• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * NVMe over Fabrics TCP host.
4  * Copyright (c) 2018 Lightbits Labs. All rights reserved.
5  */
6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
7 #include <linux/module.h>
8 #include <linux/init.h>
9 #include <linux/slab.h>
10 #include <linux/err.h>
11 #include <linux/key.h>
12 #include <linux/nvme-tcp.h>
13 #include <linux/nvme-keyring.h>
14 #include <net/sock.h>
15 #include <net/tcp.h>
16 #include <net/tls.h>
17 #include <net/tls_prot.h>
18 #include <net/handshake.h>
19 #include <linux/blk-mq.h>
20 #include <crypto/hash.h>
21 #include <net/busy_poll.h>
22 #include <trace/events/sock.h>
23 
24 #include "nvme.h"
25 #include "fabrics.h"
26 
27 struct nvme_tcp_queue;
28 
29 /* Define the socket priority to use for connections were it is desirable
30  * that the NIC consider performing optimized packet processing or filtering.
31  * A non-zero value being sufficient to indicate general consideration of any
32  * possible optimization.  Making it a module param allows for alternative
33  * values that may be unique for some NIC implementations.
34  */
35 static int so_priority;
36 module_param(so_priority, int, 0644);
37 MODULE_PARM_DESC(so_priority, "nvme tcp socket optimize priority");
38 
39 /*
40  * Use the unbound workqueue for nvme_tcp_wq, then we can set the cpu affinity
41  * from sysfs.
42  */
43 static bool wq_unbound;
44 module_param(wq_unbound, bool, 0644);
45 MODULE_PARM_DESC(wq_unbound, "Use unbound workqueue for nvme-tcp IO context (default false)");
46 
47 /*
48  * TLS handshake timeout
49  */
50 static int tls_handshake_timeout = 10;
51 #ifdef CONFIG_NVME_TCP_TLS
52 module_param(tls_handshake_timeout, int, 0644);
53 MODULE_PARM_DESC(tls_handshake_timeout,
54 		 "nvme TLS handshake timeout in seconds (default 10)");
55 #endif
56 
57 static atomic_t nvme_tcp_cpu_queues[NR_CPUS];
58 
59 #ifdef CONFIG_DEBUG_LOCK_ALLOC
60 /* lockdep can detect a circular dependency of the form
61  *   sk_lock -> mmap_lock (page fault) -> fs locks -> sk_lock
62  * because dependencies are tracked for both nvme-tcp and user contexts. Using
63  * a separate class prevents lockdep from conflating nvme-tcp socket use with
64  * user-space socket API use.
65  */
66 static struct lock_class_key nvme_tcp_sk_key[2];
67 static struct lock_class_key nvme_tcp_slock_key[2];
68 
nvme_tcp_reclassify_socket(struct socket * sock)69 static void nvme_tcp_reclassify_socket(struct socket *sock)
70 {
71 	struct sock *sk = sock->sk;
72 
73 	if (WARN_ON_ONCE(!sock_allow_reclassification(sk)))
74 		return;
75 
76 	switch (sk->sk_family) {
77 	case AF_INET:
78 		sock_lock_init_class_and_name(sk, "slock-AF_INET-NVME",
79 					      &nvme_tcp_slock_key[0],
80 					      "sk_lock-AF_INET-NVME",
81 					      &nvme_tcp_sk_key[0]);
82 		break;
83 	case AF_INET6:
84 		sock_lock_init_class_and_name(sk, "slock-AF_INET6-NVME",
85 					      &nvme_tcp_slock_key[1],
86 					      "sk_lock-AF_INET6-NVME",
87 					      &nvme_tcp_sk_key[1]);
88 		break;
89 	default:
90 		WARN_ON_ONCE(1);
91 	}
92 }
93 #else
nvme_tcp_reclassify_socket(struct socket * sock)94 static void nvme_tcp_reclassify_socket(struct socket *sock) { }
95 #endif
96 
97 enum nvme_tcp_send_state {
98 	NVME_TCP_SEND_CMD_PDU = 0,
99 	NVME_TCP_SEND_H2C_PDU,
100 	NVME_TCP_SEND_DATA,
101 	NVME_TCP_SEND_DDGST,
102 };
103 
104 struct nvme_tcp_request {
105 	struct nvme_request	req;
106 	void			*pdu;
107 	struct nvme_tcp_queue	*queue;
108 	u32			data_len;
109 	u32			pdu_len;
110 	u32			pdu_sent;
111 	u32			h2cdata_left;
112 	u32			h2cdata_offset;
113 	u16			ttag;
114 	__le16			status;
115 	struct list_head	entry;
116 	struct llist_node	lentry;
117 	__le32			ddgst;
118 
119 	struct bio		*curr_bio;
120 	struct iov_iter		iter;
121 
122 	/* send state */
123 	size_t			offset;
124 	size_t			data_sent;
125 	enum nvme_tcp_send_state state;
126 };
127 
128 enum nvme_tcp_queue_flags {
129 	NVME_TCP_Q_ALLOCATED	= 0,
130 	NVME_TCP_Q_LIVE		= 1,
131 	NVME_TCP_Q_POLLING	= 2,
132 	NVME_TCP_Q_IO_CPU_SET	= 3,
133 };
134 
135 enum nvme_tcp_recv_state {
136 	NVME_TCP_RECV_PDU = 0,
137 	NVME_TCP_RECV_DATA,
138 	NVME_TCP_RECV_DDGST,
139 };
140 
141 struct nvme_tcp_ctrl;
142 struct nvme_tcp_queue {
143 	struct socket		*sock;
144 	struct work_struct	io_work;
145 	int			io_cpu;
146 
147 	struct mutex		queue_lock;
148 	struct mutex		send_mutex;
149 	struct llist_head	req_list;
150 	struct list_head	send_list;
151 
152 	/* recv state */
153 	void			*pdu;
154 	int			pdu_remaining;
155 	int			pdu_offset;
156 	size_t			data_remaining;
157 	size_t			ddgst_remaining;
158 	unsigned int		nr_cqe;
159 
160 	/* send state */
161 	struct nvme_tcp_request *request;
162 
163 	u32			maxh2cdata;
164 	size_t			cmnd_capsule_len;
165 	struct nvme_tcp_ctrl	*ctrl;
166 	unsigned long		flags;
167 	bool			rd_enabled;
168 
169 	bool			hdr_digest;
170 	bool			data_digest;
171 	bool			tls_enabled;
172 	struct ahash_request	*rcv_hash;
173 	struct ahash_request	*snd_hash;
174 	__le32			exp_ddgst;
175 	__le32			recv_ddgst;
176 	struct completion       tls_complete;
177 	int                     tls_err;
178 	struct page_frag_cache	pf_cache;
179 
180 	void (*state_change)(struct sock *);
181 	void (*data_ready)(struct sock *);
182 	void (*write_space)(struct sock *);
183 };
184 
185 struct nvme_tcp_ctrl {
186 	/* read only in the hot path */
187 	struct nvme_tcp_queue	*queues;
188 	struct blk_mq_tag_set	tag_set;
189 
190 	/* other member variables */
191 	struct list_head	list;
192 	struct blk_mq_tag_set	admin_tag_set;
193 	struct sockaddr_storage addr;
194 	struct sockaddr_storage src_addr;
195 	struct nvme_ctrl	ctrl;
196 
197 	struct work_struct	err_work;
198 	struct delayed_work	connect_work;
199 	struct nvme_tcp_request async_req;
200 	u32			io_queues[HCTX_MAX_TYPES];
201 };
202 
203 static LIST_HEAD(nvme_tcp_ctrl_list);
204 static DEFINE_MUTEX(nvme_tcp_ctrl_mutex);
205 static struct workqueue_struct *nvme_tcp_wq;
206 static const struct blk_mq_ops nvme_tcp_mq_ops;
207 static const struct blk_mq_ops nvme_tcp_admin_mq_ops;
208 static int nvme_tcp_try_send(struct nvme_tcp_queue *queue);
209 
to_tcp_ctrl(struct nvme_ctrl * ctrl)210 static inline struct nvme_tcp_ctrl *to_tcp_ctrl(struct nvme_ctrl *ctrl)
211 {
212 	return container_of(ctrl, struct nvme_tcp_ctrl, ctrl);
213 }
214 
nvme_tcp_queue_id(struct nvme_tcp_queue * queue)215 static inline int nvme_tcp_queue_id(struct nvme_tcp_queue *queue)
216 {
217 	return queue - queue->ctrl->queues;
218 }
219 
nvme_tcp_recv_pdu_supported(enum nvme_tcp_pdu_type type)220 static inline bool nvme_tcp_recv_pdu_supported(enum nvme_tcp_pdu_type type)
221 {
222 	switch (type) {
223 	case nvme_tcp_c2h_term:
224 	case nvme_tcp_c2h_data:
225 	case nvme_tcp_r2t:
226 	case nvme_tcp_rsp:
227 		return true;
228 	default:
229 		return false;
230 	}
231 }
232 
233 /*
234  * Check if the queue is TLS encrypted
235  */
nvme_tcp_queue_tls(struct nvme_tcp_queue * queue)236 static inline bool nvme_tcp_queue_tls(struct nvme_tcp_queue *queue)
237 {
238 	if (!IS_ENABLED(CONFIG_NVME_TCP_TLS))
239 		return 0;
240 
241 	return queue->tls_enabled;
242 }
243 
244 /*
245  * Check if TLS is configured for the controller.
246  */
nvme_tcp_tls_configured(struct nvme_ctrl * ctrl)247 static inline bool nvme_tcp_tls_configured(struct nvme_ctrl *ctrl)
248 {
249 	if (!IS_ENABLED(CONFIG_NVME_TCP_TLS))
250 		return 0;
251 
252 	return ctrl->opts->tls;
253 }
254 
nvme_tcp_tagset(struct nvme_tcp_queue * queue)255 static inline struct blk_mq_tags *nvme_tcp_tagset(struct nvme_tcp_queue *queue)
256 {
257 	u32 queue_idx = nvme_tcp_queue_id(queue);
258 
259 	if (queue_idx == 0)
260 		return queue->ctrl->admin_tag_set.tags[queue_idx];
261 	return queue->ctrl->tag_set.tags[queue_idx - 1];
262 }
263 
nvme_tcp_hdgst_len(struct nvme_tcp_queue * queue)264 static inline u8 nvme_tcp_hdgst_len(struct nvme_tcp_queue *queue)
265 {
266 	return queue->hdr_digest ? NVME_TCP_DIGEST_LENGTH : 0;
267 }
268 
nvme_tcp_ddgst_len(struct nvme_tcp_queue * queue)269 static inline u8 nvme_tcp_ddgst_len(struct nvme_tcp_queue *queue)
270 {
271 	return queue->data_digest ? NVME_TCP_DIGEST_LENGTH : 0;
272 }
273 
nvme_tcp_req_cmd_pdu(struct nvme_tcp_request * req)274 static inline void *nvme_tcp_req_cmd_pdu(struct nvme_tcp_request *req)
275 {
276 	return req->pdu;
277 }
278 
nvme_tcp_req_data_pdu(struct nvme_tcp_request * req)279 static inline void *nvme_tcp_req_data_pdu(struct nvme_tcp_request *req)
280 {
281 	/* use the pdu space in the back for the data pdu */
282 	return req->pdu + sizeof(struct nvme_tcp_cmd_pdu) -
283 		sizeof(struct nvme_tcp_data_pdu);
284 }
285 
nvme_tcp_inline_data_size(struct nvme_tcp_request * req)286 static inline size_t nvme_tcp_inline_data_size(struct nvme_tcp_request *req)
287 {
288 	if (nvme_is_fabrics(req->req.cmd))
289 		return NVME_TCP_ADMIN_CCSZ;
290 	return req->queue->cmnd_capsule_len - sizeof(struct nvme_command);
291 }
292 
nvme_tcp_async_req(struct nvme_tcp_request * req)293 static inline bool nvme_tcp_async_req(struct nvme_tcp_request *req)
294 {
295 	return req == &req->queue->ctrl->async_req;
296 }
297 
nvme_tcp_has_inline_data(struct nvme_tcp_request * req)298 static inline bool nvme_tcp_has_inline_data(struct nvme_tcp_request *req)
299 {
300 	struct request *rq;
301 
302 	if (unlikely(nvme_tcp_async_req(req)))
303 		return false; /* async events don't have a request */
304 
305 	rq = blk_mq_rq_from_pdu(req);
306 
307 	return rq_data_dir(rq) == WRITE && req->data_len &&
308 		req->data_len <= nvme_tcp_inline_data_size(req);
309 }
310 
nvme_tcp_req_cur_page(struct nvme_tcp_request * req)311 static inline struct page *nvme_tcp_req_cur_page(struct nvme_tcp_request *req)
312 {
313 	return req->iter.bvec->bv_page;
314 }
315 
nvme_tcp_req_cur_offset(struct nvme_tcp_request * req)316 static inline size_t nvme_tcp_req_cur_offset(struct nvme_tcp_request *req)
317 {
318 	return req->iter.bvec->bv_offset + req->iter.iov_offset;
319 }
320 
nvme_tcp_req_cur_length(struct nvme_tcp_request * req)321 static inline size_t nvme_tcp_req_cur_length(struct nvme_tcp_request *req)
322 {
323 	return min_t(size_t, iov_iter_single_seg_count(&req->iter),
324 			req->pdu_len - req->pdu_sent);
325 }
326 
nvme_tcp_pdu_data_left(struct nvme_tcp_request * req)327 static inline size_t nvme_tcp_pdu_data_left(struct nvme_tcp_request *req)
328 {
329 	return rq_data_dir(blk_mq_rq_from_pdu(req)) == WRITE ?
330 			req->pdu_len - req->pdu_sent : 0;
331 }
332 
nvme_tcp_pdu_last_send(struct nvme_tcp_request * req,int len)333 static inline size_t nvme_tcp_pdu_last_send(struct nvme_tcp_request *req,
334 		int len)
335 {
336 	return nvme_tcp_pdu_data_left(req) <= len;
337 }
338 
nvme_tcp_init_iter(struct nvme_tcp_request * req,unsigned int dir)339 static void nvme_tcp_init_iter(struct nvme_tcp_request *req,
340 		unsigned int dir)
341 {
342 	struct request *rq = blk_mq_rq_from_pdu(req);
343 	struct bio_vec *vec;
344 	unsigned int size;
345 	int nr_bvec;
346 	size_t offset;
347 
348 	if (rq->rq_flags & RQF_SPECIAL_PAYLOAD) {
349 		vec = &rq->special_vec;
350 		nr_bvec = 1;
351 		size = blk_rq_payload_bytes(rq);
352 		offset = 0;
353 	} else {
354 		struct bio *bio = req->curr_bio;
355 		struct bvec_iter bi;
356 		struct bio_vec bv;
357 
358 		vec = __bvec_iter_bvec(bio->bi_io_vec, bio->bi_iter);
359 		nr_bvec = 0;
360 		bio_for_each_bvec(bv, bio, bi) {
361 			nr_bvec++;
362 		}
363 		size = bio->bi_iter.bi_size;
364 		offset = bio->bi_iter.bi_bvec_done;
365 	}
366 
367 	iov_iter_bvec(&req->iter, dir, vec, nr_bvec, size);
368 	req->iter.iov_offset = offset;
369 }
370 
nvme_tcp_advance_req(struct nvme_tcp_request * req,int len)371 static inline void nvme_tcp_advance_req(struct nvme_tcp_request *req,
372 		int len)
373 {
374 	req->data_sent += len;
375 	req->pdu_sent += len;
376 	iov_iter_advance(&req->iter, len);
377 	if (!iov_iter_count(&req->iter) &&
378 	    req->data_sent < req->data_len) {
379 		req->curr_bio = req->curr_bio->bi_next;
380 		nvme_tcp_init_iter(req, ITER_SOURCE);
381 	}
382 }
383 
nvme_tcp_send_all(struct nvme_tcp_queue * queue)384 static inline void nvme_tcp_send_all(struct nvme_tcp_queue *queue)
385 {
386 	int ret;
387 
388 	/* drain the send queue as much as we can... */
389 	do {
390 		ret = nvme_tcp_try_send(queue);
391 	} while (ret > 0);
392 }
393 
nvme_tcp_queue_has_pending(struct nvme_tcp_queue * queue)394 static inline bool nvme_tcp_queue_has_pending(struct nvme_tcp_queue *queue)
395 {
396 	return !list_empty(&queue->send_list) ||
397 		!llist_empty(&queue->req_list);
398 }
399 
nvme_tcp_queue_more(struct nvme_tcp_queue * queue)400 static inline bool nvme_tcp_queue_more(struct nvme_tcp_queue *queue)
401 {
402 	return !nvme_tcp_queue_tls(queue) &&
403 		nvme_tcp_queue_has_pending(queue);
404 }
405 
nvme_tcp_queue_request(struct nvme_tcp_request * req,bool sync,bool last)406 static inline void nvme_tcp_queue_request(struct nvme_tcp_request *req,
407 		bool sync, bool last)
408 {
409 	struct nvme_tcp_queue *queue = req->queue;
410 	bool empty;
411 
412 	empty = llist_add(&req->lentry, &queue->req_list) &&
413 		list_empty(&queue->send_list) && !queue->request;
414 
415 	/*
416 	 * if we're the first on the send_list and we can try to send
417 	 * directly, otherwise queue io_work. Also, only do that if we
418 	 * are on the same cpu, so we don't introduce contention.
419 	 */
420 	if (queue->io_cpu == raw_smp_processor_id() &&
421 	    sync && empty && mutex_trylock(&queue->send_mutex)) {
422 		nvme_tcp_send_all(queue);
423 		mutex_unlock(&queue->send_mutex);
424 	}
425 
426 	if (last && nvme_tcp_queue_has_pending(queue))
427 		queue_work_on(queue->io_cpu, nvme_tcp_wq, &queue->io_work);
428 }
429 
nvme_tcp_process_req_list(struct nvme_tcp_queue * queue)430 static void nvme_tcp_process_req_list(struct nvme_tcp_queue *queue)
431 {
432 	struct nvme_tcp_request *req;
433 	struct llist_node *node;
434 
435 	for (node = llist_del_all(&queue->req_list); node; node = node->next) {
436 		req = llist_entry(node, struct nvme_tcp_request, lentry);
437 		list_add(&req->entry, &queue->send_list);
438 	}
439 }
440 
441 static inline struct nvme_tcp_request *
nvme_tcp_fetch_request(struct nvme_tcp_queue * queue)442 nvme_tcp_fetch_request(struct nvme_tcp_queue *queue)
443 {
444 	struct nvme_tcp_request *req;
445 
446 	req = list_first_entry_or_null(&queue->send_list,
447 			struct nvme_tcp_request, entry);
448 	if (!req) {
449 		nvme_tcp_process_req_list(queue);
450 		req = list_first_entry_or_null(&queue->send_list,
451 				struct nvme_tcp_request, entry);
452 		if (unlikely(!req))
453 			return NULL;
454 	}
455 
456 	list_del_init(&req->entry);
457 	init_llist_node(&req->lentry);
458 	return req;
459 }
460 
nvme_tcp_ddgst_final(struct ahash_request * hash,__le32 * dgst)461 static inline void nvme_tcp_ddgst_final(struct ahash_request *hash,
462 		__le32 *dgst)
463 {
464 	ahash_request_set_crypt(hash, NULL, (u8 *)dgst, 0);
465 	crypto_ahash_final(hash);
466 }
467 
nvme_tcp_ddgst_update(struct ahash_request * hash,struct page * page,off_t off,size_t len)468 static inline void nvme_tcp_ddgst_update(struct ahash_request *hash,
469 		struct page *page, off_t off, size_t len)
470 {
471 	struct scatterlist sg;
472 
473 	sg_init_table(&sg, 1);
474 	sg_set_page(&sg, page, len, off);
475 	ahash_request_set_crypt(hash, &sg, NULL, len);
476 	crypto_ahash_update(hash);
477 }
478 
nvme_tcp_hdgst(struct ahash_request * hash,void * pdu,size_t len)479 static inline void nvme_tcp_hdgst(struct ahash_request *hash,
480 		void *pdu, size_t len)
481 {
482 	struct scatterlist sg;
483 
484 	sg_init_one(&sg, pdu, len);
485 	ahash_request_set_crypt(hash, &sg, pdu + len, len);
486 	crypto_ahash_digest(hash);
487 }
488 
nvme_tcp_verify_hdgst(struct nvme_tcp_queue * queue,void * pdu,size_t pdu_len)489 static int nvme_tcp_verify_hdgst(struct nvme_tcp_queue *queue,
490 		void *pdu, size_t pdu_len)
491 {
492 	struct nvme_tcp_hdr *hdr = pdu;
493 	__le32 recv_digest;
494 	__le32 exp_digest;
495 
496 	if (unlikely(!(hdr->flags & NVME_TCP_F_HDGST))) {
497 		dev_err(queue->ctrl->ctrl.device,
498 			"queue %d: header digest flag is cleared\n",
499 			nvme_tcp_queue_id(queue));
500 		return -EPROTO;
501 	}
502 
503 	recv_digest = *(__le32 *)(pdu + hdr->hlen);
504 	nvme_tcp_hdgst(queue->rcv_hash, pdu, pdu_len);
505 	exp_digest = *(__le32 *)(pdu + hdr->hlen);
506 	if (recv_digest != exp_digest) {
507 		dev_err(queue->ctrl->ctrl.device,
508 			"header digest error: recv %#x expected %#x\n",
509 			le32_to_cpu(recv_digest), le32_to_cpu(exp_digest));
510 		return -EIO;
511 	}
512 
513 	return 0;
514 }
515 
nvme_tcp_check_ddgst(struct nvme_tcp_queue * queue,void * pdu)516 static int nvme_tcp_check_ddgst(struct nvme_tcp_queue *queue, void *pdu)
517 {
518 	struct nvme_tcp_hdr *hdr = pdu;
519 	u8 digest_len = nvme_tcp_hdgst_len(queue);
520 	u32 len;
521 
522 	len = le32_to_cpu(hdr->plen) - hdr->hlen -
523 		((hdr->flags & NVME_TCP_F_HDGST) ? digest_len : 0);
524 
525 	if (unlikely(len && !(hdr->flags & NVME_TCP_F_DDGST))) {
526 		dev_err(queue->ctrl->ctrl.device,
527 			"queue %d: data digest flag is cleared\n",
528 		nvme_tcp_queue_id(queue));
529 		return -EPROTO;
530 	}
531 	crypto_ahash_init(queue->rcv_hash);
532 
533 	return 0;
534 }
535 
nvme_tcp_exit_request(struct blk_mq_tag_set * set,struct request * rq,unsigned int hctx_idx)536 static void nvme_tcp_exit_request(struct blk_mq_tag_set *set,
537 		struct request *rq, unsigned int hctx_idx)
538 {
539 	struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq);
540 
541 	page_frag_free(req->pdu);
542 }
543 
nvme_tcp_init_request(struct blk_mq_tag_set * set,struct request * rq,unsigned int hctx_idx,unsigned int numa_node)544 static int nvme_tcp_init_request(struct blk_mq_tag_set *set,
545 		struct request *rq, unsigned int hctx_idx,
546 		unsigned int numa_node)
547 {
548 	struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(set->driver_data);
549 	struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq);
550 	struct nvme_tcp_cmd_pdu *pdu;
551 	int queue_idx = (set == &ctrl->tag_set) ? hctx_idx + 1 : 0;
552 	struct nvme_tcp_queue *queue = &ctrl->queues[queue_idx];
553 	u8 hdgst = nvme_tcp_hdgst_len(queue);
554 
555 	req->pdu = page_frag_alloc(&queue->pf_cache,
556 		sizeof(struct nvme_tcp_cmd_pdu) + hdgst,
557 		GFP_KERNEL | __GFP_ZERO);
558 	if (!req->pdu)
559 		return -ENOMEM;
560 
561 	pdu = req->pdu;
562 	req->queue = queue;
563 	nvme_req(rq)->ctrl = &ctrl->ctrl;
564 	nvme_req(rq)->cmd = &pdu->cmd;
565 	init_llist_node(&req->lentry);
566 	INIT_LIST_HEAD(&req->entry);
567 
568 	return 0;
569 }
570 
nvme_tcp_init_hctx(struct blk_mq_hw_ctx * hctx,void * data,unsigned int hctx_idx)571 static int nvme_tcp_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
572 		unsigned int hctx_idx)
573 {
574 	struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(data);
575 	struct nvme_tcp_queue *queue = &ctrl->queues[hctx_idx + 1];
576 
577 	hctx->driver_data = queue;
578 	return 0;
579 }
580 
nvme_tcp_init_admin_hctx(struct blk_mq_hw_ctx * hctx,void * data,unsigned int hctx_idx)581 static int nvme_tcp_init_admin_hctx(struct blk_mq_hw_ctx *hctx, void *data,
582 		unsigned int hctx_idx)
583 {
584 	struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(data);
585 	struct nvme_tcp_queue *queue = &ctrl->queues[0];
586 
587 	hctx->driver_data = queue;
588 	return 0;
589 }
590 
591 static enum nvme_tcp_recv_state
nvme_tcp_recv_state(struct nvme_tcp_queue * queue)592 nvme_tcp_recv_state(struct nvme_tcp_queue *queue)
593 {
594 	return  (queue->pdu_remaining) ? NVME_TCP_RECV_PDU :
595 		(queue->ddgst_remaining) ? NVME_TCP_RECV_DDGST :
596 		NVME_TCP_RECV_DATA;
597 }
598 
nvme_tcp_init_recv_ctx(struct nvme_tcp_queue * queue)599 static void nvme_tcp_init_recv_ctx(struct nvme_tcp_queue *queue)
600 {
601 	queue->pdu_remaining = sizeof(struct nvme_tcp_rsp_pdu) +
602 				nvme_tcp_hdgst_len(queue);
603 	queue->pdu_offset = 0;
604 	queue->data_remaining = -1;
605 	queue->ddgst_remaining = 0;
606 }
607 
nvme_tcp_error_recovery(struct nvme_ctrl * ctrl)608 static void nvme_tcp_error_recovery(struct nvme_ctrl *ctrl)
609 {
610 	if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING))
611 		return;
612 
613 	dev_warn(ctrl->device, "starting error recovery\n");
614 	queue_work(nvme_reset_wq, &to_tcp_ctrl(ctrl)->err_work);
615 }
616 
nvme_tcp_process_nvme_cqe(struct nvme_tcp_queue * queue,struct nvme_completion * cqe)617 static int nvme_tcp_process_nvme_cqe(struct nvme_tcp_queue *queue,
618 		struct nvme_completion *cqe)
619 {
620 	struct nvme_tcp_request *req;
621 	struct request *rq;
622 
623 	rq = nvme_find_rq(nvme_tcp_tagset(queue), cqe->command_id);
624 	if (!rq) {
625 		dev_err(queue->ctrl->ctrl.device,
626 			"got bad cqe.command_id %#x on queue %d\n",
627 			cqe->command_id, nvme_tcp_queue_id(queue));
628 		nvme_tcp_error_recovery(&queue->ctrl->ctrl);
629 		return -EINVAL;
630 	}
631 
632 	req = blk_mq_rq_to_pdu(rq);
633 	if (req->status == cpu_to_le16(NVME_SC_SUCCESS))
634 		req->status = cqe->status;
635 
636 	if (!nvme_try_complete_req(rq, req->status, cqe->result))
637 		nvme_complete_rq(rq);
638 	queue->nr_cqe++;
639 
640 	return 0;
641 }
642 
nvme_tcp_handle_c2h_data(struct nvme_tcp_queue * queue,struct nvme_tcp_data_pdu * pdu)643 static int nvme_tcp_handle_c2h_data(struct nvme_tcp_queue *queue,
644 		struct nvme_tcp_data_pdu *pdu)
645 {
646 	struct request *rq;
647 
648 	rq = nvme_find_rq(nvme_tcp_tagset(queue), pdu->command_id);
649 	if (!rq) {
650 		dev_err(queue->ctrl->ctrl.device,
651 			"got bad c2hdata.command_id %#x on queue %d\n",
652 			pdu->command_id, nvme_tcp_queue_id(queue));
653 		return -ENOENT;
654 	}
655 
656 	if (!blk_rq_payload_bytes(rq)) {
657 		dev_err(queue->ctrl->ctrl.device,
658 			"queue %d tag %#x unexpected data\n",
659 			nvme_tcp_queue_id(queue), rq->tag);
660 		return -EIO;
661 	}
662 
663 	queue->data_remaining = le32_to_cpu(pdu->data_length);
664 
665 	if (pdu->hdr.flags & NVME_TCP_F_DATA_SUCCESS &&
666 	    unlikely(!(pdu->hdr.flags & NVME_TCP_F_DATA_LAST))) {
667 		dev_err(queue->ctrl->ctrl.device,
668 			"queue %d tag %#x SUCCESS set but not last PDU\n",
669 			nvme_tcp_queue_id(queue), rq->tag);
670 		nvme_tcp_error_recovery(&queue->ctrl->ctrl);
671 		return -EPROTO;
672 	}
673 
674 	return 0;
675 }
676 
nvme_tcp_handle_comp(struct nvme_tcp_queue * queue,struct nvme_tcp_rsp_pdu * pdu)677 static int nvme_tcp_handle_comp(struct nvme_tcp_queue *queue,
678 		struct nvme_tcp_rsp_pdu *pdu)
679 {
680 	struct nvme_completion *cqe = &pdu->cqe;
681 	int ret = 0;
682 
683 	/*
684 	 * AEN requests are special as they don't time out and can
685 	 * survive any kind of queue freeze and often don't respond to
686 	 * aborts.  We don't even bother to allocate a struct request
687 	 * for them but rather special case them here.
688 	 */
689 	if (unlikely(nvme_is_aen_req(nvme_tcp_queue_id(queue),
690 				     cqe->command_id)))
691 		nvme_complete_async_event(&queue->ctrl->ctrl, cqe->status,
692 				&cqe->result);
693 	else
694 		ret = nvme_tcp_process_nvme_cqe(queue, cqe);
695 
696 	return ret;
697 }
698 
nvme_tcp_setup_h2c_data_pdu(struct nvme_tcp_request * req)699 static void nvme_tcp_setup_h2c_data_pdu(struct nvme_tcp_request *req)
700 {
701 	struct nvme_tcp_data_pdu *data = nvme_tcp_req_data_pdu(req);
702 	struct nvme_tcp_queue *queue = req->queue;
703 	struct request *rq = blk_mq_rq_from_pdu(req);
704 	u32 h2cdata_sent = req->pdu_len;
705 	u8 hdgst = nvme_tcp_hdgst_len(queue);
706 	u8 ddgst = nvme_tcp_ddgst_len(queue);
707 
708 	req->state = NVME_TCP_SEND_H2C_PDU;
709 	req->offset = 0;
710 	req->pdu_len = min(req->h2cdata_left, queue->maxh2cdata);
711 	req->pdu_sent = 0;
712 	req->h2cdata_left -= req->pdu_len;
713 	req->h2cdata_offset += h2cdata_sent;
714 
715 	memset(data, 0, sizeof(*data));
716 	data->hdr.type = nvme_tcp_h2c_data;
717 	if (!req->h2cdata_left)
718 		data->hdr.flags = NVME_TCP_F_DATA_LAST;
719 	if (queue->hdr_digest)
720 		data->hdr.flags |= NVME_TCP_F_HDGST;
721 	if (queue->data_digest)
722 		data->hdr.flags |= NVME_TCP_F_DDGST;
723 	data->hdr.hlen = sizeof(*data);
724 	data->hdr.pdo = data->hdr.hlen + hdgst;
725 	data->hdr.plen =
726 		cpu_to_le32(data->hdr.hlen + hdgst + req->pdu_len + ddgst);
727 	data->ttag = req->ttag;
728 	data->command_id = nvme_cid(rq);
729 	data->data_offset = cpu_to_le32(req->h2cdata_offset);
730 	data->data_length = cpu_to_le32(req->pdu_len);
731 }
732 
nvme_tcp_handle_r2t(struct nvme_tcp_queue * queue,struct nvme_tcp_r2t_pdu * pdu)733 static int nvme_tcp_handle_r2t(struct nvme_tcp_queue *queue,
734 		struct nvme_tcp_r2t_pdu *pdu)
735 {
736 	struct nvme_tcp_request *req;
737 	struct request *rq;
738 	u32 r2t_length = le32_to_cpu(pdu->r2t_length);
739 	u32 r2t_offset = le32_to_cpu(pdu->r2t_offset);
740 
741 	rq = nvme_find_rq(nvme_tcp_tagset(queue), pdu->command_id);
742 	if (!rq) {
743 		dev_err(queue->ctrl->ctrl.device,
744 			"got bad r2t.command_id %#x on queue %d\n",
745 			pdu->command_id, nvme_tcp_queue_id(queue));
746 		return -ENOENT;
747 	}
748 	req = blk_mq_rq_to_pdu(rq);
749 
750 	if (unlikely(!r2t_length)) {
751 		dev_err(queue->ctrl->ctrl.device,
752 			"req %d r2t len is %u, probably a bug...\n",
753 			rq->tag, r2t_length);
754 		return -EPROTO;
755 	}
756 
757 	if (unlikely(req->data_sent + r2t_length > req->data_len)) {
758 		dev_err(queue->ctrl->ctrl.device,
759 			"req %d r2t len %u exceeded data len %u (%zu sent)\n",
760 			rq->tag, r2t_length, req->data_len, req->data_sent);
761 		return -EPROTO;
762 	}
763 
764 	if (unlikely(r2t_offset < req->data_sent)) {
765 		dev_err(queue->ctrl->ctrl.device,
766 			"req %d unexpected r2t offset %u (expected %zu)\n",
767 			rq->tag, r2t_offset, req->data_sent);
768 		return -EPROTO;
769 	}
770 
771 	if (llist_on_list(&req->lentry) ||
772 	    !list_empty(&req->entry)) {
773 		dev_err(queue->ctrl->ctrl.device,
774 			"req %d unexpected r2t while processing request\n",
775 			rq->tag);
776 		return -EPROTO;
777 	}
778 
779 	req->pdu_len = 0;
780 	req->h2cdata_left = r2t_length;
781 	req->h2cdata_offset = r2t_offset;
782 	req->ttag = pdu->ttag;
783 
784 	nvme_tcp_setup_h2c_data_pdu(req);
785 	nvme_tcp_queue_request(req, false, true);
786 
787 	return 0;
788 }
789 
nvme_tcp_handle_c2h_term(struct nvme_tcp_queue * queue,struct nvme_tcp_term_pdu * pdu)790 static void nvme_tcp_handle_c2h_term(struct nvme_tcp_queue *queue,
791 		struct nvme_tcp_term_pdu *pdu)
792 {
793 	u16 fes;
794 	const char *msg;
795 	u32 plen = le32_to_cpu(pdu->hdr.plen);
796 
797 	static const char * const msg_table[] = {
798 		[NVME_TCP_FES_INVALID_PDU_HDR] = "Invalid PDU Header Field",
799 		[NVME_TCP_FES_PDU_SEQ_ERR] = "PDU Sequence Error",
800 		[NVME_TCP_FES_HDR_DIGEST_ERR] = "Header Digest Error",
801 		[NVME_TCP_FES_DATA_OUT_OF_RANGE] = "Data Transfer Out Of Range",
802 		[NVME_TCP_FES_DATA_LIMIT_EXCEEDED] = "Data Transfer Limit Exceeded",
803 		[NVME_TCP_FES_UNSUPPORTED_PARAM] = "Unsupported Parameter",
804 	};
805 
806 	if (plen < NVME_TCP_MIN_C2HTERM_PLEN ||
807 	    plen > NVME_TCP_MAX_C2HTERM_PLEN) {
808 		dev_err(queue->ctrl->ctrl.device,
809 			"Received a malformed C2HTermReq PDU (plen = %u)\n",
810 			plen);
811 		return;
812 	}
813 
814 	fes = le16_to_cpu(pdu->fes);
815 	if (fes && fes < ARRAY_SIZE(msg_table))
816 		msg = msg_table[fes];
817 	else
818 		msg = "Unknown";
819 
820 	dev_err(queue->ctrl->ctrl.device,
821 		"Received C2HTermReq (FES = %s)\n", msg);
822 }
823 
nvme_tcp_recv_pdu(struct nvme_tcp_queue * queue,struct sk_buff * skb,unsigned int * offset,size_t * len)824 static int nvme_tcp_recv_pdu(struct nvme_tcp_queue *queue, struct sk_buff *skb,
825 		unsigned int *offset, size_t *len)
826 {
827 	struct nvme_tcp_hdr *hdr;
828 	char *pdu = queue->pdu;
829 	size_t rcv_len = min_t(size_t, *len, queue->pdu_remaining);
830 	int ret;
831 
832 	ret = skb_copy_bits(skb, *offset,
833 		&pdu[queue->pdu_offset], rcv_len);
834 	if (unlikely(ret))
835 		return ret;
836 
837 	queue->pdu_remaining -= rcv_len;
838 	queue->pdu_offset += rcv_len;
839 	*offset += rcv_len;
840 	*len -= rcv_len;
841 	if (queue->pdu_remaining)
842 		return 0;
843 
844 	hdr = queue->pdu;
845 	if (unlikely(hdr->hlen != sizeof(struct nvme_tcp_rsp_pdu))) {
846 		if (!nvme_tcp_recv_pdu_supported(hdr->type))
847 			goto unsupported_pdu;
848 
849 		dev_err(queue->ctrl->ctrl.device,
850 			"pdu type %d has unexpected header length (%d)\n",
851 			hdr->type, hdr->hlen);
852 		return -EPROTO;
853 	}
854 
855 	if (unlikely(hdr->type == nvme_tcp_c2h_term)) {
856 		/*
857 		 * C2HTermReq never includes Header or Data digests.
858 		 * Skip the checks.
859 		 */
860 		nvme_tcp_handle_c2h_term(queue, (void *)queue->pdu);
861 		return -EINVAL;
862 	}
863 
864 	if (queue->hdr_digest) {
865 		ret = nvme_tcp_verify_hdgst(queue, queue->pdu, hdr->hlen);
866 		if (unlikely(ret))
867 			return ret;
868 	}
869 
870 
871 	if (queue->data_digest) {
872 		ret = nvme_tcp_check_ddgst(queue, queue->pdu);
873 		if (unlikely(ret))
874 			return ret;
875 	}
876 
877 	switch (hdr->type) {
878 	case nvme_tcp_c2h_data:
879 		return nvme_tcp_handle_c2h_data(queue, (void *)queue->pdu);
880 	case nvme_tcp_rsp:
881 		nvme_tcp_init_recv_ctx(queue);
882 		return nvme_tcp_handle_comp(queue, (void *)queue->pdu);
883 	case nvme_tcp_r2t:
884 		nvme_tcp_init_recv_ctx(queue);
885 		return nvme_tcp_handle_r2t(queue, (void *)queue->pdu);
886 	default:
887 		goto unsupported_pdu;
888 	}
889 
890 unsupported_pdu:
891 	dev_err(queue->ctrl->ctrl.device,
892 		"unsupported pdu type (%d)\n", hdr->type);
893 	return -EINVAL;
894 }
895 
nvme_tcp_end_request(struct request * rq,u16 status)896 static inline void nvme_tcp_end_request(struct request *rq, u16 status)
897 {
898 	union nvme_result res = {};
899 
900 	if (!nvme_try_complete_req(rq, cpu_to_le16(status << 1), res))
901 		nvme_complete_rq(rq);
902 }
903 
nvme_tcp_recv_data(struct nvme_tcp_queue * queue,struct sk_buff * skb,unsigned int * offset,size_t * len)904 static int nvme_tcp_recv_data(struct nvme_tcp_queue *queue, struct sk_buff *skb,
905 			      unsigned int *offset, size_t *len)
906 {
907 	struct nvme_tcp_data_pdu *pdu = (void *)queue->pdu;
908 	struct request *rq =
909 		nvme_cid_to_rq(nvme_tcp_tagset(queue), pdu->command_id);
910 	struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq);
911 
912 	while (true) {
913 		int recv_len, ret;
914 
915 		recv_len = min_t(size_t, *len, queue->data_remaining);
916 		if (!recv_len)
917 			break;
918 
919 		if (!iov_iter_count(&req->iter)) {
920 			req->curr_bio = req->curr_bio->bi_next;
921 
922 			/*
923 			 * If we don`t have any bios it means that controller
924 			 * sent more data than we requested, hence error
925 			 */
926 			if (!req->curr_bio) {
927 				dev_err(queue->ctrl->ctrl.device,
928 					"queue %d no space in request %#x",
929 					nvme_tcp_queue_id(queue), rq->tag);
930 				nvme_tcp_init_recv_ctx(queue);
931 				return -EIO;
932 			}
933 			nvme_tcp_init_iter(req, ITER_DEST);
934 		}
935 
936 		/* we can read only from what is left in this bio */
937 		recv_len = min_t(size_t, recv_len,
938 				iov_iter_count(&req->iter));
939 
940 		if (queue->data_digest)
941 			ret = skb_copy_and_hash_datagram_iter(skb, *offset,
942 				&req->iter, recv_len, queue->rcv_hash);
943 		else
944 			ret = skb_copy_datagram_iter(skb, *offset,
945 					&req->iter, recv_len);
946 		if (ret) {
947 			dev_err(queue->ctrl->ctrl.device,
948 				"queue %d failed to copy request %#x data",
949 				nvme_tcp_queue_id(queue), rq->tag);
950 			return ret;
951 		}
952 
953 		*len -= recv_len;
954 		*offset += recv_len;
955 		queue->data_remaining -= recv_len;
956 	}
957 
958 	if (!queue->data_remaining) {
959 		if (queue->data_digest) {
960 			nvme_tcp_ddgst_final(queue->rcv_hash, &queue->exp_ddgst);
961 			queue->ddgst_remaining = NVME_TCP_DIGEST_LENGTH;
962 		} else {
963 			if (pdu->hdr.flags & NVME_TCP_F_DATA_SUCCESS) {
964 				nvme_tcp_end_request(rq,
965 						le16_to_cpu(req->status));
966 				queue->nr_cqe++;
967 			}
968 			nvme_tcp_init_recv_ctx(queue);
969 		}
970 	}
971 
972 	return 0;
973 }
974 
nvme_tcp_recv_ddgst(struct nvme_tcp_queue * queue,struct sk_buff * skb,unsigned int * offset,size_t * len)975 static int nvme_tcp_recv_ddgst(struct nvme_tcp_queue *queue,
976 		struct sk_buff *skb, unsigned int *offset, size_t *len)
977 {
978 	struct nvme_tcp_data_pdu *pdu = (void *)queue->pdu;
979 	char *ddgst = (char *)&queue->recv_ddgst;
980 	size_t recv_len = min_t(size_t, *len, queue->ddgst_remaining);
981 	off_t off = NVME_TCP_DIGEST_LENGTH - queue->ddgst_remaining;
982 	int ret;
983 
984 	ret = skb_copy_bits(skb, *offset, &ddgst[off], recv_len);
985 	if (unlikely(ret))
986 		return ret;
987 
988 	queue->ddgst_remaining -= recv_len;
989 	*offset += recv_len;
990 	*len -= recv_len;
991 	if (queue->ddgst_remaining)
992 		return 0;
993 
994 	if (queue->recv_ddgst != queue->exp_ddgst) {
995 		struct request *rq = nvme_cid_to_rq(nvme_tcp_tagset(queue),
996 					pdu->command_id);
997 		struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq);
998 
999 		req->status = cpu_to_le16(NVME_SC_DATA_XFER_ERROR);
1000 
1001 		dev_err(queue->ctrl->ctrl.device,
1002 			"data digest error: recv %#x expected %#x\n",
1003 			le32_to_cpu(queue->recv_ddgst),
1004 			le32_to_cpu(queue->exp_ddgst));
1005 	}
1006 
1007 	if (pdu->hdr.flags & NVME_TCP_F_DATA_SUCCESS) {
1008 		struct request *rq = nvme_cid_to_rq(nvme_tcp_tagset(queue),
1009 					pdu->command_id);
1010 		struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq);
1011 
1012 		nvme_tcp_end_request(rq, le16_to_cpu(req->status));
1013 		queue->nr_cqe++;
1014 	}
1015 
1016 	nvme_tcp_init_recv_ctx(queue);
1017 	return 0;
1018 }
1019 
nvme_tcp_recv_skb(read_descriptor_t * desc,struct sk_buff * skb,unsigned int offset,size_t len)1020 static int nvme_tcp_recv_skb(read_descriptor_t *desc, struct sk_buff *skb,
1021 			     unsigned int offset, size_t len)
1022 {
1023 	struct nvme_tcp_queue *queue = desc->arg.data;
1024 	size_t consumed = len;
1025 	int result;
1026 
1027 	if (unlikely(!queue->rd_enabled))
1028 		return -EFAULT;
1029 
1030 	while (len) {
1031 		switch (nvme_tcp_recv_state(queue)) {
1032 		case NVME_TCP_RECV_PDU:
1033 			result = nvme_tcp_recv_pdu(queue, skb, &offset, &len);
1034 			break;
1035 		case NVME_TCP_RECV_DATA:
1036 			result = nvme_tcp_recv_data(queue, skb, &offset, &len);
1037 			break;
1038 		case NVME_TCP_RECV_DDGST:
1039 			result = nvme_tcp_recv_ddgst(queue, skb, &offset, &len);
1040 			break;
1041 		default:
1042 			result = -EFAULT;
1043 		}
1044 		if (result) {
1045 			dev_err(queue->ctrl->ctrl.device,
1046 				"receive failed:  %d\n", result);
1047 			queue->rd_enabled = false;
1048 			nvme_tcp_error_recovery(&queue->ctrl->ctrl);
1049 			return result;
1050 		}
1051 	}
1052 
1053 	return consumed;
1054 }
1055 
nvme_tcp_data_ready(struct sock * sk)1056 static void nvme_tcp_data_ready(struct sock *sk)
1057 {
1058 	struct nvme_tcp_queue *queue;
1059 
1060 	trace_sk_data_ready(sk);
1061 
1062 	read_lock_bh(&sk->sk_callback_lock);
1063 	queue = sk->sk_user_data;
1064 	if (likely(queue && queue->rd_enabled) &&
1065 	    !test_bit(NVME_TCP_Q_POLLING, &queue->flags))
1066 		queue_work_on(queue->io_cpu, nvme_tcp_wq, &queue->io_work);
1067 	read_unlock_bh(&sk->sk_callback_lock);
1068 }
1069 
nvme_tcp_write_space(struct sock * sk)1070 static void nvme_tcp_write_space(struct sock *sk)
1071 {
1072 	struct nvme_tcp_queue *queue;
1073 
1074 	read_lock_bh(&sk->sk_callback_lock);
1075 	queue = sk->sk_user_data;
1076 	if (likely(queue && sk_stream_is_writeable(sk))) {
1077 		clear_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1078 		queue_work_on(queue->io_cpu, nvme_tcp_wq, &queue->io_work);
1079 	}
1080 	read_unlock_bh(&sk->sk_callback_lock);
1081 }
1082 
nvme_tcp_state_change(struct sock * sk)1083 static void nvme_tcp_state_change(struct sock *sk)
1084 {
1085 	struct nvme_tcp_queue *queue;
1086 
1087 	read_lock_bh(&sk->sk_callback_lock);
1088 	queue = sk->sk_user_data;
1089 	if (!queue)
1090 		goto done;
1091 
1092 	switch (sk->sk_state) {
1093 	case TCP_CLOSE:
1094 	case TCP_CLOSE_WAIT:
1095 	case TCP_LAST_ACK:
1096 	case TCP_FIN_WAIT1:
1097 	case TCP_FIN_WAIT2:
1098 		nvme_tcp_error_recovery(&queue->ctrl->ctrl);
1099 		break;
1100 	default:
1101 		dev_info(queue->ctrl->ctrl.device,
1102 			"queue %d socket state %d\n",
1103 			nvme_tcp_queue_id(queue), sk->sk_state);
1104 	}
1105 
1106 	queue->state_change(sk);
1107 done:
1108 	read_unlock_bh(&sk->sk_callback_lock);
1109 }
1110 
nvme_tcp_done_send_req(struct nvme_tcp_queue * queue)1111 static inline void nvme_tcp_done_send_req(struct nvme_tcp_queue *queue)
1112 {
1113 	queue->request = NULL;
1114 }
1115 
nvme_tcp_fail_request(struct nvme_tcp_request * req)1116 static void nvme_tcp_fail_request(struct nvme_tcp_request *req)
1117 {
1118 	if (nvme_tcp_async_req(req)) {
1119 		union nvme_result res = {};
1120 
1121 		nvme_complete_async_event(&req->queue->ctrl->ctrl,
1122 				cpu_to_le16(NVME_SC_HOST_PATH_ERROR), &res);
1123 	} else {
1124 		nvme_tcp_end_request(blk_mq_rq_from_pdu(req),
1125 				NVME_SC_HOST_PATH_ERROR);
1126 	}
1127 }
1128 
nvme_tcp_try_send_data(struct nvme_tcp_request * req)1129 static int nvme_tcp_try_send_data(struct nvme_tcp_request *req)
1130 {
1131 	struct nvme_tcp_queue *queue = req->queue;
1132 	int req_data_len = req->data_len;
1133 	u32 h2cdata_left = req->h2cdata_left;
1134 
1135 	while (true) {
1136 		struct bio_vec bvec;
1137 		struct msghdr msg = {
1138 			.msg_flags = MSG_DONTWAIT | MSG_SPLICE_PAGES,
1139 		};
1140 		struct page *page = nvme_tcp_req_cur_page(req);
1141 		size_t offset = nvme_tcp_req_cur_offset(req);
1142 		size_t len = nvme_tcp_req_cur_length(req);
1143 		bool last = nvme_tcp_pdu_last_send(req, len);
1144 		int req_data_sent = req->data_sent;
1145 		int ret;
1146 
1147 		if (last && !queue->data_digest && !nvme_tcp_queue_more(queue))
1148 			msg.msg_flags |= MSG_EOR;
1149 		else
1150 			msg.msg_flags |= MSG_MORE;
1151 
1152 		if (!sendpages_ok(page, len, offset))
1153 			msg.msg_flags &= ~MSG_SPLICE_PAGES;
1154 
1155 		bvec_set_page(&bvec, page, len, offset);
1156 		iov_iter_bvec(&msg.msg_iter, ITER_SOURCE, &bvec, 1, len);
1157 		ret = sock_sendmsg(queue->sock, &msg);
1158 		if (ret <= 0)
1159 			return ret;
1160 
1161 		if (queue->data_digest)
1162 			nvme_tcp_ddgst_update(queue->snd_hash, page,
1163 					offset, ret);
1164 
1165 		/*
1166 		 * update the request iterator except for the last payload send
1167 		 * in the request where we don't want to modify it as we may
1168 		 * compete with the RX path completing the request.
1169 		 */
1170 		if (req_data_sent + ret < req_data_len)
1171 			nvme_tcp_advance_req(req, ret);
1172 
1173 		/* fully successful last send in current PDU */
1174 		if (last && ret == len) {
1175 			if (queue->data_digest) {
1176 				nvme_tcp_ddgst_final(queue->snd_hash,
1177 					&req->ddgst);
1178 				req->state = NVME_TCP_SEND_DDGST;
1179 				req->offset = 0;
1180 			} else {
1181 				if (h2cdata_left)
1182 					nvme_tcp_setup_h2c_data_pdu(req);
1183 				else
1184 					nvme_tcp_done_send_req(queue);
1185 			}
1186 			return 1;
1187 		}
1188 	}
1189 	return -EAGAIN;
1190 }
1191 
nvme_tcp_try_send_cmd_pdu(struct nvme_tcp_request * req)1192 static int nvme_tcp_try_send_cmd_pdu(struct nvme_tcp_request *req)
1193 {
1194 	struct nvme_tcp_queue *queue = req->queue;
1195 	struct nvme_tcp_cmd_pdu *pdu = nvme_tcp_req_cmd_pdu(req);
1196 	struct bio_vec bvec;
1197 	struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_SPLICE_PAGES, };
1198 	bool inline_data = nvme_tcp_has_inline_data(req);
1199 	u8 hdgst = nvme_tcp_hdgst_len(queue);
1200 	int len = sizeof(*pdu) + hdgst - req->offset;
1201 	int ret;
1202 
1203 	if (inline_data || nvme_tcp_queue_more(queue))
1204 		msg.msg_flags |= MSG_MORE;
1205 	else
1206 		msg.msg_flags |= MSG_EOR;
1207 
1208 	if (queue->hdr_digest && !req->offset)
1209 		nvme_tcp_hdgst(queue->snd_hash, pdu, sizeof(*pdu));
1210 
1211 	bvec_set_virt(&bvec, (void *)pdu + req->offset, len);
1212 	iov_iter_bvec(&msg.msg_iter, ITER_SOURCE, &bvec, 1, len);
1213 	ret = sock_sendmsg(queue->sock, &msg);
1214 	if (unlikely(ret <= 0))
1215 		return ret;
1216 
1217 	len -= ret;
1218 	if (!len) {
1219 		if (inline_data) {
1220 			req->state = NVME_TCP_SEND_DATA;
1221 			if (queue->data_digest)
1222 				crypto_ahash_init(queue->snd_hash);
1223 		} else {
1224 			nvme_tcp_done_send_req(queue);
1225 		}
1226 		return 1;
1227 	}
1228 	req->offset += ret;
1229 
1230 	return -EAGAIN;
1231 }
1232 
nvme_tcp_try_send_data_pdu(struct nvme_tcp_request * req)1233 static int nvme_tcp_try_send_data_pdu(struct nvme_tcp_request *req)
1234 {
1235 	struct nvme_tcp_queue *queue = req->queue;
1236 	struct nvme_tcp_data_pdu *pdu = nvme_tcp_req_data_pdu(req);
1237 	struct bio_vec bvec;
1238 	struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_MORE, };
1239 	u8 hdgst = nvme_tcp_hdgst_len(queue);
1240 	int len = sizeof(*pdu) - req->offset + hdgst;
1241 	int ret;
1242 
1243 	if (queue->hdr_digest && !req->offset)
1244 		nvme_tcp_hdgst(queue->snd_hash, pdu, sizeof(*pdu));
1245 
1246 	if (!req->h2cdata_left)
1247 		msg.msg_flags |= MSG_SPLICE_PAGES;
1248 
1249 	bvec_set_virt(&bvec, (void *)pdu + req->offset, len);
1250 	iov_iter_bvec(&msg.msg_iter, ITER_SOURCE, &bvec, 1, len);
1251 	ret = sock_sendmsg(queue->sock, &msg);
1252 	if (unlikely(ret <= 0))
1253 		return ret;
1254 
1255 	len -= ret;
1256 	if (!len) {
1257 		req->state = NVME_TCP_SEND_DATA;
1258 		if (queue->data_digest)
1259 			crypto_ahash_init(queue->snd_hash);
1260 		return 1;
1261 	}
1262 	req->offset += ret;
1263 
1264 	return -EAGAIN;
1265 }
1266 
nvme_tcp_try_send_ddgst(struct nvme_tcp_request * req)1267 static int nvme_tcp_try_send_ddgst(struct nvme_tcp_request *req)
1268 {
1269 	struct nvme_tcp_queue *queue = req->queue;
1270 	size_t offset = req->offset;
1271 	u32 h2cdata_left = req->h2cdata_left;
1272 	int ret;
1273 	struct msghdr msg = { .msg_flags = MSG_DONTWAIT };
1274 	struct kvec iov = {
1275 		.iov_base = (u8 *)&req->ddgst + req->offset,
1276 		.iov_len = NVME_TCP_DIGEST_LENGTH - req->offset
1277 	};
1278 
1279 	if (nvme_tcp_queue_more(queue))
1280 		msg.msg_flags |= MSG_MORE;
1281 	else
1282 		msg.msg_flags |= MSG_EOR;
1283 
1284 	ret = kernel_sendmsg(queue->sock, &msg, &iov, 1, iov.iov_len);
1285 	if (unlikely(ret <= 0))
1286 		return ret;
1287 
1288 	if (offset + ret == NVME_TCP_DIGEST_LENGTH) {
1289 		if (h2cdata_left)
1290 			nvme_tcp_setup_h2c_data_pdu(req);
1291 		else
1292 			nvme_tcp_done_send_req(queue);
1293 		return 1;
1294 	}
1295 
1296 	req->offset += ret;
1297 	return -EAGAIN;
1298 }
1299 
nvme_tcp_try_send(struct nvme_tcp_queue * queue)1300 static int nvme_tcp_try_send(struct nvme_tcp_queue *queue)
1301 {
1302 	struct nvme_tcp_request *req;
1303 	unsigned int noreclaim_flag;
1304 	int ret = 1;
1305 
1306 	if (!queue->request) {
1307 		queue->request = nvme_tcp_fetch_request(queue);
1308 		if (!queue->request)
1309 			return 0;
1310 	}
1311 	req = queue->request;
1312 
1313 	noreclaim_flag = memalloc_noreclaim_save();
1314 	if (req->state == NVME_TCP_SEND_CMD_PDU) {
1315 		ret = nvme_tcp_try_send_cmd_pdu(req);
1316 		if (ret <= 0)
1317 			goto done;
1318 		if (!nvme_tcp_has_inline_data(req))
1319 			goto out;
1320 	}
1321 
1322 	if (req->state == NVME_TCP_SEND_H2C_PDU) {
1323 		ret = nvme_tcp_try_send_data_pdu(req);
1324 		if (ret <= 0)
1325 			goto done;
1326 	}
1327 
1328 	if (req->state == NVME_TCP_SEND_DATA) {
1329 		ret = nvme_tcp_try_send_data(req);
1330 		if (ret <= 0)
1331 			goto done;
1332 	}
1333 
1334 	if (req->state == NVME_TCP_SEND_DDGST)
1335 		ret = nvme_tcp_try_send_ddgst(req);
1336 done:
1337 	if (ret == -EAGAIN) {
1338 		ret = 0;
1339 	} else if (ret < 0) {
1340 		dev_err(queue->ctrl->ctrl.device,
1341 			"failed to send request %d\n", ret);
1342 		nvme_tcp_fail_request(queue->request);
1343 		nvme_tcp_done_send_req(queue);
1344 	}
1345 out:
1346 	memalloc_noreclaim_restore(noreclaim_flag);
1347 	return ret;
1348 }
1349 
nvme_tcp_try_recv(struct nvme_tcp_queue * queue)1350 static int nvme_tcp_try_recv(struct nvme_tcp_queue *queue)
1351 {
1352 	struct socket *sock = queue->sock;
1353 	struct sock *sk = sock->sk;
1354 	read_descriptor_t rd_desc;
1355 	int consumed;
1356 
1357 	rd_desc.arg.data = queue;
1358 	rd_desc.count = 1;
1359 	lock_sock(sk);
1360 	queue->nr_cqe = 0;
1361 	consumed = sock->ops->read_sock(sk, &rd_desc, nvme_tcp_recv_skb);
1362 	release_sock(sk);
1363 	return consumed == -EAGAIN ? 0 : consumed;
1364 }
1365 
nvme_tcp_io_work(struct work_struct * w)1366 static void nvme_tcp_io_work(struct work_struct *w)
1367 {
1368 	struct nvme_tcp_queue *queue =
1369 		container_of(w, struct nvme_tcp_queue, io_work);
1370 	unsigned long deadline = jiffies + msecs_to_jiffies(1);
1371 
1372 	do {
1373 		bool pending = false;
1374 		int result;
1375 
1376 		if (mutex_trylock(&queue->send_mutex)) {
1377 			result = nvme_tcp_try_send(queue);
1378 			mutex_unlock(&queue->send_mutex);
1379 			if (result > 0)
1380 				pending = true;
1381 			else if (unlikely(result < 0))
1382 				break;
1383 		}
1384 
1385 		result = nvme_tcp_try_recv(queue);
1386 		if (result > 0)
1387 			pending = true;
1388 		else if (unlikely(result < 0))
1389 			return;
1390 
1391 		/* did we get some space after spending time in recv? */
1392 		if (nvme_tcp_queue_has_pending(queue) &&
1393 		    sk_stream_is_writeable(queue->sock->sk))
1394 			pending = true;
1395 
1396 		if (!pending || !queue->rd_enabled)
1397 			return;
1398 
1399 	} while (!time_after(jiffies, deadline)); /* quota is exhausted */
1400 
1401 	queue_work_on(queue->io_cpu, nvme_tcp_wq, &queue->io_work);
1402 }
1403 
nvme_tcp_free_crypto(struct nvme_tcp_queue * queue)1404 static void nvme_tcp_free_crypto(struct nvme_tcp_queue *queue)
1405 {
1406 	struct crypto_ahash *tfm = crypto_ahash_reqtfm(queue->rcv_hash);
1407 
1408 	ahash_request_free(queue->rcv_hash);
1409 	ahash_request_free(queue->snd_hash);
1410 	crypto_free_ahash(tfm);
1411 }
1412 
nvme_tcp_alloc_crypto(struct nvme_tcp_queue * queue)1413 static int nvme_tcp_alloc_crypto(struct nvme_tcp_queue *queue)
1414 {
1415 	struct crypto_ahash *tfm;
1416 
1417 	tfm = crypto_alloc_ahash("crc32c", 0, CRYPTO_ALG_ASYNC);
1418 	if (IS_ERR(tfm))
1419 		return PTR_ERR(tfm);
1420 
1421 	queue->snd_hash = ahash_request_alloc(tfm, GFP_KERNEL);
1422 	if (!queue->snd_hash)
1423 		goto free_tfm;
1424 	ahash_request_set_callback(queue->snd_hash, 0, NULL, NULL);
1425 
1426 	queue->rcv_hash = ahash_request_alloc(tfm, GFP_KERNEL);
1427 	if (!queue->rcv_hash)
1428 		goto free_snd_hash;
1429 	ahash_request_set_callback(queue->rcv_hash, 0, NULL, NULL);
1430 
1431 	return 0;
1432 free_snd_hash:
1433 	ahash_request_free(queue->snd_hash);
1434 free_tfm:
1435 	crypto_free_ahash(tfm);
1436 	return -ENOMEM;
1437 }
1438 
nvme_tcp_free_async_req(struct nvme_tcp_ctrl * ctrl)1439 static void nvme_tcp_free_async_req(struct nvme_tcp_ctrl *ctrl)
1440 {
1441 	struct nvme_tcp_request *async = &ctrl->async_req;
1442 
1443 	page_frag_free(async->pdu);
1444 }
1445 
nvme_tcp_alloc_async_req(struct nvme_tcp_ctrl * ctrl)1446 static int nvme_tcp_alloc_async_req(struct nvme_tcp_ctrl *ctrl)
1447 {
1448 	struct nvme_tcp_queue *queue = &ctrl->queues[0];
1449 	struct nvme_tcp_request *async = &ctrl->async_req;
1450 	u8 hdgst = nvme_tcp_hdgst_len(queue);
1451 
1452 	async->pdu = page_frag_alloc(&queue->pf_cache,
1453 		sizeof(struct nvme_tcp_cmd_pdu) + hdgst,
1454 		GFP_KERNEL | __GFP_ZERO);
1455 	if (!async->pdu)
1456 		return -ENOMEM;
1457 
1458 	async->queue = &ctrl->queues[0];
1459 	return 0;
1460 }
1461 
nvme_tcp_free_queue(struct nvme_ctrl * nctrl,int qid)1462 static void nvme_tcp_free_queue(struct nvme_ctrl *nctrl, int qid)
1463 {
1464 	struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl);
1465 	struct nvme_tcp_queue *queue = &ctrl->queues[qid];
1466 	unsigned int noreclaim_flag;
1467 
1468 	if (!test_and_clear_bit(NVME_TCP_Q_ALLOCATED, &queue->flags))
1469 		return;
1470 
1471 	if (queue->hdr_digest || queue->data_digest)
1472 		nvme_tcp_free_crypto(queue);
1473 
1474 	page_frag_cache_drain(&queue->pf_cache);
1475 
1476 	noreclaim_flag = memalloc_noreclaim_save();
1477 	/* ->sock will be released by fput() */
1478 	fput(queue->sock->file);
1479 	queue->sock = NULL;
1480 	memalloc_noreclaim_restore(noreclaim_flag);
1481 
1482 	kfree(queue->pdu);
1483 	mutex_destroy(&queue->send_mutex);
1484 	mutex_destroy(&queue->queue_lock);
1485 }
1486 
nvme_tcp_init_connection(struct nvme_tcp_queue * queue)1487 static int nvme_tcp_init_connection(struct nvme_tcp_queue *queue)
1488 {
1489 	struct nvme_tcp_icreq_pdu *icreq;
1490 	struct nvme_tcp_icresp_pdu *icresp;
1491 	char cbuf[CMSG_LEN(sizeof(char))] = {};
1492 	u8 ctype;
1493 	struct msghdr msg = {};
1494 	struct kvec iov;
1495 	bool ctrl_hdgst, ctrl_ddgst;
1496 	u32 maxh2cdata;
1497 	int ret;
1498 
1499 	icreq = kzalloc(sizeof(*icreq), GFP_KERNEL);
1500 	if (!icreq)
1501 		return -ENOMEM;
1502 
1503 	icresp = kzalloc(sizeof(*icresp), GFP_KERNEL);
1504 	if (!icresp) {
1505 		ret = -ENOMEM;
1506 		goto free_icreq;
1507 	}
1508 
1509 	icreq->hdr.type = nvme_tcp_icreq;
1510 	icreq->hdr.hlen = sizeof(*icreq);
1511 	icreq->hdr.pdo = 0;
1512 	icreq->hdr.plen = cpu_to_le32(icreq->hdr.hlen);
1513 	icreq->pfv = cpu_to_le16(NVME_TCP_PFV_1_0);
1514 	icreq->maxr2t = 0; /* single inflight r2t supported */
1515 	icreq->hpda = 0; /* no alignment constraint */
1516 	if (queue->hdr_digest)
1517 		icreq->digest |= NVME_TCP_HDR_DIGEST_ENABLE;
1518 	if (queue->data_digest)
1519 		icreq->digest |= NVME_TCP_DATA_DIGEST_ENABLE;
1520 
1521 	iov.iov_base = icreq;
1522 	iov.iov_len = sizeof(*icreq);
1523 	ret = kernel_sendmsg(queue->sock, &msg, &iov, 1, iov.iov_len);
1524 	if (ret < 0) {
1525 		pr_warn("queue %d: failed to send icreq, error %d\n",
1526 			nvme_tcp_queue_id(queue), ret);
1527 		goto free_icresp;
1528 	}
1529 
1530 	memset(&msg, 0, sizeof(msg));
1531 	iov.iov_base = icresp;
1532 	iov.iov_len = sizeof(*icresp);
1533 	if (nvme_tcp_queue_tls(queue)) {
1534 		msg.msg_control = cbuf;
1535 		msg.msg_controllen = sizeof(cbuf);
1536 	}
1537 	msg.msg_flags = MSG_WAITALL;
1538 	ret = kernel_recvmsg(queue->sock, &msg, &iov, 1,
1539 			iov.iov_len, msg.msg_flags);
1540 	if (ret >= 0 && ret < sizeof(*icresp))
1541 		ret = -ECONNRESET;
1542 	if (ret < 0) {
1543 		pr_warn("queue %d: failed to receive icresp, error %d\n",
1544 			nvme_tcp_queue_id(queue), ret);
1545 		goto free_icresp;
1546 	}
1547 	ret = -ENOTCONN;
1548 	if (nvme_tcp_queue_tls(queue)) {
1549 		ctype = tls_get_record_type(queue->sock->sk,
1550 					    (struct cmsghdr *)cbuf);
1551 		if (ctype != TLS_RECORD_TYPE_DATA) {
1552 			pr_err("queue %d: unhandled TLS record %d\n",
1553 			       nvme_tcp_queue_id(queue), ctype);
1554 			goto free_icresp;
1555 		}
1556 	}
1557 	ret = -EINVAL;
1558 	if (icresp->hdr.type != nvme_tcp_icresp) {
1559 		pr_err("queue %d: bad type returned %d\n",
1560 			nvme_tcp_queue_id(queue), icresp->hdr.type);
1561 		goto free_icresp;
1562 	}
1563 
1564 	if (le32_to_cpu(icresp->hdr.plen) != sizeof(*icresp)) {
1565 		pr_err("queue %d: bad pdu length returned %d\n",
1566 			nvme_tcp_queue_id(queue), icresp->hdr.plen);
1567 		goto free_icresp;
1568 	}
1569 
1570 	if (icresp->pfv != NVME_TCP_PFV_1_0) {
1571 		pr_err("queue %d: bad pfv returned %d\n",
1572 			nvme_tcp_queue_id(queue), icresp->pfv);
1573 		goto free_icresp;
1574 	}
1575 
1576 	ctrl_ddgst = !!(icresp->digest & NVME_TCP_DATA_DIGEST_ENABLE);
1577 	if ((queue->data_digest && !ctrl_ddgst) ||
1578 	    (!queue->data_digest && ctrl_ddgst)) {
1579 		pr_err("queue %d: data digest mismatch host: %s ctrl: %s\n",
1580 			nvme_tcp_queue_id(queue),
1581 			queue->data_digest ? "enabled" : "disabled",
1582 			ctrl_ddgst ? "enabled" : "disabled");
1583 		goto free_icresp;
1584 	}
1585 
1586 	ctrl_hdgst = !!(icresp->digest & NVME_TCP_HDR_DIGEST_ENABLE);
1587 	if ((queue->hdr_digest && !ctrl_hdgst) ||
1588 	    (!queue->hdr_digest && ctrl_hdgst)) {
1589 		pr_err("queue %d: header digest mismatch host: %s ctrl: %s\n",
1590 			nvme_tcp_queue_id(queue),
1591 			queue->hdr_digest ? "enabled" : "disabled",
1592 			ctrl_hdgst ? "enabled" : "disabled");
1593 		goto free_icresp;
1594 	}
1595 
1596 	if (icresp->cpda != 0) {
1597 		pr_err("queue %d: unsupported cpda returned %d\n",
1598 			nvme_tcp_queue_id(queue), icresp->cpda);
1599 		goto free_icresp;
1600 	}
1601 
1602 	maxh2cdata = le32_to_cpu(icresp->maxdata);
1603 	if ((maxh2cdata % 4) || (maxh2cdata < NVME_TCP_MIN_MAXH2CDATA)) {
1604 		pr_err("queue %d: invalid maxh2cdata returned %u\n",
1605 		       nvme_tcp_queue_id(queue), maxh2cdata);
1606 		goto free_icresp;
1607 	}
1608 	queue->maxh2cdata = maxh2cdata;
1609 
1610 	ret = 0;
1611 free_icresp:
1612 	kfree(icresp);
1613 free_icreq:
1614 	kfree(icreq);
1615 	return ret;
1616 }
1617 
nvme_tcp_admin_queue(struct nvme_tcp_queue * queue)1618 static bool nvme_tcp_admin_queue(struct nvme_tcp_queue *queue)
1619 {
1620 	return nvme_tcp_queue_id(queue) == 0;
1621 }
1622 
nvme_tcp_default_queue(struct nvme_tcp_queue * queue)1623 static bool nvme_tcp_default_queue(struct nvme_tcp_queue *queue)
1624 {
1625 	struct nvme_tcp_ctrl *ctrl = queue->ctrl;
1626 	int qid = nvme_tcp_queue_id(queue);
1627 
1628 	return !nvme_tcp_admin_queue(queue) &&
1629 		qid < 1 + ctrl->io_queues[HCTX_TYPE_DEFAULT];
1630 }
1631 
nvme_tcp_read_queue(struct nvme_tcp_queue * queue)1632 static bool nvme_tcp_read_queue(struct nvme_tcp_queue *queue)
1633 {
1634 	struct nvme_tcp_ctrl *ctrl = queue->ctrl;
1635 	int qid = nvme_tcp_queue_id(queue);
1636 
1637 	return !nvme_tcp_admin_queue(queue) &&
1638 		!nvme_tcp_default_queue(queue) &&
1639 		qid < 1 + ctrl->io_queues[HCTX_TYPE_DEFAULT] +
1640 			  ctrl->io_queues[HCTX_TYPE_READ];
1641 }
1642 
nvme_tcp_poll_queue(struct nvme_tcp_queue * queue)1643 static bool nvme_tcp_poll_queue(struct nvme_tcp_queue *queue)
1644 {
1645 	struct nvme_tcp_ctrl *ctrl = queue->ctrl;
1646 	int qid = nvme_tcp_queue_id(queue);
1647 
1648 	return !nvme_tcp_admin_queue(queue) &&
1649 		!nvme_tcp_default_queue(queue) &&
1650 		!nvme_tcp_read_queue(queue) &&
1651 		qid < 1 + ctrl->io_queues[HCTX_TYPE_DEFAULT] +
1652 			  ctrl->io_queues[HCTX_TYPE_READ] +
1653 			  ctrl->io_queues[HCTX_TYPE_POLL];
1654 }
1655 
1656 /*
1657  * Track the number of queues assigned to each cpu using a global per-cpu
1658  * counter and select the least used cpu from the mq_map. Our goal is to spread
1659  * different controllers I/O threads across different cpu cores.
1660  *
1661  * Note that the accounting is not 100% perfect, but we don't need to be, we're
1662  * simply putting our best effort to select the best candidate cpu core that we
1663  * find at any given point.
1664  */
nvme_tcp_set_queue_io_cpu(struct nvme_tcp_queue * queue)1665 static void nvme_tcp_set_queue_io_cpu(struct nvme_tcp_queue *queue)
1666 {
1667 	struct nvme_tcp_ctrl *ctrl = queue->ctrl;
1668 	struct blk_mq_tag_set *set = &ctrl->tag_set;
1669 	int qid = nvme_tcp_queue_id(queue) - 1;
1670 	unsigned int *mq_map = NULL;
1671 	int cpu, min_queues = INT_MAX, io_cpu;
1672 
1673 	if (wq_unbound)
1674 		goto out;
1675 
1676 	if (nvme_tcp_default_queue(queue))
1677 		mq_map = set->map[HCTX_TYPE_DEFAULT].mq_map;
1678 	else if (nvme_tcp_read_queue(queue))
1679 		mq_map = set->map[HCTX_TYPE_READ].mq_map;
1680 	else if (nvme_tcp_poll_queue(queue))
1681 		mq_map = set->map[HCTX_TYPE_POLL].mq_map;
1682 
1683 	if (WARN_ON(!mq_map))
1684 		goto out;
1685 
1686 	/* Search for the least used cpu from the mq_map */
1687 	io_cpu = WORK_CPU_UNBOUND;
1688 	for_each_online_cpu(cpu) {
1689 		int num_queues = atomic_read(&nvme_tcp_cpu_queues[cpu]);
1690 
1691 		if (mq_map[cpu] != qid)
1692 			continue;
1693 		if (num_queues < min_queues) {
1694 			io_cpu = cpu;
1695 			min_queues = num_queues;
1696 		}
1697 	}
1698 	if (io_cpu != WORK_CPU_UNBOUND) {
1699 		queue->io_cpu = io_cpu;
1700 		atomic_inc(&nvme_tcp_cpu_queues[io_cpu]);
1701 		set_bit(NVME_TCP_Q_IO_CPU_SET, &queue->flags);
1702 	}
1703 out:
1704 	dev_dbg(ctrl->ctrl.device, "queue %d: using cpu %d\n",
1705 		qid, queue->io_cpu);
1706 }
1707 
nvme_tcp_tls_done(void * data,int status,key_serial_t pskid)1708 static void nvme_tcp_tls_done(void *data, int status, key_serial_t pskid)
1709 {
1710 	struct nvme_tcp_queue *queue = data;
1711 	struct nvme_tcp_ctrl *ctrl = queue->ctrl;
1712 	int qid = nvme_tcp_queue_id(queue);
1713 	struct key *tls_key;
1714 
1715 	dev_dbg(ctrl->ctrl.device, "queue %d: TLS handshake done, key %x, status %d\n",
1716 		qid, pskid, status);
1717 
1718 	if (status) {
1719 		queue->tls_err = -status;
1720 		goto out_complete;
1721 	}
1722 
1723 	tls_key = nvme_tls_key_lookup(pskid);
1724 	if (IS_ERR(tls_key)) {
1725 		dev_warn(ctrl->ctrl.device, "queue %d: Invalid key %x\n",
1726 			 qid, pskid);
1727 		queue->tls_err = -ENOKEY;
1728 	} else {
1729 		queue->tls_enabled = true;
1730 		if (qid == 0)
1731 			ctrl->ctrl.tls_pskid = key_serial(tls_key);
1732 		key_put(tls_key);
1733 		queue->tls_err = 0;
1734 	}
1735 
1736 out_complete:
1737 	complete(&queue->tls_complete);
1738 }
1739 
nvme_tcp_start_tls(struct nvme_ctrl * nctrl,struct nvme_tcp_queue * queue,key_serial_t pskid)1740 static int nvme_tcp_start_tls(struct nvme_ctrl *nctrl,
1741 			      struct nvme_tcp_queue *queue,
1742 			      key_serial_t pskid)
1743 {
1744 	int qid = nvme_tcp_queue_id(queue);
1745 	int ret;
1746 	struct tls_handshake_args args;
1747 	unsigned long tmo = tls_handshake_timeout * HZ;
1748 	key_serial_t keyring = nvme_keyring_id();
1749 
1750 	dev_dbg(nctrl->device, "queue %d: start TLS with key %x\n",
1751 		qid, pskid);
1752 	memset(&args, 0, sizeof(args));
1753 	args.ta_sock = queue->sock;
1754 	args.ta_done = nvme_tcp_tls_done;
1755 	args.ta_data = queue;
1756 	args.ta_my_peerids[0] = pskid;
1757 	args.ta_num_peerids = 1;
1758 	if (nctrl->opts->keyring)
1759 		keyring = key_serial(nctrl->opts->keyring);
1760 	args.ta_keyring = keyring;
1761 	args.ta_timeout_ms = tls_handshake_timeout * 1000;
1762 	queue->tls_err = -EOPNOTSUPP;
1763 	init_completion(&queue->tls_complete);
1764 	ret = tls_client_hello_psk(&args, GFP_KERNEL);
1765 	if (ret) {
1766 		dev_err(nctrl->device, "queue %d: failed to start TLS: %d\n",
1767 			qid, ret);
1768 		return ret;
1769 	}
1770 	ret = wait_for_completion_interruptible_timeout(&queue->tls_complete, tmo);
1771 	if (ret <= 0) {
1772 		if (ret == 0)
1773 			ret = -ETIMEDOUT;
1774 
1775 		dev_err(nctrl->device,
1776 			"queue %d: TLS handshake failed, error %d\n",
1777 			qid, ret);
1778 		tls_handshake_cancel(queue->sock->sk);
1779 	} else {
1780 		if (queue->tls_err) {
1781 			dev_err(nctrl->device,
1782 				"queue %d: TLS handshake complete, error %d\n",
1783 				qid, queue->tls_err);
1784 		} else {
1785 			dev_dbg(nctrl->device,
1786 				"queue %d: TLS handshake complete\n", qid);
1787 		}
1788 		ret = queue->tls_err;
1789 	}
1790 	return ret;
1791 }
1792 
nvme_tcp_alloc_queue(struct nvme_ctrl * nctrl,int qid,key_serial_t pskid)1793 static int nvme_tcp_alloc_queue(struct nvme_ctrl *nctrl, int qid,
1794 				key_serial_t pskid)
1795 {
1796 	struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl);
1797 	struct nvme_tcp_queue *queue = &ctrl->queues[qid];
1798 	int ret, rcv_pdu_size;
1799 	struct file *sock_file;
1800 
1801 	mutex_init(&queue->queue_lock);
1802 	queue->ctrl = ctrl;
1803 	init_llist_head(&queue->req_list);
1804 	INIT_LIST_HEAD(&queue->send_list);
1805 	mutex_init(&queue->send_mutex);
1806 	INIT_WORK(&queue->io_work, nvme_tcp_io_work);
1807 
1808 	if (qid > 0)
1809 		queue->cmnd_capsule_len = nctrl->ioccsz * 16;
1810 	else
1811 		queue->cmnd_capsule_len = sizeof(struct nvme_command) +
1812 						NVME_TCP_ADMIN_CCSZ;
1813 
1814 	ret = sock_create(ctrl->addr.ss_family, SOCK_STREAM,
1815 			IPPROTO_TCP, &queue->sock);
1816 	if (ret) {
1817 		dev_err(nctrl->device,
1818 			"failed to create socket: %d\n", ret);
1819 		goto err_destroy_mutex;
1820 	}
1821 
1822 	sock_file = sock_alloc_file(queue->sock, O_CLOEXEC, NULL);
1823 	if (IS_ERR(sock_file)) {
1824 		ret = PTR_ERR(sock_file);
1825 		goto err_destroy_mutex;
1826 	}
1827 	nvme_tcp_reclassify_socket(queue->sock);
1828 
1829 	/* Single syn retry */
1830 	tcp_sock_set_syncnt(queue->sock->sk, 1);
1831 
1832 	/* Set TCP no delay */
1833 	tcp_sock_set_nodelay(queue->sock->sk);
1834 
1835 	/*
1836 	 * Cleanup whatever is sitting in the TCP transmit queue on socket
1837 	 * close. This is done to prevent stale data from being sent should
1838 	 * the network connection be restored before TCP times out.
1839 	 */
1840 	sock_no_linger(queue->sock->sk);
1841 
1842 	if (so_priority > 0)
1843 		sock_set_priority(queue->sock->sk, so_priority);
1844 
1845 	/* Set socket type of service */
1846 	if (nctrl->opts->tos >= 0)
1847 		ip_sock_set_tos(queue->sock->sk, nctrl->opts->tos);
1848 
1849 	/* Set 10 seconds timeout for icresp recvmsg */
1850 	queue->sock->sk->sk_rcvtimeo = 10 * HZ;
1851 
1852 	queue->sock->sk->sk_allocation = GFP_ATOMIC;
1853 	queue->sock->sk->sk_use_task_frag = false;
1854 	queue->io_cpu = WORK_CPU_UNBOUND;
1855 	queue->request = NULL;
1856 	queue->data_remaining = 0;
1857 	queue->ddgst_remaining = 0;
1858 	queue->pdu_remaining = 0;
1859 	queue->pdu_offset = 0;
1860 	sk_set_memalloc(queue->sock->sk);
1861 
1862 	if (nctrl->opts->mask & NVMF_OPT_HOST_TRADDR) {
1863 		ret = kernel_bind(queue->sock, (struct sockaddr *)&ctrl->src_addr,
1864 			sizeof(ctrl->src_addr));
1865 		if (ret) {
1866 			dev_err(nctrl->device,
1867 				"failed to bind queue %d socket %d\n",
1868 				qid, ret);
1869 			goto err_sock;
1870 		}
1871 	}
1872 
1873 	if (nctrl->opts->mask & NVMF_OPT_HOST_IFACE) {
1874 		char *iface = nctrl->opts->host_iface;
1875 		sockptr_t optval = KERNEL_SOCKPTR(iface);
1876 
1877 		ret = sock_setsockopt(queue->sock, SOL_SOCKET, SO_BINDTODEVICE,
1878 				      optval, strlen(iface));
1879 		if (ret) {
1880 			dev_err(nctrl->device,
1881 			  "failed to bind to interface %s queue %d err %d\n",
1882 			  iface, qid, ret);
1883 			goto err_sock;
1884 		}
1885 	}
1886 
1887 	queue->hdr_digest = nctrl->opts->hdr_digest;
1888 	queue->data_digest = nctrl->opts->data_digest;
1889 	if (queue->hdr_digest || queue->data_digest) {
1890 		ret = nvme_tcp_alloc_crypto(queue);
1891 		if (ret) {
1892 			dev_err(nctrl->device,
1893 				"failed to allocate queue %d crypto\n", qid);
1894 			goto err_sock;
1895 		}
1896 	}
1897 
1898 	rcv_pdu_size = sizeof(struct nvme_tcp_rsp_pdu) +
1899 			nvme_tcp_hdgst_len(queue);
1900 	queue->pdu = kmalloc(rcv_pdu_size, GFP_KERNEL);
1901 	if (!queue->pdu) {
1902 		ret = -ENOMEM;
1903 		goto err_crypto;
1904 	}
1905 
1906 	dev_dbg(nctrl->device, "connecting queue %d\n",
1907 			nvme_tcp_queue_id(queue));
1908 
1909 	ret = kernel_connect(queue->sock, (struct sockaddr *)&ctrl->addr,
1910 		sizeof(ctrl->addr), 0);
1911 	if (ret) {
1912 		dev_err(nctrl->device,
1913 			"failed to connect socket: %d\n", ret);
1914 		goto err_rcv_pdu;
1915 	}
1916 
1917 	/* If PSKs are configured try to start TLS */
1918 	if (nvme_tcp_tls_configured(nctrl) && pskid) {
1919 		ret = nvme_tcp_start_tls(nctrl, queue, pskid);
1920 		if (ret)
1921 			goto err_init_connect;
1922 	}
1923 
1924 	ret = nvme_tcp_init_connection(queue);
1925 	if (ret)
1926 		goto err_init_connect;
1927 
1928 	set_bit(NVME_TCP_Q_ALLOCATED, &queue->flags);
1929 
1930 	return 0;
1931 
1932 err_init_connect:
1933 	kernel_sock_shutdown(queue->sock, SHUT_RDWR);
1934 err_rcv_pdu:
1935 	kfree(queue->pdu);
1936 err_crypto:
1937 	if (queue->hdr_digest || queue->data_digest)
1938 		nvme_tcp_free_crypto(queue);
1939 err_sock:
1940 	/* ->sock will be released by fput() */
1941 	fput(queue->sock->file);
1942 	queue->sock = NULL;
1943 err_destroy_mutex:
1944 	mutex_destroy(&queue->send_mutex);
1945 	mutex_destroy(&queue->queue_lock);
1946 	return ret;
1947 }
1948 
nvme_tcp_restore_sock_ops(struct nvme_tcp_queue * queue)1949 static void nvme_tcp_restore_sock_ops(struct nvme_tcp_queue *queue)
1950 {
1951 	struct socket *sock = queue->sock;
1952 
1953 	write_lock_bh(&sock->sk->sk_callback_lock);
1954 	sock->sk->sk_user_data  = NULL;
1955 	sock->sk->sk_data_ready = queue->data_ready;
1956 	sock->sk->sk_state_change = queue->state_change;
1957 	sock->sk->sk_write_space  = queue->write_space;
1958 	write_unlock_bh(&sock->sk->sk_callback_lock);
1959 }
1960 
__nvme_tcp_stop_queue(struct nvme_tcp_queue * queue)1961 static void __nvme_tcp_stop_queue(struct nvme_tcp_queue *queue)
1962 {
1963 	kernel_sock_shutdown(queue->sock, SHUT_RDWR);
1964 	nvme_tcp_restore_sock_ops(queue);
1965 	cancel_work_sync(&queue->io_work);
1966 }
1967 
nvme_tcp_stop_queue_nowait(struct nvme_ctrl * nctrl,int qid)1968 static void nvme_tcp_stop_queue_nowait(struct nvme_ctrl *nctrl, int qid)
1969 {
1970 	struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl);
1971 	struct nvme_tcp_queue *queue = &ctrl->queues[qid];
1972 
1973 	if (!test_bit(NVME_TCP_Q_ALLOCATED, &queue->flags))
1974 		return;
1975 
1976 	if (test_and_clear_bit(NVME_TCP_Q_IO_CPU_SET, &queue->flags))
1977 		atomic_dec(&nvme_tcp_cpu_queues[queue->io_cpu]);
1978 
1979 	mutex_lock(&queue->queue_lock);
1980 	if (test_and_clear_bit(NVME_TCP_Q_LIVE, &queue->flags))
1981 		__nvme_tcp_stop_queue(queue);
1982 	/* Stopping the queue will disable TLS */
1983 	queue->tls_enabled = false;
1984 	mutex_unlock(&queue->queue_lock);
1985 }
1986 
nvme_tcp_wait_queue(struct nvme_ctrl * nctrl,int qid)1987 static void nvme_tcp_wait_queue(struct nvme_ctrl *nctrl, int qid)
1988 {
1989 	struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl);
1990 	struct nvme_tcp_queue *queue = &ctrl->queues[qid];
1991 	int timeout = 100;
1992 
1993 	while (timeout > 0) {
1994 		if (!test_bit(NVME_TCP_Q_ALLOCATED, &queue->flags) ||
1995 		    !sk_wmem_alloc_get(queue->sock->sk))
1996 			return;
1997 		msleep(2);
1998 		timeout -= 2;
1999 	}
2000 	dev_warn(nctrl->device,
2001 		 "qid %d: timeout draining sock wmem allocation expired\n",
2002 		 qid);
2003 }
2004 
nvme_tcp_stop_queue(struct nvme_ctrl * nctrl,int qid)2005 static void nvme_tcp_stop_queue(struct nvme_ctrl *nctrl, int qid)
2006 {
2007 	nvme_tcp_stop_queue_nowait(nctrl, qid);
2008 	nvme_tcp_wait_queue(nctrl, qid);
2009 }
2010 
2011 
nvme_tcp_setup_sock_ops(struct nvme_tcp_queue * queue)2012 static void nvme_tcp_setup_sock_ops(struct nvme_tcp_queue *queue)
2013 {
2014 	write_lock_bh(&queue->sock->sk->sk_callback_lock);
2015 	queue->sock->sk->sk_user_data = queue;
2016 	queue->state_change = queue->sock->sk->sk_state_change;
2017 	queue->data_ready = queue->sock->sk->sk_data_ready;
2018 	queue->write_space = queue->sock->sk->sk_write_space;
2019 	queue->sock->sk->sk_data_ready = nvme_tcp_data_ready;
2020 	queue->sock->sk->sk_state_change = nvme_tcp_state_change;
2021 	queue->sock->sk->sk_write_space = nvme_tcp_write_space;
2022 #ifdef CONFIG_NET_RX_BUSY_POLL
2023 	queue->sock->sk->sk_ll_usec = 1;
2024 #endif
2025 	write_unlock_bh(&queue->sock->sk->sk_callback_lock);
2026 }
2027 
nvme_tcp_start_queue(struct nvme_ctrl * nctrl,int idx)2028 static int nvme_tcp_start_queue(struct nvme_ctrl *nctrl, int idx)
2029 {
2030 	struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl);
2031 	struct nvme_tcp_queue *queue = &ctrl->queues[idx];
2032 	int ret;
2033 
2034 	queue->rd_enabled = true;
2035 	nvme_tcp_init_recv_ctx(queue);
2036 	nvme_tcp_setup_sock_ops(queue);
2037 
2038 	if (idx) {
2039 		nvme_tcp_set_queue_io_cpu(queue);
2040 		ret = nvmf_connect_io_queue(nctrl, idx);
2041 	} else
2042 		ret = nvmf_connect_admin_queue(nctrl);
2043 
2044 	if (!ret) {
2045 		set_bit(NVME_TCP_Q_LIVE, &queue->flags);
2046 	} else {
2047 		if (test_bit(NVME_TCP_Q_ALLOCATED, &queue->flags))
2048 			__nvme_tcp_stop_queue(queue);
2049 		dev_err(nctrl->device,
2050 			"failed to connect queue: %d ret=%d\n", idx, ret);
2051 	}
2052 	return ret;
2053 }
2054 
nvme_tcp_free_admin_queue(struct nvme_ctrl * ctrl)2055 static void nvme_tcp_free_admin_queue(struct nvme_ctrl *ctrl)
2056 {
2057 	if (to_tcp_ctrl(ctrl)->async_req.pdu) {
2058 		cancel_work_sync(&ctrl->async_event_work);
2059 		nvme_tcp_free_async_req(to_tcp_ctrl(ctrl));
2060 		to_tcp_ctrl(ctrl)->async_req.pdu = NULL;
2061 	}
2062 
2063 	nvme_tcp_free_queue(ctrl, 0);
2064 }
2065 
nvme_tcp_free_io_queues(struct nvme_ctrl * ctrl)2066 static void nvme_tcp_free_io_queues(struct nvme_ctrl *ctrl)
2067 {
2068 	int i;
2069 
2070 	for (i = 1; i < ctrl->queue_count; i++)
2071 		nvme_tcp_free_queue(ctrl, i);
2072 }
2073 
nvme_tcp_stop_io_queues(struct nvme_ctrl * ctrl)2074 static void nvme_tcp_stop_io_queues(struct nvme_ctrl *ctrl)
2075 {
2076 	int i;
2077 
2078 	for (i = 1; i < ctrl->queue_count; i++)
2079 		nvme_tcp_stop_queue_nowait(ctrl, i);
2080 	for (i = 1; i < ctrl->queue_count; i++)
2081 		nvme_tcp_wait_queue(ctrl, i);
2082 }
2083 
nvme_tcp_start_io_queues(struct nvme_ctrl * ctrl,int first,int last)2084 static int nvme_tcp_start_io_queues(struct nvme_ctrl *ctrl,
2085 				    int first, int last)
2086 {
2087 	int i, ret;
2088 
2089 	for (i = first; i < last; i++) {
2090 		ret = nvme_tcp_start_queue(ctrl, i);
2091 		if (ret)
2092 			goto out_stop_queues;
2093 	}
2094 
2095 	return 0;
2096 
2097 out_stop_queues:
2098 	for (i--; i >= first; i--)
2099 		nvme_tcp_stop_queue(ctrl, i);
2100 	return ret;
2101 }
2102 
nvme_tcp_alloc_admin_queue(struct nvme_ctrl * ctrl)2103 static int nvme_tcp_alloc_admin_queue(struct nvme_ctrl *ctrl)
2104 {
2105 	int ret;
2106 	key_serial_t pskid = 0;
2107 
2108 	if (nvme_tcp_tls_configured(ctrl)) {
2109 		if (ctrl->opts->tls_key)
2110 			pskid = key_serial(ctrl->opts->tls_key);
2111 		else {
2112 			pskid = nvme_tls_psk_default(ctrl->opts->keyring,
2113 						      ctrl->opts->host->nqn,
2114 						      ctrl->opts->subsysnqn);
2115 			if (!pskid) {
2116 				dev_err(ctrl->device, "no valid PSK found\n");
2117 				return -ENOKEY;
2118 			}
2119 		}
2120 	}
2121 
2122 	ret = nvme_tcp_alloc_queue(ctrl, 0, pskid);
2123 	if (ret)
2124 		return ret;
2125 
2126 	ret = nvme_tcp_alloc_async_req(to_tcp_ctrl(ctrl));
2127 	if (ret)
2128 		goto out_free_queue;
2129 
2130 	return 0;
2131 
2132 out_free_queue:
2133 	nvme_tcp_free_queue(ctrl, 0);
2134 	return ret;
2135 }
2136 
__nvme_tcp_alloc_io_queues(struct nvme_ctrl * ctrl)2137 static int __nvme_tcp_alloc_io_queues(struct nvme_ctrl *ctrl)
2138 {
2139 	int i, ret;
2140 
2141 	if (nvme_tcp_tls_configured(ctrl) && !ctrl->tls_pskid) {
2142 		dev_err(ctrl->device, "no PSK negotiated\n");
2143 		return -ENOKEY;
2144 	}
2145 
2146 	for (i = 1; i < ctrl->queue_count; i++) {
2147 		ret = nvme_tcp_alloc_queue(ctrl, i,
2148 				ctrl->tls_pskid);
2149 		if (ret)
2150 			goto out_free_queues;
2151 	}
2152 
2153 	return 0;
2154 
2155 out_free_queues:
2156 	for (i--; i >= 1; i--)
2157 		nvme_tcp_free_queue(ctrl, i);
2158 
2159 	return ret;
2160 }
2161 
nvme_tcp_alloc_io_queues(struct nvme_ctrl * ctrl)2162 static int nvme_tcp_alloc_io_queues(struct nvme_ctrl *ctrl)
2163 {
2164 	unsigned int nr_io_queues;
2165 	int ret;
2166 
2167 	nr_io_queues = nvmf_nr_io_queues(ctrl->opts);
2168 	ret = nvme_set_queue_count(ctrl, &nr_io_queues);
2169 	if (ret)
2170 		return ret;
2171 
2172 	if (nr_io_queues == 0) {
2173 		dev_err(ctrl->device,
2174 			"unable to set any I/O queues\n");
2175 		return -ENOMEM;
2176 	}
2177 
2178 	ctrl->queue_count = nr_io_queues + 1;
2179 	dev_info(ctrl->device,
2180 		"creating %d I/O queues.\n", nr_io_queues);
2181 
2182 	nvmf_set_io_queues(ctrl->opts, nr_io_queues,
2183 			   to_tcp_ctrl(ctrl)->io_queues);
2184 	return __nvme_tcp_alloc_io_queues(ctrl);
2185 }
2186 
nvme_tcp_destroy_io_queues(struct nvme_ctrl * ctrl,bool remove)2187 static void nvme_tcp_destroy_io_queues(struct nvme_ctrl *ctrl, bool remove)
2188 {
2189 	nvme_tcp_stop_io_queues(ctrl);
2190 	if (remove)
2191 		nvme_remove_io_tag_set(ctrl);
2192 	nvme_tcp_free_io_queues(ctrl);
2193 }
2194 
nvme_tcp_configure_io_queues(struct nvme_ctrl * ctrl,bool new)2195 static int nvme_tcp_configure_io_queues(struct nvme_ctrl *ctrl, bool new)
2196 {
2197 	int ret, nr_queues;
2198 
2199 	ret = nvme_tcp_alloc_io_queues(ctrl);
2200 	if (ret)
2201 		return ret;
2202 
2203 	if (new) {
2204 		ret = nvme_alloc_io_tag_set(ctrl, &to_tcp_ctrl(ctrl)->tag_set,
2205 				&nvme_tcp_mq_ops,
2206 				ctrl->opts->nr_poll_queues ? HCTX_MAX_TYPES : 2,
2207 				sizeof(struct nvme_tcp_request));
2208 		if (ret)
2209 			goto out_free_io_queues;
2210 	}
2211 
2212 	/*
2213 	 * Only start IO queues for which we have allocated the tagset
2214 	 * and limitted it to the available queues. On reconnects, the
2215 	 * queue number might have changed.
2216 	 */
2217 	nr_queues = min(ctrl->tagset->nr_hw_queues + 1, ctrl->queue_count);
2218 	ret = nvme_tcp_start_io_queues(ctrl, 1, nr_queues);
2219 	if (ret)
2220 		goto out_cleanup_connect_q;
2221 
2222 	if (!new) {
2223 		nvme_start_freeze(ctrl);
2224 		nvme_unquiesce_io_queues(ctrl);
2225 		if (!nvme_wait_freeze_timeout(ctrl, NVME_IO_TIMEOUT)) {
2226 			/*
2227 			 * If we timed out waiting for freeze we are likely to
2228 			 * be stuck.  Fail the controller initialization just
2229 			 * to be safe.
2230 			 */
2231 			ret = -ENODEV;
2232 			nvme_unfreeze(ctrl);
2233 			goto out_wait_freeze_timed_out;
2234 		}
2235 		blk_mq_update_nr_hw_queues(ctrl->tagset,
2236 			ctrl->queue_count - 1);
2237 		nvme_unfreeze(ctrl);
2238 	}
2239 
2240 	/*
2241 	 * If the number of queues has increased (reconnect case)
2242 	 * start all new queues now.
2243 	 */
2244 	ret = nvme_tcp_start_io_queues(ctrl, nr_queues,
2245 				       ctrl->tagset->nr_hw_queues + 1);
2246 	if (ret)
2247 		goto out_wait_freeze_timed_out;
2248 
2249 	return 0;
2250 
2251 out_wait_freeze_timed_out:
2252 	nvme_quiesce_io_queues(ctrl);
2253 	nvme_sync_io_queues(ctrl);
2254 	nvme_tcp_stop_io_queues(ctrl);
2255 out_cleanup_connect_q:
2256 	nvme_cancel_tagset(ctrl);
2257 	if (new)
2258 		nvme_remove_io_tag_set(ctrl);
2259 out_free_io_queues:
2260 	nvme_tcp_free_io_queues(ctrl);
2261 	return ret;
2262 }
2263 
nvme_tcp_destroy_admin_queue(struct nvme_ctrl * ctrl,bool remove)2264 static void nvme_tcp_destroy_admin_queue(struct nvme_ctrl *ctrl, bool remove)
2265 {
2266 	nvme_tcp_stop_queue(ctrl, 0);
2267 	if (remove)
2268 		nvme_remove_admin_tag_set(ctrl);
2269 	nvme_tcp_free_admin_queue(ctrl);
2270 }
2271 
nvme_tcp_configure_admin_queue(struct nvme_ctrl * ctrl,bool new)2272 static int nvme_tcp_configure_admin_queue(struct nvme_ctrl *ctrl, bool new)
2273 {
2274 	int error;
2275 
2276 	error = nvme_tcp_alloc_admin_queue(ctrl);
2277 	if (error)
2278 		return error;
2279 
2280 	if (new) {
2281 		error = nvme_alloc_admin_tag_set(ctrl,
2282 				&to_tcp_ctrl(ctrl)->admin_tag_set,
2283 				&nvme_tcp_admin_mq_ops,
2284 				sizeof(struct nvme_tcp_request));
2285 		if (error)
2286 			goto out_free_queue;
2287 	}
2288 
2289 	error = nvme_tcp_start_queue(ctrl, 0);
2290 	if (error)
2291 		goto out_cleanup_tagset;
2292 
2293 	error = nvme_enable_ctrl(ctrl);
2294 	if (error)
2295 		goto out_stop_queue;
2296 
2297 	nvme_unquiesce_admin_queue(ctrl);
2298 
2299 	error = nvme_init_ctrl_finish(ctrl, false);
2300 	if (error)
2301 		goto out_quiesce_queue;
2302 
2303 	return 0;
2304 
2305 out_quiesce_queue:
2306 	nvme_quiesce_admin_queue(ctrl);
2307 	blk_sync_queue(ctrl->admin_q);
2308 out_stop_queue:
2309 	nvme_tcp_stop_queue(ctrl, 0);
2310 	nvme_cancel_admin_tagset(ctrl);
2311 out_cleanup_tagset:
2312 	if (new)
2313 		nvme_remove_admin_tag_set(ctrl);
2314 out_free_queue:
2315 	nvme_tcp_free_admin_queue(ctrl);
2316 	return error;
2317 }
2318 
nvme_tcp_teardown_admin_queue(struct nvme_ctrl * ctrl,bool remove)2319 static void nvme_tcp_teardown_admin_queue(struct nvme_ctrl *ctrl,
2320 		bool remove)
2321 {
2322 	nvme_quiesce_admin_queue(ctrl);
2323 	blk_sync_queue(ctrl->admin_q);
2324 	nvme_tcp_stop_queue(ctrl, 0);
2325 	nvme_cancel_admin_tagset(ctrl);
2326 	if (remove)
2327 		nvme_unquiesce_admin_queue(ctrl);
2328 	nvme_tcp_destroy_admin_queue(ctrl, remove);
2329 	if (ctrl->tls_pskid) {
2330 		dev_dbg(ctrl->device, "Wipe negotiated TLS_PSK %08x\n",
2331 			ctrl->tls_pskid);
2332 		ctrl->tls_pskid = 0;
2333 	}
2334 }
2335 
nvme_tcp_teardown_io_queues(struct nvme_ctrl * ctrl,bool remove)2336 static void nvme_tcp_teardown_io_queues(struct nvme_ctrl *ctrl,
2337 		bool remove)
2338 {
2339 	if (ctrl->queue_count <= 1)
2340 		return;
2341 	nvme_quiesce_admin_queue(ctrl);
2342 	nvme_quiesce_io_queues(ctrl);
2343 	nvme_sync_io_queues(ctrl);
2344 	nvme_tcp_stop_io_queues(ctrl);
2345 	nvme_cancel_tagset(ctrl);
2346 	if (remove)
2347 		nvme_unquiesce_io_queues(ctrl);
2348 	nvme_tcp_destroy_io_queues(ctrl, remove);
2349 }
2350 
nvme_tcp_reconnect_or_remove(struct nvme_ctrl * ctrl,int status)2351 static void nvme_tcp_reconnect_or_remove(struct nvme_ctrl *ctrl,
2352 		int status)
2353 {
2354 	enum nvme_ctrl_state state = nvme_ctrl_state(ctrl);
2355 
2356 	/* If we are resetting/deleting then do nothing */
2357 	if (state != NVME_CTRL_CONNECTING) {
2358 		WARN_ON_ONCE(state == NVME_CTRL_NEW || state == NVME_CTRL_LIVE);
2359 		return;
2360 	}
2361 
2362 	if (nvmf_should_reconnect(ctrl, status)) {
2363 		dev_info(ctrl->device, "Reconnecting in %d seconds...\n",
2364 			ctrl->opts->reconnect_delay);
2365 		queue_delayed_work(nvme_wq, &to_tcp_ctrl(ctrl)->connect_work,
2366 				ctrl->opts->reconnect_delay * HZ);
2367 	} else {
2368 		dev_info(ctrl->device, "Removing controller (%d)...\n",
2369 			 status);
2370 		nvme_delete_ctrl(ctrl);
2371 	}
2372 }
2373 
nvme_tcp_setup_ctrl(struct nvme_ctrl * ctrl,bool new)2374 static int nvme_tcp_setup_ctrl(struct nvme_ctrl *ctrl, bool new)
2375 {
2376 	struct nvmf_ctrl_options *opts = ctrl->opts;
2377 	int ret;
2378 
2379 	ret = nvme_tcp_configure_admin_queue(ctrl, new);
2380 	if (ret)
2381 		return ret;
2382 
2383 	if (ctrl->icdoff) {
2384 		ret = -EOPNOTSUPP;
2385 		dev_err(ctrl->device, "icdoff is not supported!\n");
2386 		goto destroy_admin;
2387 	}
2388 
2389 	if (!nvme_ctrl_sgl_supported(ctrl)) {
2390 		ret = -EOPNOTSUPP;
2391 		dev_err(ctrl->device, "Mandatory sgls are not supported!\n");
2392 		goto destroy_admin;
2393 	}
2394 
2395 	if (opts->queue_size > ctrl->sqsize + 1)
2396 		dev_warn(ctrl->device,
2397 			"queue_size %zu > ctrl sqsize %u, clamping down\n",
2398 			opts->queue_size, ctrl->sqsize + 1);
2399 
2400 	if (ctrl->sqsize + 1 > ctrl->maxcmd) {
2401 		dev_warn(ctrl->device,
2402 			"sqsize %u > ctrl maxcmd %u, clamping down\n",
2403 			ctrl->sqsize + 1, ctrl->maxcmd);
2404 		ctrl->sqsize = ctrl->maxcmd - 1;
2405 	}
2406 
2407 	if (ctrl->queue_count > 1) {
2408 		ret = nvme_tcp_configure_io_queues(ctrl, new);
2409 		if (ret)
2410 			goto destroy_admin;
2411 	}
2412 
2413 	if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_LIVE)) {
2414 		/*
2415 		 * state change failure is ok if we started ctrl delete,
2416 		 * unless we're during creation of a new controller to
2417 		 * avoid races with teardown flow.
2418 		 */
2419 		enum nvme_ctrl_state state = nvme_ctrl_state(ctrl);
2420 
2421 		WARN_ON_ONCE(state != NVME_CTRL_DELETING &&
2422 			     state != NVME_CTRL_DELETING_NOIO);
2423 		WARN_ON_ONCE(new);
2424 		ret = -EINVAL;
2425 		goto destroy_io;
2426 	}
2427 
2428 	nvme_start_ctrl(ctrl);
2429 	return 0;
2430 
2431 destroy_io:
2432 	if (ctrl->queue_count > 1) {
2433 		nvme_quiesce_io_queues(ctrl);
2434 		nvme_sync_io_queues(ctrl);
2435 		nvme_tcp_stop_io_queues(ctrl);
2436 		nvme_cancel_tagset(ctrl);
2437 		nvme_tcp_destroy_io_queues(ctrl, new);
2438 	}
2439 destroy_admin:
2440 	nvme_stop_keep_alive(ctrl);
2441 	nvme_tcp_teardown_admin_queue(ctrl, new);
2442 	return ret;
2443 }
2444 
nvme_tcp_reconnect_ctrl_work(struct work_struct * work)2445 static void nvme_tcp_reconnect_ctrl_work(struct work_struct *work)
2446 {
2447 	struct nvme_tcp_ctrl *tcp_ctrl = container_of(to_delayed_work(work),
2448 			struct nvme_tcp_ctrl, connect_work);
2449 	struct nvme_ctrl *ctrl = &tcp_ctrl->ctrl;
2450 	int ret;
2451 
2452 	++ctrl->nr_reconnects;
2453 
2454 	ret = nvme_tcp_setup_ctrl(ctrl, false);
2455 	if (ret)
2456 		goto requeue;
2457 
2458 	dev_info(ctrl->device, "Successfully reconnected (attempt %d/%d)\n",
2459 		 ctrl->nr_reconnects, ctrl->opts->max_reconnects);
2460 
2461 	ctrl->nr_reconnects = 0;
2462 
2463 	return;
2464 
2465 requeue:
2466 	dev_info(ctrl->device, "Failed reconnect attempt %d/%d\n",
2467 		 ctrl->nr_reconnects, ctrl->opts->max_reconnects);
2468 	nvme_tcp_reconnect_or_remove(ctrl, ret);
2469 }
2470 
nvme_tcp_error_recovery_work(struct work_struct * work)2471 static void nvme_tcp_error_recovery_work(struct work_struct *work)
2472 {
2473 	struct nvme_tcp_ctrl *tcp_ctrl = container_of(work,
2474 				struct nvme_tcp_ctrl, err_work);
2475 	struct nvme_ctrl *ctrl = &tcp_ctrl->ctrl;
2476 
2477 	nvme_stop_keep_alive(ctrl);
2478 	flush_work(&ctrl->async_event_work);
2479 	nvme_tcp_teardown_io_queues(ctrl, false);
2480 	/* unquiesce to fail fast pending requests */
2481 	nvme_unquiesce_io_queues(ctrl);
2482 	nvme_tcp_teardown_admin_queue(ctrl, false);
2483 	nvme_unquiesce_admin_queue(ctrl);
2484 	nvme_auth_stop(ctrl);
2485 
2486 	if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_CONNECTING)) {
2487 		/* state change failure is ok if we started ctrl delete */
2488 		enum nvme_ctrl_state state = nvme_ctrl_state(ctrl);
2489 
2490 		WARN_ON_ONCE(state != NVME_CTRL_DELETING &&
2491 			     state != NVME_CTRL_DELETING_NOIO);
2492 		return;
2493 	}
2494 
2495 	nvme_tcp_reconnect_or_remove(ctrl, 0);
2496 }
2497 
nvme_tcp_teardown_ctrl(struct nvme_ctrl * ctrl,bool shutdown)2498 static void nvme_tcp_teardown_ctrl(struct nvme_ctrl *ctrl, bool shutdown)
2499 {
2500 	nvme_tcp_teardown_io_queues(ctrl, shutdown);
2501 	nvme_quiesce_admin_queue(ctrl);
2502 	nvme_disable_ctrl(ctrl, shutdown);
2503 	nvme_tcp_teardown_admin_queue(ctrl, shutdown);
2504 }
2505 
nvme_tcp_delete_ctrl(struct nvme_ctrl * ctrl)2506 static void nvme_tcp_delete_ctrl(struct nvme_ctrl *ctrl)
2507 {
2508 	nvme_tcp_teardown_ctrl(ctrl, true);
2509 }
2510 
nvme_reset_ctrl_work(struct work_struct * work)2511 static void nvme_reset_ctrl_work(struct work_struct *work)
2512 {
2513 	struct nvme_ctrl *ctrl =
2514 		container_of(work, struct nvme_ctrl, reset_work);
2515 	int ret;
2516 
2517 	nvme_stop_ctrl(ctrl);
2518 	nvme_tcp_teardown_ctrl(ctrl, false);
2519 
2520 	if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_CONNECTING)) {
2521 		/* state change failure is ok if we started ctrl delete */
2522 		enum nvme_ctrl_state state = nvme_ctrl_state(ctrl);
2523 
2524 		WARN_ON_ONCE(state != NVME_CTRL_DELETING &&
2525 			     state != NVME_CTRL_DELETING_NOIO);
2526 		return;
2527 	}
2528 
2529 	ret = nvme_tcp_setup_ctrl(ctrl, false);
2530 	if (ret)
2531 		goto out_fail;
2532 
2533 	return;
2534 
2535 out_fail:
2536 	++ctrl->nr_reconnects;
2537 	nvme_tcp_reconnect_or_remove(ctrl, ret);
2538 }
2539 
nvme_tcp_stop_ctrl(struct nvme_ctrl * ctrl)2540 static void nvme_tcp_stop_ctrl(struct nvme_ctrl *ctrl)
2541 {
2542 	flush_work(&to_tcp_ctrl(ctrl)->err_work);
2543 	cancel_delayed_work_sync(&to_tcp_ctrl(ctrl)->connect_work);
2544 }
2545 
nvme_tcp_free_ctrl(struct nvme_ctrl * nctrl)2546 static void nvme_tcp_free_ctrl(struct nvme_ctrl *nctrl)
2547 {
2548 	struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl);
2549 
2550 	if (list_empty(&ctrl->list))
2551 		goto free_ctrl;
2552 
2553 	mutex_lock(&nvme_tcp_ctrl_mutex);
2554 	list_del(&ctrl->list);
2555 	mutex_unlock(&nvme_tcp_ctrl_mutex);
2556 
2557 	nvmf_free_options(nctrl->opts);
2558 free_ctrl:
2559 	kfree(ctrl->queues);
2560 	kfree(ctrl);
2561 }
2562 
nvme_tcp_set_sg_null(struct nvme_command * c)2563 static void nvme_tcp_set_sg_null(struct nvme_command *c)
2564 {
2565 	struct nvme_sgl_desc *sg = &c->common.dptr.sgl;
2566 
2567 	sg->addr = 0;
2568 	sg->length = 0;
2569 	sg->type = (NVME_TRANSPORT_SGL_DATA_DESC << 4) |
2570 			NVME_SGL_FMT_TRANSPORT_A;
2571 }
2572 
nvme_tcp_set_sg_inline(struct nvme_tcp_queue * queue,struct nvme_command * c,u32 data_len)2573 static void nvme_tcp_set_sg_inline(struct nvme_tcp_queue *queue,
2574 		struct nvme_command *c, u32 data_len)
2575 {
2576 	struct nvme_sgl_desc *sg = &c->common.dptr.sgl;
2577 
2578 	sg->addr = cpu_to_le64(queue->ctrl->ctrl.icdoff);
2579 	sg->length = cpu_to_le32(data_len);
2580 	sg->type = (NVME_SGL_FMT_DATA_DESC << 4) | NVME_SGL_FMT_OFFSET;
2581 }
2582 
nvme_tcp_set_sg_host_data(struct nvme_command * c,u32 data_len)2583 static void nvme_tcp_set_sg_host_data(struct nvme_command *c,
2584 		u32 data_len)
2585 {
2586 	struct nvme_sgl_desc *sg = &c->common.dptr.sgl;
2587 
2588 	sg->addr = 0;
2589 	sg->length = cpu_to_le32(data_len);
2590 	sg->type = (NVME_TRANSPORT_SGL_DATA_DESC << 4) |
2591 			NVME_SGL_FMT_TRANSPORT_A;
2592 }
2593 
nvme_tcp_submit_async_event(struct nvme_ctrl * arg)2594 static void nvme_tcp_submit_async_event(struct nvme_ctrl *arg)
2595 {
2596 	struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(arg);
2597 	struct nvme_tcp_queue *queue = &ctrl->queues[0];
2598 	struct nvme_tcp_cmd_pdu *pdu = ctrl->async_req.pdu;
2599 	struct nvme_command *cmd = &pdu->cmd;
2600 	u8 hdgst = nvme_tcp_hdgst_len(queue);
2601 
2602 	memset(pdu, 0, sizeof(*pdu));
2603 	pdu->hdr.type = nvme_tcp_cmd;
2604 	if (queue->hdr_digest)
2605 		pdu->hdr.flags |= NVME_TCP_F_HDGST;
2606 	pdu->hdr.hlen = sizeof(*pdu);
2607 	pdu->hdr.plen = cpu_to_le32(pdu->hdr.hlen + hdgst);
2608 
2609 	cmd->common.opcode = nvme_admin_async_event;
2610 	cmd->common.command_id = NVME_AQ_BLK_MQ_DEPTH;
2611 	cmd->common.flags |= NVME_CMD_SGL_METABUF;
2612 	nvme_tcp_set_sg_null(cmd);
2613 
2614 	ctrl->async_req.state = NVME_TCP_SEND_CMD_PDU;
2615 	ctrl->async_req.offset = 0;
2616 	ctrl->async_req.curr_bio = NULL;
2617 	ctrl->async_req.data_len = 0;
2618 	init_llist_node(&ctrl->async_req.lentry);
2619 	INIT_LIST_HEAD(&ctrl->async_req.entry);
2620 
2621 	nvme_tcp_queue_request(&ctrl->async_req, true, true);
2622 }
2623 
nvme_tcp_complete_timed_out(struct request * rq)2624 static void nvme_tcp_complete_timed_out(struct request *rq)
2625 {
2626 	struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq);
2627 	struct nvme_ctrl *ctrl = &req->queue->ctrl->ctrl;
2628 
2629 	nvme_tcp_stop_queue(ctrl, nvme_tcp_queue_id(req->queue));
2630 	nvmf_complete_timed_out_request(rq);
2631 }
2632 
nvme_tcp_timeout(struct request * rq)2633 static enum blk_eh_timer_return nvme_tcp_timeout(struct request *rq)
2634 {
2635 	struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq);
2636 	struct nvme_ctrl *ctrl = &req->queue->ctrl->ctrl;
2637 	struct nvme_tcp_cmd_pdu *pdu = nvme_tcp_req_cmd_pdu(req);
2638 	struct nvme_command *cmd = &pdu->cmd;
2639 	int qid = nvme_tcp_queue_id(req->queue);
2640 
2641 	dev_warn(ctrl->device,
2642 		 "I/O tag %d (%04x) type %d opcode %#x (%s) QID %d timeout\n",
2643 		 rq->tag, nvme_cid(rq), pdu->hdr.type, cmd->common.opcode,
2644 		 nvme_fabrics_opcode_str(qid, cmd), qid);
2645 
2646 	if (nvme_ctrl_state(ctrl) != NVME_CTRL_LIVE) {
2647 		/*
2648 		 * If we are resetting, connecting or deleting we should
2649 		 * complete immediately because we may block controller
2650 		 * teardown or setup sequence
2651 		 * - ctrl disable/shutdown fabrics requests
2652 		 * - connect requests
2653 		 * - initialization admin requests
2654 		 * - I/O requests that entered after unquiescing and
2655 		 *   the controller stopped responding
2656 		 *
2657 		 * All other requests should be cancelled by the error
2658 		 * recovery work, so it's fine that we fail it here.
2659 		 */
2660 		nvme_tcp_complete_timed_out(rq);
2661 		return BLK_EH_DONE;
2662 	}
2663 
2664 	/*
2665 	 * LIVE state should trigger the normal error recovery which will
2666 	 * handle completing this request.
2667 	 */
2668 	nvme_tcp_error_recovery(ctrl);
2669 	return BLK_EH_RESET_TIMER;
2670 }
2671 
nvme_tcp_map_data(struct nvme_tcp_queue * queue,struct request * rq)2672 static blk_status_t nvme_tcp_map_data(struct nvme_tcp_queue *queue,
2673 			struct request *rq)
2674 {
2675 	struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq);
2676 	struct nvme_tcp_cmd_pdu *pdu = nvme_tcp_req_cmd_pdu(req);
2677 	struct nvme_command *c = &pdu->cmd;
2678 
2679 	c->common.flags |= NVME_CMD_SGL_METABUF;
2680 
2681 	if (!blk_rq_nr_phys_segments(rq))
2682 		nvme_tcp_set_sg_null(c);
2683 	else if (rq_data_dir(rq) == WRITE &&
2684 	    req->data_len <= nvme_tcp_inline_data_size(req))
2685 		nvme_tcp_set_sg_inline(queue, c, req->data_len);
2686 	else
2687 		nvme_tcp_set_sg_host_data(c, req->data_len);
2688 
2689 	return 0;
2690 }
2691 
nvme_tcp_setup_cmd_pdu(struct nvme_ns * ns,struct request * rq)2692 static blk_status_t nvme_tcp_setup_cmd_pdu(struct nvme_ns *ns,
2693 		struct request *rq)
2694 {
2695 	struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq);
2696 	struct nvme_tcp_cmd_pdu *pdu = nvme_tcp_req_cmd_pdu(req);
2697 	struct nvme_tcp_queue *queue = req->queue;
2698 	u8 hdgst = nvme_tcp_hdgst_len(queue), ddgst = 0;
2699 	blk_status_t ret;
2700 
2701 	ret = nvme_setup_cmd(ns, rq);
2702 	if (ret)
2703 		return ret;
2704 
2705 	req->state = NVME_TCP_SEND_CMD_PDU;
2706 	req->status = cpu_to_le16(NVME_SC_SUCCESS);
2707 	req->offset = 0;
2708 	req->data_sent = 0;
2709 	req->pdu_len = 0;
2710 	req->pdu_sent = 0;
2711 	req->h2cdata_left = 0;
2712 	req->data_len = blk_rq_nr_phys_segments(rq) ?
2713 				blk_rq_payload_bytes(rq) : 0;
2714 	req->curr_bio = rq->bio;
2715 	if (req->curr_bio && req->data_len)
2716 		nvme_tcp_init_iter(req, rq_data_dir(rq));
2717 
2718 	if (rq_data_dir(rq) == WRITE &&
2719 	    req->data_len <= nvme_tcp_inline_data_size(req))
2720 		req->pdu_len = req->data_len;
2721 
2722 	pdu->hdr.type = nvme_tcp_cmd;
2723 	pdu->hdr.flags = 0;
2724 	if (queue->hdr_digest)
2725 		pdu->hdr.flags |= NVME_TCP_F_HDGST;
2726 	if (queue->data_digest && req->pdu_len) {
2727 		pdu->hdr.flags |= NVME_TCP_F_DDGST;
2728 		ddgst = nvme_tcp_ddgst_len(queue);
2729 	}
2730 	pdu->hdr.hlen = sizeof(*pdu);
2731 	pdu->hdr.pdo = req->pdu_len ? pdu->hdr.hlen + hdgst : 0;
2732 	pdu->hdr.plen =
2733 		cpu_to_le32(pdu->hdr.hlen + hdgst + req->pdu_len + ddgst);
2734 
2735 	ret = nvme_tcp_map_data(queue, rq);
2736 	if (unlikely(ret)) {
2737 		nvme_cleanup_cmd(rq);
2738 		dev_err(queue->ctrl->ctrl.device,
2739 			"Failed to map data (%d)\n", ret);
2740 		return ret;
2741 	}
2742 
2743 	return 0;
2744 }
2745 
nvme_tcp_commit_rqs(struct blk_mq_hw_ctx * hctx)2746 static void nvme_tcp_commit_rqs(struct blk_mq_hw_ctx *hctx)
2747 {
2748 	struct nvme_tcp_queue *queue = hctx->driver_data;
2749 
2750 	if (!llist_empty(&queue->req_list))
2751 		queue_work_on(queue->io_cpu, nvme_tcp_wq, &queue->io_work);
2752 }
2753 
nvme_tcp_queue_rq(struct blk_mq_hw_ctx * hctx,const struct blk_mq_queue_data * bd)2754 static blk_status_t nvme_tcp_queue_rq(struct blk_mq_hw_ctx *hctx,
2755 		const struct blk_mq_queue_data *bd)
2756 {
2757 	struct nvme_ns *ns = hctx->queue->queuedata;
2758 	struct nvme_tcp_queue *queue = hctx->driver_data;
2759 	struct request *rq = bd->rq;
2760 	struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq);
2761 	bool queue_ready = test_bit(NVME_TCP_Q_LIVE, &queue->flags);
2762 	blk_status_t ret;
2763 
2764 	if (!nvme_check_ready(&queue->ctrl->ctrl, rq, queue_ready))
2765 		return nvme_fail_nonready_command(&queue->ctrl->ctrl, rq);
2766 
2767 	ret = nvme_tcp_setup_cmd_pdu(ns, rq);
2768 	if (unlikely(ret))
2769 		return ret;
2770 
2771 	nvme_start_request(rq);
2772 
2773 	nvme_tcp_queue_request(req, true, bd->last);
2774 
2775 	return BLK_STS_OK;
2776 }
2777 
nvme_tcp_map_queues(struct blk_mq_tag_set * set)2778 static void nvme_tcp_map_queues(struct blk_mq_tag_set *set)
2779 {
2780 	struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(set->driver_data);
2781 
2782 	nvmf_map_queues(set, &ctrl->ctrl, ctrl->io_queues);
2783 }
2784 
nvme_tcp_poll(struct blk_mq_hw_ctx * hctx,struct io_comp_batch * iob)2785 static int nvme_tcp_poll(struct blk_mq_hw_ctx *hctx, struct io_comp_batch *iob)
2786 {
2787 	struct nvme_tcp_queue *queue = hctx->driver_data;
2788 	struct sock *sk = queue->sock->sk;
2789 	int ret;
2790 
2791 	if (!test_bit(NVME_TCP_Q_LIVE, &queue->flags))
2792 		return 0;
2793 
2794 	set_bit(NVME_TCP_Q_POLLING, &queue->flags);
2795 	if (sk_can_busy_loop(sk) && skb_queue_empty_lockless(&sk->sk_receive_queue))
2796 		sk_busy_loop(sk, true);
2797 	ret = nvme_tcp_try_recv(queue);
2798 	clear_bit(NVME_TCP_Q_POLLING, &queue->flags);
2799 	return ret < 0 ? ret : queue->nr_cqe;
2800 }
2801 
nvme_tcp_get_address(struct nvme_ctrl * ctrl,char * buf,int size)2802 static int nvme_tcp_get_address(struct nvme_ctrl *ctrl, char *buf, int size)
2803 {
2804 	struct nvme_tcp_queue *queue = &to_tcp_ctrl(ctrl)->queues[0];
2805 	struct sockaddr_storage src_addr;
2806 	int ret, len;
2807 
2808 	len = nvmf_get_address(ctrl, buf, size);
2809 
2810 	if (!test_bit(NVME_TCP_Q_LIVE, &queue->flags))
2811 		return len;
2812 
2813 	mutex_lock(&queue->queue_lock);
2814 
2815 	ret = kernel_getsockname(queue->sock, (struct sockaddr *)&src_addr);
2816 	if (ret > 0) {
2817 		if (len > 0)
2818 			len--; /* strip trailing newline */
2819 		len += scnprintf(buf + len, size - len, "%ssrc_addr=%pISc\n",
2820 				(len) ? "," : "", &src_addr);
2821 	}
2822 
2823 	mutex_unlock(&queue->queue_lock);
2824 
2825 	return len;
2826 }
2827 
2828 static const struct blk_mq_ops nvme_tcp_mq_ops = {
2829 	.queue_rq	= nvme_tcp_queue_rq,
2830 	.commit_rqs	= nvme_tcp_commit_rqs,
2831 	.complete	= nvme_complete_rq,
2832 	.init_request	= nvme_tcp_init_request,
2833 	.exit_request	= nvme_tcp_exit_request,
2834 	.init_hctx	= nvme_tcp_init_hctx,
2835 	.timeout	= nvme_tcp_timeout,
2836 	.map_queues	= nvme_tcp_map_queues,
2837 	.poll		= nvme_tcp_poll,
2838 };
2839 
2840 static const struct blk_mq_ops nvme_tcp_admin_mq_ops = {
2841 	.queue_rq	= nvme_tcp_queue_rq,
2842 	.complete	= nvme_complete_rq,
2843 	.init_request	= nvme_tcp_init_request,
2844 	.exit_request	= nvme_tcp_exit_request,
2845 	.init_hctx	= nvme_tcp_init_admin_hctx,
2846 	.timeout	= nvme_tcp_timeout,
2847 };
2848 
2849 static const struct nvme_ctrl_ops nvme_tcp_ctrl_ops = {
2850 	.name			= "tcp",
2851 	.module			= THIS_MODULE,
2852 	.flags			= NVME_F_FABRICS | NVME_F_BLOCKING,
2853 	.reg_read32		= nvmf_reg_read32,
2854 	.reg_read64		= nvmf_reg_read64,
2855 	.reg_write32		= nvmf_reg_write32,
2856 	.subsystem_reset	= nvmf_subsystem_reset,
2857 	.free_ctrl		= nvme_tcp_free_ctrl,
2858 	.submit_async_event	= nvme_tcp_submit_async_event,
2859 	.delete_ctrl		= nvme_tcp_delete_ctrl,
2860 	.get_address		= nvme_tcp_get_address,
2861 	.stop_ctrl		= nvme_tcp_stop_ctrl,
2862 };
2863 
2864 static bool
nvme_tcp_existing_controller(struct nvmf_ctrl_options * opts)2865 nvme_tcp_existing_controller(struct nvmf_ctrl_options *opts)
2866 {
2867 	struct nvme_tcp_ctrl *ctrl;
2868 	bool found = false;
2869 
2870 	mutex_lock(&nvme_tcp_ctrl_mutex);
2871 	list_for_each_entry(ctrl, &nvme_tcp_ctrl_list, list) {
2872 		found = nvmf_ip_options_match(&ctrl->ctrl, opts);
2873 		if (found)
2874 			break;
2875 	}
2876 	mutex_unlock(&nvme_tcp_ctrl_mutex);
2877 
2878 	return found;
2879 }
2880 
nvme_tcp_alloc_ctrl(struct device * dev,struct nvmf_ctrl_options * opts)2881 static struct nvme_tcp_ctrl *nvme_tcp_alloc_ctrl(struct device *dev,
2882 		struct nvmf_ctrl_options *opts)
2883 {
2884 	struct nvme_tcp_ctrl *ctrl;
2885 	int ret;
2886 
2887 	ctrl = kzalloc(sizeof(*ctrl), GFP_KERNEL);
2888 	if (!ctrl)
2889 		return ERR_PTR(-ENOMEM);
2890 
2891 	INIT_LIST_HEAD(&ctrl->list);
2892 	ctrl->ctrl.opts = opts;
2893 	ctrl->ctrl.queue_count = opts->nr_io_queues + opts->nr_write_queues +
2894 				opts->nr_poll_queues + 1;
2895 	ctrl->ctrl.sqsize = opts->queue_size - 1;
2896 	ctrl->ctrl.kato = opts->kato;
2897 
2898 	INIT_DELAYED_WORK(&ctrl->connect_work,
2899 			nvme_tcp_reconnect_ctrl_work);
2900 	INIT_WORK(&ctrl->err_work, nvme_tcp_error_recovery_work);
2901 	INIT_WORK(&ctrl->ctrl.reset_work, nvme_reset_ctrl_work);
2902 
2903 	if (!(opts->mask & NVMF_OPT_TRSVCID)) {
2904 		opts->trsvcid =
2905 			kstrdup(__stringify(NVME_TCP_DISC_PORT), GFP_KERNEL);
2906 		if (!opts->trsvcid) {
2907 			ret = -ENOMEM;
2908 			goto out_free_ctrl;
2909 		}
2910 		opts->mask |= NVMF_OPT_TRSVCID;
2911 	}
2912 
2913 	ret = inet_pton_with_scope(&init_net, AF_UNSPEC,
2914 			opts->traddr, opts->trsvcid, &ctrl->addr);
2915 	if (ret) {
2916 		pr_err("malformed address passed: %s:%s\n",
2917 			opts->traddr, opts->trsvcid);
2918 		goto out_free_ctrl;
2919 	}
2920 
2921 	if (opts->mask & NVMF_OPT_HOST_TRADDR) {
2922 		ret = inet_pton_with_scope(&init_net, AF_UNSPEC,
2923 			opts->host_traddr, NULL, &ctrl->src_addr);
2924 		if (ret) {
2925 			pr_err("malformed src address passed: %s\n",
2926 			       opts->host_traddr);
2927 			goto out_free_ctrl;
2928 		}
2929 	}
2930 
2931 	if (opts->mask & NVMF_OPT_HOST_IFACE) {
2932 		if (!__dev_get_by_name(&init_net, opts->host_iface)) {
2933 			pr_err("invalid interface passed: %s\n",
2934 			       opts->host_iface);
2935 			ret = -ENODEV;
2936 			goto out_free_ctrl;
2937 		}
2938 	}
2939 
2940 	if (!opts->duplicate_connect && nvme_tcp_existing_controller(opts)) {
2941 		ret = -EALREADY;
2942 		goto out_free_ctrl;
2943 	}
2944 
2945 	ctrl->queues = kcalloc(ctrl->ctrl.queue_count, sizeof(*ctrl->queues),
2946 				GFP_KERNEL);
2947 	if (!ctrl->queues) {
2948 		ret = -ENOMEM;
2949 		goto out_free_ctrl;
2950 	}
2951 
2952 	ret = nvme_init_ctrl(&ctrl->ctrl, dev, &nvme_tcp_ctrl_ops, 0);
2953 	if (ret)
2954 		goto out_kfree_queues;
2955 
2956 	return ctrl;
2957 out_kfree_queues:
2958 	kfree(ctrl->queues);
2959 out_free_ctrl:
2960 	kfree(ctrl);
2961 	return ERR_PTR(ret);
2962 }
2963 
nvme_tcp_create_ctrl(struct device * dev,struct nvmf_ctrl_options * opts)2964 static struct nvme_ctrl *nvme_tcp_create_ctrl(struct device *dev,
2965 		struct nvmf_ctrl_options *opts)
2966 {
2967 	struct nvme_tcp_ctrl *ctrl;
2968 	int ret;
2969 
2970 	ctrl = nvme_tcp_alloc_ctrl(dev, opts);
2971 	if (IS_ERR(ctrl))
2972 		return ERR_CAST(ctrl);
2973 
2974 	ret = nvme_add_ctrl(&ctrl->ctrl);
2975 	if (ret)
2976 		goto out_put_ctrl;
2977 
2978 	if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_CONNECTING)) {
2979 		WARN_ON_ONCE(1);
2980 		ret = -EINTR;
2981 		goto out_uninit_ctrl;
2982 	}
2983 
2984 	ret = nvme_tcp_setup_ctrl(&ctrl->ctrl, true);
2985 	if (ret)
2986 		goto out_uninit_ctrl;
2987 
2988 	dev_info(ctrl->ctrl.device, "new ctrl: NQN \"%s\", addr %pISp, hostnqn: %s\n",
2989 		nvmf_ctrl_subsysnqn(&ctrl->ctrl), &ctrl->addr, opts->host->nqn);
2990 
2991 	mutex_lock(&nvme_tcp_ctrl_mutex);
2992 	list_add_tail(&ctrl->list, &nvme_tcp_ctrl_list);
2993 	mutex_unlock(&nvme_tcp_ctrl_mutex);
2994 
2995 	return &ctrl->ctrl;
2996 
2997 out_uninit_ctrl:
2998 	nvme_uninit_ctrl(&ctrl->ctrl);
2999 out_put_ctrl:
3000 	nvme_put_ctrl(&ctrl->ctrl);
3001 	if (ret > 0)
3002 		ret = -EIO;
3003 	return ERR_PTR(ret);
3004 }
3005 
3006 static struct nvmf_transport_ops nvme_tcp_transport = {
3007 	.name		= "tcp",
3008 	.module		= THIS_MODULE,
3009 	.required_opts	= NVMF_OPT_TRADDR,
3010 	.allowed_opts	= NVMF_OPT_TRSVCID | NVMF_OPT_RECONNECT_DELAY |
3011 			  NVMF_OPT_HOST_TRADDR | NVMF_OPT_CTRL_LOSS_TMO |
3012 			  NVMF_OPT_HDR_DIGEST | NVMF_OPT_DATA_DIGEST |
3013 			  NVMF_OPT_NR_WRITE_QUEUES | NVMF_OPT_NR_POLL_QUEUES |
3014 			  NVMF_OPT_TOS | NVMF_OPT_HOST_IFACE | NVMF_OPT_TLS |
3015 			  NVMF_OPT_KEYRING | NVMF_OPT_TLS_KEY,
3016 	.create_ctrl	= nvme_tcp_create_ctrl,
3017 };
3018 
nvme_tcp_init_module(void)3019 static int __init nvme_tcp_init_module(void)
3020 {
3021 	unsigned int wq_flags = WQ_MEM_RECLAIM | WQ_HIGHPRI | WQ_SYSFS;
3022 	int cpu;
3023 
3024 	BUILD_BUG_ON(sizeof(struct nvme_tcp_hdr) != 8);
3025 	BUILD_BUG_ON(sizeof(struct nvme_tcp_cmd_pdu) != 72);
3026 	BUILD_BUG_ON(sizeof(struct nvme_tcp_data_pdu) != 24);
3027 	BUILD_BUG_ON(sizeof(struct nvme_tcp_rsp_pdu) != 24);
3028 	BUILD_BUG_ON(sizeof(struct nvme_tcp_r2t_pdu) != 24);
3029 	BUILD_BUG_ON(sizeof(struct nvme_tcp_icreq_pdu) != 128);
3030 	BUILD_BUG_ON(sizeof(struct nvme_tcp_icresp_pdu) != 128);
3031 	BUILD_BUG_ON(sizeof(struct nvme_tcp_term_pdu) != 24);
3032 
3033 	if (wq_unbound)
3034 		wq_flags |= WQ_UNBOUND;
3035 
3036 	nvme_tcp_wq = alloc_workqueue("nvme_tcp_wq", wq_flags, 0);
3037 	if (!nvme_tcp_wq)
3038 		return -ENOMEM;
3039 
3040 	for_each_possible_cpu(cpu)
3041 		atomic_set(&nvme_tcp_cpu_queues[cpu], 0);
3042 
3043 	nvmf_register_transport(&nvme_tcp_transport);
3044 	return 0;
3045 }
3046 
nvme_tcp_cleanup_module(void)3047 static void __exit nvme_tcp_cleanup_module(void)
3048 {
3049 	struct nvme_tcp_ctrl *ctrl;
3050 
3051 	nvmf_unregister_transport(&nvme_tcp_transport);
3052 
3053 	mutex_lock(&nvme_tcp_ctrl_mutex);
3054 	list_for_each_entry(ctrl, &nvme_tcp_ctrl_list, list)
3055 		nvme_delete_ctrl(&ctrl->ctrl);
3056 	mutex_unlock(&nvme_tcp_ctrl_mutex);
3057 	flush_workqueue(nvme_delete_wq);
3058 
3059 	destroy_workqueue(nvme_tcp_wq);
3060 }
3061 
3062 module_init(nvme_tcp_init_module);
3063 module_exit(nvme_tcp_cleanup_module);
3064 
3065 MODULE_DESCRIPTION("NVMe host TCP transport driver");
3066 MODULE_LICENSE("GPL v2");
3067