = MSG_WAITALL;
1538 ret = kernel_recvmsg(queue->sock, &msg, &iov, 1,
1539 iov.iov_len, msg.msg_flags);
1540 if (ret >= 0 && ret < sizeof(*icresp))
1541 ret = -ECONNRESET;
1542 if (ret < 0) {
1543 pr_warn("queue %d: failed to receive icresp, error %d\n",
1544 nvme_tcp_queue_id(queue), ret);
1545 goto free_icresp;
1546 }
1547 ret = -ENOTCONN;
1548 if (nvme_tcp_queue_tls(queue)) {
1549 ctype = tls_get_record_type(queue->sock->sk,
1550 (struct cmsghdr *)cbuf);
1551 if (ctype != TLS_RECORD_TYPE_DATA) {
1552 pr_err("queue %d: unhandled TLS record %d\n",
1553 nvme_tcp_queue_id(queue), ctype);
1554 goto free_icresp;
1555 }
1556 }
1557 ret = -EINVAL;
1558 if (icresp->hdr.type != nvme_tcp_icresp) {
1559 pr_err("queue %d: bad type returned %d\n",
1560 nvme_tcp_queue_id(queue), icresp->hdr.type);
1561 goto free_icresp;
1562 }
1563
1564 if (le32_to_cpu(icresp->hdr.plen) != sizeof(*icresp)) {
1565 pr_err("queue %d: bad pdu length returned %d\n",
1566 nvme_tcp_queue_id(queue), icresp->hdr.plen);
1567 goto free_icresp;
1568 }
1569
1570 if (icresp->pfv != NVME_TCP_PFV_1_0) {
1571 pr_err("queue %d: bad pfv returned %d\n",
1572 nvme_tcp_queue_id(queue), icresp->pfv);
1573 goto free_icresp;
1574 }
1575
1576 ctrl_ddgst = !!(icresp->digest & NVME_TCP_DATA_DIGEST_ENABLE);
1577 if ((queue->data_digest && !ctrl_ddgst) ||
1578 (!queue->data_digest && ctrl_ddgst)) {
1579 pr_err("queue %d: data digest mismatch host: %s ctrl: %s\n",
1580 nvme_tcp_queue_id(queue),
1581 queue->data_digest ? "enabled" : "disabled",
1582 ctrl_ddgst ? "enabled" : "disabled");
1583 goto free_icresp;
1584 }
1585
1586 ctrl_hdgst = !!(icresp->digest & NVME_TCP_HDR_DIGEST_ENABLE);
1587 if ((queue->hdr_digest && !ctrl_hdgst) ||
1588 (!queue->hdr_digest && ctrl_hdgst)) {
1589 pr_err("queue %d: header digest mismatch host: %s ctrl: %s\n",
1590 nvme_tcp_queue_id(queue),
1591 queue->hdr_digest ? "enabled" : "disabled",
1592 ctrl_hdgst ? "enabled" : "disabled");
1593 goto free_icresp;
1594 }
1595
1596 if (icresp->cpda != 0) {
1597 pr_err("queue %d: unsupported cpda returned %d\n",
1598 nvme_tcp_queue_id(queue), icresp->cpda);
1599 goto free_icresp;
1600 }
1601
1602 maxh2cdata = le32_to_cpu(icresp->maxdata);
1603 if ((maxh2cdata % 4) || (maxh2cdata < NVME_TCP_MIN_MAXH2CDATA)) {
1604 pr_err("queue %d: invalid maxh2cdata returned %u\n",
1605 nvme_tcp_queue_id(queue), maxh2cdata);
1606 goto free_icresp;
1607 }
1608 queue->maxh2cdata = maxh2cdata;
1609
1610 ret = 0;
1611 free_icresp:
1612 kfree(icresp);
1613 free_icreq:
1614 kfree(icreq);
1615 return ret;
1616 }
1617
nvme_tcp_admin_queue(struct nvme_tcp_queue * queue)1618 static bool nvme_tcp_admin_queue(struct nvme_tcp_queue *queue)
1619 {
1620 return nvme_tcp_queue_id(queue) == 0;
1621 }
1622
nvme_tcp_default_queue(struct nvme_tcp_queue * queue)1623 static bool nvme_tcp_default_queue(struct nvme_tcp_queue *queue)
1624 {
1625 struct nvme_tcp_ctrl *ctrl = queue->ctrl;
1626 int qid = nvme_tcp_queue_id(queue);
1627
1628 return !nvme_tcp_admin_queue(queue) &&
1629 qid < 1 + ctrl->io_queues[HCTX_TYPE_DEFAULT];
1630 }
1631
nvme_tcp_read_queue(struct nvme_tcp_queue * queue)1632 static bool nvme_tcp_read_queue(struct nvme_tcp_queue *queue)
1633 {
1634 struct nvme_tcp_ctrl *ctrl = queue->ctrl;
1635 int qid = nvme_tcp_queue_id(queue);
1636
1637 return !nvme_tcp_admin_queue(queue) &&
1638 !nvme_tcp_default_queue(queue) &&
1639 qid < 1 + ctrl->io_queues[HCTX_TYPE_DEFAULT] +
1640 ctrl->io_queues[HCTX_TYPE_READ];
1641 }
1642
nvme_tcp_poll_queue(struct nvme_tcp_queue * queue)1643 static bool nvme_tcp_poll_queue(struct nvme_tcp_queue *queue)
1644 {
1645 struct nvme_tcp_ctrl *ctrl = queue->ctrl;
1646 int qid = nvme_tcp_queue_id(queue);
1647
1648 return !nvme_tcp_admin_queue(queue) &&
1649 !nvme_tcp_default_queue(queue) &&
1650 !nvme_tcp_read_queue(queue) &&
1651 qid < 1 + ctrl->io_queues[HCTX_TYPE_DEFAULT] +
1652 ctrl->io_queues[HCTX_TYPE_READ] +
1653 ctrl->io_queues[HCTX_TYPE_POLL];
1654 }
1655
1656 /*
1657 * Track the number of queues assigned to each cpu using a global per-cpu
1658 * counter and select the least used cpu from the mq_map. Our goal is to spread
1659 * different controllers I/O threads across different cpu cores.
1660 *
1661 * Note that the accounting is not 100% perfect, but we don't need to be, we're
1662 * simply putting our best effort to select the best candidate cpu core that we
1663 * find at any given point.
1664 */
nvme_tcp_set_queue_io_cpu(struct nvme_tcp_queue * queue)1665 static void nvme_tcp_set_queue_io_cpu(struct nvme_tcp_queue *queue)
1666 {
1667 struct nvme_tcp_ctrl *ctrl = queue->ctrl;
1668 struct blk_mq_tag_set *set = &ctrl->tag_set;
1669 int qid = nvme_tcp_queue_id(queue) - 1;
1670 unsigned int *mq_map = NULL;
1671 int cpu, min_queues = INT_MAX, io_cpu;
1672
1673 if (wq_unbound)
1674 goto out;
1675
1676 if (nvme_tcp_default_queue(queue))
1677 mq_map = set->map[HCTX_TYPE_DEFAULT].mq_map;
1678 else if (nvme_tcp_read_queue(queue))
1679 mq_map = set->map[HCTX_TYPE_READ].mq_map;
1680 else if (nvme_tcp_poll_queue(queue))
1681 mq_map = set->map[HCTX_TYPE_POLL].mq_map;
1682
1683 if (WARN_ON(!mq_map))
1684 goto out;
1685
1686 /* Search for the least used cpu from the mq_map */
1687 io_cpu = WORK_CPU_UNBOUND;
1688 for_each_online_cpu(cpu) {
1689 int num_queues = atomic_read(&nvme_tcp_cpu_queues[cpu]);
1690
1691 if (mq_map[cpu] != qid)
1692 continue;
1693 if (num_queues < min_queues) {
1694 io_cpu = cpu;
1695 min_queues = num_queues;
1696 }
1697 }
1698 if (io_cpu != WORK_CPU_UNBOUND) {
1699 queue->io_cpu = io_cpu;
1700 atomic_inc(&nvme_tcp_cpu_queues[io_cpu]);
1701 set_bit(NVME_TCP_Q_IO_CPU_SET, &queue->flags);
1702 }
1703 out:
1704 dev_dbg(ctrl->ctrl.device, "queue %d: using cpu %d\n",
1705 qid, queue->io_cpu);
1706 }
1707
nvme_tcp_tls_done(void * data,int status,key_serial_t pskid)1708 static void nvme_tcp_tls_done(void *data, int status, key_serial_t pskid)
1709 {
1710 struct nvme_tcp_queue *queue = data;
1711 struct nvme_tcp_ctrl *ctrl = queue->ctrl;
1712 int qid = nvme_tcp_queue_id(queue);
1713 struct key *tls_key;
1714
1715 dev_dbg(ctrl->ctrl.device, "queue %d: TLS handshake done, key %x, status %d\n",
1716 qid, pskid, status);
1717
1718 if (status) {
1719 queue->tls_err = -status;
1720 goto out_complete;
1721 }
1722
1723 tls_key = nvme_tls_key_lookup(pskid);
1724 if (IS_ERR(tls_key)) {
1725 dev_warn(ctrl->ctrl.device, "queue %d: Invalid key %x\n",
1726 qid, pskid);
1727 queue->tls_err = -ENOKEY;
1728 } else {
1729 queue->tls_enabled = true;
1730 if (qid == 0)
1731 ctrl->ctrl.tls_pskid = key_serial(tls_key);
1732 key_put(tls_key);
1733 queue->tls_err = 0;
1734 }
1735
1736 out_complete:
1737 complete(&queue->tls_complete);
1738 }
1739
nvme_tcp_start_tls(struct nvme_ctrl * nctrl,struct nvme_tcp_queue * queue,key_serial_t pskid)1740 static int nvme_tcp_start_tls(struct nvme_ctrl *nctrl,
1741 struct nvme_tcp_queue *queue,
1742 key_serial_t pskid)
1743 {
1744 int qid = nvme_tcp_queue_id(queue);
1745 int ret;
1746 struct tls_handshake_args args;
1747 unsigned long tmo = tls_handshake_timeout * HZ;
1748 key_serial_t keyring = nvme_keyring_id();
1749
1750 dev_dbg(nctrl->device, "queue %d: start TLS with key %x\n",
1751 qid, pskid);
1752 memset(&args, 0, sizeof(args));
1753 args.ta_sock = queue->sock;
1754 args.ta_done = nvme_tcp_tls_done;
1755 args.ta_data = queue;
1756 args.ta_my_peerids[0] = pskid;
1757 args.ta_num_peerids = 1;
1758 if (nctrl->opts->keyring)
1759 keyring = key_serial(nctrl->opts->keyring);
1760 args.ta_keyring = keyring;
1761 args.ta_timeout_ms = tls_handshake_timeout * 1000;
1762 queue->tls_err = -EOPNOTSUPP;
1763 init_completion(&queue->tls_complete);
1764 ret = tls_client_hello_psk(&args, GFP_KERNEL);
1765 if (ret) {
1766 dev_err(nctrl->device, "queue %d: failed to start TLS: %d\n",
1767 qid, ret);
1768 return ret;
1769 }
1770 ret = wait_for_completion_interruptible_timeout(&queue->tls_complete, tmo);
1771 if (ret <= 0) {
1772 if (ret == 0)
1773 ret = -ETIMEDOUT;
1774
1775 dev_err(nctrl->device,
1776 "queue %d: TLS handshake failed, error %d\n",
1777 qid, ret);
1778 tls_handshake_cancel(queue->sock->sk);
1779 } else {
1780 if (queue->tls_err) {
1781 dev_err(nctrl->device,
1782 "queue %d: TLS handshake complete, error %d\n",
1783 qid, queue->tls_err);
1784 } else {
1785 dev_dbg(nctrl->device,
1786 "queue %d: TLS handshake complete\n", qid);
1787 }
1788 ret = queue->tls_err;
1789 }
1790 return ret;
1791 }
1792
nvme_tcp_alloc_queue(struct nvme_ctrl * nctrl,int qid,key_serial_t pskid)1793 static int nvme_tcp_alloc_queue(struct nvme_ctrl *nctrl, int qid,
1794 key_serial_t pskid)
1795 {
1796 struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl);
1797 struct nvme_tcp_queue *queue = &ctrl->queues[qid];
1798 int ret, rcv_pdu_size;
1799 struct file *sock_file;
1800
1801 mutex_init(&queue->queue_lock);
1802 queue->ctrl = ctrl;
1803 init_llist_head(&queue->req_list);
1804 INIT_LIST_HEAD(&queue->send_list);
1805 mutex_init(&queue->send_mutex);
1806 INIT_WORK(&queue->io_work, nvme_tcp_io_work);
1807
1808 if (qid > 0)
1809 queue->cmnd_capsule_len = nctrl->ioccsz * 16;
1810 else
1811 queue->cmnd_capsule_len = sizeof(struct nvme_command) +
1812 NVME_TCP_ADMIN_CCSZ;
1813
1814 ret = sock_create(ctrl->addr.ss_family, SOCK_STREAM,
1815 IPPROTO_TCP, &queue->sock);
1816 if (ret) {
1817 dev_err(nctrl->device,
1818 "failed to create socket: %d\n", ret);
1819 goto err_destroy_mutex;
1820 }
1821
1822 sock_file = sock_alloc_file(queue->sock, O_CLOEXEC, NULL);
1823 if (IS_ERR(sock_file)) {
1824 ret = PTR_ERR(sock_file);
1825 goto err_destroy_mutex;
1826 }
1827 nvme_tcp_reclassify_socket(queue->sock);
1828
1829 /* Single syn retry */
1830 tcp_sock_set_syncnt(queue->sock->sk, 1);
1831
1832 /* Set TCP no delay */
1833 tcp_sock_set_nodelay(queue->sock->sk);
1834
1835 /*
1836 * Cleanup whatever is sitting in the TCP transmit queue on socket
1837 * close. This is done to prevent stale data from being sent should
1838 * the network connection be restored before TCP times out.
1839 */
1840 sock_no_linger(queue->sock->sk);
1841
1842 if (so_priority > 0)
1843 sock_set_priority(queue->sock->sk, so_priority);
1844
1845 /* Set socket type of service */
1846 if (nctrl->opts->tos >= 0)
1847 ip_sock_set_tos(queue->sock->sk, nctrl->opts->tos);
1848
1849 /* Set 10 seconds timeout for icresp recvmsg */
1850 queue->sock->sk->sk_rcvtimeo = 10 * HZ;
1851
1852 queue->sock->sk->sk_allocation = GFP_ATOMIC;
1853 queue->sock->sk->sk_use_task_frag = false;
1854 queue->io_cpu = WORK_CPU_UNBOUND;
1855 queue->request = NULL;
1856 queue->data_remaining = 0;
1857 queue->ddgst_remaining = 0;
1858 queue->pdu_remaining = 0;
1859 queue->pdu_offset = 0;
1860 sk_set_memalloc(queue->sock->sk);
1861
1862 if (nctrl->opts->mask & NVMF_OPT_HOST_TRADDR) {
1863 ret = kernel_bind(queue->sock, (struct sockaddr *)&ctrl->src_addr,
1864 sizeof(ctrl->src_addr));
1865 if (ret) {
1866 dev_err(nctrl->device,
1867 "failed to bind queue %d socket %d\n",
1868 qid, ret);
1869 goto err_sock;
1870 }
1871 }
1872
1873 if (nctrl->opts->mask & NVMF_OPT_HOST_IFACE) {
1874 char *iface = nctrl->opts->host_iface;
1875 sockptr_t optval = KERNEL_SOCKPTR(iface);
1876
1877 ret = sock_setsockopt(queue->sock, SOL_SOCKET, SO_BINDTODEVICE,
1878 optval, strlen(iface));
1879 if (ret) {
1880 dev_err(nctrl->device,
1881 "failed to bind to interface %s queue %d err %d\n",
1882 iface, qid, ret);
1883 goto err_sock;
1884 }
1885 }
1886
1887 queue->hdr_digest = nctrl->opts->hdr_digest;
1888 queue->data_digest = nctrl->opts->data_digest;
1889 if (queue->hdr_digest || queue->data_digest) {
1890 ret = nvme_tcp_alloc_crypto(queue);
1891 if (ret) {
1892 dev_err(nctrl->device,
1893 "failed to allocate queue %d crypto\n", qid);
1894 goto err_sock;
1895 }
1896 }
1897
1898 rcv_pdu_size = sizeof(struct nvme_tcp_rsp_pdu) +
1899 nvme_tcp_hdgst_len(queue);
1900 queue->pdu = kmalloc(rcv_pdu_size, GFP_KERNEL);
1901 if (!queue->pdu) {
1902 ret = -ENOMEM;
1903 goto err_crypto;
1904 }
1905
1906 dev_dbg(nctrl->device, "connecting queue %d\n",
1907 nvme_tcp_queue_id(queue));
1908
1909 ret = kernel_connect(queue->sock, (struct sockaddr *)&ctrl->addr,
1910 sizeof(ctrl->addr), 0);
1911 if (ret) {
1912 dev_err(nctrl->device,
1913 "failed to connect socket: %d\n", ret);
1914 goto err_rcv_pdu;
1915 }
1916
1917 /* If PSKs are configured try to start TLS */
1918 if (nvme_tcp_tls_configured(nctrl) && pskid) {
1919 ret = nvme_tcp_start_tls(nctrl, queue, pskid);
1920 if (ret)
1921 goto err_init_connect;
1922 }
1923
1924 ret = nvme_tcp_init_connection(queue);
1925 if (ret)
1926 goto err_init_connect;
1927
1928 set_bit(NVME_TCP_Q_ALLOCATED, &queue->flags);
1929
1930 return 0;
1931
1932 err_init_connect:
1933 kernel_sock_shutdown(queue->sock, SHUT_RDWR);
1934 err_rcv_pdu:
1935 kfree(queue->pdu);
1936 err_crypto:
1937 if (queue->hdr_digest || queue->data_digest)
1938 nvme_tcp_free_crypto(queue);
1939 err_sock:
1940 /* ->sock will be released by fput() */
1941 fput(queue->sock->file);
1942 queue->sock = NULL;
1943 err_destroy_mutex:
1944 mutex_destroy(&queue->send_mutex);
1945 mutex_destroy(&queue->queue_lock);
1946 return ret;
1947 }
1948
nvme_tcp_restore_sock_ops(struct nvme_tcp_queue * queue)1949 static void nvme_tcp_restore_sock_ops(struct nvme_tcp_queue *queue)
1950 {
1951 struct socket *sock = queue->sock;
1952
1953 write_lock_bh(&sock->sk->sk_callback_lock);
1954 sock->sk->sk_user_data = NULL;
1955 sock->sk->sk_data_ready = queue->data_ready;
1956 sock->sk->sk_state_change = queue->state_change;
1957 sock->sk->sk_write_space = queue->write_space;
1958 write_unlock_bh(&sock->sk->sk_callback_lock);
1959 }
1960
__nvme_tcp_stop_queue(struct nvme_tcp_queue * queue)1961 static void __nvme_tcp_stop_queue(struct nvme_tcp_queue *queue)
1962 {
1963 kernel_sock_shutdown(queue->sock, SHUT_RDWR);
1964 nvme_tcp_restore_sock_ops(queue);
1965 cancel_work_sync(&queue->io_work);
1966 }
1967
nvme_tcp_stop_queue_nowait(struct nvme_ctrl * nctrl,int qid)1968 static void nvme_tcp_stop_queue_nowait(struct nvme_ctrl *nctrl, int qid)
1969 {
1970 struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl);
1971 struct nvme_tcp_queue *queue = &ctrl->queues[qid];
1972
1973 if (!test_bit(NVME_TCP_Q_ALLOCATED, &queue->flags))
1974 return;
1975
1976 if (test_and_clear_bit(NVME_TCP_Q_IO_CPU_SET, &queue->flags))
1977 atomic_dec(&nvme_tcp_cpu_queues[queue->io_cpu]);
1978
1979 mutex_lock(&queue->queue_lock);
1980 if (test_and_clear_bit(NVME_TCP_Q_LIVE, &queue->flags))
1981 __nvme_tcp_stop_queue(queue);
1982 /* Stopping the queue will disable TLS */
1983 queue->tls_enabled = false;
1984 mutex_unlock(&queue->queue_lock);
1985 }
1986
nvme_tcp_wait_queue(struct nvme_ctrl * nctrl,int qid)1987 static void nvme_tcp_wait_queue(struct nvme_ctrl *nctrl, int qid)
1988 {
1989 struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl);
1990 struct nvme_tcp_queue *queue = &ctrl->queues[qid];
1991 int timeout = 100;
1992
1993 while (timeout > 0) {
1994 if (!test_bit(NVME_TCP_Q_ALLOCATED, &queue->flags) ||
1995 !sk_wmem_alloc_get(queue->sock->sk))
1996 return;
1997 msleep(2);
1998 timeout -= 2;
1999 }
2000 dev_warn(nctrl->device,
2001 "qid %d: timeout draining sock wmem allocation expired\n",
2002 qid);
2003 }
2004
nvme_tcp_stop_queue(struct nvme_ctrl * nctrl,int qid)2005 static void nvme_tcp_stop_queue(struct nvme_ctrl *nctrl, int qid)
2006 {
2007 nvme_tcp_stop_queue_nowait(nctrl, qid);
2008 nvme_tcp_wait_queue(nctrl, qid);
2009 }
2010
2011
nvme_tcp_setup_sock_ops(struct nvme_tcp_queue * queue)2012 static void nvme_tcp_setup_sock_ops(struct nvme_tcp_queue *queue)
2013 {
2014 write_lock_bh(&queue->sock->sk->sk_callback_lock);
2015 queue->sock->sk->sk_user_data = queue;
2016 queue->state_change = queue->sock->sk->sk_state_change;
2017 queue->data_ready = queue->sock->sk->sk_data_ready;
2018 queue->write_space = queue->sock->sk->sk_write_space;
2019 queue->sock->sk->sk_data_ready = nvme_tcp_data_ready;
2020 queue->sock->sk->sk_state_change = nvme_tcp_state_change;
2021 queue->sock->sk->sk_write_space = nvme_tcp_write_space;
2022 #ifdef CONFIG_NET_RX_BUSY_POLL
2023 queue->sock->sk->sk_ll_usec = 1;
2024 #endif
2025 write_unlock_bh(&queue->sock->sk->sk_callback_lock);
2026 }
2027
nvme_tcp_start_queue(struct nvme_ctrl * nctrl,int idx)2028 static int nvme_tcp_start_queue(struct nvme_ctrl *nctrl, int idx)
2029 {
2030 struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl);
2031 struct nvme_tcp_queue *queue = &ctrl->queues[idx];
2032 int ret;
2033
2034 queue->rd_enabled = true;
2035 nvme_tcp_init_recv_ctx(queue);
2036 nvme_tcp_setup_sock_ops(queue);
2037
2038 if (idx) {
2039 nvme_tcp_set_queue_io_cpu(queue);
2040 ret = nvmf_connect_io_queue(nctrl, idx);
2041 } else
2042 ret = nvmf_connect_admin_queue(nctrl);
2043
2044 if (!ret) {
2045 set_bit(NVME_TCP_Q_LIVE, &queue->flags);
2046 } else {
2047 if (test_bit(NVME_TCP_Q_ALLOCATED, &queue->flags))
2048 __nvme_tcp_stop_queue(queue);
2049 dev_err(nctrl->device,
2050 "failed to connect queue: %d ret=%d\n", idx, ret);
2051 }
2052 return ret;
2053 }
2054
nvme_tcp_free_admin_queue(struct nvme_ctrl * ctrl)2055 static void nvme_tcp_free_admin_queue(struct nvme_ctrl *ctrl)
2056 {
2057 if (to_tcp_ctrl(ctrl)->async_req.pdu) {
2058 cancel_work_sync(&ctrl->async_event_work);
2059 nvme_tcp_free_async_req(to_tcp_ctrl(ctrl));
2060 to_tcp_ctrl(ctrl)->async_req.pdu = NULL;
2061 }
2062
2063 nvme_tcp_free_queue(ctrl, 0);
2064 }
2065
nvme_tcp_free_io_queues(struct nvme_ctrl * ctrl)2066 static void nvme_tcp_free_io_queues(struct nvme_ctrl *ctrl)
2067 {
2068 int i;
2069
2070 for (i = 1; i < ctrl->queue_count; i++)
2071 nvme_tcp_free_queue(ctrl, i);
2072 }
2073
nvme_tcp_stop_io_queues(struct nvme_ctrl * ctrl)2074 static void nvme_tcp_stop_io_queues(struct nvme_ctrl *ctrl)
2075 {
2076 int i;
2077
2078 for (i = 1; i < ctrl->queue_count; i++)
2079 nvme_tcp_stop_queue_nowait(ctrl, i);
2080 for (i = 1; i < ctrl->queue_count; i++)
2081 nvme_tcp_wait_queue(ctrl, i);
2082 }
2083
nvme_tcp_start_io_queues(struct nvme_ctrl * ctrl,int first,int last)2084 static int nvme_tcp_start_io_queues(struct nvme_ctrl *ctrl,
2085 int first, int last)
2086 {
2087 int i, ret;
2088
2089 for (i = first; i < last; i++) {
2090 ret = nvme_tcp_start_queue(ctrl, i);
2091 if (ret)
2092 goto out_stop_queues;
2093 }
2094
2095 return 0;
2096
2097 out_stop_queues:
2098 for (i--; i >= first; i--)
2099 nvme_tcp_stop_queue(ctrl, i);
2100 return ret;
2101 }
2102
nvme_tcp_alloc_admin_queue(struct nvme_ctrl * ctrl)2103 static int nvme_tcp_alloc_admin_queue(struct nvme_ctrl *ctrl)
2104 {
2105 int ret;
2106 key_serial_t pskid = 0;
2107
2108 if (nvme_tcp_tls_configured(ctrl)) {
2109 if (ctrl->opts->tls_key)
2110 pskid = key_serial(ctrl->opts->tls_key);
2111 else {
2112 pskid = nvme_tls_psk_default(ctrl->opts->keyring,
2113 ctrl->opts->host->nqn,
2114 ctrl->opts->subsysnqn);
2115 if (!pskid) {
2116 dev_err(ctrl->device, "no valid PSK found\n");
2117 return -ENOKEY;
2118 }
2119 }
2120 }
2121
2122 ret = nvme_tcp_alloc_queue(ctrl, 0, pskid);
2123 if (ret)
2124 return ret;
2125
2126 ret = nvme_tcp_alloc_async_req(to_tcp_ctrl(ctrl));
2127 if (ret)
2128 goto out_free_queue;
2129
2130 return 0;
2131
2132 out_free_queue:
2133 nvme_tcp_free_queue(ctrl, 0);
2134 return ret;
2135 }
2136
__nvme_tcp_alloc_io_queues(struct nvme_ctrl * ctrl)2137 static int __nvme_tcp_alloc_io_queues(struct nvme_ctrl *ctrl)
2138 {
2139 int i, ret;
2140
2141 if (nvme_tcp_tls_configured(ctrl) && !ctrl->tls_pskid) {
2142 dev_err(ctrl->device, "no PSK negotiated\n");
2143 return -ENOKEY;
2144 }
2145
2146 for (i = 1; i < ctrl->queue_count; i++) {
2147 ret = nvme_tcp_alloc_queue(ctrl, i,
2148 ctrl->tls_pskid);
2149 if (ret)
2150 goto out_free_queues;
2151 }
2152
2153 return 0;
2154
2155 out_free_queues:
2156 for (i--; i >= 1; i--)
2157 nvme_tcp_free_queue(ctrl, i);
2158
2159 return ret;
2160 }
2161
nvme_tcp_alloc_io_queues(struct nvme_ctrl * ctrl)2162 static int nvme_tcp_alloc_io_queues(struct nvme_ctrl *ctrl)
2163 {
2164 unsigned int nr_io_queues;
2165 int ret;
2166
2167 nr_io_queues = nvmf_nr_io_queues(ctrl->opts);
2168 ret = nvme_set_queue_count(ctrl, &nr_io_queues);
2169 if (ret)
2170 return ret;
2171
2172 if (nr_io_queues == 0) {
2173 dev_err(ctrl->device,
2174 "unable to set any I/O queues\n");
2175 return -ENOMEM;
2176 }
2177
2178 ctrl->queue_count = nr_io_queues + 1;
2179 dev_info(ctrl->device,
2180 "creating %d I/O queues.\n", nr_io_queues);
2181
2182 nvmf_set_io_queues(ctrl->opts, nr_io_queues,
2183 to_tcp_ctrl(ctrl)->io_queues);
2184 return __nvme_tcp_alloc_io_queues(ctrl);
2185 }
2186
nvme_tcp_destroy_io_queues(struct nvme_ctrl * ctrl,bool remove)2187 static void nvme_tcp_destroy_io_queues(struct nvme_ctrl *ctrl, bool remove)
2188 {
2189 nvme_tcp_stop_io_queues(ctrl);
2190 if (remove)
2191 nvme_remove_io_tag_set(ctrl);
2192 nvme_tcp_free_io_queues(ctrl);
2193 }
2194
nvme_tcp_configure_io_queues(struct nvme_ctrl * ctrl,bool new)2195 static int nvme_tcp_configure_io_queues(struct nvme_ctrl *ctrl, bool new)
2196 {
2197 int ret, nr_queues;
2198
2199 ret = nvme_tcp_alloc_io_queues(ctrl);
2200 if (ret)
2201 return ret;
2202
2203 if (new) {
2204 ret = nvme_alloc_io_tag_set(ctrl, &to_tcp_ctrl(ctrl)->tag_set,
2205 &nvme_tcp_mq_ops,
2206 ctrl->opts->nr_poll_queues ? HCTX_MAX_TYPES : 2,
2207 sizeof(struct nvme_tcp_request));
2208 if (ret)
2209 goto out_free_io_queues;
2210 }
2211
2212 /*
2213 * Only start IO queues for which we have allocated the tagset
2214 * and limitted it to the available queues. On reconnects, the
2215 * queue number might have changed.
2216 */
2217 nr_queues = min(ctrl->tagset->nr_hw_queues + 1, ctrl->queue_count);
2218 ret = nvme_tcp_start_io_queues(ctrl, 1, nr_queues);
2219 if (ret)
2220 goto out_cleanup_connect_q;
2221
2222 if (!new) {
2223 nvme_start_freeze(ctrl);
2224 nvme_unquiesce_io_queues(ctrl);
2225 if (!nvme_wait_freeze_timeout(ctrl, NVME_IO_TIMEOUT)) {
2226 /*
2227 * If we timed out waiting for freeze we are likely to
2228 * be stuck. Fail the controller initialization just
2229 * to be safe.
2230 */
2231 ret = -ENODEV;
2232 nvme_unfreeze(ctrl);
2233 goto out_wait_freeze_timed_out;
2234 }
2235 blk_mq_update_nr_hw_queues(ctrl->tagset,
2236 ctrl->queue_count - 1);
2237 nvme_unfreeze(ctrl);
2238 }
2239
2240 /*
2241 * If the number of queues has increased (reconnect case)
2242 * start all new queues now.
2243 */
2244 ret = nvme_tcp_start_io_queues(ctrl, nr_queues,
2245 ctrl->tagset->nr_hw_queues + 1);
2246 if (ret)
2247 goto out_wait_freeze_timed_out;
2248
2249 return 0;
2250
2251 out_wait_freeze_timed_out:
2252 nvme_quiesce_io_queues(ctrl);
2253 nvme_sync_io_queues(ctrl);
2254 nvme_tcp_stop_io_queues(ctrl);
2255 out_cleanup_connect_q:
2256 nvme_cancel_tagset(ctrl);
2257 if (new)
2258 nvme_remove_io_tag_set(ctrl);
2259 out_free_io_queues:
2260 nvme_tcp_free_io_queues(ctrl);
2261 return ret;
2262 }
2263
nvme_tcp_destroy_admin_queue(struct nvme_ctrl * ctrl,bool remove)2264 static void nvme_tcp_destroy_admin_queue(struct nvme_ctrl *ctrl, bool remove)
2265 {
2266 nvme_tcp_stop_queue(ctrl, 0);
2267 if (remove)
2268 nvme_remove_admin_tag_set(ctrl);
2269 nvme_tcp_free_admin_queue(ctrl);
2270 }
2271
nvme_tcp_configure_admin_queue(struct nvme_ctrl * ctrl,bool new)2272 static int nvme_tcp_configure_admin_queue(struct nvme_ctrl *ctrl, bool new)
2273 {
2274 int error;
2275
2276 error = nvme_tcp_alloc_admin_queue(ctrl);
2277 if (error)
2278 return error;
2279
2280 if (new) {
2281 error = nvme_alloc_admin_tag_set(ctrl,
2282 &to_tcp_ctrl(ctrl)->admin_tag_set,
2283 &nvme_tcp_admin_mq_ops,
2284 sizeof(struct nvme_tcp_request));
2285 if (error)
2286 goto out_free_queue;
2287 }
2288
2289 error = nvme_tcp_start_queue(ctrl, 0);
2290 if (error)
2291 goto out_cleanup_tagset;
2292
2293 error = nvme_enable_ctrl(ctrl);
2294 if (error)
2295 goto out_stop_queue;
2296
2297 nvme_unquiesce_admin_queue(ctrl);
2298
2299 error = nvme_init_ctrl_finish(ctrl, false);
2300 if (error)
2301 goto out_quiesce_queue;
2302
2303 return 0;
2304
2305 out_quiesce_queue:
2306 nvme_quiesce_admin_queue(ctrl);
2307 blk_sync_queue(ctrl->admin_q);
2308 out_stop_queue:
2309 nvme_tcp_stop_queue(ctrl, 0);
2310 nvme_cancel_admin_tagset(ctrl);
2311 out_cleanup_tagset:
2312 if (new)
2313 nvme_remove_admin_tag_set(ctrl);
2314 out_free_queue:
2315 nvme_tcp_free_admin_queue(ctrl);
2316 return error;
2317 }
2318
nvme_tcp_teardown_admin_queue(struct nvme_ctrl * ctrl,bool remove)2319 static void nvme_tcp_teardown_admin_queue(struct nvme_ctrl *ctrl,
2320 bool remove)
2321 {
2322 nvme_quiesce_admin_queue(ctrl);
2323 blk_sync_queue(ctrl->admin_q);
2324 nvme_tcp_stop_queue(ctrl, 0);
2325 nvme_cancel_admin_tagset(ctrl);
2326 if (remove)
2327 nvme_unquiesce_admin_queue(ctrl);
2328 nvme_tcp_destroy_admin_queue(ctrl, remove);
2329 if (ctrl->tls_pskid) {
2330 dev_dbg(ctrl->device, "Wipe negotiated TLS_PSK %08x\n",
2331 ctrl->tls_pskid);
2332 ctrl->tls_pskid = 0;
2333 }
2334 }
2335
nvme_tcp_teardown_io_queues(struct nvme_ctrl * ctrl,bool remove)2336 static void nvme_tcp_teardown_io_queues(struct nvme_ctrl *ctrl,
2337 bool remove)
2338 {
2339 if (ctrl->queue_count <= 1)
2340 return;
2341 nvme_quiesce_admin_queue(ctrl);
2342 nvme_quiesce_io_queues(ctrl);
2343 nvme_sync_io_queues(ctrl);
2344 nvme_tcp_stop_io_queues(ctrl);
2345 nvme_cancel_tagset(ctrl);
2346 if (remove)
2347 nvme_unquiesce_io_queues(ctrl);
2348 nvme_tcp_destroy_io_queues(ctrl, remove);
2349 }
2350
nvme_tcp_reconnect_or_remove(struct nvme_ctrl * ctrl,int status)2351 static void nvme_tcp_reconnect_or_remove(struct nvme_ctrl *ctrl,
2352 int status)
2353 {
2354 enum nvme_ctrl_state state = nvme_ctrl_state(ctrl);
2355
2356 /* If we are resetting/deleting then do nothing */
2357 if (state != NVME_CTRL_CONNECTING) {
2358 WARN_ON_ONCE(state == NVME_CTRL_NEW || state == NVME_CTRL_LIVE);
2359 return;
2360 }
2361
2362 if (nvmf_should_reconnect(ctrl, status)) {
2363 dev_info(ctrl->device, "Reconnecting in %d seconds...\n",
2364 ctrl->opts->reconnect_delay);
2365 queue_delayed_work(nvme_wq, &to_tcp_ctrl(ctrl)->connect_work,
2366 ctrl->opts->reconnect_delay * HZ);
2367 } else {
2368 dev_info(ctrl->device, "Removing controller (%d)...\n",
2369 status);
2370 nvme_delete_ctrl(ctrl);
2371 }
2372 }
2373
nvme_tcp_setup_ctrl(struct nvme_ctrl * ctrl,bool new)2374 static int nvme_tcp_setup_ctrl(struct nvme_ctrl *ctrl, bool new)
2375 {
2376 struct nvmf_ctrl_options *opts = ctrl->opts;
2377 int ret;
2378
2379 ret = nvme_tcp_configure_admin_queue(ctrl, new);
2380 if (ret)
2381 return ret;
2382
2383 if (ctrl->icdoff) {
2384 ret = -EOPNOTSUPP;
2385 dev_err(ctrl->device, "icdoff is not supported!\n");
2386 goto destroy_admin;
2387 }
2388
2389 if (!nvme_ctrl_sgl_supported(ctrl)) {
2390 ret = -EOPNOTSUPP;
2391 dev_err(ctrl->device, "Mandatory sgls are not supported!\n");
2392 goto destroy_admin;
2393 }
2394
2395 if (opts->queue_size > ctrl->sqsize + 1)
2396 dev_warn(ctrl->device,
2397 "queue_size %zu > ctrl sqsize %u, clamping down\n",
2398 opts->queue_size, ctrl->sqsize + 1);
2399
2400 if (ctrl->sqsize + 1 > ctrl->maxcmd) {
2401 dev_warn(ctrl->device,
2402 "sqsize %u > ctrl maxcmd %u, clamping down\n",
2403 ctrl->sqsize + 1, ctrl->maxcmd);
2404 ctrl->sqsize = ctrl->maxcmd - 1;
2405 }
2406
2407 if (ctrl->queue_count > 1) {
2408 ret = nvme_tcp_configure_io_queues(ctrl, new);
2409 if (ret)
2410 goto destroy_admin;
2411 }
2412
2413 if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_LIVE)) {
2414 /*
2415 * state change failure is ok if we started ctrl delete,
2416 * unless we're during creation of a new controller to
2417 * avoid races with teardown flow.
2418 */
2419 enum nvme_ctrl_state state = nvme_ctrl_state(ctrl);
2420
2421 WARN_ON_ONCE(state != NVME_CTRL_DELETING &&
2422 state != NVME_CTRL_DELETING_NOIO);
2423 WARN_ON_ONCE(new);
2424 ret = -EINVAL;
2425 goto destroy_io;
2426 }
2427
2428 nvme_start_ctrl(ctrl);
2429 return 0;
2430
2431 destroy_io:
2432 if (ctrl->queue_count > 1) {
2433 nvme_quiesce_io_queues(ctrl);
2434 nvme_sync_io_queues(ctrl);
2435 nvme_tcp_stop_io_queues(ctrl);
2436 nvme_cancel_tagset(ctrl);
2437 nvme_tcp_destroy_io_queues(ctrl, new);
2438 }
2439 destroy_admin:
2440 nvme_stop_keep_alive(ctrl);
2441 nvme_tcp_teardown_admin_queue(ctrl, new);
2442 return ret;
2443 }
2444
nvme_tcp_reconnect_ctrl_work(struct work_struct * work)2445 static void nvme_tcp_reconnect_ctrl_work(struct work_struct *work)
2446 {
2447 struct nvme_tcp_ctrl *tcp_ctrl = container_of(to_delayed_work(work),
2448 struct nvme_tcp_ctrl, connect_work);
2449 struct nvme_ctrl *ctrl = &tcp_ctrl->ctrl;
2450 int ret;
2451
2452 ++ctrl->nr_reconnects;
2453
2454 ret = nvme_tcp_setup_ctrl(ctrl, false);
2455 if (ret)
2456 goto requeue;
2457
2458 dev_info(ctrl->device, "Successfully reconnected (attempt %d/%d)\n",
2459 ctrl->nr_reconnects, ctrl->opts->max_reconnects);
2460
2461 ctrl->nr_reconnects = 0;
2462
2463 return;
2464
2465 requeue:
2466 dev_info(ctrl->device, "Failed reconnect attempt %d/%d\n",
2467 ctrl->nr_reconnects, ctrl->opts->max_reconnects);
2468 nvme_tcp_reconnect_or_remove(ctrl, ret);
2469 }
2470
nvme_tcp_error_recovery_work(struct work_struct * work)2471 static void nvme_tcp_error_recovery_work(struct work_struct *work)
2472 {
2473 struct nvme_tcp_ctrl *tcp_ctrl = container_of(work,
2474 struct nvme_tcp_ctrl, err_work);
2475 struct nvme_ctrl *ctrl = &tcp_ctrl->ctrl;
2476
2477 nvme_stop_keep_alive(ctrl);
2478 flush_work(&ctrl->async_event_work);
2479 nvme_tcp_teardown_io_queues(ctrl, false);
2480 /* unquiesce to fail fast pending requests */
2481 nvme_unquiesce_io_queues(ctrl);
2482 nvme_tcp_teardown_admin_queue(ctrl, false);
2483 nvme_unquiesce_admin_queue(ctrl);
2484 nvme_auth_stop(ctrl);
2485
2486 if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_CONNECTING)) {
2487 /* state change failure is ok if we started ctrl delete */
2488 enum nvme_ctrl_state state = nvme_ctrl_state(ctrl);
2489
2490 WARN_ON_ONCE(state != NVME_CTRL_DELETING &&
2491 state != NVME_CTRL_DELETING_NOIO);
2492 return;
2493 }
2494
2495 nvme_tcp_reconnect_or_remove(ctrl, 0);
2496 }
2497
nvme_tcp_teardown_ctrl(struct nvme_ctrl * ctrl,bool shutdown)2498 static void nvme_tcp_teardown_ctrl(struct nvme_ctrl *ctrl, bool shutdown)
2499 {
2500 nvme_tcp_teardown_io_queues(ctrl, shutdown);
2501 nvme_quiesce_admin_queue(ctrl);
2502 nvme_disable_ctrl(ctrl, shutdown);
2503 nvme_tcp_teardown_admin_queue(ctrl, shutdown);
2504 }
2505
nvme_tcp_delete_ctrl(struct nvme_ctrl * ctrl)2506 static void nvme_tcp_delete_ctrl(struct nvme_ctrl *ctrl)
2507 {
2508 nvme_tcp_teardown_ctrl(ctrl, true);
2509 }
2510
nvme_reset_ctrl_work(struct work_struct * work)2511 static void nvme_reset_ctrl_work(struct work_struct *work)
2512 {
2513 struct nvme_ctrl *ctrl =
2514 container_of(work, struct nvme_ctrl, reset_work);
2515 int ret;
2516
2517 nvme_stop_ctrl(ctrl);
2518 nvme_tcp_teardown_ctrl(ctrl, false);
2519
2520 if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_CONNECTING)) {
2521 /* state change failure is ok if we started ctrl delete */
2522 enum nvme_ctrl_state state = nvme_ctrl_state(ctrl);
2523
2524 WARN_ON_ONCE(state != NVME_CTRL_DELETING &&
2525 state != NVME_CTRL_DELETING_NOIO);
2526 return;
2527 }
2528
2529 ret = nvme_tcp_setup_ctrl(ctrl, false);
2530 if (ret)
2531 goto out_fail;
2532
2533 return;
2534
2535 out_fail:
2536 ++ctrl->nr_reconnects;
2537 nvme_tcp_reconnect_or_remove(ctrl, ret);
2538 }
2539
nvme_tcp_stop_ctrl(struct nvme_ctrl * ctrl)2540 static void nvme_tcp_stop_ctrl(struct nvme_ctrl *ctrl)
2541 {
2542 flush_work(&to_tcp_ctrl(ctrl)->err_work);
2543 cancel_delayed_work_sync(&to_tcp_ctrl(ctrl)->connect_work);
2544 }
2545
nvme_tcp_free_ctrl(struct nvme_ctrl * nctrl)2546 static void nvme_tcp_free_ctrl(struct nvme_ctrl *nctrl)
2547 {
2548 struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl);
2549
2550 if (list_empty(&ctrl->list))
2551 goto free_ctrl;
2552
2553 mutex_lock(&nvme_tcp_ctrl_mutex);
2554 list_del(&ctrl->list);
2555 mutex_unlock(&nvme_tcp_ctrl_mutex);
2556
2557 nvmf_free_options(nctrl->opts);
2558 free_ctrl:
2559 kfree(ctrl->queues);
2560 kfree(ctrl);
2561 }
2562
nvme_tcp_set_sg_null(struct nvme_command * c)2563 static void nvme_tcp_set_sg_null(struct nvme_command *c)
2564 {
2565 struct nvme_sgl_desc *sg = &c->common.dptr.sgl;
2566
2567 sg->addr = 0;
2568 sg->length = 0;
2569 sg->type = (NVME_TRANSPORT_SGL_DATA_DESC << 4) |
2570 NVME_SGL_FMT_TRANSPORT_A;
2571 }
2572
nvme_tcp_set_sg_inline(struct nvme_tcp_queue * queue,struct nvme_command * c,u32 data_len)2573 static void nvme_tcp_set_sg_inline(struct nvme_tcp_queue *queue,
2574 struct nvme_command *c, u32 data_len)
2575 {
2576 struct nvme_sgl_desc *sg = &c->common.dptr.sgl;
2577
2578 sg->addr = cpu_to_le64(queue->ctrl->ctrl.icdoff);
2579 sg->length = cpu_to_le32(data_len);
2580 sg->type = (NVME_SGL_FMT_DATA_DESC << 4) | NVME_SGL_FMT_OFFSET;
2581 }
2582
nvme_tcp_set_sg_host_data(struct nvme_command * c,u32 data_len)2583 static void nvme_tcp_set_sg_host_data(struct nvme_command *c,
2584 u32 data_len)
2585 {
2586 struct nvme_sgl_desc *sg = &c->common.dptr.sgl;
2587
2588 sg->addr = 0;
2589 sg->length = cpu_to_le32(data_len);
2590 sg->type = (NVME_TRANSPORT_SGL_DATA_DESC << 4) |
2591 NVME_SGL_FMT_TRANSPORT_A;
2592 }
2593
nvme_tcp_submit_async_event(struct nvme_ctrl * arg)2594 static void nvme_tcp_submit_async_event(struct nvme_ctrl *arg)
2595 {
2596 struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(arg);
2597 struct nvme_tcp_queue *queue = &ctrl->queues[0];
2598 struct nvme_tcp_cmd_pdu *pdu = ctrl->async_req.pdu;
2599 struct nvme_command *cmd = &pdu->cmd;
2600 u8 hdgst = nvme_tcp_hdgst_len(queue);
2601
2602 memset(pdu, 0, sizeof(*pdu));
2603 pdu->hdr.type = nvme_tcp_cmd;
2604 if (queue->hdr_digest)
2605 pdu->hdr.flags |= NVME_TCP_F_HDGST;
2606 pdu->hdr.hlen = sizeof(*pdu);
2607 pdu->hdr.plen = cpu_to_le32(pdu->hdr.hlen + hdgst);
2608
2609 cmd->common.opcode = nvme_admin_async_event;
2610 cmd->common.command_id = NVME_AQ_BLK_MQ_DEPTH;
2611 cmd->common.flags |= NVME_CMD_SGL_METABUF;
2612 nvme_tcp_set_sg_null(cmd);
2613
2614 ctrl->async_req.state = NVME_TCP_SEND_CMD_PDU;
2615 ctrl->async_req.offset = 0;
2616 ctrl->async_req.curr_bio = NULL;
2617 ctrl->async_req.data_len = 0;
2618 init_llist_node(&ctrl->async_req.lentry);
2619 INIT_LIST_HEAD(&ctrl->async_req.entry);
2620
2621 nvme_tcp_queue_request(&ctrl->async_req, true, true);
2622 }
2623
nvme_tcp_complete_timed_out(struct request * rq)2624 static void nvme_tcp_complete_timed_out(struct request *rq)
2625 {
2626 struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq);
2627 struct nvme_ctrl *ctrl = &req->queue->ctrl->ctrl;
2628
2629 nvme_tcp_stop_queue(ctrl, nvme_tcp_queue_id(req->queue));
2630 nvmf_complete_timed_out_request(rq);
2631 }
2632
nvme_tcp_timeout(struct request * rq)2633 static enum blk_eh_timer_return nvme_tcp_timeout(struct request *rq)
2634 {
2635 struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq);
2636 struct nvme_ctrl *ctrl = &req->queue->ctrl->ctrl;
2637 struct nvme_tcp_cmd_pdu *pdu = nvme_tcp_req_cmd_pdu(req);
2638 struct nvme_command *cmd = &pdu->cmd;
2639 int qid = nvme_tcp_queue_id(req->queue);
2640
2641 dev_warn(ctrl->device,
2642 "I/O tag %d (%04x) type %d opcode %#x (%s) QID %d timeout\n",
2643 rq->tag, nvme_cid(rq), pdu->hdr.type, cmd->common.opcode,
2644 nvme_fabrics_opcode_str(qid, cmd), qid);
2645
2646 if (nvme_ctrl_state(ctrl) != NVME_CTRL_LIVE) {
2647 /*
2648 * If we are resetting, connecting or deleting we should
2649 * complete immediately because we may block controller
2650 * teardown or setup sequence
2651 * - ctrl disable/shutdown fabrics requests
2652 * - connect requests
2653 * - initialization admin requests
2654 * - I/O requests that entered after unquiescing and
2655 * the controller stopped responding
2656 *
2657 * All other requests should be cancelled by the error
2658 * recovery work, so it's fine that we fail it here.
2659 */
2660 nvme_tcp_complete_timed_out(rq);
2661 return BLK_EH_DONE;
2662 }
2663
2664 /*
2665 * LIVE state should trigger the normal error recovery which will
2666 * handle completing this request.
2667 */
2668 nvme_tcp_error_recovery(ctrl);
2669 return BLK_EH_RESET_TIMER;
2670 }
2671
nvme_tcp_map_data(struct nvme_tcp_queue * queue,struct request * rq)2672 static blk_status_t nvme_tcp_map_data(struct nvme_tcp_queue *queue,
2673 struct request *rq)
2674 {
2675 struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq);
2676 struct nvme_tcp_cmd_pdu *pdu = nvme_tcp_req_cmd_pdu(req);
2677 struct nvme_command *c = &pdu->cmd;
2678
2679 c->common.flags |= NVME_CMD_SGL_METABUF;
2680
2681 if (!blk_rq_nr_phys_segments(rq))
2682 nvme_tcp_set_sg_null(c);
2683 else if (rq_data_dir(rq) == WRITE &&
2684 req->data_len <= nvme_tcp_inline_data_size(req))
2685 nvme_tcp_set_sg_inline(queue, c, req->data_len);
2686 else
2687 nvme_tcp_set_sg_host_data(c, req->data_len);
2688
2689 return 0;
2690 }
2691
nvme_tcp_setup_cmd_pdu(struct nvme_ns * ns,struct request * rq)2692 static blk_status_t nvme_tcp_setup_cmd_pdu(struct nvme_ns *ns,
2693 struct request *rq)
2694 {
2695 struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq);
2696 struct nvme_tcp_cmd_pdu *pdu = nvme_tcp_req_cmd_pdu(req);
2697 struct nvme_tcp_queue *queue = req->queue;
2698 u8 hdgst = nvme_tcp_hdgst_len(queue), ddgst = 0;
2699 blk_status_t ret;
2700
2701 ret = nvme_setup_cmd(ns, rq);
2702 if (ret)
2703 return ret;
2704
2705 req->state = NVME_TCP_SEND_CMD_PDU;
2706 req->status = cpu_to_le16(NVME_SC_SUCCESS);
2707 req->offset = 0;
2708 req->data_sent = 0;
2709 req->pdu_len = 0;
2710 req->pdu_sent = 0;
2711 req->h2cdata_left = 0;
2712 req->data_len = blk_rq_nr_phys_segments(rq) ?
2713 blk_rq_payload_bytes(rq) : 0;
2714 req->curr_bio = rq->bio;
2715 if (req->curr_bio && req->data_len)
2716 nvme_tcp_init_iter(req, rq_data_dir(rq));
2717
2718 if (rq_data_dir(rq) == WRITE &&
2719 req->data_len <= nvme_tcp_inline_data_size(req))
2720 req->pdu_len = req->data_len;
2721
2722 pdu->hdr.type = nvme_tcp_cmd;
2723 pdu->hdr.flags = 0;
2724 if (queue->hdr_digest)
2725 pdu->hdr.flags |= NVME_TCP_F_HDGST;
2726 if (queue->data_digest && req->pdu_len) {
2727 pdu->hdr.flags |= NVME_TCP_F_DDGST;
2728 ddgst = nvme_tcp_ddgst_len(queue);
2729 }
2730 pdu->hdr.hlen = sizeof(*pdu);
2731 pdu->hdr.pdo = req->pdu_len ? pdu->hdr.hlen + hdgst : 0;
2732 pdu->hdr.plen =
2733 cpu_to_le32(pdu->hdr.hlen + hdgst + req->pdu_len + ddgst);
2734
2735 ret = nvme_tcp_map_data(queue, rq);
2736 if (unlikely(ret)) {
2737 nvme_cleanup_cmd(rq);
2738 dev_err(queue->ctrl->ctrl.device,
2739 "Failed to map data (%d)\n", ret);
2740 return ret;
2741 }
2742
2743 return 0;
2744 }
2745
nvme_tcp_commit_rqs(struct blk_mq_hw_ctx * hctx)2746 static void nvme_tcp_commit_rqs(struct blk_mq_hw_ctx *hctx)
2747 {
2748 struct nvme_tcp_queue *queue = hctx->driver_data;
2749
2750 if (!llist_empty(&queue->req_list))
2751 queue_work_on(queue->io_cpu, nvme_tcp_wq, &queue->io_work);
2752 }
2753
nvme_tcp_queue_rq(struct blk_mq_hw_ctx * hctx,const struct blk_mq_queue_data * bd)2754 static blk_status_t nvme_tcp_queue_rq(struct blk_mq_hw_ctx *hctx,
2755 const struct blk_mq_queue_data *bd)
2756 {
2757 struct nvme_ns *ns = hctx->queue->queuedata;
2758 struct nvme_tcp_queue *queue = hctx->driver_data;
2759 struct request *rq = bd->rq;
2760 struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq);
2761 bool queue_ready = test_bit(NVME_TCP_Q_LIVE, &queue->flags);
2762 blk_status_t ret;
2763
2764 if (!nvme_check_ready(&queue->ctrl->ctrl, rq, queue_ready))
2765 return nvme_fail_nonready_command(&queue->ctrl->ctrl, rq);
2766
2767 ret = nvme_tcp_setup_cmd_pdu(ns, rq);
2768 if (unlikely(ret))
2769 return ret;
2770
2771 nvme_start_request(rq);
2772
2773 nvme_tcp_queue_request(req, true, bd->last);
2774
2775 return BLK_STS_OK;
2776 }
2777
nvme_tcp_map_queues(struct blk_mq_tag_set * set)2778 static void nvme_tcp_map_queues(struct blk_mq_tag_set *set)
2779 {
2780 struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(set->driver_data);
2781
2782 nvmf_map_queues(set, &ctrl->ctrl, ctrl->io_queues);
2783 }
2784
nvme_tcp_poll(struct blk_mq_hw_ctx * hctx,struct io_comp_batch * iob)2785 static int nvme_tcp_poll(struct blk_mq_hw_ctx *hctx, struct io_comp_batch *iob)
2786 {
2787 struct nvme_tcp_queue *queue = hctx->driver_data;
2788 struct sock *sk = queue->sock->sk;
2789 int ret;
2790
2791 if (!test_bit(NVME_TCP_Q_LIVE, &queue->flags))
2792 return 0;
2793
2794 set_bit(NVME_TCP_Q_POLLING, &queue->flags);
2795 if (sk_can_busy_loop(sk) && skb_queue_empty_lockless(&sk->sk_receive_queue))
2796 sk_busy_loop(sk, true);
2797 ret = nvme_tcp_try_recv(queue);
2798 clear_bit(NVME_TCP_Q_POLLING, &queue->flags);
2799 return ret < 0 ? ret : queue->nr_cqe;
2800 }
2801
nvme_tcp_get_address(struct nvme_ctrl * ctrl,char * buf,int size)2802 static int nvme_tcp_get_address(struct nvme_ctrl *ctrl, char *buf, int size)
2803 {
2804 struct nvme_tcp_queue *queue = &to_tcp_ctrl(ctrl)->queues[0];
2805 struct sockaddr_storage src_addr;
2806 int ret, len;
2807
2808 len = nvmf_get_address(ctrl, buf, size);
2809
2810 if (!test_bit(NVME_TCP_Q_LIVE, &queue->flags))
2811 return len;
2812
2813 mutex_lock(&queue->queue_lock);
2814
2815 ret = kernel_getsockname(queue->sock, (struct sockaddr *)&src_addr);
2816 if (ret > 0) {
2817 if (len > 0)
2818 len--; /* strip trailing newline */
2819 len += scnprintf(buf + len, size - len, "%ssrc_addr=%pISc\n",
2820 (len) ? "," : "", &src_addr);
2821 }
2822
2823 mutex_unlock(&queue->queue_lock);
2824
2825 return len;
2826 }
2827
2828 static const struct blk_mq_ops nvme_tcp_mq_ops = {
2829 .queue_rq = nvme_tcp_queue_rq,
2830 .commit_rqs = nvme_tcp_commit_rqs,
2831 .complete = nvme_complete_rq,
2832 .init_request = nvme_tcp_init_request,
2833 .exit_request = nvme_tcp_exit_request,
2834 .init_hctx = nvme_tcp_init_hctx,
2835 .timeout = nvme_tcp_timeout,
2836 .map_queues = nvme_tcp_map_queues,
2837 .poll = nvme_tcp_poll,
2838 };
2839
2840 static const struct blk_mq_ops nvme_tcp_admin_mq_ops = {
2841 .queue_rq = nvme_tcp_queue_rq,
2842 .complete = nvme_complete_rq,
2843 .init_request = nvme_tcp_init_request,
2844 .exit_request = nvme_tcp_exit_request,
2845 .init_hctx = nvme_tcp_init_admin_hctx,
2846 .timeout = nvme_tcp_timeout,
2847 };
2848
2849 static const struct nvme_ctrl_ops nvme_tcp_ctrl_ops = {
2850 .name = "tcp",
2851 .module = THIS_MODULE,
2852 .flags = NVME_F_FABRICS | NVME_F_BLOCKING,
2853 .reg_read32 = nvmf_reg_read32,
2854 .reg_read64 = nvmf_reg_read64,
2855 .reg_write32 = nvmf_reg_write32,
2856 .subsystem_reset = nvmf_subsystem_reset,
2857 .free_ctrl = nvme_tcp_free_ctrl,
2858 .submit_async_event = nvme_tcp_submit_async_event,
2859 .delete_ctrl = nvme_tcp_delete_ctrl,
2860 .get_address = nvme_tcp_get_address,
2861 .stop_ctrl = nvme_tcp_stop_ctrl,
2862 };
2863
2864 static bool
nvme_tcp_existing_controller(struct nvmf_ctrl_options * opts)2865 nvme_tcp_existing_controller(struct nvmf_ctrl_options *opts)
2866 {
2867 struct nvme_tcp_ctrl *ctrl;
2868 bool found = false;
2869
2870 mutex_lock(&nvme_tcp_ctrl_mutex);
2871 list_for_each_entry(ctrl, &nvme_tcp_ctrl_list, list) {
2872 found = nvmf_ip_options_match(&ctrl->ctrl, opts);
2873 if (found)
2874 break;
2875 }
2876 mutex_unlock(&nvme_tcp_ctrl_mutex);
2877
2878 return found;
2879 }
2880
nvme_tcp_alloc_ctrl(struct device * dev,struct nvmf_ctrl_options * opts)2881 static struct nvme_tcp_ctrl *nvme_tcp_alloc_ctrl(struct device *dev,
2882 struct nvmf_ctrl_options *opts)
2883 {
2884 struct nvme_tcp_ctrl *ctrl;
2885 int ret;
2886
2887 ctrl = kzalloc(sizeof(*ctrl), GFP_KERNEL);
2888 if (!ctrl)
2889 return ERR_PTR(-ENOMEM);
2890
2891 INIT_LIST_HEAD(&ctrl->list);
2892 ctrl->ctrl.opts = opts;
2893 ctrl->ctrl.queue_count = opts->nr_io_queues + opts->nr_write_queues +
2894 opts->nr_poll_queues + 1;
2895 ctrl->ctrl.sqsize = opts->queue_size - 1;
2896 ctrl->ctrl.kato = opts->kato;
2897
2898 INIT_DELAYED_WORK(&ctrl->connect_work,
2899 nvme_tcp_reconnect_ctrl_work);
2900 INIT_WORK(&ctrl->err_work, nvme_tcp_error_recovery_work);
2901 INIT_WORK(&ctrl->ctrl.reset_work, nvme_reset_ctrl_work);
2902
2903 if (!(opts->mask & NVMF_OPT_TRSVCID)) {
2904 opts->trsvcid =
2905 kstrdup(__stringify(NVME_TCP_DISC_PORT), GFP_KERNEL);
2906 if (!opts->trsvcid) {
2907 ret = -ENOMEM;
2908 goto out_free_ctrl;
2909 }
2910 opts->mask |= NVMF_OPT_TRSVCID;
2911 }
2912
2913 ret = inet_pton_with_scope(&init_net, AF_UNSPEC,
2914 opts->traddr, opts->trsvcid, &ctrl->addr);
2915 if (ret) {
2916 pr_err("malformed address passed: %s:%s\n",
2917 opts->traddr, opts->trsvcid);
2918 goto out_free_ctrl;
2919 }
2920
2921 if (opts->mask & NVMF_OPT_HOST_TRADDR) {
2922 ret = inet_pton_with_scope(&init_net, AF_UNSPEC,
2923 opts->host_traddr, NULL, &ctrl->src_addr);
2924 if (ret) {
2925 pr_err("malformed src address passed: %s\n",
2926 opts->host_traddr);
2927 goto out_free_ctrl;
2928 }
2929 }
2930
2931 if (opts->mask & NVMF_OPT_HOST_IFACE) {
2932 if (!__dev_get_by_name(&init_net, opts->host_iface)) {
2933 pr_err("invalid interface passed: %s\n",
2934 opts->host_iface);
2935 ret = -ENODEV;
2936 goto out_free_ctrl;
2937 }
2938 }
2939
2940 if (!opts->duplicate_connect && nvme_tcp_existing_controller(opts)) {
2941 ret = -EALREADY;
2942 goto out_free_ctrl;
2943 }
2944
2945 ctrl->queues = kcalloc(ctrl->ctrl.queue_count, sizeof(*ctrl->queues),
2946 GFP_KERNEL);
2947 if (!ctrl->queues) {
2948 ret = -ENOMEM;
2949 goto out_free_ctrl;
2950 }
2951
2952 ret = nvme_init_ctrl(&ctrl->ctrl, dev, &nvme_tcp_ctrl_ops, 0);
2953 if (ret)
2954 goto out_kfree_queues;
2955
2956 return ctrl;
2957 out_kfree_queues:
2958 kfree(ctrl->queues);
2959 out_free_ctrl:
2960 kfree(ctrl);
2961 return ERR_PTR(ret);
2962 }
2963
nvme_tcp_create_ctrl(struct device * dev,struct nvmf_ctrl_options * opts)2964 static struct nvme_ctrl *nvme_tcp_create_ctrl(struct device *dev,
2965 struct nvmf_ctrl_options *opts)
2966 {
2967 struct nvme_tcp_ctrl *ctrl;
2968 int ret;
2969
2970 ctrl = nvme_tcp_alloc_ctrl(dev, opts);
2971 if (IS_ERR(ctrl))
2972 return ERR_CAST(ctrl);
2973
2974 ret = nvme_add_ctrl(&ctrl->ctrl);
2975 if (ret)
2976 goto out_put_ctrl;
2977
2978 if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_CONNECTING)) {
2979 WARN_ON_ONCE(1);
2980 ret = -EINTR;
2981 goto out_uninit_ctrl;
2982 }
2983
2984 ret = nvme_tcp_setup_ctrl(&ctrl->ctrl, true);
2985 if (ret)
2986 goto out_uninit_ctrl;
2987
2988 dev_info(ctrl->ctrl.device, "new ctrl: NQN \"%s\", addr %pISp, hostnqn: %s\n",
2989 nvmf_ctrl_subsysnqn(&ctrl->ctrl), &ctrl->addr, opts->host->nqn);
2990
2991 mutex_lock(&nvme_tcp_ctrl_mutex);
2992 list_add_tail(&ctrl->list, &nvme_tcp_ctrl_list);
2993 mutex_unlock(&nvme_tcp_ctrl_mutex);
2994
2995 return &ctrl->ctrl;
2996
2997 out_uninit_ctrl:
2998 nvme_uninit_ctrl(&ctrl->ctrl);
2999 out_put_ctrl:
3000 nvme_put_ctrl(&ctrl->ctrl);
3001 if (ret > 0)
3002 ret = -EIO;
3003 return ERR_PTR(ret);
3004 }
3005
3006 static struct nvmf_transport_ops nvme_tcp_transport = {
3007 .name = "tcp",
3008 .module = THIS_MODULE,
3009 .required_opts = NVMF_OPT_TRADDR,
3010 .allowed_opts = NVMF_OPT_TRSVCID | NVMF_OPT_RECONNECT_DELAY |
3011 NVMF_OPT_HOST_TRADDR | NVMF_OPT_CTRL_LOSS_TMO |
3012 NVMF_OPT_HDR_DIGEST | NVMF_OPT_DATA_DIGEST |
3013 NVMF_OPT_NR_WRITE_QUEUES | NVMF_OPT_NR_POLL_QUEUES |
3014 NVMF_OPT_TOS | NVMF_OPT_HOST_IFACE | NVMF_OPT_TLS |
3015 NVMF_OPT_KEYRING | NVMF_OPT_TLS_KEY,
3016 .create_ctrl = nvme_tcp_create_ctrl,
3017 };
3018
nvme_tcp_init_module(void)3019 static int __init nvme_tcp_init_module(void)
3020 {
3021 unsigned int wq_flags = WQ_MEM_RECLAIM | WQ_HIGHPRI | WQ_SYSFS;
3022 int cpu;
3023
3024 BUILD_BUG_ON(sizeof(struct nvme_tcp_hdr) != 8);
3025 BUILD_BUG_ON(sizeof(struct nvme_tcp_cmd_pdu) != 72);
3026 BUILD_BUG_ON(sizeof(struct nvme_tcp_data_pdu) != 24);
3027 BUILD_BUG_ON(sizeof(struct nvme_tcp_rsp_pdu) != 24);
3028 BUILD_BUG_ON(sizeof(struct nvme_tcp_r2t_pdu) != 24);
3029 BUILD_BUG_ON(sizeof(struct nvme_tcp_icreq_pdu) != 128);
3030 BUILD_BUG_ON(sizeof(struct nvme_tcp_icresp_pdu) != 128);
3031 BUILD_BUG_ON(sizeof(struct nvme_tcp_term_pdu) != 24);
3032
3033 if (wq_unbound)
3034 wq_flags |= WQ_UNBOUND;
3035
3036 nvme_tcp_wq = alloc_workqueue("nvme_tcp_wq", wq_flags, 0);
3037 if (!nvme_tcp_wq)
3038 return -ENOMEM;
3039
3040 for_each_possible_cpu(cpu)
3041 atomic_set(&nvme_tcp_cpu_queues[cpu], 0);
3042
3043 nvmf_register_transport(&nvme_tcp_transport);
3044 return 0;
3045 }
3046
nvme_tcp_cleanup_module(void)3047 static void __exit nvme_tcp_cleanup_module(void)
3048 {
3049 struct nvme_tcp_ctrl *ctrl;
3050
3051 nvmf_unregister_transport(&nvme_tcp_transport);
3052
3053 mutex_lock(&nvme_tcp_ctrl_mutex);
3054 list_for_each_entry(ctrl, &nvme_tcp_ctrl_list, list)
3055 nvme_delete_ctrl(&ctrl->ctrl);
3056 mutex_unlock(&nvme_tcp_ctrl_mutex);
3057 flush_workqueue(nvme_delete_wq);
3058
3059 destroy_workqueue(nvme_tcp_wq);
3060 }
3061
3062 module_init(nvme_tcp_init_module);
3063 module_exit(nvme_tcp_cleanup_module);
3064
3065 MODULE_DESCRIPTION("NVMe host TCP transport driver");
3066 MODULE_LICENSE("GPL v2");
3067